1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 
28 #if defined(__cplusplus)
29 extern "C" {
30 #endif
31 
32 /**
33  * DOC: overview
34  *
35  * In the DRM subsystem, framebuffer pixel formats are described using the
36  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
37  * fourcc code, a Format Modifier may optionally be provided, in order to
38  * further describe the buffer's format - for example tiling or compression.
39  *
40  * Format Modifiers
41  * ----------------
42  *
43  * Format modifiers are used in conjunction with a fourcc code, forming a
44  * unique fourcc:modifier pair. This format:modifier pair must fully define the
45  * format and data layout of the buffer, and should be the only way to describe
46  * that particular buffer.
47  *
48  * Having multiple fourcc:modifier pairs which describe the same layout should
49  * be avoided, as such aliases run the risk of different drivers exposing
50  * different names for the same data format, forcing userspace to understand
51  * that they are aliases.
52  *
53  * Format modifiers may change any property of the buffer, including the number
54  * of planes and/or the required allocation size. Format modifiers are
55  * vendor-namespaced, and as such the relationship between a fourcc code and a
56  * modifier is specific to the modifer being used. For example, some modifiers
57  * may preserve meaning - such as number of planes - from the fourcc code,
58  * whereas others may not.
59  *
60  * Vendors should document their modifier usage in as much detail as
61  * possible, to ensure maximum compatibility across devices, drivers and
62  * applications.
63  *
64  * The authoritative list of format modifier codes is found in
65  * `include/uapi/drm/drm_fourcc.h`
66  */
67 
68 #define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
69 				 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
70 
71 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
72 
73 /* Reserve 0 for the invalid format specifier */
74 #define DRM_FORMAT_INVALID	0
75 
76 /* color index */
77 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
78 
79 /* 8 bpp Red */
80 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
81 
82 /* 16 bpp Red */
83 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
84 
85 /* 16 bpp RG */
86 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
87 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
88 
89 /* 32 bpp RG */
90 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
91 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
92 
93 /* 8 bpp RGB */
94 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
95 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
96 
97 /* 16 bpp RGB */
98 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
99 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
100 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
101 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
102 
103 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
104 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
105 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
106 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
107 
108 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
109 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
110 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
111 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
112 
113 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
114 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
115 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
116 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
117 
118 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
119 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
120 
121 /* 24 bpp RGB */
122 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
123 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
124 
125 /* 32 bpp RGB */
126 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
127 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
128 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
129 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
130 
131 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
132 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
133 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
134 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
135 
136 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
137 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
138 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
139 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
140 
141 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
142 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
143 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
144 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
145 
146 /*
147  * Floating point 64bpp RGB
148  * IEEE 754-2008 binary16 half-precision float
149  * [15:0] sign:exponent:mantissa 1:5:10
150  */
151 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
152 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
153 
154 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
155 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
156 
157 /* packed YCbCr */
158 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
159 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
160 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
161 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
162 
163 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
164 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
165 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
166 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
167 
168 /*
169  * packed Y2xx indicate for each component, xx valid data occupy msb
170  * 16-xx padding occupy lsb
171  */
172 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
173 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
174 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
175 
176 /*
177  * packed Y4xx indicate for each component, xx valid data occupy msb
178  * 16-xx padding occupy lsb except Y410
179  */
180 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
181 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
182 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
183 
184 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
185 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
186 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
187 
188 /*
189  * packed YCbCr420 2x2 tiled formats
190  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
191  */
192 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
193 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
194 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
195 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
196 
197 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
198 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
199 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
200 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
201 
202 /*
203  * 1-plane YUV 4:2:0
204  * In these formats, the component ordering is specified (Y, followed by U
205  * then V), but the exact Linear layout is undefined.
206  * These formats can only be used with a non-Linear modifier.
207  */
208 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
209 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
210 
211 /*
212  * 2 plane RGB + A
213  * index 0 = RGB plane, same format as the corresponding non _A8 format has
214  * index 1 = A plane, [7:0] A
215  */
216 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
217 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
218 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
219 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
220 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
221 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
222 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
223 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
224 
225 /*
226  * 2 plane YCbCr
227  * index 0 = Y plane, [7:0] Y
228  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
229  * or
230  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
231  */
232 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
233 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
234 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
235 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
236 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
237 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
238 
239 /*
240  * 2 plane YCbCr MSB aligned
241  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
242  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
243  */
244 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
245 
246 /*
247  * 2 plane YCbCr MSB aligned
248  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
249  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
250  */
251 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
252 
253 /*
254  * 2 plane YCbCr MSB aligned
255  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
256  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
257  */
258 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
259 
260 /*
261  * 2 plane YCbCr MSB aligned
262  * index 0 = Y plane, [15:0] Y little endian
263  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
264  */
265 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
266 
267 /*
268  * 3 plane YCbCr
269  * index 0: Y plane, [7:0] Y
270  * index 1: Cb plane, [7:0] Cb
271  * index 2: Cr plane, [7:0] Cr
272  * or
273  * index 1: Cr plane, [7:0] Cr
274  * index 2: Cb plane, [7:0] Cb
275  */
276 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
277 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
278 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
279 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
280 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
281 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
282 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
283 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
284 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
285 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
286 
287 
288 /*
289  * Format Modifiers:
290  *
291  * Format modifiers describe, typically, a re-ordering or modification
292  * of the data in a plane of an FB.  This can be used to express tiled/
293  * swizzled formats, or compression, or a combination of the two.
