xref: /qemu/linux-user/elfload.c (revision 654d6b04)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "target_signal.h"
22 
23 #ifdef _ARCH_PPC64
24 #undef ARCH_DLINFO
25 #undef ELF_PLATFORM
26 #undef ELF_HWCAP
27 #undef ELF_HWCAP2
28 #undef ELF_CLASS
29 #undef ELF_DATA
30 #undef ELF_ARCH
31 #endif
32 
33 #define ELF_OSABI   ELFOSABI_SYSV
34 
35 /* from personality.h */
36 
37 /*
38  * Flags for bug emulation.
39  *
40  * These occupy the top three bytes.
41  */
42 enum {
43     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
44     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
45                                            descriptors (signal handling) */
46     MMAP_PAGE_ZERO =    0x0100000,
47     ADDR_COMPAT_LAYOUT = 0x0200000,
48     READ_IMPLIES_EXEC = 0x0400000,
49     ADDR_LIMIT_32BIT =  0x0800000,
50     SHORT_INODE =       0x1000000,
51     WHOLE_SECONDS =     0x2000000,
52     STICKY_TIMEOUTS =   0x4000000,
53     ADDR_LIMIT_3GB =    0x8000000,
54 };
55 
56 /*
57  * Personality types.
58  *
59  * These go in the low byte.  Avoid using the top bit, it will
60  * conflict with error returns.
61  */
62 enum {
63     PER_LINUX =         0x0000,
64     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
65     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
66     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
67     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
68     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
69     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
70     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
72     PER_BSD =           0x0006,
73     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
74     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
75     PER_LINUX32 =       0x0008,
76     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
77     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
78     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
79     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
80     PER_RISCOS =        0x000c,
81     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
82     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
83     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
84     PER_HPUX =          0x0010,
85     PER_MASK =          0x00ff,
86 };
87 
88 /*
89  * Return the base personality without flags.
90  */
91 #define personality(pers)       (pers & PER_MASK)
92 
93 int info_is_fdpic(struct image_info *info)
94 {
95     return info->personality == PER_LINUX_FDPIC;
96 }
97 
98 /* this flag is uneffective under linux too, should be deleted */
99 #ifndef MAP_DENYWRITE
100 #define MAP_DENYWRITE 0
101 #endif
102 
103 /* should probably go in elf.h */
104 #ifndef ELIBBAD
105 #define ELIBBAD 80
106 #endif
107 
108 #ifdef TARGET_WORDS_BIGENDIAN
109 #define ELF_DATA        ELFDATA2MSB
110 #else
111 #define ELF_DATA        ELFDATA2LSB
112 #endif
113 
114 #ifdef TARGET_ABI_MIPSN32
115 typedef abi_ullong      target_elf_greg_t;
116 #define tswapreg(ptr)   tswap64(ptr)
117 #else
118 typedef abi_ulong       target_elf_greg_t;
119 #define tswapreg(ptr)   tswapal(ptr)
120 #endif
121 
122 #ifdef USE_UID16
123 typedef abi_ushort      target_uid_t;
124 typedef abi_ushort      target_gid_t;
125 #else
126 typedef abi_uint        target_uid_t;
127 typedef abi_uint        target_gid_t;
128 #endif
129 typedef abi_int         target_pid_t;
130 
131 #ifdef TARGET_I386
132 
133 #define ELF_PLATFORM get_elf_platform()
134 
135 static const char *get_elf_platform(void)
136 {
137     static char elf_platform[] = "i386";
138     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
139     if (family > 6)
140         family = 6;
141     if (family >= 3)
142         elf_platform[1] = '0' + family;
143     return elf_platform;
144 }
145 
146 #define ELF_HWCAP get_elf_hwcap()
147 
148 static uint32_t get_elf_hwcap(void)
149 {
150     X86CPU *cpu = X86_CPU(thread_cpu);
151 
152     return cpu->env.features[FEAT_1_EDX];
153 }
154 
155 #ifdef TARGET_X86_64
156 #define ELF_START_MMAP 0x2aaaaab000ULL
157 
158 #define ELF_CLASS      ELFCLASS64
159 #define ELF_ARCH       EM_X86_64
160 
161 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
162 {
163     regs->rax = 0;
164     regs->rsp = infop->start_stack;
165     regs->rip = infop->entry;
166 }
167 
168 #define ELF_NREG    27
169 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
170 
171 /*
172  * Note that ELF_NREG should be 29 as there should be place for
173  * TRAPNO and ERR "registers" as well but linux doesn't dump
174  * those.
175  *
176  * See linux kernel: arch/x86/include/asm/elf.h
177  */
178 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
179 {
180     (*regs)[0] = tswapreg(env->regs[15]);
181     (*regs)[1] = tswapreg(env->regs[14]);
182     (*regs)[2] = tswapreg(env->regs[13]);
183     (*regs)[3] = tswapreg(env->regs[12]);
184     (*regs)[4] = tswapreg(env->regs[R_EBP]);
185     (*regs)[5] = tswapreg(env->regs[R_EBX]);
186     (*regs)[6] = tswapreg(env->regs[11]);
187     (*regs)[7] = tswapreg(env->regs[10]);
188     (*regs)[8] = tswapreg(env->regs[9]);
189     (*regs)[9] = tswapreg(env->regs[8]);
190     (*regs)[10] = tswapreg(env->regs[R_EAX]);
191     (*regs)[11] = tswapreg(env->regs[R_ECX]);
192     (*regs)[12] = tswapreg(env->regs[R_EDX]);
193     (*regs)[13] = tswapreg(env->regs[R_ESI]);
194     (*regs)[14] = tswapreg(env->regs[R_EDI]);
195     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
196     (*regs)[16] = tswapreg(env->eip);
197     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
198     (*regs)[18] = tswapreg(env->eflags);
199     (*regs)[19] = tswapreg(env->regs[R_ESP]);
200     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
201     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
202     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
203     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
204     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
205     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
206     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
207 }
208 
209 #else
210 
211 #define ELF_START_MMAP 0x80000000
212 
213 /*
214  * This is used to ensure we don't load something for the wrong architecture.
215  */
216 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
217 
218 /*
219  * These are used to set parameters in the core dumps.
220  */
221 #define ELF_CLASS       ELFCLASS32
222 #define ELF_ARCH        EM_386
223 
224 static inline void init_thread(struct target_pt_regs *regs,
225                                struct image_info *infop)
226 {
227     regs->esp = infop->start_stack;
228     regs->eip = infop->entry;
229 
230     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
231        starts %edx contains a pointer to a function which might be
232        registered using `atexit'.  This provides a mean for the
233        dynamic linker to call DT_FINI functions for shared libraries
234        that have been loaded before the code runs.
235 
236        A value of 0 tells we have no such handler.  */
237     regs->edx = 0;
238 }
239 
240 #define ELF_NREG    17
241 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
242 
243 /*
244  * Note that ELF_NREG should be 19 as there should be place for
245  * TRAPNO and ERR "registers" as well but linux doesn't dump
246  * those.
247  *
248  * See linux kernel: arch/x86/include/asm/elf.h
249  */
250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
251 {
252     (*regs)[0] = tswapreg(env->regs[R_EBX]);
253     (*regs)[1] = tswapreg(env->regs[R_ECX]);
254     (*regs)[2] = tswapreg(env->regs[R_EDX]);
255     (*regs)[3] = tswapreg(env->regs[R_ESI]);
256     (*regs)[4] = tswapreg(env->regs[R_EDI]);
257     (*regs)[5] = tswapreg(env->regs[R_EBP]);
258     (*regs)[6] = tswapreg(env->regs[R_EAX]);
259     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
260     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
261     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
262     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
263     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
264     (*regs)[12] = tswapreg(env->eip);
265     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
266     (*regs)[14] = tswapreg(env->eflags);
267     (*regs)[15] = tswapreg(env->regs[R_ESP]);
268     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
269 }
270 #endif
271 
272 #define USE_ELF_CORE_DUMP
273 #define ELF_EXEC_PAGESIZE       4096
274 
275 #endif
276 
277 #ifdef TARGET_ARM
278 
279 #ifndef TARGET_AARCH64
280 /* 32 bit ARM definitions */
281 
282 #define ELF_START_MMAP 0x80000000
283 
284 #define ELF_ARCH        EM_ARM
285 #define ELF_CLASS       ELFCLASS32
286 
287 static inline void init_thread(struct target_pt_regs *regs,
288                                struct image_info *infop)
289 {
290     abi_long stack = infop->start_stack;
291     memset(regs, 0, sizeof(*regs));
292 
293     regs->uregs[16] = ARM_CPU_MODE_USR;
294     if (infop->entry & 1) {
295         regs->uregs[16] |= CPSR_T;
296     }
297     regs->uregs[15] = infop->entry & 0xfffffffe;
298     regs->uregs[13] = infop->start_stack;
299     /* FIXME - what to for failure of get_user()? */
300     get_user_ual(regs->uregs[2], stack + 8); /* envp */
301     get_user_ual(regs->uregs[1], stack + 4); /* envp */
302     /* XXX: it seems that r0 is zeroed after ! */
303     regs->uregs[0] = 0;
304     /* For uClinux PIC binaries.  */
305     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
306     regs->uregs[10] = infop->start_data;
307 
308     /* Support ARM FDPIC.  */
309     if (info_is_fdpic(infop)) {
310         /* As described in the ABI document, r7 points to the loadmap info
311          * prepared by the kernel. If an interpreter is needed, r8 points
312          * to the interpreter loadmap and r9 points to the interpreter
313          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
314          * r9 points to the main program PT_DYNAMIC info.
315          */
316         regs->uregs[7] = infop->loadmap_addr;
317         if (infop->interpreter_loadmap_addr) {
318             /* Executable is dynamically loaded.  */
319             regs->uregs[8] = infop->interpreter_loadmap_addr;
320             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
321         } else {
322             regs->uregs[8] = 0;
323             regs->uregs[9] = infop->pt_dynamic_addr;
324         }
325     }
326 }
327 
328 #define ELF_NREG    18
329 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
330 
331 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
332 {
333     (*regs)[0] = tswapreg(env->regs[0]);
334     (*regs)[1] = tswapreg(env->regs[1]);
335     (*regs)[2] = tswapreg(env->regs[2]);
336     (*regs)[3] = tswapreg(env->regs[3]);
337     (*regs)[4] = tswapreg(env->regs[4]);
338     (*regs)[5] = tswapreg(env->regs[5]);
339     (*regs)[6] = tswapreg(env->regs[6]);
340     (*regs)[7] = tswapreg(env->regs[7]);
341     (*regs)[8] = tswapreg(env->regs[8]);
342     (*regs)[9] = tswapreg(env->regs[9]);
343     (*regs)[10] = tswapreg(env->regs[10]);
344     (*regs)[11] = tswapreg(env->regs[11]);
345     (*regs)[12] = tswapreg(env->regs[12]);
346     (*regs)[13] = tswapreg(env->regs[13]);
347     (*regs)[14] = tswapreg(env->regs[14]);
348     (*regs)[15] = tswapreg(env->regs[15]);
349 
350     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
351     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
352 }
353 
354 #define USE_ELF_CORE_DUMP
355 #define ELF_EXEC_PAGESIZE       4096
356 
357 enum
358 {
359     ARM_HWCAP_ARM_SWP       = 1 << 0,
360     ARM_HWCAP_ARM_HALF      = 1 << 1,
361     ARM_HWCAP_ARM_THUMB     = 1 << 2,
362     ARM_HWCAP_ARM_26BIT     = 1 << 3,
363     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
364     ARM_HWCAP_ARM_FPA       = 1 << 5,
365     ARM_HWCAP_ARM_VFP       = 1 << 6,
366     ARM_HWCAP_ARM_EDSP      = 1 << 7,
367     ARM_HWCAP_ARM_JAVA      = 1 << 8,
368     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
369     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
370     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
371     ARM_HWCAP_ARM_NEON      = 1 << 12,
372     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
373     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
374     ARM_HWCAP_ARM_TLS       = 1 << 15,
375     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
376     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
377     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
378     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
379     ARM_HWCAP_ARM_LPAE      = 1 << 20,
380     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
381 };
382 
383 enum {
384     ARM_HWCAP2_ARM_AES      = 1 << 0,
385     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
386     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
387     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
388     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
389 };
390 
391 /* The commpage only exists for 32 bit kernels */
392 
393 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
394 
395 static bool init_guest_commpage(void)
396 {
397     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
398     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
399                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
400 
401     if (addr == MAP_FAILED) {
402         perror("Allocating guest commpage");
403         exit(EXIT_FAILURE);
404     }
405     if (addr != want) {
406         return false;
407     }
408 
409     /* Set kernel helper versions; rest of page is 0.  */
410     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
411 
412     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
413         perror("Protecting guest commpage");
414         exit(EXIT_FAILURE);
415     }
416     return true;
417 }
418 
419 #define ELF_HWCAP get_elf_hwcap()
420 #define ELF_HWCAP2 get_elf_hwcap2()
421 
422 static uint32_t get_elf_hwcap(void)
423 {
424     ARMCPU *cpu = ARM_CPU(thread_cpu);
425     uint32_t hwcaps = 0;
426 
427     hwcaps |= ARM_HWCAP_ARM_SWP;
428     hwcaps |= ARM_HWCAP_ARM_HALF;
429     hwcaps |= ARM_HWCAP_ARM_THUMB;
430     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
431 
432     /* probe for the extra features */
433 #define GET_FEATURE(feat, hwcap) \
434     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
435 
436 #define GET_FEATURE_ID(feat, hwcap) \
437     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
438 
439     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
440     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
441     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
442     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
443     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
444     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
446     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
447     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
448     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
449 
450     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
451         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
452         hwcaps |= ARM_HWCAP_ARM_VFPv3;
453         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
454             hwcaps |= ARM_HWCAP_ARM_VFPD32;
455         } else {
456             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
457         }
458     }
459     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
460 
461     return hwcaps;
462 }
463 
464 static uint32_t get_elf_hwcap2(void)
465 {
466     ARMCPU *cpu = ARM_CPU(thread_cpu);
467     uint32_t hwcaps = 0;
468 
469     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
470     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
471     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
472     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
473     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
474     return hwcaps;
475 }
476 
477 #undef GET_FEATURE
478 #undef GET_FEATURE_ID
479 
480 #define ELF_PLATFORM get_elf_platform()
481 
482 static const char *get_elf_platform(void)
483 {
484     CPUARMState *env = thread_cpu->env_ptr;
485 
486 #ifdef TARGET_WORDS_BIGENDIAN
487 # define END  "b"
488 #else
489 # define END  "l"
490 #endif
491 
492     if (arm_feature(env, ARM_FEATURE_V8)) {
493         return "v8" END;
494     } else if (arm_feature(env, ARM_FEATURE_V7)) {
495         if (arm_feature(env, ARM_FEATURE_M)) {
496             return "v7m" END;
497         } else {
498             return "v7" END;
499         }
500     } else if (arm_feature(env, ARM_FEATURE_V6)) {
501         return "v6" END;
502     } else if (arm_feature(env, ARM_FEATURE_V5)) {
503         return "v5" END;
504     } else {
505         return "v4" END;
506     }
507 
508 #undef END
509 }
510 
511 #else
512 /* 64 bit ARM definitions */
513 #define ELF_START_MMAP 0x80000000
514 
515 #define ELF_ARCH        EM_AARCH64
516 #define ELF_CLASS       ELFCLASS64
517 #ifdef TARGET_WORDS_BIGENDIAN
518 # define ELF_PLATFORM    "aarch64_be"
519 #else
520 # define ELF_PLATFORM    "aarch64"
521 #endif
522 
523 static inline void init_thread(struct target_pt_regs *regs,
524                                struct image_info *infop)
525 {
526     abi_long stack = infop->start_stack;
527     memset(regs, 0, sizeof(*regs));
528 
529     regs->pc = infop->entry & ~0x3ULL;
530     regs->sp = stack;
531 }
532 
533 #define ELF_NREG    34
534 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
535 
536 static void elf_core_copy_regs(target_elf_gregset_t *regs,
537                                const CPUARMState *env)
538 {
539     int i;
540 
541     for (i = 0; i < 32; i++) {
542         (*regs)[i] = tswapreg(env->xregs[i]);
543     }
544     (*regs)[32] = tswapreg(env->pc);
545     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
546 }
547 
548 #define USE_ELF_CORE_DUMP
549 #define ELF_EXEC_PAGESIZE       4096
550 
551 enum {
552     ARM_HWCAP_A64_FP            = 1 << 0,
553     ARM_HWCAP_A64_ASIMD         = 1 << 1,
554     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
555     ARM_HWCAP_A64_AES           = 1 << 3,
556     ARM_HWCAP_A64_PMULL         = 1 << 4,
557     ARM_HWCAP_A64_SHA1          = 1 << 5,
558     ARM_HWCAP_A64_SHA2          = 1 << 6,
559     ARM_HWCAP_A64_CRC32         = 1 << 7,
560     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
561     ARM_HWCAP_A64_FPHP          = 1 << 9,
562     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
563     ARM_HWCAP_A64_CPUID         = 1 << 11,
564     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
565     ARM_HWCAP_A64_JSCVT         = 1 << 13,
566     ARM_HWCAP_A64_FCMA          = 1 << 14,
567     ARM_HWCAP_A64_LRCPC         = 1 << 15,
568     ARM_HWCAP_A64_DCPOP         = 1 << 16,
569     ARM_HWCAP_A64_SHA3          = 1 << 17,
570     ARM_HWCAP_A64_SM3           = 1 << 18,
571     ARM_HWCAP_A64_SM4           = 1 << 19,
572     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
573     ARM_HWCAP_A64_SHA512        = 1 << 21,
574     ARM_HWCAP_A64_SVE           = 1 << 22,
575     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
576     ARM_HWCAP_A64_DIT           = 1 << 24,
577     ARM_HWCAP_A64_USCAT         = 1 << 25,
578     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
579     ARM_HWCAP_A64_FLAGM         = 1 << 27,
580     ARM_HWCAP_A64_SSBS          = 1 << 28,
581     ARM_HWCAP_A64_SB            = 1 << 29,
582     ARM_HWCAP_A64_PACA          = 1 << 30,
583     ARM_HWCAP_A64_PACG          = 1UL << 31,
584 
585     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
586     ARM_HWCAP2_A64_SVE2         = 1 << 1,
587     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
588     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
589     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
590     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
591     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
