xref: /qemu/linux-user/elfload.c (revision 11fb99e6)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17 
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 int info_is_fdpic(struct image_info *info)
89 {
90     return info->personality == PER_LINUX_FDPIC;
91 }
92 
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97 
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102 
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA        ELFDATA2MSB
105 #else
106 #define ELF_DATA        ELFDATA2LSB
107 #endif
108 
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong      target_elf_greg_t;
111 #define tswapreg(ptr)   tswap64(ptr)
112 #else
113 typedef abi_ulong       target_elf_greg_t;
114 #define tswapreg(ptr)   tswapal(ptr)
115 #endif
116 
117 #ifdef USE_UID16
118 typedef abi_ushort      target_uid_t;
119 typedef abi_ushort      target_gid_t;
120 #else
121 typedef abi_uint        target_uid_t;
122 typedef abi_uint        target_gid_t;
123 #endif
124 typedef abi_int         target_pid_t;
125 
126 #ifdef TARGET_I386
127 
128 #define ELF_PLATFORM get_elf_platform()
129 
130 static const char *get_elf_platform(void)
131 {
132     static char elf_platform[] = "i386";
133     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134     if (family > 6)
135         family = 6;
136     if (family >= 3)
137         elf_platform[1] = '0' + family;
138     return elf_platform;
139 }
140 
141 #define ELF_HWCAP get_elf_hwcap()
142 
143 static uint32_t get_elf_hwcap(void)
144 {
145     X86CPU *cpu = X86_CPU(thread_cpu);
146 
147     return cpu->env.features[FEAT_1_EDX];
148 }
149 
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152 
153 #define ELF_CLASS      ELFCLASS64
154 #define ELF_ARCH       EM_X86_64
155 
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158     regs->rax = 0;
159     regs->rsp = infop->start_stack;
160     regs->rip = infop->entry;
161 }
162 
163 #define ELF_NREG    27
164 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
165 
166 /*
167  * Note that ELF_NREG should be 29 as there should be place for
168  * TRAPNO and ERR "registers" as well but linux doesn't dump
169  * those.
170  *
171  * See linux kernel: arch/x86/include/asm/elf.h
172  */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175     (*regs)[0] = env->regs[15];
176     (*regs)[1] = env->regs[14];
177     (*regs)[2] = env->regs[13];
178     (*regs)[3] = env->regs[12];
179     (*regs)[4] = env->regs[R_EBP];
180     (*regs)[5] = env->regs[R_EBX];
181     (*regs)[6] = env->regs[11];
182     (*regs)[7] = env->regs[10];
183     (*regs)[8] = env->regs[9];
184     (*regs)[9] = env->regs[8];
185     (*regs)[10] = env->regs[R_EAX];
186     (*regs)[11] = env->regs[R_ECX];
187     (*regs)[12] = env->regs[R_EDX];
188     (*regs)[13] = env->regs[R_ESI];
189     (*regs)[14] = env->regs[R_EDI];
190     (*regs)[15] = env->regs[R_EAX]; /* XXX */
191     (*regs)[16] = env->eip;
192     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193     (*regs)[18] = env->eflags;
194     (*regs)[19] = env->regs[R_ESP];
195     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203 
204 #else
205 
206 #define ELF_START_MMAP 0x80000000
207 
208 /*
209  * This is used to ensure we don't load something for the wrong architecture.
210  */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 
213 /*
214  * These are used to set parameters in the core dumps.
215  */
216 #define ELF_CLASS       ELFCLASS32
217 #define ELF_ARCH        EM_386
218 
219 static inline void init_thread(struct target_pt_regs *regs,
220                                struct image_info *infop)
221 {
222     regs->esp = infop->start_stack;
223     regs->eip = infop->entry;
224 
225     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226        starts %edx contains a pointer to a function which might be
227        registered using `atexit'.  This provides a mean for the
228        dynamic linker to call DT_FINI functions for shared libraries
229        that have been loaded before the code runs.
230 
231        A value of 0 tells we have no such handler.  */
232     regs->edx = 0;
233 }
234 
235 #define ELF_NREG    17
236 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
237 
238 /*
239  * Note that ELF_NREG should be 19 as there should be place for
240  * TRAPNO and ERR "registers" as well but linux doesn't dump
241  * those.
242  *
243  * See linux kernel: arch/x86/include/asm/elf.h
244  */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247     (*regs)[0] = env->regs[R_EBX];
248     (*regs)[1] = env->regs[R_ECX];
249     (*regs)[2] = env->regs[R_EDX];
250     (*regs)[3] = env->regs[R_ESI];
251     (*regs)[4] = env->regs[R_EDI];
252     (*regs)[5] = env->regs[R_EBP];
253     (*regs)[6] = env->regs[R_EAX];
254     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258     (*regs)[11] = env->regs[R_EAX]; /* XXX */
259     (*regs)[12] = env->eip;
260     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261     (*regs)[14] = env->eflags;
262     (*regs)[15] = env->regs[R_ESP];
263     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266 
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE       4096
269 
270 #endif
271 
272 #ifdef TARGET_ARM
273 
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276 
277 #define ELF_START_MMAP 0x80000000
278 
279 #define ELF_ARCH        EM_ARM
280 #define ELF_CLASS       ELFCLASS32
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288     regs->uregs[16] = ARM_CPU_MODE_USR;
289     if (infop->entry & 1) {
290         regs->uregs[16] |= CPSR_T;
291     }
292     regs->uregs[15] = infop->entry & 0xfffffffe;
293     regs->uregs[13] = infop->start_stack;
294     /* FIXME - what to for failure of get_user()? */
295     get_user_ual(regs->uregs[2], stack + 8); /* envp */
296     get_user_ual(regs->uregs[1], stack + 4); /* envp */
297     /* XXX: it seems that r0 is zeroed after ! */
298     regs->uregs[0] = 0;
299     /* For uClinux PIC binaries.  */
300     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301     regs->uregs[10] = infop->start_data;
302 
303     /* Support ARM FDPIC.  */
304     if (info_is_fdpic(infop)) {
305         /* As described in the ABI document, r7 points to the loadmap info
306          * prepared by the kernel. If an interpreter is needed, r8 points
307          * to the interpreter loadmap and r9 points to the interpreter
308          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309          * r9 points to the main program PT_DYNAMIC info.
310          */
311         regs->uregs[7] = infop->loadmap_addr;
312         if (infop->interpreter_loadmap_addr) {
313             /* Executable is dynamically loaded.  */
314             regs->uregs[8] = infop->interpreter_loadmap_addr;
315             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316         } else {
317             regs->uregs[8] = 0;
318             regs->uregs[9] = infop->pt_dynamic_addr;
319         }
320     }
321 }
322 
323 #define ELF_NREG    18
324 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
325 
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328     (*regs)[0] = tswapreg(env->regs[0]);
329     (*regs)[1] = tswapreg(env->regs[1]);
330     (*regs)[2] = tswapreg(env->regs[2]);
331     (*regs)[3] = tswapreg(env->regs[3]);
332     (*regs)[4] = tswapreg(env->regs[4]);
333     (*regs)[5] = tswapreg(env->regs[5]);
334     (*regs)[6] = tswapreg(env->regs[6]);
335     (*regs)[7] = tswapreg(env->regs[7]);
336     (*regs)[8] = tswapreg(env->regs[8]);
337     (*regs)[9] = tswapreg(env->regs[9]);
338     (*regs)[10] = tswapreg(env->regs[10]);
339     (*regs)[11] = tswapreg(env->regs[11]);
340     (*regs)[12] = tswapreg(env->regs[12]);
341     (*regs)[13] = tswapreg(env->regs[13]);
342     (*regs)[14] = tswapreg(env->regs[14]);
343     (*regs)[15] = tswapreg(env->regs[15]);
344 
345     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348 
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE       4096
351 
352 enum
353 {
354     ARM_HWCAP_ARM_SWP       = 1 << 0,
355     ARM_HWCAP_ARM_HALF      = 1 << 1,
356     ARM_HWCAP_ARM_THUMB     = 1 << 2,
357     ARM_HWCAP_ARM_26BIT     = 1 << 3,
358     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359     ARM_HWCAP_ARM_FPA       = 1 << 5,
360     ARM_HWCAP_ARM_VFP       = 1 << 6,
361     ARM_HWCAP_ARM_EDSP      = 1 << 7,
362     ARM_HWCAP_ARM_JAVA      = 1 << 8,
363     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
364     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
365     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
366     ARM_HWCAP_ARM_NEON      = 1 << 12,
367     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
368     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
369     ARM_HWCAP_ARM_TLS       = 1 << 15,
370     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
371     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
372     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
373     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
374     ARM_HWCAP_ARM_LPAE      = 1 << 20,
375     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
376 };
377 
378 enum {
379     ARM_HWCAP2_ARM_AES      = 1 << 0,
380     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
381     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
382     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
383     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
384 };
385 
386 /* The commpage only exists for 32 bit kernels */
387 
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389 
390 static bool init_guest_commpage(void)
391 {
392     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395 
396     if (addr == MAP_FAILED) {
397         perror("Allocating guest commpage");
398         exit(EXIT_FAILURE);
399     }
400     if (addr != want) {
401         return false;
402     }
403 
404     /* Set kernel helper versions; rest of page is 0.  */
405     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406 
407     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408         perror("Protecting guest commpage");
409         exit(EXIT_FAILURE);
410     }
411     return true;
412 }
413 
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416 
417 static uint32_t get_elf_hwcap(void)
418 {
419     ARMCPU *cpu = ARM_CPU(thread_cpu);
420     uint32_t hwcaps = 0;
421 
422     hwcaps |= ARM_HWCAP_ARM_SWP;
423     hwcaps |= ARM_HWCAP_ARM_HALF;
424     hwcaps |= ARM_HWCAP_ARM_THUMB;
425     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426 
427     /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430 
431 #define GET_FEATURE_ID(feat, hwcap) \
432     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433 
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444 
445     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447         hwcaps |= ARM_HWCAP_ARM_VFPv3;
448         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449             hwcaps |= ARM_HWCAP_ARM_VFPD32;
450         } else {
451             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452         }
453     }
454     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455 
456     return hwcaps;
457 }
458 
459 static uint32_t get_elf_hwcap2(void)
460 {
461     ARMCPU *cpu = ARM_CPU(thread_cpu);
462     uint32_t hwcaps = 0;
463 
464     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469     return hwcaps;
470 }
471 
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474 
475 #define ELF_PLATFORM get_elf_platform()
476 
477 static const char *get_elf_platform(void)
478 {
479     CPUARMState *env = thread_cpu->env_ptr;
480 
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END  "b"
483 #else
484 # define END  "l"
485 #endif
486 
487     if (arm_feature(env, ARM_FEATURE_V8)) {
488         return "v8" END;
489     } else if (arm_feature(env, ARM_FEATURE_V7)) {
490         if (arm_feature(env, ARM_FEATURE_M)) {
491             return "v7m" END;
492         } else {
493             return "v7" END;
494         }
495     } else if (arm_feature(env, ARM_FEATURE_V6)) {
496         return "v6" END;
497     } else if (arm_feature(env, ARM_FEATURE_V5)) {
498         return "v5" END;
499     } else {
500         return "v4" END;
501     }
502 
503 #undef END
504 }
505 
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509 
510 #define ELF_ARCH        EM_AARCH64
511 #define ELF_CLASS       ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM    "aarch64_be"
514 #else
515 # define ELF_PLATFORM    "aarch64"
516 #endif
517 
518 static inline void init_thread(struct target_pt_regs *regs,
519                                struct image_info *infop)
520 {
521     abi_long stack = infop->start_stack;
522     memset(regs, 0, sizeof(*regs));
523 
524     regs->pc = infop->entry & ~0x3ULL;
525     regs->sp = stack;
526 }
527 
528 #define ELF_NREG    34
529 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
530 
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532                                const CPUARMState *env)
533 {
534     int i;
535 
536     for (i = 0; i < 32; i++) {
537         (*regs)[i] = tswapreg(env->xregs[i]);
538     }
539     (*regs)[32] = tswapreg(env->pc);
540     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542 
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE       4096
545 
546 enum {
547     ARM_HWCAP_A64_FP            = 1 << 0,
548     ARM_HWCAP_A64_ASIMD         = 1 << 1,
549     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
550     ARM_HWCAP_A64_AES           = 1 << 3,
551     ARM_HWCAP_A64_PMULL         = 1 << 4,
552     ARM_HWCAP_A64_SHA1          = 1 << 5,
553     ARM_HWCAP_A64_SHA2          = 1 << 6,
554     ARM_HWCAP_A64_CRC32         = 1 << 7,
555     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
556     ARM_HWCAP_A64_FPHP          = 1 << 9,
557     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
558     ARM_HWCAP_A64_CPUID         = 1 << 11,
559     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
560     ARM_HWCAP_A64_JSCVT         = 1 << 13,
561     ARM_HWCAP_A64_FCMA          = 1 << 14,
562     ARM_HWCAP_A64_LRCPC         = 1 << 15,
563     ARM_HWCAP_A64_DCPOP         = 1 << 16,
564     ARM_HWCAP_A64_SHA3          = 1 << 17,
565     ARM_HWCAP_A64_SM3           = 1 << 18,
566     ARM_HWCAP_A64_SM4           = 1 << 19,
567     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
568     ARM_HWCAP_A64_SHA512        = 1 << 21,
569     ARM_HWCAP_A64_SVE           = 1 << 22,
570     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
571     ARM_HWCAP_A64_DIT           = 1 << 24,
572     ARM_HWCAP_A64_USCAT         = 1 << 25,
573     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
574     ARM_HWCAP_A64_FLAGM         = 1 << 27,
575     ARM_HWCAP_A64_SSBS          = 1 << 28,
576     ARM_HWCAP_A64_SB            = 1 << 29,
577     ARM_HWCAP_A64_PACA          = 1 << 30,
578     ARM_HWCAP_A64_PACG          = 1UL << 31,
579 
580     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
581     ARM_HWCAP2_A64_SVE2         = 1 << 1,
582     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
583     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
584     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
585     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
586     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
587     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
588     ARM_HWCAP2_A64_FRINT        = 1 << 8,
589     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
590     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
591     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
592     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
593     ARM_HWCAP2_A64_I8MM         = 1 << 13,
594     ARM_HWCAP2_A64_BF16         = 1 << 14,
595     ARM_HWCAP2_A64_DGH          = 1 << 15,
596     ARM_HWCAP2_A64_RNG          = 1 << 16,
597     ARM_HWCAP2_A64_BTI          = 1 << 17,
598     ARM_HWCAP2_A64_MTE          = 1 << 18,
599 };
600 
601 #define ELF_HWCAP   get_elf_hwcap()
602 #define ELF_HWCAP2  get_elf_hwcap2()
603 
604 #define GET_FEATURE_ID(feat, hwcap) \
605     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
606 
607 static uint32_t get_elf_hwcap(void)
608 {
609     ARMCPU *cpu = ARM_CPU(thread_cpu);
610     uint32_t hwcaps = 0;
611 
612     hwcaps |= ARM_HWCAP_A64_FP;
613     hwcaps |= ARM_HWCAP_A64_ASIMD;
614     hwcaps |= ARM_HWCAP_A64_CPUID;
615 
616     /* probe for the extra features */
617 
618     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
619     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
620     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
621     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
622     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
623     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
624     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
625     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
626     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
627     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
628     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
629     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
630     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
631     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
632     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
633     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
634     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
635     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
636     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
637     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
638     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
639     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
640     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
641 
642     return hwcaps;
643 }
644 
645 static uint32_t get_elf_hwcap2(void)
646 {
647     ARMCPU *cpu = ARM_CPU(thread_cpu);
648     uint32_t hwcaps = 0;
649 
650     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
651     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
652     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
653     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
654     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
655     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
656     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
657     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
658     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
659     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
660     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
661     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
662     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
663     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
664     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
665     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
666     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
667     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
668 
669     return hwcaps;
670 }
671 
672 #undef GET_FEATURE_ID
673 
674 #endif /* not TARGET_AARCH64 */
675 #endif /* TARGET_ARM */
676 
677 #ifdef TARGET_SPARC
678 #ifdef TARGET_SPARC64
679 
680 #define ELF_START_MMAP 0x80000000
681 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
682                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
683 #ifndef TARGET_ABI32
684 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
685 #else
686 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
687 #endif
688 
689 #define ELF_CLASS   ELFCLASS64
690 #define ELF_ARCH    EM_SPARCV9
691 #else
692 #define ELF_START_MMAP 0x80000000
693 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694                     | HWCAP_SPARC_MULDIV)
695 #define ELF_CLASS   ELFCLASS32
696 #define ELF_ARCH    EM_SPARC
697 #endif /* TARGET_SPARC64 */
698 
699 static inline void init_thread(struct target_pt_regs *regs,
700                                struct image_info *infop)
701 {
702     /* Note that target_cpu_copy_regs does not read psr/tstate. */