294  *
295  * The upper 8 bits of the format modifier are a vendor-id as assigned
296  * below.  The lower 56 bits are assigned as vendor sees fit.
297  */
298 
299 /* Vendor Ids: */
300 #define DRM_FORMAT_MOD_NONE           0
301 #define DRM_FORMAT_MOD_VENDOR_NONE    0
302 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
303 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
304 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
305 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
306 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
307 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
308 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
309 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
310 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
311 
312 /* add more to the end as needed */
313 
314 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
315 
316 #define fourcc_mod_code(vendor, val) \
317 	((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
318 
319 /*
320  * Format Modifier tokens:
321  *
322  * When adding a new token please document the layout with a code comment,
323  * similar to the fourcc codes above. drm_fourcc.h is considered the
324  * authoritative source for all of these.
325  */
326 
327 /*
328  * Invalid Modifier
329  *
330  * This modifier can be used as a sentinel to terminate the format modifiers
331  * list, or to initialize a variable with an invalid modifier. It might also be
332  * used to report an error back to userspace for certain APIs.
333  */
334 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
335 
336 /*
337  * Linear Layout
338  *
339  * Just plain linear layout. Note that this is different from no specifying any
340  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
341  * which tells the driver to also take driver-internal information into account
342  * and so might actually result in a tiled framebuffer.
343  */
344 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
345 
346 /* Intel framebuffer modifiers */
347 
348 /*
349  * Intel X-tiling layout
350  *
351  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
352  * in row-major layout. Within the tile bytes are laid out row-major, with
353  * a platform-dependent stride. On top of that the memory can apply
354  * platform-depending swizzling of some higher address bits into bit6.
355  *
356  * This format is highly platforms specific and not useful for cross-driver
357  * sharing. It exists since on a given platform it does uniquely identify the
358  * layout in a simple way for i915-specific userspace.
359  */
360 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
361 
362 /*
363  * Intel Y-tiling layout
364  *
365  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
366  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
367  * chunks column-major, with a platform-dependent height. On top of that the
368  * memory can apply platform-depending swizzling of some higher address bits
369  * into bit6.
370  *
371  * This format is highly platforms specific and not useful for cross-driver
372  * sharing. It exists since on a given platform it does uniquely identify the
373  * layout in a simple way for i915-specific userspace.
374  */
375 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
376 
377 /*
378  * Intel Yf-tiling layout
379  *
380  * This is a tiled layout using 4Kb tiles in row-major layout.
381  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
382  * are arranged in four groups (two wide, two high) with column-major layout.
383  * Each group therefore consits out of four 256 byte units, which are also laid
384  * out as 2x2 column-major.
385  * 256 byte units are made out of four 64 byte blocks of pixels, producing
386  * either a square block or a 2:1 unit.
387  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
388  * in pixel depends on the pixel depth.
389  */
390 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
391 
392 /*
393  * Intel color control surface (CCS) for render compression
394  *
395  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
396  * The main surface will be plane index 0 and must be Y/Yf-tiled,
397  * the CCS will be plane index 1.
398  *
399  * Each CCS tile matches a 1024x512 pixel area of the main surface.
400  * To match certain aspects of the 3D hardware the CCS is
401  * considered to be made up of normal 128Bx32 Y tiles, Thus
402  * the CCS pitch must be specified in multiples of 128 bytes.
403  *
404  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
405  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
406  * But that fact is not relevant unless the memory is accessed
407  * directly.
408  */
409 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
410 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
411 
412 /*
413  * Intel color control surfaces (CCS) for Gen-12 render compression.
414  *
415  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
416  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
417  * main surface. In other words, 4 bits in CCS map to a main surface cache
418  * line pair. The main surface pitch is required to be a multiple of four
419  * Y-tile widths.
420  */
421 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
422 
423 /*
424  * Intel color control surfaces (CCS) for Gen-12 media compression
425  *
426  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
427  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
428  * main surface. In other words, 4 bits in CCS map to a main surface cache
429  * line pair. The main surface pitch is required to be a multiple of four
430  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
431  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
432  * planes 2 and 3 for the respective CCS.
