xref: /qemu/linux-user/elfload.c (revision 86d063fa)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "qemu/error-report.h"
22 #include "target_signal.h"
23 #include "accel/tcg/debuginfo.h"
24 
25 #ifdef _ARCH_PPC64
26 #undef ARCH_DLINFO
27 #undef ELF_PLATFORM
28 #undef ELF_HWCAP
29 #undef ELF_HWCAP2
30 #undef ELF_CLASS
31 #undef ELF_DATA
32 #undef ELF_ARCH
33 #endif
34 
35 #define ELF_OSABI   ELFOSABI_SYSV
36 
37 /* from personality.h */
38 
39 /*
40  * Flags for bug emulation.
41  *
42  * These occupy the top three bytes.
43  */
44 enum {
45     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
46     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
47                                            descriptors (signal handling) */
48     MMAP_PAGE_ZERO =    0x0100000,
49     ADDR_COMPAT_LAYOUT = 0x0200000,
50     READ_IMPLIES_EXEC = 0x0400000,
51     ADDR_LIMIT_32BIT =  0x0800000,
52     SHORT_INODE =       0x1000000,
53     WHOLE_SECONDS =     0x2000000,
54     STICKY_TIMEOUTS =   0x4000000,
55     ADDR_LIMIT_3GB =    0x8000000,
56 };
57 
58 /*
59  * Personality types.
60  *
61  * These go in the low byte.  Avoid using the top bit, it will
62  * conflict with error returns.
63  */
64 enum {
65     PER_LINUX =         0x0000,
66     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
67     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
68     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
69     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
71     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
72     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
73     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
74     PER_BSD =           0x0006,
75     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
76     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
77     PER_LINUX32 =       0x0008,
78     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
79     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
80     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
81     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
82     PER_RISCOS =        0x000c,
83     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
84     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
85     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
86     PER_HPUX =          0x0010,
87     PER_MASK =          0x00ff,
88 };
89 
90 /*
91  * Return the base personality without flags.
92  */
93 #define personality(pers)       (pers & PER_MASK)
94 
95 int info_is_fdpic(struct image_info *info)
96 {
97     return info->personality == PER_LINUX_FDPIC;
98 }
99 
100 /* this flag is uneffective under linux too, should be deleted */
101 #ifndef MAP_DENYWRITE
102 #define MAP_DENYWRITE 0
103 #endif
104 
105 /* should probably go in elf.h */
106 #ifndef ELIBBAD
107 #define ELIBBAD 80
108 #endif
109 
110 #if TARGET_BIG_ENDIAN
111 #define ELF_DATA        ELFDATA2MSB
112 #else
113 #define ELF_DATA        ELFDATA2LSB
114 #endif
115 
116 #ifdef TARGET_ABI_MIPSN32
117 typedef abi_ullong      target_elf_greg_t;
118 #define tswapreg(ptr)   tswap64(ptr)
119 #else
120 typedef abi_ulong       target_elf_greg_t;
121 #define tswapreg(ptr)   tswapal(ptr)
122 #endif
123 
124 #ifdef USE_UID16
125 typedef abi_ushort      target_uid_t;
126 typedef abi_ushort      target_gid_t;
127 #else
128 typedef abi_uint        target_uid_t;
129 typedef abi_uint        target_gid_t;
130 #endif
131 typedef abi_int         target_pid_t;
132 
133 #ifdef TARGET_I386
134 
135 #define ELF_HWCAP get_elf_hwcap()
136 
137 static uint32_t get_elf_hwcap(void)
138 {
139     X86CPU *cpu = X86_CPU(thread_cpu);
140 
141     return cpu->env.features[FEAT_1_EDX];
142 }
143 
144 #ifdef TARGET_X86_64
145 #define ELF_START_MMAP 0x2aaaaab000ULL
146 
147 #define ELF_CLASS      ELFCLASS64
148 #define ELF_ARCH       EM_X86_64
149 
150 #define ELF_PLATFORM   "x86_64"
151 
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154     regs->rax = 0;
155     regs->rsp = infop->start_stack;
156     regs->rip = infop->entry;
157 }
158 
159 #define ELF_NREG    27
160 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
161 
162 /*
163  * Note that ELF_NREG should be 29 as there should be place for
164  * TRAPNO and ERR "registers" as well but linux doesn't dump
165  * those.