592     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
593     ARM_HWCAP2_A64_FRINT        = 1 << 8,
594     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
595     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
596     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
597     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
598     ARM_HWCAP2_A64_I8MM         = 1 << 13,
599     ARM_HWCAP2_A64_BF16         = 1 << 14,
600     ARM_HWCAP2_A64_DGH          = 1 << 15,
601     ARM_HWCAP2_A64_RNG          = 1 << 16,
602     ARM_HWCAP2_A64_BTI          = 1 << 17,
603     ARM_HWCAP2_A64_MTE          = 1 << 18,
604 };
605 
606 #define ELF_HWCAP   get_elf_hwcap()
607 #define ELF_HWCAP2  get_elf_hwcap2()
608 
609 #define GET_FEATURE_ID(feat, hwcap) \
610     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
611 
612 static uint32_t get_elf_hwcap(void)
613 {
614     ARMCPU *cpu = ARM_CPU(thread_cpu);
615     uint32_t hwcaps = 0;
616 
617     hwcaps |= ARM_HWCAP_A64_FP;
618     hwcaps |= ARM_HWCAP_A64_ASIMD;
619     hwcaps |= ARM_HWCAP_A64_CPUID;
620 
621     /* probe for the extra features */
622 
623     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
624     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
625     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
626     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
627     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
628     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
629     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
630     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
631     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
632     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
633     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
634     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
635     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
636     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
637     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
638     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
639     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
640     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
641     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
642     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
643     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
644     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
645     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
646 
647     return hwcaps;
648 }
649 
650 static uint32_t get_elf_hwcap2(void)
651 {
652     ARMCPU *cpu = ARM_CPU(thread_cpu);
653     uint32_t hwcaps = 0;
654 
655     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
656     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
657     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
658     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
659     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
660     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
661     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
662     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
663     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
664     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
665     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
666     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
667     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
668     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
669     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
670     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
671     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
672     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
673 
674     return hwcaps;
675 }
676 
677 #undef GET_FEATURE_ID
678 
679 #endif /* not TARGET_AARCH64 */
680 #endif /* TARGET_ARM */
681 
682 #ifdef TARGET_SPARC
683 #ifdef TARGET_SPARC64
684 
685 #define ELF_START_MMAP 0x80000000
686 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
687                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
688 #ifndef TARGET_ABI32
689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
690 #else
691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
692 #endif
693 
694 #define ELF_CLASS   ELFCLASS64
695 #define ELF_ARCH    EM_SPARCV9
696 #else
697 #define ELF_START_MMAP 0x80000000
698 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
699                     | HWCAP_SPARC_MULDIV)
700 #define ELF_CLASS   ELFCLASS32
701 #define ELF_ARCH    EM_SPARC
702 #endif /* TARGET_SPARC64 */
703 
704 static inline void init_thread(struct target_pt_regs *regs,
705                                struct image_info *infop)
706 {
707     /* Note that target_cpu_copy_regs does not read psr/tstate. */
708     regs->pc = infop->entry;
709     regs->npc = regs->pc + 4;
710     regs->y = 0;
711     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
712                         - TARGET_STACK_BIAS);
713 }
714 #endif /* TARGET_SPARC */
715 
716 #ifdef TARGET_PPC
717 
718 #define ELF_MACHINE    PPC_ELF_MACHINE
719 #define ELF_START_MMAP 0x80000000
720 
721 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
722 
723 #define elf_check_arch(x) ( (x) == EM_PPC64 )
724 
725 #define ELF_CLASS       ELFCLASS64
726 
727 #else
728 
729 #define ELF_CLASS       ELFCLASS32
730 
731 #endif
732 
733 #define ELF_ARCH        EM_PPC
734 
735 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
736    See arch/powerpc/include/asm/cputable.h.  */
737 enum {
738     QEMU_PPC_FEATURE_32 = 0x80000000,
739     QEMU_PPC_FEATURE_64 = 0x40000000,
740     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
741     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
742     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
743     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
744     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
745     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
746     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
747     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
748     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
749     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
750     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
751     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
752     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
753     QEMU_PPC_FEATURE_CELL = 0x00010000,
754     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
755     QEMU_PPC_FEATURE_SMT = 0x00004000,
756     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
757     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
758     QEMU_PPC_FEATURE_PA6T = 0x00000800,
759     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
760     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
761     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
762     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
763     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
764 
765     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
766     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
767 
768     /* Feature definitions in AT_HWCAP2.  */
769     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
770     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
771     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
772     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
773     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
774     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
775     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
776     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
777     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
778     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
779     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
780     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
781     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
782 };
783 
784 #define ELF_HWCAP get_elf_hwcap()
785 
786 static uint32_t get_elf_hwcap(void)
787 {
788     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
789     uint32_t features = 0;
790 
791     /* We don't have to be terribly complete here; the high points are
792        Altivec/FP/SPE support.  Anything else is just a bonus.  */
793 #define GET_FEATURE(flag, feature)                                      \
794     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
795 #define GET_FEATURE2(flags, feature) \
796     do { \
797         if ((cpu->env.insns_flags2 & flags) == flags) { \
798             features |= feature; \
799         } \
800     } while (0)
801     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
802     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
803     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
804     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
805     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
806     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
807     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
808     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
809     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
810     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
811     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
812                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
813                   QEMU_PPC_FEATURE_ARCH_2_06);
814 #undef GET_FEATURE
815 #undef GET_FEATURE2
816 
817     return features;
818 }
819 
820 #define ELF_HWCAP2 get_elf_hwcap2()
821 
822 static uint32_t get_elf_hwcap2(void)
823 {
824     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
825     uint32_t features = 0;
826 
827 #define GET_FEATURE(flag, feature)                                      \
828     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
829 #define GET_FEATURE2(flag, feature)                                      \
830     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
831 
832     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
833     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
834     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
835                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
836                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
837     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
838                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
839 
840 #undef GET_FEATURE
841 #undef GET_FEATURE2
842 
843     return features;
844 }
845 
846 /*
847  * The requirements here are:
848  * - keep the final alignment of sp (sp & 0xf)
849  * - make sure the 32-bit value at the first 16 byte aligned position of
850  *   AUXV is greater than 16 for glibc compatibility.
851  *   AT_IGNOREPPC is used for that.
852  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
853  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
854  */
855 #define DLINFO_ARCH_ITEMS       5
856 #define ARCH_DLINFO                                     \
857     do {                                                \
858         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
859         /*                                              \
860          * Handle glibc compatibility: these magic entries must \
861          * be at the lowest addresses in the final auxv.        \
862          */                                             \
863         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
864         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
865         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
866         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
867         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
868     } while (0)
869 
870 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
871 {
872     _regs->gpr[1] = infop->start_stack;
873 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
874     if (get_ppc64_abi(infop) < 2) {
875         uint64_t val;
876         get_user_u64(val, infop->entry + 8);
877         _regs->gpr[2] = val + infop->load_bias;
878         get_user_u64(val, infop->entry);
879         infop->entry = val + infop->load_bias;
880     } else {
881         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
882     }
883 #endif
884     _regs->nip = infop->entry;
885 }
886 
887 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
888 #define ELF_NREG 48
889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
890 
891 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
892 {
893     int i;
894     target_ulong ccr = 0;
895 
896     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
897         (*regs)[i] = tswapreg(env->gpr[i]);
898     }
899 
900     (*regs)[32] = tswapreg(env->nip);
901     (*regs)[33] = tswapreg(env->msr);
902     (*regs)[35] = tswapreg(env->ctr);
903     (*regs)[36] = tswapreg(env->lr);
904     (*regs)[37] = tswapreg(env->xer);
905 
906     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
907         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
908     }
909     (*regs)[38] = tswapreg(ccr);
910 }
911 
912 #define USE_ELF_CORE_DUMP
913 #define ELF_EXEC_PAGESIZE       4096
914 
915 #endif
916 
917 #ifdef TARGET_MIPS
918 
919 #define ELF_START_MMAP 0x80000000
920 
921 #ifdef TARGET_MIPS64
922 #define ELF_CLASS   ELFCLASS64
923 #else
924 #define ELF_CLASS   ELFCLASS32
925 #endif
926 #define ELF_ARCH    EM_MIPS
927 
928 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
929 
930 #ifdef TARGET_ABI_MIPSN32
931 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
932 #else
933 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
934 #endif
935 
936 static inline void init_thread(struct target_pt_regs *regs,
937                                struct image_info *infop)
938 {
939     regs->cp0_status = 2 << CP0St_KSU;
940     regs->cp0_epc = infop->entry;
941     regs->regs[29] = infop->start_stack;
942 }
943 
944 /* See linux kernel: arch/mips/include/asm/elf.h.  */
945 #define ELF_NREG 45
946 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
947 
948 /* See linux kernel: arch/mips/include/asm/reg.h.  */
949 enum {
950 #ifdef TARGET_MIPS64
951     TARGET_EF_R0 = 0,
952 #else
953     TARGET_EF_R0 = 6,
954 #endif
955     TARGET_EF_R26 = TARGET_EF_R0 + 26,
956     TARGET_EF_R27 = TARGET_EF_R0 + 27,
957     TARGET_EF_LO = TARGET_EF_R0 + 32,
958     TARGET_EF_HI = TARGET_EF_R0 + 33,
959     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
960     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
961     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
962     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
963 };
964 
965 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
966 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
967 {
968     int i;
969 
970     for (i = 0; i < TARGET_EF_R0; i++) {
971         (*regs)[i] = 0;
972     }
973     (*regs)[TARGET_EF_R0] = 0;
974 
975     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
976         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
977     }
978 
979     (*regs)[TARGET_EF_R26] = 0;
980     (*regs)[TARGET_EF_R27] = 0;
981     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
982     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
983     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
984     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
985     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
986     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
987 }
988 
989 #define USE_ELF_CORE_DUMP
990 #define ELF_EXEC_PAGESIZE        4096
991 
992 /* See arch/mips/include/uapi/asm/hwcap.h.  */
993 enum {
994     HWCAP_MIPS_R6           = (1 << 0),
995     HWCAP_MIPS_MSA          = (1 << 1),
996     HWCAP_MIPS_CRC32        = (1 << 2),
997     HWCAP_MIPS_MIPS16       = (1 << 3),
998     HWCAP_MIPS_MDMX         = (1 << 4),
999     HWCAP_MIPS_MIPS3D       = (1 << 5),
1000     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1001     HWCAP_MIPS_DSP          = (1 << 7),
1002     HWCAP_MIPS_DSP2         = (1 << 8),
1003     HWCAP_MIPS_DSP3         = (1 << 9),
1004     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1005     HWCAP_LOONGSON_MMI      = (1 << 11),
1006     HWCAP_LOONGSON_EXT      = (1 << 12),
1007     HWCAP_LOONGSON_EXT2     = (1 << 13),
1008     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1009 };
1010 
1011 #define ELF_HWCAP get_elf_hwcap()
1012 
1013 #define GET_FEATURE_INSN(_flag, _hwcap) \
1014     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1015 
1016 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1017     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1018 
1019 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1020     do { \
1021         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1022             hwcaps |= _hwcap; \
1023         } \
1024     } while (0)
1025 
1026 static uint32_t get_elf_hwcap(void)
1027 {
1028     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1029     uint32_t hwcaps = 0;
1030 
1031     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1032                         2, HWCAP_MIPS_R6);
1033     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1034     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1035     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1036 
1037     return hwcaps;
1038 }
1039 
1040 #undef GET_FEATURE_REG_EQU
1041 #undef GET_FEATURE_REG_SET
1042 #undef GET_FEATURE_INSN
1043 
1044 #endif /* TARGET_MIPS */
1045 
1046 #ifdef TARGET_MICROBLAZE
1047 
1048 #define ELF_START_MMAP 0x80000000
1049 
1050 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1051 
1052 #define ELF_CLASS   ELFCLASS32
1053 #define ELF_ARCH    EM_MICROBLAZE
1054 
1055 static inline void init_thread(struct target_pt_regs *regs,
1056                                struct image_info *infop)
1057 {
1058     regs->pc = infop->entry;
1059     regs->r1 = infop->start_stack;
1060 
1061 }
1062 
1063 #define ELF_EXEC_PAGESIZE        4096
1064 
1065 #define USE_ELF_CORE_DUMP
1066 #define ELF_NREG 38
1067 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1068 
1069 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1070 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1071 {
1072     int i, pos = 0;
1073 
1074     for (i = 0; i < 32; i++) {
1075         (*regs)[pos++] = tswapreg(env->regs[i]);
1076     }
1077 
1078     (*regs)[pos++] = tswapreg(env->pc);
1079     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1080     (*regs)[pos++] = 0;
1081     (*regs)[pos++] = tswapreg(env->ear);
1082     (*regs)[pos++] = 0;
1083     (*regs)[pos++] = tswapreg(env->esr);
1084 }
1085 
1086 #endif /* TARGET_MICROBLAZE */
1087 
1088 #ifdef TARGET_NIOS2
1089 
1090 #define ELF_START_MMAP 0x80000000
1091 
1092 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1093 
1094 #define ELF_CLASS   ELFCLASS32
1095 #define ELF_ARCH    EM_ALTERA_NIOS2
1096 
1097 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1098 {
1099     regs->ea = infop->entry;
1100     regs->sp = infop->start_stack;
1101     regs->estatus = 0x3;
1102 }
1103 
1104 #define ELF_EXEC_PAGESIZE        4096
1105 
1106 #define USE_ELF_CORE_DUMP
1107 #define ELF_NREG 49
1108 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1109 
1110 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1111 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1112                                const CPUNios2State *env)
1113 {
1114     int i;
1115 
1116     (*regs)[0] = -1;
1117     for (i = 1; i < 8; i++)    /* r0-r7 */
1118         (*regs)[i] = tswapreg(env->regs[i + 7]);
1119 
1120     for (i = 8; i < 16; i++)   /* r8-r15 */
1121         (*regs)[i] = tswapreg(env->regs[i - 8]);
1122 
1123     for (i = 16; i < 24; i++)  /* r16-r23 */
1124         (*regs)[i] = tswapreg(env->regs[i + 7]);
1125     (*regs)[24] = -1;    /* R_ET */
