xref: /qemu/linux-user/elfload.c (revision 299ec878)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 
462 #define GET_FEATURE_ID(feat, hwcap) \
463     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464 
465     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
467     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
472     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
476     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479      * to our VFP_FP16 feature bit.
480      */
481     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
483 
484     return hwcaps;
485 }
486 
487 static uint32_t get_elf_hwcap2(void)
488 {
489     ARMCPU *cpu = ARM_CPU(thread_cpu);
490     uint32_t hwcaps = 0;
491 
492     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
497     return hwcaps;
498 }
499 
500 #undef GET_FEATURE
501 #undef GET_FEATURE_ID
502 
503 #else
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
506 
507 #define ELF_ARCH        EM_AARCH64
508 #define ELF_CLASS       ELFCLASS64
509 #define ELF_PLATFORM    "aarch64"
510 
511 static inline void init_thread(struct target_pt_regs *regs,
512                                struct image_info *infop)
513 {
514     abi_long stack = infop->start_stack;
515     memset(regs, 0, sizeof(*regs));
516 
517     regs->pc = infop->entry & ~0x3ULL;
518     regs->sp = stack;
519 }
520 
521 #define ELF_NREG    34
522 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
523 
524 static void elf_core_copy_regs(target_elf_gregset_t *regs,
525                                const CPUARMState *env)
526 {
527     int i;
528 
529     for (i = 0; i < 32; i++) {
530         (*regs)[i] = tswapreg(env->xregs[i]);
531     }
532     (*regs)[32] = tswapreg(env->pc);
533     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534 }
535 
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE       4096
538 
539 enum {
540     ARM_HWCAP_A64_FP            = 1 << 0,
541     ARM_HWCAP_A64_ASIMD         = 1 << 1,
542     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
543     ARM_HWCAP_A64_AES           = 1 << 3,
544     ARM_HWCAP_A64_PMULL         = 1 << 4,
545     ARM_HWCAP_A64_SHA1          = 1 << 5,
546     ARM_HWCAP_A64_SHA2          = 1 << 6,
547     ARM_HWCAP_A64_CRC32         = 1 << 7,
548     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
549     ARM_HWCAP_A64_FPHP          = 1 << 9,
550     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
551     ARM_HWCAP_A64_CPUID         = 1 << 11,
552     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
553     ARM_HWCAP_A64_JSCVT         = 1 << 13,
554     ARM_HWCAP_A64_FCMA          = 1 << 14,
555     ARM_HWCAP_A64_LRCPC         = 1 << 15,
556     ARM_HWCAP_A64_DCPOP         = 1 << 16,
557     ARM_HWCAP_A64_SHA3          = 1 << 17,
558     ARM_HWCAP_A64_SM3           = 1 << 18,
559     ARM_HWCAP_A64_SM4           = 1 << 19,
560     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
561     ARM_HWCAP_A64_SHA512        = 1 << 21,
562     ARM_HWCAP_A64_SVE           = 1 << 22,
563 };
564 
565 #define ELF_HWCAP get_elf_hwcap()
566 
567 static uint32_t get_elf_hwcap(void)
568 {
569     ARMCPU *cpu = ARM_CPU(thread_cpu);
570     uint32_t hwcaps = 0;
571 
572     hwcaps |= ARM_HWCAP_A64_FP;
573     hwcaps |= ARM_HWCAP_A64_ASIMD;
574 
575     /* probe for the extra features */
576 #define GET_FEATURE_ID(feat, hwcap) \
577     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
578 
579     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
580     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
581     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
582     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
583     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
584     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
585     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
586     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
587     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
588     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
589     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
590     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
591     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
592     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
593     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
594 
595 #undef GET_FEATURE_ID
596 
597     return hwcaps;
598 }
599 
600 #endif /* not TARGET_AARCH64 */
601 #endif /* TARGET_ARM */
602 
603 #ifdef TARGET_SPARC
604 #ifdef TARGET_SPARC64
605 
606 #define ELF_START_MMAP 0x80000000
607 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
608                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
609 #ifndef TARGET_ABI32
610 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
611 #else
612 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
613 #endif
614 
615 #define ELF_CLASS   ELFCLASS64
616 #define ELF_ARCH    EM_SPARCV9
617 
618 #define STACK_BIAS              2047
619 
620 static inline void init_thread(struct target_pt_regs *regs,
621                                struct image_info *infop)
622 {
623 #ifndef TARGET_ABI32
624     regs->tstate = 0;
625 #endif
626     regs->pc = infop->entry;
627     regs->npc = regs->pc + 4;
628     regs->y = 0;
629 #ifdef TARGET_ABI32
630     regs->u_regs[14] = infop->start_stack - 16 * 4;
631 #else
632     if (personality(infop->personality) == PER_LINUX32)
633         regs->u_regs[14] = infop->start_stack - 16 * 4;
634     else
635         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
636 #endif
637 }
638 
639 #else
640 #define ELF_START_MMAP 0x80000000
641 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
642                     | HWCAP_SPARC_MULDIV)
643 
644 #define ELF_CLASS   ELFCLASS32
645 #define ELF_ARCH    EM_SPARC
646 
647 static inline void init_thread(struct target_pt_regs *regs,
648                                struct image_info *infop)
649 {
650     regs->psr = 0;
651     regs->pc = infop->entry;
652     regs->npc = regs->pc + 4;
653     regs->y = 0;
654     regs->u_regs[14] = infop->start_stack - 16 * 4;
655 }
656 
657 #endif
658 #endif
659 
660 #ifdef TARGET_PPC
661 
662 #define ELF_MACHINE    PPC_ELF_MACHINE
663 #define ELF_START_MMAP 0x80000000
664 
665 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
666 
667 #define elf_check_arch(x) ( (x) == EM_PPC64 )
668 
669 #define ELF_CLASS       ELFCLASS64
670 
671 #else
672 
673 #define ELF_CLASS       ELFCLASS32
674 
675 #endif
676 
677 #define ELF_ARCH        EM_PPC
678 
679 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
680    See arch/powerpc/include/asm/cputable.h.  */
681 enum {
682     QEMU_PPC_FEATURE_32 = 0x80000000,
683     QEMU_PPC_FEATURE_64 = 0x40000000,
684     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
685     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
686     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
687     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
688     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
689     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
690     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
691     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
692     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
693     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
694     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
695     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
696     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
697     QEMU_PPC_FEATURE_CELL = 0x00010000,
698     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
699     QEMU_PPC_FEATURE_SMT = 0x00004000,
700     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
701     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
702     QEMU_PPC_FEATURE_PA6T = 0x00000800,
703     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
704     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
705     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
706     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
707     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
708 
709     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
710     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
711 
712     /* Feature definitions in AT_HWCAP2.  */
713     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
714     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
715     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
716     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
717     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
718     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
719     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
720 };
721 
722 #define ELF_HWCAP get_elf_hwcap()
723 
724 static uint32_t get_elf_hwcap(void)
725 {
726     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
727     uint32_t features = 0;
728 
729     /* We don't have to be terribly complete here; the high points are
730        Altivec/FP/SPE support.  Anything else is just a bonus.  */
731 #define GET_FEATURE(flag, feature)                                      \
732     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
733 #define GET_FEATURE2(flags, feature) \
734     do { \
735         if ((cpu->env.insns_flags2 & flags) == flags) { \
736             features |= feature; \
737         } \
738     } while (0)
739     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
740     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
741     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
742     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
743     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
744     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
745     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
746     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
747     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
748     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
749     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
750                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
751                   QEMU_PPC_FEATURE_ARCH_2_06);
752 #undef GET_FEATURE
753 #undef GET_FEATURE2
754 
755     return features;
756 }
757 
758 #define ELF_HWCAP2 get_elf_hwcap2()
759 
760 static uint32_t get_elf_hwcap2(void)
761 {
762     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
763     uint32_t features = 0;
764 
765 #define GET_FEATURE(flag, feature)                                      \
766     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
767 #define GET_FEATURE2(flag, feature)                                      \
768     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
769 
770     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
771     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
772     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
773                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
774     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
775 
776 #undef GET_FEATURE
777 #undef GET_FEATURE2
778 
779     return features;
780 }
781 
782 /*
783  * The requirements here are:
784  * - keep the final alignment of sp (sp & 0xf)
785  * - make sure the 32-bit value at the first 16 byte aligned position of
786  *   AUXV is greater than 16 for glibc compatibility.
787  *   AT_IGNOREPPC is used for that.
