xref: /qemu/linux-user/elfload.c (revision 14b61600)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28 
29 #define ELF_OSABI   ELFOSABI_SYSV
30 
31 /* from personality.h */
32 
33 /*
34  * Flags for bug emulation.
35  *
36  * These occupy the top three bytes.
37  */
38 enum {
39     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
40     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
41                                            descriptors (signal handling) */
42     MMAP_PAGE_ZERO =    0x0100000,
43     ADDR_COMPAT_LAYOUT = 0x0200000,
44     READ_IMPLIES_EXEC = 0x0400000,
45     ADDR_LIMIT_32BIT =  0x0800000,
46     SHORT_INODE =       0x1000000,
47     WHOLE_SECONDS =     0x2000000,
48     STICKY_TIMEOUTS =   0x4000000,
49     ADDR_LIMIT_3GB =    0x8000000,
50 };
51 
52 /*
53  * Personality types.
54  *
55  * These go in the low byte.  Avoid using the top bit, it will
56  * conflict with error returns.
57  */
58 enum {
59     PER_LINUX =         0x0000,
60     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
61     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
62     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
68     PER_BSD =           0x0006,
69     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
70     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_LINUX32 =       0x0008,
72     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
73     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76     PER_RISCOS =        0x000c,
77     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
78     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
80     PER_HPUX =          0x0010,
81     PER_MASK =          0x00ff,
82 };
83 
84 /*
85  * Return the base personality without flags.
86  */
87 #define personality(pers)       (pers & PER_MASK)
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 
149 #define ELF_CLASS      ELFCLASS64
150 #define ELF_ARCH       EM_X86_64
151 
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154     regs->rax = 0;
155     regs->rsp = infop->start_stack;
156     regs->rip = infop->entry;
157 }
158 
159 #define ELF_NREG    27
160 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
161 
162 /*
163  * Note that ELF_NREG should be 29 as there should be place for
164  * TRAPNO and ERR "registers" as well but linux doesn't dump
165  * those.
166  *
167  * See linux kernel: arch/x86/include/asm/elf.h
168  */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171     (*regs)[0] = env->regs[15];
172     (*regs)[1] = env->regs[14];
173     (*regs)[2] = env->regs[13];
174     (*regs)[3] = env->regs[12];
175     (*regs)[4] = env->regs[R_EBP];
176     (*regs)[5] = env->regs[R_EBX];
177     (*regs)[6] = env->regs[11];
178     (*regs)[7] = env->regs[10];
179     (*regs)[8] = env->regs[9];
180     (*regs)[9] = env->regs[8];
181     (*regs)[10] = env->regs[R_EAX];
182     (*regs)[11] = env->regs[R_ECX];
183     (*regs)[12] = env->regs[R_EDX];
184     (*regs)[13] = env->regs[R_ESI];
185     (*regs)[14] = env->regs[R_EDI];
186     (*regs)[15] = env->regs[R_EAX]; /* XXX */
187     (*regs)[16] = env->eip;
188     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189     (*regs)[18] = env->eflags;
190     (*regs)[19] = env->regs[R_ESP];
191     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198 }
199 
200 #else
201 
202 #define ELF_START_MMAP 0x80000000
203 
204 /*
205  * This is used to ensure we don't load something for the wrong architecture.
206  */
207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208 
209 /*
210  * These are used to set parameters in the core dumps.
211  */
212 #define ELF_CLASS       ELFCLASS32
213 #define ELF_ARCH        EM_386
214 
215 static inline void init_thread(struct target_pt_regs *regs,
216                                struct image_info *infop)
217 {
218     regs->esp = infop->start_stack;
219     regs->eip = infop->entry;
220 
221     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222        starts %edx contains a pointer to a function which might be
223        registered using `atexit'.  This provides a mean for the
224        dynamic linker to call DT_FINI functions for shared libraries
225        that have been loaded before the code runs.
226 
227        A value of 0 tells we have no such handler.  */
228     regs->edx = 0;
229 }
230 
231 #define ELF_NREG    17
232 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
233 
234 /*
235  * Note that ELF_NREG should be 19 as there should be place for
236  * TRAPNO and ERR "registers" as well but linux doesn't dump
237  * those.
238  *
239  * See linux kernel: arch/x86/include/asm/elf.h
240  */
241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
242 {
243     (*regs)[0] = env->regs[R_EBX];
244     (*regs)[1] = env->regs[R_ECX];
245     (*regs)[2] = env->regs[R_EDX];
246     (*regs)[3] = env->regs[R_ESI];
247     (*regs)[4] = env->regs[R_EDI];
248     (*regs)[5] = env->regs[R_EBP];
249     (*regs)[6] = env->regs[R_EAX];
250     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254     (*regs)[11] = env->regs[R_EAX]; /* XXX */
255     (*regs)[12] = env->eip;
256     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257     (*regs)[14] = env->eflags;
258     (*regs)[15] = env->regs[R_ESP];
259     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260 }
261 #endif
262 
263 #define USE_ELF_CORE_DUMP
264 #define ELF_EXEC_PAGESIZE       4096
265 
266 #endif
267 
268 #ifdef TARGET_ARM
269 
270 #ifndef TARGET_AARCH64
271 /* 32 bit ARM definitions */
272 
273 #define ELF_START_MMAP 0x80000000
274 
275 #define ELF_ARCH        EM_ARM
276 #define ELF_CLASS       ELFCLASS32
277 
278 static inline void init_thread(struct target_pt_regs *regs,
279                                struct image_info *infop)
280 {
281     abi_long stack = infop->start_stack;
282     memset(regs, 0, sizeof(*regs));
283 
284     regs->ARM_cpsr = 0x10;
285     if (infop->entry & 1)
286         regs->ARM_cpsr |= CPSR_T;
287     regs->ARM_pc = infop->entry & 0xfffffffe;
288     regs->ARM_sp = infop->start_stack;
289     /* FIXME - what to for failure of get_user()? */
290     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
291     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
292     /* XXX: it seems that r0 is zeroed after ! */
293     regs->ARM_r0 = 0;
294     /* For uClinux PIC binaries.  */
295     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
296     regs->ARM_r10 = infop->start_data;
297 }
298 
299 #define ELF_NREG    18
300 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
301 
302 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
303 {
304     (*regs)[0] = tswapreg(env->regs[0]);
305     (*regs)[1] = tswapreg(env->regs[1]);
306     (*regs)[2] = tswapreg(env->regs[2]);
307     (*regs)[3] = tswapreg(env->regs[3]);
308     (*regs)[4] = tswapreg(env->regs[4]);
309     (*regs)[5] = tswapreg(env->regs[5]);
310     (*regs)[6] = tswapreg(env->regs[6]);
311     (*regs)[7] = tswapreg(env->regs[7]);
312     (*regs)[8] = tswapreg(env->regs[8]);
313     (*regs)[9] = tswapreg(env->regs[9]);
314     (*regs)[10] = tswapreg(env->regs[10]);
315     (*regs)[11] = tswapreg(env->regs[11]);
316     (*regs)[12] = tswapreg(env->regs[12]);
317     (*regs)[13] = tswapreg(env->regs[13]);
318     (*regs)[14] = tswapreg(env->regs[14]);
319     (*regs)[15] = tswapreg(env->regs[15]);
320 
321     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
322     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
323 }
324 
325 #define USE_ELF_CORE_DUMP
326 #define ELF_EXEC_PAGESIZE       4096
327 
328 enum
329 {
330     ARM_HWCAP_ARM_SWP       = 1 << 0,
331     ARM_HWCAP_ARM_HALF      = 1 << 1,
332     ARM_HWCAP_ARM_THUMB     = 1 << 2,
333     ARM_HWCAP_ARM_26BIT     = 1 << 3,
334     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
335     ARM_HWCAP_ARM_FPA       = 1 << 5,
336     ARM_HWCAP_ARM_VFP       = 1 << 6,
337     ARM_HWCAP_ARM_EDSP      = 1 << 7,
338     ARM_HWCAP_ARM_JAVA      = 1 << 8,
339     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
340     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
341     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
342     ARM_HWCAP_ARM_NEON      = 1 << 12,
343     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
344     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
345     ARM_HWCAP_ARM_TLS       = 1 << 15,
346     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
347     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
348     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
349     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
350     ARM_HWCAP_ARM_LPAE      = 1 << 20,
351     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
352 };
353 
354 enum {
355     ARM_HWCAP2_ARM_AES      = 1 << 0,
356     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
357     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
358     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
359     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
360 };
361 
362 /* The commpage only exists for 32 bit kernels */
363 
364 #define TARGET_HAS_VALIDATE_GUEST_SPACE
365 /* Return 1 if the proposed guest space is suitable for the guest.
366  * Return 0 if the proposed guest space isn't suitable, but another
367  * address space should be tried.
368  * Return -1 if there is no way the proposed guest space can be
369  * valid regardless of the base.
370  * The guest code may leave a page mapped and populate it if the
371  * address is suitable.
372  */
373 static int validate_guest_space(unsigned long guest_base,
374                                 unsigned long guest_size)
375 {
376     unsigned long real_start, test_page_addr;
377 
378     /* We need to check that we can force a fault on access to the
379      * commpage at 0xffff0fxx
380      */
381     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
382 
383     /* If the commpage lies within the already allocated guest space,
384      * then there is no way we can allocate it.
385      */
386     if (test_page_addr >= guest_base
387         && test_page_addr <= (guest_base + guest_size)) {
388         return -1;
389     }
390 
391     /* Note it needs to be writeable to let us initialise it */
392     real_start = (unsigned long)
393                  mmap((void *)test_page_addr, qemu_host_page_size,
394                      PROT_READ | PROT_WRITE,
395                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
396 
397     /* If we can't map it then try another address */
398     if (real_start == -1ul) {
399         return 0;
400     }
401 
402     if (real_start != test_page_addr) {
403         /* OS didn't put the page where we asked - unmap and reject */
404         munmap((void *)real_start, qemu_host_page_size);
405         return 0;
406     }
407 
408     /* Leave the page mapped
409      * Populate it (mmap should have left it all 0'd)
410      */
411 
412     /* Kernel helper versions */
413     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
414 
415     /* Now it's populated make it RO */
416     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
417         perror("Protecting guest commpage");
418         exit(-1);
419     }
420 
421     return 1; /* All good */
422 }
423 
424 #define ELF_HWCAP get_elf_hwcap()
425 #define ELF_HWCAP2 get_elf_hwcap2()
426 
427 static uint32_t get_elf_hwcap(void)
428 {
429     ARMCPU *cpu = ARM_CPU(thread_cpu);
430     uint32_t hwcaps = 0;
431 
432     hwcaps |= ARM_HWCAP_ARM_SWP;
433     hwcaps |= ARM_HWCAP_ARM_HALF;
434     hwcaps |= ARM_HWCAP_ARM_THUMB;
435     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
436 
437     /* probe for the extra features */
438 #define GET_FEATURE(feat, hwcap) \
439     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
440     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
441     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
442     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
443     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
444     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
445     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
446     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
447     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
448     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
449     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
450     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
451     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
452      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
453      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
454      * to our VFP_FP16 feature bit.