166  *
167  * See linux kernel: arch/x86/include/asm/elf.h
168  */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171     (*regs)[0] = tswapreg(env->regs[15]);
172     (*regs)[1] = tswapreg(env->regs[14]);
173     (*regs)[2] = tswapreg(env->regs[13]);
174     (*regs)[3] = tswapreg(env->regs[12]);
175     (*regs)[4] = tswapreg(env->regs[R_EBP]);
176     (*regs)[5] = tswapreg(env->regs[R_EBX]);
177     (*regs)[6] = tswapreg(env->regs[11]);
178     (*regs)[7] = tswapreg(env->regs[10]);
179     (*regs)[8] = tswapreg(env->regs[9]);
180     (*regs)[9] = tswapreg(env->regs[8]);
181     (*regs)[10] = tswapreg(env->regs[R_EAX]);
182     (*regs)[11] = tswapreg(env->regs[R_ECX]);
183     (*regs)[12] = tswapreg(env->regs[R_EDX]);
184     (*regs)[13] = tswapreg(env->regs[R_ESI]);
185     (*regs)[14] = tswapreg(env->regs[R_EDI]);
186     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
187     (*regs)[16] = tswapreg(env->eip);
188     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
189     (*regs)[18] = tswapreg(env->eflags);
190     (*regs)[19] = tswapreg(env->regs[R_ESP]);
191     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
192     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
193     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
194     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
195     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
196     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
197     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
198 }
199 
200 #if ULONG_MAX > UINT32_MAX
201 #define INIT_GUEST_COMMPAGE
202 static bool init_guest_commpage(void)
203 {
204     /*
205      * The vsyscall page is at a high negative address aka kernel space,
206      * which means that we cannot actually allocate it with target_mmap.
207      * We still should be able to use page_set_flags, unless the user
208      * has specified -R reserved_va, which would trigger an assert().
209      */
210     if (reserved_va != 0 &&
211         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
212         error_report("Cannot allocate vsyscall page");
213         exit(EXIT_FAILURE);
214     }
215     page_set_flags(TARGET_VSYSCALL_PAGE,
216                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
217                    PAGE_EXEC | PAGE_VALID);
218     return true;
219 }
220 #endif
221 #else
222 
223 #define ELF_START_MMAP 0x80000000
224 
225 /*
226  * This is used to ensure we don't load something for the wrong architecture.
227  */
228 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
229 
230 /*
231  * These are used to set parameters in the core dumps.
232  */
233 #define ELF_CLASS       ELFCLASS32
234 #define ELF_ARCH        EM_386
235 
236 #define ELF_PLATFORM get_elf_platform()
237 #define EXSTACK_DEFAULT true
238 
239 static const char *get_elf_platform(void)
240 {
241     static char elf_platform[] = "i386";
242     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
243     if (family > 6) {
244         family = 6;
245     }
246     if (family >= 3) {
247         elf_platform[1] = '0' + family;
248     }
249     return elf_platform;
250 }
251 
252 static inline void init_thread(struct target_pt_regs *regs,
253                                struct image_info *infop)
254 {
255     regs->esp = infop->start_stack;
256     regs->eip = infop->entry;
257 
258     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
259        starts %edx contains a pointer to a function which might be
260        registered using `atexit'.  This provides a mean for the
261        dynamic linker to call DT_FINI functions for shared libraries
262        that have been loaded before the code runs.