788  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
789  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
790  */
791 #define DLINFO_ARCH_ITEMS       5
792 #define ARCH_DLINFO                                     \
793     do {                                                \
794         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
795         /*                                              \
796          * Handle glibc compatibility: these magic entries must \
797          * be at the lowest addresses in the final auxv.        \
798          */                                             \
799         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
800         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
801         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
802         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
803         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
804     } while (0)
805 
806 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
807 {
808     _regs->gpr[1] = infop->start_stack;
809 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
810     if (get_ppc64_abi(infop) < 2) {
811         uint64_t val;
812         get_user_u64(val, infop->entry + 8);
813         _regs->gpr[2] = val + infop->load_bias;
814         get_user_u64(val, infop->entry);
815         infop->entry = val + infop->load_bias;
816     } else {
817         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
818     }
819 #endif
820     _regs->nip = infop->entry;
821 }
822 
823 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
824 #define ELF_NREG 48
825 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
826 
827 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
828 {
829     int i;
830     target_ulong ccr = 0;
831 
832     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
833         (*regs)[i] = tswapreg(env->gpr[i]);
834     }
835 
836     (*regs)[32] = tswapreg(env->nip);
837     (*regs)[33] = tswapreg(env->msr);
838     (*regs)[35] = tswapreg(env->ctr);
839     (*regs)[36] = tswapreg(env->lr);
840     (*regs)[37] = tswapreg(env->xer);
841 
842     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
843         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
844     }
845     (*regs)[38] = tswapreg(ccr);
846 }
847 
848 #define USE_ELF_CORE_DUMP
849 #define ELF_EXEC_PAGESIZE       4096
850 
851 #endif
852 
853 #ifdef TARGET_MIPS
854 
855 #define ELF_START_MMAP 0x80000000
856 
857 #ifdef TARGET_MIPS64
858 #define ELF_CLASS   ELFCLASS64
859 #else
860 #define ELF_CLASS   ELFCLASS32
861 #endif
862 #define ELF_ARCH    EM_MIPS
863 
864 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
865 
866 static inline void init_thread(struct target_pt_regs *regs,
867                                struct image_info *infop)
868 {
869     regs->cp0_status = 2 << CP0St_KSU;
870     regs->cp0_epc = infop->entry;
871     regs->regs[29] = infop->start_stack;
872 }
873 
874 /* See linux kernel: arch/mips/include/asm/elf.h.  */
875 #define ELF_NREG 45
876 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
877 
878 /* See linux kernel: arch/mips/include/asm/reg.h.  */
879 enum {
880 #ifdef TARGET_MIPS64
881     TARGET_EF_R0 = 0,
882 #else
883     TARGET_EF_R0 = 6,
884 #endif
885     TARGET_EF_R26 = TARGET_EF_R0 + 26,
886     TARGET_EF_R27 = TARGET_EF_R0 + 27,
887     TARGET_EF_LO = TARGET_EF_R0 + 32,
888     TARGET_EF_HI = TARGET_EF_R0 + 33,
889     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
890     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
891     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
892     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
893 };
894 
895 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
896 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
897 {
898     int i;
899 
900     for (i = 0; i < TARGET_EF_R0; i++) {
901         (*regs)[i] = 0;
902     }
903     (*regs)[TARGET_EF_R0] = 0;
904 
905     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
906         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
907     }
908 
909     (*regs)[TARGET_EF_R26] = 0;
910     (*regs)[TARGET_EF_R27] = 0;
911     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
912     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
913     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
914     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
915     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
916     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
917 }
918 
919 #define USE_ELF_CORE_DUMP
920 #define ELF_EXEC_PAGESIZE        4096
921 
922 /* See arch/mips/include/uapi/asm/hwcap.h.  */
923 enum {
924     HWCAP_MIPS_R6           = (1 << 0),
925     HWCAP_MIPS_MSA          = (1 << 1),
926 };
927 
928 #define ELF_HWCAP get_elf_hwcap()
929 
930 static uint32_t get_elf_hwcap(void)
931 {
932     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
933     uint32_t hwcaps = 0;
934 
935 #define GET_FEATURE(flag, hwcap) \
936     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
937 
938     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
939     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
940 
941 #undef GET_FEATURE
942 
943     return hwcaps;
944 }
945 
946 #endif /* TARGET_MIPS */
947 
948 #ifdef TARGET_MICROBLAZE
949 
950 #define ELF_START_MMAP 0x80000000
951 
952 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
953 
954 #define ELF_CLASS   ELFCLASS32
955 #define ELF_ARCH    EM_MICROBLAZE
956 
957 static inline void init_thread(struct target_pt_regs *regs,
958                                struct image_info *infop)
959 {
960     regs->pc = infop->entry;
961     regs->r1 = infop->start_stack;
962 
963 }
964 
965 #define ELF_EXEC_PAGESIZE        4096
966 
967 #define USE_ELF_CORE_DUMP
968 #define ELF_NREG 38
969 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
970 
971 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
972 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
973 {
974     int i, pos = 0;
975 
976     for (i = 0; i < 32; i++) {
977         (*regs)[pos++] = tswapreg(env->regs[i]);
978     }
979 
980     for (i = 0; i < 6; i++) {
981         (*regs)[pos++] = tswapreg(env->sregs[i]);
982     }
983 }
984 
985 #endif /* TARGET_MICROBLAZE */
986 
987 #ifdef TARGET_NIOS2
988 
989 #define ELF_START_MMAP 0x80000000
990 
991 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
992 
993 #define ELF_CLASS   ELFCLASS32
994 #define ELF_ARCH    EM_ALTERA_NIOS2
995 
996 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
997 {
998     regs->ea = infop->entry;
999     regs->sp = infop->start_stack;
1000     regs->estatus = 0x3;
1001 }
1002 
1003 #define ELF_EXEC_PAGESIZE        4096
1004 
1005 #define USE_ELF_CORE_DUMP
1006 #define ELF_NREG 49
1007 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1008 
1009 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1010 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1011                                const CPUNios2State *env)
1012 {
1013     int i;
1014 
1015     (*regs)[0] = -1;
1016     for (i = 1; i < 8; i++)    /* r0-r7 */
1017         (*regs)[i] = tswapreg(env->regs[i + 7]);
1018 
1019     for (i = 8; i < 16; i++)   /* r8-r15 */
1020         (*regs)[i] = tswapreg(env->regs[i - 8]);
1021 
1022     for (i = 16; i < 24; i++)  /* r16-r23 */
1023         (*regs)[i] = tswapreg(env->regs[i + 7]);
1024     (*regs)[24] = -1;    /* R_ET */
1025     (*regs)[25] = -1;    /* R_BT */
1026     (*regs)[26] = tswapreg(env->regs[R_GP]);
1027     (*regs)[27] = tswapreg(env->regs[R_SP]);
1028     (*regs)[28] = tswapreg(env->regs[R_FP]);
1029     (*regs)[29] = tswapreg(env->regs[R_EA]);
1030     (*regs)[30] = -1;    /* R_SSTATUS */
1031     (*regs)[31] = tswapreg(env->regs[R_RA]);
1032 
1033     (*regs)[32] = tswapreg(env->regs[R_PC]);
1034 
1035     (*regs)[33] = -1; /* R_STATUS */
1036     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1037 
1038     for (i = 35; i < 49; i++)    /* ... */
1039         (*regs)[i] = -1;
1040 }
1041 
1042 #endif /* TARGET_NIOS2 */
1043 
1044 #ifdef TARGET_OPENRISC
1045 
1046 #define ELF_START_MMAP 0x08000000
1047 
1048 #define ELF_ARCH EM_OPENRISC
1049 #define ELF_CLASS ELFCLASS32
1050 #define ELF_DATA  ELFDATA2MSB
1051 
1052 static inline void init_thread(struct target_pt_regs *regs,
1053                                struct image_info *infop)
1054 {
1055     regs->pc = infop->entry;
1056     regs->gpr[1] = infop->start_stack;
1057 }
1058 
1059 #define USE_ELF_CORE_DUMP
1060 #define ELF_EXEC_PAGESIZE 8192
1061 
1062 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1063 #define ELF_NREG 34 /* gprs and pc, sr */
1064 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1065 
1066 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1067                                const CPUOpenRISCState *env)
1068 {
1069     int i;
1070 
1071     for (i = 0; i < 32; i++) {
1072         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1073     }
1074     (*regs)[32] = tswapreg(env->pc);
1075     (*regs)[33] = tswapreg(cpu_get_sr(env));
1076 }
1077 #define ELF_HWCAP 0
1078 #define ELF_PLATFORM NULL
1079 
1080 #endif /* TARGET_OPENRISC */
1081 
1082 #ifdef TARGET_SH4
1083 
1084 #define ELF_START_MMAP 0x80000000
1085 
1086 #define ELF_CLASS ELFCLASS32
1087 #define ELF_ARCH  EM_SH
1088 
1089 static inline void init_thread(struct target_pt_regs *regs,
1090                                struct image_info *infop)
1091 {
1092     /* Check other registers XXXXX */
1093     regs->pc = infop->entry;
1094     regs->regs[15] = infop->start_stack;
1095 }
1096 
1097 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1098 #define ELF_NREG 23
1099 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1100 
1101 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1102 enum {
1103     TARGET_REG_PC = 16,
1104     TARGET_REG_PR = 17,
1105     TARGET_REG_SR = 18,
1106     TARGET_REG_GBR = 19,
1107     TARGET_REG_MACH = 20,
1108     TARGET_REG_MACL = 21,
1109     TARGET_REG_SYSCALL = 22
1110 };
1111 
1112 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1113                                       const CPUSH4State *env)
1114 {
1115     int i;
1116 
1117     for (i = 0; i < 16; i++) {
1118         (*regs)[i] = tswapreg(env->gregs[i]);
1119     }
1120 
1121     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1122     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1123     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1124     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1125     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1126     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1127     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1128 }
1129 
1130 #define USE_ELF_CORE_DUMP
1131 #define ELF_EXEC_PAGESIZE        4096
1132 
1133 enum {
1134     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1135     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1136     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1137     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1138     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1139     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1140     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1141     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1142     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1143     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1144 };
1145 
1146 #define ELF_HWCAP get_elf_hwcap()
1147 
1148 static uint32_t get_elf_hwcap(void)
1149 {
1150     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1151     uint32_t hwcap = 0;
1152 
1153     hwcap |= SH_CPU_HAS_FPU;
1154 
1155     if (cpu->env.features & SH_FEATURE_SH4A) {
1156         hwcap |= SH_CPU_HAS_LLSC;
1157     }
1158 
1159     return hwcap;
1160 }
1161 
1162 #endif
1163 
1164 #ifdef TARGET_CRIS
1165 
1166 #define ELF_START_MMAP 0x80000000
1167 
1168 #define ELF_CLASS ELFCLASS32
1169 #define ELF_ARCH  EM_CRIS
1170 
1171 static inline void init_thread(struct target_pt_regs *regs,
1172                                struct image_info *infop)
1173 {
1174     regs->erp = infop->entry;
1175 }
1176 
1177 #define ELF_EXEC_PAGESIZE        8192
1178 
1179 #endif
1180 
1181 #ifdef TARGET_M68K
1182 
1183 #define ELF_START_MMAP 0x80000000
1184 
1185 #define ELF_CLASS       ELFCLASS32
1186 #define ELF_ARCH        EM_68K
1187 
1188 /* ??? Does this need to do anything?
