xref: /qemu/linux-user/elfload.c (revision 1b0578f5)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
463     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
468     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475      * to our VFP_FP16 feature bit.
476      */
477     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
479 
480     return hwcaps;
481 }
482 
483 static uint32_t get_elf_hwcap2(void)
484 {
485     ARMCPU *cpu = ARM_CPU(thread_cpu);
486     uint32_t hwcaps = 0;
487 
488     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
489     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
490     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
492     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493     return hwcaps;
494 }
495 
496 #undef GET_FEATURE
497 
498 #else
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
501 
502 #define ELF_ARCH        EM_AARCH64
503 #define ELF_CLASS       ELFCLASS64
504 #define ELF_PLATFORM    "aarch64"
505 
506 static inline void init_thread(struct target_pt_regs *regs,
507                                struct image_info *infop)
508 {
509     abi_long stack = infop->start_stack;
510     memset(regs, 0, sizeof(*regs));
511 
512     regs->pc = infop->entry & ~0x3ULL;
513     regs->sp = stack;
514 }
515 
516 #define ELF_NREG    34
517 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
518 
519 static void elf_core_copy_regs(target_elf_gregset_t *regs,
520                                const CPUARMState *env)
521 {
522     int i;
523 
524     for (i = 0; i < 32; i++) {
525         (*regs)[i] = tswapreg(env->xregs[i]);
526     }
527     (*regs)[32] = tswapreg(env->pc);
528     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
529 }
530 
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE       4096
533 
534 enum {
535     ARM_HWCAP_A64_FP            = 1 << 0,
536     ARM_HWCAP_A64_ASIMD         = 1 << 1,
537     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
538     ARM_HWCAP_A64_AES           = 1 << 3,
539     ARM_HWCAP_A64_PMULL         = 1 << 4,
540     ARM_HWCAP_A64_SHA1          = 1 << 5,
541     ARM_HWCAP_A64_SHA2          = 1 << 6,
542     ARM_HWCAP_A64_CRC32         = 1 << 7,
543     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
544     ARM_HWCAP_A64_FPHP          = 1 << 9,
545     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
546     ARM_HWCAP_A64_CPUID         = 1 << 11,
547     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
548     ARM_HWCAP_A64_JSCVT         = 1 << 13,
549     ARM_HWCAP_A64_FCMA          = 1 << 14,
550     ARM_HWCAP_A64_LRCPC         = 1 << 15,
551     ARM_HWCAP_A64_DCPOP         = 1 << 16,
552     ARM_HWCAP_A64_SHA3          = 1 << 17,
553     ARM_HWCAP_A64_SM3           = 1 << 18,
554     ARM_HWCAP_A64_SM4           = 1 << 19,
555     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
556     ARM_HWCAP_A64_SHA512        = 1 << 21,
557     ARM_HWCAP_A64_SVE           = 1 << 22,
558 };
559 
560 #define ELF_HWCAP get_elf_hwcap()
561 
562 static uint32_t get_elf_hwcap(void)
563 {
564     ARMCPU *cpu = ARM_CPU(thread_cpu);
565     uint32_t hwcaps = 0;
566 
567     hwcaps |= ARM_HWCAP_A64_FP;
568     hwcaps |= ARM_HWCAP_A64_ASIMD;
569 
570     /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
574     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
575     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
577     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
578     GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579     GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580     GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581     GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
582     GET_FEATURE(ARM_FEATURE_V8_FP16,
583                 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
584     GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
585     GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
586     GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
587     GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
588     GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
589 #undef GET_FEATURE
590 
591     return hwcaps;
592 }
593 
594 #endif /* not TARGET_AARCH64 */
595 #endif /* TARGET_ARM */
596 
597 #ifdef TARGET_SPARC
598 #ifdef TARGET_SPARC64
599 
600 #define ELF_START_MMAP 0x80000000
601 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
603 #ifndef TARGET_ABI32
604 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
605 #else
606 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607 #endif
608 
609 #define ELF_CLASS   ELFCLASS64
610 #define ELF_ARCH    EM_SPARCV9
611 
612 #define STACK_BIAS              2047
613 
614 static inline void init_thread(struct target_pt_regs *regs,
615                                struct image_info *infop)
616 {
617 #ifndef TARGET_ABI32
618     regs->tstate = 0;
619 #endif
620     regs->pc = infop->entry;
621     regs->npc = regs->pc + 4;
622     regs->y = 0;
623 #ifdef TARGET_ABI32
624     regs->u_regs[14] = infop->start_stack - 16 * 4;
625 #else
626     if (personality(infop->personality) == PER_LINUX32)
627         regs->u_regs[14] = infop->start_stack - 16 * 4;
628     else
629         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
630 #endif
631 }
632 
633 #else
634 #define ELF_START_MMAP 0x80000000
635 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636                     | HWCAP_SPARC_MULDIV)
637 
638 #define ELF_CLASS   ELFCLASS32
639 #define ELF_ARCH    EM_SPARC
640 
641 static inline void init_thread(struct target_pt_regs *regs,
642                                struct image_info *infop)
643 {
644     regs->psr = 0;
645     regs->pc = infop->entry;
646     regs->npc = regs->pc + 4;
647     regs->y = 0;
648     regs->u_regs[14] = infop->start_stack - 16 * 4;
649 }
650 
651 #endif
652 #endif
653 
654 #ifdef TARGET_PPC
655 
656 #define ELF_MACHINE    PPC_ELF_MACHINE
657 #define ELF_START_MMAP 0x80000000
658 
659 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
660 
661 #define elf_check_arch(x) ( (x) == EM_PPC64 )
662 
663 #define ELF_CLASS       ELFCLASS64
664 
665 #else
666 
667 #define ELF_CLASS       ELFCLASS32
668 
669 #endif
670 
671 #define ELF_ARCH        EM_PPC
672 
673 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674    See arch/powerpc/include/asm/cputable.h.  */
675 enum {
676     QEMU_PPC_FEATURE_32 = 0x80000000,
677     QEMU_PPC_FEATURE_64 = 0x40000000,
678     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691     QEMU_PPC_FEATURE_CELL = 0x00010000,
692     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693     QEMU_PPC_FEATURE_SMT = 0x00004000,
694     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696     QEMU_PPC_FEATURE_PA6T = 0x00000800,
697     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
702 
703     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
705 
706     /* Feature definitions in AT_HWCAP2.  */
707     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
713 };
714 
715 #define ELF_HWCAP get_elf_hwcap()
716 
717 static uint32_t get_elf_hwcap(void)
718 {
719     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
720     uint32_t features = 0;
721 
722     /* We don't have to be terribly complete here; the high points are
723        Altivec/FP/SPE support.  Anything else is just a bonus.  */
724 #define GET_FEATURE(flag, feature)                                      \
725     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
726 #define GET_FEATURE2(flags, feature) \
727     do { \
728         if ((cpu->env.insns_flags2 & flags) == flags) { \
729             features |= feature; \
730         } \
731     } while (0)
732     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
733     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
734     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
735     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
736     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
737     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
738     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
739     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
740     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
741     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
742     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
743                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
744                   QEMU_PPC_FEATURE_ARCH_2_06);
745 #undef GET_FEATURE
746 #undef GET_FEATURE2
747 
748     return features;
749 }
750 
751 #define ELF_HWCAP2 get_elf_hwcap2()
752 
753 static uint32_t get_elf_hwcap2(void)
754 {
755     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
756     uint32_t features = 0;
757 
758 #define GET_FEATURE(flag, feature)                                      \
759     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature)                                      \
761     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762 
763     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
764     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
765     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
766                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
767 
768 #undef GET_FEATURE
769 #undef GET_FEATURE2
770 
771     return features;
772 }
773 
774 /*
775  * The requirements here are:
776  * - keep the final alignment of sp (sp & 0xf)
777  * - make sure the 32-bit value at the first 16 byte aligned position of
778  *   AUXV is greater than 16 for glibc compatibility.
779  *   AT_IGNOREPPC is used for that.
780  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
781  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
782  */
783 #define DLINFO_ARCH_ITEMS       5
784 #define ARCH_DLINFO                                     \
785     do {                                                \
786         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
787         /*                                              \
788          * Handle glibc compatibility: these magic entries must \
789          * be at the lowest addresses in the final auxv.        \
790          */                                             \
791         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
792         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
793         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
794         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
795         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
796     } while (0)
797 
798 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
799 {
800     _regs->gpr[1] = infop->start_stack;
801 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
802     if (get_ppc64_abi(infop) < 2) {
803         uint64_t val;
804         get_user_u64(val, infop->entry + 8);
805         _regs->gpr[2] = val + infop->load_bias;
806         get_user_u64(val, infop->entry);
807         infop->entry = val + infop->load_bias;
808     } else {
809         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
810     }
811 #endif
812     _regs->nip = infop->entry;
813 }
814 
815 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
816 #define ELF_NREG 48
817 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
818 
819 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
820 {
821     int i;
822     target_ulong ccr = 0;
823 
824     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
825         (*regs)[i] = tswapreg(env->gpr[i]);
826     }
827 
828     (*regs)[32] = tswapreg(env->nip);
829     (*regs)[33] = tswapreg(env->msr);
830     (*regs)[35] = tswapreg(env->ctr);
831     (*regs)[36] = tswapreg(env->lr);
832     (*regs)[37] = tswapreg(env->xer);
833 
834     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
835         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
836     }
837     (*regs)[38] = tswapreg(ccr);
838 }
839 
840 #define USE_ELF_CORE_DUMP
841 #define ELF_EXEC_PAGESIZE       4096
842 
843 #endif
844 
845 #ifdef TARGET_MIPS
846 
847 #define ELF_START_MMAP 0x80000000
848 
849 #ifdef TARGET_MIPS64
850 #define ELF_CLASS   ELFCLASS64
851 #else
852 #define ELF_CLASS   ELFCLASS32
853 #endif
854 #define ELF_ARCH    EM_MIPS
855 
856 static inline void init_thread(struct target_pt_regs *regs,
857                                struct image_info *infop)
858 {
859     regs->cp0_status = 2 << CP0St_KSU;