1126     (*regs)[25] = -1;    /* R_BT */
1127     (*regs)[26] = tswapreg(env->regs[R_GP]);
1128     (*regs)[27] = tswapreg(env->regs[R_SP]);
1129     (*regs)[28] = tswapreg(env->regs[R_FP]);
1130     (*regs)[29] = tswapreg(env->regs[R_EA]);
1131     (*regs)[30] = -1;    /* R_SSTATUS */
1132     (*regs)[31] = tswapreg(env->regs[R_RA]);
1133 
1134     (*regs)[32] = tswapreg(env->regs[R_PC]);
1135 
1136     (*regs)[33] = -1; /* R_STATUS */
1137     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1138 
1139     for (i = 35; i < 49; i++)    /* ... */
1140         (*regs)[i] = -1;
1141 }
1142 
1143 #endif /* TARGET_NIOS2 */
1144 
1145 #ifdef TARGET_OPENRISC
1146 
1147 #define ELF_START_MMAP 0x08000000
1148 
1149 #define ELF_ARCH EM_OPENRISC
1150 #define ELF_CLASS ELFCLASS32
1151 #define ELF_DATA  ELFDATA2MSB
1152 
1153 static inline void init_thread(struct target_pt_regs *regs,
1154                                struct image_info *infop)
1155 {
1156     regs->pc = infop->entry;
1157     regs->gpr[1] = infop->start_stack;
1158 }
1159 
1160 #define USE_ELF_CORE_DUMP
1161 #define ELF_EXEC_PAGESIZE 8192
1162 
1163 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1164 #define ELF_NREG 34 /* gprs and pc, sr */
1165 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1166 
1167 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1168                                const CPUOpenRISCState *env)
1169 {
1170     int i;
1171 
1172     for (i = 0; i < 32; i++) {
1173         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1174     }
1175     (*regs)[32] = tswapreg(env->pc);
1176     (*regs)[33] = tswapreg(cpu_get_sr(env));
1177 }
1178 #define ELF_HWCAP 0
1179 #define ELF_PLATFORM NULL
1180 
1181 #endif /* TARGET_OPENRISC */
1182 
1183 #ifdef TARGET_SH4
1184 
1185 #define ELF_START_MMAP 0x80000000
1186 
1187 #define ELF_CLASS ELFCLASS32
1188 #define ELF_ARCH  EM_SH
1189 
1190 static inline void init_thread(struct target_pt_regs *regs,
1191                                struct image_info *infop)
1192 {
1193     /* Check other registers XXXXX */
1194     regs->pc = infop->entry;
1195     regs->regs[15] = infop->start_stack;
1196 }
1197 
1198 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1199 #define ELF_NREG 23
1200 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1201 
1202 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1203 enum {
1204     TARGET_REG_PC = 16,
1205     TARGET_REG_PR = 17,
1206     TARGET_REG_SR = 18,
1207     TARGET_REG_GBR = 19,
1208     TARGET_REG_MACH = 20,
1209     TARGET_REG_MACL = 21,
1210     TARGET_REG_SYSCALL = 22
1211 };
1212 
1213 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1214                                       const CPUSH4State *env)
1215 {
1216     int i;
1217 
1218     for (i = 0; i < 16; i++) {
1219         (*regs)[i] = tswapreg(env->gregs[i]);
1220     }
1221 
1222     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1223     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1224     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1225     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1226     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1227     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1228     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1229 }
1230 
1231 #define USE_ELF_CORE_DUMP
1232 #define ELF_EXEC_PAGESIZE        4096
1233 
1234 enum {
1235     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1236     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1237     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1238     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1239     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1240     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1241     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1242     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1243     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1244     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1245 };
1246 
1247 #define ELF_HWCAP get_elf_hwcap()
1248 
1249 static uint32_t get_elf_hwcap(void)
1250 {
1251     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1252     uint32_t hwcap = 0;
1253 
1254     hwcap |= SH_CPU_HAS_FPU;
1255 
1256     if (cpu->env.features & SH_FEATURE_SH4A) {
1257         hwcap |= SH_CPU_HAS_LLSC;
1258     }
1259 
1260     return hwcap;
1261 }
1262 
1263 #endif
1264 
1265 #ifdef TARGET_CRIS
1266 
1267 #define ELF_START_MMAP 0x80000000
1268 
1269 #define ELF_CLASS ELFCLASS32
1270 #define ELF_ARCH  EM_CRIS
1271 
1272 static inline void init_thread(struct target_pt_regs *regs,
1273                                struct image_info *infop)
1274 {
1275     regs->erp = infop->entry;
1276 }
1277 
1278 #define ELF_EXEC_PAGESIZE        8192
1279 
1280 #endif
1281 
1282 #ifdef TARGET_M68K
1283 
1284 #define ELF_START_MMAP 0x80000000
1285 
1286 #define ELF_CLASS       ELFCLASS32
1287 #define ELF_ARCH        EM_68K
1288 
1289 /* ??? Does this need to do anything?
1290    #define ELF_PLAT_INIT(_r) */
1291 
1292 static inline void init_thread(struct target_pt_regs *regs,
1293                                struct image_info *infop)
1294 {
1295     regs->usp = infop->start_stack;
1296     regs->sr = 0;
1297     regs->pc = infop->entry;
1298 }
1299 
1300 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1301 #define ELF_NREG 20
1302 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1303 
1304 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1305 {
1306     (*regs)[0] = tswapreg(env->dregs[1]);
1307     (*regs)[1] = tswapreg(env->dregs[2]);
1308     (*regs)[2] = tswapreg(env->dregs[3]);
1309     (*regs)[3] = tswapreg(env->dregs[4]);
1310     (*regs)[4] = tswapreg(env->dregs[5]);
1311     (*regs)[5] = tswapreg(env->dregs[6]);
1312     (*regs)[6] = tswapreg(env->dregs[7]);
1313     (*regs)[7] = tswapreg(env->aregs[0]);
1314     (*regs)[8] = tswapreg(env->aregs[1]);
1315     (*regs)[9] = tswapreg(env->aregs[2]);
1316     (*regs)[10] = tswapreg(env->aregs[3]);
1317     (*regs)[11] = tswapreg(env->aregs[4]);
1318     (*regs)[12] = tswapreg(env->aregs[5]);
1319     (*regs)[13] = tswapreg(env->aregs[6]);
1320     (*regs)[14] = tswapreg(env->dregs[0]);
1321     (*regs)[15] = tswapreg(env->aregs[7]);
1322     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1323     (*regs)[17] = tswapreg(env->sr);
1324     (*regs)[18] = tswapreg(env->pc);
1325     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1326 }
1327 
1328 #define USE_ELF_CORE_DUMP
1329 #define ELF_EXEC_PAGESIZE       8192
1330 
1331 #endif
1332 
1333 #ifdef TARGET_ALPHA
1334 
1335 #define ELF_START_MMAP (0x30000000000ULL)
1336 
1337 #define ELF_CLASS      ELFCLASS64
1338 #define ELF_ARCH       EM_ALPHA
1339 
1340 static inline void init_thread(struct target_pt_regs *regs,
1341                                struct image_info *infop)
1342 {
1343     regs->pc = infop->entry;
1344     regs->ps = 8;
1345     regs->usp = infop->start_stack;
1346 }
1347 
1348 #define ELF_EXEC_PAGESIZE        8192
1349 
1350 #endif /* TARGET_ALPHA */
1351 
1352 #ifdef TARGET_S390X
1353 
1354 #define ELF_START_MMAP (0x20000000000ULL)
1355 
1356 #define ELF_CLASS	ELFCLASS64
1357 #define ELF_DATA	ELFDATA2MSB
1358 #define ELF_ARCH	EM_S390
1359 
1360 #include "elf.h"
1361 
1362 #define ELF_HWCAP get_elf_hwcap()
1363 
1364 #define GET_FEATURE(_feat, _hwcap) \
1365     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1366 
1367 static uint32_t get_elf_hwcap(void)
1368 {
1369     /*
1370      * Let's assume we always have esan3 and zarch.
1371      * 31-bit processes can use 64-bit registers (high gprs).
1372      */
1373     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1374 
1375     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1376     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1377     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1378     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1379     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1380         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1381         hwcap |= HWCAP_S390_ETF3EH;
1382     }
1383     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1384     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1385 
1386     return hwcap;
1387 }
1388 
1389 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1390 {
1391     regs->psw.addr = infop->entry;
1392     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1393     regs->gprs[15] = infop->start_stack;
1394 }
1395 
1396 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1397 #define ELF_NREG 27
1398 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1399 
1400 enum {
1401     TARGET_REG_PSWM = 0,
1402     TARGET_REG_PSWA = 1,
1403     TARGET_REG_GPRS = 2,
1404     TARGET_REG_ARS = 18,
1405     TARGET_REG_ORIG_R2 = 26,
1406 };
1407 
1408 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1409                                const CPUS390XState *env)
1410 {
1411     int i;
1412     uint32_t *aregs;
1413 
1414     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1415     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1416     for (i = 0; i < 16; i++) {
1417         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1418     }
1419     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1420     for (i = 0; i < 16; i++) {
1421         aregs[i] = tswap32(env->aregs[i]);
1422     }
1423     (*regs)[TARGET_REG_ORIG_R2] = 0;
1424 }
1425 
1426 #define USE_ELF_CORE_DUMP
1427 #define ELF_EXEC_PAGESIZE 4096
1428 
1429 #endif /* TARGET_S390X */
1430 
1431 #ifdef TARGET_RISCV
1432 
1433 #define ELF_START_MMAP 0x80000000
1434 #define ELF_ARCH  EM_RISCV
1435 
1436 #ifdef TARGET_RISCV32
1437 #define ELF_CLASS ELFCLASS32
1438 #else
1439 #define ELF_CLASS ELFCLASS64
1440 #endif
1441 
1442 #define ELF_HWCAP get_elf_hwcap()
1443 
1444 static uint32_t get_elf_hwcap(void)
1445 {
1446 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1447     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1448     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1449                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1450 
1451     return cpu->env.misa & mask;
1452 #undef MISA_BIT
1453 }
1454 
1455 static inline void init_thread(struct target_pt_regs *regs,
1456                                struct image_info *infop)
1457 {
1458     regs->sepc = infop->entry;
1459     regs->sp = infop->start_stack;
1460 }
1461 
1462 #define ELF_EXEC_PAGESIZE 4096
1463 
1464 #endif /* TARGET_RISCV */
1465 
1466 #ifdef TARGET_HPPA
1467 
1468 #define ELF_START_MMAP  0x80000000
1469 #define ELF_CLASS       ELFCLASS32
1470 #define ELF_ARCH        EM_PARISC
1471 #define ELF_PLATFORM    "PARISC"
1472 #define STACK_GROWS_DOWN 0
1473 #define STACK_ALIGNMENT  64
1474 
1475 static inline void init_thread(struct target_pt_regs *regs,
1476                                struct image_info *infop)
1477 {
1478     regs->iaoq[0] = infop->entry;
1479     regs->iaoq[1] = infop->entry + 4;
1480     regs->gr[23] = 0;
1481     regs->gr[24] = infop->arg_start;
1482     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1483     /* The top-of-stack contains a linkage buffer.  */
1484     regs->gr[30] = infop->start_stack + 64;
1485     regs->gr[31] = infop->entry;
1486 }
1487 
1488 #endif /* TARGET_HPPA */
1489 
1490 #ifdef TARGET_XTENSA
1491 
1492 #define ELF_START_MMAP 0x20000000
1493 
1494 #define ELF_CLASS       ELFCLASS32
1495 #define ELF_ARCH        EM_XTENSA
1496 
1497 static inline void init_thread(struct target_pt_regs *regs,
1498                                struct image_info *infop)
1499 {
1500     regs->windowbase = 0;
1501     regs->windowstart = 1;
1502     regs->areg[1] = infop->start_stack;
1503     regs->pc = infop->entry;
1504 }
1505 
1506 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1507 #define ELF_NREG 128
1508 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1509 
1510 enum {
1511     TARGET_REG_PC,
1512     TARGET_REG_PS,
1513     TARGET_REG_LBEG,
1514     TARGET_REG_LEND,
1515     TARGET_REG_LCOUNT,
1516     TARGET_REG_SAR,
1517     TARGET_REG_WINDOWSTART,
1518     TARGET_REG_WINDOWBASE,
1519     TARGET_REG_THREADPTR,
1520     TARGET_REG_AR0 = 64,
1521 };
1522 
1523 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1524                                const CPUXtensaState *env)
1525 {
1526     unsigned i;
1527 
1528     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1529     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1530     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1531     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1532     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1533     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1534     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1535     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1536     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1537     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1538     for (i = 0; i < env->config->nareg; ++i) {
1539         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1540     }
1541 }
1542 
1543 #define USE_ELF_CORE_DUMP
1544 #define ELF_EXEC_PAGESIZE       4096
1545 
1546 #endif /* TARGET_XTENSA */
1547 
1548 #ifdef TARGET_HEXAGON
1549 
1550 #define ELF_START_MMAP 0x20000000
1551 
1552 #define ELF_CLASS       ELFCLASS32
1553 #define ELF_ARCH        EM_HEXAGON
1554 
1555 static inline void init_thread(struct target_pt_regs *regs,
1556                                struct image_info *infop)
1557 {
1558     regs->sepc = infop->entry;
1559     regs->sp = infop->start_stack;
1560 }
1561 
1562 #endif /* TARGET_HEXAGON */
1563 
1564 #ifndef ELF_PLATFORM
1565 #define ELF_PLATFORM (NULL)
1566 #endif
1567 
1568 #ifndef ELF_MACHINE
1569 #define ELF_MACHINE ELF_ARCH
1570 #endif
1571 
1572 #ifndef elf_check_arch
1573 #define elf_check_arch(x) ((x) == ELF_ARCH)
1574 #endif
1575 
1576 #ifndef elf_check_abi
1577 #define elf_check_abi(x) (1)
1578 #endif
1579 
1580 #ifndef ELF_HWCAP
1581 #define ELF_HWCAP 0
1582 #endif
1583 
1584 #ifndef STACK_GROWS_DOWN
1585 #define STACK_GROWS_DOWN 1
1586 #endif
1587 
1588 #ifndef STACK_ALIGNMENT
1589 #define STACK_ALIGNMENT 16
1590 #endif
1591 
1592 #ifdef TARGET_ABI32
1593 #undef ELF_CLASS
1594 #define ELF_CLASS ELFCLASS32
1595 #undef bswaptls
1596 #define bswaptls(ptr) bswap32s(ptr)
1597 #endif
1598 
1599 #include "elf.h"
1600 
1601 /* We must delay the following stanzas until after "elf.h". */
1602 #if defined(TARGET_AARCH64)
1603 
1604 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1605                                     const uint32_t *data,
1606                                     struct image_info *info,
1607                                     Error **errp)
1608 {
1609     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1610         if (pr_datasz != sizeof(uint32_t)) {
1611             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1612             return false;
1613         }
1614         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1615         info->note_flags = *data;
1616     }
1617     return true;
1618 }
1619 #define ARCH_USE_GNU_PROPERTY 1
1620 
1621 #else
1622 
1623 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1624                                     const uint32_t *data,
1625                                     struct image_info *info,
1626                                     Error **errp)
1627 {
1628     g_assert_not_reached();
1629 }
1630 #define ARCH_USE_GNU_PROPERTY 0
1631 
1632 #endif
1633 
1634 struct exec
1635 {
1636     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1637     unsigned int a_text;   /* length of text, in bytes */
1638     unsigned int a_data;   /* length of data, in bytes */
1639     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1640     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1641     unsigned int a_entry;  /* start address */
1642     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1643     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1644 };
1645 
1646 
1647 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1648 #define OMAGIC 0407
1649 #define NMAGIC 0410
1650 #define ZMAGIC 0413
1651 #define QMAGIC 0314
1652 
1653 /* Necessary parameters */
1654 #define TARGET_ELF_EXEC_PAGESIZE \
1655         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1656          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1657 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1658 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1659                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1660 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1661 
1662 #define DLINFO_ITEMS 16
1663 
1664 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1665 {
1666     memcpy(to, from, n);
1667 }
1668 
1669 #ifdef BSWAP_NEEDED
1670 static void bswap_ehdr(struct elfhdr *ehdr)
1671 {
1672     bswap16s(&ehdr->e_type);            /* Object file type */
1673     bswap16s(&ehdr->e_machine);         /* Architecture */
1674     bswap32s(&ehdr->e_version);         /* Object file version */
1675     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1676     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1677     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1678     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1679     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1680     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1681     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1682     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1683     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1684     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1685 }
1686 
1687 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1688 {
1689     int i;
1690     for (i = 0; i < phnum; ++i, ++phdr) {
1691         bswap32s(&phdr->p_type);        /* Segment type */
1692         bswap32s(&phdr->p_flags);       /* Segment flags */
1693         bswaptls(&phdr->p_offset);      /* Segment file offset */
1694         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1695         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1696         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1697         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1698         bswaptls(&phdr->p_align);       /* Segment alignment */
1699     }
1700 }
1701 
1702 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1703 {
1704     int i;
1705     for (i = 0; i < shnum; ++i, ++shdr) {
1706         bswap32s(&shdr->sh_name);
1707         bswap32s(&shdr->sh_type);
1708         bswaptls(&shdr->sh_flags);
1709         bswaptls(&shdr->sh_addr);
1710         bswaptls(&shdr->sh_offset);
1711         bswaptls(&shdr->sh_size);
1712         bswap32s(&shdr->sh_link);
1713         bswap32s(&shdr->sh_info);
1714         bswaptls(&shdr->sh_addralign);
1715         bswaptls(&shdr->sh_entsize);
1716     }
1717 }
1718 
1719 static void bswap_sym(struct elf_sym *sym)
1720 {
1721     bswap32s(&sym->st_name);
1722     bswaptls(&sym->st_value);
1723     bswaptls(&sym->st_size);
1724     bswap16s(&sym->st_shndx);
1725 }
1726 
1727 #ifdef TARGET_MIPS
1728 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1729 {
1730     bswap16s(&abiflags->version);
1731     bswap32s(&abiflags->ases);
1732     bswap32s(&abiflags->isa_ext);
1733     bswap32s(&abiflags->flags1);
1734     bswap32s(&abiflags->flags2);
1735 }
1736 #endif
1737 #else
1738 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1739 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1740 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1741 static inline void bswap_sym(struct elf_sym *sym) { }
1742 #ifdef TARGET_MIPS
1743 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1744 #endif
1745 #endif
1746 
1747 #ifdef USE_ELF_CORE_DUMP
1748 static int elf_core_dump(int, const CPUArchState *);
1749 #endif /* USE_ELF_CORE_DUMP */
1750 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1751 
1752 /* Verify the portions of EHDR within E_IDENT for the target.