1189    #define ELF_PLAT_INIT(_r) */
1190 
1191 static inline void init_thread(struct target_pt_regs *regs,
1192                                struct image_info *infop)
1193 {
1194     regs->usp = infop->start_stack;
1195     regs->sr = 0;
1196     regs->pc = infop->entry;
1197 }
1198 
1199 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1200 #define ELF_NREG 20
1201 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1202 
1203 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1204 {
1205     (*regs)[0] = tswapreg(env->dregs[1]);
1206     (*regs)[1] = tswapreg(env->dregs[2]);
1207     (*regs)[2] = tswapreg(env->dregs[3]);
1208     (*regs)[3] = tswapreg(env->dregs[4]);
1209     (*regs)[4] = tswapreg(env->dregs[5]);
1210     (*regs)[5] = tswapreg(env->dregs[6]);
1211     (*regs)[6] = tswapreg(env->dregs[7]);
1212     (*regs)[7] = tswapreg(env->aregs[0]);
1213     (*regs)[8] = tswapreg(env->aregs[1]);
1214     (*regs)[9] = tswapreg(env->aregs[2]);
1215     (*regs)[10] = tswapreg(env->aregs[3]);
1216     (*regs)[11] = tswapreg(env->aregs[4]);
1217     (*regs)[12] = tswapreg(env->aregs[5]);
1218     (*regs)[13] = tswapreg(env->aregs[6]);
1219     (*regs)[14] = tswapreg(env->dregs[0]);
1220     (*regs)[15] = tswapreg(env->aregs[7]);
1221     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1222     (*regs)[17] = tswapreg(env->sr);
1223     (*regs)[18] = tswapreg(env->pc);
1224     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1225 }
1226 
1227 #define USE_ELF_CORE_DUMP
1228 #define ELF_EXEC_PAGESIZE       8192
1229 
1230 #endif
1231 
1232 #ifdef TARGET_ALPHA
1233 
1234 #define ELF_START_MMAP (0x30000000000ULL)
1235 
1236 #define ELF_CLASS      ELFCLASS64
1237 #define ELF_ARCH       EM_ALPHA
1238 
1239 static inline void init_thread(struct target_pt_regs *regs,
1240                                struct image_info *infop)
1241 {
1242     regs->pc = infop->entry;
1243     regs->ps = 8;
1244     regs->usp = infop->start_stack;
1245 }
1246 
1247 #define ELF_EXEC_PAGESIZE        8192
1248 
1249 #endif /* TARGET_ALPHA */
1250 
1251 #ifdef TARGET_S390X
1252 
1253 #define ELF_START_MMAP (0x20000000000ULL)
1254 
1255 #define ELF_CLASS	ELFCLASS64
1256 #define ELF_DATA	ELFDATA2MSB
1257 #define ELF_ARCH	EM_S390
1258 
1259 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1260 {
1261     regs->psw.addr = infop->entry;
1262     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1263     regs->gprs[15] = infop->start_stack;
1264 }
1265 
1266 #endif /* TARGET_S390X */
1267 
1268 #ifdef TARGET_TILEGX
1269 
1270 /* 42 bits real used address, a half for user mode */
1271 #define ELF_START_MMAP (0x00000020000000000ULL)
1272 
1273 #define elf_check_arch(x) ((x) == EM_TILEGX)
1274 
1275 #define ELF_CLASS   ELFCLASS64
1276 #define ELF_DATA    ELFDATA2LSB
1277 #define ELF_ARCH    EM_TILEGX
1278 
1279 static inline void init_thread(struct target_pt_regs *regs,
1280                                struct image_info *infop)
1281 {
1282     regs->pc = infop->entry;
1283     regs->sp = infop->start_stack;
1284 
1285 }
1286 
1287 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1288 
1289 #endif /* TARGET_TILEGX */
1290 
1291 #ifdef TARGET_RISCV
1292 
1293 #define ELF_START_MMAP 0x80000000
1294 #define ELF_ARCH  EM_RISCV
1295 
1296 #ifdef TARGET_RISCV32
1297 #define ELF_CLASS ELFCLASS32
1298 #else
1299 #define ELF_CLASS ELFCLASS64
1300 #endif
1301 
1302 static inline void init_thread(struct target_pt_regs *regs,
1303                                struct image_info *infop)
1304 {
1305     regs->sepc = infop->entry;
1306     regs->sp = infop->start_stack;
1307 }
1308 
1309 #define ELF_EXEC_PAGESIZE 4096
1310 
1311 #endif /* TARGET_RISCV */
1312 
1313 #ifdef TARGET_HPPA
1314 
1315 #define ELF_START_MMAP  0x80000000
1316 #define ELF_CLASS       ELFCLASS32
1317 #define ELF_ARCH        EM_PARISC
1318 #define ELF_PLATFORM    "PARISC"
1319 #define STACK_GROWS_DOWN 0
1320 #define STACK_ALIGNMENT  64
1321 
1322 static inline void init_thread(struct target_pt_regs *regs,
1323                                struct image_info *infop)
1324 {
1325     regs->iaoq[0] = infop->entry;
1326     regs->iaoq[1] = infop->entry + 4;
1327     regs->gr[23] = 0;
1328     regs->gr[24] = infop->arg_start;
1329     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1330     /* The top-of-stack contains a linkage buffer.  */
1331     regs->gr[30] = infop->start_stack + 64;
1332     regs->gr[31] = infop->entry;
1333 }
1334 
1335 #endif /* TARGET_HPPA */
1336 
1337 #ifdef TARGET_XTENSA
1338 
1339 #define ELF_START_MMAP 0x20000000
1340 
1341 #define ELF_CLASS       ELFCLASS32
1342 #define ELF_ARCH        EM_XTENSA
1343 
1344 static inline void init_thread(struct target_pt_regs *regs,
1345                                struct image_info *infop)
1346 {
1347     regs->windowbase = 0;
1348     regs->windowstart = 1;
1349     regs->areg[1] = infop->start_stack;
1350     regs->pc = infop->entry;
1351 }
1352 
1353 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1354 #define ELF_NREG 128
1355 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1356 
1357 enum {
1358     TARGET_REG_PC,
1359     TARGET_REG_PS,
1360     TARGET_REG_LBEG,
1361     TARGET_REG_LEND,
1362     TARGET_REG_LCOUNT,
1363     TARGET_REG_SAR,
1364     TARGET_REG_WINDOWSTART,
1365     TARGET_REG_WINDOWBASE,
1366     TARGET_REG_THREADPTR,
1367     TARGET_REG_AR0 = 64,
1368 };
1369 
1370 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1371                                const CPUXtensaState *env)
1372 {
1373     unsigned i;
1374 
1375     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1376     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1377     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1378     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1379     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1380     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1381     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1382     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1383     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1384     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1385     for (i = 0; i < env->config->nareg; ++i) {
1386         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1387     }
1388 }
1389 
1390 #define USE_ELF_CORE_DUMP
1391 #define ELF_EXEC_PAGESIZE       4096
1392 
1393 #endif /* TARGET_XTENSA */
1394 
1395 #ifndef ELF_PLATFORM
1396 #define ELF_PLATFORM (NULL)
1397 #endif
1398 
1399 #ifndef ELF_MACHINE
1400 #define ELF_MACHINE ELF_ARCH
1401 #endif
1402 
1403 #ifndef elf_check_arch
1404 #define elf_check_arch(x) ((x) == ELF_ARCH)
1405 #endif
1406 
1407 #ifndef ELF_HWCAP
1408 #define ELF_HWCAP 0
1409 #endif
1410 
1411 #ifndef STACK_GROWS_DOWN
1412 #define STACK_GROWS_DOWN 1
1413 #endif
1414 
1415 #ifndef STACK_ALIGNMENT
1416 #define STACK_ALIGNMENT 16
1417 #endif
1418 
1419 #ifdef TARGET_ABI32
1420 #undef ELF_CLASS
1421 #define ELF_CLASS ELFCLASS32
1422 #undef bswaptls
1423 #define bswaptls(ptr) bswap32s(ptr)
1424 #endif
1425 
1426 #include "elf.h"
1427 
1428 struct exec
1429 {
1430     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1431     unsigned int a_text;   /* length of text, in bytes */
1432     unsigned int a_data;   /* length of data, in bytes */
1433     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1434     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1435     unsigned int a_entry;  /* start address */
1436     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1437     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1438 };
1439 
1440 
1441 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1442 #define OMAGIC 0407
1443 #define NMAGIC 0410
1444 #define ZMAGIC 0413
1445 #define QMAGIC 0314
1446 
1447 /* Necessary parameters */
1448 #define TARGET_ELF_EXEC_PAGESIZE \
1449         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1450          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1451 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1452 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1453                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1454 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1455 
1456 #define DLINFO_ITEMS 15
1457 
1458 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1459 {
1460     memcpy(to, from, n);
1461 }
1462 
1463 #ifdef BSWAP_NEEDED
1464 static void bswap_ehdr(struct elfhdr *ehdr)
1465 {
1466     bswap16s(&ehdr->e_type);            /* Object file type */
1467     bswap16s(&ehdr->e_machine);         /* Architecture */
1468     bswap32s(&ehdr->e_version);         /* Object file version */
1469     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1470     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1471     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1472     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1473     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1474     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1475     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1476     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1477     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1478     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1479 }
1480 
1481 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1482 {
1483     int i;
1484     for (i = 0; i < phnum; ++i, ++phdr) {
1485         bswap32s(&phdr->p_type);        /* Segment type */
1486         bswap32s(&phdr->p_flags);       /* Segment flags */
1487         bswaptls(&phdr->p_offset);      /* Segment file offset */
1488         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1489         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1490         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1491         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1492         bswaptls(&phdr->p_align);       /* Segment alignment */
1493     }
1494 }
1495 
1496 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1497 {
1498     int i;
1499     for (i = 0; i < shnum; ++i, ++shdr) {
1500         bswap32s(&shdr->sh_name);
1501         bswap32s(&shdr->sh_type);
1502         bswaptls(&shdr->sh_flags);
1503         bswaptls(&shdr->sh_addr);
1504         bswaptls(&shdr->sh_offset);
1505         bswaptls(&shdr->sh_size);
1506         bswap32s(&shdr->sh_link);
1507         bswap32s(&shdr->sh_info);
1508         bswaptls(&shdr->sh_addralign);
1509         bswaptls(&shdr->sh_entsize);
1510     }
1511 }
1512 
1513 static void bswap_sym(struct elf_sym *sym)
1514 {
1515     bswap32s(&sym->st_name);
1516     bswaptls(&sym->st_value);
1517     bswaptls(&sym->st_size);
1518     bswap16s(&sym->st_shndx);
1519 }
1520 #else
1521 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1522 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1523 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1524 static inline void bswap_sym(struct elf_sym *sym) { }
1525 #endif
1526 
1527 #ifdef USE_ELF_CORE_DUMP
1528 static int elf_core_dump(int, const CPUArchState *);
1529 #endif /* USE_ELF_CORE_DUMP */
1530 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1531 
1532 /* Verify the portions of EHDR within E_IDENT for the target.
1533    This can be performed before bswapping the entire header.  */
1534 static bool elf_check_ident(struct elfhdr *ehdr)
1535 {
1536     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1537             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1538             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1539             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1540             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1541             && ehdr->e_ident[EI_DATA] == ELF_DATA
1542             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1543 }
1544 
1545 /* Verify the portions of EHDR outside of E_IDENT for the target.
1546    This has to wait until after bswapping the header.  */
1547 static bool elf_check_ehdr(struct elfhdr *ehdr)
1548 {
1549     return (elf_check_arch(ehdr->e_machine)
1550             && ehdr->e_ehsize == sizeof(struct elfhdr)
1551             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1552             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1553 }
1554 
1555 /*
1556  * 'copy_elf_strings()' copies argument/envelope strings from user
1557  * memory to free pages in kernel mem. These are in a format ready
1558  * to be put directly into the top of new user memory.
1559  *
1560  */
1561 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1562                                   abi_ulong p, abi_ulong stack_limit)
1563 {
1564     char *tmp;
1565     int len, i;
1566     abi_ulong top = p;
1567 
1568     if (!p) {
1569         return 0;       /* bullet-proofing */
1570     }
1571 
1572     if (STACK_GROWS_DOWN) {
1573         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1574         for (i = argc - 1; i >= 0; --i) {
1575             tmp = argv[i];
1576             if (!tmp) {
1577                 fprintf(stderr, "VFS: argc is wrong");
1578                 exit(-1);
1579             }
1580             len = strlen(tmp) + 1;
1581             tmp += len;
1582 
1583             if (len > (p - stack_limit)) {
1584                 return 0;
1585             }
1586             while (len) {
1587                 int bytes_to_copy = (len > offset) ? offset : len;
1588                 tmp -= bytes_to_copy;
1589                 p -= bytes_to_copy;
1590                 offset -= bytes_to_copy;
1591                 len -= bytes_to_copy;
1592 
1593                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1594 
1595                 if (offset == 0) {
1596                     memcpy_to_target(p, scratch, top - p);
1597                     top = p;
1598                     offset = TARGET_PAGE_SIZE;
1599                 }
1600             }
1601         }
1602         if (p != top) {
1603             memcpy_to_target(p, scratch + offset, top - p);
1604         }
1605     } else {
1606         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1607         for (i = 0; i < argc; ++i) {
1608             tmp = argv[i];
1609             if (!tmp) {
1610                 fprintf(stderr, "VFS: argc is wrong");
1611                 exit(-1);
1612             }
1613             len = strlen(tmp) + 1;
1614             if (len > (stack_limit - p)) {
1615                 return 0;
1616             }
1617             while (len) {
1618                 int bytes_to_copy = (len > remaining) ? remaining : len;
1619 
1620                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1621 
1622                 tmp += bytes_to_copy;
1623                 remaining -= bytes_to_copy;
1624                 p += bytes_to_copy;
1625                 len -= bytes_to_copy;
1626 
1627                 if (remaining == 0) {
1628                     memcpy_to_target(top, scratch, p - top);
1629                     top = p;
1630                     remaining = TARGET_PAGE_SIZE;
1631                 }
1632             }
1633         }
1634         if (p != top) {
1635             memcpy_to_target(top, scratch, p - top);
1636         }
1637     }
1638 
1639     return p;
1640 }
1641 
1642 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1643  * argument/environment space. Newer kernels (>2.6.33) allow more,
1644  * dependent on stack size, but guarantee at least 32 pages for
1645  * backwards compatibility.