433  */
434 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
435 
436 /*
437  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
438  *
439  * Macroblocks are laid in a Z-shape, and each pixel data is following the
440  * standard NV12 style.
441  * As for NV12, an image is the result of two frame buffers: one for Y,
442  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
443  * Alignment requirements are (for each buffer):
444  * - multiple of 128 pixels for the width
445  * - multiple of  32 pixels for the height
446  *
447  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
448  */
449 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
450 
451 /*
452  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
453  *
454  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
455  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
456  * they correspond to their 16x16 luma block.
457  */
458 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
459 
460 /*
461  * Qualcomm Compressed Format
462  *
463  * Refers to a compressed variant of the base format that is compressed.
464  * Implementation may be platform and base-format specific.
465  *
466  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
467  * Pixel data pitch/stride is aligned with macrotile width.
468  * Pixel data height is aligned with macrotile height.
469  * Entire pixel data buffer is aligned with 4k(bytes).
470  */
471 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
472 
473 /* Vivante framebuffer modifiers */
474 
475 /*
476  * Vivante 4x4 tiling layout
477  *
478  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
479  * layout.
480  */
481 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
482 
483 /*
484  * Vivante 64x64 super-tiling layout
485  *
486  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
487  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
488  * major layout.
489  *
490  * For more information: see
491  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
492  */
493 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
494 
495 /*
496  * Vivante 4x4 tiling layout for dual-pipe
497  *
498  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
499  * different base address. Offsets from the base addresses are therefore halved
500  * compared to the non-split tiled layout.
501  */
502 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
503 
504 /*
505  * Vivante 64x64 super-tiling layout for dual-pipe
506  *
507  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
508  * starts at a different base address. Offsets from the base addresses are
509  * therefore halved compared to the non-split super-tiled layout.
510  */
511 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
512 
513 /* NVIDIA frame buffer modifiers */
514 
515 /*
516  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
517  *
518  * Pixels are arranged in simple tiles of 16 x 16 bytes.
519  */
520 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
521 
522 /*
523  * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
524  *
525  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
526  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
527  *
528  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
529  *
530  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
531  * Valid values are:
532  *
533  * 0 == ONE_GOB
534  * 1 == TWO_GOBS
535  * 2 == FOUR_GOBS
536  * 3 == EIGHT_GOBS
537  * 4 == SIXTEEN_GOBS
538  * 5 == THIRTYTWO_GOBS
539  *
540  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
541  * in full detail.
542  */
543 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
544 	fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
545 
546 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
547 	fourcc_mod_code(NVIDIA, 0x10)
548 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
549 	fourcc_mod_code(NVIDIA, 0x11)
550 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
551 	fourcc_mod_code(NVIDIA, 0x12)
552 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
553 	fourcc_mod_code(NVIDIA, 0x13)
554 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
555 	fourcc_mod_code(NVIDIA, 0x14)
556 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
557 	fourcc_mod_code(NVIDIA, 0x15)
558 
559 /*
560  * Some Broadcom modifiers take parameters, for example the number of
561  * vertical lines in the image. Reserve the lower 32 bits for modifier
562  * type, and the next 24 bits for parameters. Top 8 bits are the
563  * vendor code.
564  */
565 #define __fourcc_mod_broadcom_param_shift 8
566 #define __fourcc_mod_broadcom_param_bits 48
567 #define fourcc_mod_broadcom_code(val, params) \
568 	fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
569 #define fourcc_mod_broadcom_param(m) \
570 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
571 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
572 #define fourcc_mod_broadcom_mod(m) \
573 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
574 		 __fourcc_mod_broadcom_param_shift))
575 
576 /*
577  * Broadcom VC4 "T" format
578  *
579  * This is the primary layout that the V3D GPU can texture from (it
580  * can't do linear).  The T format has:
581  *
582  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
583  *   pixels at 32 bit depth.
584  *
585  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
586  *   16x16 pixels).
587  *
588  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
589  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
590  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
591  *
592  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
593  *   tiles) or right-to-left (odd rows of 4k tiles).
594  */
595 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
596 
597 /*
598  * Broadcom SAND format
599  *
600  * This is the native format that the H.264 codec block uses.  For VC4
601  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
602  *
603  * The image can be considered to be split into columns, and the
604  * columns are placed consecutively into memory.  The width of those
605  * columns can be either 32, 64, 128, or 256 pixels, but in practice
606  * only 128 pixel columns are used.
607  *
608  * The pitch between the start of each column is set to optimally
609  * switch between SDRAM banks. This is passed as the number of lines
610  * of column width in the modifier (we can't use the stride value due
611  * to various core checks that look at it , so you should set the
612  * stride to width*cpp).
613  *
614  * Note that the column height for this format modifier is the same
615  * for all of the planes, assuming that each column contains both Y
616  * and UV.  Some SAND-using hardware stores UV in a separate tiled
617  * image from Y to reduce the column height, which is not supported
618  * with these modifiers.
