1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 /**
33  * DOC: overview
34  *
35  * In the DRM subsystem, framebuffer pixel formats are described using the
36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37  * fourcc code, a Format Modifier may optionally be provided, in order to
38  * further describe the buffer's format - for example tiling or compression.
39  *
40  * Format Modifiers
41  * ----------------
42  *
43  * Format modifiers are used in conjunction with a fourcc code, forming a
44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
45  * format and data layout of the buffer, and should be the only way to describe
46  * that particular buffer.
47  *
48  * Having multiple fourcc:modifier pairs which describe the same layout should
49  * be avoided, as such aliases run the risk of different drivers exposing
50  * different names for the same data format, forcing userspace to understand
51  * that they are aliases.
52  *
53  * Format modifiers may change any property of the buffer, including the number
54  * of planes and/or the required allocation size. Format modifiers are
55  * vendor-namespaced, and as such the relationship between a fourcc code and a
56  * modifier is specific to the modifer being used. For example, some modifiers
57  * may preserve meaning - such as number of planes - from the fourcc code,
58  * whereas others may not.
59  *
60  * Vendors should document their modifier usage in as much detail as
61  * possible, to ensure maximum compatibility across devices, drivers and
62  * applications.
63  *
64  * The authoritative list of format modifier codes is found in
65  * `include/uapi/drm/drm_fourcc.h`
66  */
67 
68 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
69 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
70 
71 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
72 
73 /* Reserve 0 for the invalid format specifier */
74 #define DRM_FORMAT_INVALID	0
75 
76 /* color index */
77 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
78 
79 /* 8 bpp Red */
80 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
81 
82 /* 16 bpp Red */
83 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
84 
85 /* 16 bpp RG */
86 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
87 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
88 
89 /* 32 bpp RG */
90 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
91 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
92 
93 /* 8 bpp RGB */
94 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
95 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
96 
97 /* 16 bpp RGB */
98 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
99 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
100 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
101 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
102 
103 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
104 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
105 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
106 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
107 
108 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
109 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
110 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
111 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
112 
113 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
114 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
115 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
116 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
117 
118 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
119 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
120 
121 /* 24 bpp RGB */
122 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
123 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
124 
125 /* 32 bpp RGB */
126 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
127 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
128 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
129 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
130 
131 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
132 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
133 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
134 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
135 
136 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
137 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
138 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
139 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
140 
141 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
142 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
143 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
144 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
145 
146 /*
147  * Floating point 64bpp RGB
148  * IEEE 754-2008 binary16 half-precision float
149  * [15:0] sign:exponent:mantissa 1:5:10
150  */
151 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
152 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
153 
154 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
155 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
156 
157 /* packed YCbCr */
158 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
159 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
160 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
161 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
162 
163 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
164 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
165 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
166 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
167 
168 /*
169  * packed Y2xx indicate for each component, xx valid data occupy msb
170  * 16-xx padding occupy lsb
171  */
172 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
173 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
174 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
175 
176 /*
177  * packed Y4xx indicate for each component, xx valid data occupy msb
178  * 16-xx padding occupy lsb except Y410
179  */
180 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
181 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
182 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
183 
184 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
185 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
186 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
187 
188 /*
189  * packed YCbCr420 2x2 tiled formats
190  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
191  */
192 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
193 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
194 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
195 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
196 
197 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
198 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
199 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
200 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
201 
202 /*
203  * 1-plane YUV 4:2:0
204  * In these formats, the component ordering is specified (Y, followed by U
205  * then V), but the exact Linear layout is undefined.
206  * These formats can only be used with a non-Linear modifier.