860     regs->cp0_epc = infop->entry;
861     regs->regs[29] = infop->start_stack;
862 }
863 
864 /* See linux kernel: arch/mips/include/asm/elf.h.  */
865 #define ELF_NREG 45
866 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
867 
868 /* See linux kernel: arch/mips/include/asm/reg.h.  */
869 enum {
870 #ifdef TARGET_MIPS64
871     TARGET_EF_R0 = 0,
872 #else
873     TARGET_EF_R0 = 6,
874 #endif
875     TARGET_EF_R26 = TARGET_EF_R0 + 26,
876     TARGET_EF_R27 = TARGET_EF_R0 + 27,
877     TARGET_EF_LO = TARGET_EF_R0 + 32,
878     TARGET_EF_HI = TARGET_EF_R0 + 33,
879     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
880     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
881     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
882     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
883 };
884 
885 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
886 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
887 {
888     int i;
889 
890     for (i = 0; i < TARGET_EF_R0; i++) {
891         (*regs)[i] = 0;
892     }
893     (*regs)[TARGET_EF_R0] = 0;
894 
895     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
896         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
897     }
898 
899     (*regs)[TARGET_EF_R26] = 0;
900     (*regs)[TARGET_EF_R27] = 0;
901     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
902     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
903     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
904     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
905     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
906     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
907 }
908 
909 #define USE_ELF_CORE_DUMP
910 #define ELF_EXEC_PAGESIZE        4096
911 
912 /* See arch/mips/include/uapi/asm/hwcap.h.  */
913 enum {
914     HWCAP_MIPS_R6           = (1 << 0),
915     HWCAP_MIPS_MSA          = (1 << 1),
916 };
917 
918 #define ELF_HWCAP get_elf_hwcap()
919 
920 static uint32_t get_elf_hwcap(void)
921 {
922     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
923     uint32_t hwcaps = 0;
924 
925 #define GET_FEATURE(flag, hwcap) \
926     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
927 
928     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
929     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
930 
931 #undef GET_FEATURE
932 
933     return hwcaps;
934 }
935 
936 #endif /* TARGET_MIPS */
937 
938 #ifdef TARGET_MICROBLAZE
939 
940 #define ELF_START_MMAP 0x80000000
941 
942 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
943 
944 #define ELF_CLASS   ELFCLASS32
945 #define ELF_ARCH    EM_MICROBLAZE
946 
947 static inline void init_thread(struct target_pt_regs *regs,
948                                struct image_info *infop)
949 {
950     regs->pc = infop->entry;
951     regs->r1 = infop->start_stack;
952 
953 }
954 
955 #define ELF_EXEC_PAGESIZE        4096
956 
957 #define USE_ELF_CORE_DUMP
958 #define ELF_NREG 38
959 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
960 
961 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
962 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
963 {
964     int i, pos = 0;
965 
966     for (i = 0; i < 32; i++) {
967         (*regs)[pos++] = tswapreg(env->regs[i]);
968     }
969 
970     for (i = 0; i < 6; i++) {
971         (*regs)[pos++] = tswapreg(env->sregs[i]);
972     }
973 }
974 
975 #endif /* TARGET_MICROBLAZE */
976 
977 #ifdef TARGET_NIOS2
978 
979 #define ELF_START_MMAP 0x80000000
980 
981 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
982 
983 #define ELF_CLASS   ELFCLASS32
984 #define ELF_ARCH    EM_ALTERA_NIOS2
985 
986 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
987 {
988     regs->ea = infop->entry;
989     regs->sp = infop->start_stack;
990     regs->estatus = 0x3;
991 }
992 
993 #define ELF_EXEC_PAGESIZE        4096
994 
995 #define USE_ELF_CORE_DUMP
996 #define ELF_NREG 49
997 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
998 
999 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1000 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1001                                const CPUNios2State *env)
1002 {
1003     int i;
1004 
1005     (*regs)[0] = -1;
1006     for (i = 1; i < 8; i++)    /* r0-r7 */
1007         (*regs)[i] = tswapreg(env->regs[i + 7]);
1008 
1009     for (i = 8; i < 16; i++)   /* r8-r15 */
1010         (*regs)[i] = tswapreg(env->regs[i - 8]);
1011 
1012     for (i = 16; i < 24; i++)  /* r16-r23 */
1013         (*regs)[i] = tswapreg(env->regs[i + 7]);
1014     (*regs)[24] = -1;    /* R_ET */
1015     (*regs)[25] = -1;    /* R_BT */
1016     (*regs)[26] = tswapreg(env->regs[R_GP]);
1017     (*regs)[27] = tswapreg(env->regs[R_SP]);
1018     (*regs)[28] = tswapreg(env->regs[R_FP]);
1019     (*regs)[29] = tswapreg(env->regs[R_EA]);
1020     (*regs)[30] = -1;    /* R_SSTATUS */
1021     (*regs)[31] = tswapreg(env->regs[R_RA]);
1022 
1023     (*regs)[32] = tswapreg(env->regs[R_PC]);
1024 
1025     (*regs)[33] = -1; /* R_STATUS */
1026     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1027 
1028     for (i = 35; i < 49; i++)    /* ... */
1029         (*regs)[i] = -1;
1030 }
1031 
1032 #endif /* TARGET_NIOS2 */
1033 
1034 #ifdef TARGET_OPENRISC
1035 
1036 #define ELF_START_MMAP 0x08000000
1037 
1038 #define ELF_ARCH EM_OPENRISC
1039 #define ELF_CLASS ELFCLASS32
1040 #define ELF_DATA  ELFDATA2MSB
1041 
1042 static inline void init_thread(struct target_pt_regs *regs,
1043                                struct image_info *infop)
1044 {
1045     regs->pc = infop->entry;
1046     regs->gpr[1] = infop->start_stack;
1047 }
1048 
1049 #define USE_ELF_CORE_DUMP
1050 #define ELF_EXEC_PAGESIZE 8192
1051 
1052 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1053 #define ELF_NREG 34 /* gprs and pc, sr */
1054 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1055 
1056 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1057                                const CPUOpenRISCState *env)
1058 {
1059     int i;
1060 
1061     for (i = 0; i < 32; i++) {
1062         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1063     }
1064     (*regs)[32] = tswapreg(env->pc);
1065     (*regs)[33] = tswapreg(cpu_get_sr(env));
1066 }
1067 #define ELF_HWCAP 0
1068 #define ELF_PLATFORM NULL
1069 
1070 #endif /* TARGET_OPENRISC */
1071 
1072 #ifdef TARGET_SH4
1073 
1074 #define ELF_START_MMAP 0x80000000
1075 
1076 #define ELF_CLASS ELFCLASS32
1077 #define ELF_ARCH  EM_SH
1078 
1079 static inline void init_thread(struct target_pt_regs *regs,
1080                                struct image_info *infop)
1081 {
1082     /* Check other registers XXXXX */
1083     regs->pc = infop->entry;
1084     regs->regs[15] = infop->start_stack;
1085 }
1086 
1087 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1088 #define ELF_NREG 23
1089 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1090 
1091 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1092 enum {
1093     TARGET_REG_PC = 16,
1094     TARGET_REG_PR = 17,
1095     TARGET_REG_SR = 18,
1096     TARGET_REG_GBR = 19,
1097     TARGET_REG_MACH = 20,
1098     TARGET_REG_MACL = 21,
1099     TARGET_REG_SYSCALL = 22
1100 };
1101 
1102 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1103                                       const CPUSH4State *env)
1104 {
1105     int i;
1106 
1107     for (i = 0; i < 16; i++) {
1108         (*regs)[i] = tswapreg(env->gregs[i]);
1109     }
1110 
1111     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1112     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1113     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1114     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1115     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1116     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1117     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1118 }
1119 
1120 #define USE_ELF_CORE_DUMP
1121 #define ELF_EXEC_PAGESIZE        4096
1122 
1123 enum {
1124     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1125     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1126     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1127     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1128     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1129     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1130     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1131     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1132     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1133     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1134 };
1135 
1136 #define ELF_HWCAP get_elf_hwcap()
1137 
1138 static uint32_t get_elf_hwcap(void)
1139 {
1140     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1141     uint32_t hwcap = 0;
1142 
1143     hwcap |= SH_CPU_HAS_FPU;
1144 
1145     if (cpu->env.features & SH_FEATURE_SH4A) {
1146         hwcap |= SH_CPU_HAS_LLSC;
1147     }
1148 
1149     return hwcap;
1150 }
1151 
1152 #endif
1153 
1154 #ifdef TARGET_CRIS
1155 
1156 #define ELF_START_MMAP 0x80000000
1157 
1158 #define ELF_CLASS ELFCLASS32
1159 #define ELF_ARCH  EM_CRIS
1160 
1161 static inline void init_thread(struct target_pt_regs *regs,
1162                                struct image_info *infop)
1163 {
1164     regs->erp = infop->entry;
1165 }
1166 
1167 #define ELF_EXEC_PAGESIZE        8192
1168 
1169 #endif
1170 
1171 #ifdef TARGET_M68K
1172 
1173 #define ELF_START_MMAP 0x80000000
1174 
1175 #define ELF_CLASS       ELFCLASS32
1176 #define ELF_ARCH        EM_68K
1177 
1178 /* ??? Does this need to do anything?
1179    #define ELF_PLAT_INIT(_r) */
1180 
1181 static inline void init_thread(struct target_pt_regs *regs,
1182                                struct image_info *infop)
1183 {
1184     regs->usp = infop->start_stack;
1185     regs->sr = 0;
1186     regs->pc = infop->entry;
1187 }
1188 
1189 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1190 #define ELF_NREG 20
1191 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1192 
1193 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1194 {
1195     (*regs)[0] = tswapreg(env->dregs[1]);
1196     (*regs)[1] = tswapreg(env->dregs[2]);
1197     (*regs)[2] = tswapreg(env->dregs[3]);
1198     (*regs)[3] = tswapreg(env->dregs[4]);
1199     (*regs)[4] = tswapreg(env->dregs[5]);
1200     (*regs)[5] = tswapreg(env->dregs[6]);
1201     (*regs)[6] = tswapreg(env->dregs[7]);
1202     (*regs)[7] = tswapreg(env->aregs[0]);
1203     (*regs)[8] = tswapreg(env->aregs[1]);
1204     (*regs)[9] = tswapreg(env->aregs[2]);
1205     (*regs)[10] = tswapreg(env->aregs[3]);
1206     (*regs)[11] = tswapreg(env->aregs[4]);
1207     (*regs)[12] = tswapreg(env->aregs[5]);
1208     (*regs)[13] = tswapreg(env->aregs[6]);
1209     (*regs)[14] = tswapreg(env->dregs[0]);
1210     (*regs)[15] = tswapreg(env->aregs[7]);
1211     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1212     (*regs)[17] = tswapreg(env->sr);
1213     (*regs)[18] = tswapreg(env->pc);
1214     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1215 }
1216 
1217 #define USE_ELF_CORE_DUMP
1218 #define ELF_EXEC_PAGESIZE       8192
1219 
1220 #endif
1221 
1222 #ifdef TARGET_ALPHA
1223 
1224 #define ELF_START_MMAP (0x30000000000ULL)
1225 
1226 #define ELF_CLASS      ELFCLASS64
1227 #define ELF_ARCH       EM_ALPHA
1228 
1229 static inline void init_thread(struct target_pt_regs *regs,
1230                                struct image_info *infop)
1231 {
1232     regs->pc = infop->entry;
1233     regs->ps = 8;
1234     regs->usp = infop->start_stack;
1235 }
1236 
1237 #define ELF_EXEC_PAGESIZE        8192
1238 
1239 #endif /* TARGET_ALPHA */
1240 
1241 #ifdef TARGET_S390X
1242 
1243 #define ELF_START_MMAP (0x20000000000ULL)
1244 
1245 #define ELF_CLASS	ELFCLASS64
1246 #define ELF_DATA	ELFDATA2MSB
1247 #define ELF_ARCH	EM_S390
1248 
1249 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1250 {
1251     regs->psw.addr = infop->entry;
1252     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1253     regs->gprs[15] = infop->start_stack;
1254 }
1255 
1256 #endif /* TARGET_S390X */
1257 
1258 #ifdef TARGET_TILEGX
1259 
1260 /* 42 bits real used address, a half for user mode */
1261 #define ELF_START_MMAP (0x00000020000000000ULL)
1262 
1263 #define elf_check_arch(x) ((x) == EM_TILEGX)
1264 
1265 #define ELF_CLASS   ELFCLASS64
1266 #define ELF_DATA    ELFDATA2LSB
1267 #define ELF_ARCH    EM_TILEGX
1268 