703     regs->pc = infop->entry;
704     regs->npc = regs->pc + 4;
705     regs->y = 0;
706     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
707                         - TARGET_STACK_BIAS);
708 }
709 #endif /* TARGET_SPARC */
710 
711 #ifdef TARGET_PPC
712 
713 #define ELF_MACHINE    PPC_ELF_MACHINE
714 #define ELF_START_MMAP 0x80000000
715 
716 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
717 
718 #define elf_check_arch(x) ( (x) == EM_PPC64 )
719 
720 #define ELF_CLASS       ELFCLASS64
721 
722 #else
723 
724 #define ELF_CLASS       ELFCLASS32
725 
726 #endif
727 
728 #define ELF_ARCH        EM_PPC
729 
730 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
731    See arch/powerpc/include/asm/cputable.h.  */
732 enum {
733     QEMU_PPC_FEATURE_32 = 0x80000000,
734     QEMU_PPC_FEATURE_64 = 0x40000000,
735     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
736     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
737     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
738     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
739     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
740     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
741     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
742     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
743     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
744     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
745     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
746     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
747     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
748     QEMU_PPC_FEATURE_CELL = 0x00010000,
749     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
750     QEMU_PPC_FEATURE_SMT = 0x00004000,
751     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
752     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
753     QEMU_PPC_FEATURE_PA6T = 0x00000800,
754     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
755     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
756     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
757     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
758     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
759 
760     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
761     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
762 
763     /* Feature definitions in AT_HWCAP2.  */
764     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
765     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
766     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
767     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
768     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
769     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
770     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
771     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
772     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
773     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
774     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
775     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
776     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
777 };
778 
779 #define ELF_HWCAP get_elf_hwcap()
780 
781 static uint32_t get_elf_hwcap(void)
782 {
783     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
784     uint32_t features = 0;
785 
786     /* We don't have to be terribly complete here; the high points are
787        Altivec/FP/SPE support.  Anything else is just a bonus.  */
788 #define GET_FEATURE(flag, feature)                                      \
789     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flags, feature) \
791     do { \
792         if ((cpu->env.insns_flags2 & flags) == flags) { \
793             features |= feature; \
794         } \
795     } while (0)
796     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
797     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
798     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
799     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
800     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
801     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
802     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
803     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
804     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
805     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
806     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
807                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
808                   QEMU_PPC_FEATURE_ARCH_2_06);
809 #undef GET_FEATURE
810 #undef GET_FEATURE2
811 
812     return features;
813 }
814 
815 #define ELF_HWCAP2 get_elf_hwcap2()
816 
817 static uint32_t get_elf_hwcap2(void)
818 {
819     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
820     uint32_t features = 0;
821 
822 #define GET_FEATURE(flag, feature)                                      \
823     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
824 #define GET_FEATURE2(flag, feature)                                      \
825     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
826 
827     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
828     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
829     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
830                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
831                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
832     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
833                  QEMU_PPC_FEATURE2_DARN);
834 
835 #undef GET_FEATURE
836 #undef GET_FEATURE2
837 
838     return features;
839 }
840 
841 /*
842  * The requirements here are:
843  * - keep the final alignment of sp (sp & 0xf)
844  * - make sure the 32-bit value at the first 16 byte aligned position of
845  *   AUXV is greater than 16 for glibc compatibility.
846  *   AT_IGNOREPPC is used for that.
847  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
848  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
849  */
850 #define DLINFO_ARCH_ITEMS       5
851 #define ARCH_DLINFO                                     \
852     do {                                                \
853         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
854         /*                                              \
855          * Handle glibc compatibility: these magic entries must \
856          * be at the lowest addresses in the final auxv.        \
857          */                                             \
858         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
859         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
860         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
861         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
862         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
863     } while (0)
864 
865 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
866 {
867     _regs->gpr[1] = infop->start_stack;
868 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
869     if (get_ppc64_abi(infop) < 2) {
870         uint64_t val;
871         get_user_u64(val, infop->entry + 8);
872         _regs->gpr[2] = val + infop->load_bias;
873         get_user_u64(val, infop->entry);
874         infop->entry = val + infop->load_bias;
875     } else {
876         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
877     }
878 #endif
879     _regs->nip = infop->entry;
880 }
881 
882 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
883 #define ELF_NREG 48
884 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
885 
886 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
887 {
888     int i;
889     target_ulong ccr = 0;
890 
891     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
892         (*regs)[i] = tswapreg(env->gpr[i]);
893     }
894 
895     (*regs)[32] = tswapreg(env->nip);
896     (*regs)[33] = tswapreg(env->msr);
897     (*regs)[35] = tswapreg(env->ctr);
898     (*regs)[36] = tswapreg(env->lr);
899     (*regs)[37] = tswapreg(env->xer);
900 
901     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
902         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
903     }
904     (*regs)[38] = tswapreg(ccr);
905 }
906 
907 #define USE_ELF_CORE_DUMP
908 #define ELF_EXEC_PAGESIZE       4096
909 
910 #endif
911 
912 #ifdef TARGET_MIPS
913 
914 #define ELF_START_MMAP 0x80000000
915 
916 #ifdef TARGET_MIPS64
917 #define ELF_CLASS   ELFCLASS64
918 #else
919 #define ELF_CLASS   ELFCLASS32
920 #endif
921 #define ELF_ARCH    EM_MIPS
922 
923 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
924 
925 #ifdef TARGET_ABI_MIPSN32
926 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
927 #else
928 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
929 #endif
930 
931 static inline void init_thread(struct target_pt_regs *regs,
932                                struct image_info *infop)
933 {
934     regs->cp0_status = 2 << CP0St_KSU;
935     regs->cp0_epc = infop->entry;
936     regs->regs[29] = infop->start_stack;
937 }
938 
939 /* See linux kernel: arch/mips/include/asm/elf.h.  */
940 #define ELF_NREG 45
941 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
942 
943 /* See linux kernel: arch/mips/include/asm/reg.h.  */
944 enum {
945 #ifdef TARGET_MIPS64
946     TARGET_EF_R0 = 0,
947 #else
948     TARGET_EF_R0 = 6,
949 #endif
950     TARGET_EF_R26 = TARGET_EF_R0 + 26,
951     TARGET_EF_R27 = TARGET_EF_R0 + 27,
952     TARGET_EF_LO = TARGET_EF_R0 + 32,
953     TARGET_EF_HI = TARGET_EF_R0 + 33,
954     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
955     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
956     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
957     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
958 };
959 
960 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
961 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
962 {
963     int i;
964 
965     for (i = 0; i < TARGET_EF_R0; i++) {
966         (*regs)[i] = 0;
967     }
968     (*regs)[TARGET_EF_R0] = 0;
969 
970     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
971         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
972     }
973 
974     (*regs)[TARGET_EF_R26] = 0;
975     (*regs)[TARGET_EF_R27] = 0;
976     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
977     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
978     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
979     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
980     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
981     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
982 }
983 
984 #define USE_ELF_CORE_DUMP
985 #define ELF_EXEC_PAGESIZE        4096
986 
987 /* See arch/mips/include/uapi/asm/hwcap.h.  */
988 enum {
989     HWCAP_MIPS_R6           = (1 << 0),
990     HWCAP_MIPS_MSA          = (1 << 1),
991     HWCAP_MIPS_CRC32        = (1 << 2),
992     HWCAP_MIPS_MIPS16       = (1 << 3),
993     HWCAP_MIPS_MDMX         = (1 << 4),
994     HWCAP_MIPS_MIPS3D       = (1 << 5),
995     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
996     HWCAP_MIPS_DSP          = (1 << 7),
997     HWCAP_MIPS_DSP2         = (1 << 8),
998     HWCAP_MIPS_DSP3         = (1 << 9),
999     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1000     HWCAP_LOONGSON_MMI      = (1 << 11),
1001     HWCAP_LOONGSON_EXT      = (1 << 12),
1002     HWCAP_LOONGSON_EXT2     = (1 << 13),
1003     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1004 };
1005 
1006 #define ELF_HWCAP get_elf_hwcap()
1007 
1008 #define GET_FEATURE_INSN(_flag, _hwcap) \
1009     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1010 
1011 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1012     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1013 
1014 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1015     do { \
1016         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1017             hwcaps |= _hwcap; \
1018         } \
1019     } while (0)
1020 
1021 static uint32_t get_elf_hwcap(void)
1022 {
1023     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1024     uint32_t hwcaps = 0;
1025 
1026     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1027                         2, HWCAP_MIPS_R6);
1028     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1029     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1030     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1031 
1032     return hwcaps;
1033 }
1034 
1035 #undef GET_FEATURE_REG_EQU
1036 #undef GET_FEATURE_REG_SET
1037 #undef GET_FEATURE_INSN
1038 
1039 #endif /* TARGET_MIPS */
1040 
1041 #ifdef TARGET_MICROBLAZE
1042 
1043 #define ELF_START_MMAP 0x80000000
1044 
1045 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1046 
1047 #define ELF_CLASS   ELFCLASS32
1048 #define ELF_ARCH    EM_MICROBLAZE
1049 
1050 static inline void init_thread(struct target_pt_regs *regs,
1051                                struct image_info *infop)
1052 {
1053     regs->pc = infop->entry;
1054     regs->r1 = infop->start_stack;
1055 
1056 }
1057 
1058 #define ELF_EXEC_PAGESIZE        4096
1059 
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_NREG 38
1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1063 
1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1065 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1066 {
1067     int i, pos = 0;
1068 
1069     for (i = 0; i < 32; i++) {
1070         (*regs)[pos++] = tswapreg(env->regs[i]);
1071     }
1072 
1073     (*regs)[pos++] = tswapreg(env->pc);
1074     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1075     (*regs)[pos++] = 0;
1076     (*regs)[pos++] = tswapreg(env->ear);
1077     (*regs)[pos++] = 0;
1078     (*regs)[pos++] = tswapreg(env->esr);
1079 }
1080 
1081 #endif /* TARGET_MICROBLAZE */
1082 
1083 #ifdef TARGET_NIOS2
1084 
1085 #define ELF_START_MMAP 0x80000000
1086 
1087 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1088 
1089 #define ELF_CLASS   ELFCLASS32
1090 #define ELF_ARCH    EM_ALTERA_NIOS2
1091 
1092 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1093 {
1094     regs->ea = infop->entry;
1095     regs->sp = infop->start_stack;
1096     regs->estatus = 0x3;
1097 }
1098 
1099 #define ELF_EXEC_PAGESIZE        4096
1100 
1101 #define USE_ELF_CORE_DUMP
1102 #define ELF_NREG 49
1103 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1104 
1105 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1106 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1107                                const CPUNios2State *env)
1108 {
1109     int i;
1110 
1111     (*regs)[0] = -1;
1112     for (i = 1; i < 8; i++)    /* r0-r7 */
1113         (*regs)[i] = tswapreg(env->regs[i + 7]);
1114 
1115     for (i = 8; i < 16; i++)   /* r8-r15 */
1116         (*regs)[i] = tswapreg(env->regs[i - 8]);
1117 
1118     for (i = 16; i < 24; i++)  /* r16-r23 */
1119         (*regs)[i] = tswapreg(env->regs[i + 7]);
1120     (*regs)[24] = -1;    /* R_ET */
1121     (*regs)[25] = -1;    /* R_BT */
1122     (*regs)[26] = tswapreg(env->regs[R_GP]);
1123     (*regs)[27] = tswapreg(env->regs[R_SP]);
1124     (*regs)[28] = tswapreg(env->regs[R_FP]);
1125     (*regs)[29] = tswapreg(env->regs[R_EA]);
1126     (*regs)[30] = -1;    /* R_SSTATUS */
1127     (*regs)[31] = tswapreg(env->regs[R_RA]);
1128 
1129     (*regs)[32] = tswapreg(env->regs[R_PC]);
1130 
1131     (*regs)[33] = -1; /* R_STATUS */
1132     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1133 
1134     for (i = 35; i < 49; i++)    /* ... */
1135         (*regs)[i] = -1;
1136 }
1137 
1138 #endif /* TARGET_NIOS2 */
1139 
1140 #ifdef TARGET_OPENRISC
1141 
1142 #define ELF_START_MMAP 0x08000000
1143 
1144 #define ELF_ARCH EM_OPENRISC
1145 #define ELF_CLASS ELFCLASS32
1146 #define ELF_DATA  ELFDATA2MSB
1147 
1148 static inline void init_thread(struct target_pt_regs *regs,
1149                                struct image_info *infop)
1150 {
1151     regs->pc = infop->entry;
1152     regs->gpr[1] = infop->start_stack;
1153 }
1154 
1155 #define USE_ELF_CORE_DUMP
1156 #define ELF_EXEC_PAGESIZE 8192
1157 
1158 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1159 #define ELF_NREG 34 /* gprs and pc, sr */
1160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1161 
1162 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1163                                const CPUOpenRISCState *env)
1164 {
1165     int i;
1166 
1167     for (i = 0; i < 32; i++) {
1168         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1169     }
1170     (*regs)[32] = tswapreg(env->pc);
1171     (*regs)[33] = tswapreg(cpu_get_sr(env));
1172 }
1173 #define ELF_HWCAP 0
1174 #define ELF_PLATFORM NULL
1175 
1176 #endif /* TARGET_OPENRISC */
1177 
1178 #ifdef TARGET_SH4
1179 
1180 #define ELF_START_MMAP 0x80000000
1181 
1182 #define ELF_CLASS ELFCLASS32
1183 #define ELF_ARCH  EM_SH
1184 
1185 static inline void init_thread(struct target_pt_regs *regs,
1186                                struct image_info *infop)
1187 {
1188     /* Check other registers XXXXX */
1189     regs->pc = infop->entry;
1190     regs->regs[15] = infop->start_stack;
1191 }
1192 
1193 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1194 #define ELF_NREG 23
1195 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1196 
1197 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1198 enum {
1199     TARGET_REG_PC = 16,
1200     TARGET_REG_PR = 17,
1201     TARGET_REG_SR = 18,
1202     TARGET_REG_GBR = 19,
1203     TARGET_REG_MACH = 20,
1204     TARGET_REG_MACL = 21,
1205     TARGET_REG_SYSCALL = 22
1206 };
1207 
1208 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1209                                       const CPUSH4State *env)
1210 {
1211     int i;
1212 
1213     for (i = 0; i < 16; i++) {
1214         (*regs)[i] = tswapreg(env->gregs[i]);
1215     }
1216 
1217     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1218     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1219     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1220     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1221     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1222     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1223     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1224 }
1225 
1226 #define USE_ELF_CORE_DUMP
1227 #define ELF_EXEC_PAGESIZE        4096
1228 
1229 enum {
1230     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1231     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1232     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1233     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1234     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1235     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1236     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1237     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1238     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1239     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1240 };
1241 
1242 #define ELF_HWCAP get_elf_hwcap()
1243 
1244 static uint32_t get_elf_hwcap(void)
1245 {
1246     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1247     uint32_t hwcap = 0;
1248 
1249     hwcap |= SH_CPU_HAS_FPU;
1250 
1251     if (cpu->env.features & SH_FEATURE_SH4A) {
1252         hwcap |= SH_CPU_HAS_LLSC;
1253     }
1254 
1255     return hwcap;
1256 }
1257 
1258 #endif
1259 
1260 #ifdef TARGET_CRIS
1261 
1262 #define ELF_START_MMAP 0x80000000
1263 
1264 #define ELF_CLASS ELFCLASS32
1265 #define ELF_ARCH  EM_CRIS
1266 
1267 static inline void init_thread(struct target_pt_regs *regs,
1268                                struct image_info *infop)
1269 {
1270     regs->erp = infop->entry;
1271 }
1272 
1273 #define ELF_EXEC_PAGESIZE        8192
1274 
1275 #endif
1276 
1277 #ifdef TARGET_M68K
1278 
1279 #define ELF_START_MMAP 0x80000000
1280 
1281 #define ELF_CLASS       ELFCLASS32
1282 #define ELF_ARCH        EM_68K
1283 
1284 /* ??? Does this need to do anything?
