xref: /qemu/linux-user/elfload.c (revision 370ed600)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25 
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35 
36 #define ELF_OSABI   ELFOSABI_SYSV
37 
38 /* from personality.h */
39 
40 /*
41  * Flags for bug emulation.
42  *
43  * These occupy the top three bytes.
44  */
45 enum {
46     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
47     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
48                                            descriptors (signal handling) */
49     MMAP_PAGE_ZERO =    0x0100000,
50     ADDR_COMPAT_LAYOUT = 0x0200000,
51     READ_IMPLIES_EXEC = 0x0400000,
52     ADDR_LIMIT_32BIT =  0x0800000,
53     SHORT_INODE =       0x1000000,
54     WHOLE_SECONDS =     0x2000000,
55     STICKY_TIMEOUTS =   0x4000000,
56     ADDR_LIMIT_3GB =    0x8000000,
57 };
58 
59 /*
60  * Personality types.
61  *
62  * These go in the low byte.  Avoid using the top bit, it will
63  * conflict with error returns.
64  */
65 enum {
66     PER_LINUX =         0x0000,
67     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
68     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
69     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
75     PER_BSD =           0x0006,
76     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
77     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78     PER_LINUX32 =       0x0008,
79     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
80     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83     PER_RISCOS =        0x000c,
84     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
85     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
87     PER_HPUX =          0x0010,
88     PER_MASK =          0x00ff,
89 };
90 
91 /*
92  * Return the base personality without flags.
93  */
94 #define personality(pers)       (pers & PER_MASK)
95 
96 int info_is_fdpic(struct image_info *info)
97 {
98     return info->personality == PER_LINUX_FDPIC;
99 }
100 
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105 
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110 
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA        ELFDATA2MSB
113 #else
114 #define ELF_DATA        ELFDATA2LSB
115 #endif
116 
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong      target_elf_greg_t;
119 #define tswapreg(ptr)   tswap64(ptr)
120 #else
121 typedef abi_ulong       target_elf_greg_t;
122 #define tswapreg(ptr)   tswapal(ptr)
123 #endif
124 
125 #ifdef USE_UID16
126 typedef abi_ushort      target_uid_t;
127 typedef abi_ushort      target_gid_t;
128 #else
129 typedef abi_uint        target_uid_t;
130 typedef abi_uint        target_gid_t;
131 #endif
132 typedef abi_int         target_pid_t;
133 
134 #ifdef TARGET_I386
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 
148 #define ELF_CLASS      ELFCLASS64
149 #define ELF_ARCH       EM_X86_64
150 
151 #define ELF_PLATFORM   "x86_64"
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = tswapreg(env->regs[15]);
173     (*regs)[1] = tswapreg(env->regs[14]);
174     (*regs)[2] = tswapreg(env->regs[13]);
175     (*regs)[3] = tswapreg(env->regs[12]);
176     (*regs)[4] = tswapreg(env->regs[R_EBP]);
177     (*regs)[5] = tswapreg(env->regs[R_EBX]);
178     (*regs)[6] = tswapreg(env->regs[11]);
179     (*regs)[7] = tswapreg(env->regs[10]);
180     (*regs)[8] = tswapreg(env->regs[9]);
181     (*regs)[9] = tswapreg(env->regs[8]);
182     (*regs)[10] = tswapreg(env->regs[R_EAX]);
183     (*regs)[11] = tswapreg(env->regs[R_ECX]);
184     (*regs)[12] = tswapreg(env->regs[R_EDX]);
185     (*regs)[13] = tswapreg(env->regs[R_ESI]);
186     (*regs)[14] = tswapreg(env->regs[R_EDI]);
187     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
188     (*regs)[16] = tswapreg(env->eip);
189     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
190     (*regs)[18] = tswapreg(env->eflags);
191     (*regs)[19] = tswapreg(env->regs[R_ESP]);
192     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
193     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
194     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
195     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
196     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
197     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
198     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
199 }
200 
201 #if ULONG_MAX > UINT32_MAX
202 #define INIT_GUEST_COMMPAGE
203 static bool init_guest_commpage(void)
204 {
205     /*
206      * The vsyscall page is at a high negative address aka kernel space,
207      * which means that we cannot actually allocate it with target_mmap.
208      * We still should be able to use page_set_flags, unless the user
209      * has specified -R reserved_va, which would trigger an assert().
210      */
211     if (reserved_va != 0 &&
212         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
213         error_report("Cannot allocate vsyscall page");
214         exit(EXIT_FAILURE);
215     }
216     page_set_flags(TARGET_VSYSCALL_PAGE,
217                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
218                    PAGE_EXEC | PAGE_VALID);
219     return true;
220 }
221 #endif
222 #else
223 
224 #define ELF_START_MMAP 0x80000000
225 
226 /*
227  * This is used to ensure we don't load something for the wrong architecture.
228  */
229 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
230 
231 /*
232  * These are used to set parameters in the core dumps.
233  */
234 #define ELF_CLASS       ELFCLASS32
235 #define ELF_ARCH        EM_386
236 
237 #define ELF_PLATFORM get_elf_platform()
238 #define EXSTACK_DEFAULT true
239 
240 static const char *get_elf_platform(void)
241 {
242     static char elf_platform[] = "i386";
243     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
244     if (family > 6) {
245         family = 6;
246     }
247     if (family >= 3) {
248         elf_platform[1] = '0' + family;
249     }
250     return elf_platform;
251 }
252 
253 static inline void init_thread(struct target_pt_regs *regs,
254                                struct image_info *infop)
255 {
256     regs->esp = infop->start_stack;
257     regs->eip = infop->entry;
258 
259     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
260        starts %edx contains a pointer to a function which might be
261        registered using `atexit'.  This provides a mean for the
262        dynamic linker to call DT_FINI functions for shared libraries
263        that have been loaded before the code runs.
264 
265        A value of 0 tells we have no such handler.  */
266     regs->edx = 0;
267 }
268 
269 #define ELF_NREG    17
270 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
271 
272 /*
273  * Note that ELF_NREG should be 19 as there should be place for
274  * TRAPNO and ERR "registers" as well but linux doesn't dump
275  * those.
276  *
277  * See linux kernel: arch/x86/include/asm/elf.h
278  */
279 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
280 {
281     (*regs)[0] = tswapreg(env->regs[R_EBX]);
282     (*regs)[1] = tswapreg(env->regs[R_ECX]);
283     (*regs)[2] = tswapreg(env->regs[R_EDX]);
284     (*regs)[3] = tswapreg(env->regs[R_ESI]);
285     (*regs)[4] = tswapreg(env->regs[R_EDI]);
286     (*regs)[5] = tswapreg(env->regs[R_EBP]);
287     (*regs)[6] = tswapreg(env->regs[R_EAX]);
288     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
289     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
290     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
291     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
292     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
293     (*regs)[12] = tswapreg(env->eip);
294     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
295     (*regs)[14] = tswapreg(env->eflags);
296     (*regs)[15] = tswapreg(env->regs[R_ESP]);
297     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
298 }
299 #endif
300 
301 #define USE_ELF_CORE_DUMP
302 #define ELF_EXEC_PAGESIZE       4096
303 
304 #endif
305 
306 #ifdef TARGET_ARM
307 
308 #ifndef TARGET_AARCH64
309 /* 32 bit ARM definitions */
310 
311 #define ELF_START_MMAP 0x80000000
312 
313 #define ELF_ARCH        EM_ARM
314 #define ELF_CLASS       ELFCLASS32
315 #define EXSTACK_DEFAULT true
316 
317 static inline void init_thread(struct target_pt_regs *regs,
318                                struct image_info *infop)
319 {
320     abi_long stack = infop->start_stack;
321     memset(regs, 0, sizeof(*regs));
322 
323     regs->uregs[16] = ARM_CPU_MODE_USR;
324     if (infop->entry & 1) {
325         regs->uregs[16] |= CPSR_T;
326     }
327     regs->uregs[15] = infop->entry & 0xfffffffe;
328     regs->uregs[13] = infop->start_stack;
329     /* FIXME - what to for failure of get_user()? */
330     get_user_ual(regs->uregs[2], stack + 8); /* envp */
331     get_user_ual(regs->uregs[1], stack + 4); /* envp */
332     /* XXX: it seems that r0 is zeroed after ! */
333     regs->uregs[0] = 0;
334     /* For uClinux PIC binaries.  */
335     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
336     regs->uregs[10] = infop->start_data;
337 
338     /* Support ARM FDPIC.  */
339     if (info_is_fdpic(infop)) {
340         /* As described in the ABI document, r7 points to the loadmap info
341          * prepared by the kernel. If an interpreter is needed, r8 points
342          * to the interpreter loadmap and r9 points to the interpreter
343          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
344          * r9 points to the main program PT_DYNAMIC info.
345          */
346         regs->uregs[7] = infop->loadmap_addr;
347         if (infop->interpreter_loadmap_addr) {
348             /* Executable is dynamically loaded.  */
349             regs->uregs[8] = infop->interpreter_loadmap_addr;
350             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
351         } else {
352             regs->uregs[8] = 0;
353             regs->uregs[9] = infop->pt_dynamic_addr;
354         }
355     }
356 }
357 
358 #define ELF_NREG    18
359 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
360 
361 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
362 {
363     (*regs)[0] = tswapreg(env->regs[0]);
364     (*regs)[1] = tswapreg(env->regs[1]);
365     (*regs)[2] = tswapreg(env->regs[2]);
366     (*regs)[3] = tswapreg(env->regs[3]);
367     (*regs)[4] = tswapreg(env->regs[4]);
368     (*regs)[5] = tswapreg(env->regs[5]);
369     (*regs)[6] = tswapreg(env->regs[6]);
370     (*regs)[7] = tswapreg(env->regs[7]);
371     (*regs)[8] = tswapreg(env->regs[8]);
372     (*regs)[9] = tswapreg(env->regs[9]);
373     (*regs)[10] = tswapreg(env->regs[10]);
374     (*regs)[11] = tswapreg(env->regs[11]);
375     (*regs)[12] = tswapreg(env->regs[12]);
376     (*regs)[13] = tswapreg(env->regs[13]);
377     (*regs)[14] = tswapreg(env->regs[14]);
378     (*regs)[15] = tswapreg(env->regs[15]);
379 
380     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
381     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
382 }
383 
384 #define USE_ELF_CORE_DUMP
385 #define ELF_EXEC_PAGESIZE       4096
386 
387 enum
388 {
389     ARM_HWCAP_ARM_SWP       = 1 << 0,
390     ARM_HWCAP_ARM_HALF      = 1 << 1,
391     ARM_HWCAP_ARM_THUMB     = 1 << 2,
392     ARM_HWCAP_ARM_26BIT     = 1 << 3,
393     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
394     ARM_HWCAP_ARM_FPA       = 1 << 5,
395     ARM_HWCAP_ARM_VFP       = 1 << 6,
396     ARM_HWCAP_ARM_EDSP      = 1 << 7,
397     ARM_HWCAP_ARM_JAVA      = 1 << 8,
398     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
399     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
400     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
401     ARM_HWCAP_ARM_NEON      = 1 << 12,
402     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
403     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
404     ARM_HWCAP_ARM_TLS       = 1 << 15,
405     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
406     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
407     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
408     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
409     ARM_HWCAP_ARM_LPAE      = 1 << 20,
410     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
411 };
412 
413 enum {
414     ARM_HWCAP2_ARM_AES      = 1 << 0,
415     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
416     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
417     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
418     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
419 };
420 
421 /* The commpage only exists for 32 bit kernels */
422 
423 #define HI_COMMPAGE (intptr_t)0xffff0f00u
424 
425 static bool init_guest_commpage(void)
426 {
427     abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
428     void *want = g2h_untagged(commpage);
429     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
430                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
431 
432     if (addr == MAP_FAILED) {
433         perror("Allocating guest commpage");
434         exit(EXIT_FAILURE);
435     }
436     if (addr != want) {
437         return false;
438     }
439 
440     /* Set kernel helper versions; rest of page is 0.  */
441     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
442 
443     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
444         perror("Protecting guest commpage");
445         exit(EXIT_FAILURE);
446     }
447 
448     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
449                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
450     return true;
451 }
452 
453 #define ELF_HWCAP get_elf_hwcap()
454 #define ELF_HWCAP2 get_elf_hwcap2()
455 
456 static uint32_t get_elf_hwcap(void)
457 {
458     ARMCPU *cpu = ARM_CPU(thread_cpu);
459     uint32_t hwcaps = 0;
460 
461     hwcaps |= ARM_HWCAP_ARM_SWP;
462     hwcaps |= ARM_HWCAP_ARM_HALF;
463     hwcaps |= ARM_HWCAP_ARM_THUMB;
464     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
465 
466     /* probe for the extra features */
467 #define GET_FEATURE(feat, hwcap) \
468     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
469 
470 #define GET_FEATURE_ID(feat, hwcap) \
471     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
472 
473     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
474     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
475     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
476     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
477     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
478     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
479     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
480     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
481     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
482     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
483 
484     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
485         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
486         hwcaps |= ARM_HWCAP_ARM_VFPv3;
487         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
488             hwcaps |= ARM_HWCAP_ARM_VFPD32;
489         } else {
490             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
491         }
492     }
493     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
494 
495     return hwcaps;
496 }
497 
498 static uint32_t get_elf_hwcap2(void)
499 {
500     ARMCPU *cpu = ARM_CPU(thread_cpu);
501     uint32_t hwcaps = 0;
502 
503     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
504     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
505     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
506     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
507     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
508     return hwcaps;
509 }
510 
511 #undef GET_FEATURE
512 #undef GET_FEATURE_ID
513 
514 #define ELF_PLATFORM get_elf_platform()
515 
516 static const char *get_elf_platform(void)
517 {
518     CPUARMState *env = thread_cpu->env_ptr;
519 
520 #if TARGET_BIG_ENDIAN
521 # define END  "b"
522 #else
523 # define END  "l"
524 #endif
525 
526     if (arm_feature(env, ARM_FEATURE_V8)) {
527         return "v8" END;
528     } else if (arm_feature(env, ARM_FEATURE_V7)) {
529         if (arm_feature(env, ARM_FEATURE_M)) {
530             return "v7m" END;
531         } else {
532             return "v7" END;
533         }
534     } else if (arm_feature(env, ARM_FEATURE_V6)) {
535         return "v6" END;
536     } else if (arm_feature(env, ARM_FEATURE_V5)) {
537         return "v5" END;
538     } else {
539         return "v4" END;
540     }
541 
542 #undef END
543 }
544 
545 #else
546 /* 64 bit ARM definitions */
547 #define ELF_START_MMAP 0x80000000
548 
549 #define ELF_ARCH        EM_AARCH64
550 #define ELF_CLASS       ELFCLASS64
551 #if TARGET_BIG_ENDIAN
552 # define ELF_PLATFORM    "aarch64_be"
553 #else
554 # define ELF_PLATFORM    "aarch64"
555 #endif
556 
557 static inline void init_thread(struct target_pt_regs *regs,
558                                struct image_info *infop)
559 {
560     abi_long stack = infop->start_stack;
561     memset(regs, 0, sizeof(*regs));
562 
563     regs->pc = infop->entry & ~0x3ULL;
564     regs->sp = stack;
565 }
566 
567 #define ELF_NREG    34
568 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
569 
570 static void elf_core_copy_regs(target_elf_gregset_t *regs,
571                                const CPUARMState *env)
572 {
573     int i;
574 
575     for (i = 0; i < 32; i++) {
576         (*regs)[i] = tswapreg(env->xregs[i]);
577     }
578     (*regs)[32] = tswapreg(env->pc);
579     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
580 }
581 
582 #define USE_ELF_CORE_DUMP
583 #define ELF_EXEC_PAGESIZE       4096
584 
585 enum {
586     ARM_HWCAP_A64_FP            = 1 << 0,
587     ARM_HWCAP_A64_ASIMD         = 1 << 1,
588     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
589     ARM_HWCAP_A64_AES           = 1 << 3,
590     ARM_HWCAP_A64_PMULL         = 1 << 4,
591     ARM_HWCAP_A64_SHA1          = 1 << 5,
592     ARM_HWCAP_A64_SHA2          = 1 << 6,
593     ARM_HWCAP_A64_CRC32         = 1 << 7,
594     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
595     ARM_HWCAP_A64_FPHP          = 1 << 9,
596     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
597     ARM_HWCAP_A64_CPUID         = 1 << 11,
598     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
599     ARM_HWCAP_A64_JSCVT         = 1 << 13,
600     ARM_HWCAP_A64_FCMA          = 1 << 14,
601     ARM_HWCAP_A64_LRCPC         = 1 << 15,
602     ARM_HWCAP_A64_DCPOP         = 1 << 16,
603     ARM_HWCAP_A64_SHA3          = 1 << 17,
604     ARM_HWCAP_A64_SM3           = 1 << 18,
605     ARM_HWCAP_A64_SM4           = 1 << 19,
606     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
607     ARM_HWCAP_A64_SHA512        = 1 << 21,
608     ARM_HWCAP_A64_SVE           = 1 << 22,
609     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
610     ARM_HWCAP_A64_DIT           = 1 << 24,
611     ARM_HWCAP_A64_USCAT         = 1 << 25,
612     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
613     ARM_HWCAP_A64_FLAGM         = 1 << 27,
614     ARM_HWCAP_A64_SSBS          = 1 << 28,
615     ARM_HWCAP_A64_SB            = 1 << 29,
616     ARM_HWCAP_A64_PACA          = 1 << 30,
617     ARM_HWCAP_A64_PACG          = 1UL << 31,
618 
619     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
620     ARM_HWCAP2_A64_SVE2         = 1 << 1,
621     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
622     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