455      */
456     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
457     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
458 
459     return hwcaps;
460 }
461 
462 static uint32_t get_elf_hwcap2(void)
463 {
464     ARMCPU *cpu = ARM_CPU(thread_cpu);
465     uint32_t hwcaps = 0;
466 
467     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
468     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
469     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
470     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
471     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
472     return hwcaps;
473 }
474 
475 #undef GET_FEATURE
476 
477 #else
478 /* 64 bit ARM definitions */
479 #define ELF_START_MMAP 0x80000000
480 
481 #define ELF_ARCH        EM_AARCH64
482 #define ELF_CLASS       ELFCLASS64
483 #define ELF_PLATFORM    "aarch64"
484 
485 static inline void init_thread(struct target_pt_regs *regs,
486                                struct image_info *infop)
487 {
488     abi_long stack = infop->start_stack;
489     memset(regs, 0, sizeof(*regs));
490 
491     regs->pc = infop->entry & ~0x3ULL;
492     regs->sp = stack;
493 }
494 
495 #define ELF_NREG    34
496 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
497 
498 static void elf_core_copy_regs(target_elf_gregset_t *regs,
499                                const CPUARMState *env)
500 {
501     int i;
502 
503     for (i = 0; i < 32; i++) {
504         (*regs)[i] = tswapreg(env->xregs[i]);
505     }
506     (*regs)[32] = tswapreg(env->pc);
507     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
508 }
509 
510 #define USE_ELF_CORE_DUMP
511 #define ELF_EXEC_PAGESIZE       4096
512 
513 enum {
514     ARM_HWCAP_A64_FP            = 1 << 0,
515     ARM_HWCAP_A64_ASIMD         = 1 << 1,
516     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
517     ARM_HWCAP_A64_AES           = 1 << 3,
518     ARM_HWCAP_A64_PMULL         = 1 << 4,
519     ARM_HWCAP_A64_SHA1          = 1 << 5,
520     ARM_HWCAP_A64_SHA2          = 1 << 6,
521     ARM_HWCAP_A64_CRC32         = 1 << 7,
522 };
523 
524 #define ELF_HWCAP get_elf_hwcap()
525 
526 static uint32_t get_elf_hwcap(void)
527 {
528     ARMCPU *cpu = ARM_CPU(thread_cpu);
529     uint32_t hwcaps = 0;
530 
531     hwcaps |= ARM_HWCAP_A64_FP;
532     hwcaps |= ARM_HWCAP_A64_ASIMD;
533 
534     /* probe for the extra features */
535 #define GET_FEATURE(feat, hwcap) \
536     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
537     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
538     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
539     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
540     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
541     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
542 #undef GET_FEATURE
543 
544     return hwcaps;
545 }
546 
547 #endif /* not TARGET_AARCH64 */
548 #endif /* TARGET_ARM */
549 
550 #ifdef TARGET_UNICORE32
551 
552 #define ELF_START_MMAP          0x80000000
553 
554 #define ELF_CLASS               ELFCLASS32
555 #define ELF_DATA                ELFDATA2LSB
556 #define ELF_ARCH                EM_UNICORE32
557 
558 static inline void init_thread(struct target_pt_regs *regs,
559         struct image_info *infop)
560 {
561     abi_long stack = infop->start_stack;
562     memset(regs, 0, sizeof(*regs));
563     regs->UC32_REG_asr = 0x10;
564     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
565     regs->UC32_REG_sp = infop->start_stack;
566     /* FIXME - what to for failure of get_user()? */
567     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
568     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
569     /* XXX: it seems that r0 is zeroed after ! */
570     regs->UC32_REG_00 = 0;
571 }
572 
573 #define ELF_NREG    34
574 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
575 
576 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
577 {
578     (*regs)[0] = env->regs[0];
579     (*regs)[1] = env->regs[1];
580     (*regs)[2] = env->regs[2];
581     (*regs)[3] = env->regs[3];
582     (*regs)[4] = env->regs[4];
583     (*regs)[5] = env->regs[5];
584     (*regs)[6] = env->regs[6];
585     (*regs)[7] = env->regs[7];
586     (*regs)[8] = env->regs[8];
587     (*regs)[9] = env->regs[9];
588     (*regs)[10] = env->regs[10];
589     (*regs)[11] = env->regs[11];
590     (*regs)[12] = env->regs[12];
591     (*regs)[13] = env->regs[13];
592     (*regs)[14] = env->regs[14];
593     (*regs)[15] = env->regs[15];
594     (*regs)[16] = env->regs[16];
595     (*regs)[17] = env->regs[17];
596     (*regs)[18] = env->regs[18];
597     (*regs)[19] = env->regs[19];
598     (*regs)[20] = env->regs[20];
599     (*regs)[21] = env->regs[21];
600     (*regs)[22] = env->regs[22];
601     (*regs)[23] = env->regs[23];
602     (*regs)[24] = env->regs[24];
603     (*regs)[25] = env->regs[25];
604     (*regs)[26] = env->regs[26];
605     (*regs)[27] = env->regs[27];
606     (*regs)[28] = env->regs[28];
607     (*regs)[29] = env->regs[29];
608     (*regs)[30] = env->regs[30];
609     (*regs)[31] = env->regs[31];
610 
611     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
612     (*regs)[33] = env->regs[0]; /* XXX */
613 }
614 
615 #define USE_ELF_CORE_DUMP
616 #define ELF_EXEC_PAGESIZE               4096
617 
618 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
619 
620 #endif
621 
622 #ifdef TARGET_SPARC
623 #ifdef TARGET_SPARC64
624 
625 #define ELF_START_MMAP 0x80000000
626 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
627                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
628 #ifndef TARGET_ABI32
629 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
630 #else
631 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
632 #endif
633 
634 #define ELF_CLASS   ELFCLASS64
635 #define ELF_ARCH    EM_SPARCV9
636 
637 #define STACK_BIAS              2047
638 
639 static inline void init_thread(struct target_pt_regs *regs,
640                                struct image_info *infop)
641 {
642 #ifndef TARGET_ABI32
643     regs->tstate = 0;
644 #endif
645     regs->pc = infop->entry;
646     regs->npc = regs->pc + 4;
647     regs->y = 0;
648 #ifdef TARGET_ABI32
649     regs->u_regs[14] = infop->start_stack - 16 * 4;
650 #else
651     if (personality(infop->personality) == PER_LINUX32)
652         regs->u_regs[14] = infop->start_stack - 16 * 4;
653     else
654         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
655 #endif
656 }
657 
658 #else
659 #define ELF_START_MMAP 0x80000000
660 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
661                     | HWCAP_SPARC_MULDIV)
662 
663 #define ELF_CLASS   ELFCLASS32
664 #define ELF_ARCH    EM_SPARC
665 
666 static inline void init_thread(struct target_pt_regs *regs,
667                                struct image_info *infop)
668 {
669     regs->psr = 0;
670     regs->pc = infop->entry;
671     regs->npc = regs->pc + 4;
672     regs->y = 0;
673     regs->u_regs[14] = infop->start_stack - 16 * 4;
674 }
675 
676 #endif
677 #endif
678 
679 #ifdef TARGET_PPC
680 
681 #define ELF_MACHINE    PPC_ELF_MACHINE
682 #define ELF_START_MMAP 0x80000000
683 
684 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
685 
686 #define elf_check_arch(x) ( (x) == EM_PPC64 )
687 
688 #define ELF_CLASS       ELFCLASS64
689 
690 #else
691 
692 #define ELF_CLASS       ELFCLASS32
693 
694 #endif
695 
696 #define ELF_ARCH        EM_PPC
697 
698 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
699    See arch/powerpc/include/asm/cputable.h.  */
700 enum {
701     QEMU_PPC_FEATURE_32 = 0x80000000,
702     QEMU_PPC_FEATURE_64 = 0x40000000,
703     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
704     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
705     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
706     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
707     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
708     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
709     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
710     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
711     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
712     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
713     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
714     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
715     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
716     QEMU_PPC_FEATURE_CELL = 0x00010000,
717     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
718     QEMU_PPC_FEATURE_SMT = 0x00004000,
719     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
720     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
721     QEMU_PPC_FEATURE_PA6T = 0x00000800,
722     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
723     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
724     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
725     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
726     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
727 
728     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
729     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
730 
731     /* Feature definitions in AT_HWCAP2.  */
732     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
733     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
734     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
735     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
736     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
737     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
738 };
739 
740 #define ELF_HWCAP get_elf_hwcap()
741 
742 static uint32_t get_elf_hwcap(void)
743 {
744     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
745     uint32_t features = 0;
746 
747     /* We don't have to be terribly complete here; the high points are
748        Altivec/FP/SPE support.  Anything else is just a bonus.  */
749 #define GET_FEATURE(flag, feature)                                      \
750     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
751 #define GET_FEATURE2(flag, feature)                                      \
752     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
753     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
754     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
755     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
756     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
757     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
758     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
759     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
760     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
761     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
762     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
763     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
764                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
765                   QEMU_PPC_FEATURE_ARCH_2_06);
766 #undef GET_FEATURE
767 #undef GET_FEATURE2
768 
769     return features;
770 }
771 
772 #define ELF_HWCAP2 get_elf_hwcap2()
773 
774 static uint32_t get_elf_hwcap2(void)
775 {
776     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
777     uint32_t features = 0;
778 
779 #define GET_FEATURE(flag, feature)                                      \
780     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
781 #define GET_FEATURE2(flag, feature)                                      \
782     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
783 
784     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
785     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
786     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
787                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
788 
789 #undef GET_FEATURE
790 #undef GET_FEATURE2
791 
792     return features;
793 }
794 
795 /*
796  * The requirements here are:
797  * - keep the final alignment of sp (sp & 0xf)
798  * - make sure the 32-bit value at the first 16 byte aligned position of
799  *   AUXV is greater than 16 for glibc compatibility.
800  *   AT_IGNOREPPC is used for that.