1285    #define ELF_PLAT_INIT(_r) */
1286 
1287 static inline void init_thread(struct target_pt_regs *regs,
1288                                struct image_info *infop)
1289 {
1290     regs->usp = infop->start_stack;
1291     regs->sr = 0;
1292     regs->pc = infop->entry;
1293 }
1294 
1295 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1296 #define ELF_NREG 20
1297 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1298 
1299 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1300 {
1301     (*regs)[0] = tswapreg(env->dregs[1]);
1302     (*regs)[1] = tswapreg(env->dregs[2]);
1303     (*regs)[2] = tswapreg(env->dregs[3]);
1304     (*regs)[3] = tswapreg(env->dregs[4]);
1305     (*regs)[4] = tswapreg(env->dregs[5]);
1306     (*regs)[5] = tswapreg(env->dregs[6]);
1307     (*regs)[6] = tswapreg(env->dregs[7]);
1308     (*regs)[7] = tswapreg(env->aregs[0]);
1309     (*regs)[8] = tswapreg(env->aregs[1]);
1310     (*regs)[9] = tswapreg(env->aregs[2]);
1311     (*regs)[10] = tswapreg(env->aregs[3]);
1312     (*regs)[11] = tswapreg(env->aregs[4]);
1313     (*regs)[12] = tswapreg(env->aregs[5]);
1314     (*regs)[13] = tswapreg(env->aregs[6]);
1315     (*regs)[14] = tswapreg(env->dregs[0]);
1316     (*regs)[15] = tswapreg(env->aregs[7]);
1317     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1318     (*regs)[17] = tswapreg(env->sr);
1319     (*regs)[18] = tswapreg(env->pc);
1320     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1321 }
1322 
1323 #define USE_ELF_CORE_DUMP
1324 #define ELF_EXEC_PAGESIZE       8192
1325 
1326 #endif
1327 
1328 #ifdef TARGET_ALPHA
1329 
1330 #define ELF_START_MMAP (0x30000000000ULL)
1331 
1332 #define ELF_CLASS      ELFCLASS64
1333 #define ELF_ARCH       EM_ALPHA
1334 
1335 static inline void init_thread(struct target_pt_regs *regs,
1336                                struct image_info *infop)
1337 {
1338     regs->pc = infop->entry;
1339     regs->ps = 8;
1340     regs->usp = infop->start_stack;
1341 }
1342 
1343 #define ELF_EXEC_PAGESIZE        8192
1344 
1345 #endif /* TARGET_ALPHA */
1346 
1347 #ifdef TARGET_S390X
1348 
1349 #define ELF_START_MMAP (0x20000000000ULL)
1350 
1351 #define ELF_CLASS	ELFCLASS64
1352 #define ELF_DATA	ELFDATA2MSB
1353 #define ELF_ARCH	EM_S390
1354 
1355 #include "elf.h"
1356 
1357 #define ELF_HWCAP get_elf_hwcap()
1358 
1359 #define GET_FEATURE(_feat, _hwcap) \
1360     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1361 
1362 static uint32_t get_elf_hwcap(void)
1363 {
1364     /*
1365      * Let's assume we always have esan3 and zarch.
1366      * 31-bit processes can use 64-bit registers (high gprs).
1367      */
1368     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1369 
1370     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1371     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1372     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1373     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1374     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1375         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1376         hwcap |= HWCAP_S390_ETF3EH;
1377     }
1378     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1379 
1380     return hwcap;
1381 }
1382 
1383 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1384 {
1385     regs->psw.addr = infop->entry;
1386     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1387     regs->gprs[15] = infop->start_stack;
1388 }
1389 
1390 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1391 #define ELF_NREG 27
1392 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1393 
1394 enum {
1395     TARGET_REG_PSWM = 0,
1396     TARGET_REG_PSWA = 1,
1397     TARGET_REG_GPRS = 2,
1398     TARGET_REG_ARS = 18,
1399     TARGET_REG_ORIG_R2 = 26,
1400 };
1401 
1402 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1403                                const CPUS390XState *env)
1404 {
1405     int i;
1406     uint32_t *aregs;
1407 
1408     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1409     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1410     for (i = 0; i < 16; i++) {
1411         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1412     }
1413     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1414     for (i = 0; i < 16; i++) {
1415         aregs[i] = tswap32(env->aregs[i]);
1416     }
1417     (*regs)[TARGET_REG_ORIG_R2] = 0;
1418 }
1419 
1420 #define USE_ELF_CORE_DUMP
1421 #define ELF_EXEC_PAGESIZE 4096
1422 
1423 #endif /* TARGET_S390X */
1424 
1425 #ifdef TARGET_RISCV
1426 
1427 #define ELF_START_MMAP 0x80000000
1428 #define ELF_ARCH  EM_RISCV
1429 
1430 #ifdef TARGET_RISCV32
1431 #define ELF_CLASS ELFCLASS32
1432 #else
1433 #define ELF_CLASS ELFCLASS64
1434 #endif
1435 
1436 static inline void init_thread(struct target_pt_regs *regs,
1437                                struct image_info *infop)
1438 {
1439     regs->sepc = infop->entry;
1440     regs->sp = infop->start_stack;
1441 }
1442 
1443 #define ELF_EXEC_PAGESIZE 4096
1444 
1445 #endif /* TARGET_RISCV */
1446 
1447 #ifdef TARGET_HPPA
1448 
1449 #define ELF_START_MMAP  0x80000000
1450 #define ELF_CLASS       ELFCLASS32
1451 #define ELF_ARCH        EM_PARISC
1452 #define ELF_PLATFORM    "PARISC"
1453 #define STACK_GROWS_DOWN 0
1454 #define STACK_ALIGNMENT  64
1455 
1456 static inline void init_thread(struct target_pt_regs *regs,
1457                                struct image_info *infop)
1458 {
1459     regs->iaoq[0] = infop->entry;
1460     regs->iaoq[1] = infop->entry + 4;
1461     regs->gr[23] = 0;
1462     regs->gr[24] = infop->arg_start;
1463     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1464     /* The top-of-stack contains a linkage buffer.  */
1465     regs->gr[30] = infop->start_stack + 64;
1466     regs->gr[31] = infop->entry;
1467 }
1468 
1469 #endif /* TARGET_HPPA */
1470 
1471 #ifdef TARGET_XTENSA
1472 
1473 #define ELF_START_MMAP 0x20000000
1474 
1475 #define ELF_CLASS       ELFCLASS32
1476 #define ELF_ARCH        EM_XTENSA
1477 
1478 static inline void init_thread(struct target_pt_regs *regs,
1479                                struct image_info *infop)
1480 {
1481     regs->windowbase = 0;
1482     regs->windowstart = 1;
1483     regs->areg[1] = infop->start_stack;
1484     regs->pc = infop->entry;
1485 }
1486 
1487 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1488 #define ELF_NREG 128
1489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1490 
1491 enum {
1492     TARGET_REG_PC,
1493     TARGET_REG_PS,
1494     TARGET_REG_LBEG,
1495     TARGET_REG_LEND,
1496     TARGET_REG_LCOUNT,
1497     TARGET_REG_SAR,
1498     TARGET_REG_WINDOWSTART,
1499     TARGET_REG_WINDOWBASE,
1500     TARGET_REG_THREADPTR,
1501     TARGET_REG_AR0 = 64,
1502 };
1503 
1504 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1505                                const CPUXtensaState *env)
1506 {
1507     unsigned i;
1508 
1509     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1510     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1511     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1512     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1513     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1514     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1515     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1516     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1517     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1518     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1519     for (i = 0; i < env->config->nareg; ++i) {
1520         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1521     }
1522 }
1523 
1524 #define USE_ELF_CORE_DUMP
1525 #define ELF_EXEC_PAGESIZE       4096
1526 
1527 #endif /* TARGET_XTENSA */
1528 
1529 #ifdef TARGET_HEXAGON
1530 
1531 #define ELF_START_MMAP 0x20000000
1532 
1533 #define ELF_CLASS       ELFCLASS32
1534 #define ELF_ARCH        EM_HEXAGON
1535 
1536 static inline void init_thread(struct target_pt_regs *regs,
1537                                struct image_info *infop)
1538 {
1539     regs->sepc = infop->entry;
1540     regs->sp = infop->start_stack;
1541 }
1542 
1543 #endif /* TARGET_HEXAGON */
1544 
1545 #ifndef ELF_PLATFORM
1546 #define ELF_PLATFORM (NULL)
1547 #endif
1548 
1549 #ifndef ELF_MACHINE
1550 #define ELF_MACHINE ELF_ARCH
1551 #endif
1552 
1553 #ifndef elf_check_arch
1554 #define elf_check_arch(x) ((x) == ELF_ARCH)
1555 #endif
1556 
1557 #ifndef elf_check_abi
1558 #define elf_check_abi(x) (1)
1559 #endif
1560 
1561 #ifndef ELF_HWCAP
1562 #define ELF_HWCAP 0
1563 #endif
1564 
1565 #ifndef STACK_GROWS_DOWN
1566 #define STACK_GROWS_DOWN 1
1567 #endif
1568 
1569 #ifndef STACK_ALIGNMENT
1570 #define STACK_ALIGNMENT 16
1571 #endif
1572 
1573 #ifdef TARGET_ABI32
1574 #undef ELF_CLASS
1575 #define ELF_CLASS ELFCLASS32
1576 #undef bswaptls
1577 #define bswaptls(ptr) bswap32s(ptr)
1578 #endif
1579 
1580 #include "elf.h"
1581 
1582 /* We must delay the following stanzas until after "elf.h". */
1583 #if defined(TARGET_AARCH64)
1584 
1585 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1586                                     const uint32_t *data,
1587                                     struct image_info *info,
1588                                     Error **errp)
1589 {
1590     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1591         if (pr_datasz != sizeof(uint32_t)) {
1592             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1593             return false;
1594         }
1595         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1596         info->note_flags = *data;
1597     }
1598     return true;
1599 }
1600 #define ARCH_USE_GNU_PROPERTY 1
1601 
1602 #else
1603 
1604 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1605                                     const uint32_t *data,
1606                                     struct image_info *info,
1607                                     Error **errp)
1608 {
1609     g_assert_not_reached();
1610 }
1611 #define ARCH_USE_GNU_PROPERTY 0
1612 
1613 #endif
1614 
1615 struct exec
1616 {
1617     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1618     unsigned int a_text;   /* length of text, in bytes */
1619     unsigned int a_data;   /* length of data, in bytes */
1620     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1621     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1622     unsigned int a_entry;  /* start address */
1623     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1624     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1625 };
1626 
1627 
1628 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1629 #define OMAGIC 0407
1630 #define NMAGIC 0410
1631 #define ZMAGIC 0413
1632 #define QMAGIC 0314
1633 
1634 /* Necessary parameters */
1635 #define TARGET_ELF_EXEC_PAGESIZE \
1636         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1637          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1638 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1639 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1640                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1641 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1642 
1643 #define DLINFO_ITEMS 16
1644 
1645 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1646 {
1647     memcpy(to, from, n);
1648 }
1649 
1650 #ifdef BSWAP_NEEDED
1651 static void bswap_ehdr(struct elfhdr *ehdr)
1652 {
1653     bswap16s(&ehdr->e_type);            /* Object file type */
1654     bswap16s(&ehdr->e_machine);         /* Architecture */
1655     bswap32s(&ehdr->e_version);         /* Object file version */
1656     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1657     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1658     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1659     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1660     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1661     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1662     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1663     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1664     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1665     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1666 }
1667 
1668 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1669 {
1670     int i;
1671     for (i = 0; i < phnum; ++i, ++phdr) {
1672         bswap32s(&phdr->p_type);        /* Segment type */
1673         bswap32s(&phdr->p_flags);       /* Segment flags */
1674         bswaptls(&phdr->p_offset);      /* Segment file offset */
1675         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1676         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1677         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1678         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1679         bswaptls(&phdr->p_align);       /* Segment alignment */
1680     }
1681 }
1682 
1683 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1684 {
1685     int i;
1686     for (i = 0; i < shnum; ++i, ++shdr) {
1687         bswap32s(&shdr->sh_name);
1688         bswap32s(&shdr->sh_type);
1689         bswaptls(&shdr->sh_flags);
1690         bswaptls(&shdr->sh_addr);
1691         bswaptls(&shdr->sh_offset);
1692         bswaptls(&shdr->sh_size);
1693         bswap32s(&shdr->sh_link);
1694         bswap32s(&shdr->sh_info);
1695         bswaptls(&shdr->sh_addralign);
1696         bswaptls(&shdr->sh_entsize);
1697     }
1698 }
1699 
1700 static void bswap_sym(struct elf_sym *sym)
1701 {
1702     bswap32s(&sym->st_name);
1703     bswaptls(&sym->st_value);
1704     bswaptls(&sym->st_size);
1705     bswap16s(&sym->st_shndx);
1706 }
1707 
1708 #ifdef TARGET_MIPS
1709 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1710 {
1711     bswap16s(&abiflags->version);
1712     bswap32s(&abiflags->ases);
1713     bswap32s(&abiflags->isa_ext);
1714     bswap32s(&abiflags->flags1);
1715     bswap32s(&abiflags->flags2);
1716 }
1717 #endif
1718 #else
1719 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1720 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1721 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1722 static inline void bswap_sym(struct elf_sym *sym) { }
1723 #ifdef TARGET_MIPS
1724 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1725 #endif
1726 #endif
1727 
1728 #ifdef USE_ELF_CORE_DUMP
1729 static int elf_core_dump(int, const CPUArchState *);
1730 #endif /* USE_ELF_CORE_DUMP */
1731 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1732 
1733 /* Verify the portions of EHDR within E_IDENT for the target.