1269 static inline void init_thread(struct target_pt_regs *regs,
1270                                struct image_info *infop)
1271 {
1272     regs->pc = infop->entry;
1273     regs->sp = infop->start_stack;
1274 
1275 }
1276 
1277 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1278 
1279 #endif /* TARGET_TILEGX */
1280 
1281 #ifdef TARGET_RISCV
1282 
1283 #define ELF_START_MMAP 0x80000000
1284 #define ELF_ARCH  EM_RISCV
1285 
1286 #ifdef TARGET_RISCV32
1287 #define ELF_CLASS ELFCLASS32
1288 #else
1289 #define ELF_CLASS ELFCLASS64
1290 #endif
1291 
1292 static inline void init_thread(struct target_pt_regs *regs,
1293                                struct image_info *infop)
1294 {
1295     regs->sepc = infop->entry;
1296     regs->sp = infop->start_stack;
1297 }
1298 
1299 #define ELF_EXEC_PAGESIZE 4096
1300 
1301 #endif /* TARGET_RISCV */
1302 
1303 #ifdef TARGET_HPPA
1304 
1305 #define ELF_START_MMAP  0x80000000
1306 #define ELF_CLASS       ELFCLASS32
1307 #define ELF_ARCH        EM_PARISC
1308 #define ELF_PLATFORM    "PARISC"
1309 #define STACK_GROWS_DOWN 0
1310 #define STACK_ALIGNMENT  64
1311 
1312 static inline void init_thread(struct target_pt_regs *regs,
1313                                struct image_info *infop)
1314 {
1315     regs->iaoq[0] = infop->entry;
1316     regs->iaoq[1] = infop->entry + 4;
1317     regs->gr[23] = 0;
1318     regs->gr[24] = infop->arg_start;
1319     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1320     /* The top-of-stack contains a linkage buffer.  */
1321     regs->gr[30] = infop->start_stack + 64;
1322     regs->gr[31] = infop->entry;
1323 }
1324 
1325 #endif /* TARGET_HPPA */
1326 
1327 #ifdef TARGET_XTENSA
1328 
1329 #define ELF_START_MMAP 0x20000000
1330 
1331 #define ELF_CLASS       ELFCLASS32
1332 #define ELF_ARCH        EM_XTENSA
1333 
1334 static inline void init_thread(struct target_pt_regs *regs,
1335                                struct image_info *infop)
1336 {
1337     regs->windowbase = 0;
1338     regs->windowstart = 1;
1339     regs->areg[1] = infop->start_stack;
1340     regs->pc = infop->entry;
1341 }
1342 
1343 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1344 #define ELF_NREG 128
1345 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1346 
1347 enum {
1348     TARGET_REG_PC,
1349     TARGET_REG_PS,
1350     TARGET_REG_LBEG,
1351     TARGET_REG_LEND,
1352     TARGET_REG_LCOUNT,
1353     TARGET_REG_SAR,
1354     TARGET_REG_WINDOWSTART,
1355     TARGET_REG_WINDOWBASE,
1356     TARGET_REG_THREADPTR,
1357     TARGET_REG_AR0 = 64,
1358 };
1359 
1360 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1361                                const CPUXtensaState *env)
1362 {
1363     unsigned i;
1364 
1365     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1366     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1367     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1368     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1369     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1370     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1371     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1372     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1373     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1374     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1375     for (i = 0; i < env->config->nareg; ++i) {
1376         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1377     }
1378 }
1379 
1380 #define USE_ELF_CORE_DUMP
1381 #define ELF_EXEC_PAGESIZE       4096
1382 
1383 #endif /* TARGET_XTENSA */
1384 
1385 #ifndef ELF_PLATFORM
1386 #define ELF_PLATFORM (NULL)
1387 #endif
1388 
1389 #ifndef ELF_MACHINE
1390 #define ELF_MACHINE ELF_ARCH
1391 #endif
1392 
1393 #ifndef elf_check_arch
1394 #define elf_check_arch(x) ((x) == ELF_ARCH)
1395 #endif
1396 
1397 #ifndef ELF_HWCAP
1398 #define ELF_HWCAP 0
1399 #endif
1400 
1401 #ifndef STACK_GROWS_DOWN
1402 #define STACK_GROWS_DOWN 1
1403 #endif
1404 
1405 #ifndef STACK_ALIGNMENT
1406 #define STACK_ALIGNMENT 16
1407 #endif
1408 
1409 #ifdef TARGET_ABI32
1410 #undef ELF_CLASS
1411 #define ELF_CLASS ELFCLASS32
1412 #undef bswaptls
1413 #define bswaptls(ptr) bswap32s(ptr)
1414 #endif
1415 
1416 #include "elf.h"
1417 
1418 struct exec
1419 {
1420     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1421     unsigned int a_text;   /* length of text, in bytes */
1422     unsigned int a_data;   /* length of data, in bytes */
1423     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1424     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1425     unsigned int a_entry;  /* start address */
1426     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1427     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1428 };
1429 
1430 
1431 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1432 #define OMAGIC 0407
1433 #define NMAGIC 0410
1434 #define ZMAGIC 0413
1435 #define QMAGIC 0314
1436 
1437 /* Necessary parameters */
1438 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1439 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1440                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1441 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1442 
1443 #define DLINFO_ITEMS 15
1444 
1445 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1446 {
1447     memcpy(to, from, n);
1448 }
1449 
1450 #ifdef BSWAP_NEEDED
1451 static void bswap_ehdr(struct elfhdr *ehdr)
1452 {
1453     bswap16s(&ehdr->e_type);            /* Object file type */
1454     bswap16s(&ehdr->e_machine);         /* Architecture */
1455     bswap32s(&ehdr->e_version);         /* Object file version */
1456     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1457     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1458     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1459     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1460     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1461     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1462     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1463     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1464     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1465     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1466 }
1467 
1468 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1469 {
1470     int i;
1471     for (i = 0; i < phnum; ++i, ++phdr) {
1472         bswap32s(&phdr->p_type);        /* Segment type */
1473         bswap32s(&phdr->p_flags);       /* Segment flags */
1474         bswaptls(&phdr->p_offset);      /* Segment file offset */
1475         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1476         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1477         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1478         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1479         bswaptls(&phdr->p_align);       /* Segment alignment */
1480     }
1481 }
1482 
1483 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1484 {
1485     int i;
1486     for (i = 0; i < shnum; ++i, ++shdr) {
1487         bswap32s(&shdr->sh_name);
1488         bswap32s(&shdr->sh_type);
1489         bswaptls(&shdr->sh_flags);
1490         bswaptls(&shdr->sh_addr);
1491         bswaptls(&shdr->sh_offset);
1492         bswaptls(&shdr->sh_size);
1493         bswap32s(&shdr->sh_link);
1494         bswap32s(&shdr->sh_info);
1495         bswaptls(&shdr->sh_addralign);
1496         bswaptls(&shdr->sh_entsize);
1497     }
1498 }
1499 
1500 static void bswap_sym(struct elf_sym *sym)
1501 {
1502     bswap32s(&sym->st_name);
1503     bswaptls(&sym->st_value);
1504     bswaptls(&sym->st_size);
1505     bswap16s(&sym->st_shndx);
1506 }
1507 #else
1508 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1509 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1510 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1511 static inline void bswap_sym(struct elf_sym *sym) { }
1512 #endif
1513 
1514 #ifdef USE_ELF_CORE_DUMP
1515 static int elf_core_dump(int, const CPUArchState *);
1516 #endif /* USE_ELF_CORE_DUMP */
1517 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1518 
1519 /* Verify the portions of EHDR within E_IDENT for the target.
1520    This can be performed before bswapping the entire header.  */
1521 static bool elf_check_ident(struct elfhdr *ehdr)
1522 {
1523     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1524             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1525             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1526             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1527             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1528             && ehdr->e_ident[EI_DATA] == ELF_DATA
1529             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1530 }
1531 
1532 /* Verify the portions of EHDR outside of E_IDENT for the target.
1533    This has to wait until after bswapping the header.  */
1534 static bool elf_check_ehdr(struct elfhdr *ehdr)
1535 {
1536     return (elf_check_arch(ehdr->e_machine)
1537             && ehdr->e_ehsize == sizeof(struct elfhdr)
1538             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1539             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1540 }
1541 
1542 /*
1543  * 'copy_elf_strings()' copies argument/envelope strings from user
1544  * memory to free pages in kernel mem. These are in a format ready
1545  * to be put directly into the top of new user memory.
1546  *
1547  */
1548 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1549                                   abi_ulong p, abi_ulong stack_limit)
1550 {
1551     char *tmp;
1552     int len, i;
1553     abi_ulong top = p;
1554 
1555     if (!p) {
1556         return 0;       /* bullet-proofing */
1557     }
1558 
1559     if (STACK_GROWS_DOWN) {
1560         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1561         for (i = argc - 1; i >= 0; --i) {
1562             tmp = argv[i];
1563             if (!tmp) {
1564                 fprintf(stderr, "VFS: argc is wrong");
1565                 exit(-1);
1566             }
1567             len = strlen(tmp) + 1;
1568             tmp += len;
1569 
1570             if (len > (p - stack_limit)) {
1571                 return 0;
1572             }
1573             while (len) {
1574                 int bytes_to_copy = (len > offset) ? offset : len;
1575                 tmp -= bytes_to_copy;
1576                 p -= bytes_to_copy;
1577                 offset -= bytes_to_copy;
1578                 len -= bytes_to_copy;
1579 
1580                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1581 
1582                 if (offset == 0) {
1583                     memcpy_to_target(p, scratch, top - p);
1584                     top = p;
1585                     offset = TARGET_PAGE_SIZE;
1586                 }
1587             }
1588         }
1589         if (p != top) {
1590             memcpy_to_target(p, scratch + offset, top - p);
1591         }
1592     } else {
1593         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1594         for (i = 0; i < argc; ++i) {
1595             tmp = argv[i];
1596             if (!tmp) {
1597                 fprintf(stderr, "VFS: argc is wrong");
1598                 exit(-1);
1599             }
1600             len = strlen(tmp) + 1;
1601             if (len > (stack_limit - p)) {
1602                 return 0;
1603             }
1604             while (len) {
1605                 int bytes_to_copy = (len > remaining) ? remaining : len;
1606 
1607                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1608 
1609                 tmp += bytes_to_copy;
1610                 remaining -= bytes_to_copy;
1611                 p += bytes_to_copy;
1612                 len -= bytes_to_copy;
1613 
1614                 if (remaining == 0) {
1615                     memcpy_to_target(top, scratch, p - top);
1616                     top = p;
1617                     remaining = TARGET_PAGE_SIZE;
1618                 }
1619             }
1620         }
1621         if (p != top) {
1622             memcpy_to_target(top, scratch, p - top);
1623         }
1624     }
1625 
1626     return p;
1627 }
1628 
1629 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1630  * argument/environment space. Newer kernels (>2.6.33) allow more,
1631  * dependent on stack size, but guarantee at least 32 pages for
1632  * backwards compatibility.