623     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
624     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
625     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
626     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
627     ARM_HWCAP2_A64_FRINT        = 1 << 8,
628     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
629     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
630     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
631     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
632     ARM_HWCAP2_A64_I8MM         = 1 << 13,
633     ARM_HWCAP2_A64_BF16         = 1 << 14,
634     ARM_HWCAP2_A64_DGH          = 1 << 15,
635     ARM_HWCAP2_A64_RNG          = 1 << 16,
636     ARM_HWCAP2_A64_BTI          = 1 << 17,
637     ARM_HWCAP2_A64_MTE          = 1 << 18,
638     ARM_HWCAP2_A64_ECV          = 1 << 19,
639     ARM_HWCAP2_A64_AFP          = 1 << 20,
640     ARM_HWCAP2_A64_RPRES        = 1 << 21,
641     ARM_HWCAP2_A64_MTE3         = 1 << 22,
642     ARM_HWCAP2_A64_SME          = 1 << 23,
643     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
644     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
645     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
646     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
647     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
648     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
649     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
650 };
651 
652 #define ELF_HWCAP   get_elf_hwcap()
653 #define ELF_HWCAP2  get_elf_hwcap2()
654 
655 #define GET_FEATURE_ID(feat, hwcap) \
656     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
657 
658 static uint32_t get_elf_hwcap(void)
659 {
660     ARMCPU *cpu = ARM_CPU(thread_cpu);
661     uint32_t hwcaps = 0;
662 
663     hwcaps |= ARM_HWCAP_A64_FP;
664     hwcaps |= ARM_HWCAP_A64_ASIMD;
665     hwcaps |= ARM_HWCAP_A64_CPUID;
666 
667     /* probe for the extra features */
668 
669     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
670     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
671     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
672     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
673     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
674     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
675     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
676     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
677     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
678     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
679     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
680     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
681     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
682     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
683     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
684     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
685     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
686     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
687     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
688     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
689     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
690     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
691     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
692 
693     return hwcaps;
694 }
695 
696 static uint32_t get_elf_hwcap2(void)
697 {
698     ARMCPU *cpu = ARM_CPU(thread_cpu);
699     uint32_t hwcaps = 0;
700 
701     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
702     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
703     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
704     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
705     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
706     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
707     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
708     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
709     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
710     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
711     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
712     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
713     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
714     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
715     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
716     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
717     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
718     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
719     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
720                               ARM_HWCAP2_A64_SME_F32F32 |
721                               ARM_HWCAP2_A64_SME_B16F32 |
722                               ARM_HWCAP2_A64_SME_F16F32 |
723                               ARM_HWCAP2_A64_SME_I8I32));
724     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
725     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
726     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
727 
728     return hwcaps;
729 }
730 
731 #undef GET_FEATURE_ID
732 
733 #endif /* not TARGET_AARCH64 */
734 #endif /* TARGET_ARM */
735 
736 #ifdef TARGET_SPARC
737 #ifdef TARGET_SPARC64
738 
739 #define ELF_START_MMAP 0x80000000
740 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
741                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
742 #ifndef TARGET_ABI32
743 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
744 #else
745 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
746 #endif
747 
748 #define ELF_CLASS   ELFCLASS64
749 #define ELF_ARCH    EM_SPARCV9
750 #else
751 #define ELF_START_MMAP 0x80000000
752 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
753                     | HWCAP_SPARC_MULDIV)
754 #define ELF_CLASS   ELFCLASS32
755 #define ELF_ARCH    EM_SPARC
756 #endif /* TARGET_SPARC64 */
757 
758 static inline void init_thread(struct target_pt_regs *regs,
759                                struct image_info *infop)
760 {
761     /* Note that target_cpu_copy_regs does not read psr/tstate. */
762     regs->pc = infop->entry;
763     regs->npc = regs->pc + 4;
764     regs->y = 0;
765     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
766                         - TARGET_STACK_BIAS);
767 }
768 #endif /* TARGET_SPARC */
769 
770 #ifdef TARGET_PPC
771 
772 #define ELF_MACHINE    PPC_ELF_MACHINE
773 #define ELF_START_MMAP 0x80000000
774 
775 #if defined(TARGET_PPC64)
776 
777 #define elf_check_arch(x) ( (x) == EM_PPC64 )
778 
779 #define ELF_CLASS       ELFCLASS64
780 
781 #else
782 
783 #define ELF_CLASS       ELFCLASS32
784 #define EXSTACK_DEFAULT true
785 
786 #endif
787 
788 #define ELF_ARCH        EM_PPC
789 
790 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
791    See arch/powerpc/include/asm/cputable.h.  */
792 enum {
793     QEMU_PPC_FEATURE_32 = 0x80000000,
794     QEMU_PPC_FEATURE_64 = 0x40000000,
795     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
796     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
797     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
798     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
799     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
800     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
801     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
802     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
803     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
804     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
805     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
806     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
807     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
808     QEMU_PPC_FEATURE_CELL = 0x00010000,
809     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
810     QEMU_PPC_FEATURE_SMT = 0x00004000,
811     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
812     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
813     QEMU_PPC_FEATURE_PA6T = 0x00000800,
814     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
815     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
816     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
817     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
818     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
819 
820     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
821     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
822 
823     /* Feature definitions in AT_HWCAP2.  */
824     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
825     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
826     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
827     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
828     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
829     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
830     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
831     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
832     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
833     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
834     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
835     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
836     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
837     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
838     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
839 };
840 
841 #define ELF_HWCAP get_elf_hwcap()
842 
843 static uint32_t get_elf_hwcap(void)
844 {
845     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
846     uint32_t features = 0;
847 
848     /* We don't have to be terribly complete here; the high points are
849        Altivec/FP/SPE support.  Anything else is just a bonus.  */
850 #define GET_FEATURE(flag, feature)                                      \
851     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
852 #define GET_FEATURE2(flags, feature) \
853     do { \
854         if ((cpu->env.insns_flags2 & flags) == flags) { \
855             features |= feature; \
856         } \
857     } while (0)
858     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
859     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
860     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
861     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
862     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
863     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
864     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
865     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
866     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
867     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
868     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
869                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
870                   QEMU_PPC_FEATURE_ARCH_2_06);
871 #undef GET_FEATURE
872 #undef GET_FEATURE2
873 
874     return features;
875 }
876 
877 #define ELF_HWCAP2 get_elf_hwcap2()
878 
879 static uint32_t get_elf_hwcap2(void)
880 {
881     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
882     uint32_t features = 0;
883 
884 #define GET_FEATURE(flag, feature)                                      \
885     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
886 #define GET_FEATURE2(flag, feature)                                      \
887     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
888 
889     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
890     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
891     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
892                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
893                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
894     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
895                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
896     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
897                  QEMU_PPC_FEATURE2_MMA);
898 
899 #undef GET_FEATURE
900 #undef GET_FEATURE2
901 
902     return features;
903 }
904 
905 /*
906  * The requirements here are:
907  * - keep the final alignment of sp (sp & 0xf)
908  * - make sure the 32-bit value at the first 16 byte aligned position of
909  *   AUXV is greater than 16 for glibc compatibility.
910  *   AT_IGNOREPPC is used for that.
911  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
912  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
913  */
914 #define DLINFO_ARCH_ITEMS       5
915 #define ARCH_DLINFO                                     \
916     do {                                                \
917         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
918         /*                                              \
919          * Handle glibc compatibility: these magic entries must \
920          * be at the lowest addresses in the final auxv.        \
921          */                                             \
922         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
923         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
924         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
925         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
926         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
927     } while (0)
928 
929 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
930 {
931     _regs->gpr[1] = infop->start_stack;
932 #if defined(TARGET_PPC64)
933     if (get_ppc64_abi(infop) < 2) {
934         uint64_t val;
935         get_user_u64(val, infop->entry + 8);
936         _regs->gpr[2] = val + infop->load_bias;
937         get_user_u64(val, infop->entry);
938         infop->entry = val + infop->load_bias;
939     } else {
940         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
941     }
942 #endif
943     _regs->nip = infop->entry;
944 }
945 
946 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
947 #define ELF_NREG 48
948 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
949 
950 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
951 {
952     int i;
953     target_ulong ccr = 0;
954 
955     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
956         (*regs)[i] = tswapreg(env->gpr[i]);
957     }
958 
959     (*regs)[32] = tswapreg(env->nip);
960     (*regs)[33] = tswapreg(env->msr);
961     (*regs)[35] = tswapreg(env->ctr);
962     (*regs)[36] = tswapreg(env->lr);
963     (*regs)[37] = tswapreg(cpu_read_xer(env));
964 
965     ccr = ppc_get_cr(env);
966     (*regs)[38] = tswapreg(ccr);
967 }
968 
969 #define USE_ELF_CORE_DUMP
970 #define ELF_EXEC_PAGESIZE       4096
971 
972 #endif
973 
974 #ifdef TARGET_LOONGARCH64
975 
976 #define ELF_START_MMAP 0x80000000
977 
978 #define ELF_CLASS   ELFCLASS64
979 #define ELF_ARCH    EM_LOONGARCH
980 #define EXSTACK_DEFAULT true
981 
982 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
983 
984 static inline void init_thread(struct target_pt_regs *regs,
985                                struct image_info *infop)
986 {
987     /*Set crmd PG,DA = 1,0 */
988     regs->csr.crmd = 2 << 3;
989     regs->csr.era = infop->entry;
990     regs->regs[3] = infop->start_stack;
991 }
992 
993 /* See linux kernel: arch/loongarch/include/asm/elf.h */
994 #define ELF_NREG 45
995 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
996 
997 enum {
998     TARGET_EF_R0 = 0,
999     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1000     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1001 };
1002 
1003 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1004                                const CPULoongArchState *env)
1005 {
1006     int i;
1007 
1008     (*regs)[TARGET_EF_R0] = 0;
1009 
1010     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1011         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1012     }
1013 
1014     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1015     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1016 }
1017 
1018 #define USE_ELF_CORE_DUMP
1019 #define ELF_EXEC_PAGESIZE        4096
1020 
1021 #define ELF_HWCAP get_elf_hwcap()
1022 
1023 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1024 enum {
1025     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1026     HWCAP_LOONGARCH_LAM      = (1 << 1),
1027     HWCAP_LOONGARCH_UAL      = (1 << 2),
1028     HWCAP_LOONGARCH_FPU      = (1 << 3),
1029     HWCAP_LOONGARCH_LSX      = (1 << 4),
1030     HWCAP_LOONGARCH_LASX     = (1 << 5),
1031     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1032     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1033     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1034     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1035     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1036     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1037     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1038 };
1039 
1040 static uint32_t get_elf_hwcap(void)
1041 {
1042     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1043     uint32_t hwcaps = 0;
1044 
1045     hwcaps |= HWCAP_LOONGARCH_CRC32;
1046 
1047     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1048         hwcaps |= HWCAP_LOONGARCH_UAL;
1049     }
1050 
1051     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1052         hwcaps |= HWCAP_LOONGARCH_FPU;
1053     }
1054 
1055     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1056         hwcaps |= HWCAP_LOONGARCH_LAM;
1057     }
1058 
1059     return hwcaps;
1060 }
1061 
1062 #define ELF_PLATFORM "loongarch"
1063 
1064 #endif /* TARGET_LOONGARCH64 */
1065 
1066 #ifdef TARGET_MIPS
1067 
1068 #define ELF_START_MMAP 0x80000000
1069 
1070 #ifdef TARGET_MIPS64
1071 #define ELF_CLASS   ELFCLASS64
1072 #else
1073 #define ELF_CLASS   ELFCLASS32
1074 #endif
1075 #define ELF_ARCH    EM_MIPS
1076 #define EXSTACK_DEFAULT true
1077 
1078 #ifdef TARGET_ABI_MIPSN32
1079 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1080 #else
1081 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1082 #endif
1083 
1084 #define ELF_BASE_PLATFORM get_elf_base_platform()
1085 
1086 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1087     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1088     { return _base_platform; } } while (0)
1089 
1090 static const char *get_elf_base_platform(void)
1091 {
1092     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1093 
1094     /* 64 bit ISAs goes first */
1095     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1096     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1097     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1098     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1099     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1100     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1101     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1102 
1103     /* 32 bit ISAs */
1104     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1105     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1106     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1107     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1108     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1109 
1110     /* Fallback */
1111     return "mips";
1112 }
1113 #undef MATCH_PLATFORM_INSN
1114 
1115 static inline void init_thread(struct target_pt_regs *regs,
1116                                struct image_info *infop)
1117 {