801  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
802  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
803  */
804 #define DLINFO_ARCH_ITEMS       5
805 #define ARCH_DLINFO                                     \
806     do {                                                \
807         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
808         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
809         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
810         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
811         /*                                              \
812          * Now handle glibc compatibility.              \
813          */                                             \
814         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
815         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
816     } while (0)
817 
818 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
819 {
820     _regs->gpr[1] = infop->start_stack;
821 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
822     if (get_ppc64_abi(infop) < 2) {
823         uint64_t val;
824         get_user_u64(val, infop->entry + 8);
825         _regs->gpr[2] = val + infop->load_bias;
826         get_user_u64(val, infop->entry);
827         infop->entry = val + infop->load_bias;
828     } else {
829         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
830     }
831 #endif
832     _regs->nip = infop->entry;
833 }
834 
835 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
836 #define ELF_NREG 48
837 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
838 
839 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
840 {
841     int i;
842     target_ulong ccr = 0;
843 
844     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
845         (*regs)[i] = tswapreg(env->gpr[i]);
846     }
847 
848     (*regs)[32] = tswapreg(env->nip);
849     (*regs)[33] = tswapreg(env->msr);
850     (*regs)[35] = tswapreg(env->ctr);
851     (*regs)[36] = tswapreg(env->lr);
852     (*regs)[37] = tswapreg(env->xer);
853 
854     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
855         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
856     }
857     (*regs)[38] = tswapreg(ccr);
858 }
859 
860 #define USE_ELF_CORE_DUMP
861 #define ELF_EXEC_PAGESIZE       4096
862 
863 #endif
864 
865 #ifdef TARGET_MIPS
866 
867 #define ELF_START_MMAP 0x80000000
868 
869 #ifdef TARGET_MIPS64
870 #define ELF_CLASS   ELFCLASS64
871 #else
872 #define ELF_CLASS   ELFCLASS32
873 #endif
874 #define ELF_ARCH    EM_MIPS
875 
876 static inline void init_thread(struct target_pt_regs *regs,
877                                struct image_info *infop)
878 {
879     regs->cp0_status = 2 << CP0St_KSU;
880     regs->cp0_epc = infop->entry;
881     regs->regs[29] = infop->start_stack;
882 }
883 
884 /* See linux kernel: arch/mips/include/asm/elf.h.  */
885 #define ELF_NREG 45
886 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
887 
888 /* See linux kernel: arch/mips/include/asm/reg.h.  */
889 enum {
890 #ifdef TARGET_MIPS64
891     TARGET_EF_R0 = 0,
892 #else
893     TARGET_EF_R0 = 6,
894 #endif
895     TARGET_EF_R26 = TARGET_EF_R0 + 26,
896     TARGET_EF_R27 = TARGET_EF_R0 + 27,
897     TARGET_EF_LO = TARGET_EF_R0 + 32,
898     TARGET_EF_HI = TARGET_EF_R0 + 33,
899     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
900     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
901     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
902     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
903 };
904 
905 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
906 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
907 {
908     int i;
909 
910     for (i = 0; i < TARGET_EF_R0; i++) {
911         (*regs)[i] = 0;
912     }
913     (*regs)[TARGET_EF_R0] = 0;
914 
915     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
916         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
917     }
918 
919     (*regs)[TARGET_EF_R26] = 0;
920     (*regs)[TARGET_EF_R27] = 0;
921     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
922     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
923     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
924     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
925     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
926     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
927 }
928 
929 #define USE_ELF_CORE_DUMP
930 #define ELF_EXEC_PAGESIZE        4096
931 
932 #endif /* TARGET_MIPS */
933 
934 #ifdef TARGET_MICROBLAZE
935 
936 #define ELF_START_MMAP 0x80000000
937 
938 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
939 
940 #define ELF_CLASS   ELFCLASS32
941 #define ELF_ARCH    EM_MICROBLAZE
942 
943 static inline void init_thread(struct target_pt_regs *regs,
944                                struct image_info *infop)
945 {
946     regs->pc = infop->entry;
947     regs->r1 = infop->start_stack;
948 
949 }
950 
951 #define ELF_EXEC_PAGESIZE        4096
952 
953 #define USE_ELF_CORE_DUMP
954 #define ELF_NREG 38
955 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
956 
957 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
958 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
959 {
960     int i, pos = 0;
961 
962     for (i = 0; i < 32; i++) {
963         (*regs)[pos++] = tswapreg(env->regs[i]);
964     }
965 
966     for (i = 0; i < 6; i++) {
967         (*regs)[pos++] = tswapreg(env->sregs[i]);
968     }
969 }
970 
971 #endif /* TARGET_MICROBLAZE */
972 
973 #ifdef TARGET_OPENRISC
974 
975 #define ELF_START_MMAP 0x08000000
976 
977 #define ELF_ARCH EM_OPENRISC
978 #define ELF_CLASS ELFCLASS32
979 #define ELF_DATA  ELFDATA2MSB
980 
981 static inline void init_thread(struct target_pt_regs *regs,
982                                struct image_info *infop)
983 {
984     regs->pc = infop->entry;
985     regs->gpr[1] = infop->start_stack;
986 }
987 
988 #define USE_ELF_CORE_DUMP
989 #define ELF_EXEC_PAGESIZE 8192
990 
991 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
992 #define ELF_NREG 34 /* gprs and pc, sr */
993 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
994 
995 static void elf_core_copy_regs(target_elf_gregset_t *regs,
996                                const CPUOpenRISCState *env)
997 {
998     int i;
999 
1000     for (i = 0; i < 32; i++) {
1001         (*regs)[i] = tswapreg(env->gpr[i]);
1002     }
1003 
1004     (*regs)[32] = tswapreg(env->pc);
1005     (*regs)[33] = tswapreg(env->sr);
1006 }
1007 #define ELF_HWCAP 0
1008 #define ELF_PLATFORM NULL
1009 
1010 #endif /* TARGET_OPENRISC */
1011 
1012 #ifdef TARGET_SH4
1013 
1014 #define ELF_START_MMAP 0x80000000
1015 
1016 #define ELF_CLASS ELFCLASS32
1017 #define ELF_ARCH  EM_SH
1018 
1019 static inline void init_thread(struct target_pt_regs *regs,
1020                                struct image_info *infop)
1021 {
1022     /* Check other registers XXXXX */
1023     regs->pc = infop->entry;
1024     regs->regs[15] = infop->start_stack;
1025 }
1026 
1027 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1028 #define ELF_NREG 23
1029 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1030 
1031 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1032 enum {
1033     TARGET_REG_PC = 16,
1034     TARGET_REG_PR = 17,
1035     TARGET_REG_SR = 18,
1036     TARGET_REG_GBR = 19,
1037     TARGET_REG_MACH = 20,
1038     TARGET_REG_MACL = 21,
1039     TARGET_REG_SYSCALL = 22
1040 };
1041 
1042 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1043                                       const CPUSH4State *env)
1044 {
1045     int i;
1046 
1047     for (i = 0; i < 16; i++) {
1048         (*regs[i]) = tswapreg(env->gregs[i]);
1049     }
1050 
1051     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1052     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1053     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1054     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1055     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1056     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1057     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1058 }
1059 
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_EXEC_PAGESIZE        4096
1062 
1063 enum {
1064     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1065     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1066     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1067     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1068     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1069     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1070     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1071     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1072     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1073     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1074 };
1075 
1076 #define ELF_HWCAP get_elf_hwcap()
1077 
1078 static uint32_t get_elf_hwcap(void)
1079 {
1080     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1081     uint32_t hwcap = 0;
1082 
1083     hwcap |= SH_CPU_HAS_FPU;
1084 
1085     if (cpu->env.features & SH_FEATURE_SH4A) {
1086         hwcap |= SH_CPU_HAS_LLSC;
1087     }
1088 
1089     return hwcap;
1090 }
1091 
1092 #endif
1093 
1094 #ifdef TARGET_CRIS
1095 
1096 #define ELF_START_MMAP 0x80000000
1097 
1098 #define ELF_CLASS ELFCLASS32
1099 #define ELF_ARCH  EM_CRIS
1100 
1101 static inline void init_thread(struct target_pt_regs *regs,
1102                                struct image_info *infop)
1103 {
1104     regs->erp = infop->entry;
1105 }
1106 
1107 #define ELF_EXEC_PAGESIZE        8192
1108 
1109 #endif
1110 
1111 #ifdef TARGET_M68K
1112 
1113 #define ELF_START_MMAP 0x80000000
1114 
1115 #define ELF_CLASS       ELFCLASS32
1116 #define ELF_ARCH        EM_68K
1117 
1118 /* ??? Does this need to do anything?
1119    #define ELF_PLAT_INIT(_r) */
1120 
1121 static inline void init_thread(struct target_pt_regs *regs,
1122                                struct image_info *infop)
1123 {
1124     regs->usp = infop->start_stack;
1125     regs->sr = 0;
1126     regs->pc = infop->entry;
1127 }
1128 
1129 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1130 #define ELF_NREG 20
1131 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1132 
1133 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1134 {
1135     (*regs)[0] = tswapreg(env->dregs[1]);
1136     (*regs)[1] = tswapreg(env->dregs[2]);
1137     (*regs)[2] = tswapreg(env->dregs[3]);
1138     (*regs)[3] = tswapreg(env->dregs[4]);
1139     (*regs)[4] = tswapreg(env->dregs[5]);
1140     (*regs)[5] = tswapreg(env->dregs[6]);
1141     (*regs)[6] = tswapreg(env->dregs[7]);
1142     (*regs)[7] = tswapreg(env->aregs[0]);
1143     (*regs)[8] = tswapreg(env->aregs[1]);
1144     (*regs)[9] = tswapreg(env->aregs[2]);
1145     (*regs)[10] = tswapreg(env->aregs[3]);
1146     (*regs)[11] = tswapreg(env->aregs[4]);
1147     (*regs)[12] = tswapreg(env->aregs[5]);
1148     (*regs)[13] = tswapreg(env->aregs[6]);
1149     (*regs)[14] = tswapreg(env->dregs[0]);
1150     (*regs)[15] = tswapreg(env->aregs[7]);
1151     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1152     (*regs)[17] = tswapreg(env->sr);
1153     (*regs)[18] = tswapreg(env->pc);
1154     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1155 }
1156 
1157 #define USE_ELF_CORE_DUMP
1158 #define ELF_EXEC_PAGESIZE       8192
1159 
1160 #endif
1161 
1162 #ifdef TARGET_ALPHA
1163 
1164 #define ELF_START_MMAP (0x30000000000ULL)
1165 
1166 #define ELF_CLASS      ELFCLASS64
1167 #define ELF_ARCH       EM_ALPHA
1168 
1169 static inline void init_thread(struct target_pt_regs *regs,
1170                                struct image_info *infop)
1171 {
1172     regs->pc = infop->entry;
1173     regs->ps = 8;
1174     regs->usp = infop->start_stack;
1175 }
1176 
1177 #define ELF_EXEC_PAGESIZE        8192
1178 
1179 #endif /* TARGET_ALPHA */
1180 
1181 #ifdef TARGET_S390X
1182 
1183 #define ELF_START_MMAP (0x20000000000ULL)
1184 
1185 #define ELF_CLASS	ELFCLASS64
1186 #define ELF_DATA	ELFDATA2MSB
1187 #define ELF_ARCH	EM_S390
1188 
1189 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1190 {
1191     regs->psw.addr = infop->entry;
1192     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1193     regs->gprs[15] = infop->start_stack;
1194 }
1195 
1196 #endif /* TARGET_S390X */
1197 
1198 #ifdef TARGET_TILEGX
1199 
1200 /* 42 bits real used address, a half for user mode */
1201 #define ELF_START_MMAP (0x00000020000000000ULL)
1202 
1203 #define elf_check_arch(x) ((x) == EM_TILEGX)
1204 
1205 #define ELF_CLASS   ELFCLASS64
1206 #define ELF_DATA    ELFDATA2LSB
1207 #define ELF_ARCH    EM_TILEGX
1208 
1209 static inline void init_thread(struct target_pt_regs *regs,
1210                                struct image_info *infop)
1211 {
1212     regs->pc = infop->entry;
1213     regs->sp = infop->start_stack;
1214 
1215 }
1216 
1217 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1218 
1219 #endif /* TARGET_TILEGX */
1220 
1221 #ifndef ELF_PLATFORM
1222 #define ELF_PLATFORM (NULL)
1223 #endif
1224 
1225 #ifndef ELF_MACHINE
1226 #define ELF_MACHINE ELF_ARCH
1227 #endif
1228 
1229 #ifndef elf_check_arch
1230 #define elf_check_arch(x) ((x) == ELF_ARCH)
1231 #endif
1232 
1233 #ifndef ELF_HWCAP
1234 #define ELF_HWCAP 0
1235 #endif
1236 
1237 #ifdef TARGET_ABI32
1238 #undef ELF_CLASS
1239 #define ELF_CLASS ELFCLASS32
1240 #undef bswaptls
1241 #define bswaptls(ptr) bswap32s(ptr)
1242 #endif
1243 
1244 #include "elf.h"
1245 
1246 struct exec
1247 {
1248     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1249     unsigned int a_text;   /* length of text, in bytes */
1250     unsigned int a_data;   /* length of data, in bytes */
1251     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1252     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1253     unsigned int a_entry;  /* start address */
1254     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1255     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1256 };
1257 
1258 
1259 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1260 #define OMAGIC 0407
1261 #define NMAGIC 0410
1262 #define ZMAGIC 0413
1263 #define QMAGIC 0314
1264 
1265 /* Necessary parameters */
1266 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1267 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1268                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1269 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1270 
1271 #define DLINFO_ITEMS 14
1272 
1273 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1274 {
1275     memcpy(to, from, n);
1276 }
1277 
1278 #ifdef BSWAP_NEEDED
1279 static void bswap_ehdr(struct elfhdr *ehdr)
1280 {
1281     bswap16s(&ehdr->e_type);            /* Object file type */
1282     bswap16s(&ehdr->e_machine);         /* Architecture */
1283     bswap32s(&ehdr->e_version);         /* Object file version */
1284     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1285     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1286     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1287     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1288     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1289     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1290     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1291     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1292     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1293     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1294 }
1295 
1296 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1297 {
1298     int i;
1299     for (i = 0; i < phnum; ++i, ++phdr) {
1300         bswap32s(&phdr->p_type);        /* Segment type */
1301         bswap32s(&phdr->p_flags);       /* Segment flags */
1302         bswaptls(&phdr->p_offset);      /* Segment file offset */
1303         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1304         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1305         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1306         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1307         bswaptls(&phdr->p_align);       /* Segment alignment */
1308     }
1309 }
1310 
1311 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1312 {
1313     int i;
1314     for (i = 0; i < shnum; ++i, ++shdr) {
1315         bswap32s(&shdr->sh_name);
1316         bswap32s(&shdr->sh_type);
1317         bswaptls(&shdr->sh_flags);
1318         bswaptls(&shdr->sh_addr);
1319         bswaptls(&shdr->sh_offset);
1320         bswaptls(&shdr->sh_size);
1321         bswap32s(&shdr->sh_link);
1322         bswap32s(&shdr->sh_info);
1323         bswaptls(&shdr->sh_addralign);
1324         bswaptls(&shdr->sh_entsize);
1325     }
1326 }
1327 
1328 static void bswap_sym(struct elf_sym *sym)
1329 {
1330     bswap32s(&sym->st_name);
1331     bswaptls(&sym->st_value);
1332     bswaptls(&sym->st_size);
1333     bswap16s(&sym->st_shndx);
1334 }
1335 #else
1336 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1337 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1338 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1339 static inline void bswap_sym(struct elf_sym *sym) { }
1340 #endif
1341 
1342 #ifdef USE_ELF_CORE_DUMP
1343 static int elf_core_dump(int, const CPUArchState *);
1344 #endif /* USE_ELF_CORE_DUMP */
1345 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1346 
1347 /* Verify the portions of EHDR within E_IDENT for the target.