619  */
620 
621 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
622 	fourcc_mod_broadcom_code(2, v)
623 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
624 	fourcc_mod_broadcom_code(3, v)
625 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
626 	fourcc_mod_broadcom_code(4, v)
627 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
628 	fourcc_mod_broadcom_code(5, v)
629 
630 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
631 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
632 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
633 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
634 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
635 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
636 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
637 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
638 
639 /* Broadcom UIF format
640  *
641  * This is the common format for the current Broadcom multimedia
642  * blocks, including V3D 3.x and newer, newer video codecs, and
643  * displays.
644  *
645  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
646  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
647  * stored in columns, with padding between the columns to ensure that
648  * moving from one column to the next doesn't hit the same SDRAM page
649  * bank.
650  *
651  * To calculate the padding, it is assumed that each hardware block
652  * and the software driving it knows the platform's SDRAM page size,
653  * number of banks, and XOR address, and that it's identical between
654  * all blocks using the format.  This tiling modifier will use XOR as
655  * necessary to reduce the padding.  If a hardware block can't do XOR,
656  * the assumption is that a no-XOR tiling modifier will be created.
657  */
658 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
659 
660 /*
661  * Arm Framebuffer Compression (AFBC) modifiers
662  *
663  * AFBC is a proprietary lossless image compression protocol and format.
664  * It provides fine-grained random access and minimizes the amount of data
665  * transferred between IP blocks.
666  *
667  * AFBC has several features which may be supported and/or used, which are
668  * represented using bits in the modifier. Not all combinations are valid,
669  * and different devices or use-cases may support different combinations.
670  *
671  * Further information on the use of AFBC modifiers can be found in
672  * Documentation/gpu/afbc.rst
673  */
674 
675 /*
676  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
677  * modifiers) denote the category for modifiers. Currently we have only two
678  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
679  * different categories.
680  */
681 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
682 	fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
683 
684 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
685 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
686 
687 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
688 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
689 
690 /*
691  * AFBC superblock size
692  *
693  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
694  * size (in pixels) must be aligned to a multiple of the superblock size.
695  * Four lowest significant bits(LSBs) are reserved for block size.
696  *
697  * Where one superblock size is specified, it applies to all planes of the
698  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
699  * the first applies to the Luma plane and the second applies to the Chroma
700  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
701  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
702  */
703 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
704 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
705 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
706 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
707 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
708 
709 /*
710  * AFBC lossless colorspace transform
711  *
712  * Indicates that the buffer makes use of the AFBC lossless colorspace
713  * transform.
714  */
715 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
716 
717 /*
718  * AFBC block-split
719  *
720  * Indicates that the payload of each superblock is split. The second
721  * half of the payload is positioned at a predefined offset from the start
722  * of the superblock payload.
723  */
724 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
725 
726 /*
727  * AFBC sparse layout
728  *
729  * This flag indicates that the payload of each superblock must be stored at a
730  * predefined position relative to the other superblocks in the same AFBC
731  * buffer. This order is the same order used by the header buffer. In this mode
732  * each superblock is given the same amount of space as an uncompressed
733  * superblock of the particular format would require, rounding up to the next
734  * multiple of 128 bytes in size.
735  */
736 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
737 
738 /*
739  * AFBC copy-block restrict
740  *
741  * Buffers with this flag must obey the copy-block restriction. The restriction
742  * is such that there are no copy-blocks referring across the border of 8x8
743  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
744  */
745 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
746 
747 /*
748  * AFBC tiled layout
749  *
750  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
751  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
752  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
753  * larger bpp formats. The order between the tiles is scan line.
754  * When the tiled layout is used, the buffer size (in pixels) must be aligned
755  * to the tile size.
756  */
757 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
758 
759 /*
760  * AFBC solid color blocks
761  *
762  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
763  * can be reduced if a whole superblock is a single color.
764  */
765 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
766 
767 /*
768  * AFBC double-buffer
769  *
770  * Indicates that the buffer is allocated in a layout safe for front-buffer
771  * rendering.
772  */
773 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
774 
775 /*
776  * AFBC buffer content hints
777  *
778  * Indicates that the buffer includes per-superblock content hints.
779  */
780 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
781 
782 /*
783  * Arm 16x16 Block U-Interleaved modifier
784  *
785  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
786  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
787  * in the block are reordered.
788  */
789 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
790 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
791 
792 /*
793  * Allwinner tiled modifier
794  *
795  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
796  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
797  * planes.
798  *
799  * With this tiling, the luminance samples are disposed in tiles representing
800  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
801  * The pixel order in each tile is linear and the tiles are disposed linearly,
802  * both in row-major order.
803  */
804 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
805 
806 #if defined(__cplusplus)
807 }
808 #endif
809 
810 #endif /* DRM_FOURCC_H */
811