263 
264        A value of 0 tells we have no such handler.  */
265     regs->edx = 0;
266 }
267 
268 #define ELF_NREG    17
269 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
270 
271 /*
272  * Note that ELF_NREG should be 19 as there should be place for
273  * TRAPNO and ERR "registers" as well but linux doesn't dump
274  * those.
275  *
276  * See linux kernel: arch/x86/include/asm/elf.h
277  */
278 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
279 {
280     (*regs)[0] = tswapreg(env->regs[R_EBX]);
281     (*regs)[1] = tswapreg(env->regs[R_ECX]);
282     (*regs)[2] = tswapreg(env->regs[R_EDX]);
283     (*regs)[3] = tswapreg(env->regs[R_ESI]);
284     (*regs)[4] = tswapreg(env->regs[R_EDI]);
285     (*regs)[5] = tswapreg(env->regs[R_EBP]);
286     (*regs)[6] = tswapreg(env->regs[R_EAX]);
287     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
288     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
289     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
290     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
291     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
292     (*regs)[12] = tswapreg(env->eip);
293     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
294     (*regs)[14] = tswapreg(env->eflags);
295     (*regs)[15] = tswapreg(env->regs[R_ESP]);
296     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
297 }
298 #endif
299 
300 #define USE_ELF_CORE_DUMP
301 #define ELF_EXEC_PAGESIZE       4096
302 
303 #endif
304 
305 #ifdef TARGET_ARM
306 
307 #ifndef TARGET_AARCH64
308 /* 32 bit ARM definitions */
309 
310 #define ELF_START_MMAP 0x80000000
311 
312 #define ELF_ARCH        EM_ARM
313 #define ELF_CLASS       ELFCLASS32
314 #define EXSTACK_DEFAULT true
315 
316 static inline void init_thread(struct target_pt_regs *regs,
317                                struct image_info *infop)
318 {
319     abi_long stack = infop->start_stack;
320     memset(regs, 0, sizeof(*regs));
321 
322     regs->uregs[16] = ARM_CPU_MODE_USR;
323     if (infop->entry & 1) {
324         regs->uregs[16] |= CPSR_T;
325     }
326     regs->uregs[15] = infop->entry & 0xfffffffe;
327     regs->uregs[13] = infop->start_stack;
328     /* FIXME - what to for failure of get_user()? */
329     get_user_ual(regs->uregs[2], stack + 8); /* envp */
330     get_user_ual(regs->uregs[1], stack + 4); /* envp */
331     /* XXX: it seems that r0 is zeroed after ! */
332     regs->uregs[0] = 0;
333     /* For uClinux PIC binaries.  */
334     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
335     regs->uregs[10] = infop->start_data;
336 
337     /* Support ARM FDPIC.  */
338     if (info_is_fdpic(infop)) {
339         /* As described in the ABI document, r7 points to the loadmap info
340          * prepared by the kernel. If an interpreter is needed, r8 points
341          * to the interpreter loadmap and r9 points to the interpreter
342          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
343          * r9 points to the main program PT_DYNAMIC info.