1753    This can be performed before bswapping the entire header.  */
1754 static bool elf_check_ident(struct elfhdr *ehdr)
1755 {
1756     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1757             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1758             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1759             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1760             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1761             && ehdr->e_ident[EI_DATA] == ELF_DATA
1762             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1763 }
1764 
1765 /* Verify the portions of EHDR outside of E_IDENT for the target.
1766    This has to wait until after bswapping the header.  */
1767 static bool elf_check_ehdr(struct elfhdr *ehdr)
1768 {
1769     return (elf_check_arch(ehdr->e_machine)
1770             && elf_check_abi(ehdr->e_flags)
1771             && ehdr->e_ehsize == sizeof(struct elfhdr)
1772             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1773             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1774 }
1775 
1776 /*
1777  * 'copy_elf_strings()' copies argument/envelope strings from user
1778  * memory to free pages in kernel mem. These are in a format ready
1779  * to be put directly into the top of new user memory.
1780  *
1781  */
1782 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1783                                   abi_ulong p, abi_ulong stack_limit)
1784 {
1785     char *tmp;
1786     int len, i;
1787     abi_ulong top = p;
1788 
1789     if (!p) {
1790         return 0;       /* bullet-proofing */
1791     }
1792 
1793     if (STACK_GROWS_DOWN) {
1794         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1795         for (i = argc - 1; i >= 0; --i) {
1796             tmp = argv[i];
1797             if (!tmp) {
1798                 fprintf(stderr, "VFS: argc is wrong");
1799                 exit(-1);
1800             }
1801             len = strlen(tmp) + 1;
1802             tmp += len;
1803 
1804             if (len > (p - stack_limit)) {
1805                 return 0;
1806             }
1807             while (len) {
1808                 int bytes_to_copy = (len > offset) ? offset : len;
1809                 tmp -= bytes_to_copy;
1810                 p -= bytes_to_copy;
1811                 offset -= bytes_to_copy;
1812                 len -= bytes_to_copy;
1813 
1814                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1815 
1816                 if (offset == 0) {
1817                     memcpy_to_target(p, scratch, top - p);
1818                     top = p;
1819                     offset = TARGET_PAGE_SIZE;
1820                 }
1821             }
1822         }
1823         if (p != top) {
1824             memcpy_to_target(p, scratch + offset, top - p);
1825         }
1826     } else {
1827         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1828         for (i = 0; i < argc; ++i) {
1829             tmp = argv[i];
1830             if (!tmp) {
1831                 fprintf(stderr, "VFS: argc is wrong");
1832                 exit(-1);
1833             }
1834             len = strlen(tmp) + 1;
1835             if (len > (stack_limit - p)) {
1836                 return 0;
1837             }
1838             while (len) {
1839                 int bytes_to_copy = (len > remaining) ? remaining : len;
1840 
1841                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1842 
1843                 tmp += bytes_to_copy;
1844                 remaining -= bytes_to_copy;
1845                 p += bytes_to_copy;
1846                 len -= bytes_to_copy;
1847 
1848                 if (remaining == 0) {
1849                     memcpy_to_target(top, scratch, p - top);
1850                     top = p;
1851                     remaining = TARGET_PAGE_SIZE;
1852                 }
1853             }
1854         }
1855         if (p != top) {
1856             memcpy_to_target(top, scratch, p - top);
1857         }
1858     }
1859 
1860     return p;
1861 }
1862 
1863 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1864  * argument/environment space. Newer kernels (>2.6.33) allow more,
1865  * dependent on stack size, but guarantee at least 32 pages for
1866  * backwards compatibility.
1867  */
1868 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1869 
1870 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1871                                  struct image_info *info)
1872 {
1873     abi_ulong size, error, guard;
1874 
1875     size = guest_stack_size;
1876     if (size < STACK_LOWER_LIMIT) {
1877         size = STACK_LOWER_LIMIT;
1878     }
1879     guard = TARGET_PAGE_SIZE;
1880     if (guard < qemu_real_host_page_size) {
1881         guard = qemu_real_host_page_size;
1882     }
1883 
1884     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1885                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1886     if (error == -1) {
1887         perror("mmap stack");
1888         exit(-1);
1889     }
1890 
1891     /* We reserve one extra page at the top of the stack as guard.  */
1892     if (STACK_GROWS_DOWN) {
1893         target_mprotect(error, guard, PROT_NONE);
1894         info->stack_limit = error + guard;
1895         return info->stack_limit + size - sizeof(void *);
1896     } else {
1897         target_mprotect(error + size, guard, PROT_NONE);
1898         info->stack_limit = error + size;
1899         return error;
1900     }
1901 }
1902 
1903 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1904    after the data section (i.e. bss).  */
1905 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1906 {
1907     uintptr_t host_start, host_map_start, host_end;
1908 
1909     last_bss = TARGET_PAGE_ALIGN(last_bss);
1910 
1911     /* ??? There is confusion between qemu_real_host_page_size and
1912        qemu_host_page_size here and elsewhere in target_mmap, which
1913        may lead to the end of the data section mapping from the file
1914        not being mapped.  At least there was an explicit test and
1915        comment for that here, suggesting that "the file size must
1916        be known".  The comment probably pre-dates the introduction
1917        of the fstat system call in target_mmap which does in fact
1918        find out the size.  What isn't clear is if the workaround
1919        here is still actually needed.  For now, continue with it,
1920        but merge it with the "normal" mmap that would allocate the bss.  */
1921 
1922     host_start = (uintptr_t) g2h_untagged(elf_bss);
1923     host_end = (uintptr_t) g2h_untagged(last_bss);
1924     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1925 
1926     if (host_map_start < host_end) {
1927         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1928                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1929         if (p == MAP_FAILED) {
1930             perror("cannot mmap brk");
1931             exit(-1);
1932         }
1933     }
1934 
1935     /* Ensure that the bss page(s) are valid */
1936     if ((page_get_flags(last_bss-1) & prot) != prot) {
1937         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1938     }
1939 
1940     if (host_start < host_map_start) {
1941         memset((void *)host_start, 0, host_map_start - host_start);
1942     }
1943 }
1944 
1945 #ifdef TARGET_ARM
1946 static int elf_is_fdpic(struct elfhdr *exec)
1947 {
1948     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1949 }
1950 #else
1951 /* Default implementation, always false.  */
1952 static int elf_is_fdpic(struct elfhdr *exec)
1953 {
1954     return 0;
1955 }
1956 #endif
1957 
1958 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1959 {
1960     uint16_t n;
1961     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1962 
1963     /* elf32_fdpic_loadseg */
1964     n = info->nsegs;
1965     while (n--) {
1966         sp -= 12;
1967         put_user_u32(loadsegs[n].addr, sp+0);
1968         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1969         put_user_u32(loadsegs[n].p_memsz, sp+8);
1970     }
1971 
1972     /* elf32_fdpic_loadmap */
1973     sp -= 4;
1974     put_user_u16(0, sp+0); /* version */
1975     put_user_u16(info->nsegs, sp+2); /* nsegs */
1976 
1977     info->personality = PER_LINUX_FDPIC;
1978     info->loadmap_addr = sp;
1979 
1980     return sp;
1981 }
1982 
1983 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1984                                    struct elfhdr *exec,
1985                                    struct image_info *info,
1986                                    struct image_info *interp_info)
1987 {
1988     abi_ulong sp;
1989     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1990     int size;
1991     int i;
1992     abi_ulong u_rand_bytes;
1993     uint8_t k_rand_bytes[16];
1994     abi_ulong u_platform;
1995     const char *k_platform;
1996     const int n = sizeof(elf_addr_t);
1997 
1998     sp = p;
1999 
2000     /* Needs to be before we load the env/argc/... */
2001     if (elf_is_fdpic(exec)) {
2002         /* Need 4 byte alignment for these structs */
2003         sp &= ~3;
2004         sp = loader_build_fdpic_loadmap(info, sp);
2005         info->other_info = interp_info;
2006         if (interp_info) {
2007             interp_info->other_info = info;
2008             sp = loader_build_fdpic_loadmap(interp_info, sp);
2009             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2010             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2011         } else {
2012             info->interpreter_loadmap_addr = 0;
2013             info->interpreter_pt_dynamic_addr = 0;
2014         }
2015     }
2016 
2017     u_platform = 0;
2018     k_platform = ELF_PLATFORM;
2019     if (k_platform) {
2020         size_t len = strlen(k_platform) + 1;
2021         if (STACK_GROWS_DOWN) {
2022             sp -= (len + n - 1) & ~(n - 1);
2023             u_platform = sp;
2024             /* FIXME - check return value of memcpy_to_target() for failure */
2025             memcpy_to_target(sp, k_platform, len);
2026         } else {
2027             memcpy_to_target(sp, k_platform, len);
2028             u_platform = sp;
2029             sp += len + 1;
2030         }
2031     }
2032 
2033     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2034      * the argv and envp pointers.
2035      */
2036     if (STACK_GROWS_DOWN) {
2037         sp = QEMU_ALIGN_DOWN(sp, 16);
2038     } else {
2039         sp = QEMU_ALIGN_UP(sp, 16);
2040     }
2041 
2042     /*
2043      * Generate 16 random bytes for userspace PRNG seeding.
2044      */
2045     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2046     if (STACK_GROWS_DOWN) {
2047         sp -= 16;
2048         u_rand_bytes = sp;
2049         /* FIXME - check return value of memcpy_to_target() for failure */
2050         memcpy_to_target(sp, k_rand_bytes, 16);
2051     } else {
2052         memcpy_to_target(sp, k_rand_bytes, 16);
2053         u_rand_bytes = sp;
2054         sp += 16;
2055     }
2056 
2057     size = (DLINFO_ITEMS + 1) * 2;
2058     if (k_platform)
2059         size += 2;
2060 #ifdef DLINFO_ARCH_ITEMS
2061     size += DLINFO_ARCH_ITEMS * 2;
2062 #endif
2063 #ifdef ELF_HWCAP2
2064     size += 2;
2065 #endif
2066     info->auxv_len = size * n;
2067 
2068     size += envc + argc + 2;
2069     size += 1;  /* argc itself */
2070     size *= n;
2071 
2072     /* Allocate space and finalize stack alignment for entry now.  */
2073     if (STACK_GROWS_DOWN) {
2074         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2075         sp = u_argc;
2076     } else {
2077         u_argc = sp;
2078         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2079     }
2080 
2081     u_argv = u_argc + n;
2082     u_envp = u_argv + (argc + 1) * n;
2083     u_auxv = u_envp + (envc + 1) * n;
2084     info->saved_auxv = u_auxv;
2085     info->arg_start = u_argv;
2086     info->arg_end = u_argv + argc * n;
2087 
2088     /* This is correct because Linux defines
2089      * elf_addr_t as Elf32_Off / Elf64_Off
2090      */
2091 #define NEW_AUX_ENT(id, val) do {               \
2092         put_user_ual(id, u_auxv);  u_auxv += n; \
2093         put_user_ual(val, u_auxv); u_auxv += n; \
2094     } while(0)
2095 
2096 #ifdef ARCH_DLINFO
2097     /*
2098      * ARCH_DLINFO must come first so platform specific code can enforce
2099      * special alignment requirements on the AUXV if necessary (eg. PPC).