1646  */
1647 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1648 
1649 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1650                                  struct image_info *info)
1651 {
1652     abi_ulong size, error, guard;
1653 
1654     size = guest_stack_size;
1655     if (size < STACK_LOWER_LIMIT) {
1656         size = STACK_LOWER_LIMIT;
1657     }
1658     guard = TARGET_PAGE_SIZE;
1659     if (guard < qemu_real_host_page_size) {
1660         guard = qemu_real_host_page_size;
1661     }
1662 
1663     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1664                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1665     if (error == -1) {
1666         perror("mmap stack");
1667         exit(-1);
1668     }
1669 
1670     /* We reserve one extra page at the top of the stack as guard.  */
1671     if (STACK_GROWS_DOWN) {
1672         target_mprotect(error, guard, PROT_NONE);
1673         info->stack_limit = error + guard;
1674         return info->stack_limit + size - sizeof(void *);
1675     } else {
1676         target_mprotect(error + size, guard, PROT_NONE);
1677         info->stack_limit = error + size;
1678         return error;
1679     }
1680 }
1681 
1682 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1683    after the data section (i.e. bss).  */
1684 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1685 {
1686     uintptr_t host_start, host_map_start, host_end;
1687 
1688     last_bss = TARGET_PAGE_ALIGN(last_bss);
1689 
1690     /* ??? There is confusion between qemu_real_host_page_size and
1691        qemu_host_page_size here and elsewhere in target_mmap, which
1692        may lead to the end of the data section mapping from the file
1693        not being mapped.  At least there was an explicit test and
1694        comment for that here, suggesting that "the file size must
1695        be known".  The comment probably pre-dates the introduction
1696        of the fstat system call in target_mmap which does in fact
1697        find out the size.  What isn't clear is if the workaround
1698        here is still actually needed.  For now, continue with it,
1699        but merge it with the "normal" mmap that would allocate the bss.  */
1700 
1701     host_start = (uintptr_t) g2h(elf_bss);
1702     host_end = (uintptr_t) g2h(last_bss);
1703     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1704 
1705     if (host_map_start < host_end) {
1706         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1707                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1708         if (p == MAP_FAILED) {
1709             perror("cannot mmap brk");
1710             exit(-1);
1711         }
1712     }
1713 
1714     /* Ensure that the bss page(s) are valid */
1715     if ((page_get_flags(last_bss-1) & prot) != prot) {
1716         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1717     }
1718 
1719     if (host_start < host_map_start) {
1720         memset((void *)host_start, 0, host_map_start - host_start);
1721     }
1722 }
1723 
1724 #ifdef TARGET_ARM
1725 static int elf_is_fdpic(struct elfhdr *exec)
1726 {
1727     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1728 }
1729 #else
1730 /* Default implementation, always false.  */
1731 static int elf_is_fdpic(struct elfhdr *exec)
1732 {
1733     return 0;
1734 }
1735 #endif
1736 
1737 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1738 {
1739     uint16_t n;
1740     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1741 
1742     /* elf32_fdpic_loadseg */
1743     n = info->nsegs;
1744     while (n--) {
1745         sp -= 12;
1746         put_user_u32(loadsegs[n].addr, sp+0);
1747         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1748         put_user_u32(loadsegs[n].p_memsz, sp+8);
1749     }
1750 
1751     /* elf32_fdpic_loadmap */
1752     sp -= 4;
1753     put_user_u16(0, sp+0); /* version */
1754     put_user_u16(info->nsegs, sp+2); /* nsegs */
1755 
1756     info->personality = PER_LINUX_FDPIC;
1757     info->loadmap_addr = sp;
1758 
1759     return sp;
1760 }
1761 
1762 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1763                                    struct elfhdr *exec,
1764                                    struct image_info *info,
1765                                    struct image_info *interp_info)
1766 {
1767     abi_ulong sp;
1768     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1769     int size;
1770     int i;
1771     abi_ulong u_rand_bytes;
1772     uint8_t k_rand_bytes[16];
1773     abi_ulong u_platform;
1774     const char *k_platform;
1775     const int n = sizeof(elf_addr_t);
1776 
1777     sp = p;
1778 
1779     /* Needs to be before we load the env/argc/... */
1780     if (elf_is_fdpic(exec)) {
1781         /* Need 4 byte alignment for these structs */
1782         sp &= ~3;
1783         sp = loader_build_fdpic_loadmap(info, sp);
1784         info->other_info = interp_info;
1785         if (interp_info) {
1786             interp_info->other_info = info;
1787             sp = loader_build_fdpic_loadmap(interp_info, sp);
1788             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1789             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1790         } else {
1791             info->interpreter_loadmap_addr = 0;
1792             info->interpreter_pt_dynamic_addr = 0;
1793         }
1794     }
1795 
1796     u_platform = 0;
1797     k_platform = ELF_PLATFORM;
1798     if (k_platform) {
1799         size_t len = strlen(k_platform) + 1;
1800         if (STACK_GROWS_DOWN) {
1801             sp -= (len + n - 1) & ~(n - 1);
1802             u_platform = sp;
1803             /* FIXME - check return value of memcpy_to_target() for failure */
1804             memcpy_to_target(sp, k_platform, len);
1805         } else {
1806             memcpy_to_target(sp, k_platform, len);
1807             u_platform = sp;
1808             sp += len + 1;
1809         }
1810     }
1811 
1812     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1813      * the argv and envp pointers.
1814      */
1815     if (STACK_GROWS_DOWN) {
1816         sp = QEMU_ALIGN_DOWN(sp, 16);
1817     } else {
1818         sp = QEMU_ALIGN_UP(sp, 16);
1819     }
1820 
1821     /*
1822      * Generate 16 random bytes for userspace PRNG seeding (not
1823      * cryptically secure but it's not the aim of QEMU).
1824      */
1825     for (i = 0; i < 16; i++) {
1826         k_rand_bytes[i] = rand();
1827     }
1828     if (STACK_GROWS_DOWN) {
1829         sp -= 16;
1830         u_rand_bytes = sp;
1831         /* FIXME - check return value of memcpy_to_target() for failure */
1832         memcpy_to_target(sp, k_rand_bytes, 16);
1833     } else {
1834         memcpy_to_target(sp, k_rand_bytes, 16);
1835         u_rand_bytes = sp;
1836         sp += 16;
1837     }
1838 
1839     size = (DLINFO_ITEMS + 1) * 2;
1840     if (k_platform)
1841         size += 2;
1842 #ifdef DLINFO_ARCH_ITEMS
1843     size += DLINFO_ARCH_ITEMS * 2;
1844 #endif
1845 #ifdef ELF_HWCAP2
1846     size += 2;
1847 #endif
1848     info->auxv_len = size * n;
1849 
1850     size += envc + argc + 2;
1851     size += 1;  /* argc itself */
1852     size *= n;
1853 
1854     /* Allocate space and finalize stack alignment for entry now.  */
1855     if (STACK_GROWS_DOWN) {
1856         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1857         sp = u_argc;
1858     } else {
1859         u_argc = sp;
1860         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1861     }
1862 
1863     u_argv = u_argc + n;
1864     u_envp = u_argv + (argc + 1) * n;
1865     u_auxv = u_envp + (envc + 1) * n;
1866     info->saved_auxv = u_auxv;
1867     info->arg_start = u_argv;
1868     info->arg_end = u_argv + argc * n;
1869 
1870     /* This is correct because Linux defines
1871      * elf_addr_t as Elf32_Off / Elf64_Off
1872      */
1873 #define NEW_AUX_ENT(id, val) do {               \
1874         put_user_ual(id, u_auxv);  u_auxv += n; \
1875         put_user_ual(val, u_auxv); u_auxv += n; \
1876     } while(0)
1877 
1878 #ifdef ARCH_DLINFO
1879     /*
1880      * ARCH_DLINFO must come first so platform specific code can enforce
1881      * special alignment requirements on the AUXV if necessary (eg. PPC).
1882      */
1883     ARCH_DLINFO;
1884 #endif
1885     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1886      * on info->auxv_len will trigger.
1887      */
1888     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1889     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1890     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1891     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1892         /* Target doesn't support host page size alignment */
1893         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1894     } else {
1895         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1896                                                qemu_host_page_size)));
1897     }
1898     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1899     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1900     NEW_AUX_ENT(AT_ENTRY, info->entry);
1901     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1902     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1903     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1904     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1905     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1906     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1907     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1908     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1909 
1910 #ifdef ELF_HWCAP2
1911     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1912 #endif
1913 
1914     if (u_platform) {
1915         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1916     }
1917     NEW_AUX_ENT (AT_NULL, 0);
1918 #undef NEW_AUX_ENT
1919 
1920     /* Check that our initial calculation of the auxv length matches how much
1921      * we actually put into it.
1922      */
1923     assert(info->auxv_len == u_auxv - info->saved_auxv);
1924 
1925     put_user_ual(argc, u_argc);
1926 
1927     p = info->arg_strings;
1928     for (i = 0; i < argc; ++i) {
1929         put_user_ual(p, u_argv);
1930         u_argv += n;
1931         p += target_strlen(p) + 1;
1932     }
1933     put_user_ual(0, u_argv);
1934 
1935     p = info->env_strings;
1936     for (i = 0; i < envc; ++i) {
1937         put_user_ual(p, u_envp);
1938         u_envp += n;
1939         p += target_strlen(p) + 1;
1940     }
1941     put_user_ual(0, u_envp);
1942 
1943     return sp;
1944 }
1945 
1946 unsigned long init_guest_space(unsigned long host_start,
1947                                unsigned long host_size,
1948                                unsigned long guest_start,
1949                                bool fixed)
1950 {
1951     unsigned long current_start, aligned_start;
1952     int flags;
1953 
1954     assert(host_start || host_size);
1955 
1956     /* If just a starting address is given, then just verify that
1957      * address.  */
1958     if (host_start && !host_size) {
1959 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1960         if (init_guest_commpage(host_start, host_size) != 1) {
1961             return (unsigned long)-1;
1962         }
1963 #endif
1964         return host_start;
1965     }
1966 
1967     /* Setup the initial flags and start address.  */
1968     current_start = host_start & qemu_host_page_mask;
1969     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1970     if (fixed) {
1971         flags |= MAP_FIXED;
1972     }
1973 
1974     /* Otherwise, a non-zero size region of memory needs to be mapped
1975      * and validated.  */
1976 
1977 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1978     /* On 32-bit ARM, we need to map not just the usable memory, but
1979      * also the commpage.  Try to find a suitable place by allocating
1980      * a big chunk for all of it.  If host_start, then the naive
1981      * strategy probably does good enough.
1982      */
1983     if (!host_start) {
1984         unsigned long guest_full_size, host_full_size, real_start;
1985 
1986         guest_full_size =
1987             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1988         host_full_size = guest_full_size - guest_start;
1989         real_start = (unsigned long)
1990             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1991         if (real_start == (unsigned long)-1) {
1992             if (host_size < host_full_size - qemu_host_page_size) {
1993                 /* We failed to map a continous segment, but we're
1994                  * allowed to have a gap between the usable memory and
1995                  * the commpage where other things can be mapped.
1996                  * This sparseness gives us more flexibility to find
1997                  * an address range.
1998                  */
1999                 goto naive;
2000             }
2001             return (unsigned long)-1;
2002         }
2003         munmap((void *)real_start, host_full_size);
2004         if (real_start & ~qemu_host_page_mask) {
2005             /* The same thing again, but with an extra qemu_host_page_size
2006              * so that we can shift around alignment.
2007              */
2008             unsigned long real_size = host_full_size + qemu_host_page_size;
2009             real_start = (unsigned long)
2010                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2011             if (real_start == (unsigned long)-1) {
2012                 if (host_size < host_full_size - qemu_host_page_size) {
2013                     goto naive;
2014                 }
2015                 return (unsigned long)-1;
2016             }
2017             munmap((void *)real_start, real_size);
2018             real_start = HOST_PAGE_ALIGN(real_start);
2019         }
2020         current_start = real_start;
2021     }
2022  naive:
2023 #endif
2024 
2025     while (1) {
2026         unsigned long real_start, real_size, aligned_size;
2027         aligned_size = real_size = host_size;
2028 
2029         /* Do not use mmap_find_vma here because that is limited to the
2030          * guest address space.  We are going to make the
2031          * guest address space fit whatever we're given.