344          */
345         regs->uregs[7] = infop->loadmap_addr;
346         if (infop->interpreter_loadmap_addr) {
347             /* Executable is dynamically loaded.  */
348             regs->uregs[8] = infop->interpreter_loadmap_addr;
349             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
350         } else {
351             regs->uregs[8] = 0;
352             regs->uregs[9] = infop->pt_dynamic_addr;
353         }
354     }
355 }
356 
357 #define ELF_NREG    18
358 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
359 
360 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
361 {
362     (*regs)[0] = tswapreg(env->regs[0]);
363     (*regs)[1] = tswapreg(env->regs[1]);
364     (*regs)[2] = tswapreg(env->regs[2]);
365     (*regs)[3] = tswapreg(env->regs[3]);
366     (*regs)[4] = tswapreg(env->regs[4]);
367     (*regs)[5] = tswapreg(env->regs[5]);
368     (*regs)[6] = tswapreg(env->regs[6]);
369     (*regs)[7] = tswapreg(env->regs[7]);
370     (*regs)[8] = tswapreg(env->regs[8]);
371     (*regs)[9] = tswapreg(env->regs[9]);
372     (*regs)[10] = tswapreg(env->regs[10]);
373     (*regs)[11] = tswapreg(env->regs[11]);
374     (*regs)[12] = tswapreg(env->regs[12]);
375     (*regs)[13] = tswapreg(env->regs[13]);
376     (*regs)[14] = tswapreg(env->regs[14]);
377     (*regs)[15] = tswapreg(env->regs[15]);
378 
379     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
380     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
381 }
382 
383 #define USE_ELF_CORE_DUMP
384 #define ELF_EXEC_PAGESIZE       4096
385 
386 enum
387 {
388     ARM_HWCAP_ARM_SWP       = 1 << 0,
389     ARM_HWCAP_ARM_HALF      = 1 << 1,
390     ARM_HWCAP_ARM_THUMB     = 1 << 2,
391     ARM_HWCAP_ARM_26BIT     = 1 << 3,
392     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
393     ARM_HWCAP_ARM_FPA       = 1 << 5,
394     ARM_HWCAP_ARM_VFP       = 1 << 6,
395     ARM_HWCAP_ARM_EDSP      = 1 << 7,
396     ARM_HWCAP_ARM_JAVA      = 1 << 8,
397     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
398     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
399     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
400     ARM_HWCAP_ARM_NEON      = 1 << 12,
401     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
402     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
403     ARM_HWCAP_ARM_TLS       = 1 << 15,
404     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
405     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
406     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
407     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
408     ARM_HWCAP_ARM_LPAE      = 1 << 20,
409     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
410 };
411 
412 enum {
413     ARM_HWCAP2_ARM_AES      = 1 << 0,
414     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
415     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
416     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
417     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
418 };
419 
420 /* The commpage only exists for 32 bit kernels */
421 
422 #define HI_COMMPAGE (intptr_t)0xffff0f00u
423 
424 static bool init_guest_commpage(void)
425 {
426     abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
427     void *want = g2h_untagged(commpage);
428     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
429                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
430 
431     if (addr == MAP_FAILED) {
432         perror("Allocating guest commpage");
433         exit(EXIT_FAILURE);
434     }
435     if (addr != want) {
436         return false;
437     }
438 
439     /* Set kernel helper versions; rest of page is 0.  */
440     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
441 
442     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
443         perror("Protecting guest commpage");
444         exit(EXIT_FAILURE);
445     }
446 
447     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
448                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
449     return true;
450 }
451 
452 #define ELF_HWCAP get_elf_hwcap()
453 #define ELF_HWCAP2 get_elf_hwcap2()
454 
455 static uint32_t get_elf_hwcap(void)
456 {
457     ARMCPU *cpu = ARM_CPU(thread_cpu);
458     uint32_t hwcaps = 0;
459 
460     hwcaps |= ARM_HWCAP_ARM_SWP;
461     hwcaps |= ARM_HWCAP_ARM_HALF;
462     hwcaps |= ARM_HWCAP_ARM_THUMB;
463     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
464 
465     /* probe for the extra features */
466 #define GET_FEATURE(feat, hwcap) \
467     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
468 
469 #define GET_FEATURE_ID(feat, hwcap) \
470     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
471 
472     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
473     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
474     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
475     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
476     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
477     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
478     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
479     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
480     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
481     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
482 
483     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
484         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
485         hwcaps |= ARM_HWCAP_ARM_VFPv3;
486         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
487             hwcaps |= ARM_HWCAP_ARM_VFPD32;
488         } else {
489             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
490         }
491     }