207  */
208 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
209 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
210 
211 /*
212  * 2 plane RGB + A
213  * index 0 = RGB plane, same format as the corresponding non _A8 format has
214  * index 1 = A plane, [7:0] A
215  */
216 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
217 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
218 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
219 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
220 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
221 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
222 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
223 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
224 
225 /*
226  * 2 plane YCbCr
227  * index 0 = Y plane, [7:0] Y
228  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
229  * or
230  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
231  */
232 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
233 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
234 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
235 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
236 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
237 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
238 /*
239  * 2 plane YCbCr
240  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
241  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
242  */
243 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
244 
245 /*
246  * 2 plane YCbCr MSB aligned
247  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
248  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
249  */
250 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
251 
252 /*
253  * 2 plane YCbCr MSB aligned
254  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
255  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
256  */
257 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
258 
259 /*
260  * 2 plane YCbCr MSB aligned
261  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
262  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
263  */
264 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
265 
266 /*
267  * 2 plane YCbCr MSB aligned
268  * index 0 = Y plane, [15:0] Y little endian
269  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
270  */
271 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
272 
273 /* 3 plane non-subsampled (444) YCbCr
274  * 16 bits per component, but only 10 bits are used and 6 bits are padded
275  * index 0: Y plane, [15:0] Y:x [10:6] little endian
276  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
277  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
278  */
279 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
280 
281 /* 3 plane non-subsampled (444) YCrCb
282  * 16 bits per component, but only 10 bits are used and 6 bits are padded
283  * index 0: Y plane, [15:0] Y:x [10:6] little endian
284  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
285  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
286  */
287 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
288 
289 /*
290  * 3 plane YCbCr
291  * index 0: Y plane, [7:0] Y
292  * index 1: Cb plane, [7:0] Cb
293  * index 2: Cr plane, [7:0] Cr
294  * or
295  * index 1: Cr plane, [7:0] Cr
296  * index 2: Cb plane, [7:0] Cb
297  */
298 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
299 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
300 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
301 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
302 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
303 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
304 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
305 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
306 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
307 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
308 
309 
310 /*
311  * Format Modifiers:
312  *
313  * Format modifiers describe, typically, a re-ordering or modification
314  * of the data in a plane of an FB.  This can be used to express tiled/
315  * swizzled formats, or compression, or a combination of the two.
316  *
317  * The upper 8 bits of the format modifier are a vendor-id as assigned
318  * below.  The lower 56 bits are assigned as vendor sees fit.
319  */
320 
321 /* Vendor Ids: */
322 #define DRM_FORMAT_MOD_NONE           0
323 #define DRM_FORMAT_MOD_VENDOR_NONE    0
324 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
325 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
326 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
327 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
328 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
329 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
330 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
331 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
332 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
333 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
334 
335 /* add more to the end as needed */
336 
337 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
338 
339 #define fourcc_mod_code(vendor, val) \
340 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
341 
342 /*
343  * Format Modifier tokens:
344  *
345  * When adding a new token please document the layout with a code comment,
346  * similar to the fourcc codes above. drm_fourcc.h is considered the
347  * authoritative source for all of these.
348  *
349  * Generic modifier names:
350  *
351  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
352  * for layouts which are common across multiple vendors. To preserve
353  * compatibility, in cases where a vendor-specific definition already exists and
354  * a generic name for it is desired, the common name is a purely symbolic alias
355  * and must use the same numerical value as the original definition.
356  *
357  * Note that generic names should only be used for modifiers which describe
358  * generic layouts (such as pixel re-ordering), which may have
359  * independently-developed support across multiple vendors.
360  *
361  * In future cases where a generic layout is identified before merging with a
362  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
363  * 'NONE' could be considered. This should only be for obvious, exceptional
364  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
365  * apply to a single vendor.
366  *
367  * Generic names should not be used for cases where multiple hardware vendors
368  * have implementations of the same standardised compression scheme (such as
369  * AFBC). In those cases, all implementations should use the same format
370  * modifier(s), reflecting the vendor of the standard.
371  */
372 
373 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
374 
375 /*
376  * Invalid Modifier
377  *
378  * This modifier can be used as a sentinel to terminate the format modifiers
379  * list, or to initialize a variable with an invalid modifier. It might also be
380  * used to report an error back to userspace for certain APIs.