1118     regs->cp0_status = 2 << CP0St_KSU;
1119     regs->cp0_epc = infop->entry;
1120     regs->regs[29] = infop->start_stack;
1121 }
1122 
1123 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1124 #define ELF_NREG 45
1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1126 
1127 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1128 enum {
1129 #ifdef TARGET_MIPS64
1130     TARGET_EF_R0 = 0,
1131 #else
1132     TARGET_EF_R0 = 6,
1133 #endif
1134     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1135     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1136     TARGET_EF_LO = TARGET_EF_R0 + 32,
1137     TARGET_EF_HI = TARGET_EF_R0 + 33,
1138     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1139     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1140     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1141     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1142 };
1143 
1144 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1145 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1146 {
1147     int i;
1148 
1149     for (i = 0; i < TARGET_EF_R0; i++) {
1150         (*regs)[i] = 0;
1151     }
1152     (*regs)[TARGET_EF_R0] = 0;
1153 
1154     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1155         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1156     }
1157 
1158     (*regs)[TARGET_EF_R26] = 0;
1159     (*regs)[TARGET_EF_R27] = 0;
1160     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1161     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1162     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1163     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1164     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1165     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1166 }
1167 
1168 #define USE_ELF_CORE_DUMP
1169 #define ELF_EXEC_PAGESIZE        4096
1170 
1171 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1172 enum {
1173     HWCAP_MIPS_R6           = (1 << 0),
1174     HWCAP_MIPS_MSA          = (1 << 1),
1175     HWCAP_MIPS_CRC32        = (1 << 2),
1176     HWCAP_MIPS_MIPS16       = (1 << 3),
1177     HWCAP_MIPS_MDMX         = (1 << 4),
1178     HWCAP_MIPS_MIPS3D       = (1 << 5),
1179     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1180     HWCAP_MIPS_DSP          = (1 << 7),
1181     HWCAP_MIPS_DSP2         = (1 << 8),
1182     HWCAP_MIPS_DSP3         = (1 << 9),
1183     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1184     HWCAP_LOONGSON_MMI      = (1 << 11),
1185     HWCAP_LOONGSON_EXT      = (1 << 12),
1186     HWCAP_LOONGSON_EXT2     = (1 << 13),
1187     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1188 };
1189 
1190 #define ELF_HWCAP get_elf_hwcap()
1191 
1192 #define GET_FEATURE_INSN(_flag, _hwcap) \
1193     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1194 
1195 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1196     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1197 
1198 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1199     do { \
1200         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1201             hwcaps |= _hwcap; \
1202         } \
1203     } while (0)
1204 
1205 static uint32_t get_elf_hwcap(void)
1206 {
1207     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1208     uint32_t hwcaps = 0;
1209 
1210     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1211                         2, HWCAP_MIPS_R6);
1212     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1213     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1214     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1215 
1216     return hwcaps;
1217 }
1218 
1219 #undef GET_FEATURE_REG_EQU
1220 #undef GET_FEATURE_REG_SET
1221 #undef GET_FEATURE_INSN
1222 
1223 #endif /* TARGET_MIPS */
1224 
1225 #ifdef TARGET_MICROBLAZE
1226 
1227 #define ELF_START_MMAP 0x80000000
1228 
1229 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1230 
1231 #define ELF_CLASS   ELFCLASS32
1232 #define ELF_ARCH    EM_MICROBLAZE
1233 
1234 static inline void init_thread(struct target_pt_regs *regs,
1235                                struct image_info *infop)
1236 {
1237     regs->pc = infop->entry;
1238     regs->r1 = infop->start_stack;
1239 
1240 }
1241 
1242 #define ELF_EXEC_PAGESIZE        4096
1243 
1244 #define USE_ELF_CORE_DUMP
1245 #define ELF_NREG 38
1246 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1247 
1248 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1249 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1250 {
1251     int i, pos = 0;
1252 
1253     for (i = 0; i < 32; i++) {
1254         (*regs)[pos++] = tswapreg(env->regs[i]);
1255     }
1256 
1257     (*regs)[pos++] = tswapreg(env->pc);
1258     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1259     (*regs)[pos++] = 0;
1260     (*regs)[pos++] = tswapreg(env->ear);
1261     (*regs)[pos++] = 0;
1262     (*regs)[pos++] = tswapreg(env->esr);
1263 }
1264 
1265 #endif /* TARGET_MICROBLAZE */
1266 
1267 #ifdef TARGET_NIOS2
1268 
1269 #define ELF_START_MMAP 0x80000000
1270 
1271 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1272 
1273 #define ELF_CLASS   ELFCLASS32
1274 #define ELF_ARCH    EM_ALTERA_NIOS2
1275 
1276 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1277 {
1278     regs->ea = infop->entry;
1279     regs->sp = infop->start_stack;
1280 }
1281 
1282 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1283 
1284 static bool init_guest_commpage(void)
1285 {
1286     static const uint8_t kuser_page[4 + 2 * 64] = {
1287         /* __kuser_helper_version */
1288         [0x00] = 0x02, 0x00, 0x00, 0x00,
1289 
1290         /* __kuser_cmpxchg */
1291         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1292                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1293 
1294         /* __kuser_sigtramp */
1295         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1296                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1297     };
1298 
1299     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1300     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1301                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1302 
1303     if (addr == MAP_FAILED) {
1304         perror("Allocating guest commpage");
1305         exit(EXIT_FAILURE);
1306     }
1307     if (addr != want) {
1308         return false;
1309     }
1310 
1311     memcpy(addr, kuser_page, sizeof(kuser_page));
1312 
1313     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1314         perror("Protecting guest commpage");
1315         exit(EXIT_FAILURE);
1316     }
1317 
1318     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1319                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1320     return true;
1321 }
1322 
1323 #define ELF_EXEC_PAGESIZE        4096
1324 
1325 #define USE_ELF_CORE_DUMP
1326 #define ELF_NREG 49
1327 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1328 
1329 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1330 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1331                                const CPUNios2State *env)
1332 {
1333     int i;
1334 
1335     (*regs)[0] = -1;
1336     for (i = 1; i < 8; i++)    /* r0-r7 */
1337         (*regs)[i] = tswapreg(env->regs[i + 7]);
1338 
1339     for (i = 8; i < 16; i++)   /* r8-r15 */
1340         (*regs)[i] = tswapreg(env->regs[i - 8]);
1341 
1342     for (i = 16; i < 24; i++)  /* r16-r23 */
1343         (*regs)[i] = tswapreg(env->regs[i + 7]);
1344     (*regs)[24] = -1;    /* R_ET */
1345     (*regs)[25] = -1;    /* R_BT */
1346     (*regs)[26] = tswapreg(env->regs[R_GP]);
1347     (*regs)[27] = tswapreg(env->regs[R_SP]);
1348     (*regs)[28] = tswapreg(env->regs[R_FP]);
1349     (*regs)[29] = tswapreg(env->regs[R_EA]);
1350     (*regs)[30] = -1;    /* R_SSTATUS */
1351     (*regs)[31] = tswapreg(env->regs[R_RA]);
1352 
1353     (*regs)[32] = tswapreg(env->pc);
1354 
1355     (*regs)[33] = -1; /* R_STATUS */
1356     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1357 
1358     for (i = 35; i < 49; i++)    /* ... */
1359         (*regs)[i] = -1;
1360 }
1361 
1362 #endif /* TARGET_NIOS2 */
1363 
1364 #ifdef TARGET_OPENRISC
1365 
1366 #define ELF_START_MMAP 0x08000000
1367 
1368 #define ELF_ARCH EM_OPENRISC
1369 #define ELF_CLASS ELFCLASS32
1370 #define ELF_DATA  ELFDATA2MSB
1371 
1372 static inline void init_thread(struct target_pt_regs *regs,
1373                                struct image_info *infop)
1374 {
1375     regs->pc = infop->entry;
1376     regs->gpr[1] = infop->start_stack;
1377 }
1378 
1379 #define USE_ELF_CORE_DUMP
1380 #define ELF_EXEC_PAGESIZE 8192
1381 
1382 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1383 #define ELF_NREG 34 /* gprs and pc, sr */
1384 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1385 
1386 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1387                                const CPUOpenRISCState *env)
1388 {
1389     int i;
1390 
1391     for (i = 0; i < 32; i++) {
1392         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1393     }
1394     (*regs)[32] = tswapreg(env->pc);
1395     (*regs)[33] = tswapreg(cpu_get_sr(env));
1396 }
1397 #define ELF_HWCAP 0
1398 #define ELF_PLATFORM NULL
1399 
1400 #endif /* TARGET_OPENRISC */
1401 
1402 #ifdef TARGET_SH4
1403 
1404 #define ELF_START_MMAP 0x80000000
1405 
1406 #define ELF_CLASS ELFCLASS32
1407 #define ELF_ARCH  EM_SH
1408 
1409 static inline void init_thread(struct target_pt_regs *regs,
1410                                struct image_info *infop)
1411 {
1412     /* Check other registers XXXXX */
1413     regs->pc = infop->entry;
1414     regs->regs[15] = infop->start_stack;
1415 }
1416 
1417 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1418 #define ELF_NREG 23
1419 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1420 
1421 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1422 enum {
1423     TARGET_REG_PC = 16,
1424     TARGET_REG_PR = 17,
1425     TARGET_REG_SR = 18,
1426     TARGET_REG_GBR = 19,
1427     TARGET_REG_MACH = 20,
1428     TARGET_REG_MACL = 21,
1429     TARGET_REG_SYSCALL = 22
1430 };
1431 
1432 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1433                                       const CPUSH4State *env)
1434 {
1435     int i;
1436 
1437     for (i = 0; i < 16; i++) {
1438         (*regs)[i] = tswapreg(env->gregs[i]);
1439     }
1440 
1441     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1442     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1443     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1444     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1445     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1446     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1447     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1448 }
1449 
1450 #define USE_ELF_CORE_DUMP
1451 #define ELF_EXEC_PAGESIZE        4096
1452 
1453 enum {
1454     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1455     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1456     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1457     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1458     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1459     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1460     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1461     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1462     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1463     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1464 };
1465 
1466 #define ELF_HWCAP get_elf_hwcap()
1467 
1468 static uint32_t get_elf_hwcap(void)
1469 {
1470     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1471     uint32_t hwcap = 0;
1472 
1473     hwcap |= SH_CPU_HAS_FPU;
1474 
1475     if (cpu->env.features & SH_FEATURE_SH4A) {
1476         hwcap |= SH_CPU_HAS_LLSC;
1477     }
1478 
1479     return hwcap;
1480 }
1481 
1482 #endif
1483 
1484 #ifdef TARGET_CRIS
1485 
1486 #define ELF_START_MMAP 0x80000000
1487 
1488 #define ELF_CLASS ELFCLASS32
1489 #define ELF_ARCH  EM_CRIS
1490 
1491 static inline void init_thread(struct target_pt_regs *regs,
1492                                struct image_info *infop)
1493 {
1494     regs->erp = infop->entry;
1495 }
1496 
1497 #define ELF_EXEC_PAGESIZE        8192
1498 
1499 #endif
1500 
1501 #ifdef TARGET_M68K
1502 
1503 #define ELF_START_MMAP 0x80000000
1504 
1505 #define ELF_CLASS       ELFCLASS32
1506 #define ELF_ARCH        EM_68K
1507 
1508 /* ??? Does this need to do anything?
1509    #define ELF_PLAT_INIT(_r) */
1510 
1511 static inline void init_thread(struct target_pt_regs *regs,
1512                                struct image_info *infop)
1513 {
1514     regs->usp = infop->start_stack;
1515     regs->sr = 0;
1516     regs->pc = infop->entry;
1517 }
1518 
1519 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1520 #define ELF_NREG 20
1521 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1522 
1523 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1524 {
1525     (*regs)[0] = tswapreg(env->dregs[1]);
1526     (*regs)[1] = tswapreg(env->dregs[2]);
1527     (*regs)[2] = tswapreg(env->dregs[3]);
1528     (*regs)[3] = tswapreg(env->dregs[4]);
1529     (*regs)[4] = tswapreg(env->dregs[5]);
1530     (*regs)[5] = tswapreg(env->dregs[6]);
1531     (*regs)[6] = tswapreg(env->dregs[7]);
1532     (*regs)[7] = tswapreg(env->aregs[0]);
1533     (*regs)[8] = tswapreg(env->aregs[1]);
1534     (*regs)[9] = tswapreg(env->aregs[2]);
1535     (*regs)[10] = tswapreg(env->aregs[3]);
1536     (*regs)[11] = tswapreg(env->aregs[4]);
1537     (*regs)[12] = tswapreg(env->aregs[5]);
1538     (*regs)[13] = tswapreg(env->aregs[6]);
1539     (*regs)[14] = tswapreg(env->dregs[0]);
1540     (*regs)[15] = tswapreg(env->aregs[7]);
1541     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1542     (*regs)[17] = tswapreg(env->sr);
1543     (*regs)[18] = tswapreg(env->pc);
1544     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1545 }
1546 
1547 #define USE_ELF_CORE_DUMP
1548 #define ELF_EXEC_PAGESIZE       8192
1549 
1550 #endif
1551 
1552 #ifdef TARGET_ALPHA
1553 
1554 #define ELF_START_MMAP (0x30000000000ULL)
1555 
1556 #define ELF_CLASS      ELFCLASS64
1557 #define ELF_ARCH       EM_ALPHA
1558 
1559 static inline void init_thread(struct target_pt_regs *regs,
1560                                struct image_info *infop)
1561 {
1562     regs->pc = infop->entry;
1563     regs->ps = 8;
1564     regs->usp = infop->start_stack;
1565 }
1566 
1567 #define ELF_EXEC_PAGESIZE        8192
1568 
1569 #endif /* TARGET_ALPHA */
1570 
1571 #ifdef TARGET_S390X
1572 
1573 #define ELF_START_MMAP (0x20000000000ULL)
1574 
1575 #define ELF_CLASS	ELFCLASS64
1576 #define ELF_DATA	ELFDATA2MSB
1577 #define ELF_ARCH	EM_S390
1578 
1579 #include "elf.h"
1580 
1581 #define ELF_HWCAP get_elf_hwcap()
1582 
1583 #define GET_FEATURE(_feat, _hwcap) \
1584     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1585 
1586 static uint32_t get_elf_hwcap(void)
1587 {
1588     /*
1589      * Let's assume we always have esan3 and zarch.
1590      * 31-bit processes can use 64-bit registers (high gprs).
1591      */
1592     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1593 
1594     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1595     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1596     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1597     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1598     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1599         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1600         hwcap |= HWCAP_S390_ETF3EH;
1601     }
1602     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1603     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1604 
1605     return hwcap;
1606 }
1607 
1608 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1609 {
1610     regs->psw.addr = infop->entry;
1611     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1612     regs->gprs[15] = infop->start_stack;
1613 }
1614 
1615 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1616 #define ELF_NREG 27
1617 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1618 
1619 enum {
1620     TARGET_REG_PSWM = 0,
1621     TARGET_REG_PSWA = 1,
1622     TARGET_REG_GPRS = 2,
1623     TARGET_REG_ARS = 18,
1624     TARGET_REG_ORIG_R2 = 26,
1625 };
1626 
1627 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1628                                const CPUS390XState *env)
1629 {
1630     int i;
1631     uint32_t *aregs;
1632 
1633     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1634     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1635     for (i = 0; i < 16; i++) {
1636         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1637     }
1638     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1639     for (i = 0; i < 16; i++) {
1640         aregs[i] = tswap32(env->aregs[i]);
1641     }
1642     (*regs)[TARGET_REG_ORIG_R2] = 0;
1643 }
1644 
1645 #define USE_ELF_CORE_DUMP
1646 #define ELF_EXEC_PAGESIZE 4096
1647 
1648 #endif /* TARGET_S390X */
1649 
1650 #ifdef TARGET_RISCV
1651 
1652 #define ELF_START_MMAP 0x80000000
1653 #define ELF_ARCH  EM_RISCV
1654 
1655 #ifdef TARGET_RISCV32
1656 #define ELF_CLASS ELFCLASS32
1657 #else
1658 #define ELF_CLASS ELFCLASS64
1659 #endif
1660 
1661 #define ELF_HWCAP get_elf_hwcap()
1662 
1663 static uint32_t get_elf_hwcap(void)
1664 {
1665 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1666     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1667     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1668                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1669 
1670     return cpu->env.misa_ext & mask;
1671 #undef MISA_BIT
1672 }
1673 
1674 static inline void init_thread(struct target_pt_regs *regs,
1675                                struct image_info *infop)
1676 {
1677     regs->sepc = infop->entry;
1678     regs->sp = infop->start_stack;
1679 }
1680 
1681 #define ELF_EXEC_PAGESIZE 4096
1682 
1683 #endif /* TARGET_RISCV */
1684 
1685 #ifdef TARGET_HPPA
1686 
1687 #define ELF_START_MMAP  0x80000000
1688 #define ELF_CLASS       ELFCLASS32
1689 #define ELF_ARCH        EM_PARISC
1690 #define ELF_PLATFORM    "PARISC"
1691 #define STACK_GROWS_DOWN 0
1692 #define STACK_ALIGNMENT  64
1693 
1694 static inline void init_thread(struct target_pt_regs *regs,
1695                                struct image_info *infop)
1696 {
1697     regs->iaoq[0] = infop->entry;
1698     regs->iaoq[1] = infop->entry + 4;
1699     regs->gr[23] = 0;
1700     regs->gr[24] = infop->argv;
1701     regs->gr[25] = infop->argc;
1702     /* The top-of-stack contains a linkage buffer.  */
1703     regs->gr[30] = infop->start_stack + 64;
1704     regs->gr[31] = infop->entry;
1705 }
1706 
1707 #define LO_COMMPAGE  0
1708 
1709 static bool init_guest_commpage(void)
1710 {
1711     void *want = g2h_untagged(LO_COMMPAGE);
1712     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1713                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1714 
1715     if (addr == MAP_FAILED) {
1716         perror("Allocating guest commpage");
1717         exit(EXIT_FAILURE);
1718     }
1719     if (addr != want) {
1720         return false;
1721     }
1722 
1723     /*
1724      * On Linux, page zero is normally marked execute only + gateway.
1725      * Normal read or write is supposed to fail (thus PROT_NONE above),
1726      * but specific offsets have kernel code mapped to raise permissions
1727      * and implement syscalls.  Here, simply mark the page executable.
1728      * Special case the entry points during translation (see do_page_zero).