1734    This can be performed before bswapping the entire header.  */
1735 static bool elf_check_ident(struct elfhdr *ehdr)
1736 {
1737     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1738             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1739             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1740             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1741             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1742             && ehdr->e_ident[EI_DATA] == ELF_DATA
1743             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1744 }
1745 
1746 /* Verify the portions of EHDR outside of E_IDENT for the target.
1747    This has to wait until after bswapping the header.  */
1748 static bool elf_check_ehdr(struct elfhdr *ehdr)
1749 {
1750     return (elf_check_arch(ehdr->e_machine)
1751             && elf_check_abi(ehdr->e_flags)
1752             && ehdr->e_ehsize == sizeof(struct elfhdr)
1753             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1754             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1755 }
1756 
1757 /*
1758  * 'copy_elf_strings()' copies argument/envelope strings from user
1759  * memory to free pages in kernel mem. These are in a format ready
1760  * to be put directly into the top of new user memory.
1761  *
1762  */
1763 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1764                                   abi_ulong p, abi_ulong stack_limit)
1765 {
1766     char *tmp;
1767     int len, i;
1768     abi_ulong top = p;
1769 
1770     if (!p) {
1771         return 0;       /* bullet-proofing */
1772     }
1773 
1774     if (STACK_GROWS_DOWN) {
1775         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1776         for (i = argc - 1; i >= 0; --i) {
1777             tmp = argv[i];
1778             if (!tmp) {
1779                 fprintf(stderr, "VFS: argc is wrong");
1780                 exit(-1);
1781             }
1782             len = strlen(tmp) + 1;
1783             tmp += len;
1784 
1785             if (len > (p - stack_limit)) {
1786                 return 0;
1787             }
1788             while (len) {
1789                 int bytes_to_copy = (len > offset) ? offset : len;
1790                 tmp -= bytes_to_copy;
1791                 p -= bytes_to_copy;
1792                 offset -= bytes_to_copy;
1793                 len -= bytes_to_copy;
1794 
1795                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1796 
1797                 if (offset == 0) {
1798                     memcpy_to_target(p, scratch, top - p);
1799                     top = p;
1800                     offset = TARGET_PAGE_SIZE;
1801                 }
1802             }
1803         }
1804         if (p != top) {
1805             memcpy_to_target(p, scratch + offset, top - p);
1806         }
1807     } else {
1808         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1809         for (i = 0; i < argc; ++i) {
1810             tmp = argv[i];
1811             if (!tmp) {
1812                 fprintf(stderr, "VFS: argc is wrong");
1813                 exit(-1);
1814             }
1815             len = strlen(tmp) + 1;
1816             if (len > (stack_limit - p)) {
1817                 return 0;
1818             }
1819             while (len) {
1820                 int bytes_to_copy = (len > remaining) ? remaining : len;
1821 
1822                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1823 
1824                 tmp += bytes_to_copy;
1825                 remaining -= bytes_to_copy;
1826                 p += bytes_to_copy;
1827                 len -= bytes_to_copy;
1828 
1829                 if (remaining == 0) {
1830                     memcpy_to_target(top, scratch, p - top);
1831                     top = p;
1832                     remaining = TARGET_PAGE_SIZE;
1833                 }
1834             }
1835         }
1836         if (p != top) {
1837             memcpy_to_target(top, scratch, p - top);
1838         }
1839     }
1840 
1841     return p;
1842 }
1843 
1844 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1845  * argument/environment space. Newer kernels (>2.6.33) allow more,
1846  * dependent on stack size, but guarantee at least 32 pages for
1847  * backwards compatibility.
1848  */
1849 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1850 
1851 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1852                                  struct image_info *info)
1853 {
1854     abi_ulong size, error, guard;
1855 
1856     size = guest_stack_size;
1857     if (size < STACK_LOWER_LIMIT) {
1858         size = STACK_LOWER_LIMIT;
1859     }
1860     guard = TARGET_PAGE_SIZE;
1861     if (guard < qemu_real_host_page_size) {
1862         guard = qemu_real_host_page_size;
1863     }
1864 
1865     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1866                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1867     if (error == -1) {
1868         perror("mmap stack");
1869         exit(-1);
1870     }
1871 
1872     /* We reserve one extra page at the top of the stack as guard.  */
1873     if (STACK_GROWS_DOWN) {
1874         target_mprotect(error, guard, PROT_NONE);
1875         info->stack_limit = error + guard;
1876         return info->stack_limit + size - sizeof(void *);
1877     } else {
1878         target_mprotect(error + size, guard, PROT_NONE);
1879         info->stack_limit = error + size;
1880         return error;
1881     }
1882 }
1883 
1884 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1885    after the data section (i.e. bss).  */
1886 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1887 {
1888     uintptr_t host_start, host_map_start, host_end;
1889 
1890     last_bss = TARGET_PAGE_ALIGN(last_bss);
1891 
1892     /* ??? There is confusion between qemu_real_host_page_size and
1893        qemu_host_page_size here and elsewhere in target_mmap, which
1894        may lead to the end of the data section mapping from the file
1895        not being mapped.  At least there was an explicit test and
1896        comment for that here, suggesting that "the file size must
1897        be known".  The comment probably pre-dates the introduction
1898        of the fstat system call in target_mmap which does in fact
1899        find out the size.  What isn't clear is if the workaround
1900        here is still actually needed.  For now, continue with it,
1901        but merge it with the "normal" mmap that would allocate the bss.  */
1902 
1903     host_start = (uintptr_t) g2h_untagged(elf_bss);
1904     host_end = (uintptr_t) g2h_untagged(last_bss);
1905     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1906 
1907     if (host_map_start < host_end) {
1908         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1909                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1910         if (p == MAP_FAILED) {
1911             perror("cannot mmap brk");
1912             exit(-1);
1913         }
1914     }
1915 
1916     /* Ensure that the bss page(s) are valid */
1917     if ((page_get_flags(last_bss-1) & prot) != prot) {
1918         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1919     }
1920 
1921     if (host_start < host_map_start) {
1922         memset((void *)host_start, 0, host_map_start - host_start);
1923     }
1924 }
1925 
1926 #ifdef TARGET_ARM
1927 static int elf_is_fdpic(struct elfhdr *exec)
1928 {
1929     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1930 }
1931 #else
1932 /* Default implementation, always false.  */
1933 static int elf_is_fdpic(struct elfhdr *exec)
1934 {
1935     return 0;
1936 }
1937 #endif
1938 
1939 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1940 {
1941     uint16_t n;
1942     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1943 
1944     /* elf32_fdpic_loadseg */
1945     n = info->nsegs;
1946     while (n--) {
1947         sp -= 12;
1948         put_user_u32(loadsegs[n].addr, sp+0);
1949         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1950         put_user_u32(loadsegs[n].p_memsz, sp+8);
1951     }
1952 
1953     /* elf32_fdpic_loadmap */
1954     sp -= 4;
1955     put_user_u16(0, sp+0); /* version */
1956     put_user_u16(info->nsegs, sp+2); /* nsegs */
1957 
1958     info->personality = PER_LINUX_FDPIC;
1959     info->loadmap_addr = sp;
1960 
1961     return sp;
1962 }
1963 
1964 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1965                                    struct elfhdr *exec,
1966                                    struct image_info *info,
1967                                    struct image_info *interp_info)
1968 {
1969     abi_ulong sp;
1970     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1971     int size;
1972     int i;
1973     abi_ulong u_rand_bytes;
1974     uint8_t k_rand_bytes[16];
1975     abi_ulong u_platform;
1976     const char *k_platform;
1977     const int n = sizeof(elf_addr_t);
1978 
1979     sp = p;
1980 
1981     /* Needs to be before we load the env/argc/... */
1982     if (elf_is_fdpic(exec)) {
1983         /* Need 4 byte alignment for these structs */
1984         sp &= ~3;
1985         sp = loader_build_fdpic_loadmap(info, sp);
1986         info->other_info = interp_info;
1987         if (interp_info) {
1988             interp_info->other_info = info;
1989             sp = loader_build_fdpic_loadmap(interp_info, sp);
1990             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1991             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1992         } else {
1993             info->interpreter_loadmap_addr = 0;
1994             info->interpreter_pt_dynamic_addr = 0;
1995         }
1996     }
1997 
1998     u_platform = 0;
1999     k_platform = ELF_PLATFORM;
2000     if (k_platform) {
2001         size_t len = strlen(k_platform) + 1;
2002         if (STACK_GROWS_DOWN) {
2003             sp -= (len + n - 1) & ~(n - 1);
2004             u_platform = sp;
2005             /* FIXME - check return value of memcpy_to_target() for failure */
2006             memcpy_to_target(sp, k_platform, len);
2007         } else {
2008             memcpy_to_target(sp, k_platform, len);
2009             u_platform = sp;
2010             sp += len + 1;
2011         }
2012     }
2013 
2014     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2015      * the argv and envp pointers.
2016      */
2017     if (STACK_GROWS_DOWN) {
2018         sp = QEMU_ALIGN_DOWN(sp, 16);
2019     } else {
2020         sp = QEMU_ALIGN_UP(sp, 16);
2021     }
2022 
2023     /*
2024      * Generate 16 random bytes for userspace PRNG seeding.
2025      */
2026     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2027     if (STACK_GROWS_DOWN) {
2028         sp -= 16;
2029         u_rand_bytes = sp;
2030         /* FIXME - check return value of memcpy_to_target() for failure */
2031         memcpy_to_target(sp, k_rand_bytes, 16);
2032     } else {
2033         memcpy_to_target(sp, k_rand_bytes, 16);
2034         u_rand_bytes = sp;
2035         sp += 16;
2036     }
2037 
2038     size = (DLINFO_ITEMS + 1) * 2;
2039     if (k_platform)
2040         size += 2;
2041 #ifdef DLINFO_ARCH_ITEMS
2042     size += DLINFO_ARCH_ITEMS * 2;
2043 #endif
2044 #ifdef ELF_HWCAP2
2045     size += 2;
2046 #endif
2047     info->auxv_len = size * n;
2048 
2049     size += envc + argc + 2;
2050     size += 1;  /* argc itself */
2051     size *= n;
2052 
2053     /* Allocate space and finalize stack alignment for entry now.  */
2054     if (STACK_GROWS_DOWN) {
2055         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2056         sp = u_argc;
2057     } else {
2058         u_argc = sp;
2059         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2060     }
2061 
2062     u_argv = u_argc + n;
2063     u_envp = u_argv + (argc + 1) * n;
2064     u_auxv = u_envp + (envc + 1) * n;
2065     info->saved_auxv = u_auxv;
2066     info->arg_start = u_argv;
2067     info->arg_end = u_argv + argc * n;
2068 
2069     /* This is correct because Linux defines
2070      * elf_addr_t as Elf32_Off / Elf64_Off
2071      */
2072 #define NEW_AUX_ENT(id, val) do {               \
2073         put_user_ual(id, u_auxv);  u_auxv += n; \
2074         put_user_ual(val, u_auxv); u_auxv += n; \
2075     } while(0)
2076 
2077 #ifdef ARCH_DLINFO
2078     /*
2079      * ARCH_DLINFO must come first so platform specific code can enforce
2080      * special alignment requirements on the AUXV if necessary (eg. PPC).
2081      */
2082     ARCH_DLINFO;
2083 #endif
2084     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2085      * on info->auxv_len will trigger.
2086      */
2087     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2088     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2089     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2090     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2091         /* Target doesn't support host page size alignment */
2092         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2093     } else {
2094         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2095                                                qemu_host_page_size)));
2096     }
2097     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2098     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2099     NEW_AUX_ENT(AT_ENTRY, info->entry);
2100     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2101     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2102     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2103     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2104     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2105     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2106     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2107     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2108     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2109 
2110 #ifdef ELF_HWCAP2
2111     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2112 #endif
2113 
2114     if (u_platform) {
2115         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2116     }
2117     NEW_AUX_ENT (AT_NULL, 0);
2118 #undef NEW_AUX_ENT
2119 
2120     /* Check that our initial calculation of the auxv length matches how much
2121      * we actually put into it.