2100      */
2101     ARCH_DLINFO;
2102 #endif
2103     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2104      * on info->auxv_len will trigger.
2105      */
2106     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2107     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2108     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2109     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2110         /* Target doesn't support host page size alignment */
2111         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2112     } else {
2113         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2114                                                qemu_host_page_size)));
2115     }
2116     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2117     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2118     NEW_AUX_ENT(AT_ENTRY, info->entry);
2119     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2120     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2121     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2122     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2123     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2124     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2125     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2126     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2127     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2128 
2129 #ifdef ELF_HWCAP2
2130     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2131 #endif
2132 
2133     if (u_platform) {
2134         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2135     }
2136     NEW_AUX_ENT (AT_NULL, 0);
2137 #undef NEW_AUX_ENT
2138 
2139     /* Check that our initial calculation of the auxv length matches how much
2140      * we actually put into it.
2141      */
2142     assert(info->auxv_len == u_auxv - info->saved_auxv);
2143 
2144     put_user_ual(argc, u_argc);
2145 
2146     p = info->arg_strings;
2147     for (i = 0; i < argc; ++i) {
2148         put_user_ual(p, u_argv);
2149         u_argv += n;
2150         p += target_strlen(p) + 1;
2151     }
2152     put_user_ual(0, u_argv);
2153 
2154     p = info->env_strings;
2155     for (i = 0; i < envc; ++i) {
2156         put_user_ual(p, u_envp);
2157         u_envp += n;
2158         p += target_strlen(p) + 1;
2159     }
2160     put_user_ual(0, u_envp);
2161 
2162     return sp;
2163 }
2164 
2165 #ifndef ARM_COMMPAGE
2166 #define ARM_COMMPAGE 0
2167 #define init_guest_commpage() true
2168 #endif
2169 
2170 static void pgb_fail_in_use(const char *image_name)
2171 {
2172     error_report("%s: requires virtual address space that is in use "
2173                  "(omit the -B option or choose a different value)",
2174                  image_name);
2175     exit(EXIT_FAILURE);
2176 }
2177 
2178 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2179                                 abi_ulong guest_hiaddr, long align)
2180 {
2181     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2182     void *addr, *test;
2183 
2184     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2185         fprintf(stderr, "Requested guest base %p does not satisfy "
2186                 "host minimum alignment (0x%lx)\n",
2187                 (void *)guest_base, align);
2188         exit(EXIT_FAILURE);
2189     }
2190 
2191     /* Sanity check the guest binary. */
2192     if (reserved_va) {
2193         if (guest_hiaddr > reserved_va) {
2194             error_report("%s: requires more than reserved virtual "
2195                          "address space (0x%" PRIx64 " > 0x%lx)",
2196                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2197             exit(EXIT_FAILURE);
2198         }
2199     } else {
2200 #if HOST_LONG_BITS < TARGET_ABI_BITS
2201         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2202             error_report("%s: requires more virtual address space "
2203                          "than the host can provide (0x%" PRIx64 ")",
2204                          image_name, (uint64_t)guest_hiaddr - guest_base);
2205             exit(EXIT_FAILURE);
2206         }
2207 #endif
2208     }
2209 
2210     /*
2211      * Expand the allocation to the entire reserved_va.
2212      * Exclude the mmap_min_addr hole.
2213      */
2214     if (reserved_va) {
2215         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2216                         : mmap_min_addr - guest_base);
2217         guest_hiaddr = reserved_va;
2218     }
2219 
2220     /* Reserve the address space for the binary, or reserved_va. */
2221     test = g2h_untagged(guest_loaddr);
2222     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2223     if (test != addr) {
2224         pgb_fail_in_use(image_name);
2225     }
2226 }
2227 
2228 /**
2229  * pgd_find_hole_fallback: potential mmap address
2230  * @guest_size: size of available space
2231  * @brk: location of break
2232  * @align: memory alignment
2233  *
2234  * This is a fallback method for finding a hole in the host address
2235  * space if we don't have the benefit of being able to access
2236  * /proc/self/map. It can potentially take a very long time as we can
2237  * only dumbly iterate up the host address space seeing if the
2238  * allocation would work.
2239  */
2240 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2241                                         long align, uintptr_t offset)
2242 {
2243     uintptr_t base;
2244 
2245     /* Start (aligned) at the bottom and work our way up */
2246     base = ROUND_UP(mmap_min_addr, align);
2247 
2248     while (true) {
2249         uintptr_t align_start, end;
2250         align_start = ROUND_UP(base, align);
2251         end = align_start + guest_size + offset;
2252 
2253         /* if brk is anywhere in the range give ourselves some room to grow. */
2254         if (align_start <= brk && brk < end) {
2255             base = brk + (16 * MiB);
2256             continue;
2257         } else if (align_start + guest_size < align_start) {
2258             /* we have run out of space */
2259             return -1;
2260         } else {
2261             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2262                 MAP_FIXED_NOREPLACE;
2263             void * mmap_start = mmap((void *) align_start, guest_size,
2264                                      PROT_NONE, flags, -1, 0);
2265             if (mmap_start != MAP_FAILED) {
2266                 munmap(mmap_start, guest_size);
2267                 if (mmap_start == (void *) align_start) {
2268                     return (uintptr_t) mmap_start + offset;
2269                 }
2270             }
2271             base += qemu_host_page_size;
2272         }
2273     }
2274 }
2275 
2276 /* Return value for guest_base, or -1 if no hole found. */
2277 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2278                                long align, uintptr_t offset)
2279 {
2280     GSList *maps, *iter;
2281     uintptr_t this_start, this_end, next_start, brk;
2282     intptr_t ret = -1;
2283 
2284     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2285 
2286     maps = read_self_maps();
2287 
2288     /* Read brk after we've read the maps, which will malloc. */
2289     brk = (uintptr_t)sbrk(0);
2290 
2291     if (!maps) {
2292         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2293         return ret == -1 ? -1 : ret - guest_loaddr;
2294     }
2295 
2296     /* The first hole is before the first map entry. */
2297     this_start = mmap_min_addr;
2298 
2299     for (iter = maps; iter;
2300          this_start = next_start, iter = g_slist_next(iter)) {
2301         uintptr_t align_start, hole_size;
2302 
2303         this_end = ((MapInfo *)iter->data)->start;
2304         next_start = ((MapInfo *)iter->data)->end;
2305         align_start = ROUND_UP(this_start + offset, align);
2306 
2307         /* Skip holes that are too small. */
2308         if (align_start >= this_end) {
2309             continue;
2310         }
2311         hole_size = this_end - align_start;
2312         if (hole_size < guest_size) {
2313             continue;
2314         }
2315 
2316         /* If this hole contains brk, give ourselves some room to grow. */
2317         if (this_start <= brk && brk < this_end) {
2318             hole_size -= guest_size;
2319             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2320                 align_start += 1 * GiB;
2321             } else if (hole_size >= 16 * MiB) {
2322                 align_start += 16 * MiB;
2323             } else {
2324                 align_start = (this_end - guest_size) & -align;
2325                 if (align_start < this_start) {
2326                     continue;
2327                 }
2328             }
2329         }
2330 
2331         /* Record the lowest successful match. */
2332         if (ret < 0) {
2333             ret = align_start - guest_loaddr;
2334         }
2335         /* If this hole contains the identity map, select it. */
2336         if (align_start <= guest_loaddr &&
2337             guest_loaddr + guest_size <= this_end) {
2338             ret = 0;
2339         }
2340         /* If this hole ends above the identity map, stop looking. */
2341         if (this_end >= guest_loaddr) {
2342             break;
2343         }
2344     }
2345     free_self_maps(maps);
2346 
2347     return ret;
2348 }
2349 
2350 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2351                        abi_ulong orig_hiaddr, long align)
2352 {
2353     uintptr_t loaddr = orig_loaddr;
2354     uintptr_t hiaddr = orig_hiaddr;
2355     uintptr_t offset = 0;
2356     uintptr_t addr;
2357 
2358     if (hiaddr != orig_hiaddr) {
2359         error_report("%s: requires virtual address space that the "
2360                      "host cannot provide (0x%" PRIx64 ")",
2361                      image_name, (uint64_t)orig_hiaddr);
2362         exit(EXIT_FAILURE);
2363     }
2364 
2365     loaddr &= -align;
2366     if (ARM_COMMPAGE) {
2367         /*
2368          * Extend the allocation to include the commpage.
2369          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2370          * need to ensure there is space bellow the guest_base so we
2371          * can map the commpage in the place needed when the address
2372          * arithmetic wraps around.
2373          */
2374         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2375             hiaddr = (uintptr_t) 4 << 30;
2376         } else {
2377             offset = -(ARM_COMMPAGE & -align);
2378         }
2379     }
2380 
2381     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2382     if (addr == -1) {
2383         /*
2384          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2385          * that can satisfy both.  But as the normal arm32 link base address
2386          * is ~32k, and we extend down to include the commpage, making the
2387          * overhead only ~96k, this is unlikely.
2388          */
2389         error_report("%s: Unable to allocate %#zx bytes of "
2390                      "virtual address space", image_name,
2391                      (size_t)(hiaddr - loaddr));
2392         exit(EXIT_FAILURE);
2393     }
2394 
2395     guest_base = addr;
2396 }
2397 
2398 static void pgb_dynamic(const char *image_name, long align)
2399 {
2400     /*
2401      * The executable is dynamic and does not require a fixed address.
2402      * All we need is a commpage that satisfies align.
2403      * If we do not need a commpage, leave guest_base == 0.
2404      */
2405     if (ARM_COMMPAGE) {
2406         uintptr_t addr, commpage;
2407 
2408         /* 64-bit hosts should have used reserved_va. */
2409         assert(sizeof(uintptr_t) == 4);
2410 
2411         /*
2412          * By putting the commpage at the first hole, that puts guest_base
2413          * just above that, and maximises the positive guest addresses.
2414          */
2415         commpage = ARM_COMMPAGE & -align;
2416         addr = pgb_find_hole(commpage, -commpage, align, 0);
2417         assert(addr != -1);
2418         guest_base = addr;
2419     }
2420 }
2421 
2422 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2423                             abi_ulong guest_hiaddr, long align)
2424 {
2425     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2426     void *addr, *test;
2427 
2428     if (guest_hiaddr > reserved_va) {
2429         error_report("%s: requires more than reserved virtual "
2430                      "address space (0x%" PRIx64 " > 0x%lx)",
2431                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2432         exit(EXIT_FAILURE);
2433     }
2434 
2435     /* Widen the "image" to the entire reserved address space. */
2436     pgb_static(image_name, 0, reserved_va, align);
2437 
2438     /* osdep.h defines this as 0 if it's missing */
2439     flags |= MAP_FIXED_NOREPLACE;
2440 
2441     /* Reserve the memory on the host. */
2442     assert(guest_base != 0);
2443     test = g2h_untagged(0);
2444     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2445     if (addr == MAP_FAILED || addr != test) {
2446         error_report("Unable to reserve 0x%lx bytes of virtual address "
2447                      "space at %p (%s) for use as guest address space (check your"
2448                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2449                      "using -R option)", reserved_va, test, strerror(errno));
2450         exit(EXIT_FAILURE);
2451     }
2452 }
2453 
2454 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2455                       abi_ulong guest_hiaddr)
2456 {
2457     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2458     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2459 
2460     if (have_guest_base) {
2461         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2462     } else if (reserved_va) {
2463         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2464     } else if (guest_loaddr) {
2465         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2466     } else {
2467         pgb_dynamic(image_name, align);
2468     }
2469 
2470     /* Reserve and initialize the commpage. */
2471     if (!init_guest_commpage()) {
2472         /*
2473          * With have_guest_base, the user has selected the address and
2474          * we are trying to work with that.  Otherwise, we have selected
2475          * free space and init_guest_commpage must succeeded.
2476          */
2477         assert(have_guest_base);
2478         pgb_fail_in_use(image_name);
2479     }
2480 
2481     assert(QEMU_IS_ALIGNED(guest_base, align));
2482     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2483                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2484 }
2485 
2486 enum {
2487     /* The string "GNU\0" as a magic number. */
2488     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2489     NOTE_DATA_SZ = 1 * KiB,
2490     NOTE_NAME_SZ = 4,
2491     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2492 };
2493 
2494 /*
2495  * Process a single gnu_property entry.
2496  * Return false for error.
2497  */
2498 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2499                                struct image_info *info, bool have_prev_type,
2500                                uint32_t *prev_type, Error **errp)
2501 {
2502     uint32_t pr_type, pr_datasz, step;
2503 
2504     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2505         goto error_data;
2506     }
2507     datasz -= *off;
2508     data += *off / sizeof(uint32_t);
2509 
2510     if (datasz < 2 * sizeof(uint32_t)) {
2511         goto error_data;
2512     }
2513     pr_type = data[0];
2514     pr_datasz = data[1];
2515     data += 2;
2516     datasz -= 2 * sizeof(uint32_t);
2517     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2518     if (step > datasz) {
2519         goto error_data;
2520     }
2521 
2522     /* Properties are supposed to be unique and sorted on pr_type. */
2523     if (have_prev_type && pr_type <= *prev_type) {
2524         if (pr_type == *prev_type) {
2525             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2526         } else {
2527             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2528         }
2529         return false;
2530     }
2531     *prev_type = pr_type;
2532 
2533     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2534         return false;
2535     }
2536 
2537     *off += 2 * sizeof(uint32_t) + step;
2538     return true;
2539 
2540  error_data:
2541     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2542     return false;
2543 }
2544 
2545 /* Process NT_GNU_PROPERTY_TYPE_0. */
2546 static bool parse_elf_properties(int image_fd,
2547                                  struct image_info *info,
2548                                  const struct elf_phdr *phdr,
2549                                  char bprm_buf[BPRM_BUF_SIZE],
2550                                  Error **errp)
2551 {
2552     union {
2553         struct elf_note nhdr;
2554         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2555     } note;
2556 
2557     int n, off, datasz;
2558     bool have_prev_type;
2559     uint32_t prev_type;
2560 
2561     /* Unless the arch requires properties, ignore them. */
2562     if (!ARCH_USE_GNU_PROPERTY) {
2563         return true;
2564     }
2565 
2566     /* If the properties are crazy large, that's too bad. */
2567     n = phdr->p_filesz;
2568     if (n > sizeof(note)) {
2569         error_setg(errp, "PT_GNU_PROPERTY too large");
2570         return false;
2571     }
2572     if (n < sizeof(note.nhdr)) {
2573         error_setg(errp, "PT_GNU_PROPERTY too small");
2574         return false;
2575     }
2576 
2577     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2578         memcpy(&note, bprm_buf + phdr->p_offset, n);
2579     } else {
2580         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2581         if (len != n) {
2582             error_setg_errno(errp, errno, "Error reading file header");
2583             return false;
2584         }
2585     }
2586 
2587     /*
2588      * The contents of a valid PT_GNU_PROPERTY is a sequence
2589      * of uint32_t -- swap them all now.
2590      */
2591 #ifdef BSWAP_NEEDED
2592     for (int i = 0; i < n / 4; i++) {
2593         bswap32s(note.data + i);
2594     }
2595 #endif
2596 
2597     /*
2598      * Note that nhdr is 3 words, and that the "name" described by namesz
2599      * immediately follows nhdr and is thus at the 4th word.  Further, all
2600      * of the inputs to the kernel's round_up are multiples of 4.