1729      */
1730     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1731                    PAGE_EXEC | PAGE_VALID);
1732     return true;
1733 }
1734 
1735 #endif /* TARGET_HPPA */
1736 
1737 #ifdef TARGET_XTENSA
1738 
1739 #define ELF_START_MMAP 0x20000000
1740 
1741 #define ELF_CLASS       ELFCLASS32
1742 #define ELF_ARCH        EM_XTENSA
1743 
1744 static inline void init_thread(struct target_pt_regs *regs,
1745                                struct image_info *infop)
1746 {
1747     regs->windowbase = 0;
1748     regs->windowstart = 1;
1749     regs->areg[1] = infop->start_stack;
1750     regs->pc = infop->entry;
1751     if (info_is_fdpic(infop)) {
1752         regs->areg[4] = infop->loadmap_addr;
1753         regs->areg[5] = infop->interpreter_loadmap_addr;
1754         if (infop->interpreter_loadmap_addr) {
1755             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1756         } else {
1757             regs->areg[6] = infop->pt_dynamic_addr;
1758         }
1759     }
1760 }
1761 
1762 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1763 #define ELF_NREG 128
1764 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1765 
1766 enum {
1767     TARGET_REG_PC,
1768     TARGET_REG_PS,
1769     TARGET_REG_LBEG,
1770     TARGET_REG_LEND,
1771     TARGET_REG_LCOUNT,
1772     TARGET_REG_SAR,
1773     TARGET_REG_WINDOWSTART,
1774     TARGET_REG_WINDOWBASE,
1775     TARGET_REG_THREADPTR,
1776     TARGET_REG_AR0 = 64,
1777 };
1778 
1779 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1780                                const CPUXtensaState *env)
1781 {
1782     unsigned i;
1783 
1784     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1785     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1786     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1787     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1788     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1789     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1790     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1791     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1792     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1793     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1794     for (i = 0; i < env->config->nareg; ++i) {
1795         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1796     }
1797 }
1798 
1799 #define USE_ELF_CORE_DUMP
1800 #define ELF_EXEC_PAGESIZE       4096
1801 
1802 #endif /* TARGET_XTENSA */
1803 
1804 #ifdef TARGET_HEXAGON
1805 
1806 #define ELF_START_MMAP 0x20000000
1807 
1808 #define ELF_CLASS       ELFCLASS32
1809 #define ELF_ARCH        EM_HEXAGON
1810 
1811 static inline void init_thread(struct target_pt_regs *regs,
1812                                struct image_info *infop)
1813 {
1814     regs->sepc = infop->entry;
1815     regs->sp = infop->start_stack;
1816 }
1817 
1818 #endif /* TARGET_HEXAGON */
1819 
1820 #ifndef ELF_BASE_PLATFORM
1821 #define ELF_BASE_PLATFORM (NULL)
1822 #endif
1823 
1824 #ifndef ELF_PLATFORM
1825 #define ELF_PLATFORM (NULL)
1826 #endif
1827 
1828 #ifndef ELF_MACHINE
1829 #define ELF_MACHINE ELF_ARCH
1830 #endif
1831 
1832 #ifndef elf_check_arch
1833 #define elf_check_arch(x) ((x) == ELF_ARCH)
1834 #endif
1835 
1836 #ifndef elf_check_abi
1837 #define elf_check_abi(x) (1)
1838 #endif
1839 
1840 #ifndef ELF_HWCAP
1841 #define ELF_HWCAP 0
1842 #endif
1843 
1844 #ifndef STACK_GROWS_DOWN
1845 #define STACK_GROWS_DOWN 1
1846 #endif
1847 
1848 #ifndef STACK_ALIGNMENT
1849 #define STACK_ALIGNMENT 16
1850 #endif
1851 
1852 #ifdef TARGET_ABI32
1853 #undef ELF_CLASS
1854 #define ELF_CLASS ELFCLASS32
1855 #undef bswaptls
1856 #define bswaptls(ptr) bswap32s(ptr)
1857 #endif
1858 
1859 #ifndef EXSTACK_DEFAULT
1860 #define EXSTACK_DEFAULT false
1861 #endif
1862 
1863 #include "elf.h"
1864 
1865 /* We must delay the following stanzas until after "elf.h". */
1866 #if defined(TARGET_AARCH64)
1867 
1868 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1869                                     const uint32_t *data,
1870                                     struct image_info *info,
1871                                     Error **errp)
1872 {
1873     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1874         if (pr_datasz != sizeof(uint32_t)) {
1875             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1876             return false;
1877         }
1878         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1879         info->note_flags = *data;
1880     }
1881     return true;
1882 }
1883 #define ARCH_USE_GNU_PROPERTY 1
1884 
1885 #else
1886 
1887 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1888                                     const uint32_t *data,
1889                                     struct image_info *info,
1890                                     Error **errp)
1891 {
1892     g_assert_not_reached();
1893 }
1894 #define ARCH_USE_GNU_PROPERTY 0
1895 
1896 #endif
1897 
1898 struct exec
1899 {
1900     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1901     unsigned int a_text;   /* length of text, in bytes */
1902     unsigned int a_data;   /* length of data, in bytes */
1903     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1904     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1905     unsigned int a_entry;  /* start address */
1906     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1907     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1908 };
1909 
1910 
1911 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1912 #define OMAGIC 0407
1913 #define NMAGIC 0410
1914 #define ZMAGIC 0413
1915 #define QMAGIC 0314
1916 
1917 /* Necessary parameters */
1918 #define TARGET_ELF_EXEC_PAGESIZE \
1919         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1920          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1921 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1922 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1923                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1924 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1925 
1926 #define DLINFO_ITEMS 16
1927 
1928 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1929 {
1930     memcpy(to, from, n);
1931 }
1932 
1933 #ifdef BSWAP_NEEDED
1934 static void bswap_ehdr(struct elfhdr *ehdr)
1935 {
1936     bswap16s(&ehdr->e_type);            /* Object file type */
1937     bswap16s(&ehdr->e_machine);         /* Architecture */
1938     bswap32s(&ehdr->e_version);         /* Object file version */
1939     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1940     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1941     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1942     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1943     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1944     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1945     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1946     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1947     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1948     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1949 }
1950 
1951 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1952 {
1953     int i;
1954     for (i = 0; i < phnum; ++i, ++phdr) {
1955         bswap32s(&phdr->p_type);        /* Segment type */
1956         bswap32s(&phdr->p_flags);       /* Segment flags */
1957         bswaptls(&phdr->p_offset);      /* Segment file offset */
1958         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1959         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1960         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1961         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1962         bswaptls(&phdr->p_align);       /* Segment alignment */
1963     }
1964 }
1965 
1966 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1967 {
1968     int i;
1969     for (i = 0; i < shnum; ++i, ++shdr) {
1970         bswap32s(&shdr->sh_name);
1971         bswap32s(&shdr->sh_type);
1972         bswaptls(&shdr->sh_flags);
1973         bswaptls(&shdr->sh_addr);
1974         bswaptls(&shdr->sh_offset);
1975         bswaptls(&shdr->sh_size);
1976         bswap32s(&shdr->sh_link);
1977         bswap32s(&shdr->sh_info);
1978         bswaptls(&shdr->sh_addralign);
1979         bswaptls(&shdr->sh_entsize);
1980     }
1981 }
1982 
1983 static void bswap_sym(struct elf_sym *sym)
1984 {
1985     bswap32s(&sym->st_name);
1986     bswaptls(&sym->st_value);
1987     bswaptls(&sym->st_size);
1988     bswap16s(&sym->st_shndx);
1989 }
1990 
1991 #ifdef TARGET_MIPS
1992 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1993 {
1994     bswap16s(&abiflags->version);
1995     bswap32s(&abiflags->ases);
1996     bswap32s(&abiflags->isa_ext);
1997     bswap32s(&abiflags->flags1);
1998     bswap32s(&abiflags->flags2);
1999 }
2000 #endif
2001 #else
2002 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2003 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2004 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2005 static inline void bswap_sym(struct elf_sym *sym) { }
2006 #ifdef TARGET_MIPS
2007 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2008 #endif
2009 #endif
2010 
2011 #ifdef USE_ELF_CORE_DUMP
2012 static int elf_core_dump(int, const CPUArchState *);
2013 #endif /* USE_ELF_CORE_DUMP */
2014 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2015 
2016 /* Verify the portions of EHDR within E_IDENT for the target.
2017    This can be performed before bswapping the entire header.  */
2018 static bool elf_check_ident(struct elfhdr *ehdr)
2019 {
2020     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2021             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2022             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2023             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2024             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2025             && ehdr->e_ident[EI_DATA] == ELF_DATA
2026             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2027 }
2028 
2029 /* Verify the portions of EHDR outside of E_IDENT for the target.
2030    This has to wait until after bswapping the header.  */
2031 static bool elf_check_ehdr(struct elfhdr *ehdr)
2032 {
2033     return (elf_check_arch(ehdr->e_machine)
2034             && elf_check_abi(ehdr->e_flags)
2035             && ehdr->e_ehsize == sizeof(struct elfhdr)
2036             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2037             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2038 }
2039 
2040 /*
2041  * 'copy_elf_strings()' copies argument/envelope strings from user
2042  * memory to free pages in kernel mem. These are in a format ready
2043  * to be put directly into the top of new user memory.
2044  *
2045  */
2046 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2047                                   abi_ulong p, abi_ulong stack_limit)
2048 {
2049     char *tmp;
2050     int len, i;
2051     abi_ulong top = p;
2052 
2053     if (!p) {
2054         return 0;       /* bullet-proofing */
2055     }
2056 
2057     if (STACK_GROWS_DOWN) {
2058         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2059         for (i = argc - 1; i >= 0; --i) {
2060             tmp = argv[i];
2061             if (!tmp) {
2062                 fprintf(stderr, "VFS: argc is wrong");
2063                 exit(-1);
2064             }
2065             len = strlen(tmp) + 1;
2066             tmp += len;
2067 
2068             if (len > (p - stack_limit)) {
2069                 return 0;
2070             }
2071             while (len) {
2072                 int bytes_to_copy = (len > offset) ? offset : len;
2073                 tmp -= bytes_to_copy;
2074                 p -= bytes_to_copy;
2075                 offset -= bytes_to_copy;
2076                 len -= bytes_to_copy;
2077 
2078                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2079 
2080                 if (offset == 0) {
2081                     memcpy_to_target(p, scratch, top - p);
2082                     top = p;
2083                     offset = TARGET_PAGE_SIZE;
2084                 }
2085             }
2086         }
2087         if (p != top) {
2088             memcpy_to_target(p, scratch + offset, top - p);
2089         }
2090     } else {
2091         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2092         for (i = 0; i < argc; ++i) {
2093             tmp = argv[i];
2094             if (!tmp) {
2095                 fprintf(stderr, "VFS: argc is wrong");
2096                 exit(-1);
2097             }
2098             len = strlen(tmp) + 1;
2099             if (len > (stack_limit - p)) {
2100                 return 0;
2101             }
2102             while (len) {
2103                 int bytes_to_copy = (len > remaining) ? remaining : len;
2104 
2105                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2106 
2107                 tmp += bytes_to_copy;
2108                 remaining -= bytes_to_copy;
2109                 p += bytes_to_copy;
2110                 len -= bytes_to_copy;
2111 
2112                 if (remaining == 0) {
2113                     memcpy_to_target(top, scratch, p - top);
2114                     top = p;
2115                     remaining = TARGET_PAGE_SIZE;
2116                 }
2117             }
2118         }
2119         if (p != top) {
2120             memcpy_to_target(top, scratch, p - top);
2121         }
2122     }
2123 
2124     return p;
2125 }
2126 
2127 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2128  * argument/environment space. Newer kernels (>2.6.33) allow more,
2129  * dependent on stack size, but guarantee at least 32 pages for
2130  * backwards compatibility.
2131  */
2132 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2133 
2134 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2135                                  struct image_info *info)
2136 {
2137     abi_ulong size, error, guard;
2138     int prot;
2139 
2140     size = guest_stack_size;
2141     if (size < STACK_LOWER_LIMIT) {
2142         size = STACK_LOWER_LIMIT;
2143     }
2144 
2145     if (STACK_GROWS_DOWN) {
2146         guard = TARGET_PAGE_SIZE;
2147         if (guard < qemu_real_host_page_size()) {
2148             guard = qemu_real_host_page_size();
2149         }
2150     } else {
2151         /* no guard page for hppa target where stack grows upwards. */
2152         guard = 0;
2153     }
2154 
2155     prot = PROT_READ | PROT_WRITE;
2156     if (info->exec_stack) {
2157         prot |= PROT_EXEC;
2158     }
2159     error = target_mmap(0, size + guard, prot,
2160                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2161     if (error == -1) {
2162         perror("mmap stack");
2163         exit(-1);
2164     }
2165 
2166     /* We reserve one extra page at the top of the stack as guard.  */
2167     if (STACK_GROWS_DOWN) {
2168         target_mprotect(error, guard, PROT_NONE);
2169         info->stack_limit = error + guard;
2170         return info->stack_limit + size - sizeof(void *);
2171     } else {
2172         info->stack_limit = error + size;
2173         return error;
2174     }
2175 }
2176 
2177 /* Map and zero the bss.  We need to explicitly zero any fractional pages
2178    after the data section (i.e. bss).  */
2179 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2180 {
2181     uintptr_t host_start, host_map_start, host_end;
2182 
2183     last_bss = TARGET_PAGE_ALIGN(last_bss);
2184 
2185     /* ??? There is confusion between qemu_real_host_page_size and
2186        qemu_host_page_size here and elsewhere in target_mmap, which
2187        may lead to the end of the data section mapping from the file
2188        not being mapped.  At least there was an explicit test and
2189        comment for that here, suggesting that "the file size must
2190        be known".  The comment probably pre-dates the introduction
2191        of the fstat system call in target_mmap which does in fact
2192        find out the size.  What isn't clear is if the workaround
2193        here is still actually needed.  For now, continue with it,
2194        but merge it with the "normal" mmap that would allocate the bss.  */
2195 
2196     host_start = (uintptr_t) g2h_untagged(elf_bss);
2197     host_end = (uintptr_t) g2h_untagged(last_bss);
2198     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2199 
2200     if (host_map_start < host_end) {
2201         void *p = mmap((void *)host_map_start, host_end - host_map_start,
2202                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2203         if (p == MAP_FAILED) {
2204             perror("cannot mmap brk");
2205             exit(-1);
2206         }
2207     }
2208 
2209     /* Ensure that the bss page(s) are valid */
2210     if ((page_get_flags(last_bss-1) & prot) != prot) {
2211         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2212                        prot | PAGE_VALID);
2213     }
2214 
2215     if (host_start < host_map_start) {
2216         memset((void *)host_start, 0, host_map_start - host_start);
2217     }
2218 }
2219 
2220 #if defined(TARGET_ARM)
2221 static int elf_is_fdpic(struct elfhdr *exec)
2222 {
2223     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2224 }
2225 #elif defined(TARGET_XTENSA)
2226 static int elf_is_fdpic(struct elfhdr *exec)
2227 {
2228     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2229 }
2230 #else
2231 /* Default implementation, always false.  */
2232 static int elf_is_fdpic(struct elfhdr *exec)
2233 {
2234     return 0;
2235 }
2236 #endif
2237 
2238 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2239 {
2240     uint16_t n;
2241     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2242 
2243     /* elf32_fdpic_loadseg */
2244     n = info->nsegs;
2245     while (n--) {
2246         sp -= 12;
2247         put_user_u32(loadsegs[n].addr, sp+0);
2248         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2249         put_user_u32(loadsegs[n].p_memsz, sp+8);
2250     }
2251 
2252     /* elf32_fdpic_loadmap */
2253     sp -= 4;
2254     put_user_u16(0, sp+0); /* version */
2255     put_user_u16(info->nsegs, sp+2); /* nsegs */
2256 
2257     info->personality = PER_LINUX_FDPIC;
2258     info->loadmap_addr = sp;
2259 
2260     return sp;
2261 }
2262 
2263 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2264                                    struct elfhdr *exec,
2265                                    struct image_info *info,
2266                                    struct image_info *interp_info)
2267 {
2268     abi_ulong sp;
2269     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2270     int size;
2271     int i;
2272     abi_ulong u_rand_bytes;
2273     uint8_t k_rand_bytes[16];
2274     abi_ulong u_platform, u_base_platform;
2275     const char *k_platform, *k_base_platform;
2276     const int n = sizeof(elf_addr_t);
2277 
2278     sp = p;
2279 
2280     /* Needs to be before we load the env/argc/... */
2281     if (elf_is_fdpic(exec)) {
2282         /* Need 4 byte alignment for these structs */
2283         sp &= ~3;
2284         sp = loader_build_fdpic_loadmap(info, sp);
2285         info->other_info = interp_info;
2286         if (interp_info) {
2287             interp_info->other_info = info;
2288             sp = loader_build_fdpic_loadmap(interp_info, sp);
2289             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2290             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2291         } else {
2292             info->interpreter_loadmap_addr = 0;
2293             info->interpreter_pt_dynamic_addr = 0;
2294         }
2295     }
2296 
2297     u_base_platform = 0;
2298     k_base_platform = ELF_BASE_PLATFORM;
2299     if (k_base_platform) {
2300         size_t len = strlen(k_base_platform) + 1;
2301         if (STACK_GROWS_DOWN) {
2302             sp -= (len + n - 1) & ~(n - 1);
2303             u_base_platform = sp;
2304             /* FIXME - check return value of memcpy_to_target() for failure */
2305             memcpy_to_target(sp, k_base_platform, len);
2306         } else {
2307             memcpy_to_target(sp, k_base_platform, len);
2308             u_base_platform = sp;
2309             sp += len + 1;
2310         }
2311     }
2312 
2313     u_platform = 0;
2314     k_platform = ELF_PLATFORM;
2315     if (k_platform) {
2316         size_t len = strlen(k_platform) + 1;
2317         if (STACK_GROWS_DOWN) {
2318             sp -= (len + n - 1) & ~(n - 1);
2319             u_platform = sp;
2320             /* FIXME - check return value of memcpy_to_target() for failure */
2321             memcpy_to_target(sp, k_platform, len);
2322         } else {
2323             memcpy_to_target(sp, k_platform, len);
2324             u_platform = sp;
2325             sp += len + 1;
2326         }
2327     }
2328 
2329     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2330      * the argv and envp pointers.