2032          */
2033         real_start = (unsigned long)
2034             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2035         if (real_start == (unsigned long)-1) {
2036             return (unsigned long)-1;
2037         }
2038 
2039         /* Check to see if the address is valid.  */
2040         if (host_start && real_start != current_start) {
2041             goto try_again;
2042         }
2043 
2044         /* Ensure the address is properly aligned.  */
2045         if (real_start & ~qemu_host_page_mask) {
2046             /* Ideally, we adjust like
2047              *
2048              *    pages: [  ][  ][  ][  ][  ]
2049              *      old:   [   real   ]
2050              *             [ aligned  ]
2051              *      new:   [     real     ]
2052              *               [ aligned  ]
2053              *
2054              * But if there is something else mapped right after it,
2055              * then obviously it won't have room to grow, and the
2056              * kernel will put the new larger real someplace else with
2057              * unknown alignment (if we made it to here, then
2058              * fixed=false).  Which is why we grow real by a full page
2059              * size, instead of by part of one; so that even if we get
2060              * moved, we can still guarantee alignment.  But this does
2061              * mean that there is a padding of < 1 page both before
2062              * and after the aligned range; the "after" could could
2063              * cause problems for ARM emulation where it could butt in
2064              * to where we need to put the commpage.
2065              */
2066             munmap((void *)real_start, host_size);
2067             real_size = aligned_size + qemu_host_page_size;
2068             real_start = (unsigned long)
2069                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2070             if (real_start == (unsigned long)-1) {
2071                 return (unsigned long)-1;
2072             }
2073             aligned_start = HOST_PAGE_ALIGN(real_start);
2074         } else {
2075             aligned_start = real_start;
2076         }
2077 
2078 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2079         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2080         int valid = init_guest_commpage(aligned_start - guest_start,
2081                                         aligned_size + guest_start);
2082         if (valid == -1) {
2083             munmap((void *)real_start, real_size);
2084             return (unsigned long)-1;
2085         } else if (valid == 0) {
2086             goto try_again;
2087         }
2088 #endif
2089 
2090         /* If nothing has said `return -1` or `goto try_again` yet,
2091          * then the address we have is good.
2092          */
2093         break;
2094 
2095     try_again:
2096         /* That address didn't work.  Unmap and try a different one.
2097          * The address the host picked because is typically right at
2098          * the top of the host address space and leaves the guest with
2099          * no usable address space.  Resort to a linear search.  We
2100          * already compensated for mmap_min_addr, so this should not
2101          * happen often.  Probably means we got unlucky and host
2102          * address space randomization put a shared library somewhere
2103          * inconvenient.
2104          *
2105          * This is probably a good strategy if host_start, but is
2106          * probably a bad strategy if not, which means we got here
2107          * because of trouble with ARM commpage setup.
2108          */
2109         munmap((void *)real_start, real_size);
2110         current_start += qemu_host_page_size;
2111         if (host_start == current_start) {
2112             /* Theoretically possible if host doesn't have any suitably
2113              * aligned areas.  Normally the first mmap will fail.
2114              */
2115             return (unsigned long)-1;
2116         }
2117     }
2118 
2119     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2120 
2121     return aligned_start;
2122 }
2123 
2124 static void probe_guest_base(const char *image_name,
2125                              abi_ulong loaddr, abi_ulong hiaddr)
2126 {
2127     /* Probe for a suitable guest base address, if the user has not set
2128      * it explicitly, and set guest_base appropriately.
2129      * In case of error we will print a suitable message and exit.
2130      */
2131     const char *errmsg;
2132     if (!have_guest_base && !reserved_va) {
2133         unsigned long host_start, real_start, host_size;
2134 
2135         /* Round addresses to page boundaries.  */
2136         loaddr &= qemu_host_page_mask;
2137         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2138 
2139         if (loaddr < mmap_min_addr) {
2140             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2141         } else {
2142             host_start = loaddr;
2143             if (host_start != loaddr) {
2144                 errmsg = "Address overflow loading ELF binary";
2145                 goto exit_errmsg;
2146             }
2147         }
2148         host_size = hiaddr - loaddr;
2149 
2150         /* Setup the initial guest memory space with ranges gleaned from
2151          * the ELF image that is being loaded.
2152          */
2153         real_start = init_guest_space(host_start, host_size, loaddr, false);
2154         if (real_start == (unsigned long)-1) {
2155             errmsg = "Unable to find space for application";
2156             goto exit_errmsg;
2157         }
2158         guest_base = real_start - loaddr;
2159 
2160         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2161                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2162                       loaddr, real_start);
2163     }
2164     return;
2165 
2166 exit_errmsg:
2167     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2168     exit(-1);
2169 }
2170 
2171 
2172 /* Load an ELF image into the address space.
2173 
2174    IMAGE_NAME is the filename of the image, to use in error messages.
2175    IMAGE_FD is the open file descriptor for the image.
2176 
2177    BPRM_BUF is a copy of the beginning of the file; this of course
2178    contains the elf file header at offset 0.  It is assumed that this
2179    buffer is sufficiently aligned to present no problems to the host
2180    in accessing data at aligned offsets within the buffer.
2181 
2182    On return: INFO values will be filled in, as necessary or available.  */
2183 
2184 static void load_elf_image(const char *image_name, int image_fd,
2185                            struct image_info *info, char **pinterp_name,
2186                            char bprm_buf[BPRM_BUF_SIZE])
2187 {
2188     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2189     struct elf_phdr *phdr;
2190     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2191     int i, retval;
2192     const char *errmsg;
2193 
2194     /* First of all, some simple consistency checks */
2195     errmsg = "Invalid ELF image for this architecture";
2196     if (!elf_check_ident(ehdr)) {
2197         goto exit_errmsg;
2198     }
2199     bswap_ehdr(ehdr);
2200     if (!elf_check_ehdr(ehdr)) {
2201         goto exit_errmsg;
2202     }
2203 
2204     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2205     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2206         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2207     } else {
2208         phdr = (struct elf_phdr *) alloca(i);
2209         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2210         if (retval != i) {
2211             goto exit_read;
2212         }
2213     }
2214     bswap_phdr(phdr, ehdr->e_phnum);
2215 
2216     info->nsegs = 0;
2217     info->pt_dynamic_addr = 0;
2218 
2219     mmap_lock();
2220 
2221     /* Find the maximum size of the image and allocate an appropriate
2222        amount of memory to handle that.  */
2223     loaddr = -1, hiaddr = 0;
2224     info->alignment = 0;
2225     for (i = 0; i < ehdr->e_phnum; ++i) {
2226         if (phdr[i].p_type == PT_LOAD) {
2227             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2228             if (a < loaddr) {
2229                 loaddr = a;
2230             }
2231             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2232             if (a > hiaddr) {
2233                 hiaddr = a;
2234             }
2235             ++info->nsegs;
2236             info->alignment |= phdr[i].p_align;
2237         }
2238     }
2239 
2240     load_addr = loaddr;
2241     if (ehdr->e_type == ET_DYN) {
2242         /* The image indicates that it can be loaded anywhere.  Find a
2243            location that can hold the memory space required.  If the
2244            image is pre-linked, LOADDR will be non-zero.  Since we do
2245            not supply MAP_FIXED here we'll use that address if and
2246            only if it remains available.  */
2247         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2248                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2249                                 -1, 0);
2250         if (load_addr == -1) {
2251             goto exit_perror;
2252         }
2253     } else if (pinterp_name != NULL) {
2254         /* This is the main executable.  Make sure that the low
2255            address does not conflict with MMAP_MIN_ADDR or the
2256            QEMU application itself.  */
2257         probe_guest_base(image_name, loaddr, hiaddr);
2258     }
2259     load_bias = load_addr - loaddr;
2260 
2261     if (elf_is_fdpic(ehdr)) {
2262         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2263             g_malloc(sizeof(*loadsegs) * info->nsegs);
2264 
2265         for (i = 0; i < ehdr->e_phnum; ++i) {
2266             switch (phdr[i].p_type) {
2267             case PT_DYNAMIC:
2268                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2269                 break;
2270             case PT_LOAD:
2271                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2272                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2273                 loadsegs->p_memsz = phdr[i].p_memsz;
2274                 ++loadsegs;
2275                 break;
2276             }
2277         }
2278     }
2279 
2280     info->load_bias = load_bias;
2281     info->load_addr = load_addr;
2282     info->entry = ehdr->e_entry + load_bias;
2283     info->start_code = -1;
2284     info->end_code = 0;
2285     info->start_data = -1;
2286     info->end_data = 0;
2287     info->brk = 0;
2288     info->elf_flags = ehdr->e_flags;
2289 
2290     for (i = 0; i < ehdr->e_phnum; i++) {
2291         struct elf_phdr *eppnt = phdr + i;
2292         if (eppnt->p_type == PT_LOAD) {
2293             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2294             int elf_prot = 0;
2295 
2296             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2297             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2298             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2299 
2300             vaddr = load_bias + eppnt->p_vaddr;
2301             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2302             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2303             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2304 
2305             error = target_mmap(vaddr_ps, vaddr_len,
2306                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2307                                 image_fd, eppnt->p_offset - vaddr_po);
2308             if (error == -1) {
2309                 goto exit_perror;
2310             }
2311 
2312             vaddr_ef = vaddr + eppnt->p_filesz;
2313             vaddr_em = vaddr + eppnt->p_memsz;
2314 
2315             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2316             if (vaddr_ef < vaddr_em) {
2317                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2318             }
2319 
2320             /* Find the full program boundaries.  */
2321             if (elf_prot & PROT_EXEC) {
2322                 if (vaddr < info->start_code) {
2323                     info->start_code = vaddr;
2324                 }
2325                 if (vaddr_ef > info->end_code) {
2326                     info->end_code = vaddr_ef;
2327                 }
2328             }
2329             if (elf_prot & PROT_WRITE) {
2330                 if (vaddr < info->start_data) {
2331                     info->start_data = vaddr;
2332                 }
2333                 if (vaddr_ef > info->end_data) {
2334                     info->end_data = vaddr_ef;
2335                 }
2336                 if (vaddr_em > info->brk) {
2337                     info->brk = vaddr_em;
2338                 }
2339             }
2340         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2341             char *interp_name;
2342 
2343             if (*pinterp_name) {
2344                 errmsg = "Multiple PT_INTERP entries";
2345                 goto exit_errmsg;
2346             }
2347             interp_name = malloc(eppnt->p_filesz);
2348             if (!interp_name) {
2349                 goto exit_perror;
2350             }
2351 