492     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
493 
494     return hwcaps;
495 }
496 
497 static uint32_t get_elf_hwcap2(void)
498 {
499     ARMCPU *cpu = ARM_CPU(thread_cpu);
500     uint32_t hwcaps = 0;
501 
502     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
503     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
504     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
505     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
506     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
507     return hwcaps;
508 }
509 
510 #undef GET_FEATURE
511 #undef GET_FEATURE_ID
512 
513 #define ELF_PLATFORM get_elf_platform()
514 
515 static const char *get_elf_platform(void)
516 {
517     CPUARMState *env = thread_cpu->env_ptr;
518 
519 #if TARGET_BIG_ENDIAN
520 # define END  "b"
521 #else
522 # define END  "l"
523 #endif
524 
525     if (arm_feature(env, ARM_FEATURE_V8)) {
526         return "v8" END;
527     } else if (arm_feature(env, ARM_FEATURE_V7)) {
528         if (arm_feature(env, ARM_FEATURE_M)) {
529             return "v7m" END;
530         } else {
531             return "v7" END;
532         }
533     } else if (arm_feature(env, ARM_FEATURE_V6)) {
534         return "v6" END;
535     } else if (arm_feature(env, ARM_FEATURE_V5)) {
536         return "v5" END;
537     } else {
538         return "v4" END;
539     }
540 
541 #undef END
542 }
543 
544 #else
545 /* 64 bit ARM definitions */
546 #define ELF_START_MMAP 0x80000000
547 
548 #define ELF_ARCH        EM_AARCH64
549 #define ELF_CLASS       ELFCLASS64
550 #if TARGET_BIG_ENDIAN
551 # define ELF_PLATFORM    "aarch64_be"
552 #else
553 # define ELF_PLATFORM    "aarch64"
554 #endif
555 
556 static inline void init_thread(struct target_pt_regs *regs,
557                                struct image_info *infop)
558 {
559     abi_long stack = infop->start_stack;
560     memset(regs, 0, sizeof(*regs));
561 
562     regs->pc = infop->entry & ~0x3ULL;
563     regs->sp = stack;
564 }
565 
566 #define ELF_NREG    34
567 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
568 
569 static void elf_core_copy_regs(target_elf_gregset_t *regs,
570                                const CPUARMState *env)
571 {
572     int i;
573 
574     for (i = 0; i < 32; i++) {
575         (*regs)[i] = tswapreg(env->xregs[i]);
576     }
577     (*regs)[32] = tswapreg(env->pc);
578     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
579 }
580 
581 #define USE_ELF_CORE_DUMP
582 #define ELF_EXEC_PAGESIZE       4096
583 
584 enum {
585     ARM_HWCAP_A64_FP            = 1 << 0,
586     ARM_HWCAP_A64_ASIMD         = 1 << 1,
587     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
588     ARM_HWCAP_A64_AES           = 1 << 3,
589     ARM_HWCAP_A64_PMULL         = 1 << 4,
590     ARM_HWCAP_A64_SHA1          = 1 << 5,
591     ARM_HWCAP_A64_SHA2          = 1 << 6,
592     ARM_HWCAP_A64_CRC32         = 1 << 7,
593     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
594     ARM_HWCAP_A64_FPHP          = 1 << 9,
595     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
596     ARM_HWCAP_A64_CPUID         = 1 << 11,
597     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
598     ARM_HWCAP_A64_JSCVT         = 1 << 13,
599     ARM_HWCAP_A64_FCMA          = 1 << 14,
600     ARM_HWCAP_A64_LRCPC         = 1 << 15,
601     ARM_HWCAP_A64_DCPOP         = 1 << 16,
602     ARM_HWCAP_A64_SHA3          = 1 << 17,
603     ARM_HWCAP_A64_SM3           = 1 << 18,
604     ARM_HWCAP_A64_SM4           = 1 << 19,
605     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
606     ARM_HWCAP_A64_SHA512        = 1 << 21,
607     ARM_HWCAP_A64_SVE           = 1 << 22,
608     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
609     ARM_HWCAP_A64_DIT           = 1 << 24,
610     ARM_HWCAP_A64_USCAT         = 1 << 25,
611     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
612     ARM_HWCAP_A64_FLAGM         = 1 << 27,
613     ARM_HWCAP_A64_SSBS          = 1 << 28,
614     ARM_HWCAP_A64_SB            = 1 << 29,
615     ARM_HWCAP_A64_PACA          = 1 << 30,
616     ARM_HWCAP_A64_PACG          = 1UL << 31,
617 
618     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
619     ARM_HWCAP2_A64_SVE2         = 1 << 1,
620     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
621     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
622     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
623     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
624     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
625     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
626     ARM_HWCAP2_A64_FRINT        = 1 << 8,
627     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
628     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
629     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
630     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
631     ARM_HWCAP2_A64_I8MM         = 1 << 13,
632     ARM_HWCAP2_A64_BF16         = 1 << 14,
633     ARM_HWCAP2_A64_DGH          = 1 << 15,
634     ARM_HWCAP2_A64_RNG          = 1 << 16,
635     ARM_HWCAP2_A64_BTI          = 1 << 17,
636     ARM_HWCAP2_A64_MTE          = 1 << 18,
637     ARM_HWCAP2_A64_ECV          = 1 << 19,
638     ARM_HWCAP2_A64_AFP          = 1 << 20,
639     ARM_HWCAP2_A64_RPRES        = 1 << 21,
640     ARM_HWCAP2_A64_MTE3         = 1 << 22,
641     ARM_HWCAP2_A64_SME          = 1 << 23,
642     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
643     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
644     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
645     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
646     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
647     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