1633  */
1634 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1635 
1636 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1637                                  struct image_info *info)
1638 {
1639     abi_ulong size, error, guard;
1640 
1641     size = guest_stack_size;
1642     if (size < STACK_LOWER_LIMIT) {
1643         size = STACK_LOWER_LIMIT;
1644     }
1645     guard = TARGET_PAGE_SIZE;
1646     if (guard < qemu_real_host_page_size) {
1647         guard = qemu_real_host_page_size;
1648     }
1649 
1650     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1651                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1652     if (error == -1) {
1653         perror("mmap stack");
1654         exit(-1);
1655     }
1656 
1657     /* We reserve one extra page at the top of the stack as guard.  */
1658     if (STACK_GROWS_DOWN) {
1659         target_mprotect(error, guard, PROT_NONE);
1660         info->stack_limit = error + guard;
1661         return info->stack_limit + size - sizeof(void *);
1662     } else {
1663         target_mprotect(error + size, guard, PROT_NONE);
1664         info->stack_limit = error + size;
1665         return error;
1666     }
1667 }
1668 
1669 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1670    after the data section (i.e. bss).  */
1671 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1672 {
1673     uintptr_t host_start, host_map_start, host_end;
1674 
1675     last_bss = TARGET_PAGE_ALIGN(last_bss);
1676 
1677     /* ??? There is confusion between qemu_real_host_page_size and
1678        qemu_host_page_size here and elsewhere in target_mmap, which
1679        may lead to the end of the data section mapping from the file
1680        not being mapped.  At least there was an explicit test and
1681        comment for that here, suggesting that "the file size must
1682        be known".  The comment probably pre-dates the introduction
1683        of the fstat system call in target_mmap which does in fact
1684        find out the size.  What isn't clear is if the workaround
1685        here is still actually needed.  For now, continue with it,
1686        but merge it with the "normal" mmap that would allocate the bss.  */
1687 
1688     host_start = (uintptr_t) g2h(elf_bss);
1689     host_end = (uintptr_t) g2h(last_bss);
1690     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1691 
1692     if (host_map_start < host_end) {
1693         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1694                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1695         if (p == MAP_FAILED) {
1696             perror("cannot mmap brk");
1697             exit(-1);
1698         }
1699     }
1700 
1701     /* Ensure that the bss page(s) are valid */
1702     if ((page_get_flags(last_bss-1) & prot) != prot) {
1703         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1704     }
1705 
1706     if (host_start < host_map_start) {
1707         memset((void *)host_start, 0, host_map_start - host_start);
1708     }
1709 }
1710 
1711 #ifdef TARGET_ARM
1712 static int elf_is_fdpic(struct elfhdr *exec)
1713 {
1714     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1715 }
1716 #else
1717 /* Default implementation, always false.  */
1718 static int elf_is_fdpic(struct elfhdr *exec)
1719 {
1720     return 0;
1721 }
1722 #endif
1723 
1724 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1725 {
1726     uint16_t n;
1727     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1728 
1729     /* elf32_fdpic_loadseg */
1730     n = info->nsegs;
1731     while (n--) {
1732         sp -= 12;
1733         put_user_u32(loadsegs[n].addr, sp+0);
1734         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1735         put_user_u32(loadsegs[n].p_memsz, sp+8);
1736     }
1737 
1738     /* elf32_fdpic_loadmap */
1739     sp -= 4;
1740     put_user_u16(0, sp+0); /* version */
1741     put_user_u16(info->nsegs, sp+2); /* nsegs */
1742 
1743     info->personality = PER_LINUX_FDPIC;
1744     info->loadmap_addr = sp;
1745 
1746     return sp;
1747 }
1748 
1749 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1750                                    struct elfhdr *exec,
1751                                    struct image_info *info,
1752                                    struct image_info *interp_info)
1753 {
1754     abi_ulong sp;
1755     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1756     int size;
1757     int i;
1758     abi_ulong u_rand_bytes;
1759     uint8_t k_rand_bytes[16];
1760     abi_ulong u_platform;
1761     const char *k_platform;
1762     const int n = sizeof(elf_addr_t);
1763 
1764     sp = p;
1765 
1766     /* Needs to be before we load the env/argc/... */
1767     if (elf_is_fdpic(exec)) {
1768         /* Need 4 byte alignment for these structs */
1769         sp &= ~3;
1770         sp = loader_build_fdpic_loadmap(info, sp);
1771         info->other_info = interp_info;
1772         if (interp_info) {
1773             interp_info->other_info = info;
1774             sp = loader_build_fdpic_loadmap(interp_info, sp);
1775             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1776             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1777         } else {
1778             info->interpreter_loadmap_addr = 0;
1779             info->interpreter_pt_dynamic_addr = 0;
1780         }
1781     }
1782 
1783     u_platform = 0;
1784     k_platform = ELF_PLATFORM;
1785     if (k_platform) {
1786         size_t len = strlen(k_platform) + 1;
1787         if (STACK_GROWS_DOWN) {
1788             sp -= (len + n - 1) & ~(n - 1);
1789             u_platform = sp;
1790             /* FIXME - check return value of memcpy_to_target() for failure */
1791             memcpy_to_target(sp, k_platform, len);
1792         } else {
1793             memcpy_to_target(sp, k_platform, len);
1794             u_platform = sp;
1795             sp += len + 1;
1796         }
1797     }
1798 
1799     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1800      * the argv and envp pointers.
1801      */
1802     if (STACK_GROWS_DOWN) {
1803         sp = QEMU_ALIGN_DOWN(sp, 16);
1804     } else {
1805         sp = QEMU_ALIGN_UP(sp, 16);
1806     }
1807 
1808     /*
1809      * Generate 16 random bytes for userspace PRNG seeding (not
1810      * cryptically secure but it's not the aim of QEMU).
1811      */
1812     for (i = 0; i < 16; i++) {
1813         k_rand_bytes[i] = rand();
1814     }
1815     if (STACK_GROWS_DOWN) {
1816         sp -= 16;
1817         u_rand_bytes = sp;
1818         /* FIXME - check return value of memcpy_to_target() for failure */
1819         memcpy_to_target(sp, k_rand_bytes, 16);
1820     } else {
1821         memcpy_to_target(sp, k_rand_bytes, 16);
1822         u_rand_bytes = sp;
1823         sp += 16;
1824     }
1825 
1826     size = (DLINFO_ITEMS + 1) * 2;
1827     if (k_platform)
1828         size += 2;
1829 #ifdef DLINFO_ARCH_ITEMS
1830     size += DLINFO_ARCH_ITEMS * 2;
1831 #endif
1832 #ifdef ELF_HWCAP2
1833     size += 2;
1834 #endif
1835     info->auxv_len = size * n;
1836 
1837     size += envc + argc + 2;
1838     size += 1;  /* argc itself */
1839     size *= n;
1840 
1841     /* Allocate space and finalize stack alignment for entry now.  */
1842     if (STACK_GROWS_DOWN) {
1843         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1844         sp = u_argc;
1845     } else {
1846         u_argc = sp;
1847         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1848     }
1849 
1850     u_argv = u_argc + n;
1851     u_envp = u_argv + (argc + 1) * n;
1852     u_auxv = u_envp + (envc + 1) * n;
1853     info->saved_auxv = u_auxv;
1854     info->arg_start = u_argv;
1855     info->arg_end = u_argv + argc * n;
1856 
1857     /* This is correct because Linux defines
1858      * elf_addr_t as Elf32_Off / Elf64_Off
1859      */
1860 #define NEW_AUX_ENT(id, val) do {               \
1861         put_user_ual(id, u_auxv);  u_auxv += n; \
1862         put_user_ual(val, u_auxv); u_auxv += n; \
1863     } while(0)
1864 
1865 #ifdef ARCH_DLINFO
1866     /*
1867      * ARCH_DLINFO must come first so platform specific code can enforce
1868      * special alignment requirements on the AUXV if necessary (eg. PPC).
1869      */
1870     ARCH_DLINFO;
1871 #endif
1872     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1873      * on info->auxv_len will trigger.
1874      */
1875     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1876     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1877     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1878     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1879         /* Target doesn't support host page size alignment */
1880         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1881     } else {
1882         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1883                                                qemu_host_page_size)));
1884     }
1885     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1886     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1887     NEW_AUX_ENT(AT_ENTRY, info->entry);
1888     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1889     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1890     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1891     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1892     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1893     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1894     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1895     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1896 
1897 #ifdef ELF_HWCAP2
1898     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1899 #endif
1900 
1901     if (u_platform) {
1902         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1903     }
1904     NEW_AUX_ENT (AT_NULL, 0);
1905 #undef NEW_AUX_ENT
1906 
1907     /* Check that our initial calculation of the auxv length matches how much
1908      * we actually put into it.
1909      */
1910     assert(info->auxv_len == u_auxv - info->saved_auxv);
1911 
1912     put_user_ual(argc, u_argc);
1913 
1914     p = info->arg_strings;
1915     for (i = 0; i < argc; ++i) {
1916         put_user_ual(p, u_argv);
1917         u_argv += n;
1918         p += target_strlen(p) + 1;
1919     }
1920     put_user_ual(0, u_argv);
1921 
1922     p = info->env_strings;
1923     for (i = 0; i < envc; ++i) {
1924         put_user_ual(p, u_envp);
1925         u_envp += n;
1926         p += target_strlen(p) + 1;
1927     }
1928     put_user_ual(0, u_envp);
1929 
1930     return sp;
1931 }
1932 
1933 unsigned long init_guest_space(unsigned long host_start,
1934                                unsigned long host_size,
1935                                unsigned long guest_start,
1936                                bool fixed)
1937 {
1938     unsigned long current_start, aligned_start;
1939     int flags;
1940 
1941     assert(host_start || host_size);
1942 
1943     /* If just a starting address is given, then just verify that
1944      * address.  */
1945     if (host_start && !host_size) {
1946 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1947         if (init_guest_commpage(host_start, host_size) != 1) {
1948             return (unsigned long)-1;
1949         }
1950 #endif
1951         return host_start;
1952     }
1953 
1954     /* Setup the initial flags and start address.  */
1955     current_start = host_start & qemu_host_page_mask;
1956     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1957     if (fixed) {
1958         flags |= MAP_FIXED;
1959     }
1960 
1961     /* Otherwise, a non-zero size region of memory needs to be mapped
1962      * and validated.  */
1963 
1964 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1965     /* On 32-bit ARM, we need to map not just the usable memory, but
1966      * also the commpage.  Try to find a suitable place by allocating
1967      * a big chunk for all of it.  If host_start, then the naive
1968      * strategy probably does good enough.
1969      */
1970     if (!host_start) {
1971         unsigned long guest_full_size, host_full_size, real_start;
1972 
1973         guest_full_size =
1974             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1975         host_full_size = guest_full_size - guest_start;
1976         real_start = (unsigned long)
1977             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1978         if (real_start == (unsigned long)-1) {
1979             if (host_size < host_full_size - qemu_host_page_size) {
1980                 /* We failed to map a continous segment, but we're
1981                  * allowed to have a gap between the usable memory and
1982                  * the commpage where other things can be mapped.
1983                  * This sparseness gives us more flexibility to find
1984                  * an address range.
1985                  */
1986                 goto naive;
1987             }
1988             return (unsigned long)-1;
1989         }
1990         munmap((void *)real_start, host_full_size);
1991         if (real_start & ~qemu_host_page_mask) {
1992             /* The same thing again, but with an extra qemu_host_page_size
1993              * so that we can shift around alignment.
1994              */
1995             unsigned long real_size = host_full_size + qemu_host_page_size;
1996             real_start = (unsigned long)
1997                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
1998             if (real_start == (unsigned long)-1) {
1999                 if (host_size < host_full_size - qemu_host_page_size) {
2000                     goto naive;
2001                 }
2002                 return (unsigned long)-1;
2003             }
2004             munmap((void *)real_start, real_size);
2005             real_start = HOST_PAGE_ALIGN(real_start);
2006         }
2007         current_start = real_start;
2008     }
2009  naive:
2010 #endif
2011 
2012     while (1) {
2013         unsigned long real_start, real_size, aligned_size;
2014         aligned_size = real_size = host_size;
2015 
2016         /* Do not use mmap_find_vma here because that is limited to the
2017          * guest address space.  We are going to make the
2018          * guest address space fit whatever we're given.