2352             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2353                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2354                        eppnt->p_filesz);
2355             } else {
2356                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2357                                eppnt->p_offset);
2358                 if (retval != eppnt->p_filesz) {
2359                     goto exit_perror;
2360                 }
2361             }
2362             if (interp_name[eppnt->p_filesz - 1] != 0) {
2363                 errmsg = "Invalid PT_INTERP entry";
2364                 goto exit_errmsg;
2365             }
2366             *pinterp_name = interp_name;
2367         }
2368     }
2369 
2370     if (info->end_data == 0) {
2371         info->start_data = info->end_code;
2372         info->end_data = info->end_code;
2373         info->brk = info->end_code;
2374     }
2375 
2376     if (qemu_log_enabled()) {
2377         load_symbols(ehdr, image_fd, load_bias);
2378     }
2379 
2380     mmap_unlock();
2381 
2382     close(image_fd);
2383     return;
2384 
2385  exit_read:
2386     if (retval >= 0) {
2387         errmsg = "Incomplete read of file header";
2388         goto exit_errmsg;
2389     }
2390  exit_perror:
2391     errmsg = strerror(errno);
2392  exit_errmsg:
2393     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2394     exit(-1);
2395 }
2396 
2397 static void load_elf_interp(const char *filename, struct image_info *info,
2398                             char bprm_buf[BPRM_BUF_SIZE])
2399 {
2400     int fd, retval;
2401 
2402     fd = open(path(filename), O_RDONLY);
2403     if (fd < 0) {
2404         goto exit_perror;
2405     }
2406 
2407     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2408     if (retval < 0) {
2409         goto exit_perror;
2410     }
2411     if (retval < BPRM_BUF_SIZE) {
2412         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2413     }
2414 
2415     load_elf_image(filename, fd, info, NULL, bprm_buf);
2416     return;
2417 
2418  exit_perror:
2419     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2420     exit(-1);
2421 }
2422 
2423 static int symfind(const void *s0, const void *s1)
2424 {
2425     target_ulong addr = *(target_ulong *)s0;
2426     struct elf_sym *sym = (struct elf_sym *)s1;
2427     int result = 0;
2428     if (addr < sym->st_value) {
2429         result = -1;
2430     } else if (addr >= sym->st_value + sym->st_size) {
2431         result = 1;
2432     }
2433     return result;
2434 }
2435 
2436 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2437 {
2438 #if ELF_CLASS == ELFCLASS32
2439     struct elf_sym *syms = s->disas_symtab.elf32;
2440 #else
2441     struct elf_sym *syms = s->disas_symtab.elf64;
2442 #endif
2443 
2444     // binary search
2445     struct elf_sym *sym;
2446 
2447     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2448     if (sym != NULL) {
2449         return s->disas_strtab + sym->st_name;
2450     }
2451 
2452     return "";
2453 }
2454 
2455 /* FIXME: This should use elf_ops.h  */
2456 static int symcmp(const void *s0, const void *s1)
2457 {
2458     struct elf_sym *sym0 = (struct elf_sym *)s0;
2459     struct elf_sym *sym1 = (struct elf_sym *)s1;
2460     return (sym0->st_value < sym1->st_value)
2461         ? -1
2462         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2463 }
2464 
2465 /* Best attempt to load symbols from this ELF object. */
2466 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2467 {
2468     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2469     uint64_t segsz;
2470     struct elf_shdr *shdr;
2471     char *strings = NULL;
2472     struct syminfo *s = NULL;
2473     struct elf_sym *new_syms, *syms = NULL;
2474 
2475     shnum = hdr->e_shnum;
2476     i = shnum * sizeof(struct elf_shdr);
2477     shdr = (struct elf_shdr *)alloca(i);
2478     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2479         return;
2480     }
2481 
2482     bswap_shdr(shdr, shnum);
2483     for (i = 0; i < shnum; ++i) {
2484         if (shdr[i].sh_type == SHT_SYMTAB) {
2485             sym_idx = i;
2486             str_idx = shdr[i].sh_link;
2487             goto found;
2488         }
2489     }
2490 
2491     /* There will be no symbol table if the file was stripped.  */
2492     return;
2493 
2494  found:
2495     /* Now know where the strtab and symtab are.  Snarf them.  */
2496     s = g_try_new(struct syminfo, 1);
2497     if (!s) {
2498         goto give_up;
2499     }
2500 
2501     segsz = shdr[str_idx].sh_size;
2502     s->disas_strtab = strings = g_try_malloc(segsz);
2503     if (!strings ||
2504         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2505         goto give_up;
2506     }
2507 
2508     segsz = shdr[sym_idx].sh_size;
2509     syms = g_try_malloc(segsz);
2510     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2511         goto give_up;
2512     }
2513 
2514     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2515         /* Implausibly large symbol table: give up rather than ploughing
2516          * on with the number of symbols calculation overflowing
2517          */
2518         goto give_up;
2519     }
2520     nsyms = segsz / sizeof(struct elf_sym);
2521     for (i = 0; i < nsyms; ) {
2522         bswap_sym(syms + i);
2523         /* Throw away entries which we do not need.  */
2524         if (syms[i].st_shndx == SHN_UNDEF
2525             || syms[i].st_shndx >= SHN_LORESERVE
2526             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2527             if (i < --nsyms) {
2528                 syms[i] = syms[nsyms];
2529             }
2530         } else {
2531 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2532             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2533             syms[i].st_value &= ~(target_ulong)1;
2534 #endif
2535             syms[i].st_value += load_bias;
2536             i++;
2537         }
2538     }
2539 
2540     /* No "useful" symbol.  */
2541     if (nsyms == 0) {
2542         goto give_up;
2543     }
2544 
2545     /* Attempt to free the storage associated with the local symbols
2546        that we threw away.  Whether or not this has any effect on the
2547        memory allocation depends on the malloc implementation and how
2548        many symbols we managed to discard.  */
2549     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2550     if (new_syms == NULL) {
2551         goto give_up;
2552     }
2553     syms = new_syms;
2554 
2555     qsort(syms, nsyms, sizeof(*syms), symcmp);
2556 
2557     s->disas_num_syms = nsyms;
2558 #if ELF_CLASS == ELFCLASS32
2559     s->disas_symtab.elf32 = syms;
2560 #else
2561     s->disas_symtab.elf64 = syms;
2562 #endif
2563     s->lookup_symbol = lookup_symbolxx;
2564     s->next = syminfos;
2565     syminfos = s;
2566 
2567     return;
2568 
2569 give_up:
2570     g_free(s);
2571     g_free(strings);
2572     g_free(syms);
2573 }
2574 
2575 uint32_t get_elf_eflags(int fd)
2576 {
2577     struct elfhdr ehdr;
2578     off_t offset;
2579     int ret;
2580 
2581     /* Read ELF header */
2582     offset = lseek(fd, 0, SEEK_SET);
2583     if (offset == (off_t) -1) {
2584         return 0;
2585     }
2586     ret = read(fd, &ehdr, sizeof(ehdr));
2587     if (ret < sizeof(ehdr)) {
2588         return 0;
2589     }
2590     offset = lseek(fd, offset, SEEK_SET);
2591     if (offset == (off_t) -1) {
2592         return 0;
2593     }
2594 
2595     /* Check ELF signature */
2596     if (!elf_check_ident(&ehdr)) {
2597         return 0;
2598     }
2599 
2600     /* check header */
2601     bswap_ehdr(&ehdr);
2602     if (!elf_check_ehdr(&ehdr)) {
2603         return 0;
2604     }
2605 
2606     /* return architecture id */
2607     return ehdr.e_flags;
2608 }
2609 
2610 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2611 {
2612     struct image_info interp_info;
2613     struct elfhdr elf_ex;
2614     char *elf_interpreter = NULL;
2615     char *scratch;
2616 
2617     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2618 
2619     load_elf_image(bprm->filename, bprm->fd, info,
2620                    &elf_interpreter, bprm->buf);
2621 
2622     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2623        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2624        when we load the interpreter.  */
2625     elf_ex = *(struct elfhdr *)bprm->buf;
2626 
2627     /* Do this so that we can load the interpreter, if need be.  We will
2628        change some of these later */
2629     bprm->p = setup_arg_pages(bprm, info);
2630 
2631     scratch = g_new0(char, TARGET_PAGE_SIZE);
2632     if (STACK_GROWS_DOWN) {
2633         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2634                                    bprm->p, info->stack_limit);
2635         info->file_string = bprm->p;
2636         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2637                                    bprm->p, info->stack_limit);
2638         info->env_strings = bprm->p;
2639         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2640                                    bprm->p, info->stack_limit);
2641         info->arg_strings = bprm->p;
2642     } else {
2643         info->arg_strings = bprm->p;
2644         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2645                                    bprm->p, info->stack_limit);
2646         info->env_strings = bprm->p;
2647         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2648                                    bprm->p, info->stack_limit);
2649         info->file_string = bprm->p;
2650         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2651                                    bprm->p, info->stack_limit);
2652     }
2653 
2654     g_free(scratch);
2655 
2656     if (!bprm->p) {
2657         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2658         exit(-1);
2659     }
2660 
2661     if (elf_interpreter) {
2662         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2663 
2664         /* If the program interpreter is one of these two, then assume
2665            an iBCS2 image.  Otherwise assume a native linux image.  */
2666 
2667         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2668             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2669             info->personality = PER_SVR4;
2670 
2671             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2672                and some applications "depend" upon this behavior.  Since
2673                we do not have the power to recompile these, we emulate
2674                the SVr4 behavior.  Sigh.  */
2675             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2676                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2677         }
2678     }
2679 
2680     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2681                                 info, (elf_interpreter ? &interp_info : NULL));
2682     info->start_stack = bprm->p;
2683 
2684     /* If we have an interpreter, set that as the program's entry point.
2685        Copy the load_bias as well, to help PPC64 interpret the entry
2686        point as a function descriptor.  Do this after creating elf tables
2687        so that we copy the original program entry point into the AUXV.  */
2688     if (elf_interpreter) {
2689         info->load_bias = interp_info.load_bias;
2690         info->entry = interp_info.entry;
2691         free(elf_interpreter);
2692     }
2693 
2694 #ifdef USE_ELF_CORE_DUMP
2695     bprm->core_dump = &elf_core_dump;
2696 #endif
2697 
2698     return 0;
2699 }
2700 
2701 #ifdef USE_ELF_CORE_DUMP
2702 /*
2703  * Definitions to generate Intel SVR4-like core files.
2704  * These mostly have the same names as the SVR4 types with "target_elf_"
2705  * tacked on the front to prevent clashes with linux definitions,
2706  * and the typedef forms have been avoided.  This is mostly like
2707  * the SVR4 structure, but more Linuxy, with things that Linux does
2708  * not support and which gdb doesn't really use excluded.
2709  *
2710  * Fields we don't dump (their contents is zero) in linux-user qemu
2711  * are marked with XXX.
2712  *
2713  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2714  *
2715  * Porting ELF coredump for target is (quite) simple process.  First you
2716  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2717  * the target resides):
2718  *
2719  * #define USE_ELF_CORE_DUMP
2720  *
2721  * Next you define type of register set used for dumping.  ELF specification
2722  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2723  *
2724  * typedef <target_regtype> target_elf_greg_t;
2725  * #define ELF_NREG <number of registers>
2726  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2727  *
2728  * Last step is to implement target specific function that copies registers
2729  * from given cpu into just specified register set.  Prototype is:
2730  *
2731  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2732  *                                const CPUArchState *env);
2733  *
2734  * Parameters:
2735  *     regs - copy register values into here (allocated and zeroed by caller)
2736  *     env - copy registers from here
2737  *
2738  * Example for ARM target is provided in this file.