648     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
649 };
650 
651 #define ELF_HWCAP   get_elf_hwcap()
652 #define ELF_HWCAP2  get_elf_hwcap2()
653 
654 #define GET_FEATURE_ID(feat, hwcap) \
655     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
656 
657 static uint32_t get_elf_hwcap(void)
658 {
659     ARMCPU *cpu = ARM_CPU(thread_cpu);
660     uint32_t hwcaps = 0;
661 
662     hwcaps |= ARM_HWCAP_A64_FP;
663     hwcaps |= ARM_HWCAP_A64_ASIMD;
664     hwcaps |= ARM_HWCAP_A64_CPUID;
665 
666     /* probe for the extra features */
667 
668     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
669     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
670     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
671     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
672     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
673     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
674     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
675     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
676     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
677     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
678     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
679     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
680     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
681     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
682     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
683     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
684     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
685     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
686     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
687     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
688     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
689     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
690     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
691 
692     return hwcaps;
693 }
694 
695 static uint32_t get_elf_hwcap2(void)
696 {
697     ARMCPU *cpu = ARM_CPU(thread_cpu);
698     uint32_t hwcaps = 0;
699 
700     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
701     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
702     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
703     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
704     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
705     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
706     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
707     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
708     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
709     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
710     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
711     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
712     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
713     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
714     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
715     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
716     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
717     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
718     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
719                               ARM_HWCAP2_A64_SME_F32F32 |
720                               ARM_HWCAP2_A64_SME_B16F32 |
721                               ARM_HWCAP2_A64_SME_F16F32 |
722                               ARM_HWCAP2_A64_SME_I8I32));
723     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
724     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
725     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
726 
727     return hwcaps;
728 }
729 
730 #undef GET_FEATURE_ID
731 
732 #endif /* not TARGET_AARCH64 */
733 #endif /* TARGET_ARM */
734 
735 #ifdef TARGET_SPARC
736 #ifdef TARGET_SPARC64
737 
738 #define ELF_START_MMAP 0x80000000
739 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
740                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
741 #ifndef TARGET_ABI32
742 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
743 #else
744 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
745 #endif
746 
747 #define ELF_CLASS   ELFCLASS64
748 #define ELF_ARCH    EM_SPARCV9
749 #else
750 #define ELF_START_MMAP 0x80000000
751 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
752                     | HWCAP_SPARC_MULDIV)
753 #define ELF_CLASS   ELFCLASS32
754 #define ELF_ARCH    EM_SPARC
755 #endif /* TARGET_SPARC64 */
756 
757 static inline void init_thread(struct target_pt_regs *regs,
758                                struct image_info *infop)
759 {
760     /* Note that target_cpu_copy_regs does not read psr/tstate. */
761     regs->pc = infop->entry;
762     regs->npc = regs->pc + 4;
763     regs->y = 0;
764     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
765                         - TARGET_STACK_BIAS);
766 }
767 #endif /* TARGET_SPARC */
768 
769 #ifdef TARGET_PPC
770 
771 #define ELF_MACHINE    PPC_ELF_MACHINE
772 #define ELF_START_MMAP 0x80000000
773 
774 #if defined(TARGET_PPC64)
775 
776 #define elf_check_arch(x) ( (x) == EM_PPC64 )
777 
778 #define ELF_CLASS       ELFCLASS64
779 
780 #else
781 
782 #define ELF_CLASS       ELFCLASS32
783 #define EXSTACK_DEFAULT true
784 
785 #endif
786 
787 #define ELF_ARCH        EM_PPC
788 
789 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
790    See arch/powerpc/include/asm/cputable.h.  */
791 enum {
792     QEMU_PPC_FEATURE_32 = 0x80000000,
793     QEMU_PPC_FEATURE_64 = 0x40000000,
794     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
795     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