2601      */
2602     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2603         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2604         note.data[3] != GNU0_MAGIC) {
2605         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2606         return false;
2607     }
2608     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2609 
2610     datasz = note.nhdr.n_descsz + off;
2611     if (datasz > n) {
2612         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2613         return false;
2614     }
2615 
2616     have_prev_type = false;
2617     prev_type = 0;
2618     while (1) {
2619         if (off == datasz) {
2620             return true;  /* end, exit ok */
2621         }
2622         if (!parse_elf_property(note.data, &off, datasz, info,
2623                                 have_prev_type, &prev_type, errp)) {
2624             return false;
2625         }
2626         have_prev_type = true;
2627     }
2628 }
2629 
2630 /* Load an ELF image into the address space.
2631 
2632    IMAGE_NAME is the filename of the image, to use in error messages.
2633    IMAGE_FD is the open file descriptor for the image.
2634 
2635    BPRM_BUF is a copy of the beginning of the file; this of course
2636    contains the elf file header at offset 0.  It is assumed that this
2637    buffer is sufficiently aligned to present no problems to the host
2638    in accessing data at aligned offsets within the buffer.
2639 
2640    On return: INFO values will be filled in, as necessary or available.  */
2641 
2642 static void load_elf_image(const char *image_name, int image_fd,
2643                            struct image_info *info, char **pinterp_name,
2644                            char bprm_buf[BPRM_BUF_SIZE])
2645 {
2646     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2647     struct elf_phdr *phdr;
2648     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2649     int i, retval, prot_exec;
2650     Error *err = NULL;
2651 
2652     /* First of all, some simple consistency checks */
2653     if (!elf_check_ident(ehdr)) {
2654         error_setg(&err, "Invalid ELF image for this architecture");
2655         goto exit_errmsg;
2656     }
2657     bswap_ehdr(ehdr);
2658     if (!elf_check_ehdr(ehdr)) {
2659         error_setg(&err, "Invalid ELF image for this architecture");
2660         goto exit_errmsg;
2661     }
2662 
2663     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2664     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2665         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2666     } else {
2667         phdr = (struct elf_phdr *) alloca(i);
2668         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2669         if (retval != i) {
2670             goto exit_read;
2671         }
2672     }
2673     bswap_phdr(phdr, ehdr->e_phnum);
2674 
2675     info->nsegs = 0;
2676     info->pt_dynamic_addr = 0;
2677 
2678     mmap_lock();
2679 
2680     /*
2681      * Find the maximum size of the image and allocate an appropriate
2682      * amount of memory to handle that.  Locate the interpreter, if any.
2683      */
2684     loaddr = -1, hiaddr = 0;
2685     info->alignment = 0;
2686     for (i = 0; i < ehdr->e_phnum; ++i) {
2687         struct elf_phdr *eppnt = phdr + i;
2688         if (eppnt->p_type == PT_LOAD) {
2689             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2690             if (a < loaddr) {
2691                 loaddr = a;
2692             }
2693             a = eppnt->p_vaddr + eppnt->p_memsz;
2694             if (a > hiaddr) {
2695                 hiaddr = a;
2696             }
2697             ++info->nsegs;
2698             info->alignment |= eppnt->p_align;
2699         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2700             g_autofree char *interp_name = NULL;
2701 
2702             if (*pinterp_name) {
2703                 error_setg(&err, "Multiple PT_INTERP entries");
2704                 goto exit_errmsg;
2705             }
2706 
2707             interp_name = g_malloc(eppnt->p_filesz);
2708 
2709             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2710                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2711                        eppnt->p_filesz);
2712             } else {
2713                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2714                                eppnt->p_offset);
2715                 if (retval != eppnt->p_filesz) {
2716                     goto exit_read;
2717                 }
2718             }
2719             if (interp_name[eppnt->p_filesz - 1] != 0) {
2720                 error_setg(&err, "Invalid PT_INTERP entry");
2721                 goto exit_errmsg;
2722             }
2723             *pinterp_name = g_steal_pointer(&interp_name);
2724         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2725             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2726                 goto exit_errmsg;
2727             }
2728         }
2729     }
2730 
2731     if (pinterp_name != NULL) {
2732         /*
2733          * This is the main executable.
2734          *
2735          * Reserve extra space for brk.
2736          * We hold on to this space while placing the interpreter
2737          * and the stack, lest they be placed immediately after
2738          * the data segment and block allocation from the brk.
2739          *
2740          * 16MB is chosen as "large enough" without being so large
2741          * as to allow the result to not fit with a 32-bit guest on
2742          * a 32-bit host.
2743          */
2744         info->reserve_brk = 16 * MiB;
2745         hiaddr += info->reserve_brk;
2746 
2747         if (ehdr->e_type == ET_EXEC) {
2748             /*
2749              * Make sure that the low address does not conflict with
2750              * MMAP_MIN_ADDR or the QEMU application itself.
2751              */
2752             probe_guest_base(image_name, loaddr, hiaddr);
2753         } else {
2754             /*
2755              * The binary is dynamic, but we still need to
2756              * select guest_base.  In this case we pass a size.
2757              */
2758             probe_guest_base(image_name, 0, hiaddr - loaddr);
2759         }
2760     }
2761 
2762     /*
2763      * Reserve address space for all of this.
2764      *
2765      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2766      * exactly the address range that is required.
2767      *
2768      * Otherwise this is ET_DYN, and we are searching for a location
2769      * that can hold the memory space required.  If the image is
2770      * pre-linked, LOADDR will be non-zero, and the kernel should
2771      * honor that address if it happens to be free.
2772      *
2773      * In both cases, we will overwrite pages in this range with mappings
2774      * from the executable.
2775      */
2776     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2777                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2778                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2779                             -1, 0);
2780     if (load_addr == -1) {
2781         goto exit_mmap;
2782     }
2783     load_bias = load_addr - loaddr;
2784 
2785     if (elf_is_fdpic(ehdr)) {
2786         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2787             g_malloc(sizeof(*loadsegs) * info->nsegs);
2788 
2789         for (i = 0; i < ehdr->e_phnum; ++i) {
2790             switch (phdr[i].p_type) {
2791             case PT_DYNAMIC:
2792                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2793                 break;
2794             case PT_LOAD:
2795                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2796                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2797                 loadsegs->p_memsz = phdr[i].p_memsz;
2798                 ++loadsegs;
2799                 break;
2800             }
2801         }
2802     }
2803 
2804     info->load_bias = load_bias;
2805     info->code_offset = load_bias;
2806     info->data_offset = load_bias;
2807     info->load_addr = load_addr;
2808     info->entry = ehdr->e_entry + load_bias;
2809     info->start_code = -1;
2810     info->end_code = 0;
2811     info->start_data = -1;
2812     info->end_data = 0;
2813     info->brk = 0;
2814     info->elf_flags = ehdr->e_flags;
2815 
2816     prot_exec = PROT_EXEC;
2817 #ifdef TARGET_AARCH64
2818     /*
2819      * If the BTI feature is present, this indicates that the executable
2820      * pages of the startup binary should be mapped with PROT_BTI, so that
2821      * branch targets are enforced.
2822      *
2823      * The startup binary is either the interpreter or the static executable.
2824      * The interpreter is responsible for all pages of a dynamic executable.
2825      *
2826      * Elf notes are backward compatible to older cpus.
2827      * Do not enable BTI unless it is supported.
2828      */
2829     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2830         && (pinterp_name == NULL || *pinterp_name == 0)
2831         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2832         prot_exec |= TARGET_PROT_BTI;
2833     }
2834 #endif
2835 
2836     for (i = 0; i < ehdr->e_phnum; i++) {
2837         struct elf_phdr *eppnt = phdr + i;
2838         if (eppnt->p_type == PT_LOAD) {
2839             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2840             int elf_prot = 0;
2841 
2842             if (eppnt->p_flags & PF_R) {
2843                 elf_prot |= PROT_READ;
2844             }
2845             if (eppnt->p_flags & PF_W) {
2846                 elf_prot |= PROT_WRITE;
2847             }
2848             if (eppnt->p_flags & PF_X) {
2849                 elf_prot |= prot_exec;
2850             }
2851 
2852             vaddr = load_bias + eppnt->p_vaddr;
2853             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2854             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2855 
2856             vaddr_ef = vaddr + eppnt->p_filesz;
2857             vaddr_em = vaddr + eppnt->p_memsz;
2858 
2859             /*
2860              * Some segments may be completely empty, with a non-zero p_memsz
2861              * but no backing file segment.
2862              */
2863             if (eppnt->p_filesz != 0) {
2864                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2865                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2866                                     MAP_PRIVATE | MAP_FIXED,
2867                                     image_fd, eppnt->p_offset - vaddr_po);
2868 
2869                 if (error == -1) {
2870                     goto exit_mmap;
2871                 }
2872 
2873                 /*
2874                  * If the load segment requests extra zeros (e.g. bss), map it.
2875                  */
2876                 if (eppnt->p_filesz < eppnt->p_memsz) {
2877                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2878                 }
2879             } else if (eppnt->p_memsz != 0) {
2880                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2881                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2882                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2883                                     -1, 0);
2884 
2885                 if (error == -1) {
2886                     goto exit_mmap;
2887                 }
2888             }
2889 
2890             /* Find the full program boundaries.  */
2891             if (elf_prot & PROT_EXEC) {
2892                 if (vaddr < info->start_code) {
2893                     info->start_code = vaddr;
2894                 }
2895                 if (vaddr_ef > info->end_code) {
2896                     info->end_code = vaddr_ef;
2897                 }
2898             }
2899             if (elf_prot & PROT_WRITE) {
2900                 if (vaddr < info->start_data) {
2901                     info->start_data = vaddr;
2902                 }
2903                 if (vaddr_ef > info->end_data) {
2904                     info->end_data = vaddr_ef;
2905                 }
2906             }
2907             if (vaddr_em > info->brk) {
2908                 info->brk = vaddr_em;
2909             }
2910 #ifdef TARGET_MIPS
2911         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2912             Mips_elf_abiflags_v0 abiflags;
2913             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2914                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2915                 goto exit_errmsg;
2916             }
2917             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2918                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2919                        sizeof(Mips_elf_abiflags_v0));
2920             } else {
2921                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2922                                eppnt->p_offset);
2923                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2924                     goto exit_read;
2925                 }
2926             }
2927             bswap_mips_abiflags(&abiflags);
2928             info->fp_abi = abiflags.fp_abi;
2929 #endif
2930         }
2931     }
2932 
2933     if (info->end_data == 0) {
2934         info->start_data = info->end_code;
2935         info->end_data = info->end_code;
2936     }
2937 
2938     if (qemu_log_enabled()) {
2939         load_symbols(ehdr, image_fd, load_bias);
2940     }
2941 
2942     mmap_unlock();
2943 
2944     close(image_fd);
2945     return;
2946 
2947  exit_read:
2948     if (retval >= 0) {
2949         error_setg(&err, "Incomplete read of file header");
2950     } else {
2951         error_setg_errno(&err, errno, "Error reading file header");
2952     }
2953     goto exit_errmsg;
2954  exit_mmap:
2955     error_setg_errno(&err, errno, "Error mapping file");
2956     goto exit_errmsg;
2957  exit_errmsg:
2958     error_reportf_err(err, "%s: ", image_name);
2959     exit(-1);
2960 }
2961 
2962 static void load_elf_interp(const char *filename, struct image_info *info,
2963                             char bprm_buf[BPRM_BUF_SIZE])
2964 {
2965     int fd, retval;
2966     Error *err = NULL;
2967 
2968     fd = open(path(filename), O_RDONLY);
2969     if (fd < 0) {
2970         error_setg_file_open(&err, errno, filename);
2971         error_report_err(err);
2972         exit(-1);
2973     }
2974 
2975     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2976     if (retval < 0) {
2977         error_setg_errno(&err, errno, "Error reading file header");
2978         error_reportf_err(err, "%s: ", filename);
2979         exit(-1);
2980     }
2981 
2982     if (retval < BPRM_BUF_SIZE) {
2983         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2984     }
2985 
2986     load_elf_image(filename, fd, info, NULL, bprm_buf);
2987 }
2988 
2989 static int symfind(const void *s0, const void *s1)
2990 {
2991     target_ulong addr = *(target_ulong *)s0;
2992     struct elf_sym *sym = (struct elf_sym *)s1;
2993     int result = 0;
2994     if (addr < sym->st_value) {
2995         result = -1;
2996     } else if (addr >= sym->st_value + sym->st_size) {
2997         result = 1;
2998     }
2999     return result;
3000 }
3001 
3002 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3003 {
3004 #if ELF_CLASS == ELFCLASS32
3005     struct elf_sym *syms = s->disas_symtab.elf32;
3006 #else
3007     struct elf_sym *syms = s->disas_symtab.elf64;
3008 #endif
3009 
3010     // binary search
3011     struct elf_sym *sym;
3012 
3013     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3014     if (sym != NULL) {
3015         return s->disas_strtab + sym->st_name;
3016     }
3017 
3018     return "";
3019 }
3020 
3021 /* FIXME: This should use elf_ops.h  */
3022 static int symcmp(const void *s0, const void *s1)
3023 {
3024     struct elf_sym *sym0 = (struct elf_sym *)s0;
3025     struct elf_sym *sym1 = (struct elf_sym *)s1;
3026     return (sym0->st_value < sym1->st_value)
3027         ? -1
3028         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3029 }
3030 
3031 /* Best attempt to load symbols from this ELF object. */
3032 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3033 {
3034     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3035     uint64_t segsz;
3036     struct elf_shdr *shdr;
3037     char *strings = NULL;
3038     struct syminfo *s = NULL;
3039     struct elf_sym *new_syms, *syms = NULL;
3040 
3041     shnum = hdr->e_shnum;
3042     i = shnum * sizeof(struct elf_shdr);
3043     shdr = (struct elf_shdr *)alloca(i);
3044     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3045         return;
3046     }
3047 
3048     bswap_shdr(shdr, shnum);
3049     for (i = 0; i < shnum; ++i) {
3050         if (shdr[i].sh_type == SHT_SYMTAB) {
3051             sym_idx = i;
3052             str_idx = shdr[i].sh_link;
3053             goto found;
3054         }
3055     }
3056 
3057     /* There will be no symbol table if the file was stripped.  */
3058     return;
3059 
3060  found:
3061     /* Now know where the strtab and symtab are.  Snarf them.  */
3062     s = g_try_new(struct syminfo, 1);
3063     if (!s) {
3064         goto give_up;
3065     }
3066 
3067     segsz = shdr[str_idx].sh_size;
3068     s->disas_strtab = strings = g_try_malloc(segsz);
3069     if (!strings ||
3070         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3071         goto give_up;
3072     }
3073 
3074     segsz = shdr[sym_idx].sh_size;
3075     syms = g_try_malloc(segsz);
3076     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3077         goto give_up;
3078     }
3079 
3080     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3081         /* Implausibly large symbol table: give up rather than ploughing
3082          * on with the number of symbols calculation overflowing
3083          */
3084         goto give_up;
3085     }
3086     nsyms = segsz / sizeof(struct elf_sym);
3087     for (i = 0; i < nsyms; ) {
3088         bswap_sym(syms + i);
3089         /* Throw away entries which we do not need.  */
3090         if (syms[i].st_shndx == SHN_UNDEF
3091             || syms[i].st_shndx >= SHN_LORESERVE
3092             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3093             if (i < --nsyms) {
3094                 syms[i] = syms[nsyms];
3095             }
3096         } else {
3097 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3098             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3099             syms[i].st_value &= ~(target_ulong)1;
3100 #endif
3101             syms[i].st_value += load_bias;
3102             i++;
3103         }
3104     }
3105 
3106     /* No "useful" symbol.  */
3107     if (nsyms == 0) {
3108         goto give_up;
3109     }
3110 
3111     /* Attempt to free the storage associated with the local symbols
3112        that we threw away.  Whether or not this has any effect on the
3113        memory allocation depends on the malloc implementation and how
3114        many symbols we managed to discard.  */
3115     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3116     if (new_syms == NULL) {
3117         goto give_up;
3118     }
3119     syms = new_syms;
3120 
3121     qsort(syms, nsyms, sizeof(*syms), symcmp);
3122 
3123     s->disas_num_syms = nsyms;
3124 #if ELF_CLASS == ELFCLASS32
3125     s->disas_symtab.elf32 = syms;
3126 #else
3127     s->disas_symtab.elf64 = syms;
3128 #endif
3129     s->lookup_symbol = lookup_symbolxx;
3130     s->next = syminfos;
3131     syminfos = s;
3132 
3133     return;
3134 
3135 give_up:
3136     g_free(s);
3137     g_free(strings);
3138     g_free(syms);
3139 }
3140 
3141 uint32_t get_elf_eflags(int fd)
3142 {
3143     struct elfhdr ehdr;
3144     off_t offset;
3145     int ret;
3146 
3147     /* Read ELF header */
3148     offset = lseek(fd, 0, SEEK_SET);
3149     if (offset == (off_t) -1) {
3150         return 0;
3151     }
3152     ret = read(fd, &ehdr, sizeof(ehdr));
3153     if (ret < sizeof(ehdr)) {
3154         return 0;
3155     }
3156     offset = lseek(fd, offset, SEEK_SET);
3157     if (offset == (off_t) -1) {
3158         return 0;
3159     }
3160 
3161     /* Check ELF signature */
3162     if (!elf_check_ident(&ehdr)) {
3163         return 0;
3164     }
3165 
3166     /* check header */
3167     bswap_ehdr(&ehdr);
3168     if (!elf_check_ehdr(&ehdr)) {
3169         return 0;
3170     }
3171 
3172     /* return architecture id */
3173     return ehdr.e_flags;
3174 }
3175 
3176 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3177 {
3178     struct image_info interp_info;
3179     struct elfhdr elf_ex;
3180     char *elf_interpreter = NULL;
3181     char *scratch;
3182 
3183     memset(&interp_info, 0, sizeof(interp_info));
3184 #ifdef TARGET_MIPS
3185     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3186 #endif
3187 
3188     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3189 
3190     load_elf_image(bprm->filename, bprm->fd, info,
3191                    &elf_interpreter, bprm->buf);
3192 
3193     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3194        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3195        when we load the interpreter.  */
3196     elf_ex = *(struct elfhdr *)bprm->buf;
3197 
3198     /* Do this so that we can load the interpreter, if need be.  We will
3199        change some of these later */
3200     bprm->p = setup_arg_pages(bprm, info);
3201 
3202     scratch = g_new0(char, TARGET_PAGE_SIZE);
3203     if (STACK_GROWS_DOWN) {
3204         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3205                                    bprm->p, info->stack_limit);
3206         info->file_string = bprm->p;
3207         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3208                                    bprm->p, info->stack_limit);
3209         info->env_strings = bprm->p;
3210         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3211                                    bprm->p, info->stack_limit);
3212         info->arg_strings = bprm->p;
3213     } else {
3214         info->arg_strings = bprm->p;
3215         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3216                                    bprm->p, info->stack_limit);
3217         info->env_strings = bprm->p;
3218         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3219                                    bprm->p, info->stack_limit);
3220         info->file_string = bprm->p;
3221         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3222                                    bprm->p, info->stack_limit);
3223     }
3224 
3225     g_free(scratch);
3226 
3227     if (!bprm->p) {
3228         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3229         exit(-1);
3230     }
3231 
3232     if (elf_interpreter) {
3233         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3234 
3235         /* If the program interpreter is one of these two, then assume
3236            an iBCS2 image.  Otherwise assume a native linux image.  */
3237 
3238         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3239             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3240             info->personality = PER_SVR4;
3241 
3242             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3243                and some applications "depend" upon this behavior.  Since
3244                we do not have the power to recompile these, we emulate
3245                the SVr4 behavior.  Sigh.  */
3246             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3247                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3248         }
3249 #ifdef TARGET_MIPS
3250         info->interp_fp_abi = interp_info.fp_abi;
3251 #endif
3252     }
3253 
3254     /*
3255      * TODO: load a vdso, which would also contain the signal trampolines.