2019          */
2020         real_start = (unsigned long)
2021             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2022         if (real_start == (unsigned long)-1) {
2023             return (unsigned long)-1;
2024         }
2025 
2026         /* Check to see if the address is valid.  */
2027         if (host_start && real_start != current_start) {
2028             goto try_again;
2029         }
2030 
2031         /* Ensure the address is properly aligned.  */
2032         if (real_start & ~qemu_host_page_mask) {
2033             /* Ideally, we adjust like
2034              *
2035              *    pages: [  ][  ][  ][  ][  ]
2036              *      old:   [   real   ]
2037              *             [ aligned  ]
2038              *      new:   [     real     ]
2039              *               [ aligned  ]
2040              *
2041              * But if there is something else mapped right after it,
2042              * then obviously it won't have room to grow, and the
2043              * kernel will put the new larger real someplace else with
2044              * unknown alignment (if we made it to here, then
2045              * fixed=false).  Which is why we grow real by a full page
2046              * size, instead of by part of one; so that even if we get
2047              * moved, we can still guarantee alignment.  But this does
2048              * mean that there is a padding of < 1 page both before
2049              * and after the aligned range; the "after" could could
2050              * cause problems for ARM emulation where it could butt in
2051              * to where we need to put the commpage.
2052              */
2053             munmap((void *)real_start, host_size);
2054             real_size = aligned_size + qemu_host_page_size;
2055             real_start = (unsigned long)
2056                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2057             if (real_start == (unsigned long)-1) {
2058                 return (unsigned long)-1;
2059             }
2060             aligned_start = HOST_PAGE_ALIGN(real_start);
2061         } else {
2062             aligned_start = real_start;
2063         }
2064 
2065 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2066         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2067         int valid = init_guest_commpage(aligned_start - guest_start,
2068                                         aligned_size + guest_start);
2069         if (valid == -1) {
2070             munmap((void *)real_start, real_size);
2071             return (unsigned long)-1;
2072         } else if (valid == 0) {
2073             goto try_again;
2074         }
2075 #endif
2076 
2077         /* If nothing has said `return -1` or `goto try_again` yet,
2078          * then the address we have is good.
2079          */
2080         break;
2081 
2082     try_again:
2083         /* That address didn't work.  Unmap and try a different one.
2084          * The address the host picked because is typically right at
2085          * the top of the host address space and leaves the guest with
2086          * no usable address space.  Resort to a linear search.  We
2087          * already compensated for mmap_min_addr, so this should not
2088          * happen often.  Probably means we got unlucky and host
2089          * address space randomization put a shared library somewhere
2090          * inconvenient.
2091          *
2092          * This is probably a good strategy if host_start, but is
2093          * probably a bad strategy if not, which means we got here
2094          * because of trouble with ARM commpage setup.
2095          */
2096         munmap((void *)real_start, real_size);
2097         current_start += qemu_host_page_size;
2098         if (host_start == current_start) {
2099             /* Theoretically possible if host doesn't have any suitably
2100              * aligned areas.  Normally the first mmap will fail.
2101              */
2102             return (unsigned long)-1;
2103         }
2104     }
2105 
2106     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2107 
2108     return aligned_start;
2109 }
2110 
2111 static void probe_guest_base(const char *image_name,
2112                              abi_ulong loaddr, abi_ulong hiaddr)
2113 {
2114     /* Probe for a suitable guest base address, if the user has not set
2115      * it explicitly, and set guest_base appropriately.
2116      * In case of error we will print a suitable message and exit.
2117      */
2118     const char *errmsg;
2119     if (!have_guest_base && !reserved_va) {
2120         unsigned long host_start, real_start, host_size;
2121 
2122         /* Round addresses to page boundaries.  */
2123         loaddr &= qemu_host_page_mask;
2124         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2125 
2126         if (loaddr < mmap_min_addr) {
2127             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2128         } else {
2129             host_start = loaddr;
2130             if (host_start != loaddr) {
2131                 errmsg = "Address overflow loading ELF binary";
2132                 goto exit_errmsg;
2133             }
2134         }
2135         host_size = hiaddr - loaddr;
2136 
2137         /* Setup the initial guest memory space with ranges gleaned from
2138          * the ELF image that is being loaded.
2139          */
2140         real_start = init_guest_space(host_start, host_size, loaddr, false);
2141         if (real_start == (unsigned long)-1) {
2142             errmsg = "Unable to find space for application";
2143             goto exit_errmsg;
2144         }
2145         guest_base = real_start - loaddr;
2146 
2147         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2148                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2149                       loaddr, real_start);
2150     }
2151     return;
2152 
2153 exit_errmsg:
2154     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2155     exit(-1);
2156 }
2157 
2158 
2159 /* Load an ELF image into the address space.
2160 
2161    IMAGE_NAME is the filename of the image, to use in error messages.
2162    IMAGE_FD is the open file descriptor for the image.
2163 
2164    BPRM_BUF is a copy of the beginning of the file; this of course
2165    contains the elf file header at offset 0.  It is assumed that this
2166    buffer is sufficiently aligned to present no problems to the host
2167    in accessing data at aligned offsets within the buffer.
2168 
2169    On return: INFO values will be filled in, as necessary or available.  */
2170 
2171 static void load_elf_image(const char *image_name, int image_fd,
2172                            struct image_info *info, char **pinterp_name,
2173                            char bprm_buf[BPRM_BUF_SIZE])
2174 {
2175     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2176     struct elf_phdr *phdr;
2177     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2178     int i, retval;
2179     const char *errmsg;
2180 
2181     /* First of all, some simple consistency checks */
2182     errmsg = "Invalid ELF image for this architecture";
2183     if (!elf_check_ident(ehdr)) {
2184         goto exit_errmsg;
2185     }
2186     bswap_ehdr(ehdr);
2187     if (!elf_check_ehdr(ehdr)) {
2188         goto exit_errmsg;
2189     }
2190 
2191     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2192     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2193         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2194     } else {
2195         phdr = (struct elf_phdr *) alloca(i);
2196         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2197         if (retval != i) {
2198             goto exit_read;
2199         }
2200     }
2201     bswap_phdr(phdr, ehdr->e_phnum);
2202 
2203     info->nsegs = 0;
2204     info->pt_dynamic_addr = 0;
2205 
2206     mmap_lock();
2207 
2208     /* Find the maximum size of the image and allocate an appropriate
2209        amount of memory to handle that.  */
2210     loaddr = -1, hiaddr = 0;
2211     info->alignment = 0;
2212     for (i = 0; i < ehdr->e_phnum; ++i) {
2213         if (phdr[i].p_type == PT_LOAD) {
2214             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2215             if (a < loaddr) {
2216                 loaddr = a;
2217             }
2218             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2219             if (a > hiaddr) {
2220                 hiaddr = a;
2221             }
2222             ++info->nsegs;
2223             info->alignment |= phdr[i].p_align;
2224         }
2225     }
2226 
2227     load_addr = loaddr;
2228     if (ehdr->e_type == ET_DYN) {
2229         /* The image indicates that it can be loaded anywhere.  Find a
2230            location that can hold the memory space required.  If the
2231            image is pre-linked, LOADDR will be non-zero.  Since we do
2232            not supply MAP_FIXED here we'll use that address if and
2233            only if it remains available.  */
2234         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2235                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2236                                 -1, 0);
2237         if (load_addr == -1) {
2238             goto exit_perror;
2239         }
2240     } else if (pinterp_name != NULL) {
2241         /* This is the main executable.  Make sure that the low
2242            address does not conflict with MMAP_MIN_ADDR or the
2243            QEMU application itself.  */
2244         probe_guest_base(image_name, loaddr, hiaddr);
2245     }
2246     load_bias = load_addr - loaddr;
2247 
2248     if (elf_is_fdpic(ehdr)) {
2249         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2250             g_malloc(sizeof(*loadsegs) * info->nsegs);
2251 
2252         for (i = 0; i < ehdr->e_phnum; ++i) {
2253             switch (phdr[i].p_type) {
2254             case PT_DYNAMIC:
2255                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2256                 break;
2257             case PT_LOAD:
2258                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2259                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2260                 loadsegs->p_memsz = phdr[i].p_memsz;
2261                 ++loadsegs;
2262                 break;
2263             }
2264         }
2265     }
2266 
2267     info->load_bias = load_bias;
2268     info->load_addr = load_addr;
2269     info->entry = ehdr->e_entry + load_bias;
2270     info->start_code = -1;
2271     info->end_code = 0;
2272     info->start_data = -1;
2273     info->end_data = 0;
2274     info->brk = 0;
2275     info->elf_flags = ehdr->e_flags;
2276 
2277     for (i = 0; i < ehdr->e_phnum; i++) {
2278         struct elf_phdr *eppnt = phdr + i;
2279         if (eppnt->p_type == PT_LOAD) {
2280             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2281             int elf_prot = 0;
2282 
2283             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2284             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2285             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2286 
2287             vaddr = load_bias + eppnt->p_vaddr;
2288             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2289             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2290 
2291             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2292                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2293                                 image_fd, eppnt->p_offset - vaddr_po);
2294             if (error == -1) {
2295                 goto exit_perror;
2296             }
2297 
2298             vaddr_ef = vaddr + eppnt->p_filesz;
2299             vaddr_em = vaddr + eppnt->p_memsz;
2300 
2301             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2302             if (vaddr_ef < vaddr_em) {
2303                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2304             }
2305 
2306             /* Find the full program boundaries.  */
2307             if (elf_prot & PROT_EXEC) {
2308                 if (vaddr < info->start_code) {
2309                     info->start_code = vaddr;
2310                 }
2311                 if (vaddr_ef > info->end_code) {
2312                     info->end_code = vaddr_ef;
2313                 }
2314             }
2315             if (elf_prot & PROT_WRITE) {
2316                 if (vaddr < info->start_data) {
2317                     info->start_data = vaddr;
2318                 }
2319                 if (vaddr_ef > info->end_data) {
2320                     info->end_data = vaddr_ef;
2321                 }
2322                 if (vaddr_em > info->brk) {
2323                     info->brk = vaddr_em;
2324                 }
2325             }
2326         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2327             char *interp_name;
2328 
2329             if (*pinterp_name) {
2330                 errmsg = "Multiple PT_INTERP entries";
2331                 goto exit_errmsg;
2332             }
2333             interp_name = malloc(eppnt->p_filesz);
2334             if (!interp_name) {
2335                 goto exit_perror;
2336             }
2337 
2338             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2339                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2340                        eppnt->p_filesz);
2341             } else {
2342                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2343                                eppnt->p_offset);
2344                 if (retval != eppnt->p_filesz) {
2345                     goto exit_perror;
2346                 }
2347             }
2348             if (interp_name[eppnt->p_filesz - 1] != 0) {
2349                 errmsg = "Invalid PT_INTERP entry";
2350                 goto exit_errmsg;
2351             }
2352             *pinterp_name = interp_name;
2353         }
2354     }
2355 
2356     if (info->end_data == 0) {
2357         info->start_data = info->end_code;
2358         info->end_data = info->end_code;
2359         info->brk = info->end_code;
2360     }
2361 
2362     if (qemu_log_enabled()) {
2363         load_symbols(ehdr, image_fd, load_bias);
2364     }
2365 
2366     mmap_unlock();
2367 
2368     close(image_fd);
2369     return;
2370 
2371  exit_read:
2372     if (retval >= 0) {
2373         errmsg = "Incomplete read of file header";
2374         goto exit_errmsg;
2375     }
2376  exit_perror:
2377     errmsg = strerror(errno);
2378  exit_errmsg:
2379     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2380     exit(-1);
2381 }
2382 