2331      */
2332     if (STACK_GROWS_DOWN) {
2333         sp = QEMU_ALIGN_DOWN(sp, 16);
2334     } else {
2335         sp = QEMU_ALIGN_UP(sp, 16);
2336     }
2337 
2338     /*
2339      * Generate 16 random bytes for userspace PRNG seeding.
2340      */
2341     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2342     if (STACK_GROWS_DOWN) {
2343         sp -= 16;
2344         u_rand_bytes = sp;
2345         /* FIXME - check return value of memcpy_to_target() for failure */
2346         memcpy_to_target(sp, k_rand_bytes, 16);
2347     } else {
2348         memcpy_to_target(sp, k_rand_bytes, 16);
2349         u_rand_bytes = sp;
2350         sp += 16;
2351     }
2352 
2353     size = (DLINFO_ITEMS + 1) * 2;
2354     if (k_base_platform)
2355         size += 2;
2356     if (k_platform)
2357         size += 2;
2358 #ifdef DLINFO_ARCH_ITEMS
2359     size += DLINFO_ARCH_ITEMS * 2;
2360 #endif
2361 #ifdef ELF_HWCAP2
2362     size += 2;
2363 #endif
2364     info->auxv_len = size * n;
2365 
2366     size += envc + argc + 2;
2367     size += 1;  /* argc itself */
2368     size *= n;
2369 
2370     /* Allocate space and finalize stack alignment for entry now.  */
2371     if (STACK_GROWS_DOWN) {
2372         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2373         sp = u_argc;
2374     } else {
2375         u_argc = sp;
2376         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2377     }
2378 
2379     u_argv = u_argc + n;
2380     u_envp = u_argv + (argc + 1) * n;
2381     u_auxv = u_envp + (envc + 1) * n;
2382     info->saved_auxv = u_auxv;
2383     info->argc = argc;
2384     info->envc = envc;
2385     info->argv = u_argv;
2386     info->envp = u_envp;
2387 
2388     /* This is correct because Linux defines
2389      * elf_addr_t as Elf32_Off / Elf64_Off
2390      */
2391 #define NEW_AUX_ENT(id, val) do {               \
2392         put_user_ual(id, u_auxv);  u_auxv += n; \
2393         put_user_ual(val, u_auxv); u_auxv += n; \
2394     } while(0)
2395 
2396 #ifdef ARCH_DLINFO
2397     /*
2398      * ARCH_DLINFO must come first so platform specific code can enforce
2399      * special alignment requirements on the AUXV if necessary (eg. PPC).
2400      */
2401     ARCH_DLINFO;
2402 #endif
2403     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2404      * on info->auxv_len will trigger.
2405      */
2406     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2407     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2408     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2409     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2410         /* Target doesn't support host page size alignment */
2411         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2412     } else {
2413         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2414                                                qemu_host_page_size)));
2415     }
2416     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2417     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2418     NEW_AUX_ENT(AT_ENTRY, info->entry);
2419     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2420     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2421     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2422     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2423     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2424     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2425     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2426     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2427     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2428 
2429 #ifdef ELF_HWCAP2
2430     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2431 #endif
2432 
2433     if (u_base_platform) {
2434         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2435     }
2436     if (u_platform) {
2437         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2438     }
2439     NEW_AUX_ENT (AT_NULL, 0);
2440 #undef NEW_AUX_ENT
2441 
2442     /* Check that our initial calculation of the auxv length matches how much
2443      * we actually put into it.
2444      */
2445     assert(info->auxv_len == u_auxv - info->saved_auxv);
2446 
2447     put_user_ual(argc, u_argc);
2448 
2449     p = info->arg_strings;
2450     for (i = 0; i < argc; ++i) {
2451         put_user_ual(p, u_argv);
2452         u_argv += n;
2453         p += target_strlen(p) + 1;
2454     }
2455     put_user_ual(0, u_argv);
2456 
2457     p = info->env_strings;
2458     for (i = 0; i < envc; ++i) {
2459         put_user_ual(p, u_envp);
2460         u_envp += n;
2461         p += target_strlen(p) + 1;
2462     }
2463     put_user_ual(0, u_envp);
2464 
2465     return sp;
2466 }
2467 
2468 #if defined(HI_COMMPAGE)
2469 #define LO_COMMPAGE -1
2470 #elif defined(LO_COMMPAGE)
2471 #define HI_COMMPAGE 0
2472 #else
2473 #define HI_COMMPAGE 0
2474 #define LO_COMMPAGE -1
2475 #ifndef INIT_GUEST_COMMPAGE
2476 #define init_guest_commpage() true
2477 #endif
2478 #endif
2479 
2480 static void pgb_fail_in_use(const char *image_name)
2481 {
2482     error_report("%s: requires virtual address space that is in use "
2483                  "(omit the -B option or choose a different value)",
2484                  image_name);
2485     exit(EXIT_FAILURE);
2486 }
2487 
2488 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2489                                 abi_ulong guest_hiaddr, long align)
2490 {
2491     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2492     void *addr, *test;
2493 
2494     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2495         fprintf(stderr, "Requested guest base %p does not satisfy "
2496                 "host minimum alignment (0x%lx)\n",
2497                 (void *)guest_base, align);
2498         exit(EXIT_FAILURE);
2499     }
2500 
2501     /* Sanity check the guest binary. */
2502     if (reserved_va) {
2503         if (guest_hiaddr > reserved_va) {
2504             error_report("%s: requires more than reserved virtual "
2505                          "address space (0x%" PRIx64 " > 0x%lx)",
2506                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2507             exit(EXIT_FAILURE);
2508         }
2509     } else {
2510 #if HOST_LONG_BITS < TARGET_ABI_BITS
2511         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2512             error_report("%s: requires more virtual address space "
2513                          "than the host can provide (0x%" PRIx64 ")",
2514                          image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
2515             exit(EXIT_FAILURE);
2516         }
2517 #endif
2518     }
2519 
2520     /*
2521      * Expand the allocation to the entire reserved_va.
2522      * Exclude the mmap_min_addr hole.
2523      */
2524     if (reserved_va) {
2525         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2526                         : mmap_min_addr - guest_base);
2527         guest_hiaddr = reserved_va;
2528     }
2529 
2530     /* Reserve the address space for the binary, or reserved_va. */
2531     test = g2h_untagged(guest_loaddr);
2532     addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
2533     if (test != addr) {
2534         pgb_fail_in_use(image_name);
2535     }
2536     qemu_log_mask(CPU_LOG_PAGE,
2537                   "%s: base @ %p for %" PRIu64 " bytes\n",
2538                   __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
2539 }
2540 
2541 /**
2542  * pgd_find_hole_fallback: potential mmap address
2543  * @guest_size: size of available space
2544  * @brk: location of break
2545  * @align: memory alignment
2546  *
2547  * This is a fallback method for finding a hole in the host address
2548  * space if we don't have the benefit of being able to access
2549  * /proc/self/map. It can potentially take a very long time as we can
2550  * only dumbly iterate up the host address space seeing if the
2551  * allocation would work.
2552  */
2553 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2554                                         long align, uintptr_t offset)
2555 {
2556     uintptr_t base;
2557 
2558     /* Start (aligned) at the bottom and work our way up */
2559     base = ROUND_UP(mmap_min_addr, align);
2560 
2561     while (true) {
2562         uintptr_t align_start, end;
2563         align_start = ROUND_UP(base, align);
2564         end = align_start + guest_size + offset;
2565 
2566         /* if brk is anywhere in the range give ourselves some room to grow. */
2567         if (align_start <= brk && brk < end) {
2568             base = brk + (16 * MiB);
2569             continue;
2570         } else if (align_start + guest_size < align_start) {
2571             /* we have run out of space */
2572             return -1;
2573         } else {
2574             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2575                 MAP_FIXED_NOREPLACE;
2576             void * mmap_start = mmap((void *) align_start, guest_size,
2577                                      PROT_NONE, flags, -1, 0);
2578             if (mmap_start != MAP_FAILED) {
2579                 munmap(mmap_start, guest_size);
2580                 if (mmap_start == (void *) align_start) {
2581                     qemu_log_mask(CPU_LOG_PAGE,
2582                                   "%s: base @ %p for %" PRIdPTR" bytes\n",
2583                                   __func__, mmap_start + offset, guest_size);
2584                     return (uintptr_t) mmap_start + offset;
2585                 }
2586             }
2587             base += qemu_host_page_size;
2588         }
2589     }
2590 }
2591 
2592 /* Return value for guest_base, or -1 if no hole found. */
2593 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2594                                long align, uintptr_t offset)
2595 {
2596     GSList *maps, *iter;
2597     uintptr_t this_start, this_end, next_start, brk;
2598     intptr_t ret = -1;
2599 
2600     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2601 
2602     maps = read_self_maps();
2603 
2604     /* Read brk after we've read the maps, which will malloc. */
2605     brk = (uintptr_t)sbrk(0);
2606 
2607     if (!maps) {
2608         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2609     }
2610 
2611     /* The first hole is before the first map entry. */
2612     this_start = mmap_min_addr;
2613 
2614     for (iter = maps; iter;
2615          this_start = next_start, iter = g_slist_next(iter)) {
2616         uintptr_t align_start, hole_size;
2617 
2618         this_end = ((MapInfo *)iter->data)->start;
2619         next_start = ((MapInfo *)iter->data)->end;
2620         align_start = ROUND_UP(this_start + offset, align);
2621 
2622         /* Skip holes that are too small. */
2623         if (align_start >= this_end) {
2624             continue;
2625         }
2626         hole_size = this_end - align_start;
2627         if (hole_size < guest_size) {
2628             continue;
2629         }
2630 
2631         /* If this hole contains brk, give ourselves some room to grow. */
2632         if (this_start <= brk && brk < this_end) {
2633             hole_size -= guest_size;
2634             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2635                 align_start += 1 * GiB;
2636             } else if (hole_size >= 16 * MiB) {
2637                 align_start += 16 * MiB;
2638             } else {
2639                 align_start = (this_end - guest_size) & -align;
2640                 if (align_start < this_start) {
2641                     continue;
2642                 }
2643             }
2644         }
2645 
2646         /* Record the lowest successful match. */
2647         if (ret < 0) {
2648             ret = align_start;
2649         }
2650         /* If this hole contains the identity map, select it. */
2651         if (align_start <= guest_loaddr &&
2652             guest_loaddr + guest_size <= this_end) {
2653             ret = 0;
2654         }
2655         /* If this hole ends above the identity map, stop looking. */
2656         if (this_end >= guest_loaddr) {
2657             break;
2658         }
2659     }
2660     free_self_maps(maps);
2661 
2662     if (ret != -1) {
2663         qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2664                       " for %" PRIuPTR " bytes\n",
2665                       __func__, ret, guest_size);
2666     }
2667 
2668     return ret;
2669 }
2670 
2671 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2672                        abi_ulong orig_hiaddr, long align)
2673 {
2674     uintptr_t loaddr = orig_loaddr;
2675     uintptr_t hiaddr = orig_hiaddr;
2676     uintptr_t offset = 0;
2677     uintptr_t addr;
2678 
2679     if (hiaddr != orig_hiaddr) {
2680         error_report("%s: requires virtual address space that the "
2681                      "host cannot provide (0x%" PRIx64 ")",
2682                      image_name, (uint64_t)orig_hiaddr + 1);
2683         exit(EXIT_FAILURE);
2684     }
2685 
2686     loaddr &= -align;
2687     if (HI_COMMPAGE) {
2688         /*
2689          * Extend the allocation to include the commpage.
2690          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2691          * need to ensure there is space bellow the guest_base so we
2692          * can map the commpage in the place needed when the address
2693          * arithmetic wraps around.
2694          */
2695         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2696             hiaddr = UINT32_MAX;
2697         } else {
2698             offset = -(HI_COMMPAGE & -align);
2699         }
2700     } else if (LO_COMMPAGE != -1) {
2701         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2702     }
2703 
2704     addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
2705     if (addr == -1) {
2706         /*
2707          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2708          * that can satisfy both.  But as the normal arm32 link base address
2709          * is ~32k, and we extend down to include the commpage, making the
2710          * overhead only ~96k, this is unlikely.
2711          */
2712         error_report("%s: Unable to allocate %#zx bytes of "
2713                      "virtual address space", image_name,
2714                      (size_t)(hiaddr - loaddr));
2715         exit(EXIT_FAILURE);
2716     }
2717 
2718     guest_base = addr;
2719 
2720     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2721                   __func__, addr, hiaddr - loaddr);
2722 }
2723 
2724 static void pgb_dynamic(const char *image_name, long align)
2725 {
2726     /*
2727      * The executable is dynamic and does not require a fixed address.
2728      * All we need is a commpage that satisfies align.
2729      * If we do not need a commpage, leave guest_base == 0.
2730      */
2731     if (HI_COMMPAGE) {
2732         uintptr_t addr, commpage;
2733 
2734         /* 64-bit hosts should have used reserved_va. */
2735         assert(sizeof(uintptr_t) == 4);
2736 
2737         /*
2738          * By putting the commpage at the first hole, that puts guest_base
2739          * just above that, and maximises the positive guest addresses.
2740          */
2741         commpage = HI_COMMPAGE & -align;
2742         addr = pgb_find_hole(commpage, -commpage, align, 0);
2743         assert(addr != -1);
2744         guest_base = addr;
2745     }
2746 }
2747 
2748 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2749                             abi_ulong guest_hiaddr, long align)
2750 {
2751     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2752     void *addr, *test;
2753 
2754     if (guest_hiaddr > reserved_va) {
2755         error_report("%s: requires more than reserved virtual "
2756                      "address space (0x%" PRIx64 " > 0x%lx)",
2757                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2758         exit(EXIT_FAILURE);
2759     }
2760 
2761     /* Widen the "image" to the entire reserved address space. */
2762     pgb_static(image_name, 0, reserved_va, align);
2763 
2764     /* osdep.h defines this as 0 if it's missing */
2765     flags |= MAP_FIXED_NOREPLACE;
2766 
2767     /* Reserve the memory on the host. */
2768     assert(guest_base != 0);
2769     test = g2h_untagged(0);
2770     addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
2771     if (addr == MAP_FAILED || addr != test) {
2772         error_report("Unable to reserve 0x%lx bytes of virtual address "
2773                      "space at %p (%s) for use as guest address space (check your "
2774                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2775                      "using -R option)", reserved_va + 1, test, strerror(errno));
2776         exit(EXIT_FAILURE);
2777     }
2778 
2779     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2780                   __func__, addr, reserved_va + 1);
2781 }
2782 
2783 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2784                       abi_ulong guest_hiaddr)
2785 {
2786     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2787     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2788 
2789     if (have_guest_base) {
2790         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2791     } else if (reserved_va) {
2792         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2793     } else if (guest_loaddr) {
2794         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2795     } else {
2796         pgb_dynamic(image_name, align);
2797     }
2798 
2799     /* Reserve and initialize the commpage. */
2800     if (!init_guest_commpage()) {
2801         /*
2802          * With have_guest_base, the user has selected the address and
2803          * we are trying to work with that.  Otherwise, we have selected
2804          * free space and init_guest_commpage must succeeded.
2805          */
2806         assert(have_guest_base);
2807         pgb_fail_in_use(image_name);
2808     }
2809 
2810     assert(QEMU_IS_ALIGNED(guest_base, align));
2811     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2812                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2813 }
2814 
2815 enum {
2816     /* The string "GNU\0" as a magic number. */
2817     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2818     NOTE_DATA_SZ = 1 * KiB,
2819     NOTE_NAME_SZ = 4,
2820     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2821 };
2822 
2823 /*
2824  * Process a single gnu_property entry.
2825  * Return false for error.