2739  */
2740 
2741 /* An ELF note in memory */
2742 struct memelfnote {
2743     const char *name;
2744     size_t     namesz;
2745     size_t     namesz_rounded;
2746     int        type;
2747     size_t     datasz;
2748     size_t     datasz_rounded;
2749     void       *data;
2750     size_t     notesz;
2751 };
2752 
2753 struct target_elf_siginfo {
2754     abi_int    si_signo; /* signal number */
2755     abi_int    si_code;  /* extra code */
2756     abi_int    si_errno; /* errno */
2757 };
2758 
2759 struct target_elf_prstatus {
2760     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2761     abi_short          pr_cursig;    /* Current signal */
2762     abi_ulong          pr_sigpend;   /* XXX */
2763     abi_ulong          pr_sighold;   /* XXX */
2764     target_pid_t       pr_pid;
2765     target_pid_t       pr_ppid;
2766     target_pid_t       pr_pgrp;
2767     target_pid_t       pr_sid;
2768     struct target_timeval pr_utime;  /* XXX User time */
2769     struct target_timeval pr_stime;  /* XXX System time */
2770     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2771     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2772     target_elf_gregset_t      pr_reg;       /* GP registers */
2773     abi_int            pr_fpvalid;   /* XXX */
2774 };
2775 
2776 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2777 
2778 struct target_elf_prpsinfo {
2779     char         pr_state;       /* numeric process state */
2780     char         pr_sname;       /* char for pr_state */
2781     char         pr_zomb;        /* zombie */
2782     char         pr_nice;        /* nice val */
2783     abi_ulong    pr_flag;        /* flags */
2784     target_uid_t pr_uid;
2785     target_gid_t pr_gid;
2786     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2787     /* Lots missing */
2788     char    pr_fname[16];           /* filename of executable */
2789     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2790 };
2791 
2792 /* Here is the structure in which status of each thread is captured. */
2793 struct elf_thread_status {
2794     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2795     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2796 #if 0
2797     elf_fpregset_t fpu;             /* NT_PRFPREG */
2798     struct task_struct *thread;
2799     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2800 #endif
2801     struct memelfnote notes[1];
2802     int num_notes;
2803 };
2804 
2805 struct elf_note_info {
2806     struct memelfnote   *notes;
2807     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2808     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2809 
2810     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2811 #if 0
2812     /*
2813      * Current version of ELF coredump doesn't support
2814      * dumping fp regs etc.
2815      */
2816     elf_fpregset_t *fpu;
2817     elf_fpxregset_t *xfpu;
2818     int thread_status_size;
2819 #endif
2820     int notes_size;
2821     int numnote;
2822 };
2823 
2824 struct vm_area_struct {
2825     target_ulong   vma_start;  /* start vaddr of memory region */
2826     target_ulong   vma_end;    /* end vaddr of memory region */
2827     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2828     QTAILQ_ENTRY(vm_area_struct) vma_link;
2829 };
2830 
2831 struct mm_struct {
2832     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2833     int mm_count;           /* number of mappings */
2834 };
2835 
2836 static struct mm_struct *vma_init(void);
2837 static void vma_delete(struct mm_struct *);
2838 static int vma_add_mapping(struct mm_struct *, target_ulong,
2839                            target_ulong, abi_ulong);
2840 static int vma_get_mapping_count(const struct mm_struct *);
2841 static struct vm_area_struct *vma_first(const struct mm_struct *);
2842 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2843 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2844 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2845                       unsigned long flags);
2846 
2847 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2848 static void fill_note(struct memelfnote *, const char *, int,
2849                       unsigned int, void *);
2850 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2851 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2852 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2853 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2854 static size_t note_size(const struct memelfnote *);
2855 static void free_note_info(struct elf_note_info *);
2856 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2857 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2858 static int core_dump_filename(const TaskState *, char *, size_t);
2859 
2860 static int dump_write(int, const void *, size_t);
2861 static int write_note(struct memelfnote *, int);
2862 static int write_note_info(struct elf_note_info *, int);
2863 
2864 #ifdef BSWAP_NEEDED
2865 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2866 {
2867     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2868     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2869     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2870     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2871     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2872     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2873     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2874     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2875     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2876     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2877     /* cpu times are not filled, so we skip them */
2878     /* regs should be in correct format already */
2879     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2880 }
2881 
2882 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2883 {
2884     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2885     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2886     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2887     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2888     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2889     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2890     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2891 }
2892 
2893 static void bswap_note(struct elf_note *en)
2894 {
2895     bswap32s(&en->n_namesz);
2896     bswap32s(&en->n_descsz);
2897     bswap32s(&en->n_type);
2898 }
2899 #else
2900 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2901 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2902 static inline void bswap_note(struct elf_note *en) { }
2903 #endif /* BSWAP_NEEDED */
2904 
2905 /*
2906  * Minimal support for linux memory regions.  These are needed
2907  * when we are finding out what memory exactly belongs to
2908  * emulated process.  No locks needed here, as long as
2909  * thread that received the signal is stopped.
2910  */
2911 
2912 static struct mm_struct *vma_init(void)
2913 {
2914     struct mm_struct *mm;
2915 
2916     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2917         return (NULL);
2918 
2919     mm->mm_count = 0;
2920     QTAILQ_INIT(&mm->mm_mmap);
2921 
2922     return (mm);
2923 }
2924 
2925 static void vma_delete(struct mm_struct *mm)
2926 {
2927     struct vm_area_struct *vma;
2928 
2929     while ((vma = vma_first(mm)) != NULL) {
2930         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2931         g_free(vma);
2932     }
2933     g_free(mm);
2934 }
2935 
2936 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2937                            target_ulong end, abi_ulong flags)
2938 {
2939     struct vm_area_struct *vma;
2940 
2941     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2942         return (-1);
2943 
2944     vma->vma_start = start;
2945     vma->vma_end = end;
2946     vma->vma_flags = flags;
2947 
2948     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2949     mm->mm_count++;
2950 
2951     return (0);
2952 }
2953 
2954 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2955 {
2956     return (QTAILQ_FIRST(&mm->mm_mmap));
2957 }
2958 
2959 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2960 {
2961     return (QTAILQ_NEXT(vma, vma_link));
2962 }
2963 
2964 static int vma_get_mapping_count(const struct mm_struct *mm)
2965 {
2966     return (mm->mm_count);
2967 }
2968 
2969 /*
2970  * Calculate file (dump) size of given memory region.
2971  */
2972 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2973 {
2974     /* if we cannot even read the first page, skip it */
2975     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2976         return (0);
2977 
2978     /*
2979      * Usually we don't dump executable pages as they contain
2980      * non-writable code that debugger can read directly from
2981      * target library etc.  However, thread stacks are marked
2982      * also executable so we read in first page of given region
2983      * and check whether it contains elf header.  If there is
2984      * no elf header, we dump it.
2985      */
2986     if (vma->vma_flags & PROT_EXEC) {
2987         char page[TARGET_PAGE_SIZE];
2988 
2989         copy_from_user(page, vma->vma_start, sizeof (page));
2990         if ((page[EI_MAG0] == ELFMAG0) &&
2991             (page[EI_MAG1] == ELFMAG1) &&
2992             (page[EI_MAG2] == ELFMAG2) &&
2993             (page[EI_MAG3] == ELFMAG3)) {
2994             /*
2995              * Mappings are possibly from ELF binary.  Don't dump
2996              * them.
2997              */
2998             return (0);
2999         }
3000     }
3001 
3002     return (vma->vma_end - vma->vma_start);
3003 }
3004 
3005 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3006                       unsigned long flags)
3007 {
3008     struct mm_struct *mm = (struct mm_struct *)priv;
3009 
3010     vma_add_mapping(mm, start, end, flags);
3011     return (0);
3012 }
3013 
3014 static void fill_note(struct memelfnote *note, const char *name, int type,
3015                       unsigned int sz, void *data)
3016 {
3017     unsigned int namesz;
3018 
3019     namesz = strlen(name) + 1;
3020     note->name = name;
3021     note->namesz = namesz;
3022     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3023     note->type = type;
3024     note->datasz = sz;
3025     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3026 
3027     note->data = data;
3028 
3029     /*
3030      * We calculate rounded up note size here as specified by
3031      * ELF document.
3032      */
3033     note->notesz = sizeof (struct elf_note) +
3034         note->namesz_rounded + note->datasz_rounded;
3035 }
3036 
3037 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3038                             uint32_t flags)
3039 {
3040     (void) memset(elf, 0, sizeof(*elf));
3041 
3042     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3043     elf->e_ident[EI_CLASS] = ELF_CLASS;
3044     elf->e_ident[EI_DATA] = ELF_DATA;
3045     elf->e_ident[EI_VERSION] = EV_CURRENT;
3046     elf->e_ident[EI_OSABI] = ELF_OSABI;
3047 
3048     elf->e_type = ET_CORE;
3049     elf->e_machine = machine;
3050     elf->e_version = EV_CURRENT;
3051     elf->e_phoff = sizeof(struct elfhdr);
3052     elf->e_flags = flags;
3053     elf->e_ehsize = sizeof(struct elfhdr);
3054     elf->e_phentsize = sizeof(struct elf_phdr);
3055     elf->e_phnum = segs;
3056 
3057     bswap_ehdr(elf);
3058 }
3059 
3060 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3061 {
3062     phdr->p_type = PT_NOTE;
3063     phdr->p_offset = offset;
3064     phdr->p_vaddr = 0;
3065     phdr->p_paddr = 0;
3066     phdr->p_filesz = sz;
3067     phdr->p_memsz = 0;
3068     phdr->p_flags = 0;
3069     phdr->p_align = 0;
3070 
3071     bswap_phdr(phdr, 1);
3072 }
3073 
3074 static size_t note_size(const struct memelfnote *note)
3075 {
3076     return (note->notesz);
3077 }
3078 
3079 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3080                           const TaskState *ts, int signr)
3081 {
3082     (void) memset(prstatus, 0, sizeof (*prstatus));
3083     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3084     prstatus->pr_pid = ts->ts_tid;
3085     prstatus->pr_ppid = getppid();
3086     prstatus->pr_pgrp = getpgrp();
3087     prstatus->pr_sid = getsid(0);
3088 
3089     bswap_prstatus(prstatus);
3090 }
3091 
3092 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3093 {
3094     char *base_filename;
3095     unsigned int i, len;
3096 
3097     (void) memset(psinfo, 0, sizeof (*psinfo));
3098 
3099     len = ts->info->arg_end - ts->info->arg_start;
3100     if (len >= ELF_PRARGSZ)
3101         len = ELF_PRARGSZ - 1;
3102     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3103         return -EFAULT;
3104     for (i = 0; i < len; i++)
3105         if (psinfo->pr_psargs[i] == 0)
3106             psinfo->pr_psargs[i] = ' ';
3107     psinfo->pr_psargs[len] = 0;
3108 
3109     psinfo->pr_pid = getpid();
3110     psinfo->pr_ppid = getppid();
3111     psinfo->pr_pgrp = getpgrp();
3112     psinfo->pr_sid = getsid(0);
3113     psinfo->pr_uid = getuid();
3114     psinfo->pr_gid = getgid();
3115 
3116     base_filename = g_path_get_basename(ts->bprm->filename);
3117     /*
3118      * Using strncpy here is fine: at max-length,
3119      * this field is not NUL-terminated.
3120      */
3121     (void) strncpy(psinfo->pr_fname, base_filename,
3122                    sizeof(psinfo->pr_fname));
3123 
3124     g_free(base_filename);
3125     bswap_psinfo(psinfo);
3126     return (0);
3127 }
3128 
3129 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3130 {
3131     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3132     elf_addr_t orig_auxv = auxv;
3133     void *ptr;
3134     int len = ts->info->auxv_len;
3135 
3136     /*
3137      * Auxiliary vector is stored in target process stack.  It contains
3138      * {type, value} pairs that we need to dump into note.  This is not
3139      * strictly necessary but we do it here for sake of completeness.
3140      */
3141 
3142     /* read in whole auxv vector and copy it to memelfnote */
3143     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3144     if (ptr != NULL) {
3145         fill_note(note, "CORE", NT_AUXV, len, ptr);
3146         unlock_user(ptr, auxv, len);
3147     }
3148 }
3149 
3150 /*
3151  * Constructs name of coredump file.  We have following convention
3152  * for the name:
3153  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3154  *
3155  * Returns 0 in case of success, -1 otherwise (errno is set).