3256      * Otherwise, allocate a private page to hold them.
3257      */
3258     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3259         abi_ulong tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3260                                            PROT_READ | PROT_WRITE,
3261                                            MAP_PRIVATE | MAP_ANON, -1, 0);
3262         setup_sigtramp(tramp_page);
3263         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3264     }
3265 
3266     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3267                                 info, (elf_interpreter ? &interp_info : NULL));
3268     info->start_stack = bprm->p;
3269 
3270     /* If we have an interpreter, set that as the program's entry point.
3271        Copy the load_bias as well, to help PPC64 interpret the entry
3272        point as a function descriptor.  Do this after creating elf tables
3273        so that we copy the original program entry point into the AUXV.  */
3274     if (elf_interpreter) {
3275         info->load_bias = interp_info.load_bias;
3276         info->entry = interp_info.entry;
3277         g_free(elf_interpreter);
3278     }
3279 
3280 #ifdef USE_ELF_CORE_DUMP
3281     bprm->core_dump = &elf_core_dump;
3282 #endif
3283 
3284     /*
3285      * If we reserved extra space for brk, release it now.
3286      * The implementation of do_brk in syscalls.c expects to be able
3287      * to mmap pages in this space.
3288      */
3289     if (info->reserve_brk) {
3290         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3291         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3292         target_munmap(start_brk, end_brk - start_brk);
3293     }
3294 
3295     return 0;
3296 }
3297 
3298 #ifdef USE_ELF_CORE_DUMP
3299 /*
3300  * Definitions to generate Intel SVR4-like core files.
3301  * These mostly have the same names as the SVR4 types with "target_elf_"
3302  * tacked on the front to prevent clashes with linux definitions,
3303  * and the typedef forms have been avoided.  This is mostly like
3304  * the SVR4 structure, but more Linuxy, with things that Linux does
3305  * not support and which gdb doesn't really use excluded.
3306  *
3307  * Fields we don't dump (their contents is zero) in linux-user qemu
3308  * are marked with XXX.
3309  *
3310  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3311  *
3312  * Porting ELF coredump for target is (quite) simple process.  First you
3313  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3314  * the target resides):
3315  *
3316  * #define USE_ELF_CORE_DUMP
3317  *
3318  * Next you define type of register set used for dumping.  ELF specification
3319  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3320  *
3321  * typedef <target_regtype> target_elf_greg_t;
3322  * #define ELF_NREG <number of registers>
3323  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3324  *
3325  * Last step is to implement target specific function that copies registers
3326  * from given cpu into just specified register set.  Prototype is:
3327  *
3328  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3329  *                                const CPUArchState *env);
3330  *
3331  * Parameters:
3332  *     regs - copy register values into here (allocated and zeroed by caller)
3333  *     env - copy registers from here
3334  *
3335  * Example for ARM target is provided in this file.
3336  */
3337 
3338 /* An ELF note in memory */
3339 struct memelfnote {
3340     const char *name;
3341     size_t     namesz;
3342     size_t     namesz_rounded;
3343     int        type;
3344     size_t     datasz;
3345     size_t     datasz_rounded;
3346     void       *data;
3347     size_t     notesz;
3348 };
3349 
3350 struct target_elf_siginfo {
3351     abi_int    si_signo; /* signal number */
3352     abi_int    si_code;  /* extra code */
3353     abi_int    si_errno; /* errno */
3354 };
3355 
3356 struct target_elf_prstatus {
3357     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3358     abi_short          pr_cursig;    /* Current signal */
3359     abi_ulong          pr_sigpend;   /* XXX */
3360     abi_ulong          pr_sighold;   /* XXX */
3361     target_pid_t       pr_pid;
3362     target_pid_t       pr_ppid;
3363     target_pid_t       pr_pgrp;
3364     target_pid_t       pr_sid;
3365     struct target_timeval pr_utime;  /* XXX User time */
3366     struct target_timeval pr_stime;  /* XXX System time */
3367     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3368     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3369     target_elf_gregset_t      pr_reg;       /* GP registers */
3370     abi_int            pr_fpvalid;   /* XXX */
3371 };
3372 
3373 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3374 
3375 struct target_elf_prpsinfo {
3376     char         pr_state;       /* numeric process state */
3377     char         pr_sname;       /* char for pr_state */
3378     char         pr_zomb;        /* zombie */
3379     char         pr_nice;        /* nice val */
3380     abi_ulong    pr_flag;        /* flags */
3381     target_uid_t pr_uid;
3382     target_gid_t pr_gid;
3383     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3384     /* Lots missing */
3385     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3386     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3387 };
3388 
3389 /* Here is the structure in which status of each thread is captured. */
3390 struct elf_thread_status {
3391     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3392     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3393 #if 0
3394     elf_fpregset_t fpu;             /* NT_PRFPREG */
3395     struct task_struct *thread;
3396     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3397 #endif
3398     struct memelfnote notes[1];
3399     int num_notes;
3400 };
3401 
3402 struct elf_note_info {
3403     struct memelfnote   *notes;
3404     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3405     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3406 
3407     QTAILQ_HEAD(, elf_thread_status) thread_list;
3408 #if 0
3409     /*
3410      * Current version of ELF coredump doesn't support
3411      * dumping fp regs etc.
3412      */
3413     elf_fpregset_t *fpu;
3414     elf_fpxregset_t *xfpu;
3415     int thread_status_size;
3416 #endif
3417     int notes_size;
3418     int numnote;
3419 };
3420 
3421 struct vm_area_struct {
3422     target_ulong   vma_start;  /* start vaddr of memory region */
3423     target_ulong   vma_end;    /* end vaddr of memory region */
3424     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3425     QTAILQ_ENTRY(vm_area_struct) vma_link;
3426 };
3427 
3428 struct mm_struct {
3429     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3430     int mm_count;           /* number of mappings */
3431 };
3432 
3433 static struct mm_struct *vma_init(void);
3434 static void vma_delete(struct mm_struct *);
3435 static int vma_add_mapping(struct mm_struct *, target_ulong,
3436                            target_ulong, abi_ulong);
3437 static int vma_get_mapping_count(const struct mm_struct *);
3438 static struct vm_area_struct *vma_first(const struct mm_struct *);
3439 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3440 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3441 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3442                       unsigned long flags);
3443 
3444 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3445 static void fill_note(struct memelfnote *, const char *, int,
3446                       unsigned int, void *);
3447 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3448 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3449 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3450 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3451 static size_t note_size(const struct memelfnote *);
3452 static void free_note_info(struct elf_note_info *);
3453 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3454 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3455 
3456 static int dump_write(int, const void *, size_t);
3457 static int write_note(struct memelfnote *, int);
3458 static int write_note_info(struct elf_note_info *, int);
3459 
3460 #ifdef BSWAP_NEEDED
3461 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3462 {
3463     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3464     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3465     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3466     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3467     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3468     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3469     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3470     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3471     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3472     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3473     /* cpu times are not filled, so we skip them */
3474     /* regs should be in correct format already */
3475     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3476 }
3477 
3478 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3479 {
3480     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3481     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3482     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3483     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3484     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3485     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3486     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3487 }
3488 
3489 static void bswap_note(struct elf_note *en)
3490 {
3491     bswap32s(&en->n_namesz);
3492     bswap32s(&en->n_descsz);
3493     bswap32s(&en->n_type);
3494 }
3495 #else
3496 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3497 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3498 static inline void bswap_note(struct elf_note *en) { }
3499 #endif /* BSWAP_NEEDED */
3500 
3501 /*
3502  * Minimal support for linux memory regions.  These are needed
3503  * when we are finding out what memory exactly belongs to
3504  * emulated process.  No locks needed here, as long as
3505  * thread that received the signal is stopped.
3506  */
3507 
3508 static struct mm_struct *vma_init(void)
3509 {
3510     struct mm_struct *mm;
3511 
3512     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3513         return (NULL);
3514 
3515     mm->mm_count = 0;
3516     QTAILQ_INIT(&mm->mm_mmap);
3517 
3518     return (mm);
3519 }
3520 
3521 static void vma_delete(struct mm_struct *mm)
3522 {
3523     struct vm_area_struct *vma;
3524 
3525     while ((vma = vma_first(mm)) != NULL) {
3526         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3527         g_free(vma);
3528     }
3529     g_free(mm);
3530 }
3531 
3532 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3533                            target_ulong end, abi_ulong flags)
3534 {
3535     struct vm_area_struct *vma;
3536 
3537     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3538         return (-1);
3539 
3540     vma->vma_start = start;
3541     vma->vma_end = end;
3542     vma->vma_flags = flags;
3543 
3544     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3545     mm->mm_count++;
3546 
3547     return (0);
3548 }
3549 
3550 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3551 {
3552     return (QTAILQ_FIRST(&mm->mm_mmap));
3553 }
3554 
3555 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3556 {
3557     return (QTAILQ_NEXT(vma, vma_link));
3558 }
3559 
3560 static int vma_get_mapping_count(const struct mm_struct *mm)
3561 {
3562     return (mm->mm_count);
3563 }
3564 
3565 /*
3566  * Calculate file (dump) size of given memory region.
3567  */
3568 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3569 {
3570     /* if we cannot even read the first page, skip it */
3571     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3572         return (0);
3573 
3574     /*
3575      * Usually we don't dump executable pages as they contain
3576      * non-writable code that debugger can read directly from
3577      * target library etc.  However, thread stacks are marked
3578      * also executable so we read in first page of given region
3579      * and check whether it contains elf header.  If there is
3580      * no elf header, we dump it.
3581      */
3582     if (vma->vma_flags & PROT_EXEC) {
3583         char page[TARGET_PAGE_SIZE];
3584 
3585         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3586             return 0;
3587         }
3588         if ((page[EI_MAG0] == ELFMAG0) &&
3589             (page[EI_MAG1] == ELFMAG1) &&
3590             (page[EI_MAG2] == ELFMAG2) &&
3591             (page[EI_MAG3] == ELFMAG3)) {
3592             /*
3593              * Mappings are possibly from ELF binary.  Don't dump
3594              * them.
3595              */
3596             return (0);
3597         }
3598     }
3599 
3600     return (vma->vma_end - vma->vma_start);
3601 }
3602 
3603 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3604                       unsigned long flags)
3605 {
3606     struct mm_struct *mm = (struct mm_struct *)priv;
3607 
3608     vma_add_mapping(mm, start, end, flags);
3609     return (0);
3610 }
3611 
3612 static void fill_note(struct memelfnote *note, const char *name, int type,
3613                       unsigned int sz, void *data)
3614 {
3615     unsigned int namesz;
3616 
3617     namesz = strlen(name) + 1;
3618     note->name = name;
3619     note->namesz = namesz;
3620     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3621     note->type = type;
3622     note->datasz = sz;
3623     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3624 
3625     note->data = data;
3626 
3627     /*
3628      * We calculate rounded up note size here as specified by
3629      * ELF document.