2826  */
2827 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2828                                struct image_info *info, bool have_prev_type,
2829                                uint32_t *prev_type, Error **errp)
2830 {
2831     uint32_t pr_type, pr_datasz, step;
2832 
2833     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2834         goto error_data;
2835     }
2836     datasz -= *off;
2837     data += *off / sizeof(uint32_t);
2838 
2839     if (datasz < 2 * sizeof(uint32_t)) {
2840         goto error_data;
2841     }
2842     pr_type = data[0];
2843     pr_datasz = data[1];
2844     data += 2;
2845     datasz -= 2 * sizeof(uint32_t);
2846     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2847     if (step > datasz) {
2848         goto error_data;
2849     }
2850 
2851     /* Properties are supposed to be unique and sorted on pr_type. */
2852     if (have_prev_type && pr_type <= *prev_type) {
2853         if (pr_type == *prev_type) {
2854             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2855         } else {
2856             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2857         }
2858         return false;
2859     }
2860     *prev_type = pr_type;
2861 
2862     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2863         return false;
2864     }
2865 
2866     *off += 2 * sizeof(uint32_t) + step;
2867     return true;
2868 
2869  error_data:
2870     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2871     return false;
2872 }
2873 
2874 /* Process NT_GNU_PROPERTY_TYPE_0. */
2875 static bool parse_elf_properties(int image_fd,
2876                                  struct image_info *info,
2877                                  const struct elf_phdr *phdr,
2878                                  char bprm_buf[BPRM_BUF_SIZE],
2879                                  Error **errp)
2880 {
2881     union {
2882         struct elf_note nhdr;
2883         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2884     } note;
2885 
2886     int n, off, datasz;
2887     bool have_prev_type;
2888     uint32_t prev_type;
2889 
2890     /* Unless the arch requires properties, ignore them. */
2891     if (!ARCH_USE_GNU_PROPERTY) {
2892         return true;
2893     }
2894 
2895     /* If the properties are crazy large, that's too bad. */
2896     n = phdr->p_filesz;
2897     if (n > sizeof(note)) {
2898         error_setg(errp, "PT_GNU_PROPERTY too large");
2899         return false;
2900     }
2901     if (n < sizeof(note.nhdr)) {
2902         error_setg(errp, "PT_GNU_PROPERTY too small");
2903         return false;
2904     }
2905 
2906     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2907         memcpy(&note, bprm_buf + phdr->p_offset, n);
2908     } else {
2909         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2910         if (len != n) {
2911             error_setg_errno(errp, errno, "Error reading file header");
2912             return false;
2913         }
2914     }
2915 
2916     /*
2917      * The contents of a valid PT_GNU_PROPERTY is a sequence
2918      * of uint32_t -- swap them all now.
2919      */
2920 #ifdef BSWAP_NEEDED
2921     for (int i = 0; i < n / 4; i++) {
2922         bswap32s(note.data + i);
2923     }
2924 #endif
2925 
2926     /*
2927      * Note that nhdr is 3 words, and that the "name" described by namesz
2928      * immediately follows nhdr and is thus at the 4th word.  Further, all
2929      * of the inputs to the kernel's round_up are multiples of 4.
2930      */
2931     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2932         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2933         note.data[3] != GNU0_MAGIC) {
2934         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2935         return false;
2936     }
2937     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2938 
2939     datasz = note.nhdr.n_descsz + off;
2940     if (datasz > n) {
2941         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2942         return false;
2943     }
2944 
2945     have_prev_type = false;
2946     prev_type = 0;
2947     while (1) {
2948         if (off == datasz) {
2949             return true;  /* end, exit ok */
2950         }
2951         if (!parse_elf_property(note.data, &off, datasz, info,
2952                                 have_prev_type, &prev_type, errp)) {
2953             return false;
2954         }
2955         have_prev_type = true;
2956     }
2957 }
2958 
2959 /* Load an ELF image into the address space.
2960 
2961    IMAGE_NAME is the filename of the image, to use in error messages.
2962    IMAGE_FD is the open file descriptor for the image.
2963 
2964    BPRM_BUF is a copy of the beginning of the file; this of course
2965    contains the elf file header at offset 0.  It is assumed that this
2966    buffer is sufficiently aligned to present no problems to the host
2967    in accessing data at aligned offsets within the buffer.
2968 
2969    On return: INFO values will be filled in, as necessary or available.  */
2970 
2971 static void load_elf_image(const char *image_name, int image_fd,
2972                            struct image_info *info, char **pinterp_name,
2973                            char bprm_buf[BPRM_BUF_SIZE])
2974 {
2975     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2976     struct elf_phdr *phdr;
2977     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2978     int i, retval, prot_exec;
2979     Error *err = NULL;
2980 
2981     /* First of all, some simple consistency checks */
2982     if (!elf_check_ident(ehdr)) {
2983         error_setg(&err, "Invalid ELF image for this architecture");
2984         goto exit_errmsg;
2985     }
2986     bswap_ehdr(ehdr);
2987     if (!elf_check_ehdr(ehdr)) {
2988         error_setg(&err, "Invalid ELF image for this architecture");
2989         goto exit_errmsg;
2990     }
2991 
2992     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2993     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2994         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2995     } else {
2996         phdr = (struct elf_phdr *) alloca(i);
2997         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2998         if (retval != i) {
2999             goto exit_read;
3000         }
3001     }
3002     bswap_phdr(phdr, ehdr->e_phnum);
3003 
3004     info->nsegs = 0;
3005     info->pt_dynamic_addr = 0;
3006 
3007     mmap_lock();
3008 
3009     /*
3010      * Find the maximum size of the image and allocate an appropriate
3011      * amount of memory to handle that.  Locate the interpreter, if any.
3012      */
3013     loaddr = -1, hiaddr = 0;
3014     info->alignment = 0;
3015     info->exec_stack = EXSTACK_DEFAULT;
3016     for (i = 0; i < ehdr->e_phnum; ++i) {
3017         struct elf_phdr *eppnt = phdr + i;
3018         if (eppnt->p_type == PT_LOAD) {
3019             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3020             if (a < loaddr) {
3021                 loaddr = a;
3022             }
3023             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3024             if (a > hiaddr) {
3025                 hiaddr = a;
3026             }
3027             ++info->nsegs;
3028             info->alignment |= eppnt->p_align;
3029         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3030             g_autofree char *interp_name = NULL;
3031 
3032             if (*pinterp_name) {
3033                 error_setg(&err, "Multiple PT_INTERP entries");
3034                 goto exit_errmsg;
3035             }
3036 
3037             interp_name = g_malloc(eppnt->p_filesz);
3038 
3039             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3040                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3041                        eppnt->p_filesz);
3042             } else {
3043                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3044                                eppnt->p_offset);
3045                 if (retval != eppnt->p_filesz) {
3046                     goto exit_read;
3047                 }
3048             }
3049             if (interp_name[eppnt->p_filesz - 1] != 0) {
3050                 error_setg(&err, "Invalid PT_INTERP entry");
3051                 goto exit_errmsg;
3052             }
3053             *pinterp_name = g_steal_pointer(&interp_name);
3054         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3055             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3056                 goto exit_errmsg;
3057             }
3058         } else if (eppnt->p_type == PT_GNU_STACK) {
3059             info->exec_stack = eppnt->p_flags & PF_X;
3060         }
3061     }
3062 
3063     if (pinterp_name != NULL) {
3064         /*
3065          * This is the main executable.
3066          *
3067          * Reserve extra space for brk.
3068          * We hold on to this space while placing the interpreter
3069          * and the stack, lest they be placed immediately after
3070          * the data segment and block allocation from the brk.
3071          *
3072          * 16MB is chosen as "large enough" without being so large as
3073          * to allow the result to not fit with a 32-bit guest on a
3074          * 32-bit host. However some 64 bit guests (e.g. s390x)
3075          * attempt to place their heap further ahead and currently
3076          * nothing stops them smashing into QEMUs address space.
3077          */
3078 #if TARGET_LONG_BITS == 64
3079         info->reserve_brk = 32 * MiB;
3080 #else
3081         info->reserve_brk = 16 * MiB;
3082 #endif
3083         hiaddr += info->reserve_brk;
3084 
3085         if (ehdr->e_type == ET_EXEC) {
3086             /*
3087              * Make sure that the low address does not conflict with
3088              * MMAP_MIN_ADDR or the QEMU application itself.
3089              */
3090             probe_guest_base(image_name, loaddr, hiaddr);
3091         } else {
3092             /*
3093              * The binary is dynamic, but we still need to
3094              * select guest_base.  In this case we pass a size.
3095              */
3096             probe_guest_base(image_name, 0, hiaddr - loaddr);
3097         }
3098     }
3099 
3100     /*
3101      * Reserve address space for all of this.
3102      *
3103      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3104      * exactly the address range that is required.
3105      *
3106      * Otherwise this is ET_DYN, and we are searching for a location
3107      * that can hold the memory space required.  If the image is
3108      * pre-linked, LOADDR will be non-zero, and the kernel should
3109      * honor that address if it happens to be free.
3110      *
3111      * In both cases, we will overwrite pages in this range with mappings
3112      * from the executable.
3113      */
3114     load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3115                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3116                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3117                             -1, 0);
3118     if (load_addr == -1) {
3119         goto exit_mmap;
3120     }
3121     load_bias = load_addr - loaddr;
3122 
3123     if (elf_is_fdpic(ehdr)) {
3124         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3125             g_malloc(sizeof(*loadsegs) * info->nsegs);
3126 
3127         for (i = 0; i < ehdr->e_phnum; ++i) {
3128             switch (phdr[i].p_type) {
3129             case PT_DYNAMIC:
3130                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3131                 break;
3132             case PT_LOAD:
3133                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3134                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3135                 loadsegs->p_memsz = phdr[i].p_memsz;
3136                 ++loadsegs;
3137                 break;
3138             }
3139         }
3140     }
3141 
3142     info->load_bias = load_bias;
3143     info->code_offset = load_bias;
3144     info->data_offset = load_bias;
3145     info->load_addr = load_addr;
3146     info->entry = ehdr->e_entry + load_bias;
3147     info->start_code = -1;
3148     info->end_code = 0;
3149     info->start_data = -1;
3150     info->end_data = 0;
3151     info->brk = 0;
3152     info->elf_flags = ehdr->e_flags;
3153 
3154     prot_exec = PROT_EXEC;
3155 #ifdef TARGET_AARCH64
3156     /*
3157      * If the BTI feature is present, this indicates that the executable
3158      * pages of the startup binary should be mapped with PROT_BTI, so that
3159      * branch targets are enforced.
3160      *
3161      * The startup binary is either the interpreter or the static executable.
3162      * The interpreter is responsible for all pages of a dynamic executable.
3163      *
3164      * Elf notes are backward compatible to older cpus.
3165      * Do not enable BTI unless it is supported.
3166      */
3167     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3168         && (pinterp_name == NULL || *pinterp_name == 0)
3169         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3170         prot_exec |= TARGET_PROT_BTI;
3171     }
3172 #endif
3173 
3174     for (i = 0; i < ehdr->e_phnum; i++) {
3175         struct elf_phdr *eppnt = phdr + i;
3176         if (eppnt->p_type == PT_LOAD) {
3177             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3178             int elf_prot = 0;
3179 
3180             if (eppnt->p_flags & PF_R) {
3181                 elf_prot |= PROT_READ;
3182             }
3183             if (eppnt->p_flags & PF_W) {
3184                 elf_prot |= PROT_WRITE;
3185             }
3186             if (eppnt->p_flags & PF_X) {
3187                 elf_prot |= prot_exec;
3188             }
3189 
3190             vaddr = load_bias + eppnt->p_vaddr;
3191             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3192             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3193 
3194             vaddr_ef = vaddr + eppnt->p_filesz;
3195             vaddr_em = vaddr + eppnt->p_memsz;
3196 
3197             /*
3198              * Some segments may be completely empty, with a non-zero p_memsz
3199              * but no backing file segment.
3200              */
3201             if (eppnt->p_filesz != 0) {
3202                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3203                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3204                                     MAP_PRIVATE | MAP_FIXED,
3205                                     image_fd, eppnt->p_offset - vaddr_po);
3206 
3207                 if (error == -1) {
3208                     goto exit_mmap;
3209                 }
3210 
3211                 /*
3212                  * If the load segment requests extra zeros (e.g. bss), map it.