2122      */
2123     assert(info->auxv_len == u_auxv - info->saved_auxv);
2124 
2125     put_user_ual(argc, u_argc);
2126 
2127     p = info->arg_strings;
2128     for (i = 0; i < argc; ++i) {
2129         put_user_ual(p, u_argv);
2130         u_argv += n;
2131         p += target_strlen(p) + 1;
2132     }
2133     put_user_ual(0, u_argv);
2134 
2135     p = info->env_strings;
2136     for (i = 0; i < envc; ++i) {
2137         put_user_ual(p, u_envp);
2138         u_envp += n;
2139         p += target_strlen(p) + 1;
2140     }
2141     put_user_ual(0, u_envp);
2142 
2143     return sp;
2144 }
2145 
2146 #ifndef ARM_COMMPAGE
2147 #define ARM_COMMPAGE 0
2148 #define init_guest_commpage() true
2149 #endif
2150 
2151 static void pgb_fail_in_use(const char *image_name)
2152 {
2153     error_report("%s: requires virtual address space that is in use "
2154                  "(omit the -B option or choose a different value)",
2155                  image_name);
2156     exit(EXIT_FAILURE);
2157 }
2158 
2159 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2160                                 abi_ulong guest_hiaddr, long align)
2161 {
2162     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2163     void *addr, *test;
2164 
2165     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2166         fprintf(stderr, "Requested guest base %p does not satisfy "
2167                 "host minimum alignment (0x%lx)\n",
2168                 (void *)guest_base, align);
2169         exit(EXIT_FAILURE);
2170     }
2171 
2172     /* Sanity check the guest binary. */
2173     if (reserved_va) {
2174         if (guest_hiaddr > reserved_va) {
2175             error_report("%s: requires more than reserved virtual "
2176                          "address space (0x%" PRIx64 " > 0x%lx)",
2177                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2178             exit(EXIT_FAILURE);
2179         }
2180     } else {
2181 #if HOST_LONG_BITS < TARGET_ABI_BITS
2182         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2183             error_report("%s: requires more virtual address space "
2184                          "than the host can provide (0x%" PRIx64 ")",
2185                          image_name, (uint64_t)guest_hiaddr - guest_base);
2186             exit(EXIT_FAILURE);
2187         }
2188 #endif
2189     }
2190 
2191     /*
2192      * Expand the allocation to the entire reserved_va.
2193      * Exclude the mmap_min_addr hole.
2194      */
2195     if (reserved_va) {
2196         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2197                         : mmap_min_addr - guest_base);
2198         guest_hiaddr = reserved_va;
2199     }
2200 
2201     /* Reserve the address space for the binary, or reserved_va. */
2202     test = g2h_untagged(guest_loaddr);
2203     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2204     if (test != addr) {
2205         pgb_fail_in_use(image_name);
2206     }
2207 }
2208 
2209 /**
2210  * pgd_find_hole_fallback: potential mmap address
2211  * @guest_size: size of available space
2212  * @brk: location of break
2213  * @align: memory alignment
2214  *
2215  * This is a fallback method for finding a hole in the host address
2216  * space if we don't have the benefit of being able to access
2217  * /proc/self/map. It can potentially take a very long time as we can
2218  * only dumbly iterate up the host address space seeing if the
2219  * allocation would work.
2220  */
2221 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2222                                         long align, uintptr_t offset)
2223 {
2224     uintptr_t base;
2225 
2226     /* Start (aligned) at the bottom and work our way up */
2227     base = ROUND_UP(mmap_min_addr, align);
2228 
2229     while (true) {
2230         uintptr_t align_start, end;
2231         align_start = ROUND_UP(base, align);
2232         end = align_start + guest_size + offset;
2233 
2234         /* if brk is anywhere in the range give ourselves some room to grow. */
2235         if (align_start <= brk && brk < end) {
2236             base = brk + (16 * MiB);
2237             continue;
2238         } else if (align_start + guest_size < align_start) {
2239             /* we have run out of space */
2240             return -1;
2241         } else {
2242             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2243                 MAP_FIXED_NOREPLACE;
2244             void * mmap_start = mmap((void *) align_start, guest_size,
2245                                      PROT_NONE, flags, -1, 0);
2246             if (mmap_start != MAP_FAILED) {
2247                 munmap(mmap_start, guest_size);
2248                 if (mmap_start == (void *) align_start) {
2249                     return (uintptr_t) mmap_start + offset;
2250                 }
2251             }
2252             base += qemu_host_page_size;
2253         }
2254     }
2255 }
2256 
2257 /* Return value for guest_base, or -1 if no hole found. */
2258 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2259                                long align, uintptr_t offset)
2260 {
2261     GSList *maps, *iter;
2262     uintptr_t this_start, this_end, next_start, brk;
2263     intptr_t ret = -1;
2264 
2265     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2266 
2267     maps = read_self_maps();
2268 
2269     /* Read brk after we've read the maps, which will malloc. */
2270     brk = (uintptr_t)sbrk(0);
2271 
2272     if (!maps) {
2273         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2274         return ret == -1 ? -1 : ret - guest_loaddr;
2275     }
2276 
2277     /* The first hole is before the first map entry. */
2278     this_start = mmap_min_addr;
2279 
2280     for (iter = maps; iter;
2281          this_start = next_start, iter = g_slist_next(iter)) {
2282         uintptr_t align_start, hole_size;
2283 
2284         this_end = ((MapInfo *)iter->data)->start;
2285         next_start = ((MapInfo *)iter->data)->end;
2286         align_start = ROUND_UP(this_start + offset, align);
2287 
2288         /* Skip holes that are too small. */
2289         if (align_start >= this_end) {
2290             continue;
2291         }
2292         hole_size = this_end - align_start;
2293         if (hole_size < guest_size) {
2294             continue;
2295         }
2296 
2297         /* If this hole contains brk, give ourselves some room to grow. */
2298         if (this_start <= brk && brk < this_end) {
2299             hole_size -= guest_size;
2300             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2301                 align_start += 1 * GiB;
2302             } else if (hole_size >= 16 * MiB) {
2303                 align_start += 16 * MiB;
2304             } else {
2305                 align_start = (this_end - guest_size) & -align;
2306                 if (align_start < this_start) {
2307                     continue;
2308                 }
2309             }
2310         }
2311 
2312         /* Record the lowest successful match. */
2313         if (ret < 0) {
2314             ret = align_start - guest_loaddr;
2315         }
2316         /* If this hole contains the identity map, select it. */
2317         if (align_start <= guest_loaddr &&
2318             guest_loaddr + guest_size <= this_end) {
2319             ret = 0;
2320         }
2321         /* If this hole ends above the identity map, stop looking. */
2322         if (this_end >= guest_loaddr) {
2323             break;
2324         }
2325     }
2326     free_self_maps(maps);
2327 
2328     return ret;
2329 }
2330 
2331 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2332                        abi_ulong orig_hiaddr, long align)
2333 {
2334     uintptr_t loaddr = orig_loaddr;
2335     uintptr_t hiaddr = orig_hiaddr;
2336     uintptr_t offset = 0;
2337     uintptr_t addr;
2338 
2339     if (hiaddr != orig_hiaddr) {
2340         error_report("%s: requires virtual address space that the "
2341                      "host cannot provide (0x%" PRIx64 ")",
2342                      image_name, (uint64_t)orig_hiaddr);
2343         exit(EXIT_FAILURE);
2344     }
2345 
2346     loaddr &= -align;
2347     if (ARM_COMMPAGE) {
2348         /*
2349          * Extend the allocation to include the commpage.
2350          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2351          * need to ensure there is space bellow the guest_base so we
2352          * can map the commpage in the place needed when the address
2353          * arithmetic wraps around.
2354          */
2355         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2356             hiaddr = (uintptr_t) 4 << 30;
2357         } else {
2358             offset = -(ARM_COMMPAGE & -align);
2359         }
2360     }
2361 
2362     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2363     if (addr == -1) {
2364         /*
2365          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2366          * that can satisfy both.  But as the normal arm32 link base address
2367          * is ~32k, and we extend down to include the commpage, making the
2368          * overhead only ~96k, this is unlikely.
2369          */
2370         error_report("%s: Unable to allocate %#zx bytes of "
2371                      "virtual address space", image_name,
2372                      (size_t)(hiaddr - loaddr));
2373         exit(EXIT_FAILURE);
2374     }
2375 
2376     guest_base = addr;
2377 }
2378 
2379 static void pgb_dynamic(const char *image_name, long align)
2380 {
2381     /*
2382      * The executable is dynamic and does not require a fixed address.
2383      * All we need is a commpage that satisfies align.
2384      * If we do not need a commpage, leave guest_base == 0.
2385      */
2386     if (ARM_COMMPAGE) {
2387         uintptr_t addr, commpage;
2388 
2389         /* 64-bit hosts should have used reserved_va. */
2390         assert(sizeof(uintptr_t) == 4);
2391 
2392         /*
2393          * By putting the commpage at the first hole, that puts guest_base
2394          * just above that, and maximises the positive guest addresses.
2395          */
2396         commpage = ARM_COMMPAGE & -align;
2397         addr = pgb_find_hole(commpage, -commpage, align, 0);
2398         assert(addr != -1);
2399         guest_base = addr;
2400     }
2401 }
2402 
2403 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2404                             abi_ulong guest_hiaddr, long align)
2405 {
2406     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2407     void *addr, *test;
2408 
2409     if (guest_hiaddr > reserved_va) {
2410         error_report("%s: requires more than reserved virtual "
2411                      "address space (0x%" PRIx64 " > 0x%lx)",
2412                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2413         exit(EXIT_FAILURE);
2414     }
2415 
2416     /* Widen the "image" to the entire reserved address space. */
2417     pgb_static(image_name, 0, reserved_va, align);
2418 
2419     /* osdep.h defines this as 0 if it's missing */
2420     flags |= MAP_FIXED_NOREPLACE;
2421 
2422     /* Reserve the memory on the host. */
2423     assert(guest_base != 0);
2424     test = g2h_untagged(0);
2425     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2426     if (addr == MAP_FAILED || addr != test) {
2427         error_report("Unable to reserve 0x%lx bytes of virtual address "
2428                      "space at %p (%s) for use as guest address space (check your"
2429                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2430                      "using -R option)", reserved_va, test, strerror(errno));
2431         exit(EXIT_FAILURE);
2432     }
2433 }
2434 
2435 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2436                       abi_ulong guest_hiaddr)
2437 {
2438     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2439     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2440 
2441     if (have_guest_base) {
2442         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2443     } else if (reserved_va) {
2444         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2445     } else if (guest_loaddr) {
2446         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2447     } else {
2448         pgb_dynamic(image_name, align);
2449     }
2450 
2451     /* Reserve and initialize the commpage. */
2452     if (!init_guest_commpage()) {
2453         /*
2454          * With have_guest_base, the user has selected the address and
2455          * we are trying to work with that.  Otherwise, we have selected
2456          * free space and init_guest_commpage must succeeded.
2457          */
2458         assert(have_guest_base);
2459         pgb_fail_in_use(image_name);
2460     }
2461 
2462     assert(QEMU_IS_ALIGNED(guest_base, align));
2463     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2464                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2465 }
2466 
2467 enum {
2468     /* The string "GNU\0" as a magic number. */
2469     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2470     NOTE_DATA_SZ = 1 * KiB,
2471     NOTE_NAME_SZ = 4,
2472     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2473 };
2474 
2475 /*
2476  * Process a single gnu_property entry.
2477  * Return false for error.
2478  */
2479 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2480                                struct image_info *info, bool have_prev_type,
2481                                uint32_t *prev_type, Error **errp)
2482 {
2483     uint32_t pr_type, pr_datasz, step;
2484 
2485     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2486         goto error_data;
2487     }
2488     datasz -= *off;
2489     data += *off / sizeof(uint32_t);
2490 
2491     if (datasz < 2 * sizeof(uint32_t)) {
2492         goto error_data;
2493     }
2494     pr_type = data[0];
2495     pr_datasz = data[1];
2496     data += 2;
2497     datasz -= 2 * sizeof(uint32_t);
2498     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2499     if (step > datasz) {
2500         goto error_data;
2501     }
2502 
2503     /* Properties are supposed to be unique and sorted on pr_type. */
2504     if (have_prev_type && pr_type <= *prev_type) {
2505         if (pr_type == *prev_type) {
2506             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2507         } else {
2508             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2509         }
2510         return false;
2511     }
2512     *prev_type = pr_type;
2513 
2514     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2515         return false;
2516     }
2517 
2518     *off += 2 * sizeof(uint32_t) + step;
2519     return true;
2520 
2521  error_data:
2522     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2523     return false;
2524 }
2525 
2526 /* Process NT_GNU_PROPERTY_TYPE_0. */
2527 static bool parse_elf_properties(int image_fd,
2528                                  struct image_info *info,
2529                                  const struct elf_phdr *phdr,
2530                                  char bprm_buf[BPRM_BUF_SIZE],
2531                                  Error **errp)
2532 {
2533     union {
2534         struct elf_note nhdr;
2535         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2536     } note;
2537 
2538     int n, off, datasz;
2539     bool have_prev_type;
2540     uint32_t prev_type;
2541 
2542     /* Unless the arch requires properties, ignore them. */
2543     if (!ARCH_USE_GNU_PROPERTY) {
2544         return true;
2545     }
2546 
2547     /* If the properties are crazy large, that's too bad. */
2548     n = phdr->p_filesz;
2549     if (n > sizeof(note)) {
2550         error_setg(errp, "PT_GNU_PROPERTY too large");
2551         return false;
2552     }
2553     if (n < sizeof(note.nhdr)) {
2554         error_setg(errp, "PT_GNU_PROPERTY too small");
2555         return false;
2556     }
2557 
2558     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2559         memcpy(&note, bprm_buf + phdr->p_offset, n);
2560     } else {
2561         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2562         if (len != n) {
2563             error_setg_errno(errp, errno, "Error reading file header");
2564             return false;
2565         }
2566     }
2567 
2568     /*
2569      * The contents of a valid PT_GNU_PROPERTY is a sequence
2570      * of uint32_t -- swap them all now.
2571      */
2572 #ifdef BSWAP_NEEDED
2573     for (int i = 0; i < n / 4; i++) {
2574         bswap32s(note.data + i);
2575     }
2576 #endif
2577 
2578     /*
2579      * Note that nhdr is 3 words, and that the "name" described by namesz
2580      * immediately follows nhdr and is thus at the 4th word.  Further, all
2581      * of the inputs to the kernel's round_up are multiples of 4.
2582      */
2583     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2584         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2585         note.data[3] != GNU0_MAGIC) {
2586         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2587         return false;
2588     }
2589     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2590 
2591     datasz = note.nhdr.n_descsz + off;
2592     if (datasz > n) {
2593         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2594         return false;
2595     }
2596 
2597     have_prev_type = false;
2598     prev_type = 0;
2599     while (1) {
2600         if (off == datasz) {
2601             return true;  /* end, exit ok */
2602         }
2603         if (!parse_elf_property(note.data, &off, datasz, info,
2604                                 have_prev_type, &prev_type, errp)) {
2605             return false;
2606         }
2607         have_prev_type = true;
2608     }
2609 }
2610 
2611 /* Load an ELF image into the address space.
2612 
2613    IMAGE_NAME is the filename of the image, to use in error messages.
2614    IMAGE_FD is the open file descriptor for the image.
2615 
2616    BPRM_BUF is a copy of the beginning of the file; this of course
2617    contains the elf file header at offset 0.  It is assumed that this
2618    buffer is sufficiently aligned to present no problems to the host
2619    in accessing data at aligned offsets within the buffer.