2383 static void load_elf_interp(const char *filename, struct image_info *info,
2384                             char bprm_buf[BPRM_BUF_SIZE])
2385 {
2386     int fd, retval;
2387 
2388     fd = open(path(filename), O_RDONLY);
2389     if (fd < 0) {
2390         goto exit_perror;
2391     }
2392 
2393     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2394     if (retval < 0) {
2395         goto exit_perror;
2396     }
2397     if (retval < BPRM_BUF_SIZE) {
2398         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2399     }
2400 
2401     load_elf_image(filename, fd, info, NULL, bprm_buf);
2402     return;
2403 
2404  exit_perror:
2405     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2406     exit(-1);
2407 }
2408 
2409 static int symfind(const void *s0, const void *s1)
2410 {
2411     target_ulong addr = *(target_ulong *)s0;
2412     struct elf_sym *sym = (struct elf_sym *)s1;
2413     int result = 0;
2414     if (addr < sym->st_value) {
2415         result = -1;
2416     } else if (addr >= sym->st_value + sym->st_size) {
2417         result = 1;
2418     }
2419     return result;
2420 }
2421 
2422 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2423 {
2424 #if ELF_CLASS == ELFCLASS32
2425     struct elf_sym *syms = s->disas_symtab.elf32;
2426 #else
2427     struct elf_sym *syms = s->disas_symtab.elf64;
2428 #endif
2429 
2430     // binary search
2431     struct elf_sym *sym;
2432 
2433     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2434     if (sym != NULL) {
2435         return s->disas_strtab + sym->st_name;
2436     }
2437 
2438     return "";
2439 }
2440 
2441 /* FIXME: This should use elf_ops.h  */
2442 static int symcmp(const void *s0, const void *s1)
2443 {
2444     struct elf_sym *sym0 = (struct elf_sym *)s0;
2445     struct elf_sym *sym1 = (struct elf_sym *)s1;
2446     return (sym0->st_value < sym1->st_value)
2447         ? -1
2448         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2449 }
2450 
2451 /* Best attempt to load symbols from this ELF object. */
2452 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2453 {
2454     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2455     uint64_t segsz;
2456     struct elf_shdr *shdr;
2457     char *strings = NULL;
2458     struct syminfo *s = NULL;
2459     struct elf_sym *new_syms, *syms = NULL;
2460 
2461     shnum = hdr->e_shnum;
2462     i = shnum * sizeof(struct elf_shdr);
2463     shdr = (struct elf_shdr *)alloca(i);
2464     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2465         return;
2466     }
2467 
2468     bswap_shdr(shdr, shnum);
2469     for (i = 0; i < shnum; ++i) {
2470         if (shdr[i].sh_type == SHT_SYMTAB) {
2471             sym_idx = i;
2472             str_idx = shdr[i].sh_link;
2473             goto found;
2474         }
2475     }
2476 
2477     /* There will be no symbol table if the file was stripped.  */
2478     return;
2479 
2480  found:
2481     /* Now know where the strtab and symtab are.  Snarf them.  */
2482     s = g_try_new(struct syminfo, 1);
2483     if (!s) {
2484         goto give_up;
2485     }
2486 
2487     segsz = shdr[str_idx].sh_size;
2488     s->disas_strtab = strings = g_try_malloc(segsz);
2489     if (!strings ||
2490         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2491         goto give_up;
2492     }
2493 
2494     segsz = shdr[sym_idx].sh_size;
2495     syms = g_try_malloc(segsz);
2496     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2497         goto give_up;
2498     }
2499 
2500     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2501         /* Implausibly large symbol table: give up rather than ploughing
2502          * on with the number of symbols calculation overflowing
2503          */
2504         goto give_up;
2505     }
2506     nsyms = segsz / sizeof(struct elf_sym);
2507     for (i = 0; i < nsyms; ) {
2508         bswap_sym(syms + i);
2509         /* Throw away entries which we do not need.  */
2510         if (syms[i].st_shndx == SHN_UNDEF
2511             || syms[i].st_shndx >= SHN_LORESERVE
2512             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2513             if (i < --nsyms) {
2514                 syms[i] = syms[nsyms];
2515             }
2516         } else {
2517 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2518             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2519             syms[i].st_value &= ~(target_ulong)1;
2520 #endif
2521             syms[i].st_value += load_bias;
2522             i++;
2523         }
2524     }
2525 
2526     /* No "useful" symbol.  */
2527     if (nsyms == 0) {
2528         goto give_up;
2529     }
2530 
2531     /* Attempt to free the storage associated with the local symbols
2532        that we threw away.  Whether or not this has any effect on the
2533        memory allocation depends on the malloc implementation and how
2534        many symbols we managed to discard.  */
2535     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2536     if (new_syms == NULL) {
2537         goto give_up;
2538     }
2539     syms = new_syms;
2540 
2541     qsort(syms, nsyms, sizeof(*syms), symcmp);
2542 
2543     s->disas_num_syms = nsyms;
2544 #if ELF_CLASS == ELFCLASS32
2545     s->disas_symtab.elf32 = syms;
2546 #else
2547     s->disas_symtab.elf64 = syms;
2548 #endif
2549     s->lookup_symbol = lookup_symbolxx;
2550     s->next = syminfos;
2551     syminfos = s;
2552 
2553     return;
2554 
2555 give_up:
2556     g_free(s);
2557     g_free(strings);
2558     g_free(syms);
2559 }
2560 
2561 uint32_t get_elf_eflags(int fd)
2562 {
2563     struct elfhdr ehdr;
2564     off_t offset;
2565     int ret;
2566 
2567     /* Read ELF header */
2568     offset = lseek(fd, 0, SEEK_SET);
2569     if (offset == (off_t) -1) {
2570         return 0;
2571     }
2572     ret = read(fd, &ehdr, sizeof(ehdr));
2573     if (ret < sizeof(ehdr)) {
2574         return 0;
2575     }
2576     offset = lseek(fd, offset, SEEK_SET);
2577     if (offset == (off_t) -1) {
2578         return 0;
2579     }
2580 
2581     /* Check ELF signature */
2582     if (!elf_check_ident(&ehdr)) {
2583         return 0;
2584     }
2585 
2586     /* check header */
2587     bswap_ehdr(&ehdr);
2588     if (!elf_check_ehdr(&ehdr)) {
2589         return 0;
2590     }
2591 
2592     /* return architecture id */
2593     return ehdr.e_flags;
2594 }
2595 
2596 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2597 {
2598     struct image_info interp_info;
2599     struct elfhdr elf_ex;
2600     char *elf_interpreter = NULL;
2601     char *scratch;
2602 
2603     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2604 
2605     load_elf_image(bprm->filename, bprm->fd, info,
2606                    &elf_interpreter, bprm->buf);
2607 
2608     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2609        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2610        when we load the interpreter.  */
2611     elf_ex = *(struct elfhdr *)bprm->buf;
2612 
2613     /* Do this so that we can load the interpreter, if need be.  We will
2614        change some of these later */
2615     bprm->p = setup_arg_pages(bprm, info);
2616 
2617     scratch = g_new0(char, TARGET_PAGE_SIZE);
2618     if (STACK_GROWS_DOWN) {
2619         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2620                                    bprm->p, info->stack_limit);
2621         info->file_string = bprm->p;
2622         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2623                                    bprm->p, info->stack_limit);
2624         info->env_strings = bprm->p;
2625         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2626                                    bprm->p, info->stack_limit);
2627         info->arg_strings = bprm->p;
2628     } else {
2629         info->arg_strings = bprm->p;
2630         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2631                                    bprm->p, info->stack_limit);
2632         info->env_strings = bprm->p;
2633         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2634                                    bprm->p, info->stack_limit);
2635         info->file_string = bprm->p;
2636         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2637                                    bprm->p, info->stack_limit);
2638     }
2639 
2640     g_free(scratch);
2641 
2642     if (!bprm->p) {
2643         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2644         exit(-1);
2645     }
2646 
2647     if (elf_interpreter) {
2648         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2649 
2650         /* If the program interpreter is one of these two, then assume
2651            an iBCS2 image.  Otherwise assume a native linux image.  */
2652 
2653         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2654             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2655             info->personality = PER_SVR4;
2656 
2657             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2658                and some applications "depend" upon this behavior.  Since
2659                we do not have the power to recompile these, we emulate
2660                the SVr4 behavior.  Sigh.  */
2661             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2662                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2663         }
2664     }
2665 
2666     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2667                                 info, (elf_interpreter ? &interp_info : NULL));
2668     info->start_stack = bprm->p;
2669 
2670     /* If we have an interpreter, set that as the program's entry point.
2671        Copy the load_bias as well, to help PPC64 interpret the entry
2672        point as a function descriptor.  Do this after creating elf tables
2673        so that we copy the original program entry point into the AUXV.  */
2674     if (elf_interpreter) {
2675         info->load_bias = interp_info.load_bias;
2676         info->entry = interp_info.entry;
2677         free(elf_interpreter);
2678     }
2679 
2680 #ifdef USE_ELF_CORE_DUMP
2681     bprm->core_dump = &elf_core_dump;
2682 #endif
2683 
2684     return 0;
2685 }
2686 
2687 #ifdef USE_ELF_CORE_DUMP
2688 /*
2689  * Definitions to generate Intel SVR4-like core files.
2690  * These mostly have the same names as the SVR4 types with "target_elf_"
2691  * tacked on the front to prevent clashes with linux definitions,
2692  * and the typedef forms have been avoided.  This is mostly like
2693  * the SVR4 structure, but more Linuxy, with things that Linux does
2694  * not support and which gdb doesn't really use excluded.
2695  *
2696  * Fields we don't dump (their contents is zero) in linux-user qemu
2697  * are marked with XXX.
2698  *
2699  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2700  *
2701  * Porting ELF coredump for target is (quite) simple process.  First you
2702  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2703  * the target resides):
2704  *
2705  * #define USE_ELF_CORE_DUMP
2706  *
2707  * Next you define type of register set used for dumping.  ELF specification
2708  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2709  *
2710  * typedef <target_regtype> target_elf_greg_t;
2711  * #define ELF_NREG <number of registers>
2712  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2713  *
2714  * Last step is to implement target specific function that copies registers
2715  * from given cpu into just specified register set.  Prototype is:
2716  *
2717  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2718  *                                const CPUArchState *env);
2719  *
2720  * Parameters:
2721  *     regs - copy register values into here (allocated and zeroed by caller)
2722  *     env - copy registers from here
2723  *
2724  * Example for ARM target is provided in this file.
2725  */
2726 
2727 /* An ELF note in memory */
2728 struct memelfnote {
2729     const char *name;
2730     size_t     namesz;
2731     size_t     namesz_rounded;
2732     int        type;
2733     size_t     datasz;
2734     size_t     datasz_rounded;
2735     void       *data;
2736     size_t     notesz;
2737 };
2738 
2739 struct target_elf_siginfo {
2740     abi_int    si_signo; /* signal number */
2741     abi_int    si_code;  /* extra code */
2742     abi_int    si_errno; /* errno */
2743 };
2744 
2745 struct target_elf_prstatus {
2746     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2747     abi_short          pr_cursig;    /* Current signal */
2748     abi_ulong          pr_sigpend;   /* XXX */
2749     abi_ulong          pr_sighold;   /* XXX */
2750     target_pid_t       pr_pid;
2751     target_pid_t       pr_ppid;
2752     target_pid_t       pr_pgrp;
2753     target_pid_t       pr_sid;
2754     struct target_timeval pr_utime;  /* XXX User time */
2755     struct target_timeval pr_stime;  /* XXX System time */
2756     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2757     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2758     target_elf_gregset_t      pr_reg;       /* GP registers */
2759     abi_int            pr_fpvalid;   /* XXX */
2760 };
2761 
2762 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2763 
2764 struct target_elf_prpsinfo {
2765     char         pr_state;       /* numeric process state */
2766     char         pr_sname;       /* char for pr_state */
2767     char         pr_zomb;        /* zombie */
2768     char         pr_nice;        /* nice val */
2769     abi_ulong    pr_flag;        /* flags */
2770     target_uid_t pr_uid;
2771     target_gid_t pr_gid;
2772     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2773     /* Lots missing */
2774     char    pr_fname[16];           /* filename of executable */
2775     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2776 };
2777 
2778 /* Here is the structure in which status of each thread is captured. */
2779 struct elf_thread_status {
2780     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2781     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2782 #if 0
2783     elf_fpregset_t fpu;             /* NT_PRFPREG */
2784     struct task_struct *thread;
2785     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2786 #endif
2787     struct memelfnote notes[1];
2788     int num_notes;
2789 };
2790 
2791 struct elf_note_info {
2792     struct memelfnote   *notes;
2793     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2794     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2795 
2796     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2797 #if 0
2798     /*
2799      * Current version of ELF coredump doesn't support
2800      * dumping fp regs etc.