3213                  */
3214                 if (eppnt->p_filesz < eppnt->p_memsz) {
3215                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
3216                 }
3217             } else if (eppnt->p_memsz != 0) {
3218                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3219                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3220                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3221                                     -1, 0);
3222 
3223                 if (error == -1) {
3224                     goto exit_mmap;
3225                 }
3226             }
3227 
3228             /* Find the full program boundaries.  */
3229             if (elf_prot & PROT_EXEC) {
3230                 if (vaddr < info->start_code) {
3231                     info->start_code = vaddr;
3232                 }
3233                 if (vaddr_ef > info->end_code) {
3234                     info->end_code = vaddr_ef;
3235                 }
3236             }
3237             if (elf_prot & PROT_WRITE) {
3238                 if (vaddr < info->start_data) {
3239                     info->start_data = vaddr;
3240                 }
3241                 if (vaddr_ef > info->end_data) {
3242                     info->end_data = vaddr_ef;
3243                 }
3244             }
3245             if (vaddr_em > info->brk) {
3246                 info->brk = vaddr_em;
3247             }
3248 #ifdef TARGET_MIPS
3249         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3250             Mips_elf_abiflags_v0 abiflags;
3251             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3252                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3253                 goto exit_errmsg;
3254             }
3255             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3256                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3257                        sizeof(Mips_elf_abiflags_v0));
3258             } else {
3259                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3260                                eppnt->p_offset);
3261                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3262                     goto exit_read;
3263                 }
3264             }
3265             bswap_mips_abiflags(&abiflags);
3266             info->fp_abi = abiflags.fp_abi;
3267 #endif
3268         }
3269     }
3270 
3271     if (info->end_data == 0) {
3272         info->start_data = info->end_code;
3273         info->end_data = info->end_code;
3274     }
3275 
3276     if (qemu_log_enabled()) {
3277         load_symbols(ehdr, image_fd, load_bias);
3278     }
3279 
3280     debuginfo_report_elf(image_name, image_fd, load_bias);
3281 
3282     mmap_unlock();
3283 
3284     close(image_fd);
3285     return;
3286 
3287  exit_read:
3288     if (retval >= 0) {
3289         error_setg(&err, "Incomplete read of file header");
3290     } else {
3291         error_setg_errno(&err, errno, "Error reading file header");
3292     }
3293     goto exit_errmsg;
3294  exit_mmap:
3295     error_setg_errno(&err, errno, "Error mapping file");
3296     goto exit_errmsg;
3297  exit_errmsg:
3298     error_reportf_err(err, "%s: ", image_name);
3299     exit(-1);
3300 }
3301 
3302 static void load_elf_interp(const char *filename, struct image_info *info,
3303                             char bprm_buf[BPRM_BUF_SIZE])
3304 {
3305     int fd, retval;
3306     Error *err = NULL;
3307 
3308     fd = open(path(filename), O_RDONLY);
3309     if (fd < 0) {
3310         error_setg_file_open(&err, errno, filename);
3311         error_report_err(err);
3312         exit(-1);
3313     }
3314 
3315     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3316     if (retval < 0) {
3317         error_setg_errno(&err, errno, "Error reading file header");
3318         error_reportf_err(err, "%s: ", filename);
3319         exit(-1);
3320     }
3321 
3322     if (retval < BPRM_BUF_SIZE) {
3323         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3324     }
3325 
3326     load_elf_image(filename, fd, info, NULL, bprm_buf);
3327 }
3328 
3329 static int symfind(const void *s0, const void *s1)
3330 {
3331     struct elf_sym *sym = (struct elf_sym *)s1;
3332     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3333     int result = 0;
3334 
3335     if (addr < sym->st_value) {
3336         result = -1;
3337     } else if (addr >= sym->st_value + sym->st_size) {
3338         result = 1;
3339     }
3340     return result;
3341 }
3342 
3343 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3344 {
3345 #if ELF_CLASS == ELFCLASS32
3346     struct elf_sym *syms = s->disas_symtab.elf32;
3347 #else
3348     struct elf_sym *syms = s->disas_symtab.elf64;
3349 #endif
3350 
3351     // binary search
3352     struct elf_sym *sym;
3353 
3354     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3355     if (sym != NULL) {
3356         return s->disas_strtab + sym->st_name;
3357     }
3358 
3359     return "";
3360 }
3361 
3362 /* FIXME: This should use elf_ops.h  */
3363 static int symcmp(const void *s0, const void *s1)
3364 {
3365     struct elf_sym *sym0 = (struct elf_sym *)s0;
3366     struct elf_sym *sym1 = (struct elf_sym *)s1;
3367     return (sym0->st_value < sym1->st_value)
3368         ? -1
3369         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3370 }
3371 
3372 /* Best attempt to load symbols from this ELF object. */
3373 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3374 {
3375     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3376     uint64_t segsz;
3377     struct elf_shdr *shdr;
3378     char *strings = NULL;
3379     struct syminfo *s = NULL;
3380     struct elf_sym *new_syms, *syms = NULL;
3381 
3382     shnum = hdr->e_shnum;
3383     i = shnum * sizeof(struct elf_shdr);
3384     shdr = (struct elf_shdr *)alloca(i);
3385     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3386         return;
3387     }
3388 
3389     bswap_shdr(shdr, shnum);
3390     for (i = 0; i < shnum; ++i) {
3391         if (shdr[i].sh_type == SHT_SYMTAB) {
3392             sym_idx = i;
3393             str_idx = shdr[i].sh_link;
3394             goto found;
3395         }
3396     }
3397 
3398     /* There will be no symbol table if the file was stripped.  */
3399     return;
3400 
3401  found:
3402     /* Now know where the strtab and symtab are.  Snarf them.  */
3403     s = g_try_new(struct syminfo, 1);
3404     if (!s) {
3405         goto give_up;
3406     }
3407 
3408     segsz = shdr[str_idx].sh_size;
3409     s->disas_strtab = strings = g_try_malloc(segsz);
3410     if (!strings ||
3411         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3412         goto give_up;
3413     }
3414 
3415     segsz = shdr[sym_idx].sh_size;
3416     syms = g_try_malloc(segsz);
3417     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3418         goto give_up;
3419     }
3420 
3421     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3422         /* Implausibly large symbol table: give up rather than ploughing
3423          * on with the number of symbols calculation overflowing
3424          */
3425         goto give_up;
3426     }
3427     nsyms = segsz / sizeof(struct elf_sym);
3428     for (i = 0; i < nsyms; ) {
3429         bswap_sym(syms + i);
3430         /* Throw away entries which we do not need.  */
3431         if (syms[i].st_shndx == SHN_UNDEF
3432             || syms[i].st_shndx >= SHN_LORESERVE
3433             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3434             if (i < --nsyms) {
3435                 syms[i] = syms[nsyms];
3436             }
3437         } else {
3438 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3439             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3440             syms[i].st_value &= ~(target_ulong)1;
3441 #endif
3442             syms[i].st_value += load_bias;
3443             i++;
3444         }
3445     }
3446 
3447     /* No "useful" symbol.  */
3448     if (nsyms == 0) {
3449         goto give_up;
3450     }
3451 
3452     /* Attempt to free the storage associated with the local symbols
3453        that we threw away.  Whether or not this has any effect on the
3454        memory allocation depends on the malloc implementation and how
3455        many symbols we managed to discard.  */
3456     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3457     if (new_syms == NULL) {
3458         goto give_up;
3459     }
3460     syms = new_syms;
3461 
3462     qsort(syms, nsyms, sizeof(*syms), symcmp);
3463 
3464     s->disas_num_syms = nsyms;
3465 #if ELF_CLASS == ELFCLASS32
3466     s->disas_symtab.elf32 = syms;
3467 #else
3468     s->disas_symtab.elf64 = syms;
3469 #endif
3470     s->lookup_symbol = lookup_symbolxx;
3471     s->next = syminfos;
3472     syminfos = s;
3473 
3474     return;
3475 
3476 give_up:
3477     g_free(s);
3478     g_free(strings);
3479     g_free(syms);
3480 }
3481 
3482 uint32_t get_elf_eflags(int fd)
3483 {
3484     struct elfhdr ehdr;
3485     off_t offset;
3486     int ret;
3487 
3488     /* Read ELF header */
3489     offset = lseek(fd, 0, SEEK_SET);
3490     if (offset == (off_t) -1) {
3491         return 0;
3492     }
3493     ret = read(fd, &ehdr, sizeof(ehdr));
3494     if (ret < sizeof(ehdr)) {
3495         return 0;
3496     }
3497     offset = lseek(fd, offset, SEEK_SET);
3498     if (offset == (off_t) -1) {
3499         return 0;
3500     }
3501 
3502     /* Check ELF signature */
3503     if (!elf_check_ident(&ehdr)) {
3504         return 0;
3505     }
3506 
3507     /* check header */
3508     bswap_ehdr(&ehdr);
3509     if (!elf_check_ehdr(&ehdr)) {
3510         return 0;
3511     }
3512 
3513     /* return architecture id */
3514     return ehdr.e_flags;
3515 }
3516 
3517 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3518 {
3519     struct image_info interp_info;
3520     struct elfhdr elf_ex;
3521     char *elf_interpreter = NULL;
3522     char *scratch;
3523 
3524     memset(&interp_info, 0, sizeof(interp_info));
3525 #ifdef TARGET_MIPS
3526     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3527 #endif
3528 
3529     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3530 
3531     load_elf_image(bprm->filename, bprm->fd, info,
3532                    &elf_interpreter, bprm->buf);
3533 
3534     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3535        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3536        when we load the interpreter.  */
3537     elf_ex = *(struct elfhdr *)bprm->buf;
3538 
3539     /* Do this so that we can load the interpreter, if need be.  We will
3540        change some of these later */
3541     bprm->p = setup_arg_pages(bprm, info);
3542 
3543     scratch = g_new0(char, TARGET_PAGE_SIZE);
3544     if (STACK_GROWS_DOWN) {
3545         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3546                                    bprm->p, info->stack_limit);
3547         info->file_string = bprm->p;
3548         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3549                                    bprm->p, info->stack_limit);
3550         info->env_strings = bprm->p;
3551         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3552                                    bprm->p, info->stack_limit);
3553         info->arg_strings = bprm->p;
3554     } else {
3555         info->arg_strings = bprm->p;
3556         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3557                                    bprm->p, info->stack_limit);
3558         info->env_strings = bprm->p;
3559         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3560                                    bprm->p, info->stack_limit);
3561         info->file_string = bprm->p;
3562         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3563                                    bprm->p, info->stack_limit);
3564     }
3565 
3566     g_free(scratch);
3567 
3568     if (!bprm->p) {
3569         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3570         exit(-1);
3571     }
3572 
3573     if (elf_interpreter) {
3574         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3575 
3576         /* If the program interpreter is one of these two, then assume
3577            an iBCS2 image.  Otherwise assume a native linux image.  */
3578 
3579         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3580             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3581             info->personality = PER_SVR4;
3582 
3583             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3584                and some applications "depend" upon this behavior.  Since
3585                we do not have the power to recompile these, we emulate
3586                the SVr4 behavior.  Sigh.  */
3587             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3588                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3589         }
3590 #ifdef TARGET_MIPS
3591         info->interp_fp_abi = interp_info.fp_abi;
3592 #endif
3593     }
3594 
3595     /*
3596      * TODO: load a vdso, which would also contain the signal trampolines.
3597      * Otherwise, allocate a private page to hold them.
3598      */
3599     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3600         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3601                                           PROT_READ | PROT_WRITE,
3602                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3603         if (tramp_page == -1) {
3604             return -errno;
3605         }
3606 
3607         setup_sigtramp(tramp_page);
3608         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3609     }
3610 
3611     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3612                                 info, (elf_interpreter ? &interp_info : NULL));
3613     info->start_stack = bprm->p;
3614 
3615     /* If we have an interpreter, set that as the program's entry point.
3616        Copy the load_bias as well, to help PPC64 interpret the entry
3617        point as a function descriptor.  Do this after creating elf tables
3618        so that we copy the original program entry point into the AUXV.  */
3619     if (elf_interpreter) {
3620         info->load_bias = interp_info.load_bias;
3621         info->entry = interp_info.entry;
3622         g_free(elf_interpreter);
3623     }
3624 
3625 #ifdef USE_ELF_CORE_DUMP
3626     bprm->core_dump = &elf_core_dump;
3627 #endif
3628 
3629     /*
3630      * If we reserved extra space for brk, release it now.
3631      * The implementation of do_brk in syscalls.c expects to be able
3632      * to mmap pages in this space.
3633      */
3634     if (info->reserve_brk) {
3635         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3636         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3637         target_munmap(start_brk, end_brk - start_brk);
3638     }
3639 
3640     return 0;
3641 }
3642 
3643 #ifdef USE_ELF_CORE_DUMP
3644 /*
3645  * Definitions to generate Intel SVR4-like core files.
3646  * These mostly have the same names as the SVR4 types with "target_elf_"
3647  * tacked on the front to prevent clashes with linux definitions,
3648  * and the typedef forms have been avoided.  This is mostly like
3649  * the SVR4 structure, but more Linuxy, with things that Linux does
3650  * not support and which gdb doesn't really use excluded.
3651  *
3652  * Fields we don't dump (their contents is zero) in linux-user qemu
3653  * are marked with XXX.
3654  *
3655  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3656  *
3657  * Porting ELF coredump for target is (quite) simple process.  First you
3658  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3659  * the target resides):
3660  *
3661  * #define USE_ELF_CORE_DUMP
3662  *
3663  * Next you define type of register set used for dumping.  ELF specification
3664  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3665  *
3666  * typedef <target_regtype> target_elf_greg_t;
3667  * #define ELF_NREG <number of registers>
3668  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3669  *
3670  * Last step is to implement target specific function that copies registers
3671  * from given cpu into just specified register set.  Prototype is:
3672  *
3673  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3674  *                                const CPUArchState *env);
3675  *
3676  * Parameters:
3677  *     regs - copy register values into here (allocated and zeroed by caller)
3678  *     env - copy registers from here
3679  *
3680  * Example for ARM target is provided in this file.
3681  */
3682 
3683 /* An ELF note in memory */
3684 struct memelfnote {
3685     const char *name;
3686     size_t     namesz;
3687     size_t     namesz_rounded;
3688     int        type;
3689     size_t     datasz;
3690     size_t     datasz_rounded;
3691     void       *data;
3692     size_t     notesz;
3693 };
3694 
3695 struct target_elf_siginfo {
3696     abi_int    si_signo; /* signal number */
3697     abi_int    si_code;  /* extra code */
3698     abi_int    si_errno; /* errno */
3699 };
3700 
3701 struct target_elf_prstatus {
3702     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3703     abi_short          pr_cursig;    /* Current signal */
3704     abi_ulong          pr_sigpend;   /* XXX */
3705     abi_ulong          pr_sighold;   /* XXX */
3706     target_pid_t       pr_pid;
3707     target_pid_t       pr_ppid;
3708     target_pid_t       pr_pgrp;
3709     target_pid_t       pr_sid;
3710     struct target_timeval pr_utime;  /* XXX User time */
3711     struct target_timeval pr_stime;  /* XXX System time */
3712     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3713     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3714     target_elf_gregset_t      pr_reg;       /* GP registers */
3715     abi_int            pr_fpvalid;   /* XXX */
3716 };
3717 
3718 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3719 
3720 struct target_elf_prpsinfo {
3721     char         pr_state;       /* numeric process state */
3722     char         pr_sname;       /* char for pr_state */
3723     char         pr_zomb;        /* zombie */
3724     char         pr_nice;        /* nice val */
3725     abi_ulong    pr_flag;        /* flags */
3726     target_uid_t pr_uid;
3727     target_gid_t pr_gid;
3728     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3729     /* Lots missing */
3730     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3731     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3732 };
3733 
3734 /* Here is the structure in which status of each thread is captured. */
3735 struct elf_thread_status {
3736     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3737     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3738 #if 0
3739     elf_fpregset_t fpu;             /* NT_PRFPREG */
3740     struct task_struct *thread;
3741     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3742 #endif
3743     struct memelfnote notes[1];
3744     int num_notes;
3745 };
3746 
3747 struct elf_note_info {
3748     struct memelfnote   *notes;
3749     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3750     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3751 
3752     QTAILQ_HEAD(, elf_thread_status) thread_list;
3753 #if 0
3754     /*
3755      * Current version of ELF coredump doesn't support
3756      * dumping fp regs etc.
3757      */
3758     elf_fpregset_t *fpu;
3759     elf_fpxregset_t *xfpu;
3760     int thread_status_size;
3761 #endif
3762     int notes_size;
3763     int numnote;
3764 };
3765 
3766 struct vm_area_struct {
3767     target_ulong   vma_start;  /* start vaddr of memory region */
3768     target_ulong   vma_end;    /* end vaddr of memory region */
3769     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3770     QTAILQ_ENTRY(vm_area_struct) vma_link;
3771 };
3772 
3773 struct mm_struct {
3774     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3775     int mm_count;           /* number of mappings */
3776 };
3777 
3778 static struct mm_struct *vma_init(void);
3779 static void vma_delete(struct mm_struct *);
3780 static int vma_add_mapping(struct mm_struct *, target_ulong,
3781                            target_ulong, abi_ulong);
3782 static int vma_get_mapping_count(const struct mm_struct *);
3783 static struct vm_area_struct *vma_first(const struct mm_struct *);
3784 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3785 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3786 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3787                       unsigned long flags);
3788 
3789 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3790 static void fill_note(struct memelfnote *, const char *, int,
3791                       unsigned int, void *);
3792 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3793 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3794 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3795 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3796 static size_t note_size(const struct memelfnote *);
3797 static void free_note_info(struct elf_note_info *);
3798 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3799 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3800 
3801 static int dump_write(int, const void *, size_t);
3802 static int write_note(struct memelfnote *, int);
3803 static int write_note_info(struct elf_note_info *, int);
3804 
3805 #ifdef BSWAP_NEEDED
3806 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3807 {
3808     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3809     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3810     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3811     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3812     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3813     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3814     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3815     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3816     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3817     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3818     /* cpu times are not filled, so we skip them */
3819     /* regs should be in correct format already */
3820     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3821 }
3822 
3823 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3824 {
3825     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3826     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3827     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3828     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3829     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3830     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3831     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3832 }
3833 
3834 static void bswap_note(struct elf_note *en)
3835 {
3836     bswap32s(&en->n_namesz);
3837     bswap32s(&en->n_descsz);
3838     bswap32s(&en->n_type);
3839 }
3840 #else
3841 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3842 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3843 static inline void bswap_note(struct elf_note *en) { }
3844 #endif /* BSWAP_NEEDED */
3845 
3846 /*
3847  * Minimal support for linux memory regions.  These are needed
3848  * when we are finding out what memory exactly belongs to
3849  * emulated process.  No locks needed here, as long as
3850  * thread that received the signal is stopped.
3851  */
3852 
3853 static struct mm_struct *vma_init(void)
3854 {
3855     struct mm_struct *mm;
3856 
3857     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3858         return (NULL);
3859 
3860     mm->mm_count = 0;
3861     QTAILQ_INIT(&mm->mm_mmap);
3862 
3863     return (mm);
3864 }
3865 
3866 static void vma_delete(struct mm_struct *mm)
3867 {
3868     struct vm_area_struct *vma;
3869 
3870     while ((vma = vma_first(mm)) != NULL) {
3871         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3872         g_free(vma);
3873     }
3874     g_free(mm);
3875 }
3876 
3877 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3878                            target_ulong end, abi_ulong flags)
3879 {
3880     struct vm_area_struct *vma;
3881 
3882     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3883         return (-1);
3884 
3885     vma->vma_start = start;
3886     vma->vma_end = end;
3887     vma->vma_flags = flags;
3888 
3889     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3890     mm->mm_count++;
3891 
3892     return (0);
3893 }
3894 
3895 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3896 {
3897     return (QTAILQ_FIRST(&mm->mm_mmap));
3898 }
3899 
3900 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3901 {
3902     return (QTAILQ_NEXT(vma, vma_link));
3903 }
3904 
3905 static int vma_get_mapping_count(const struct mm_struct *mm)
3906 {
3907     return (mm->mm_count);
3908 }
3909 
3910 /*
3911  * Calculate file (dump) size of given memory region.
3912  */
3913 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3914 {
3915     /* if we cannot even read the first page, skip it */
3916     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3917         return (0);
3918 
3919     /*
3920      * Usually we don't dump executable pages as they contain
3921      * non-writable code that debugger can read directly from
3922      * target library etc.  However, thread stacks are marked
3923      * also executable so we read in first page of given region
3924      * and check whether it contains elf header.  If there is
3925      * no elf header, we dump it.
3926      */
3927     if (vma->vma_flags & PROT_EXEC) {
3928         char page[TARGET_PAGE_SIZE];
3929 
3930         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3931             return 0;
3932         }
3933         if ((page[EI_MAG0] == ELFMAG0) &&
3934             (page[EI_MAG1] == ELFMAG1) &&
3935             (page[EI_MAG2] == ELFMAG2) &&
3936             (page[EI_MAG3] == ELFMAG3)) {
3937             /*
3938              * Mappings are possibly from ELF binary.  Don't dump
3939              * them.