2620 
2621    On return: INFO values will be filled in, as necessary or available.  */
2622 
2623 static void load_elf_image(const char *image_name, int image_fd,
2624                            struct image_info *info, char **pinterp_name,
2625                            char bprm_buf[BPRM_BUF_SIZE])
2626 {
2627     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2628     struct elf_phdr *phdr;
2629     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2630     int i, retval, prot_exec;
2631     Error *err = NULL;
2632 
2633     /* First of all, some simple consistency checks */
2634     if (!elf_check_ident(ehdr)) {
2635         error_setg(&err, "Invalid ELF image for this architecture");
2636         goto exit_errmsg;
2637     }
2638     bswap_ehdr(ehdr);
2639     if (!elf_check_ehdr(ehdr)) {
2640         error_setg(&err, "Invalid ELF image for this architecture");
2641         goto exit_errmsg;
2642     }
2643 
2644     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2645     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2646         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2647     } else {
2648         phdr = (struct elf_phdr *) alloca(i);
2649         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2650         if (retval != i) {
2651             goto exit_read;
2652         }
2653     }
2654     bswap_phdr(phdr, ehdr->e_phnum);
2655 
2656     info->nsegs = 0;
2657     info->pt_dynamic_addr = 0;
2658 
2659     mmap_lock();
2660 
2661     /*
2662      * Find the maximum size of the image and allocate an appropriate
2663      * amount of memory to handle that.  Locate the interpreter, if any.
2664      */
2665     loaddr = -1, hiaddr = 0;
2666     info->alignment = 0;
2667     for (i = 0; i < ehdr->e_phnum; ++i) {
2668         struct elf_phdr *eppnt = phdr + i;
2669         if (eppnt->p_type == PT_LOAD) {
2670             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2671             if (a < loaddr) {
2672                 loaddr = a;
2673             }
2674             a = eppnt->p_vaddr + eppnt->p_memsz;
2675             if (a > hiaddr) {
2676                 hiaddr = a;
2677             }
2678             ++info->nsegs;
2679             info->alignment |= eppnt->p_align;
2680         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2681             g_autofree char *interp_name = NULL;
2682 
2683             if (*pinterp_name) {
2684                 error_setg(&err, "Multiple PT_INTERP entries");
2685                 goto exit_errmsg;
2686             }
2687 
2688             interp_name = g_malloc(eppnt->p_filesz);
2689 
2690             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2691                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2692                        eppnt->p_filesz);
2693             } else {
2694                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2695                                eppnt->p_offset);
2696                 if (retval != eppnt->p_filesz) {
2697                     goto exit_read;
2698                 }
2699             }
2700             if (interp_name[eppnt->p_filesz - 1] != 0) {
2701                 error_setg(&err, "Invalid PT_INTERP entry");
2702                 goto exit_errmsg;
2703             }
2704             *pinterp_name = g_steal_pointer(&interp_name);
2705         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2706             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2707                 goto exit_errmsg;
2708             }
2709         }
2710     }
2711 
2712     if (pinterp_name != NULL) {
2713         /*
2714          * This is the main executable.
2715          *
2716          * Reserve extra space for brk.
2717          * We hold on to this space while placing the interpreter
2718          * and the stack, lest they be placed immediately after
2719          * the data segment and block allocation from the brk.
2720          *
2721          * 16MB is chosen as "large enough" without being so large
2722          * as to allow the result to not fit with a 32-bit guest on
2723          * a 32-bit host.
2724          */
2725         info->reserve_brk = 16 * MiB;
2726         hiaddr += info->reserve_brk;
2727 
2728         if (ehdr->e_type == ET_EXEC) {
2729             /*
2730              * Make sure that the low address does not conflict with
2731              * MMAP_MIN_ADDR or the QEMU application itself.
2732              */
2733             probe_guest_base(image_name, loaddr, hiaddr);
2734         } else {
2735             /*
2736              * The binary is dynamic, but we still need to
2737              * select guest_base.  In this case we pass a size.
2738              */
2739             probe_guest_base(image_name, 0, hiaddr - loaddr);
2740         }
2741     }
2742 
2743     /*
2744      * Reserve address space for all of this.
2745      *
2746      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2747      * exactly the address range that is required.
2748      *
2749      * Otherwise this is ET_DYN, and we are searching for a location
2750      * that can hold the memory space required.  If the image is
2751      * pre-linked, LOADDR will be non-zero, and the kernel should
2752      * honor that address if it happens to be free.
2753      *
2754      * In both cases, we will overwrite pages in this range with mappings
2755      * from the executable.
2756      */
2757     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2758                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2759                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2760                             -1, 0);
2761     if (load_addr == -1) {
2762         goto exit_mmap;
2763     }
2764     load_bias = load_addr - loaddr;
2765 
2766     if (elf_is_fdpic(ehdr)) {
2767         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2768             g_malloc(sizeof(*loadsegs) * info->nsegs);
2769 
2770         for (i = 0; i < ehdr->e_phnum; ++i) {
2771             switch (phdr[i].p_type) {
2772             case PT_DYNAMIC:
2773                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2774                 break;
2775             case PT_LOAD:
2776                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2777                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2778                 loadsegs->p_memsz = phdr[i].p_memsz;
2779                 ++loadsegs;
2780                 break;
2781             }
2782         }
2783     }
2784 
2785     info->load_bias = load_bias;
2786     info->code_offset = load_bias;
2787     info->data_offset = load_bias;
2788     info->load_addr = load_addr;
2789     info->entry = ehdr->e_entry + load_bias;
2790     info->start_code = -1;
2791     info->end_code = 0;
2792     info->start_data = -1;
2793     info->end_data = 0;
2794     info->brk = 0;
2795     info->elf_flags = ehdr->e_flags;
2796 
2797     prot_exec = PROT_EXEC;
2798 #ifdef TARGET_AARCH64
2799     /*
2800      * If the BTI feature is present, this indicates that the executable
2801      * pages of the startup binary should be mapped with PROT_BTI, so that
2802      * branch targets are enforced.
2803      *
2804      * The startup binary is either the interpreter or the static executable.
2805      * The interpreter is responsible for all pages of a dynamic executable.
2806      *
2807      * Elf notes are backward compatible to older cpus.
2808      * Do not enable BTI unless it is supported.
2809      */
2810     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2811         && (pinterp_name == NULL || *pinterp_name == 0)
2812         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2813         prot_exec |= TARGET_PROT_BTI;
2814     }
2815 #endif
2816 
2817     for (i = 0; i < ehdr->e_phnum; i++) {
2818         struct elf_phdr *eppnt = phdr + i;
2819         if (eppnt->p_type == PT_LOAD) {
2820             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2821             int elf_prot = 0;
2822 
2823             if (eppnt->p_flags & PF_R) {
2824                 elf_prot |= PROT_READ;
2825             }
2826             if (eppnt->p_flags & PF_W) {
2827                 elf_prot |= PROT_WRITE;
2828             }
2829             if (eppnt->p_flags & PF_X) {
2830                 elf_prot |= prot_exec;
2831             }
2832 
2833             vaddr = load_bias + eppnt->p_vaddr;
2834             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2835             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2836 
2837             vaddr_ef = vaddr + eppnt->p_filesz;
2838             vaddr_em = vaddr + eppnt->p_memsz;
2839 
2840             /*
2841              * Some segments may be completely empty, with a non-zero p_memsz
2842              * but no backing file segment.
2843              */
2844             if (eppnt->p_filesz != 0) {
2845                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2846                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2847                                     MAP_PRIVATE | MAP_FIXED,
2848                                     image_fd, eppnt->p_offset - vaddr_po);
2849 
2850                 if (error == -1) {
2851                     goto exit_mmap;
2852                 }
2853 
2854                 /*
2855                  * If the load segment requests extra zeros (e.g. bss), map it.
2856                  */
2857                 if (eppnt->p_filesz < eppnt->p_memsz) {
2858                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2859                 }
2860             } else if (eppnt->p_memsz != 0) {
2861                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2862                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2863                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2864                                     -1, 0);
2865 
2866                 if (error == -1) {
2867                     goto exit_mmap;
2868                 }
2869             }
2870 
2871             /* Find the full program boundaries.  */
2872             if (elf_prot & PROT_EXEC) {
2873                 if (vaddr < info->start_code) {
2874                     info->start_code = vaddr;
2875                 }
2876                 if (vaddr_ef > info->end_code) {
2877                     info->end_code = vaddr_ef;
2878                 }
2879             }
2880             if (elf_prot & PROT_WRITE) {
2881                 if (vaddr < info->start_data) {
2882                     info->start_data = vaddr;
2883                 }
2884                 if (vaddr_ef > info->end_data) {
2885                     info->end_data = vaddr_ef;
2886                 }
2887             }
2888             if (vaddr_em > info->brk) {
2889                 info->brk = vaddr_em;
2890             }
2891 #ifdef TARGET_MIPS
2892         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2893             Mips_elf_abiflags_v0 abiflags;
2894             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2895                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2896                 goto exit_errmsg;
2897             }
2898             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2899                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2900                        sizeof(Mips_elf_abiflags_v0));
2901             } else {
2902                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2903                                eppnt->p_offset);
2904                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2905                     goto exit_read;
2906                 }
2907             }
2908             bswap_mips_abiflags(&abiflags);
2909             info->fp_abi = abiflags.fp_abi;
2910 #endif
2911         }
2912     }
2913 
2914     if (info->end_data == 0) {
2915         info->start_data = info->end_code;
2916         info->end_data = info->end_code;
2917     }
2918 
2919     if (qemu_log_enabled()) {
2920         load_symbols(ehdr, image_fd, load_bias);
2921     }
2922 
2923     mmap_unlock();
2924 
2925     close(image_fd);
2926     return;
2927 
2928  exit_read:
2929     if (retval >= 0) {
2930         error_setg(&err, "Incomplete read of file header");
2931     } else {
2932         error_setg_errno(&err, errno, "Error reading file header");
2933     }
2934     goto exit_errmsg;
2935  exit_mmap:
2936     error_setg_errno(&err, errno, "Error mapping file");
2937     goto exit_errmsg;
2938  exit_errmsg:
2939     error_reportf_err(err, "%s: ", image_name);
2940     exit(-1);
2941 }
2942 
2943 static void load_elf_interp(const char *filename, struct image_info *info,
2944                             char bprm_buf[BPRM_BUF_SIZE])
2945 {
2946     int fd, retval;
2947     Error *err = NULL;
2948 
2949     fd = open(path(filename), O_RDONLY);
2950     if (fd < 0) {
2951         error_setg_file_open(&err, errno, filename);
2952         error_report_err(err);
2953         exit(-1);
2954     }
2955 
2956     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2957     if (retval < 0) {
2958         error_setg_errno(&err, errno, "Error reading file header");
2959         error_reportf_err(err, "%s: ", filename);
2960         exit(-1);
2961     }
2962 
2963     if (retval < BPRM_BUF_SIZE) {
2964         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2965     }
2966 
2967     load_elf_image(filename, fd, info, NULL, bprm_buf);
2968 }
2969 
2970 static int symfind(const void *s0, const void *s1)
2971 {
2972     target_ulong addr = *(target_ulong *)s0;
2973     struct elf_sym *sym = (struct elf_sym *)s1;
2974     int result = 0;
2975     if (addr < sym->st_value) {
2976         result = -1;
2977     } else if (addr >= sym->st_value + sym->st_size) {
2978         result = 1;
2979     }
2980     return result;
2981 }
2982 
2983 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2984 {
2985 #if ELF_CLASS == ELFCLASS32
2986     struct elf_sym *syms = s->disas_symtab.elf32;
2987 #else
2988     struct elf_sym *syms = s->disas_symtab.elf64;
2989 #endif
2990 
2991     // binary search
2992     struct elf_sym *sym;
2993 
2994     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2995     if (sym != NULL) {
2996         return s->disas_strtab + sym->st_name;
2997     }
2998 
2999     return "";
3000 }
3001 
3002 /* FIXME: This should use elf_ops.h  */
3003 static int symcmp(const void *s0, const void *s1)
3004 {
3005     struct elf_sym *sym0 = (struct elf_sym *)s0;
3006     struct elf_sym *sym1 = (struct elf_sym *)s1;
3007     return (sym0->st_value < sym1->st_value)
3008         ? -1
3009         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3010 }
3011 
3012 /* Best attempt to load symbols from this ELF object. */
3013 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3014 {
3015     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3016     uint64_t segsz;
3017     struct elf_shdr *shdr;
3018     char *strings = NULL;
3019     struct syminfo *s = NULL;
3020     struct elf_sym *new_syms, *syms = NULL;
3021 
3022     shnum = hdr->e_shnum;
3023     i = shnum * sizeof(struct elf_shdr);
3024     shdr = (struct elf_shdr *)alloca(i);
3025     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3026         return;
3027     }
3028 
3029     bswap_shdr(shdr, shnum);
3030     for (i = 0; i < shnum; ++i) {
3031         if (shdr[i].sh_type == SHT_SYMTAB) {
3032             sym_idx = i;
3033             str_idx = shdr[i].sh_link;
3034             goto found;
3035         }
3036     }
3037 
3038     /* There will be no symbol table if the file was stripped.  */
3039     return;
3040 
3041  found:
3042     /* Now know where the strtab and symtab are.  Snarf them.  */
3043     s = g_try_new(struct syminfo, 1);
3044     if (!s) {
3045         goto give_up;
3046     }
3047 
3048     segsz = shdr[str_idx].sh_size;
3049     s->disas_strtab = strings = g_try_malloc(segsz);
3050     if (!strings ||
3051         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3052         goto give_up;
3053     }
3054 
3055     segsz = shdr[sym_idx].sh_size;
3056     syms = g_try_malloc(segsz);
3057     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3058         goto give_up;
3059     }
3060 
3061     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3062         /* Implausibly large symbol table: give up rather than ploughing
3063          * on with the number of symbols calculation overflowing
3064          */
3065         goto give_up;
3066     }
3067     nsyms = segsz / sizeof(struct elf_sym);
3068     for (i = 0; i < nsyms; ) {
3069         bswap_sym(syms + i);
3070         /* Throw away entries which we do not need.  */
3071         if (syms[i].st_shndx == SHN_UNDEF
3072             || syms[i].st_shndx >= SHN_LORESERVE
3073             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3074             if (i < --nsyms) {
3075                 syms[i] = syms[nsyms];
3076             }
3077         } else {
3078 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3079             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3080             syms[i].st_value &= ~(target_ulong)1;
3081 #endif
3082             syms[i].st_value += load_bias;
3083             i++;
3084         }
3085     }
3086 
3087     /* No "useful" symbol.  */
3088     if (nsyms == 0) {
3089         goto give_up;
3090     }
3091 
3092     /* Attempt to free the storage associated with the local symbols
3093        that we threw away.  Whether or not this has any effect on the
3094        memory allocation depends on the malloc implementation and how
3095        many symbols we managed to discard.  */
3096     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3097     if (new_syms == NULL) {
3098         goto give_up;
3099     }
3100     syms = new_syms;
3101 
3102     qsort(syms, nsyms, sizeof(*syms), symcmp);
3103 
3104     s->disas_num_syms = nsyms;
3105 #if ELF_CLASS == ELFCLASS32
3106     s->disas_symtab.elf32 = syms;
3107 #else
3108     s->disas_symtab.elf64 = syms;
3109 #endif
3110     s->lookup_symbol = lookup_symbolxx;
3111     s->next = syminfos;
3112     syminfos = s;
3113 
3114     return;
3115 
3116 give_up:
3117     g_free(s);
3118     g_free(strings);
3119     g_free(syms);
3120 }
3121 
3122 uint32_t get_elf_eflags(int fd)
3123 {
3124     struct elfhdr ehdr;
3125     off_t offset;
3126     int ret;
3127 
3128     /* Read ELF header */
3129     offset = lseek(fd, 0, SEEK_SET);
3130     if (offset == (off_t) -1) {
3131         return 0;
3132     }
3133     ret = read(fd, &ehdr, sizeof(ehdr));
3134     if (ret < sizeof(ehdr)) {
3135         return 0;
3136     }
3137     offset = lseek(fd, offset, SEEK_SET);
3138     if (offset == (off_t) -1) {
3139         return 0;
3140     }
3141 
3142     /* Check ELF signature */
3143     if (!elf_check_ident(&ehdr)) {
3144         return 0;
3145     }
3146 
3147     /* check header */
3148     bswap_ehdr(&ehdr);
3149     if (!elf_check_ehdr(&ehdr)) {
3150         return 0;
3151     }
3152 
3153     /* return architecture id */
3154     return ehdr.e_flags;
3155 }
3156 
3157 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3158 {
3159     struct image_info interp_info;
3160     struct elfhdr elf_ex;
3161     char *elf_interpreter = NULL;
3162     char *scratch;
3163 
3164     memset(&interp_info, 0, sizeof(interp_info));
3165 #ifdef TARGET_MIPS
3166     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3167 #endif
3168 
3169     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3170 
3171     load_elf_image(bprm->filename, bprm->fd, info,
3172                    &elf_interpreter, bprm->buf);
3173 
3174     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3175        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3176        when we load the interpreter.  */
3177     elf_ex = *(struct elfhdr *)bprm->buf;
3178 
3179     /* Do this so that we can load the interpreter, if need be.  We will
3180        change some of these later */
3181     bprm->p = setup_arg_pages(bprm, info);
3182 
3183     scratch = g_new0(char, TARGET_PAGE_SIZE);
3184     if (STACK_GROWS_DOWN) {
3185         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3186                                    bprm->p, info->stack_limit);
3187         info->file_string = bprm->p;
3188         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3189                                    bprm->p, info->stack_limit);
3190         info->env_strings = bprm->p;
3191         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3192                                    bprm->p, info->stack_limit);
3193         info->arg_strings = bprm->p;
3194     } else {
3195         info->arg_strings = bprm->p;
3196         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3197                                    bprm->p, info->stack_limit);
3198         info->env_strings = bprm->p;
3199         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3200                                    bprm->p, info->stack_limit);
3201         info->file_string = bprm->p;
3202         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3203                                    bprm->p, info->stack_limit);
3204     }
3205 
3206     g_free(scratch);
3207 
3208     if (!bprm->p) {
3209         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3210         exit(-1);
3211     }
3212 
3213     if (elf_interpreter) {
3214         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3215 
3216         /* If the program interpreter is one of these two, then assume
3217            an iBCS2 image.  Otherwise assume a native linux image.  */
3218 
3219         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3220             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3221             info->personality = PER_SVR4;
3222 
3223             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3224                and some applications "depend" upon this behavior.  Since
3225                we do not have the power to recompile these, we emulate
3226                the SVr4 behavior.  Sigh.  */
3227             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3228                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3229         }
3230 #ifdef TARGET_MIPS
3231         info->interp_fp_abi = interp_info.fp_abi;
3232 #endif
3233     }
3234 
3235     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3236                                 info, (elf_interpreter ? &interp_info : NULL));
3237     info->start_stack = bprm->p;
3238 
3239     /* If we have an interpreter, set that as the program's entry point.