1348    This can be performed before bswapping the entire header.  */
1349 static bool elf_check_ident(struct elfhdr *ehdr)
1350 {
1351     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1352             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1353             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1354             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1355             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1356             && ehdr->e_ident[EI_DATA] == ELF_DATA
1357             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1358 }
1359 
1360 /* Verify the portions of EHDR outside of E_IDENT for the target.
1361    This has to wait until after bswapping the header.  */
1362 static bool elf_check_ehdr(struct elfhdr *ehdr)
1363 {
1364     return (elf_check_arch(ehdr->e_machine)
1365             && ehdr->e_ehsize == sizeof(struct elfhdr)
1366             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1367             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1368 }
1369 
1370 /*
1371  * 'copy_elf_strings()' copies argument/envelope strings from user
1372  * memory to free pages in kernel mem. These are in a format ready
1373  * to be put directly into the top of new user memory.
1374  *
1375  */
1376 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1377                                   abi_ulong p, abi_ulong stack_limit)
1378 {
1379     char *tmp;
1380     int len, offset;
1381     abi_ulong top = p;
1382 
1383     if (!p) {
1384         return 0;       /* bullet-proofing */
1385     }
1386 
1387     offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1388 
1389     while (argc-- > 0) {
1390         tmp = argv[argc];
1391         if (!tmp) {
1392             fprintf(stderr, "VFS: argc is wrong");
1393             exit(-1);
1394         }
1395         len = strlen(tmp) + 1;
1396         tmp += len;
1397 
1398         if (len > (p - stack_limit)) {
1399             return 0;
1400         }
1401         while (len) {
1402             int bytes_to_copy = (len > offset) ? offset : len;
1403             tmp -= bytes_to_copy;
1404             p -= bytes_to_copy;
1405             offset -= bytes_to_copy;
1406             len -= bytes_to_copy;
1407 
1408             memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1409 
1410             if (offset == 0) {
1411                 memcpy_to_target(p, scratch, top - p);
1412                 top = p;
1413                 offset = TARGET_PAGE_SIZE;
1414             }
1415         }
1416     }
1417     if (offset) {
1418         memcpy_to_target(p, scratch + offset, top - p);
1419     }
1420 
1421     return p;
1422 }
1423 
1424 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1425  * argument/environment space. Newer kernels (>2.6.33) allow more,
1426  * dependent on stack size, but guarantee at least 32 pages for
1427  * backwards compatibility.
1428  */
1429 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1430 
1431 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1432                                  struct image_info *info)
1433 {
1434     abi_ulong size, error, guard;
1435 
1436     size = guest_stack_size;
1437     if (size < STACK_LOWER_LIMIT) {
1438         size = STACK_LOWER_LIMIT;
1439     }
1440     guard = TARGET_PAGE_SIZE;
1441     if (guard < qemu_real_host_page_size) {
1442         guard = qemu_real_host_page_size;
1443     }
1444 
1445     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1446                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1447     if (error == -1) {
1448         perror("mmap stack");
1449         exit(-1);
1450     }
1451 
1452     /* We reserve one extra page at the top of the stack as guard.  */
1453     target_mprotect(error, guard, PROT_NONE);
1454 
1455     info->stack_limit = error + guard;
1456 
1457     return info->stack_limit + size - sizeof(void *);
1458 }
1459 
1460 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1461    after the data section (i.e. bss).  */
1462 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1463 {
1464     uintptr_t host_start, host_map_start, host_end;
1465 
1466     last_bss = TARGET_PAGE_ALIGN(last_bss);
1467 
1468     /* ??? There is confusion between qemu_real_host_page_size and
1469        qemu_host_page_size here and elsewhere in target_mmap, which
1470        may lead to the end of the data section mapping from the file
1471        not being mapped.  At least there was an explicit test and
1472        comment for that here, suggesting that "the file size must
1473        be known".  The comment probably pre-dates the introduction
1474        of the fstat system call in target_mmap which does in fact
1475        find out the size.  What isn't clear is if the workaround
1476        here is still actually needed.  For now, continue with it,
1477        but merge it with the "normal" mmap that would allocate the bss.  */
1478 
1479     host_start = (uintptr_t) g2h(elf_bss);
1480     host_end = (uintptr_t) g2h(last_bss);
1481     host_map_start = (host_start + qemu_real_host_page_size - 1);
1482     host_map_start &= -qemu_real_host_page_size;
1483 
1484     if (host_map_start < host_end) {
1485         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1486                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1487         if (p == MAP_FAILED) {
1488             perror("cannot mmap brk");
1489             exit(-1);
1490         }
1491     }
1492 
1493     /* Ensure that the bss page(s) are valid */
1494     if ((page_get_flags(last_bss-1) & prot) != prot) {
1495         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1496     }
1497 
1498     if (host_start < host_map_start) {
1499         memset((void *)host_start, 0, host_map_start - host_start);
1500     }
1501 }
1502 
1503 #ifdef CONFIG_USE_FDPIC
1504 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1505 {
1506     uint16_t n;
1507     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1508 
1509     /* elf32_fdpic_loadseg */
1510     n = info->nsegs;
1511     while (n--) {
1512         sp -= 12;
1513         put_user_u32(loadsegs[n].addr, sp+0);
1514         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1515         put_user_u32(loadsegs[n].p_memsz, sp+8);
1516     }
1517 
1518     /* elf32_fdpic_loadmap */
1519     sp -= 4;
1520     put_user_u16(0, sp+0); /* version */
1521     put_user_u16(info->nsegs, sp+2); /* nsegs */
1522 
1523     info->personality = PER_LINUX_FDPIC;
1524     info->loadmap_addr = sp;
1525 
1526     return sp;
1527 }
1528 #endif
1529 
1530 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1531                                    struct elfhdr *exec,
1532                                    struct image_info *info,
1533                                    struct image_info *interp_info)
1534 {
1535     abi_ulong sp;
1536     abi_ulong sp_auxv;
1537     int size;
1538     int i;
1539     abi_ulong u_rand_bytes;
1540     uint8_t k_rand_bytes[16];
1541     abi_ulong u_platform;
1542     const char *k_platform;
1543     const int n = sizeof(elf_addr_t);
1544 
1545     sp = p;
1546 
1547 #ifdef CONFIG_USE_FDPIC
1548     /* Needs to be before we load the env/argc/... */
1549     if (elf_is_fdpic(exec)) {
1550         /* Need 4 byte alignment for these structs */
1551         sp &= ~3;
1552         sp = loader_build_fdpic_loadmap(info, sp);
1553         info->other_info = interp_info;
1554         if (interp_info) {
1555             interp_info->other_info = info;
1556             sp = loader_build_fdpic_loadmap(interp_info, sp);
1557         }
1558     }
1559 #endif
1560 
1561     u_platform = 0;
1562     k_platform = ELF_PLATFORM;
1563     if (k_platform) {
1564         size_t len = strlen(k_platform) + 1;
1565         sp -= (len + n - 1) & ~(n - 1);
1566         u_platform = sp;
1567         /* FIXME - check return value of memcpy_to_target() for failure */
1568         memcpy_to_target(sp, k_platform, len);
1569     }
1570 
1571     /*
1572      * Generate 16 random bytes for userspace PRNG seeding (not
1573      * cryptically secure but it's not the aim of QEMU).
1574      */
1575     for (i = 0; i < 16; i++) {
1576         k_rand_bytes[i] = rand();
1577     }
1578     sp -= 16;
1579     u_rand_bytes = sp;
1580     /* FIXME - check return value of memcpy_to_target() for failure */
1581     memcpy_to_target(sp, k_rand_bytes, 16);
1582 
1583     /*
1584      * Force 16 byte _final_ alignment here for generality.
1585      */
1586     sp = sp &~ (abi_ulong)15;
1587     size = (DLINFO_ITEMS + 1) * 2;
1588     if (k_platform)
1589         size += 2;
1590 #ifdef DLINFO_ARCH_ITEMS
1591     size += DLINFO_ARCH_ITEMS * 2;
1592 #endif
1593 #ifdef ELF_HWCAP2
1594     size += 2;
1595 #endif
1596     size += envc + argc + 2;
1597     size += 1;  /* argc itself */
1598     size *= n;
1599     if (size & 15)
1600         sp -= 16 - (size & 15);
1601 
1602     /* This is correct because Linux defines
1603      * elf_addr_t as Elf32_Off / Elf64_Off
1604      */
1605 #define NEW_AUX_ENT(id, val) do {               \
1606         sp -= n; put_user_ual(val, sp);         \
1607         sp -= n; put_user_ual(id, sp);          \
1608     } while(0)
1609 
1610     sp_auxv = sp;
1611     NEW_AUX_ENT (AT_NULL, 0);
1612 
1613     /* There must be exactly DLINFO_ITEMS entries here.  */
1614     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1615     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1616     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1617     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1618     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1619     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1620     NEW_AUX_ENT(AT_ENTRY, info->entry);
1621     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1622     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1623     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1624     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1625     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1626     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1627     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1628 
1629 #ifdef ELF_HWCAP2
1630     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1631 #endif
1632 
1633     if (k_platform)
1634         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1635 #ifdef ARCH_DLINFO
1636     /*
1637      * ARCH_DLINFO must come last so platform specific code can enforce
1638      * special alignment requirements on the AUXV if necessary (eg. PPC).