381  */
382 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
383 
384 /*
385  * Linear Layout
386  *
387  * Just plain linear layout. Note that this is different from no specifying any
388  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
389  * which tells the driver to also take driver-internal information into account
390  * and so might actually result in a tiled framebuffer.
391  */
392 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
393 
394 /* Intel framebuffer modifiers */
395 
396 /*
397  * Intel X-tiling layout
398  *
399  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
400  * in row-major layout. Within the tile bytes are laid out row-major, with
401  * a platform-dependent stride. On top of that the memory can apply
402  * platform-depending swizzling of some higher address bits into bit6.
403  *
404  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
405  * On earlier platforms the is highly platforms specific and not useful for
406  * cross-driver sharing. It exists since on a given platform it does uniquely
407  * identify the layout in a simple way for i915-specific userspace, which
408  * facilitated conversion of userspace to modifiers. Additionally the exact
409  * format on some really old platforms is not known.
410  */
411 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
412 
413 /*
414  * Intel Y-tiling layout
415  *
416  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
417  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
418  * chunks column-major, with a platform-dependent height. On top of that the
419  * memory can apply platform-depending swizzling of some higher address bits
420  * into bit6.
421  *
422  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
423  * On earlier platforms the is highly platforms specific and not useful for
424  * cross-driver sharing. It exists since on a given platform it does uniquely
425  * identify the layout in a simple way for i915-specific userspace, which
426  * facilitated conversion of userspace to modifiers. Additionally the exact
427  * format on some really old platforms is not known.
428  */
429 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
430 
431 /*
432  * Intel Yf-tiling layout
433  *
434  * This is a tiled layout using 4Kb tiles in row-major layout.
435  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
436  * are arranged in four groups (two wide, two high) with column-major layout.
437  * Each group therefore consits out of four 256 byte units, which are also laid
438  * out as 2x2 column-major.
439  * 256 byte units are made out of four 64 byte blocks of pixels, producing
440  * either a square block or a 2:1 unit.
441  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
442  * in pixel depends on the pixel depth.
443  */
444 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
445 
446 /*
447  * Intel color control surface (CCS) for render compression
448  *
449  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
450  * The main surface will be plane index 0 and must be Y/Yf-tiled,
451  * the CCS will be plane index 1.
452  *
453  * Each CCS tile matches a 1024x512 pixel area of the main surface.
454  * To match certain aspects of the 3D hardware the CCS is
455  * considered to be made up of normal 128Bx32 Y tiles, Thus
456  * the CCS pitch must be specified in multiples of 128 bytes.
457  *
458  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
459  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
460  * But that fact is not relevant unless the memory is accessed
461  * directly.
462  */
463 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
464 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
465 
466 /*
467  * Intel color control surfaces (CCS) for Gen-12 render compression.
468  *
469  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
470  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
471  * main surface. In other words, 4 bits in CCS map to a main surface cache
472  * line pair. The main surface pitch is required to be a multiple of four
473  * Y-tile widths.
474  */
475 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
476 
477 /*
478  * Intel color control surfaces (CCS) for Gen-12 media compression
479  *
480  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
481  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
482  * main surface. In other words, 4 bits in CCS map to a main surface cache
483  * line pair. The main surface pitch is required to be a multiple of four
484  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
485  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
486  * planes 2 and 3 for the respective CCS.
487  */
488 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
489 
490 /*
491  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
492  *
493  * Macroblocks are laid in a Z-shape, and each pixel data is following the
494  * standard NV12 style.
495  * As for NV12, an image is the result of two frame buffers: one for Y,
496  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
497  * Alignment requirements are (for each buffer):
498  * - multiple of 128 pixels for the width
499  * - multiple of  32 pixels for the height
500  *
501  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
502  */
503 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
504 
505 /*
506  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
507  *
508  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
509  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
510  * they correspond to their 16x16 luma block.