3240        Copy the load_bias as well, to help PPC64 interpret the entry
3241        point as a function descriptor.  Do this after creating elf tables
3242        so that we copy the original program entry point into the AUXV.  */
3243     if (elf_interpreter) {
3244         info->load_bias = interp_info.load_bias;
3245         info->entry = interp_info.entry;
3246         g_free(elf_interpreter);
3247     }
3248 
3249 #ifdef USE_ELF_CORE_DUMP
3250     bprm->core_dump = &elf_core_dump;
3251 #endif
3252 
3253     /*
3254      * If we reserved extra space for brk, release it now.
3255      * The implementation of do_brk in syscalls.c expects to be able
3256      * to mmap pages in this space.
3257      */
3258     if (info->reserve_brk) {
3259         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3260         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3261         target_munmap(start_brk, end_brk - start_brk);
3262     }
3263 
3264     return 0;
3265 }
3266 
3267 #ifdef USE_ELF_CORE_DUMP
3268 /*
3269  * Definitions to generate Intel SVR4-like core files.
3270  * These mostly have the same names as the SVR4 types with "target_elf_"
3271  * tacked on the front to prevent clashes with linux definitions,
3272  * and the typedef forms have been avoided.  This is mostly like
3273  * the SVR4 structure, but more Linuxy, with things that Linux does
3274  * not support and which gdb doesn't really use excluded.
3275  *
3276  * Fields we don't dump (their contents is zero) in linux-user qemu
3277  * are marked with XXX.
3278  *
3279  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3280  *
3281  * Porting ELF coredump for target is (quite) simple process.  First you
3282  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3283  * the target resides):
3284  *
3285  * #define USE_ELF_CORE_DUMP
3286  *
3287  * Next you define type of register set used for dumping.  ELF specification
3288  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3289  *
3290  * typedef <target_regtype> target_elf_greg_t;
3291  * #define ELF_NREG <number of registers>
3292  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3293  *
3294  * Last step is to implement target specific function that copies registers
3295  * from given cpu into just specified register set.  Prototype is:
3296  *
3297  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3298  *                                const CPUArchState *env);
3299  *
3300  * Parameters:
3301  *     regs - copy register values into here (allocated and zeroed by caller)
3302  *     env - copy registers from here
3303  *
3304  * Example for ARM target is provided in this file.
3305  */
3306 
3307 /* An ELF note in memory */
3308 struct memelfnote {
3309     const char *name;
3310     size_t     namesz;
3311     size_t     namesz_rounded;
3312     int        type;
3313     size_t     datasz;
3314     size_t     datasz_rounded;
3315     void       *data;
3316     size_t     notesz;
3317 };
3318 
3319 struct target_elf_siginfo {
3320     abi_int    si_signo; /* signal number */
3321     abi_int    si_code;  /* extra code */
3322     abi_int    si_errno; /* errno */
3323 };
3324 
3325 struct target_elf_prstatus {
3326     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3327     abi_short          pr_cursig;    /* Current signal */
3328     abi_ulong          pr_sigpend;   /* XXX */
3329     abi_ulong          pr_sighold;   /* XXX */
3330     target_pid_t       pr_pid;
3331     target_pid_t       pr_ppid;
3332     target_pid_t       pr_pgrp;
3333     target_pid_t       pr_sid;
3334     struct target_timeval pr_utime;  /* XXX User time */
3335     struct target_timeval pr_stime;  /* XXX System time */
3336     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3337     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3338     target_elf_gregset_t      pr_reg;       /* GP registers */
3339     abi_int            pr_fpvalid;   /* XXX */
3340 };
3341 
3342 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3343 
3344 struct target_elf_prpsinfo {
3345     char         pr_state;       /* numeric process state */
3346     char         pr_sname;       /* char for pr_state */
3347     char         pr_zomb;        /* zombie */
3348     char         pr_nice;        /* nice val */
3349     abi_ulong    pr_flag;        /* flags */
3350     target_uid_t pr_uid;
3351     target_gid_t pr_gid;
3352     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3353     /* Lots missing */
3354     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3355     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3356 };
3357 
3358 /* Here is the structure in which status of each thread is captured. */
3359 struct elf_thread_status {
3360     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3361     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3362 #if 0
3363     elf_fpregset_t fpu;             /* NT_PRFPREG */
3364     struct task_struct *thread;
3365     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3366 #endif
3367     struct memelfnote notes[1];
3368     int num_notes;
3369 };
3370 
3371 struct elf_note_info {
3372     struct memelfnote   *notes;
3373     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3374     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3375 
3376     QTAILQ_HEAD(, elf_thread_status) thread_list;
3377 #if 0
3378     /*
3379      * Current version of ELF coredump doesn't support
3380      * dumping fp regs etc.
3381      */
3382     elf_fpregset_t *fpu;
3383     elf_fpxregset_t *xfpu;
3384     int thread_status_size;
3385 #endif
3386     int notes_size;
3387     int numnote;
3388 };
3389 
3390 struct vm_area_struct {
3391     target_ulong   vma_start;  /* start vaddr of memory region */
3392     target_ulong   vma_end;    /* end vaddr of memory region */
3393     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3394     QTAILQ_ENTRY(vm_area_struct) vma_link;
3395 };
3396 
3397 struct mm_struct {
3398     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3399     int mm_count;           /* number of mappings */
3400 };
3401 
3402 static struct mm_struct *vma_init(void);
3403 static void vma_delete(struct mm_struct *);
3404 static int vma_add_mapping(struct mm_struct *, target_ulong,
3405                            target_ulong, abi_ulong);
3406 static int vma_get_mapping_count(const struct mm_struct *);
3407 static struct vm_area_struct *vma_first(const struct mm_struct *);
3408 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3409 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3410 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3411                       unsigned long flags);
3412 
3413 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3414 static void fill_note(struct memelfnote *, const char *, int,
3415                       unsigned int, void *);
3416 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3417 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3418 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3419 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3420 static size_t note_size(const struct memelfnote *);
3421 static void free_note_info(struct elf_note_info *);
3422 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3423 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3424 
3425 static int dump_write(int, const void *, size_t);
3426 static int write_note(struct memelfnote *, int);
3427 static int write_note_info(struct elf_note_info *, int);
3428 
3429 #ifdef BSWAP_NEEDED
3430 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3431 {
3432     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3433     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3434     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3435     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3436     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3437     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3438     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3439     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3440     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3441     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3442     /* cpu times are not filled, so we skip them */
3443     /* regs should be in correct format already */
3444     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3445 }
3446 
3447 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3448 {
3449     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3450     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3451     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3452     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3453     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3454     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3455     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3456 }
3457 
3458 static void bswap_note(struct elf_note *en)
3459 {
3460     bswap32s(&en->n_namesz);
3461     bswap32s(&en->n_descsz);
3462     bswap32s(&en->n_type);
3463 }
3464 #else
3465 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3466 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3467 static inline void bswap_note(struct elf_note *en) { }
3468 #endif /* BSWAP_NEEDED */
3469 
3470 /*
3471  * Minimal support for linux memory regions.  These are needed
3472  * when we are finding out what memory exactly belongs to
3473  * emulated process.  No locks needed here, as long as
3474  * thread that received the signal is stopped.
3475  */
3476 
3477 static struct mm_struct *vma_init(void)
3478 {
3479     struct mm_struct *mm;
3480 
3481     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3482         return (NULL);
3483 
3484     mm->mm_count = 0;
3485     QTAILQ_INIT(&mm->mm_mmap);
3486 
3487     return (mm);
3488 }
3489 
3490 static void vma_delete(struct mm_struct *mm)
3491 {
3492     struct vm_area_struct *vma;
3493 
3494     while ((vma = vma_first(mm)) != NULL) {
3495         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3496         g_free(vma);
3497     }
3498     g_free(mm);
3499 }
3500 
3501 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3502                            target_ulong end, abi_ulong flags)
3503 {
3504     struct vm_area_struct *vma;
3505 
3506     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3507         return (-1);
3508 
3509     vma->vma_start = start;
3510     vma->vma_end = end;
3511     vma->vma_flags = flags;
3512 
3513     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3514     mm->mm_count++;
3515 
3516     return (0);
3517 }
3518 
3519 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3520 {
3521     return (QTAILQ_FIRST(&mm->mm_mmap));
3522 }
3523 
3524 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3525 {
3526     return (QTAILQ_NEXT(vma, vma_link));
3527 }
3528 
3529 static int vma_get_mapping_count(const struct mm_struct *mm)
3530 {
3531     return (mm->mm_count);
3532 }
3533 
3534 /*
3535  * Calculate file (dump) size of given memory region.
3536  */
3537 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3538 {
3539     /* if we cannot even read the first page, skip it */
3540     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3541         return (0);
3542 
3543     /*
3544      * Usually we don't dump executable pages as they contain
3545      * non-writable code that debugger can read directly from
3546      * target library etc.  However, thread stacks are marked
3547      * also executable so we read in first page of given region
3548      * and check whether it contains elf header.  If there is
3549      * no elf header, we dump it.
3550      */
3551     if (vma->vma_flags & PROT_EXEC) {
3552         char page[TARGET_PAGE_SIZE];
3553 
3554         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3555             return 0;
3556         }
3557         if ((page[EI_MAG0] == ELFMAG0) &&
3558             (page[EI_MAG1] == ELFMAG1) &&
3559             (page[EI_MAG2] == ELFMAG2) &&
3560             (page[EI_MAG3] == ELFMAG3)) {
3561             /*
3562              * Mappings are possibly from ELF binary.  Don't dump
3563              * them.
3564              */
3565             return (0);
3566         }
3567     }
3568 
3569     return (vma->vma_end - vma->vma_start);
3570 }
3571 
3572 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3573                       unsigned long flags)
3574 {
3575     struct mm_struct *mm = (struct mm_struct *)priv;
3576 
3577     vma_add_mapping(mm, start, end, flags);
3578     return (0);
3579 }
3580 
3581 static void fill_note(struct memelfnote *note, const char *name, int type,
3582                       unsigned int sz, void *data)
3583 {
3584     unsigned int namesz;
3585 
3586     namesz = strlen(name) + 1;
3587     note->name = name;
3588     note->namesz = namesz;
3589     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3590     note->type = type;
3591     note->datasz = sz;
3592     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3593 
3594     note->data = data;
3595 
3596     /*
3597      * We calculate rounded up note size here as specified by
3598      * ELF document.