1639      */
1640     ARCH_DLINFO;
1641 #endif
1642 #undef NEW_AUX_ENT
1643 
1644     info->saved_auxv = sp;
1645     info->auxv_len = sp_auxv - sp;
1646 
1647     sp = loader_build_argptr(envc, argc, sp, p, 0);
1648     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1649     assert(sp_auxv - sp == size);
1650     return sp;
1651 }
1652 
1653 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1654 /* If the guest doesn't have a validation function just agree */
1655 static int validate_guest_space(unsigned long guest_base,
1656                                 unsigned long guest_size)
1657 {
1658     return 1;
1659 }
1660 #endif
1661 
1662 unsigned long init_guest_space(unsigned long host_start,
1663                                unsigned long host_size,
1664                                unsigned long guest_start,
1665                                bool fixed)
1666 {
1667     unsigned long current_start, real_start;
1668     int flags;
1669 
1670     assert(host_start || host_size);
1671 
1672     /* If just a starting address is given, then just verify that
1673      * address.  */
1674     if (host_start && !host_size) {
1675         if (validate_guest_space(host_start, host_size) == 1) {
1676             return host_start;
1677         } else {
1678             return (unsigned long)-1;
1679         }
1680     }
1681 
1682     /* Setup the initial flags and start address.  */
1683     current_start = host_start & qemu_host_page_mask;
1684     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1685     if (fixed) {
1686         flags |= MAP_FIXED;
1687     }
1688 
1689     /* Otherwise, a non-zero size region of memory needs to be mapped
1690      * and validated.  */
1691     while (1) {
1692         unsigned long real_size = host_size;
1693 
1694         /* Do not use mmap_find_vma here because that is limited to the
1695          * guest address space.  We are going to make the
1696          * guest address space fit whatever we're given.
1697          */
1698         real_start = (unsigned long)
1699             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1700         if (real_start == (unsigned long)-1) {
1701             return (unsigned long)-1;
1702         }
1703 
1704         /* Ensure the address is properly aligned.  */
1705         if (real_start & ~qemu_host_page_mask) {
1706             munmap((void *)real_start, host_size);
1707             real_size = host_size + qemu_host_page_size;
1708             real_start = (unsigned long)
1709                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1710             if (real_start == (unsigned long)-1) {
1711                 return (unsigned long)-1;
1712             }
1713             real_start = HOST_PAGE_ALIGN(real_start);
1714         }
1715 
1716         /* Check to see if the address is valid.  */
1717         if (!host_start || real_start == current_start) {
1718             int valid = validate_guest_space(real_start - guest_start,
1719                                              real_size);
1720             if (valid == 1) {
1721                 break;
1722             } else if (valid == -1) {
1723                 return (unsigned long)-1;
1724             }
1725             /* valid == 0, so try again. */
1726         }
1727 
1728         /* That address didn't work.  Unmap and try a different one.
1729          * The address the host picked because is typically right at
1730          * the top of the host address space and leaves the guest with
1731          * no usable address space.  Resort to a linear search.  We
1732          * already compensated for mmap_min_addr, so this should not
1733          * happen often.  Probably means we got unlucky and host
1734          * address space randomization put a shared library somewhere
1735          * inconvenient.
1736          */
1737         munmap((void *)real_start, host_size);
1738         current_start += qemu_host_page_size;
1739         if (host_start == current_start) {
1740             /* Theoretically possible if host doesn't have any suitably
1741              * aligned areas.  Normally the first mmap will fail.
1742              */
1743             return (unsigned long)-1;
1744         }
1745     }
1746 
1747     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1748 
1749     return real_start;
1750 }
1751 
1752 static void probe_guest_base(const char *image_name,
1753                              abi_ulong loaddr, abi_ulong hiaddr)
1754 {
1755     /* Probe for a suitable guest base address, if the user has not set
1756      * it explicitly, and set guest_base appropriately.
1757      * In case of error we will print a suitable message and exit.
1758      */
1759     const char *errmsg;
1760     if (!have_guest_base && !reserved_va) {
1761         unsigned long host_start, real_start, host_size;
1762 
1763         /* Round addresses to page boundaries.  */
1764         loaddr &= qemu_host_page_mask;
1765         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1766 
1767         if (loaddr < mmap_min_addr) {
1768             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1769         } else {
1770             host_start = loaddr;
1771             if (host_start != loaddr) {
1772                 errmsg = "Address overflow loading ELF binary";
1773                 goto exit_errmsg;
1774             }
1775         }
1776         host_size = hiaddr - loaddr;
1777 
1778         /* Setup the initial guest memory space with ranges gleaned from
1779          * the ELF image that is being loaded.
1780          */
1781         real_start = init_guest_space(host_start, host_size, loaddr, false);
1782         if (real_start == (unsigned long)-1) {
1783             errmsg = "Unable to find space for application";
1784             goto exit_errmsg;
1785         }
1786         guest_base = real_start - loaddr;
1787 
1788         qemu_log("Relocating guest address space from 0x"
1789                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1790                  loaddr, real_start);
1791     }
1792     return;
1793 
1794 exit_errmsg:
1795     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1796     exit(-1);
1797 }
1798 
1799 
1800 /* Load an ELF image into the address space.
1801 
1802    IMAGE_NAME is the filename of the image, to use in error messages.
1803    IMAGE_FD is the open file descriptor for the image.
1804 
1805    BPRM_BUF is a copy of the beginning of the file; this of course
1806    contains the elf file header at offset 0.  It is assumed that this
1807    buffer is sufficiently aligned to present no problems to the host
1808    in accessing data at aligned offsets within the buffer.
1809 
1810    On return: INFO values will be filled in, as necessary or available.  */
1811 
1812 static void load_elf_image(const char *image_name, int image_fd,
1813                            struct image_info *info, char **pinterp_name,
1814                            char bprm_buf[BPRM_BUF_SIZE])
1815 {
1816     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1817     struct elf_phdr *phdr;
1818     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1819     int i, retval;
1820     const char *errmsg;
1821 
1822     /* First of all, some simple consistency checks */
1823     errmsg = "Invalid ELF image for this architecture";
1824     if (!elf_check_ident(ehdr)) {
1825         goto exit_errmsg;
1826     }
1827     bswap_ehdr(ehdr);
1828     if (!elf_check_ehdr(ehdr)) {
1829         goto exit_errmsg;
1830     }
1831 
1832     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1833     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1834         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1835     } else {
1836         phdr = (struct elf_phdr *) alloca(i);
1837         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1838         if (retval != i) {
1839             goto exit_read;
1840         }
1841     }
1842     bswap_phdr(phdr, ehdr->e_phnum);
1843 
1844 #ifdef CONFIG_USE_FDPIC
1845     info->nsegs = 0;
1846     info->pt_dynamic_addr = 0;
1847 #endif
1848 
1849     /* Find the maximum size of the image and allocate an appropriate
1850        amount of memory to handle that.  */
1851     loaddr = -1, hiaddr = 0;
1852     for (i = 0; i < ehdr->e_phnum; ++i) {
1853         if (phdr[i].p_type == PT_LOAD) {
1854             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1855             if (a < loaddr) {
1856                 loaddr = a;
1857             }
1858             a = phdr[i].p_vaddr + phdr[i].p_memsz;
1859             if (a > hiaddr) {
1860                 hiaddr = a;
1861             }
1862 #ifdef CONFIG_USE_FDPIC
1863             ++info->nsegs;
1864 #endif
1865         }
1866     }
1867 
1868     load_addr = loaddr;
1869     if (ehdr->e_type == ET_DYN) {
1870         /* The image indicates that it can be loaded anywhere.  Find a
1871            location that can hold the memory space required.  If the
1872            image is pre-linked, LOADDR will be non-zero.  Since we do
1873            not supply MAP_FIXED here we'll use that address if and
1874            only if it remains available.  */
1875         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1876                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1877                                 -1, 0);
1878         if (load_addr == -1) {
1879             goto exit_perror;
1880         }
1881     } else if (pinterp_name != NULL) {
1882         /* This is the main executable.  Make sure that the low
1883            address does not conflict with MMAP_MIN_ADDR or the
1884            QEMU application itself.  */
1885         probe_guest_base(image_name, loaddr, hiaddr);
1886     }
1887     load_bias = load_addr - loaddr;
1888 
1889 #ifdef CONFIG_USE_FDPIC
1890     {
1891         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1892             g_malloc(sizeof(*loadsegs) * info->nsegs);
1893 
1894         for (i = 0; i < ehdr->e_phnum; ++i) {
1895             switch (phdr[i].p_type) {
1896             case PT_DYNAMIC:
1897                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1898                 break;
1899             case PT_LOAD:
1900                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1901                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1902                 loadsegs->p_memsz = phdr[i].p_memsz;
1903                 ++loadsegs;
1904                 break;
1905             }
1906         }
1907     }
1908 #endif
1909 
1910     info->load_bias = load_bias;
1911     info->load_addr = load_addr;
1912     info->entry = ehdr->e_entry + load_bias;
1913     info->start_code = -1;
1914     info->end_code = 0;
1915     info->start_data = -1;
1916     info->end_data = 0;
1917     info->brk = 0;
1918     info->elf_flags = ehdr->e_flags;
1919 
1920     for (i = 0; i < ehdr->e_phnum; i++) {
1921         struct elf_phdr *eppnt = phdr + i;
1922         if (eppnt->p_type == PT_LOAD) {
1923             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1924             int elf_prot = 0;
1925 
1926             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1927             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1928             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1929 
1930             vaddr = load_bias + eppnt->p_vaddr;
1931             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1932             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1933 
1934             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1935                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1936                                 image_fd, eppnt->p_offset - vaddr_po);
1937             if (error == -1) {
1938                 goto exit_perror;
1939             }
1940 
1941             vaddr_ef = vaddr + eppnt->p_filesz;
1942             vaddr_em = vaddr + eppnt->p_memsz;
1943 
1944             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1945             if (vaddr_ef < vaddr_em) {
1946                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1947             }
1948 
1949             /* Find the full program boundaries.  */
1950             if (elf_prot & PROT_EXEC) {
1951                 if (vaddr < info->start_code) {
1952                     info->start_code = vaddr;
1953                 }
1954                 if (vaddr_ef > info->end_code) {
1955                     info->end_code = vaddr_ef;
1956                 }
1957             }
1958             if (elf_prot & PROT_WRITE) {
1959                 if (vaddr < info->start_data) {
1960                     info->start_data = vaddr;
1961                 }
1962                 if (vaddr_ef > info->end_data) {
1963                     info->end_data = vaddr_ef;
1964                 }
1965                 if (vaddr_em > info->brk) {
1966                     info->brk = vaddr_em;
1967                 }
1968             }
1969         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1970             char *interp_name;
1971 
1972             if (*pinterp_name) {
1973                 errmsg = "Multiple PT_INTERP entries";
1974                 goto exit_errmsg;
1975             }
1976             interp_name = malloc(eppnt->p_filesz);
1977             if (!interp_name) {
1978                 goto exit_perror;
1979             }
1980 
1981             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1982                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1983                        eppnt->p_filesz);
1984             } else {
1985                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1986                                eppnt->p_offset);
1987                 if (retval != eppnt->p_filesz) {