511  */
512 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
513 
514 /*
515  * Qualcomm Compressed Format
516  *
517  * Refers to a compressed variant of the base format that is compressed.
518  * Implementation may be platform and base-format specific.
519  *
520  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
521  * Pixel data pitch/stride is aligned with macrotile width.
522  * Pixel data height is aligned with macrotile height.
523  * Entire pixel data buffer is aligned with 4k(bytes).
524  */
525 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
526 
527 /* Vivante framebuffer modifiers */
528 
529 /*
530  * Vivante 4x4 tiling layout
531  *
532  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
533  * layout.
534  */
535 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
536 
537 /*
538  * Vivante 64x64 super-tiling layout
539  *
540  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
541  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
542  * major layout.
543  *
544  * For more information: see
545  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
546  */
547 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
548 
549 /*
550  * Vivante 4x4 tiling layout for dual-pipe
551  *
552  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
553  * different base address. Offsets from the base addresses are therefore halved
554  * compared to the non-split tiled layout.
555  */
556 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
557 
558 /*
559  * Vivante 64x64 super-tiling layout for dual-pipe
560  *
561  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
562  * starts at a different base address. Offsets from the base addresses are
563  * therefore halved compared to the non-split super-tiled layout.
564  */
565 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
566 
567 /* NVIDIA frame buffer modifiers */
568 
569 /*
570  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
571  *
572  * Pixels are arranged in simple tiles of 16 x 16 bytes.
573  */
574 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
575 
576 /*
577  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
578  * and Tegra GPUs starting with Tegra K1.
579  *
580  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
581  * based on the architecture generation.  GOBs themselves are then arranged in
582  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
583  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
584  * a block depth or height of "4").
585  *
586  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
587  * in full detail.
588  *
589  *       Macro
590  * Bits  Param Description
591  * ----  ----- -----------------------------------------------------------------
592  *
593  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
594  *             compatibility with the existing
595  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
596  *
597  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
598  *             compatibility with the existing
599  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
600  *
601  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
602  *             size).  Must be zero.
603  *
604  *             Note there is no log2(width) parameter.  Some portions of the
605  *             hardware support a block width of two gobs, but it is impractical
606  *             to use due to lack of support elsewhere, and has no known
607  *             benefits.
608  *
609  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
610  *             in blocks, specified via log2(tile width in blocks)).  Must be
611  *             zero.
612  *
613  * 19:12 k     Page Kind.  This value directly maps to a field in the page
614  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
615  *             in memory and can be derived from the tuple
616  *
617  *               (format, GPU model, compression type, samples per pixel)
618  *
619  *             Where compression type is defined below.  If GPU model were
620  *             implied by the format modifier, format, or memory buffer, page
621  *             kind would not need to be included in the modifier itself, but
622  *             since the modifier should define the layout of the associated
623  *             memory buffer independent from any device or other context, it
624  *             must be included here.
625  *
626  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
627  *             starting with Fermi GPUs.  Additionally, the mapping between page
628  *             kind and bit layout has changed at various points.
629  *
630  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
631  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
632  *               2 = Gob Height 8, Turing+ Page Kind mapping
633  *               3 = Reserved for future use.
634  *
635  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
636  *             bit remapping step that occurs at an even lower level than the
637  *             page kind and block linear swizzles.  This causes the layout of
638  *             surfaces mapped in those SOC's GPUs to be incompatible with the
639  *             equivalent mapping on other GPUs in the same system.
640  *
641  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
642  *               1 = Desktop GPU and Tegra Xavier+ Layout
643  *
644  * 25:23 c     Lossless Framebuffer Compression type.
645  *
646  *               0 = none
647  *               1 = ROP/3D, layout 1, exact compression format implied by Page
648  *                   Kind field
649  *               2 = ROP/3D, layout 2, exact compression format implied by Page
650  *                   Kind field
651  *               3 = CDE horizontal
652  *               4 = CDE vertical
653  *               5 = Reserved for future use
654  *               6 = Reserved for future use
655  *               7 = Reserved for future use
656  *
657  * 55:25 -     Reserved for future use.  Must be zero.