2801      */
2802     elf_fpregset_t *fpu;
2803     elf_fpxregset_t *xfpu;
2804     int thread_status_size;
2805 #endif
2806     int notes_size;
2807     int numnote;
2808 };
2809 
2810 struct vm_area_struct {
2811     target_ulong   vma_start;  /* start vaddr of memory region */
2812     target_ulong   vma_end;    /* end vaddr of memory region */
2813     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2814     QTAILQ_ENTRY(vm_area_struct) vma_link;
2815 };
2816 
2817 struct mm_struct {
2818     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2819     int mm_count;           /* number of mappings */
2820 };
2821 
2822 static struct mm_struct *vma_init(void);
2823 static void vma_delete(struct mm_struct *);
2824 static int vma_add_mapping(struct mm_struct *, target_ulong,
2825                            target_ulong, abi_ulong);
2826 static int vma_get_mapping_count(const struct mm_struct *);
2827 static struct vm_area_struct *vma_first(const struct mm_struct *);
2828 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2829 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2830 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2831                       unsigned long flags);
2832 
2833 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2834 static void fill_note(struct memelfnote *, const char *, int,
2835                       unsigned int, void *);
2836 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2837 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2838 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2839 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2840 static size_t note_size(const struct memelfnote *);
2841 static void free_note_info(struct elf_note_info *);
2842 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2843 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2844 static int core_dump_filename(const TaskState *, char *, size_t);
2845 
2846 static int dump_write(int, const void *, size_t);
2847 static int write_note(struct memelfnote *, int);
2848 static int write_note_info(struct elf_note_info *, int);
2849 
2850 #ifdef BSWAP_NEEDED
2851 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2852 {
2853     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2854     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2855     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2856     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2857     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2858     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2859     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2860     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2861     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2862     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2863     /* cpu times are not filled, so we skip them */
2864     /* regs should be in correct format already */
2865     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2866 }
2867 
2868 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2869 {
2870     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2871     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2872     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2873     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2874     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2875     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2876     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2877 }
2878 
2879 static void bswap_note(struct elf_note *en)
2880 {
2881     bswap32s(&en->n_namesz);
2882     bswap32s(&en->n_descsz);
2883     bswap32s(&en->n_type);
2884 }
2885 #else
2886 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2887 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2888 static inline void bswap_note(struct elf_note *en) { }
2889 #endif /* BSWAP_NEEDED */
2890 
2891 /*
2892  * Minimal support for linux memory regions.  These are needed
2893  * when we are finding out what memory exactly belongs to
2894  * emulated process.  No locks needed here, as long as
2895  * thread that received the signal is stopped.
2896  */
2897 
2898 static struct mm_struct *vma_init(void)
2899 {
2900     struct mm_struct *mm;
2901 
2902     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2903         return (NULL);
2904 
2905     mm->mm_count = 0;
2906     QTAILQ_INIT(&mm->mm_mmap);
2907 
2908     return (mm);
2909 }
2910 
2911 static void vma_delete(struct mm_struct *mm)
2912 {
2913     struct vm_area_struct *vma;
2914 
2915     while ((vma = vma_first(mm)) != NULL) {
2916         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2917         g_free(vma);
2918     }
2919     g_free(mm);
2920 }
2921 
2922 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2923                            target_ulong end, abi_ulong flags)
2924 {
2925     struct vm_area_struct *vma;
2926 
2927     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2928         return (-1);
2929 
2930     vma->vma_start = start;
2931     vma->vma_end = end;
2932     vma->vma_flags = flags;
2933 
2934     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2935     mm->mm_count++;
2936 
2937     return (0);
2938 }
2939 
2940 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2941 {
2942     return (QTAILQ_FIRST(&mm->mm_mmap));
2943 }
2944 
2945 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2946 {
2947     return (QTAILQ_NEXT(vma, vma_link));
2948 }
2949 
2950 static int vma_get_mapping_count(const struct mm_struct *mm)
2951 {
2952     return (mm->mm_count);
2953 }
2954 
2955 /*
2956  * Calculate file (dump) size of given memory region.
2957  */
2958 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2959 {
2960     /* if we cannot even read the first page, skip it */
2961     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2962         return (0);
2963 
2964     /*
2965      * Usually we don't dump executable pages as they contain
2966      * non-writable code that debugger can read directly from
2967      * target library etc.  However, thread stacks are marked
2968      * also executable so we read in first page of given region
2969      * and check whether it contains elf header.  If there is
2970      * no elf header, we dump it.
2971      */
2972     if (vma->vma_flags & PROT_EXEC) {
2973         char page[TARGET_PAGE_SIZE];
2974 
2975         copy_from_user(page, vma->vma_start, sizeof (page));
2976         if ((page[EI_MAG0] == ELFMAG0) &&
2977             (page[EI_MAG1] == ELFMAG1) &&
2978             (page[EI_MAG2] == ELFMAG2) &&
2979             (page[EI_MAG3] == ELFMAG3)) {
2980             /*
2981              * Mappings are possibly from ELF binary.  Don't dump
2982              * them.
2983              */
2984             return (0);
2985         }
2986     }
2987 
2988     return (vma->vma_end - vma->vma_start);
2989 }
2990 
2991 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2992                       unsigned long flags)
2993 {
2994     struct mm_struct *mm = (struct mm_struct *)priv;
2995 
2996     vma_add_mapping(mm, start, end, flags);
2997     return (0);
2998 }
2999 
3000 static void fill_note(struct memelfnote *note, const char *name, int type,
3001                       unsigned int sz, void *data)
3002 {
3003     unsigned int namesz;
3004 
3005     namesz = strlen(name) + 1;
3006     note->name = name;
3007     note->namesz = namesz;
3008     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3009     note->type = type;
3010     note->datasz = sz;
3011     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3012 
3013     note->data = data;
3014 
3015     /*
3016      * We calculate rounded up note size here as specified by
3017      * ELF document.
3018      */
3019     note->notesz = sizeof (struct elf_note) +
3020         note->namesz_rounded + note->datasz_rounded;
3021 }
3022 
3023 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3024                             uint32_t flags)
3025 {
3026     (void) memset(elf, 0, sizeof(*elf));
3027 
3028     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3029     elf->e_ident[EI_CLASS] = ELF_CLASS;
3030     elf->e_ident[EI_DATA] = ELF_DATA;
3031     elf->e_ident[EI_VERSION] = EV_CURRENT;
3032     elf->e_ident[EI_OSABI] = ELF_OSABI;
3033 
3034     elf->e_type = ET_CORE;
3035     elf->e_machine = machine;
3036     elf->e_version = EV_CURRENT;
3037     elf->e_phoff = sizeof(struct elfhdr);
3038     elf->e_flags = flags;
3039     elf->e_ehsize = sizeof(struct elfhdr);
3040     elf->e_phentsize = sizeof(struct elf_phdr);
3041     elf->e_phnum = segs;
3042 
3043     bswap_ehdr(elf);
3044 }
3045 
3046 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3047 {
3048     phdr->p_type = PT_NOTE;
3049     phdr->p_offset = offset;
3050     phdr->p_vaddr = 0;
3051     phdr->p_paddr = 0;
3052     phdr->p_filesz = sz;
3053     phdr->p_memsz = 0;
3054     phdr->p_flags = 0;
3055     phdr->p_align = 0;
3056 
3057     bswap_phdr(phdr, 1);
3058 }
3059 
3060 static size_t note_size(const struct memelfnote *note)
3061 {
3062     return (note->notesz);
3063 }
3064 
3065 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3066                           const TaskState *ts, int signr)
3067 {
3068     (void) memset(prstatus, 0, sizeof (*prstatus));
3069     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3070     prstatus->pr_pid = ts->ts_tid;
3071     prstatus->pr_ppid = getppid();
3072     prstatus->pr_pgrp = getpgrp();
3073     prstatus->pr_sid = getsid(0);
3074 
3075     bswap_prstatus(prstatus);
3076 }
3077 
3078 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3079 {
3080     char *base_filename;
3081     unsigned int i, len;
3082 
3083     (void) memset(psinfo, 0, sizeof (*psinfo));
3084 
3085     len = ts->info->arg_end - ts->info->arg_start;
3086     if (len >= ELF_PRARGSZ)
3087         len = ELF_PRARGSZ - 1;
3088     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3089         return -EFAULT;
3090     for (i = 0; i < len; i++)
3091         if (psinfo->pr_psargs[i] == 0)
3092             psinfo->pr_psargs[i] = ' ';
3093     psinfo->pr_psargs[len] = 0;
3094 
3095     psinfo->pr_pid = getpid();
3096     psinfo->pr_ppid = getppid();
3097     psinfo->pr_pgrp = getpgrp();
3098     psinfo->pr_sid = getsid(0);
3099     psinfo->pr_uid = getuid();
3100     psinfo->pr_gid = getgid();
3101 
3102     base_filename = g_path_get_basename(ts->bprm->filename);
3103     /*
3104      * Using strncpy here is fine: at max-length,
3105      * this field is not NUL-terminated.
3106      */
3107     (void) strncpy(psinfo->pr_fname, base_filename,
3108                    sizeof(psinfo->pr_fname));
3109 
3110     g_free(base_filename);
3111     bswap_psinfo(psinfo);
3112     return (0);
3113 }
3114 
3115 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3116 {
3117     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3118     elf_addr_t orig_auxv = auxv;
3119     void *ptr;
3120     int len = ts->info->auxv_len;
3121 
3122     /*
3123      * Auxiliary vector is stored in target process stack.  It contains
3124      * {type, value} pairs that we need to dump into note.  This is not
3125      * strictly necessary but we do it here for sake of completeness.
3126      */
3127 
3128     /* read in whole auxv vector and copy it to memelfnote */
3129     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3130     if (ptr != NULL) {
3131         fill_note(note, "CORE", NT_AUXV, len, ptr);
3132         unlock_user(ptr, auxv, len);
3133     }
3134 }
3135 
3136 /*
3137  * Constructs name of coredump file.  We have following convention
3138  * for the name:
3139  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3140  *
3141  * Returns 0 in case of success, -1 otherwise (errno is set).