1988                     goto exit_perror;
1989                 }
1990             }
1991             if (interp_name[eppnt->p_filesz - 1] != 0) {
1992                 errmsg = "Invalid PT_INTERP entry";
1993                 goto exit_errmsg;
1994             }
1995             *pinterp_name = interp_name;
1996         }
1997     }
1998 
1999     if (info->end_data == 0) {
2000         info->start_data = info->end_code;
2001         info->end_data = info->end_code;
2002         info->brk = info->end_code;
2003     }
2004 
2005     if (qemu_log_enabled()) {
2006         load_symbols(ehdr, image_fd, load_bias);
2007     }
2008 
2009     close(image_fd);
2010     return;
2011 
2012  exit_read:
2013     if (retval >= 0) {
2014         errmsg = "Incomplete read of file header";
2015         goto exit_errmsg;
2016     }
2017  exit_perror:
2018     errmsg = strerror(errno);
2019  exit_errmsg:
2020     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2021     exit(-1);
2022 }
2023 
2024 static void load_elf_interp(const char *filename, struct image_info *info,
2025                             char bprm_buf[BPRM_BUF_SIZE])
2026 {
2027     int fd, retval;
2028 
2029     fd = open(path(filename), O_RDONLY);
2030     if (fd < 0) {
2031         goto exit_perror;
2032     }
2033 
2034     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2035     if (retval < 0) {
2036         goto exit_perror;
2037     }
2038     if (retval < BPRM_BUF_SIZE) {
2039         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2040     }
2041 
2042     load_elf_image(filename, fd, info, NULL, bprm_buf);
2043     return;
2044 
2045  exit_perror:
2046     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2047     exit(-1);
2048 }
2049 
2050 static int symfind(const void *s0, const void *s1)
2051 {
2052     target_ulong addr = *(target_ulong *)s0;
2053     struct elf_sym *sym = (struct elf_sym *)s1;
2054     int result = 0;
2055     if (addr < sym->st_value) {
2056         result = -1;
2057     } else if (addr >= sym->st_value + sym->st_size) {
2058         result = 1;
2059     }
2060     return result;
2061 }
2062 
2063 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2064 {
2065 #if ELF_CLASS == ELFCLASS32
2066     struct elf_sym *syms = s->disas_symtab.elf32;
2067 #else
2068     struct elf_sym *syms = s->disas_symtab.elf64;
2069 #endif
2070 
2071     // binary search
2072     struct elf_sym *sym;
2073 
2074     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2075     if (sym != NULL) {
2076         return s->disas_strtab + sym->st_name;
2077     }
2078 
2079     return "";
2080 }
2081 
2082 /* FIXME: This should use elf_ops.h  */
2083 static int symcmp(const void *s0, const void *s1)
2084 {
2085     struct elf_sym *sym0 = (struct elf_sym *)s0;
2086     struct elf_sym *sym1 = (struct elf_sym *)s1;
2087     return (sym0->st_value < sym1->st_value)
2088         ? -1
2089         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2090 }
2091 
2092 /* Best attempt to load symbols from this ELF object. */
2093 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2094 {
2095     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2096     struct elf_shdr *shdr;
2097     char *strings = NULL;
2098     struct syminfo *s = NULL;
2099     struct elf_sym *new_syms, *syms = NULL;
2100 
2101     shnum = hdr->e_shnum;
2102     i = shnum * sizeof(struct elf_shdr);
2103     shdr = (struct elf_shdr *)alloca(i);
2104     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2105         return;
2106     }
2107 
2108     bswap_shdr(shdr, shnum);
2109     for (i = 0; i < shnum; ++i) {
2110         if (shdr[i].sh_type == SHT_SYMTAB) {
2111             sym_idx = i;
2112             str_idx = shdr[i].sh_link;
2113             goto found;
2114         }
2115     }
2116 
2117     /* There will be no symbol table if the file was stripped.  */
2118     return;
2119 
2120  found:
2121     /* Now know where the strtab and symtab are.  Snarf them.  */
2122     s = malloc(sizeof(*s));
2123     if (!s) {
2124         goto give_up;
2125     }
2126 
2127     i = shdr[str_idx].sh_size;
2128     s->disas_strtab = strings = malloc(i);
2129     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2130         goto give_up;
2131     }
2132 
2133     i = shdr[sym_idx].sh_size;
2134     syms = malloc(i);
2135     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2136         goto give_up;
2137     }
2138 
2139     nsyms = i / sizeof(struct elf_sym);
2140     for (i = 0; i < nsyms; ) {
2141         bswap_sym(syms + i);
2142         /* Throw away entries which we do not need.  */
2143         if (syms[i].st_shndx == SHN_UNDEF
2144             || syms[i].st_shndx >= SHN_LORESERVE
2145             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2146             if (i < --nsyms) {
2147                 syms[i] = syms[nsyms];
2148             }
2149         } else {
2150 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2151             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2152             syms[i].st_value &= ~(target_ulong)1;
2153 #endif
2154             syms[i].st_value += load_bias;
2155             i++;
2156         }
2157     }
2158 
2159     /* No "useful" symbol.  */
2160     if (nsyms == 0) {
2161         goto give_up;
2162     }
2163 
2164     /* Attempt to free the storage associated with the local symbols
2165        that we threw away.  Whether or not this has any effect on the
2166        memory allocation depends on the malloc implementation and how
2167        many symbols we managed to discard.  */
2168     new_syms = realloc(syms, nsyms * sizeof(*syms));
2169     if (new_syms == NULL) {
2170         goto give_up;
2171     }
2172     syms = new_syms;
2173 
2174     qsort(syms, nsyms, sizeof(*syms), symcmp);
2175 
2176     s->disas_num_syms = nsyms;
2177 #if ELF_CLASS == ELFCLASS32
2178     s->disas_symtab.elf32 = syms;
2179 #else
2180     s->disas_symtab.elf64 = syms;
2181 #endif
2182     s->lookup_symbol = lookup_symbolxx;
2183     s->next = syminfos;
2184     syminfos = s;
2185 
2186     return;
2187 
2188 give_up:
2189     free(s);
2190     free(strings);
2191     free(syms);
2192 }
2193 
2194 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2195 {
2196     struct image_info interp_info;
2197     struct elfhdr elf_ex;
2198     char *elf_interpreter = NULL;
2199     char *scratch;
2200 
2201     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2202 
2203     load_elf_image(bprm->filename, bprm->fd, info,
2204                    &elf_interpreter, bprm->buf);
2205 
2206     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2207        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2208        when we load the interpreter.  */
2209     elf_ex = *(struct elfhdr *)bprm->buf;
2210 
2211     /* Do this so that we can load the interpreter, if need be.  We will
2212        change some of these later */
2213     bprm->p = setup_arg_pages(bprm, info);
2214 
2215     scratch = g_new0(char, TARGET_PAGE_SIZE);
2216     bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2217                                bprm->p, info->stack_limit);
2218     bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2219                                bprm->p, info->stack_limit);
2220     bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2221                                bprm->p, info->stack_limit);
2222     g_free(scratch);
2223 
2224     if (!bprm->p) {
2225         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2226         exit(-1);
2227     }
2228 
2229     if (elf_interpreter) {
2230         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2231 
2232         /* If the program interpreter is one of these two, then assume
2233            an iBCS2 image.  Otherwise assume a native linux image.  */
2234 
2235         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2236             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2237             info->personality = PER_SVR4;
2238 
2239             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2240                and some applications "depend" upon this behavior.  Since
2241                we do not have the power to recompile these, we emulate
2242                the SVr4 behavior.  Sigh.  */
2243             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2244                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2245         }
2246     }
2247 
2248     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2249                                 info, (elf_interpreter ? &interp_info : NULL));
2250     info->start_stack = bprm->p;
2251 
2252     /* If we have an interpreter, set that as the program's entry point.
2253        Copy the load_bias as well, to help PPC64 interpret the entry
2254        point as a function descriptor.  Do this after creating elf tables
2255        so that we copy the original program entry point into the AUXV.  */
2256     if (elf_interpreter) {
2257         info->load_bias = interp_info.load_bias;
2258         info->entry = interp_info.entry;
2259         free(elf_interpreter);
2260     }
2261 
2262 #ifdef USE_ELF_CORE_DUMP
2263     bprm->core_dump = &elf_core_dump;
2264 #endif
2265 
2266     return 0;
2267 }
2268 
2269 #ifdef USE_ELF_CORE_DUMP
2270 /*
2271  * Definitions to generate Intel SVR4-like core files.
2272  * These mostly have the same names as the SVR4 types with "target_elf_"
2273  * tacked on the front to prevent clashes with linux definitions,
2274  * and the typedef forms have been avoided.  This is mostly like
2275  * the SVR4 structure, but more Linuxy, with things that Linux does
2276  * not support and which gdb doesn't really use excluded.
2277  *
2278  * Fields we don't dump (their contents is zero) in linux-user qemu
2279  * are marked with XXX.
2280  *
2281  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2282  *
2283  * Porting ELF coredump for target is (quite) simple process.  First you
2284  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2285  * the target resides):
2286  *
2287  * #define USE_ELF_CORE_DUMP
2288  *
2289  * Next you define type of register set used for dumping.  ELF specification
2290  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2291  *
2292  * typedef <target_regtype> target_elf_greg_t;
2293  * #define ELF_NREG <number of registers>
2294  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2295  *
2296  * Last step is to implement target specific function that copies registers
2297  * from given cpu into just specified register set.  Prototype is:
2298  *
2299  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2300  *                                const CPUArchState *env);
2301  *
2302  * Parameters:
2303  *     regs - copy register values into here (allocated and zeroed by caller)
2304  *     env - copy registers from here
2305  *
2306  * Example for ARM target is provided in this file.
2307  */
2308 
2309 /* An ELF note in memory */
2310 struct memelfnote {
2311     const char *name;
2312     size_t     namesz;
2313     size_t     namesz_rounded;
2314     int        type;
2315     size_t     datasz;
2316     size_t     datasz_rounded;
2317     void       *data;
2318     size_t     notesz;
2319 };
2320 
2321 struct target_elf_siginfo {
2322     abi_int    si_signo; /* signal number */
2323     abi_int    si_code;  /* extra code */
2324     abi_int    si_errno; /* errno */
2325 };
2326 
2327 struct target_elf_prstatus {
2328     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2329     abi_short          pr_cursig;    /* Current signal */
2330     abi_ulong          pr_sigpend;   /* XXX */
2331     abi_ulong          pr_sighold;   /* XXX */
2332     target_pid_t       pr_pid;
2333     target_pid_t       pr_ppid;
2334     target_pid_t       pr_pgrp;
2335     target_pid_t       pr_sid;
2336     struct target_timeval pr_utime;  /* XXX User time */
2337     struct target_timeval pr_stime;  /* XXX System time */
2338     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2339     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2340     target_elf_gregset_t      pr_reg;       /* GP registers */
2341     abi_int            pr_fpvalid;   /* XXX */
2342 };
2343 
2344 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2345 
2346 struct target_elf_prpsinfo {
2347     char         pr_state;       /* numeric process state */
2348     char         pr_sname;       /* char for pr_state */
2349     char         pr_zomb;        /* zombie */
2350     char         pr_nice;        /* nice val */
2351     abi_ulong    pr_flag;        /* flags */
2352     target_uid_t pr_uid;
2353     target_gid_t pr_gid;
2354     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2355     /* Lots missing */
2356     char    pr_fname[16];           /* filename of executable */
2357     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2358 };
2359 
2360 /* Here is the structure in which status of each thread is captured. */
2361 struct elf_thread_status {
2362     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2363     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2364 #if 0
2365     elf_fpregset_t fpu;             /* NT_PRFPREG */
2366     struct task_struct *thread;
2367     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2368 #endif
2369     struct memelfnote notes[1];
2370     int num_notes;
2371 };
2372 
2373 struct elf_note_info {
2374     struct memelfnote   *notes;
2375     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2376     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2377 
2378     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2379 #if 0
2380     /*
2381      * Current version of ELF coredump doesn't support
2382      * dumping fp regs etc.