658  */
659 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
660 	fourcc_mod_code(NVIDIA, (0x10 | \
661 				 ((h) & 0xf) | \
662 				 (((k) & 0xff) << 12) | \
663 				 (((g) & 0x3) << 20) | \
664 				 (((s) & 0x1) << 22) | \
665 				 (((c) & 0x7) << 23)))
666 
667 /* To grandfather in prior block linear format modifiers to the above layout,
668  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
669  * with block-linear layouts, is remapped within drivers to the value 0xfe,
670  * which corresponds to the "generic" kind used for simple single-sample
671  * uncompressed color formats on Fermi - Volta GPUs.
672  */
673 static inline uint64_t
674 drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
675 {
676 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
677 		return modifier;
678 	else
679 		return modifier | (0xfe << 12);
680 }
681 
682 /*
683  * 16Bx2 Block Linear layout, used by Tegra K1 and later
684  *
685  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
686  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
687  *
688  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
689  *
690  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
691  * Valid values are:
692  *
693  * 0 == ONE_GOB
694  * 1 == TWO_GOBS
695  * 2 == FOUR_GOBS
696  * 3 == EIGHT_GOBS
697  * 4 == SIXTEEN_GOBS
698  * 5 == THIRTYTWO_GOBS
699  *
700  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
701  * in full detail.
702  */
703 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
704 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
705 
706 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
707 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
708 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
709 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
710 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
711 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
712 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
713 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
714 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
715 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
716 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
717 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
718 
719 /*
720  * Some Broadcom modifiers take parameters, for example the number of
721  * vertical lines in the image. Reserve the lower 32 bits for modifier
722  * type, and the next 24 bits for parameters. Top 8 bits are the
723  * vendor code.
724  */
725 #define __fourcc_mod_broadcom_param_shift 8
726 #define __fourcc_mod_broadcom_param_bits 48
727 #define fourcc_mod_broadcom_code(val, params) \
728 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
729 #define fourcc_mod_broadcom_param(m) \
730 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
731 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
732 #define fourcc_mod_broadcom_mod(m) \
733 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
734 		 __fourcc_mod_broadcom_param_shift))
735 
736 /*
737  * Broadcom VC4 "T" format
738  *
739  * This is the primary layout that the V3D GPU can texture from (it
740  * can't do linear).  The T format has:
741  *
742  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
743  *   pixels at 32 bit depth.
744  *
745  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
746  *   16x16 pixels).
747  *
748  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
749  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
750  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
751  *
752  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
753  *   tiles) or right-to-left (odd rows of 4k tiles).
754  */
755 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
756 
757 /*
758  * Broadcom SAND format
759  *
760  * This is the native format that the H.264 codec block uses.  For VC4
761  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
762  *
763  * The image can be considered to be split into columns, and the
764  * columns are placed consecutively into memory.  The width of those
765  * columns can be either 32, 64, 128, or 256 pixels, but in practice
766  * only 128 pixel columns are used.
767  *
768  * The pitch between the start of each column is set to optimally
769  * switch between SDRAM banks. This is passed as the number of lines
770  * of column width in the modifier (we can't use the stride value due
771  * to various core checks that look at it , so you should set the
772  * stride to width*cpp).
773  *
774  * Note that the column height for this format modifier is the same
775  * for all of the planes, assuming that each column contains both Y
776  * and UV.  Some SAND-using hardware stores UV in a separate tiled
777  * image from Y to reduce the column height, which is not supported
778  * with these modifiers.