3940              */
3941             return (0);
3942         }
3943     }
3944 
3945     return (vma->vma_end - vma->vma_start);
3946 }
3947 
3948 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3949                       unsigned long flags)
3950 {
3951     struct mm_struct *mm = (struct mm_struct *)priv;
3952 
3953     vma_add_mapping(mm, start, end, flags);
3954     return (0);
3955 }
3956 
3957 static void fill_note(struct memelfnote *note, const char *name, int type,
3958                       unsigned int sz, void *data)
3959 {
3960     unsigned int namesz;
3961 
3962     namesz = strlen(name) + 1;
3963     note->name = name;
3964     note->namesz = namesz;
3965     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3966     note->type = type;
3967     note->datasz = sz;
3968     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3969 
3970     note->data = data;
3971 
3972     /*
3973      * We calculate rounded up note size here as specified by
3974      * ELF document.
3975      */
3976     note->notesz = sizeof (struct elf_note) +
3977         note->namesz_rounded + note->datasz_rounded;
3978 }
3979 
3980 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3981                             uint32_t flags)
3982 {
3983     (void) memset(elf, 0, sizeof(*elf));
3984 
3985     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3986     elf->e_ident[EI_CLASS] = ELF_CLASS;
3987     elf->e_ident[EI_DATA] = ELF_DATA;
3988     elf->e_ident[EI_VERSION] = EV_CURRENT;
3989     elf->e_ident[EI_OSABI] = ELF_OSABI;
3990 
3991     elf->e_type = ET_CORE;
3992     elf->e_machine = machine;
3993     elf->e_version = EV_CURRENT;
3994     elf->e_phoff = sizeof(struct elfhdr);
3995     elf->e_flags = flags;
3996     elf->e_ehsize = sizeof(struct elfhdr);
3997     elf->e_phentsize = sizeof(struct elf_phdr);
3998     elf->e_phnum = segs;
3999 
4000     bswap_ehdr(elf);
4001 }
4002 
4003 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4004 {
4005     phdr->p_type = PT_NOTE;
4006     phdr->p_offset = offset;
4007     phdr->p_vaddr = 0;
4008     phdr->p_paddr = 0;
4009     phdr->p_filesz = sz;
4010     phdr->p_memsz = 0;
4011     phdr->p_flags = 0;
4012     phdr->p_align = 0;
4013 
4014     bswap_phdr(phdr, 1);
4015 }
4016 
4017 static size_t note_size(const struct memelfnote *note)
4018 {
4019     return (note->notesz);
4020 }
4021 
4022 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4023                           const TaskState *ts, int signr)
4024 {
4025     (void) memset(prstatus, 0, sizeof (*prstatus));
4026     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4027     prstatus->pr_pid = ts->ts_tid;
4028     prstatus->pr_ppid = getppid();
4029     prstatus->pr_pgrp = getpgrp();
4030     prstatus->pr_sid = getsid(0);
4031 
4032     bswap_prstatus(prstatus);
4033 }
4034 
4035 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4036 {
4037     char *base_filename;
4038     unsigned int i, len;
4039 
4040     (void) memset(psinfo, 0, sizeof (*psinfo));
4041 
4042     len = ts->info->env_strings - ts->info->arg_strings;
4043     if (len >= ELF_PRARGSZ)
4044         len = ELF_PRARGSZ - 1;
4045     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4046         return -EFAULT;
4047     }
4048     for (i = 0; i < len; i++)
4049         if (psinfo->pr_psargs[i] == 0)
4050             psinfo->pr_psargs[i] = ' ';
4051     psinfo->pr_psargs[len] = 0;
4052 
4053     psinfo->pr_pid = getpid();
4054     psinfo->pr_ppid = getppid();
4055     psinfo->pr_pgrp = getpgrp();
4056     psinfo->pr_sid = getsid(0);
4057     psinfo->pr_uid = getuid();
4058     psinfo->pr_gid = getgid();
4059 
4060     base_filename = g_path_get_basename(ts->bprm->filename);
4061     /*
4062      * Using strncpy here is fine: at max-length,
4063      * this field is not NUL-terminated.
4064      */
4065     (void) strncpy(psinfo->pr_fname, base_filename,
4066                    sizeof(psinfo->pr_fname));
4067 
4068     g_free(base_filename);
4069     bswap_psinfo(psinfo);
4070     return (0);
4071 }
4072 
4073 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4074 {
4075     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4076     elf_addr_t orig_auxv = auxv;
4077     void *ptr;
4078     int len = ts->info->auxv_len;
4079 
4080     /*
4081      * Auxiliary vector is stored in target process stack.  It contains
4082      * {type, value} pairs that we need to dump into note.  This is not
4083      * strictly necessary but we do it here for sake of completeness.
4084      */
4085 
4086     /* read in whole auxv vector and copy it to memelfnote */
4087     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4088     if (ptr != NULL) {
4089         fill_note(note, "CORE", NT_AUXV, len, ptr);
4090         unlock_user(ptr, auxv, len);
4091     }
4092 }
4093 
4094 /*
4095  * Constructs name of coredump file.  We have following convention
4096  * for the name:
4097  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4098  *
4099  * Returns the filename
4100  */
4101 static char *core_dump_filename(const TaskState *ts)
4102 {
4103     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4104     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4105     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4106 
4107     return g_strdup_printf("qemu_%s_%s_%d.core",
4108                            base_filename, nowstr, (int)getpid());
4109 }
4110 
4111 static int dump_write(int fd, const void *ptr, size_t size)
4112 {
4113     const char *bufp = (const char *)ptr;
4114     ssize_t bytes_written, bytes_left;
4115     struct rlimit dumpsize;
4116     off_t pos;
4117 
4118     bytes_written = 0;
4119     getrlimit(RLIMIT_CORE, &dumpsize);
4120     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4121         if (errno == ESPIPE) { /* not a seekable stream */
4122             bytes_left = size;
4123         } else {
4124             return pos;
4125         }
4126     } else {
4127         if (dumpsize.rlim_cur <= pos) {
4128             return -1;
4129         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4130             bytes_left = size;
4131         } else {
4132             size_t limit_left=dumpsize.rlim_cur - pos;
4133             bytes_left = limit_left >= size ? size : limit_left ;
4134         }
4135     }
4136 
4137     /*
4138      * In normal conditions, single write(2) should do but
4139      * in case of socket etc. this mechanism is more portable.
4140      */
4141     do {
4142         bytes_written = write(fd, bufp, bytes_left);
4143         if (bytes_written < 0) {
4144             if (errno == EINTR)
4145                 continue;
4146             return (-1);
4147         } else if (bytes_written == 0) { /* eof */
4148             return (-1);
4149         }
4150         bufp += bytes_written;
4151         bytes_left -= bytes_written;
4152     } while (bytes_left > 0);
4153 
4154     return (0);
4155 }
4156 
4157 static int write_note(struct memelfnote *men, int fd)
4158 {
4159     struct elf_note en;
4160 
4161     en.n_namesz = men->namesz;
4162     en.n_type = men->type;
4163     en.n_descsz = men->datasz;
4164 
4165     bswap_note(&en);
4166 
4167     if (dump_write(fd, &en, sizeof(en)) != 0)
4168         return (-1);
4169     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4170         return (-1);
4171     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4172         return (-1);
4173 
4174     return (0);
4175 }
4176 
4177 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4178 {
4179     CPUState *cpu = env_cpu((CPUArchState *)env);
4180     TaskState *ts = (TaskState *)cpu->opaque;
4181     struct elf_thread_status *ets;
4182 
4183     ets = g_malloc0(sizeof (*ets));
4184     ets->num_notes = 1; /* only prstatus is dumped */
4185     fill_prstatus(&ets->prstatus, ts, 0);
4186     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4187     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4188               &ets->prstatus);
4189 
4190     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4191 
4192     info->notes_size += note_size(&ets->notes[0]);
4193 }
4194 
4195 static void init_note_info(struct elf_note_info *info)
4196 {
4197     /* Initialize the elf_note_info structure so that it is at
4198      * least safe to call free_note_info() on it. Must be
4199      * called before calling fill_note_info().
4200      */
4201     memset(info, 0, sizeof (*info));
4202     QTAILQ_INIT(&info->thread_list);
4203 }
4204 
4205 static int fill_note_info(struct elf_note_info *info,
4206                           long signr, const CPUArchState *env)
4207 {
4208 #define NUMNOTES 3
4209     CPUState *cpu = env_cpu((CPUArchState *)env);
4210     TaskState *ts = (TaskState *)cpu->opaque;
4211     int i;
4212 
4213     info->notes = g_new0(struct memelfnote, NUMNOTES);
4214     if (info->notes == NULL)
4215         return (-ENOMEM);
4216     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4217     if (info->prstatus == NULL)
4218         return (-ENOMEM);
4219     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4220     if (info->prstatus == NULL)
4221         return (-ENOMEM);
4222 
4223     /*
4224      * First fill in status (and registers) of current thread
4225      * including process info & aux vector.
4226      */
4227     fill_prstatus(info->prstatus, ts, signr);
4228     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4229     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4230               sizeof (*info->prstatus), info->prstatus);
4231     fill_psinfo(info->psinfo, ts);
4232     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4233               sizeof (*info->psinfo), info->psinfo);
4234     fill_auxv_note(&info->notes[2], ts);
4235     info->numnote = 3;
4236 
4237     info->notes_size = 0;
4238     for (i = 0; i < info->numnote; i++)
4239         info->notes_size += note_size(&info->notes[i]);
4240 
4241     /* read and fill status of all threads */
4242     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4243         CPU_FOREACH(cpu) {
4244             if (cpu == thread_cpu) {
4245                 continue;
4246             }
4247             fill_thread_info(info, cpu->env_ptr);
4248         }
4249     }
4250 
4251     return (0);
4252 }
4253 
4254 static void free_note_info(struct elf_note_info *info)
4255 {
4256     struct elf_thread_status *ets;
4257 
4258     while (!QTAILQ_EMPTY(&info->thread_list)) {
4259         ets = QTAILQ_FIRST(&info->thread_list);
4260         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4261         g_free(ets);
4262     }
4263 
4264     g_free(info->prstatus);
4265     g_free(info->psinfo);
4266     g_free(info->notes);
4267 }
4268 
4269 static int write_note_info(struct elf_note_info *info, int fd)
4270 {
4271     struct elf_thread_status *ets;
4272     int i, error = 0;
4273 
4274     /* write prstatus, psinfo and auxv for current thread */
4275     for (i = 0; i < info->numnote; i++)
4276         if ((error = write_note(&info->notes[i], fd)) != 0)
4277             return (error);
4278 
4279     /* write prstatus for each thread */
4280     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4281         if ((error = write_note(&ets->notes[0], fd)) != 0)
4282             return (error);
4283     }
4284 
4285     return (0);
4286 }
4287 
4288 /*
4289  * Write out ELF coredump.
4290  *
4291  * See documentation of ELF object file format in:
4292  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4293  *
4294  * Coredump format in linux is following:
4295  *
4296  * 0   +----------------------+         \
4297  *     | ELF header           | ET_CORE  |
4298  *     +----------------------+          |
4299  *     | ELF program headers  |          |--- headers
4300  *     | - NOTE section       |          |
4301  *     | - PT_LOAD sections   |          |
4302  *     +----------------------+         /
4303  *     | NOTEs:               |
4304  *     | - NT_PRSTATUS        |
4305  *     | - NT_PRSINFO         |
4306  *     | - NT_AUXV            |
4307  *     +----------------------+ <-- aligned to target page
4308  *     | Process memory dump  |
4309  *     :                      :
4310  *     .                      .
4311  *     :                      :
4312  *     |                      |
4313  *     +----------------------+
4314  *
4315  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4316  * NT_PRSINFO  -> struct elf_prpsinfo
4317  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4318  *
4319  * Format follows System V format as close as possible.  Current
4320  * version limitations are as follows:
4321  *     - no floating point registers are dumped
4322  *
4323  * Function returns 0 in case of success, negative errno otherwise.
4324  *
4325  * TODO: make this work also during runtime: it should be
4326  * possible to force coredump from running process and then
4327  * continue processing.  For example qemu could set up SIGUSR2
4328  * handler (provided that target process haven't registered
4329  * handler for that) that does the dump when signal is received.
4330  */
4331 static int elf_core_dump(int signr, const CPUArchState *env)
4332 {
4333     const CPUState *cpu = env_cpu((CPUArchState *)env);
4334     const TaskState *ts = (const TaskState *)cpu->opaque;
4335     struct vm_area_struct *vma = NULL;
4336     g_autofree char *corefile = NULL;
4337     struct elf_note_info info;
4338     struct elfhdr elf;
4339     struct elf_phdr phdr;
4340     struct rlimit dumpsize;
4341     struct mm_struct *mm = NULL;
4342     off_t offset = 0, data_offset = 0;
4343     int segs = 0;
4344     int fd = -1;
4345 
4346     init_note_info(&info);
4347 
4348     errno = 0;
4349     getrlimit(RLIMIT_CORE, &dumpsize);
4350     if (dumpsize.rlim_cur == 0)
4351         return 0;
4352 
4353     corefile = core_dump_filename(ts);
4354 
4355     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4356                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4357         return (-errno);
4358 
4359     /*
4360      * Walk through target process memory mappings and
4361      * set up structure containing this information.  After
4362      * this point vma_xxx functions can be used.
4363      */
4364     if ((mm = vma_init()) == NULL)
4365         goto out;
4366 
4367     walk_memory_regions(mm, vma_walker);
4368     segs = vma_get_mapping_count(mm);
4369 
4370     /*
4371      * Construct valid coredump ELF header.  We also
4372      * add one more segment for notes.
4373      */
4374     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4375     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4376         goto out;
4377 
4378     /* fill in the in-memory version of notes */
4379     if (fill_note_info(&info, signr, env) < 0)
4380         goto out;
4381 
4382     offset += sizeof (elf);                             /* elf header */
4383     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4384 
4385     /* write out notes program header */
4386     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4387 
4388     offset += info.notes_size;
4389     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4390         goto out;
4391 
4392     /*
4393      * ELF specification wants data to start at page boundary so
4394      * we align it here.
4395      */
4396     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4397 
4398     /*
4399      * Write program headers for memory regions mapped in
4400      * the target process.
4401      */
4402     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4403         (void) memset(&phdr, 0, sizeof (phdr));
4404 
4405         phdr.p_type = PT_LOAD;
4406         phdr.p_offset = offset;
4407         phdr.p_vaddr = vma->vma_start;
4408         phdr.p_paddr = 0;
4409         phdr.p_filesz = vma_dump_size(vma);
4410         offset += phdr.p_filesz;
4411         phdr.p_memsz = vma->vma_end - vma->vma_start;
4412         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4413         if (vma->vma_flags & PROT_WRITE)
4414             phdr.p_flags |= PF_W;
4415         if (vma->vma_flags & PROT_EXEC)
4416             phdr.p_flags |= PF_X;
4417         phdr.p_align = ELF_EXEC_PAGESIZE;
4418 
4419         bswap_phdr(&phdr, 1);
4420         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4421             goto out;
4422         }
4423     }
4424 
4425     /*
4426      * Next we write notes just after program headers.  No
4427      * alignment needed here.
4428      */
4429     if (write_note_info(&info, fd) < 0)
4430         goto out;
4431 
4432     /* align data to page boundary */
4433     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4434         goto out;
4435 
4436     /*
4437      * Finally we can dump process memory into corefile as well.
4438      */
4439     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4440         abi_ulong addr;
4441         abi_ulong end;
4442 
4443         end = vma->vma_start + vma_dump_size(vma);
4444 
4445         for (addr = vma->vma_start; addr < end;
4446              addr += TARGET_PAGE_SIZE) {
4447             char page[TARGET_PAGE_SIZE];
4448             int error;
4449 
4450             /*
4451              *  Read in page from target process memory and
4452              *  write it to coredump file.
4453              */
4454             error = copy_from_user(page, addr, sizeof (page));
4455             if (error != 0) {
4456                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4457                                addr);
4458                 errno = -error;
4459                 goto out;
4460             }
4461             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4462                 goto out;
4463         }
4464     }
4465 
4466  out:
4467     free_note_info(&info);
4468     if (mm != NULL)
4469         vma_delete(mm);
4470     (void) close(fd);
4471 
4472     if (errno != 0)
4473         return (-errno);
4474     return (0);
4475 }
4476 #endif /* USE_ELF_CORE_DUMP */
4477 
4478 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4479 {
4480     init_thread(regs, infop);
4481 }
4482