2383      */
2384     elf_fpregset_t *fpu;
2385     elf_fpxregset_t *xfpu;
2386     int thread_status_size;
2387 #endif
2388     int notes_size;
2389     int numnote;
2390 };
2391 
2392 struct vm_area_struct {
2393     target_ulong   vma_start;  /* start vaddr of memory region */
2394     target_ulong   vma_end;    /* end vaddr of memory region */
2395     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2396     QTAILQ_ENTRY(vm_area_struct) vma_link;
2397 };
2398 
2399 struct mm_struct {
2400     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2401     int mm_count;           /* number of mappings */
2402 };
2403 
2404 static struct mm_struct *vma_init(void);
2405 static void vma_delete(struct mm_struct *);
2406 static int vma_add_mapping(struct mm_struct *, target_ulong,
2407                            target_ulong, abi_ulong);
2408 static int vma_get_mapping_count(const struct mm_struct *);
2409 static struct vm_area_struct *vma_first(const struct mm_struct *);
2410 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2411 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2412 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2413                       unsigned long flags);
2414 
2415 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2416 static void fill_note(struct memelfnote *, const char *, int,
2417                       unsigned int, void *);
2418 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2419 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2420 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2421 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2422 static size_t note_size(const struct memelfnote *);
2423 static void free_note_info(struct elf_note_info *);
2424 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2425 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2426 static int core_dump_filename(const TaskState *, char *, size_t);
2427 
2428 static int dump_write(int, const void *, size_t);
2429 static int write_note(struct memelfnote *, int);
2430 static int write_note_info(struct elf_note_info *, int);
2431 
2432 #ifdef BSWAP_NEEDED
2433 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2434 {
2435     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2436     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2437     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2438     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2439     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2440     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2441     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2442     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2443     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2444     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2445     /* cpu times are not filled, so we skip them */
2446     /* regs should be in correct format already */
2447     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2448 }
2449 
2450 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2451 {
2452     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2453     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2454     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2455     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2456     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2457     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2458     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2459 }
2460 
2461 static void bswap_note(struct elf_note *en)
2462 {
2463     bswap32s(&en->n_namesz);
2464     bswap32s(&en->n_descsz);
2465     bswap32s(&en->n_type);
2466 }
2467 #else
2468 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2469 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2470 static inline void bswap_note(struct elf_note *en) { }
2471 #endif /* BSWAP_NEEDED */
2472 
2473 /*
2474  * Minimal support for linux memory regions.  These are needed
2475  * when we are finding out what memory exactly belongs to
2476  * emulated process.  No locks needed here, as long as
2477  * thread that received the signal is stopped.
2478  */
2479 
2480 static struct mm_struct *vma_init(void)
2481 {
2482     struct mm_struct *mm;
2483 
2484     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2485         return (NULL);
2486 
2487     mm->mm_count = 0;
2488     QTAILQ_INIT(&mm->mm_mmap);
2489 
2490     return (mm);
2491 }
2492 
2493 static void vma_delete(struct mm_struct *mm)
2494 {
2495     struct vm_area_struct *vma;
2496 
2497     while ((vma = vma_first(mm)) != NULL) {
2498         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2499         g_free(vma);
2500     }
2501     g_free(mm);
2502 }
2503 
2504 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2505                            target_ulong end, abi_ulong flags)
2506 {
2507     struct vm_area_struct *vma;
2508 
2509     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2510         return (-1);
2511 
2512     vma->vma_start = start;
2513     vma->vma_end = end;
2514     vma->vma_flags = flags;
2515 
2516     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2517     mm->mm_count++;
2518 
2519     return (0);
2520 }
2521 
2522 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2523 {
2524     return (QTAILQ_FIRST(&mm->mm_mmap));
2525 }
2526 
2527 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2528 {
2529     return (QTAILQ_NEXT(vma, vma_link));
2530 }
2531 
2532 static int vma_get_mapping_count(const struct mm_struct *mm)
2533 {
2534     return (mm->mm_count);
2535 }
2536 
2537 /*
2538  * Calculate file (dump) size of given memory region.
2539  */
2540 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2541 {
2542     /* if we cannot even read the first page, skip it */
2543     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2544         return (0);
2545 
2546     /*
2547      * Usually we don't dump executable pages as they contain
2548      * non-writable code that debugger can read directly from
2549      * target library etc.  However, thread stacks are marked
2550      * also executable so we read in first page of given region
2551      * and check whether it contains elf header.  If there is
2552      * no elf header, we dump it.
2553      */
2554     if (vma->vma_flags & PROT_EXEC) {
2555         char page[TARGET_PAGE_SIZE];
2556 
2557         copy_from_user(page, vma->vma_start, sizeof (page));
2558         if ((page[EI_MAG0] == ELFMAG0) &&
2559             (page[EI_MAG1] == ELFMAG1) &&
2560             (page[EI_MAG2] == ELFMAG2) &&
2561             (page[EI_MAG3] == ELFMAG3)) {
2562             /*
2563              * Mappings are possibly from ELF binary.  Don't dump
2564              * them.
2565              */
2566             return (0);
2567         }
2568     }
2569 
2570     return (vma->vma_end - vma->vma_start);
2571 }
2572 
2573 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2574                       unsigned long flags)
2575 {
2576     struct mm_struct *mm = (struct mm_struct *)priv;
2577 
2578     vma_add_mapping(mm, start, end, flags);
2579     return (0);
2580 }
2581 
2582 static void fill_note(struct memelfnote *note, const char *name, int type,
2583                       unsigned int sz, void *data)
2584 {
2585     unsigned int namesz;
2586 
2587     namesz = strlen(name) + 1;
2588     note->name = name;
2589     note->namesz = namesz;
2590     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2591     note->type = type;
2592     note->datasz = sz;
2593     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2594 
2595     note->data = data;
2596 
2597     /*
2598      * We calculate rounded up note size here as specified by
2599      * ELF document.
2600      */
2601     note->notesz = sizeof (struct elf_note) +
2602         note->namesz_rounded + note->datasz_rounded;
2603 }
2604 
2605 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2606                             uint32_t flags)
2607 {
2608     (void) memset(elf, 0, sizeof(*elf));
2609 
2610     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2611     elf->e_ident[EI_CLASS] = ELF_CLASS;
2612     elf->e_ident[EI_DATA] = ELF_DATA;
2613     elf->e_ident[EI_VERSION] = EV_CURRENT;
2614     elf->e_ident[EI_OSABI] = ELF_OSABI;
2615 
2616     elf->e_type = ET_CORE;
2617     elf->e_machine = machine;
2618     elf->e_version = EV_CURRENT;
2619     elf->e_phoff = sizeof(struct elfhdr);
2620     elf->e_flags = flags;
2621     elf->e_ehsize = sizeof(struct elfhdr);
2622     elf->e_phentsize = sizeof(struct elf_phdr);
2623     elf->e_phnum = segs;
2624 
2625     bswap_ehdr(elf);
2626 }
2627 
2628 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2629 {
2630     phdr->p_type = PT_NOTE;
2631     phdr->p_offset = offset;
2632     phdr->p_vaddr = 0;
2633     phdr->p_paddr = 0;
2634     phdr->p_filesz = sz;
2635     phdr->p_memsz = 0;
2636     phdr->p_flags = 0;
2637     phdr->p_align = 0;
2638 
2639     bswap_phdr(phdr, 1);
2640 }
2641 
2642 static size_t note_size(const struct memelfnote *note)
2643 {
2644     return (note->notesz);
2645 }
2646 
2647 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2648                           const TaskState *ts, int signr)
2649 {
2650     (void) memset(prstatus, 0, sizeof (*prstatus));
2651     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2652     prstatus->pr_pid = ts->ts_tid;
2653     prstatus->pr_ppid = getppid();
2654     prstatus->pr_pgrp = getpgrp();
2655     prstatus->pr_sid = getsid(0);
2656 
2657     bswap_prstatus(prstatus);
2658 }
2659 
2660 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2661 {
2662     char *base_filename;
2663     unsigned int i, len;
2664 
2665     (void) memset(psinfo, 0, sizeof (*psinfo));
2666 
2667     len = ts->info->arg_end - ts->info->arg_start;
2668     if (len >= ELF_PRARGSZ)
2669         len = ELF_PRARGSZ - 1;
2670     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2671         return -EFAULT;
2672     for (i = 0; i < len; i++)
2673         if (psinfo->pr_psargs[i] == 0)
2674             psinfo->pr_psargs[i] = ' ';
2675     psinfo->pr_psargs[len] = 0;
2676 
2677     psinfo->pr_pid = getpid();
2678     psinfo->pr_ppid = getppid();
2679     psinfo->pr_pgrp = getpgrp();
2680     psinfo->pr_sid = getsid(0);
2681     psinfo->pr_uid = getuid();
2682     psinfo->pr_gid = getgid();
2683 
2684     base_filename = g_path_get_basename(ts->bprm->filename);
2685     /*
2686      * Using strncpy here is fine: at max-length,
2687      * this field is not NUL-terminated.
2688      */
2689     (void) strncpy(psinfo->pr_fname, base_filename,
2690                    sizeof(psinfo->pr_fname));
2691 
2692     g_free(base_filename);
2693     bswap_psinfo(psinfo);
2694     return (0);
2695 }
2696 
2697 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2698 {
2699     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2700     elf_addr_t orig_auxv = auxv;
2701     void *ptr;
2702     int len = ts->info->auxv_len;
2703 
2704     /*
2705      * Auxiliary vector is stored in target process stack.  It contains
2706      * {type, value} pairs that we need to dump into note.  This is not
2707      * strictly necessary but we do it here for sake of completeness.
2708      */
2709 
2710     /* read in whole auxv vector and copy it to memelfnote */
2711     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2712     if (ptr != NULL) {
2713         fill_note(note, "CORE", NT_AUXV, len, ptr);
2714         unlock_user(ptr, auxv, len);
2715     }
2716 }
2717 
2718 /*
2719  * Constructs name of coredump file.  We have following convention
2720  * for the name:
2721  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2722  *
2723  * Returns 0 in case of success, -1 otherwise (errno is set).