779  */
780 
781 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
782 	fourcc_mod_broadcom_code(2, v)
783 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
784 	fourcc_mod_broadcom_code(3, v)
785 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
786 	fourcc_mod_broadcom_code(4, v)
787 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
788 	fourcc_mod_broadcom_code(5, v)
789 
790 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
791 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
792 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
793 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
794 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
795 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
796 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
797 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
798 
799 /* Broadcom UIF format
800  *
801  * This is the common format for the current Broadcom multimedia
802  * blocks, including V3D 3.x and newer, newer video codecs, and
803  * displays.
804  *
805  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
806  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
807  * stored in columns, with padding between the columns to ensure that
808  * moving from one column to the next doesn't hit the same SDRAM page
809  * bank.
810  *
811  * To calculate the padding, it is assumed that each hardware block
812  * and the software driving it knows the platform's SDRAM page size,
813  * number of banks, and XOR address, and that it's identical between
814  * all blocks using the format.  This tiling modifier will use XOR as
815  * necessary to reduce the padding.  If a hardware block can't do XOR,
816  * the assumption is that a no-XOR tiling modifier will be created.
817  */
818 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
819 
820 /*
821  * Arm Framebuffer Compression (AFBC) modifiers
822  *
823  * AFBC is a proprietary lossless image compression protocol and format.
824  * It provides fine-grained random access and minimizes the amount of data
825  * transferred between IP blocks.
826  *
827  * AFBC has several features which may be supported and/or used, which are
828  * represented using bits in the modifier. Not all combinations are valid,
829  * and different devices or use-cases may support different combinations.
830  *
831  * Further information on the use of AFBC modifiers can be found in
832  * Documentation/gpu/afbc.rst
833  */
834 
835 /*
836  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
837  * modifiers) denote the category for modifiers. Currently we have only two
838  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
839  * different categories.
840  */
841 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
842 	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
843 
844 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
845 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
846 
847 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
848 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
849 
850 /*
851  * AFBC superblock size
852  *
853  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
854  * size (in pixels) must be aligned to a multiple of the superblock size.
855  * Four lowest significant bits(LSBs) are reserved for block size.
856  *
857  * Where one superblock size is specified, it applies to all planes of the
858  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
859  * the first applies to the Luma plane and the second applies to the Chroma
860  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
861  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
862  */
863 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
864 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
865 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
866 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
867 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
868 
869 /*
870  * AFBC lossless colorspace transform
871  *
872  * Indicates that the buffer makes use of the AFBC lossless colorspace
873  * transform.
874  */
875 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
876 
877 /*
878  * AFBC block-split
879  *
880  * Indicates that the payload of each superblock is split. The second
881  * half of the payload is positioned at a predefined offset from the start
882  * of the superblock payload.
883  */
884 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
885 
886 /*
887  * AFBC sparse layout
888  *
889  * This flag indicates that the payload of each superblock must be stored at a
890  * predefined position relative to the other superblocks in the same AFBC
891  * buffer. This order is the same order used by the header buffer. In this mode
892  * each superblock is given the same amount of space as an uncompressed
893  * superblock of the particular format would require, rounding up to the next
894  * multiple of 128 bytes in size.
895  */
896 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
897 
898 /*
899  * AFBC copy-block restrict
900  *
901  * Buffers with this flag must obey the copy-block restriction. The restriction
902  * is such that there are no copy-blocks referring across the border of 8x8
903  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
904  */
905 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
906 
907 /*
908  * AFBC tiled layout
909  *
910  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
911  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
912  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
913  * larger bpp formats. The order between the tiles is scan line.
914  * When the tiled layout is used, the buffer size (in pixels) must be aligned
915  * to the tile size.
916  */
917 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
918 
919 /*
920  * AFBC solid color blocks
921  *
922  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
923  * can be reduced if a whole superblock is a single color.
924  */
925 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
926 
927 /*
928  * AFBC double-buffer
929  *
930  * Indicates that the buffer is allocated in a layout safe for front-buffer
931  * rendering.
932  */
933 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
934 
935 /*
936  * AFBC buffer content hints
937  *
938  * Indicates that the buffer includes per-superblock content hints.