3142  */
3143 static int core_dump_filename(const TaskState *ts, char *buf,
3144                               size_t bufsize)
3145 {
3146     char timestamp[64];
3147     char *base_filename = NULL;
3148     struct timeval tv;
3149     struct tm tm;
3150 
3151     assert(bufsize >= PATH_MAX);
3152 
3153     if (gettimeofday(&tv, NULL) < 0) {
3154         (void) fprintf(stderr, "unable to get current timestamp: %s",
3155                        strerror(errno));
3156         return (-1);
3157     }
3158 
3159     base_filename = g_path_get_basename(ts->bprm->filename);
3160     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3161                     localtime_r(&tv.tv_sec, &tm));
3162     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3163                     base_filename, timestamp, (int)getpid());
3164     g_free(base_filename);
3165 
3166     return (0);
3167 }
3168 
3169 static int dump_write(int fd, const void *ptr, size_t size)
3170 {
3171     const char *bufp = (const char *)ptr;
3172     ssize_t bytes_written, bytes_left;
3173     struct rlimit dumpsize;
3174     off_t pos;
3175 
3176     bytes_written = 0;
3177     getrlimit(RLIMIT_CORE, &dumpsize);
3178     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3179         if (errno == ESPIPE) { /* not a seekable stream */
3180             bytes_left = size;
3181         } else {
3182             return pos;
3183         }
3184     } else {
3185         if (dumpsize.rlim_cur <= pos) {
3186             return -1;
3187         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3188             bytes_left = size;
3189         } else {
3190             size_t limit_left=dumpsize.rlim_cur - pos;
3191             bytes_left = limit_left >= size ? size : limit_left ;
3192         }
3193     }
3194 
3195     /*
3196      * In normal conditions, single write(2) should do but
3197      * in case of socket etc. this mechanism is more portable.
3198      */
3199     do {
3200         bytes_written = write(fd, bufp, bytes_left);
3201         if (bytes_written < 0) {
3202             if (errno == EINTR)
3203                 continue;
3204             return (-1);
3205         } else if (bytes_written == 0) { /* eof */
3206             return (-1);
3207         }
3208         bufp += bytes_written;
3209         bytes_left -= bytes_written;
3210     } while (bytes_left > 0);
3211 
3212     return (0);
3213 }
3214 
3215 static int write_note(struct memelfnote *men, int fd)
3216 {
3217     struct elf_note en;
3218 
3219     en.n_namesz = men->namesz;
3220     en.n_type = men->type;
3221     en.n_descsz = men->datasz;
3222 
3223     bswap_note(&en);
3224 
3225     if (dump_write(fd, &en, sizeof(en)) != 0)
3226         return (-1);
3227     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3228         return (-1);
3229     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3230         return (-1);
3231 
3232     return (0);
3233 }
3234 
3235 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3236 {
3237     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3238     TaskState *ts = (TaskState *)cpu->opaque;
3239     struct elf_thread_status *ets;
3240 
3241     ets = g_malloc0(sizeof (*ets));
3242     ets->num_notes = 1; /* only prstatus is dumped */
3243     fill_prstatus(&ets->prstatus, ts, 0);
3244     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3245     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3246               &ets->prstatus);
3247 
3248     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3249 
3250     info->notes_size += note_size(&ets->notes[0]);
3251 }
3252 
3253 static void init_note_info(struct elf_note_info *info)
3254 {
3255     /* Initialize the elf_note_info structure so that it is at
3256      * least safe to call free_note_info() on it. Must be
3257      * called before calling fill_note_info().
3258      */
3259     memset(info, 0, sizeof (*info));
3260     QTAILQ_INIT(&info->thread_list);
3261 }
3262 
3263 static int fill_note_info(struct elf_note_info *info,
3264                           long signr, const CPUArchState *env)
3265 {
3266 #define NUMNOTES 3
3267     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3268     TaskState *ts = (TaskState *)cpu->opaque;
3269     int i;
3270 
3271     info->notes = g_new0(struct memelfnote, NUMNOTES);
3272     if (info->notes == NULL)
3273         return (-ENOMEM);
3274     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3275     if (info->prstatus == NULL)
3276         return (-ENOMEM);
3277     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3278     if (info->prstatus == NULL)
3279         return (-ENOMEM);
3280 
3281     /*
3282      * First fill in status (and registers) of current thread
3283      * including process info & aux vector.
3284      */
3285     fill_prstatus(info->prstatus, ts, signr);
3286     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3287     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3288               sizeof (*info->prstatus), info->prstatus);
3289     fill_psinfo(info->psinfo, ts);
3290     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3291               sizeof (*info->psinfo), info->psinfo);
3292     fill_auxv_note(&info->notes[2], ts);
3293     info->numnote = 3;
3294 
3295     info->notes_size = 0;
3296     for (i = 0; i < info->numnote; i++)
3297         info->notes_size += note_size(&info->notes[i]);
3298 
3299     /* read and fill status of all threads */
3300     cpu_list_lock();
3301     CPU_FOREACH(cpu) {
3302         if (cpu == thread_cpu) {
3303             continue;
3304         }
3305         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3306     }
3307     cpu_list_unlock();
3308 
3309     return (0);
3310 }
3311 
3312 static void free_note_info(struct elf_note_info *info)
3313 {
3314     struct elf_thread_status *ets;
3315 
3316     while (!QTAILQ_EMPTY(&info->thread_list)) {
3317         ets = QTAILQ_FIRST(&info->thread_list);
3318         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3319         g_free(ets);
3320     }
3321 
3322     g_free(info->prstatus);
3323     g_free(info->psinfo);
3324     g_free(info->notes);
3325 }
3326 
3327 static int write_note_info(struct elf_note_info *info, int fd)
3328 {
3329     struct elf_thread_status *ets;
3330     int i, error = 0;
3331 
3332     /* write prstatus, psinfo and auxv for current thread */
3333     for (i = 0; i < info->numnote; i++)
3334         if ((error = write_note(&info->notes[i], fd)) != 0)
3335             return (error);
3336 
3337     /* write prstatus for each thread */
3338     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3339         if ((error = write_note(&ets->notes[0], fd)) != 0)
3340             return (error);
3341     }
3342 
3343     return (0);
3344 }
3345 
3346 /*
3347  * Write out ELF coredump.
3348  *
3349  * See documentation of ELF object file format in:
3350  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3351  *
3352  * Coredump format in linux is following:
3353  *
3354  * 0   +----------------------+         \
3355  *     | ELF header           | ET_CORE  |
3356  *     +----------------------+          |
3357  *     | ELF program headers  |          |--- headers
3358  *     | - NOTE section       |          |
3359  *     | - PT_LOAD sections   |          |
3360  *     +----------------------+         /
3361  *     | NOTEs:               |
3362  *     | - NT_PRSTATUS        |
3363  *     | - NT_PRSINFO         |
3364  *     | - NT_AUXV            |
3365  *     +----------------------+ <-- aligned to target page
3366  *     | Process memory dump  |
3367  *     :                      :
3368  *     .                      .
3369  *     :                      :
3370  *     |                      |
3371  *     +----------------------+
3372  *
3373  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3374  * NT_PRSINFO  -> struct elf_prpsinfo
3375  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3376  *
3377  * Format follows System V format as close as possible.  Current
3378  * version limitations are as follows:
3379  *     - no floating point registers are dumped
3380  *
3381  * Function returns 0 in case of success, negative errno otherwise.
3382  *
3383  * TODO: make this work also during runtime: it should be
3384  * possible to force coredump from running process and then
3385  * continue processing.  For example qemu could set up SIGUSR2
3386  * handler (provided that target process haven't registered
3387  * handler for that) that does the dump when signal is received.
3388  */
3389 static int elf_core_dump(int signr, const CPUArchState *env)
3390 {
3391     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3392     const TaskState *ts = (const TaskState *)cpu->opaque;
3393     struct vm_area_struct *vma = NULL;
3394     char corefile[PATH_MAX];
3395     struct elf_note_info info;
3396     struct elfhdr elf;
3397     struct elf_phdr phdr;
3398     struct rlimit dumpsize;
3399     struct mm_struct *mm = NULL;
3400     off_t offset = 0, data_offset = 0;
3401     int segs = 0;
3402     int fd = -1;
3403 
3404     init_note_info(&info);
3405 
3406     errno = 0;
3407     getrlimit(RLIMIT_CORE, &dumpsize);
3408     if (dumpsize.rlim_cur == 0)
3409         return 0;
3410 
3411     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3412         return (-errno);
3413 
3414     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3415                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3416         return (-errno);
3417 
3418     /*
3419      * Walk through target process memory mappings and
3420      * set up structure containing this information.  After
3421      * this point vma_xxx functions can be used.
3422      */
3423     if ((mm = vma_init()) == NULL)
3424         goto out;
3425 
3426     walk_memory_regions(mm, vma_walker);
3427     segs = vma_get_mapping_count(mm);
3428 
3429     /*
3430      * Construct valid coredump ELF header.  We also
3431      * add one more segment for notes.
3432      */
3433     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3434     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3435         goto out;
3436 
3437     /* fill in the in-memory version of notes */
3438     if (fill_note_info(&info, signr, env) < 0)
3439         goto out;
3440 
3441     offset += sizeof (elf);                             /* elf header */
3442     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3443 
3444     /* write out notes program header */
3445     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3446 
3447     offset += info.notes_size;
3448     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3449         goto out;
3450 
3451     /*
3452      * ELF specification wants data to start at page boundary so
3453      * we align it here.
3454      */
3455     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3456 
3457     /*
3458      * Write program headers for memory regions mapped in
3459      * the target process.
3460      */
3461     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3462         (void) memset(&phdr, 0, sizeof (phdr));
3463 
3464         phdr.p_type = PT_LOAD;
3465         phdr.p_offset = offset;
3466         phdr.p_vaddr = vma->vma_start;
3467         phdr.p_paddr = 0;
3468         phdr.p_filesz = vma_dump_size(vma);
3469         offset += phdr.p_filesz;
3470         phdr.p_memsz = vma->vma_end - vma->vma_start;
3471         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3472         if (vma->vma_flags & PROT_WRITE)
3473             phdr.p_flags |= PF_W;
3474         if (vma->vma_flags & PROT_EXEC)
3475             phdr.p_flags |= PF_X;
3476         phdr.p_align = ELF_EXEC_PAGESIZE;
3477 
3478         bswap_phdr(&phdr, 1);
3479         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3480             goto out;
3481         }
3482     }
3483 
3484     /*
3485      * Next we write notes just after program headers.  No
3486      * alignment needed here.
3487      */
3488     if (write_note_info(&info, fd) < 0)
3489         goto out;
3490 
3491     /* align data to page boundary */
3492     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3493         goto out;
3494 
3495     /*
3496      * Finally we can dump process memory into corefile as well.
3497      */
3498     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3499         abi_ulong addr;
3500         abi_ulong end;
3501 
3502         end = vma->vma_start + vma_dump_size(vma);
3503 
3504         for (addr = vma->vma_start; addr < end;
3505              addr += TARGET_PAGE_SIZE) {
3506             char page[TARGET_PAGE_SIZE];
3507             int error;
3508 
3509             /*
3510              *  Read in page from target process memory and
3511              *  write it to coredump file.
3512              */
3513             error = copy_from_user(page, addr, sizeof (page));
3514             if (error != 0) {
3515                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3516                                addr);
3517                 errno = -error;
3518                 goto out;
3519             }
3520             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3521                 goto out;
3522         }
3523     }
3524 
3525  out:
3526     free_note_info(&info);
3527     if (mm != NULL)
3528         vma_delete(mm);
3529     (void) close(fd);
3530 
3531     if (errno != 0)
3532         return (-errno);
3533     return (0);
3534 }
3535 #endif /* USE_ELF_CORE_DUMP */
3536 
3537 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3538 {
3539     init_thread(regs, infop);
3540 }
3541