2724  */
2725 static int core_dump_filename(const TaskState *ts, char *buf,
2726                               size_t bufsize)
2727 {
2728     char timestamp[64];
2729     char *filename = NULL;
2730     char *base_filename = NULL;
2731     struct timeval tv;
2732     struct tm tm;
2733 
2734     assert(bufsize >= PATH_MAX);
2735 
2736     if (gettimeofday(&tv, NULL) < 0) {
2737         (void) fprintf(stderr, "unable to get current timestamp: %s",
2738                        strerror(errno));
2739         return (-1);
2740     }
2741 
2742     filename = strdup(ts->bprm->filename);
2743     base_filename = strdup(basename(filename));
2744     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2745                     localtime_r(&tv.tv_sec, &tm));
2746     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2747                     base_filename, timestamp, (int)getpid());
2748     free(base_filename);
2749     free(filename);
2750 
2751     return (0);
2752 }
2753 
2754 static int dump_write(int fd, const void *ptr, size_t size)
2755 {
2756     const char *bufp = (const char *)ptr;
2757     ssize_t bytes_written, bytes_left;
2758     struct rlimit dumpsize;
2759     off_t pos;
2760 
2761     bytes_written = 0;
2762     getrlimit(RLIMIT_CORE, &dumpsize);
2763     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2764         if (errno == ESPIPE) { /* not a seekable stream */
2765             bytes_left = size;
2766         } else {
2767             return pos;
2768         }
2769     } else {
2770         if (dumpsize.rlim_cur <= pos) {
2771             return -1;
2772         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2773             bytes_left = size;
2774         } else {
2775             size_t limit_left=dumpsize.rlim_cur - pos;
2776             bytes_left = limit_left >= size ? size : limit_left ;
2777         }
2778     }
2779 
2780     /*
2781      * In normal conditions, single write(2) should do but
2782      * in case of socket etc. this mechanism is more portable.
2783      */
2784     do {
2785         bytes_written = write(fd, bufp, bytes_left);
2786         if (bytes_written < 0) {
2787             if (errno == EINTR)
2788                 continue;
2789             return (-1);
2790         } else if (bytes_written == 0) { /* eof */
2791             return (-1);
2792         }
2793         bufp += bytes_written;
2794         bytes_left -= bytes_written;
2795     } while (bytes_left > 0);
2796 
2797     return (0);
2798 }
2799 
2800 static int write_note(struct memelfnote *men, int fd)
2801 {
2802     struct elf_note en;
2803 
2804     en.n_namesz = men->namesz;
2805     en.n_type = men->type;
2806     en.n_descsz = men->datasz;
2807 
2808     bswap_note(&en);
2809 
2810     if (dump_write(fd, &en, sizeof(en)) != 0)
2811         return (-1);
2812     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2813         return (-1);
2814     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2815         return (-1);
2816 
2817     return (0);
2818 }
2819 
2820 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2821 {
2822     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2823     TaskState *ts = (TaskState *)cpu->opaque;
2824     struct elf_thread_status *ets;
2825 
2826     ets = g_malloc0(sizeof (*ets));
2827     ets->num_notes = 1; /* only prstatus is dumped */
2828     fill_prstatus(&ets->prstatus, ts, 0);
2829     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2830     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2831               &ets->prstatus);
2832 
2833     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2834 
2835     info->notes_size += note_size(&ets->notes[0]);
2836 }
2837 
2838 static void init_note_info(struct elf_note_info *info)
2839 {
2840     /* Initialize the elf_note_info structure so that it is at
2841      * least safe to call free_note_info() on it. Must be
2842      * called before calling fill_note_info().
2843      */
2844     memset(info, 0, sizeof (*info));
2845     QTAILQ_INIT(&info->thread_list);
2846 }
2847 
2848 static int fill_note_info(struct elf_note_info *info,
2849                           long signr, const CPUArchState *env)
2850 {
2851 #define NUMNOTES 3
2852     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2853     TaskState *ts = (TaskState *)cpu->opaque;
2854     int i;
2855 
2856     info->notes = g_new0(struct memelfnote, NUMNOTES);
2857     if (info->notes == NULL)
2858         return (-ENOMEM);
2859     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2860     if (info->prstatus == NULL)
2861         return (-ENOMEM);
2862     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2863     if (info->prstatus == NULL)
2864         return (-ENOMEM);
2865 
2866     /*
2867      * First fill in status (and registers) of current thread
2868      * including process info & aux vector.
2869      */
2870     fill_prstatus(info->prstatus, ts, signr);
2871     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2872     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2873               sizeof (*info->prstatus), info->prstatus);
2874     fill_psinfo(info->psinfo, ts);
2875     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2876               sizeof (*info->psinfo), info->psinfo);
2877     fill_auxv_note(&info->notes[2], ts);
2878     info->numnote = 3;
2879 
2880     info->notes_size = 0;
2881     for (i = 0; i < info->numnote; i++)
2882         info->notes_size += note_size(&info->notes[i]);
2883 
2884     /* read and fill status of all threads */
2885     cpu_list_lock();
2886     CPU_FOREACH(cpu) {
2887         if (cpu == thread_cpu) {
2888             continue;
2889         }
2890         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2891     }
2892     cpu_list_unlock();
2893 
2894     return (0);
2895 }
2896 
2897 static void free_note_info(struct elf_note_info *info)
2898 {
2899     struct elf_thread_status *ets;
2900 
2901     while (!QTAILQ_EMPTY(&info->thread_list)) {
2902         ets = QTAILQ_FIRST(&info->thread_list);
2903         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2904         g_free(ets);
2905     }
2906 
2907     g_free(info->prstatus);
2908     g_free(info->psinfo);
2909     g_free(info->notes);
2910 }
2911 
2912 static int write_note_info(struct elf_note_info *info, int fd)
2913 {
2914     struct elf_thread_status *ets;
2915     int i, error = 0;
2916 
2917     /* write prstatus, psinfo and auxv for current thread */
2918     for (i = 0; i < info->numnote; i++)
2919         if ((error = write_note(&info->notes[i], fd)) != 0)
2920             return (error);
2921 
2922     /* write prstatus for each thread */
2923     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2924         if ((error = write_note(&ets->notes[0], fd)) != 0)
2925             return (error);
2926     }
2927 
2928     return (0);
2929 }
2930 
2931 /*
2932  * Write out ELF coredump.
2933  *
2934  * See documentation of ELF object file format in:
2935  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2936  *
2937  * Coredump format in linux is following:
2938  *
2939  * 0   +----------------------+         \
2940  *     | ELF header           | ET_CORE  |
2941  *     +----------------------+          |
2942  *     | ELF program headers  |          |--- headers
2943  *     | - NOTE section       |          |
2944  *     | - PT_LOAD sections   |          |
2945  *     +----------------------+         /
2946  *     | NOTEs:               |
2947  *     | - NT_PRSTATUS        |
2948  *     | - NT_PRSINFO         |
2949  *     | - NT_AUXV            |
2950  *     +----------------------+ <-- aligned to target page
2951  *     | Process memory dump  |
2952  *     :                      :
2953  *     .                      .
2954  *     :                      :
2955  *     |                      |
2956  *     +----------------------+
2957  *
2958  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2959  * NT_PRSINFO  -> struct elf_prpsinfo
2960  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2961  *
2962  * Format follows System V format as close as possible.  Current
2963  * version limitations are as follows:
2964  *     - no floating point registers are dumped
2965  *
2966  * Function returns 0 in case of success, negative errno otherwise.
2967  *
2968  * TODO: make this work also during runtime: it should be
2969  * possible to force coredump from running process and then
2970  * continue processing.  For example qemu could set up SIGUSR2
2971  * handler (provided that target process haven't registered
2972  * handler for that) that does the dump when signal is received.
2973  */
2974 static int elf_core_dump(int signr, const CPUArchState *env)
2975 {
2976     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2977     const TaskState *ts = (const TaskState *)cpu->opaque;
2978     struct vm_area_struct *vma = NULL;
2979     char corefile[PATH_MAX];
2980     struct elf_note_info info;
2981     struct elfhdr elf;
2982     struct elf_phdr phdr;
2983     struct rlimit dumpsize;
2984     struct mm_struct *mm = NULL;
2985     off_t offset = 0, data_offset = 0;
2986     int segs = 0;
2987     int fd = -1;
2988 
2989     init_note_info(&info);
2990 
2991     errno = 0;
2992     getrlimit(RLIMIT_CORE, &dumpsize);
2993     if (dumpsize.rlim_cur == 0)
2994         return 0;
2995 
2996     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2997         return (-errno);
2998 
2999     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3000                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3001         return (-errno);
3002 
3003     /*
3004      * Walk through target process memory mappings and
3005      * set up structure containing this information.  After
3006      * this point vma_xxx functions can be used.
3007      */
3008     if ((mm = vma_init()) == NULL)
3009         goto out;
3010 
3011     walk_memory_regions(mm, vma_walker);
3012     segs = vma_get_mapping_count(mm);
3013 
3014     /*
3015      * Construct valid coredump ELF header.  We also
3016      * add one more segment for notes.
3017      */
3018     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3019     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3020         goto out;
3021 
3022     /* fill in the in-memory version of notes */
3023     if (fill_note_info(&info, signr, env) < 0)
3024         goto out;
3025 
3026     offset += sizeof (elf);                             /* elf header */
3027     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3028 
3029     /* write out notes program header */
3030     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3031 
3032     offset += info.notes_size;
3033     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3034         goto out;
3035 
3036     /*
3037      * ELF specification wants data to start at page boundary so
3038      * we align it here.
3039      */
3040     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3041 
3042     /*
3043      * Write program headers for memory regions mapped in
3044      * the target process.
3045      */
3046     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3047         (void) memset(&phdr, 0, sizeof (phdr));
3048 
3049         phdr.p_type = PT_LOAD;
3050         phdr.p_offset = offset;
3051         phdr.p_vaddr = vma->vma_start;
3052         phdr.p_paddr = 0;
3053         phdr.p_filesz = vma_dump_size(vma);
3054         offset += phdr.p_filesz;
3055         phdr.p_memsz = vma->vma_end - vma->vma_start;
3056         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3057         if (vma->vma_flags & PROT_WRITE)
3058             phdr.p_flags |= PF_W;
3059         if (vma->vma_flags & PROT_EXEC)
3060             phdr.p_flags |= PF_X;
3061         phdr.p_align = ELF_EXEC_PAGESIZE;
3062 
3063         bswap_phdr(&phdr, 1);
3064         dump_write(fd, &phdr, sizeof (phdr));
3065     }
3066 
3067     /*
3068      * Next we write notes just after program headers.  No
3069      * alignment needed here.
3070      */
3071     if (write_note_info(&info, fd) < 0)
3072         goto out;
3073 
3074     /* align data to page boundary */
3075     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3076         goto out;
3077 
3078     /*
3079      * Finally we can dump process memory into corefile as well.
3080      */
3081     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3082         abi_ulong addr;
3083         abi_ulong end;
3084 
3085         end = vma->vma_start + vma_dump_size(vma);
3086 
3087         for (addr = vma->vma_start; addr < end;
3088              addr += TARGET_PAGE_SIZE) {
3089             char page[TARGET_PAGE_SIZE];
3090             int error;
3091 
3092             /*
3093              *  Read in page from target process memory and
3094              *  write it to coredump file.
3095              */
3096             error = copy_from_user(page, addr, sizeof (page));
3097             if (error != 0) {
3098                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3099                                addr);
3100                 errno = -error;
3101                 goto out;
3102             }
3103             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3104                 goto out;
3105         }
3106     }
3107 
3108  out:
3109     free_note_info(&info);
3110     if (mm != NULL)
3111         vma_delete(mm);
3112     (void) close(fd);
3113 
3114     if (errno != 0)
3115         return (-errno);
3116     return (0);
3117 }
3118 #endif /* USE_ELF_CORE_DUMP */
3119 
3120 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3121 {
3122     init_thread(regs, infop);
3123 }
3124