3599      */
3600     note->notesz = sizeof (struct elf_note) +
3601         note->namesz_rounded + note->datasz_rounded;
3602 }
3603 
3604 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3605                             uint32_t flags)
3606 {
3607     (void) memset(elf, 0, sizeof(*elf));
3608 
3609     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3610     elf->e_ident[EI_CLASS] = ELF_CLASS;
3611     elf->e_ident[EI_DATA] = ELF_DATA;
3612     elf->e_ident[EI_VERSION] = EV_CURRENT;
3613     elf->e_ident[EI_OSABI] = ELF_OSABI;
3614 
3615     elf->e_type = ET_CORE;
3616     elf->e_machine = machine;
3617     elf->e_version = EV_CURRENT;
3618     elf->e_phoff = sizeof(struct elfhdr);
3619     elf->e_flags = flags;
3620     elf->e_ehsize = sizeof(struct elfhdr);
3621     elf->e_phentsize = sizeof(struct elf_phdr);
3622     elf->e_phnum = segs;
3623 
3624     bswap_ehdr(elf);
3625 }
3626 
3627 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3628 {
3629     phdr->p_type = PT_NOTE;
3630     phdr->p_offset = offset;
3631     phdr->p_vaddr = 0;
3632     phdr->p_paddr = 0;
3633     phdr->p_filesz = sz;
3634     phdr->p_memsz = 0;
3635     phdr->p_flags = 0;
3636     phdr->p_align = 0;
3637 
3638     bswap_phdr(phdr, 1);
3639 }
3640 
3641 static size_t note_size(const struct memelfnote *note)
3642 {
3643     return (note->notesz);
3644 }
3645 
3646 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3647                           const TaskState *ts, int signr)
3648 {
3649     (void) memset(prstatus, 0, sizeof (*prstatus));
3650     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3651     prstatus->pr_pid = ts->ts_tid;
3652     prstatus->pr_ppid = getppid();
3653     prstatus->pr_pgrp = getpgrp();
3654     prstatus->pr_sid = getsid(0);
3655 
3656     bswap_prstatus(prstatus);
3657 }
3658 
3659 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3660 {
3661     char *base_filename;
3662     unsigned int i, len;
3663 
3664     (void) memset(psinfo, 0, sizeof (*psinfo));
3665 
3666     len = ts->info->env_strings - ts->info->arg_strings;
3667     if (len >= ELF_PRARGSZ)
3668         len = ELF_PRARGSZ - 1;
3669     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3670         return -EFAULT;
3671     }
3672     for (i = 0; i < len; i++)
3673         if (psinfo->pr_psargs[i] == 0)
3674             psinfo->pr_psargs[i] = ' ';
3675     psinfo->pr_psargs[len] = 0;
3676 
3677     psinfo->pr_pid = getpid();
3678     psinfo->pr_ppid = getppid();
3679     psinfo->pr_pgrp = getpgrp();
3680     psinfo->pr_sid = getsid(0);
3681     psinfo->pr_uid = getuid();
3682     psinfo->pr_gid = getgid();
3683 
3684     base_filename = g_path_get_basename(ts->bprm->filename);
3685     /*
3686      * Using strncpy here is fine: at max-length,
3687      * this field is not NUL-terminated.
3688      */
3689     (void) strncpy(psinfo->pr_fname, base_filename,
3690                    sizeof(psinfo->pr_fname));
3691 
3692     g_free(base_filename);
3693     bswap_psinfo(psinfo);
3694     return (0);
3695 }
3696 
3697 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3698 {
3699     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3700     elf_addr_t orig_auxv = auxv;
3701     void *ptr;
3702     int len = ts->info->auxv_len;
3703 
3704     /*
3705      * Auxiliary vector is stored in target process stack.  It contains
3706      * {type, value} pairs that we need to dump into note.  This is not
3707      * strictly necessary but we do it here for sake of completeness.
3708      */
3709 
3710     /* read in whole auxv vector and copy it to memelfnote */
3711     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3712     if (ptr != NULL) {
3713         fill_note(note, "CORE", NT_AUXV, len, ptr);
3714         unlock_user(ptr, auxv, len);
3715     }
3716 }
3717 
3718 /*
3719  * Constructs name of coredump file.  We have following convention
3720  * for the name:
3721  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3722  *
3723  * Returns the filename
3724  */
3725 static char *core_dump_filename(const TaskState *ts)
3726 {
3727     g_autoptr(GDateTime) now = g_date_time_new_now_local();
3728     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3729     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3730 
3731     return g_strdup_printf("qemu_%s_%s_%d.core",
3732                            base_filename, nowstr, (int)getpid());
3733 }
3734 
3735 static int dump_write(int fd, const void *ptr, size_t size)
3736 {
3737     const char *bufp = (const char *)ptr;
3738     ssize_t bytes_written, bytes_left;
3739     struct rlimit dumpsize;
3740     off_t pos;
3741 
3742     bytes_written = 0;
3743     getrlimit(RLIMIT_CORE, &dumpsize);
3744     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3745         if (errno == ESPIPE) { /* not a seekable stream */
3746             bytes_left = size;
3747         } else {
3748             return pos;
3749         }
3750     } else {
3751         if (dumpsize.rlim_cur <= pos) {
3752             return -1;
3753         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3754             bytes_left = size;
3755         } else {
3756             size_t limit_left=dumpsize.rlim_cur - pos;
3757             bytes_left = limit_left >= size ? size : limit_left ;
3758         }
3759     }
3760 
3761     /*
3762      * In normal conditions, single write(2) should do but
3763      * in case of socket etc. this mechanism is more portable.
3764      */
3765     do {
3766         bytes_written = write(fd, bufp, bytes_left);
3767         if (bytes_written < 0) {
3768             if (errno == EINTR)
3769                 continue;
3770             return (-1);
3771         } else if (bytes_written == 0) { /* eof */
3772             return (-1);
3773         }
3774         bufp += bytes_written;
3775         bytes_left -= bytes_written;
3776     } while (bytes_left > 0);
3777 
3778     return (0);
3779 }
3780 
3781 static int write_note(struct memelfnote *men, int fd)
3782 {
3783     struct elf_note en;
3784 
3785     en.n_namesz = men->namesz;
3786     en.n_type = men->type;
3787     en.n_descsz = men->datasz;
3788 
3789     bswap_note(&en);
3790 
3791     if (dump_write(fd, &en, sizeof(en)) != 0)
3792         return (-1);
3793     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3794         return (-1);
3795     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3796         return (-1);
3797 
3798     return (0);
3799 }
3800 
3801 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3802 {
3803     CPUState *cpu = env_cpu((CPUArchState *)env);
3804     TaskState *ts = (TaskState *)cpu->opaque;
3805     struct elf_thread_status *ets;
3806 
3807     ets = g_malloc0(sizeof (*ets));
3808     ets->num_notes = 1; /* only prstatus is dumped */
3809     fill_prstatus(&ets->prstatus, ts, 0);
3810     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3811     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3812               &ets->prstatus);
3813 
3814     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3815 
3816     info->notes_size += note_size(&ets->notes[0]);
3817 }
3818 
3819 static void init_note_info(struct elf_note_info *info)
3820 {
3821     /* Initialize the elf_note_info structure so that it is at
3822      * least safe to call free_note_info() on it. Must be
3823      * called before calling fill_note_info().
3824      */
3825     memset(info, 0, sizeof (*info));
3826     QTAILQ_INIT(&info->thread_list);
3827 }
3828 
3829 static int fill_note_info(struct elf_note_info *info,
3830                           long signr, const CPUArchState *env)
3831 {
3832 #define NUMNOTES 3
3833     CPUState *cpu = env_cpu((CPUArchState *)env);
3834     TaskState *ts = (TaskState *)cpu->opaque;
3835     int i;
3836 
3837     info->notes = g_new0(struct memelfnote, NUMNOTES);
3838     if (info->notes == NULL)
3839         return (-ENOMEM);
3840     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3841     if (info->prstatus == NULL)
3842         return (-ENOMEM);
3843     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3844     if (info->prstatus == NULL)
3845         return (-ENOMEM);
3846 
3847     /*
3848      * First fill in status (and registers) of current thread
3849      * including process info & aux vector.
3850      */
3851     fill_prstatus(info->prstatus, ts, signr);
3852     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3853     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3854               sizeof (*info->prstatus), info->prstatus);
3855     fill_psinfo(info->psinfo, ts);
3856     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3857               sizeof (*info->psinfo), info->psinfo);
3858     fill_auxv_note(&info->notes[2], ts);
3859     info->numnote = 3;
3860 
3861     info->notes_size = 0;
3862     for (i = 0; i < info->numnote; i++)
3863         info->notes_size += note_size(&info->notes[i]);
3864 
3865     /* read and fill status of all threads */
3866     cpu_list_lock();
3867     CPU_FOREACH(cpu) {
3868         if (cpu == thread_cpu) {
3869             continue;
3870         }
3871         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3872     }
3873     cpu_list_unlock();
3874 
3875     return (0);
3876 }
3877 
3878 static void free_note_info(struct elf_note_info *info)
3879 {
3880     struct elf_thread_status *ets;
3881 
3882     while (!QTAILQ_EMPTY(&info->thread_list)) {
3883         ets = QTAILQ_FIRST(&info->thread_list);
3884         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3885         g_free(ets);
3886     }
3887 
3888     g_free(info->prstatus);
3889     g_free(info->psinfo);
3890     g_free(info->notes);
3891 }
3892 
3893 static int write_note_info(struct elf_note_info *info, int fd)
3894 {
3895     struct elf_thread_status *ets;
3896     int i, error = 0;
3897 
3898     /* write prstatus, psinfo and auxv for current thread */
3899     for (i = 0; i < info->numnote; i++)
3900         if ((error = write_note(&info->notes[i], fd)) != 0)
3901             return (error);
3902 
3903     /* write prstatus for each thread */
3904     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3905         if ((error = write_note(&ets->notes[0], fd)) != 0)
3906             return (error);
3907     }
3908 
3909     return (0);
3910 }
3911 
3912 /*
3913  * Write out ELF coredump.
3914  *
3915  * See documentation of ELF object file format in:
3916  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3917  *
3918  * Coredump format in linux is following:
3919  *
3920  * 0   +----------------------+         \
3921  *     | ELF header           | ET_CORE  |
3922  *     +----------------------+          |
3923  *     | ELF program headers  |          |--- headers
3924  *     | - NOTE section       |          |
3925  *     | - PT_LOAD sections   |          |
3926  *     +----------------------+         /
3927  *     | NOTEs:               |
3928  *     | - NT_PRSTATUS        |
3929  *     | - NT_PRSINFO         |
3930  *     | - NT_AUXV            |
3931  *     +----------------------+ <-- aligned to target page
3932  *     | Process memory dump  |
3933  *     :                      :
3934  *     .                      .
3935  *     :                      :
3936  *     |                      |
3937  *     +----------------------+
3938  *
3939  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3940  * NT_PRSINFO  -> struct elf_prpsinfo
3941  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3942  *
3943  * Format follows System V format as close as possible.  Current
3944  * version limitations are as follows:
3945  *     - no floating point registers are dumped
3946  *
3947  * Function returns 0 in case of success, negative errno otherwise.
3948  *
3949  * TODO: make this work also during runtime: it should be
3950  * possible to force coredump from running process and then
3951  * continue processing.  For example qemu could set up SIGUSR2
3952  * handler (provided that target process haven't registered
3953  * handler for that) that does the dump when signal is received.
3954  */
3955 static int elf_core_dump(int signr, const CPUArchState *env)
3956 {
3957     const CPUState *cpu = env_cpu((CPUArchState *)env);
3958     const TaskState *ts = (const TaskState *)cpu->opaque;
3959     struct vm_area_struct *vma = NULL;
3960     g_autofree char *corefile = NULL;
3961     struct elf_note_info info;
3962     struct elfhdr elf;
3963     struct elf_phdr phdr;
3964     struct rlimit dumpsize;
3965     struct mm_struct *mm = NULL;
3966     off_t offset = 0, data_offset = 0;
3967     int segs = 0;
3968     int fd = -1;
3969 
3970     init_note_info(&info);
3971 
3972     errno = 0;
3973     getrlimit(RLIMIT_CORE, &dumpsize);
3974     if (dumpsize.rlim_cur == 0)
3975         return 0;
3976 
3977     corefile = core_dump_filename(ts);
3978 
3979     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3980                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3981         return (-errno);
3982 
3983     /*
3984      * Walk through target process memory mappings and
3985      * set up structure containing this information.  After
3986      * this point vma_xxx functions can be used.
3987      */
3988     if ((mm = vma_init()) == NULL)
3989         goto out;
3990 
3991     walk_memory_regions(mm, vma_walker);
3992     segs = vma_get_mapping_count(mm);
3993 
3994     /*
3995      * Construct valid coredump ELF header.  We also
3996      * add one more segment for notes.
3997      */
3998     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3999     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4000         goto out;
4001 
4002     /* fill in the in-memory version of notes */
4003     if (fill_note_info(&info, signr, env) < 0)
4004         goto out;
4005 
4006     offset += sizeof (elf);                             /* elf header */
4007     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4008 
4009     /* write out notes program header */
4010     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4011 
4012     offset += info.notes_size;
4013     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4014         goto out;
4015 
4016     /*
4017      * ELF specification wants data to start at page boundary so
4018      * we align it here.
4019      */
4020     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4021 
4022     /*
4023      * Write program headers for memory regions mapped in
4024      * the target process.
4025      */
4026     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4027         (void) memset(&phdr, 0, sizeof (phdr));
4028 
4029         phdr.p_type = PT_LOAD;
4030         phdr.p_offset = offset;
4031         phdr.p_vaddr = vma->vma_start;
4032         phdr.p_paddr = 0;
4033         phdr.p_filesz = vma_dump_size(vma);
4034         offset += phdr.p_filesz;
4035         phdr.p_memsz = vma->vma_end - vma->vma_start;
4036         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4037         if (vma->vma_flags & PROT_WRITE)
4038             phdr.p_flags |= PF_W;
4039         if (vma->vma_flags & PROT_EXEC)
4040             phdr.p_flags |= PF_X;
4041         phdr.p_align = ELF_EXEC_PAGESIZE;
4042 
4043         bswap_phdr(&phdr, 1);
4044         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4045             goto out;
4046         }
4047     }
4048 
4049     /*
4050      * Next we write notes just after program headers.  No
4051      * alignment needed here.
4052      */
4053     if (write_note_info(&info, fd) < 0)
4054         goto out;
4055 
4056     /* align data to page boundary */
4057     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4058         goto out;
4059 
4060     /*
4061      * Finally we can dump process memory into corefile as well.
4062      */
4063     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4064         abi_ulong addr;
4065         abi_ulong end;
4066 
4067         end = vma->vma_start + vma_dump_size(vma);
4068 
4069         for (addr = vma->vma_start; addr < end;
4070              addr += TARGET_PAGE_SIZE) {
4071             char page[TARGET_PAGE_SIZE];
4072             int error;
4073 
4074             /*
4075              *  Read in page from target process memory and
4076              *  write it to coredump file.
4077              */
4078             error = copy_from_user(page, addr, sizeof (page));
4079             if (error != 0) {
4080                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4081                                addr);
4082                 errno = -error;
4083                 goto out;
4084             }
4085             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4086                 goto out;
4087         }
4088     }
4089 
4090  out:
4091     free_note_info(&info);
4092     if (mm != NULL)
4093         vma_delete(mm);
4094     (void) close(fd);
4095 
4096     if (errno != 0)
4097         return (-errno);
4098     return (0);
4099 }
4100 #endif /* USE_ELF_CORE_DUMP */
4101 
4102 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4103 {
4104     init_thread(regs, infop);
4105 }
4106