3156  */
3157 static int core_dump_filename(const TaskState *ts, char *buf,
3158                               size_t bufsize)
3159 {
3160     char timestamp[64];
3161     char *base_filename = NULL;
3162     struct timeval tv;
3163     struct tm tm;
3164 
3165     assert(bufsize >= PATH_MAX);
3166 
3167     if (gettimeofday(&tv, NULL) < 0) {
3168         (void) fprintf(stderr, "unable to get current timestamp: %s",
3169                        strerror(errno));
3170         return (-1);
3171     }
3172 
3173     base_filename = g_path_get_basename(ts->bprm->filename);
3174     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3175                     localtime_r(&tv.tv_sec, &tm));
3176     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3177                     base_filename, timestamp, (int)getpid());
3178     g_free(base_filename);
3179 
3180     return (0);
3181 }
3182 
3183 static int dump_write(int fd, const void *ptr, size_t size)
3184 {
3185     const char *bufp = (const char *)ptr;
3186     ssize_t bytes_written, bytes_left;
3187     struct rlimit dumpsize;
3188     off_t pos;
3189 
3190     bytes_written = 0;
3191     getrlimit(RLIMIT_CORE, &dumpsize);
3192     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3193         if (errno == ESPIPE) { /* not a seekable stream */
3194             bytes_left = size;
3195         } else {
3196             return pos;
3197         }
3198     } else {
3199         if (dumpsize.rlim_cur <= pos) {
3200             return -1;
3201         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3202             bytes_left = size;
3203         } else {
3204             size_t limit_left=dumpsize.rlim_cur - pos;
3205             bytes_left = limit_left >= size ? size : limit_left ;
3206         }
3207     }
3208 
3209     /*
3210      * In normal conditions, single write(2) should do but
3211      * in case of socket etc. this mechanism is more portable.
3212      */
3213     do {
3214         bytes_written = write(fd, bufp, bytes_left);
3215         if (bytes_written < 0) {
3216             if (errno == EINTR)
3217                 continue;
3218             return (-1);
3219         } else if (bytes_written == 0) { /* eof */
3220             return (-1);
3221         }
3222         bufp += bytes_written;
3223         bytes_left -= bytes_written;
3224     } while (bytes_left > 0);
3225 
3226     return (0);
3227 }
3228 
3229 static int write_note(struct memelfnote *men, int fd)
3230 {
3231     struct elf_note en;
3232 
3233     en.n_namesz = men->namesz;
3234     en.n_type = men->type;
3235     en.n_descsz = men->datasz;
3236 
3237     bswap_note(&en);
3238 
3239     if (dump_write(fd, &en, sizeof(en)) != 0)
3240         return (-1);
3241     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3242         return (-1);
3243     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3244         return (-1);
3245 
3246     return (0);
3247 }
3248 
3249 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3250 {
3251     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3252     TaskState *ts = (TaskState *)cpu->opaque;
3253     struct elf_thread_status *ets;
3254 
3255     ets = g_malloc0(sizeof (*ets));
3256     ets->num_notes = 1; /* only prstatus is dumped */
3257     fill_prstatus(&ets->prstatus, ts, 0);
3258     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3259     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3260               &ets->prstatus);
3261 
3262     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3263 
3264     info->notes_size += note_size(&ets->notes[0]);
3265 }
3266 
3267 static void init_note_info(struct elf_note_info *info)
3268 {
3269     /* Initialize the elf_note_info structure so that it is at
3270      * least safe to call free_note_info() on it. Must be
3271      * called before calling fill_note_info().
3272      */
3273     memset(info, 0, sizeof (*info));
3274     QTAILQ_INIT(&info->thread_list);
3275 }
3276 
3277 static int fill_note_info(struct elf_note_info *info,
3278                           long signr, const CPUArchState *env)
3279 {
3280 #define NUMNOTES 3
3281     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3282     TaskState *ts = (TaskState *)cpu->opaque;
3283     int i;
3284 
3285     info->notes = g_new0(struct memelfnote, NUMNOTES);
3286     if (info->notes == NULL)
3287         return (-ENOMEM);
3288     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3289     if (info->prstatus == NULL)
3290         return (-ENOMEM);
3291     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3292     if (info->prstatus == NULL)
3293         return (-ENOMEM);
3294 
3295     /*
3296      * First fill in status (and registers) of current thread
3297      * including process info & aux vector.
3298      */
3299     fill_prstatus(info->prstatus, ts, signr);
3300     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3301     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3302               sizeof (*info->prstatus), info->prstatus);
3303     fill_psinfo(info->psinfo, ts);
3304     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3305               sizeof (*info->psinfo), info->psinfo);
3306     fill_auxv_note(&info->notes[2], ts);
3307     info->numnote = 3;
3308 
3309     info->notes_size = 0;
3310     for (i = 0; i < info->numnote; i++)
3311         info->notes_size += note_size(&info->notes[i]);
3312 
3313     /* read and fill status of all threads */
3314     cpu_list_lock();
3315     CPU_FOREACH(cpu) {
3316         if (cpu == thread_cpu) {
3317             continue;
3318         }
3319         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3320     }
3321     cpu_list_unlock();
3322 
3323     return (0);
3324 }
3325 
3326 static void free_note_info(struct elf_note_info *info)
3327 {
3328     struct elf_thread_status *ets;
3329 
3330     while (!QTAILQ_EMPTY(&info->thread_list)) {
3331         ets = QTAILQ_FIRST(&info->thread_list);
3332         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3333         g_free(ets);
3334     }
3335 
3336     g_free(info->prstatus);
3337     g_free(info->psinfo);
3338     g_free(info->notes);
3339 }
3340 
3341 static int write_note_info(struct elf_note_info *info, int fd)
3342 {
3343     struct elf_thread_status *ets;
3344     int i, error = 0;
3345 
3346     /* write prstatus, psinfo and auxv for current thread */
3347     for (i = 0; i < info->numnote; i++)
3348         if ((error = write_note(&info->notes[i], fd)) != 0)
3349             return (error);
3350 
3351     /* write prstatus for each thread */
3352     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3353         if ((error = write_note(&ets->notes[0], fd)) != 0)
3354             return (error);
3355     }
3356 
3357     return (0);
3358 }
3359 
3360 /*
3361  * Write out ELF coredump.
3362  *
3363  * See documentation of ELF object file format in:
3364  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3365  *
3366  * Coredump format in linux is following:
3367  *
3368  * 0   +----------------------+         \
3369  *     | ELF header           | ET_CORE  |
3370  *     +----------------------+          |
3371  *     | ELF program headers  |          |--- headers
3372  *     | - NOTE section       |          |
3373  *     | - PT_LOAD sections   |          |
3374  *     +----------------------+         /
3375  *     | NOTEs:               |
3376  *     | - NT_PRSTATUS        |
3377  *     | - NT_PRSINFO         |
3378  *     | - NT_AUXV            |
3379  *     +----------------------+ <-- aligned to target page
3380  *     | Process memory dump  |
3381  *     :                      :
3382  *     .                      .
3383  *     :                      :
3384  *     |                      |
3385  *     +----------------------+
3386  *
3387  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3388  * NT_PRSINFO  -> struct elf_prpsinfo
3389  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3390  *
3391  * Format follows System V format as close as possible.  Current
3392  * version limitations are as follows:
3393  *     - no floating point registers are dumped
3394  *
3395  * Function returns 0 in case of success, negative errno otherwise.
3396  *
3397  * TODO: make this work also during runtime: it should be
3398  * possible to force coredump from running process and then
3399  * continue processing.  For example qemu could set up SIGUSR2
3400  * handler (provided that target process haven't registered
3401  * handler for that) that does the dump when signal is received.
3402  */
3403 static int elf_core_dump(int signr, const CPUArchState *env)
3404 {
3405     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3406     const TaskState *ts = (const TaskState *)cpu->opaque;
3407     struct vm_area_struct *vma = NULL;
3408     char corefile[PATH_MAX];
3409     struct elf_note_info info;
3410     struct elfhdr elf;
3411     struct elf_phdr phdr;
3412     struct rlimit dumpsize;
3413     struct mm_struct *mm = NULL;
3414     off_t offset = 0, data_offset = 0;
3415     int segs = 0;
3416     int fd = -1;
3417 
3418     init_note_info(&info);
3419 
3420     errno = 0;
3421     getrlimit(RLIMIT_CORE, &dumpsize);
3422     if (dumpsize.rlim_cur == 0)
3423         return 0;
3424 
3425     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3426         return (-errno);
3427 
3428     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3429                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3430         return (-errno);
3431 
3432     /*
3433      * Walk through target process memory mappings and
3434      * set up structure containing this information.  After
3435      * this point vma_xxx functions can be used.
3436      */
3437     if ((mm = vma_init()) == NULL)
3438         goto out;
3439 
3440     walk_memory_regions(mm, vma_walker);
3441     segs = vma_get_mapping_count(mm);
3442 
3443     /*
3444      * Construct valid coredump ELF header.  We also
3445      * add one more segment for notes.
3446      */
3447     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3448     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3449         goto out;
3450 
3451     /* fill in the in-memory version of notes */
3452     if (fill_note_info(&info, signr, env) < 0)
3453         goto out;
3454 
3455     offset += sizeof (elf);                             /* elf header */
3456     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3457 
3458     /* write out notes program header */
3459     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3460 
3461     offset += info.notes_size;
3462     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3463         goto out;
3464 
3465     /*
3466      * ELF specification wants data to start at page boundary so
3467      * we align it here.
3468      */
3469     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3470 
3471     /*
3472      * Write program headers for memory regions mapped in
3473      * the target process.
3474      */
3475     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3476         (void) memset(&phdr, 0, sizeof (phdr));
3477 
3478         phdr.p_type = PT_LOAD;
3479         phdr.p_offset = offset;
3480         phdr.p_vaddr = vma->vma_start;
3481         phdr.p_paddr = 0;
3482         phdr.p_filesz = vma_dump_size(vma);
3483         offset += phdr.p_filesz;
3484         phdr.p_memsz = vma->vma_end - vma->vma_start;
3485         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3486         if (vma->vma_flags & PROT_WRITE)
3487             phdr.p_flags |= PF_W;
3488         if (vma->vma_flags & PROT_EXEC)
3489             phdr.p_flags |= PF_X;
3490         phdr.p_align = ELF_EXEC_PAGESIZE;
3491 
3492         bswap_phdr(&phdr, 1);
3493         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3494             goto out;
3495         }
3496     }
3497 
3498     /*
3499      * Next we write notes just after program headers.  No
3500      * alignment needed here.
3501      */
3502     if (write_note_info(&info, fd) < 0)
3503         goto out;
3504 
3505     /* align data to page boundary */
3506     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3507         goto out;
3508 
3509     /*
3510      * Finally we can dump process memory into corefile as well.
3511      */
3512     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3513         abi_ulong addr;
3514         abi_ulong end;
3515 
3516         end = vma->vma_start + vma_dump_size(vma);
3517 
3518         for (addr = vma->vma_start; addr < end;
3519              addr += TARGET_PAGE_SIZE) {
3520             char page[TARGET_PAGE_SIZE];
3521             int error;
3522 
3523             /*
3524              *  Read in page from target process memory and
3525              *  write it to coredump file.
3526              */
3527             error = copy_from_user(page, addr, sizeof (page));
3528             if (error != 0) {
3529                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3530                                addr);
3531                 errno = -error;
3532                 goto out;
3533             }
3534             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3535                 goto out;
3536         }
3537     }
3538 
3539  out:
3540     free_note_info(&info);
3541     if (mm != NULL)
3542         vma_delete(mm);
3543     (void) close(fd);
3544 
3545     if (errno != 0)
3546         return (-errno);
3547     return (0);
3548 }
3549 #endif /* USE_ELF_CORE_DUMP */
3550 
3551 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3552 {
3553     init_thread(regs, infop);
3554 }
3555