939  */
940 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
941 
942 /* AFBC uncompressed storage mode
943  *
944  * Indicates that the buffer is using AFBC uncompressed storage mode.
945  * In this mode all superblock payloads in the buffer use the uncompressed
946  * storage mode, which is usually only used for data which cannot be compressed.
947  * The buffer layout is the same as for AFBC buffers without USM set, this only
948  * affects the storage mode of the individual superblocks. Note that even a
949  * buffer without USM set may use uncompressed storage mode for some or all
950  * superblocks, USM just guarantees it for all.
951  */
952 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
953 
954 /*
955  * Arm 16x16 Block U-Interleaved modifier
956  *
957  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
958  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
959  * in the block are reordered.
960  */
961 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
962 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
963 
964 /*
965  * Allwinner tiled modifier
966  *
967  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
968  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
969  * planes.
970  *
971  * With this tiling, the luminance samples are disposed in tiles representing
972  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
973  * The pixel order in each tile is linear and the tiles are disposed linearly,
974  * both in row-major order.
975  */
976 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
977 
978 /*
979  * Amlogic Video Framebuffer Compression modifiers
980  *
981  * Amlogic uses a proprietary lossless image compression protocol and format
982  * for their hardware video codec accelerators, either video decoders or
983  * video input encoders.
984  *
985  * It considerably reduces memory bandwidth while writing and reading
986  * frames in memory.
987  *
988  * The underlying storage is considered to be 3 components, 8bit or 10-bit
989  * per component YCbCr 420, single plane :
990  * - DRM_FORMAT_YUV420_8BIT
991  * - DRM_FORMAT_YUV420_10BIT
992  *
993  * The first 8 bits of the mode defines the layout, then the following 8 bits
994  * defines the options changing the layout.
995  *
996  * Not all combinations are valid, and different SoCs may support different
997  * combinations of layout and options.
998  */
999 #define __fourcc_mod_amlogic_layout_mask 0xf
1000 #define __fourcc_mod_amlogic_options_shift 8
1001 #define __fourcc_mod_amlogic_options_mask 0xf
1002 
1003 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1004 	fourcc_mod_code(AMLOGIC, \
1005 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1006 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1007 			 << __fourcc_mod_amlogic_options_shift))
1008 
1009 /* Amlogic FBC Layouts */
1010 
1011 /*
1012  * Amlogic FBC Basic Layout
1013  *
1014  * The basic layout is composed of:
1015  * - a body content organized in 64x32 superblocks with 4096 bytes per
1016  *   superblock in default mode.
1017  * - a 32 bytes per 128x64 header block
1018  *
1019  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1020  */
1021 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1022 
1023 /*
1024  * Amlogic FBC Scatter Memory layout
1025  *
1026  * Indicates the header contains IOMMU references to the compressed
1027  * frames content to optimize memory access and layout.
1028  *
1029  * In this mode, only the header memory address is needed, thus the
1030  * content memory organization is tied to the current producer
1031  * execution and cannot be saved/dumped neither transferrable between
1032  * Amlogic SoCs supporting this modifier.
1033  *
1034  * Due to the nature of the layout, these buffers are not expected to
1035  * be accessible by the user-space clients, but only accessible by the
1036  * hardware producers and consumers.
1037  *
1038  * The user-space clients should expect a failure while trying to mmap
1039  * the DMA-BUF handle returned by the producer.
1040  */
1041 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1042 
1043 /* Amlogic FBC Layout Options Bit Mask */
1044 
1045 /*
1046  * Amlogic FBC Memory Saving mode
1047  *
1048  * Indicates the storage is packed when pixel size is multiple of word
1049  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1050  * memory.
1051  *
1052  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1053  * the basic layout and 3200 bytes per 64x32 superblock combined with
1054  * the scatter layout.
1055  */
1056 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1057 
1058 #if defined(__cplusplus)
1059 }
1060 #endif
1061 
1062 #endif /* DRM_FOURCC_H */
1063