3630      */
3631     note->notesz = sizeof (struct elf_note) +
3632         note->namesz_rounded + note->datasz_rounded;
3633 }
3634 
3635 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3636                             uint32_t flags)
3637 {
3638     (void) memset(elf, 0, sizeof(*elf));
3639 
3640     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3641     elf->e_ident[EI_CLASS] = ELF_CLASS;
3642     elf->e_ident[EI_DATA] = ELF_DATA;
3643     elf->e_ident[EI_VERSION] = EV_CURRENT;
3644     elf->e_ident[EI_OSABI] = ELF_OSABI;
3645 
3646     elf->e_type = ET_CORE;
3647     elf->e_machine = machine;
3648     elf->e_version = EV_CURRENT;
3649     elf->e_phoff = sizeof(struct elfhdr);
3650     elf->e_flags = flags;
3651     elf->e_ehsize = sizeof(struct elfhdr);
3652     elf->e_phentsize = sizeof(struct elf_phdr);
3653     elf->e_phnum = segs;
3654 
3655     bswap_ehdr(elf);
3656 }
3657 
3658 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3659 {
3660     phdr->p_type = PT_NOTE;
3661     phdr->p_offset = offset;
3662     phdr->p_vaddr = 0;
3663     phdr->p_paddr = 0;
3664     phdr->p_filesz = sz;
3665     phdr->p_memsz = 0;
3666     phdr->p_flags = 0;
3667     phdr->p_align = 0;
3668 
3669     bswap_phdr(phdr, 1);
3670 }
3671 
3672 static size_t note_size(const struct memelfnote *note)
3673 {
3674     return (note->notesz);
3675 }
3676 
3677 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3678                           const TaskState *ts, int signr)
3679 {
3680     (void) memset(prstatus, 0, sizeof (*prstatus));
3681     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3682     prstatus->pr_pid = ts->ts_tid;
3683     prstatus->pr_ppid = getppid();
3684     prstatus->pr_pgrp = getpgrp();
3685     prstatus->pr_sid = getsid(0);
3686 
3687     bswap_prstatus(prstatus);
3688 }
3689 
3690 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3691 {
3692     char *base_filename;
3693     unsigned int i, len;
3694 
3695     (void) memset(psinfo, 0, sizeof (*psinfo));
3696 
3697     len = ts->info->env_strings - ts->info->arg_strings;
3698     if (len >= ELF_PRARGSZ)
3699         len = ELF_PRARGSZ - 1;
3700     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3701         return -EFAULT;
3702     }
3703     for (i = 0; i < len; i++)
3704         if (psinfo->pr_psargs[i] == 0)
3705             psinfo->pr_psargs[i] = ' ';
3706     psinfo->pr_psargs[len] = 0;
3707 
3708     psinfo->pr_pid = getpid();
3709     psinfo->pr_ppid = getppid();
3710     psinfo->pr_pgrp = getpgrp();
3711     psinfo->pr_sid = getsid(0);
3712     psinfo->pr_uid = getuid();
3713     psinfo->pr_gid = getgid();
3714 
3715     base_filename = g_path_get_basename(ts->bprm->filename);
3716     /*
3717      * Using strncpy here is fine: at max-length,
3718      * this field is not NUL-terminated.
3719      */
3720     (void) strncpy(psinfo->pr_fname, base_filename,
3721                    sizeof(psinfo->pr_fname));
3722 
3723     g_free(base_filename);
3724     bswap_psinfo(psinfo);
3725     return (0);
3726 }
3727 
3728 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3729 {
3730     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3731     elf_addr_t orig_auxv = auxv;
3732     void *ptr;
3733     int len = ts->info->auxv_len;
3734 
3735     /*
3736      * Auxiliary vector is stored in target process stack.  It contains
3737      * {type, value} pairs that we need to dump into note.  This is not
3738      * strictly necessary but we do it here for sake of completeness.
3739      */
3740 
3741     /* read in whole auxv vector and copy it to memelfnote */
3742     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3743     if (ptr != NULL) {
3744         fill_note(note, "CORE", NT_AUXV, len, ptr);
3745         unlock_user(ptr, auxv, len);
3746     }
3747 }
3748 
3749 /*
3750  * Constructs name of coredump file.  We have following convention
3751  * for the name:
3752  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3753  *
3754  * Returns the filename
3755  */
3756 static char *core_dump_filename(const TaskState *ts)
3757 {
3758     g_autoptr(GDateTime) now = g_date_time_new_now_local();
3759     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3760     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3761 
3762     return g_strdup_printf("qemu_%s_%s_%d.core",
3763                            base_filename, nowstr, (int)getpid());
3764 }
3765 
3766 static int dump_write(int fd, const void *ptr, size_t size)
3767 {
3768     const char *bufp = (const char *)ptr;
3769     ssize_t bytes_written, bytes_left;
3770     struct rlimit dumpsize;
3771     off_t pos;
3772 
3773     bytes_written = 0;
3774     getrlimit(RLIMIT_CORE, &dumpsize);
3775     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3776         if (errno == ESPIPE) { /* not a seekable stream */
3777             bytes_left = size;
3778         } else {
3779             return pos;
3780         }
3781     } else {
3782         if (dumpsize.rlim_cur <= pos) {
3783             return -1;
3784         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3785             bytes_left = size;
3786         } else {
3787             size_t limit_left=dumpsize.rlim_cur - pos;
3788             bytes_left = limit_left >= size ? size : limit_left ;
3789         }
3790     }
3791 
3792     /*
3793      * In normal conditions, single write(2) should do but
3794      * in case of socket etc. this mechanism is more portable.
3795      */
3796     do {
3797         bytes_written = write(fd, bufp, bytes_left);
3798         if (bytes_written < 0) {
3799             if (errno == EINTR)
3800                 continue;
3801             return (-1);
3802         } else if (bytes_written == 0) { /* eof */
3803             return (-1);
3804         }
3805         bufp += bytes_written;
3806         bytes_left -= bytes_written;
3807     } while (bytes_left > 0);
3808 
3809     return (0);
3810 }
3811 
3812 static int write_note(struct memelfnote *men, int fd)
3813 {
3814     struct elf_note en;
3815 
3816     en.n_namesz = men->namesz;
3817     en.n_type = men->type;
3818     en.n_descsz = men->datasz;
3819 
3820     bswap_note(&en);
3821 
3822     if (dump_write(fd, &en, sizeof(en)) != 0)
3823         return (-1);
3824     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3825         return (-1);
3826     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3827         return (-1);
3828 
3829     return (0);
3830 }
3831 
3832 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3833 {
3834     CPUState *cpu = env_cpu((CPUArchState *)env);
3835     TaskState *ts = (TaskState *)cpu->opaque;
3836     struct elf_thread_status *ets;
3837 
3838     ets = g_malloc0(sizeof (*ets));
3839     ets->num_notes = 1; /* only prstatus is dumped */
3840     fill_prstatus(&ets->prstatus, ts, 0);
3841     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3842     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3843               &ets->prstatus);
3844 
3845     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3846 
3847     info->notes_size += note_size(&ets->notes[0]);
3848 }
3849 
3850 static void init_note_info(struct elf_note_info *info)
3851 {
3852     /* Initialize the elf_note_info structure so that it is at
3853      * least safe to call free_note_info() on it. Must be
3854      * called before calling fill_note_info().
3855      */
3856     memset(info, 0, sizeof (*info));
3857     QTAILQ_INIT(&info->thread_list);
3858 }
3859 
3860 static int fill_note_info(struct elf_note_info *info,
3861                           long signr, const CPUArchState *env)
3862 {
3863 #define NUMNOTES 3
3864     CPUState *cpu = env_cpu((CPUArchState *)env);
3865     TaskState *ts = (TaskState *)cpu->opaque;
3866     int i;
3867 
3868     info->notes = g_new0(struct memelfnote, NUMNOTES);
3869     if (info->notes == NULL)
3870         return (-ENOMEM);
3871     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3872     if (info->prstatus == NULL)
3873         return (-ENOMEM);
3874     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3875     if (info->prstatus == NULL)
3876         return (-ENOMEM);
3877 
3878     /*
3879      * First fill in status (and registers) of current thread
3880      * including process info & aux vector.
3881      */
3882     fill_prstatus(info->prstatus, ts, signr);
3883     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3884     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3885               sizeof (*info->prstatus), info->prstatus);
3886     fill_psinfo(info->psinfo, ts);
3887     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3888               sizeof (*info->psinfo), info->psinfo);
3889     fill_auxv_note(&info->notes[2], ts);
3890     info->numnote = 3;
3891 
3892     info->notes_size = 0;
3893     for (i = 0; i < info->numnote; i++)
3894         info->notes_size += note_size(&info->notes[i]);
3895 
3896     /* read and fill status of all threads */
3897     cpu_list_lock();
3898     CPU_FOREACH(cpu) {
3899         if (cpu == thread_cpu) {
3900             continue;
3901         }
3902         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3903     }
3904     cpu_list_unlock();
3905 
3906     return (0);
3907 }
3908 
3909 static void free_note_info(struct elf_note_info *info)
3910 {
3911     struct elf_thread_status *ets;
3912 
3913     while (!QTAILQ_EMPTY(&info->thread_list)) {
3914         ets = QTAILQ_FIRST(&info->thread_list);
3915         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3916         g_free(ets);
3917     }
3918 
3919     g_free(info->prstatus);
3920     g_free(info->psinfo);
3921     g_free(info->notes);
3922 }
3923 
3924 static int write_note_info(struct elf_note_info *info, int fd)
3925 {
3926     struct elf_thread_status *ets;
3927     int i, error = 0;
3928 
3929     /* write prstatus, psinfo and auxv for current thread */
3930     for (i = 0; i < info->numnote; i++)
3931         if ((error = write_note(&info->notes[i], fd)) != 0)
3932             return (error);
3933 
3934     /* write prstatus for each thread */
3935     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3936         if ((error = write_note(&ets->notes[0], fd)) != 0)
3937             return (error);
3938     }
3939 
3940     return (0);
3941 }
3942 
3943 /*
3944  * Write out ELF coredump.
3945  *
3946  * See documentation of ELF object file format in:
3947  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3948  *
3949  * Coredump format in linux is following:
3950  *
3951  * 0   +----------------------+         \
3952  *     | ELF header           | ET_CORE  |
3953  *     +----------------------+          |
3954  *     | ELF program headers  |          |--- headers
3955  *     | - NOTE section       |          |
3956  *     | - PT_LOAD sections   |          |
3957  *     +----------------------+         /
3958  *     | NOTEs:               |
3959  *     | - NT_PRSTATUS        |
3960  *     | - NT_PRSINFO         |
3961  *     | - NT_AUXV            |
3962  *     +----------------------+ <-- aligned to target page
3963  *     | Process memory dump  |
3964  *     :                      :
3965  *     .                      .
3966  *     :                      :
3967  *     |                      |
3968  *     +----------------------+
3969  *
3970  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3971  * NT_PRSINFO  -> struct elf_prpsinfo
3972  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3973  *
3974  * Format follows System V format as close as possible.  Current
3975  * version limitations are as follows:
3976  *     - no floating point registers are dumped
3977  *
3978  * Function returns 0 in case of success, negative errno otherwise.
3979  *
3980  * TODO: make this work also during runtime: it should be
3981  * possible to force coredump from running process and then
3982  * continue processing.  For example qemu could set up SIGUSR2
3983  * handler (provided that target process haven't registered
3984  * handler for that) that does the dump when signal is received.
3985  */
3986 static int elf_core_dump(int signr, const CPUArchState *env)
3987 {
3988     const CPUState *cpu = env_cpu((CPUArchState *)env);
3989     const TaskState *ts = (const TaskState *)cpu->opaque;
3990     struct vm_area_struct *vma = NULL;
3991     g_autofree char *corefile = NULL;
3992     struct elf_note_info info;
3993     struct elfhdr elf;
3994     struct elf_phdr phdr;
3995     struct rlimit dumpsize;
3996     struct mm_struct *mm = NULL;
3997     off_t offset = 0, data_offset = 0;
3998     int segs = 0;
3999     int fd = -1;
4000 
4001     init_note_info(&info);
4002 
4003     errno = 0;
4004     getrlimit(RLIMIT_CORE, &dumpsize);
4005     if (dumpsize.rlim_cur == 0)
4006         return 0;
4007 
4008     corefile = core_dump_filename(ts);
4009 
4010     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4011                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4012         return (-errno);
4013 
4014     /*
4015      * Walk through target process memory mappings and
4016      * set up structure containing this information.  After
4017      * this point vma_xxx functions can be used.
4018      */
4019     if ((mm = vma_init()) == NULL)
4020         goto out;
4021 
4022     walk_memory_regions(mm, vma_walker);
4023     segs = vma_get_mapping_count(mm);
4024 
4025     /*
4026      * Construct valid coredump ELF header.  We also
4027      * add one more segment for notes.
4028      */
4029     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4030     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4031         goto out;
4032 
4033     /* fill in the in-memory version of notes */
4034     if (fill_note_info(&info, signr, env) < 0)
4035         goto out;
4036 
4037     offset += sizeof (elf);                             /* elf header */
4038     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4039 
4040     /* write out notes program header */
4041     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4042 
4043     offset += info.notes_size;
4044     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4045         goto out;
4046 
4047     /*
4048      * ELF specification wants data to start at page boundary so
4049      * we align it here.
4050      */
4051     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4052 
4053     /*
4054      * Write program headers for memory regions mapped in
4055      * the target process.
4056      */
4057     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4058         (void) memset(&phdr, 0, sizeof (phdr));
4059 
4060         phdr.p_type = PT_LOAD;
4061         phdr.p_offset = offset;
4062         phdr.p_vaddr = vma->vma_start;
4063         phdr.p_paddr = 0;
4064         phdr.p_filesz = vma_dump_size(vma);
4065         offset += phdr.p_filesz;
4066         phdr.p_memsz = vma->vma_end - vma->vma_start;
4067         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4068         if (vma->vma_flags & PROT_WRITE)
4069             phdr.p_flags |= PF_W;
4070         if (vma->vma_flags & PROT_EXEC)
4071             phdr.p_flags |= PF_X;
4072         phdr.p_align = ELF_EXEC_PAGESIZE;
4073 
4074         bswap_phdr(&phdr, 1);
4075         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4076             goto out;
4077         }
4078     }
4079 
4080     /*
4081      * Next we write notes just after program headers.  No
4082      * alignment needed here.
4083      */
4084     if (write_note_info(&info, fd) < 0)
4085         goto out;
4086 
4087     /* align data to page boundary */
4088     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4089         goto out;
4090 
4091     /*
4092      * Finally we can dump process memory into corefile as well.
4093      */
4094     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4095         abi_ulong addr;
4096         abi_ulong end;
4097 
4098         end = vma->vma_start + vma_dump_size(vma);
4099 
4100         for (addr = vma->vma_start; addr < end;
4101              addr += TARGET_PAGE_SIZE) {
4102             char page[TARGET_PAGE_SIZE];
4103             int error;
4104 
4105             /*
4106              *  Read in page from target process memory and
4107              *  write it to coredump file.
4108              */
4109             error = copy_from_user(page, addr, sizeof (page));
4110             if (error != 0) {
4111                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4112                                addr);
4113                 errno = -error;
4114                 goto out;
4115             }
4116             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4117                 goto out;
4118         }
4119     }
4120 
4121  out:
4122     free_note_info(&info);
4123     if (mm != NULL)
4124         vma_delete(mm);
4125     (void) close(fd);
4126 
4127     if (errno != 0)
4128         return (-errno);
4129     return (0);
4130 }
4131 #endif /* USE_ELF_CORE_DUMP */
4132 
4133 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4134 {
4135     init_thread(regs, infop);
4136 }
4137