796     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
797     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
798     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
799     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
800     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
801     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
802     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
803     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
804     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
805     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
806     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
807     QEMU_PPC_FEATURE_CELL = 0x00010000,
808     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
809     QEMU_PPC_FEATURE_SMT = 0x00004000,
810     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
811     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
812     QEMU_PPC_FEATURE_PA6T = 0x00000800,
813     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
814     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
815     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
816     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
817     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
818 
819     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
820     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
821 
822     /* Feature definitions in AT_HWCAP2.  */
823     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
824     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
825     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
826     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
827     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
828     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
829     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
830     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
831     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
832     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
833     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
834     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
835     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
836     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
837     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
838 };
839 
840 #define ELF_HWCAP get_elf_hwcap()
841 
842 static uint32_t get_elf_hwcap(void)
843 {
844     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
845     uint32_t features = 0;
846 
847     /* We don't have to be terribly complete here; the high points are
848        Altivec/FP/SPE support.  Anything else is just a bonus.  */
849 #define GET_FEATURE(flag, feature)                                      \
850     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
851 #define GET_FEATURE2(flags, feature) \
852     do { \
853         if ((cpu->env.insns_flags2 & flags) == flags) { \
854             features |= feature; \
855         } \
856     } while (0)
857     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
858     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
859     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
860     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
861     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
862     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
863     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
864     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
865     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
866     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
867     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
868                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
869                   QEMU_PPC_FEATURE_ARCH_2_06);
870 #undef GET_FEATURE
871 #undef GET_FEATURE2
872 
873     return features;
874 }
875 
876 #define ELF_HWCAP2 get_elf_hwcap2()
877 
878 static uint32_t get_elf_hwcap2(void)
879 {
880     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
881     uint32_t features = 0;
882 
883 #define GET_FEATURE(flag, feature)                                      \
884     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
885 #define GET_FEATURE2(flag, feature)                                      \
886     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
887 
888     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
889     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
890     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
891                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
892                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
893     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
894                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
895     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
896                  QEMU_PPC_FEATURE2_MMA);
897 
898 #undef GET_FEATURE
899 #undef GET_FEATURE2
900 
901     return features;
902 }
903 
904 /*
905  * The requirements here are:
906  * - keep the final alignment of sp (sp & 0xf)
907  * - make sure the 32-bit value at the first 16 byte aligned position of
908  *   AUXV is greater than 16 for glibc compatibility.
909  *   AT_IGNOREPPC is used for that.
910  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
911  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
912  */
913 #define DLINFO_ARCH_ITEMS       5
914 #define ARCH_DLINFO                                     \
915     do {                                                \
916         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
917         /*                                              \
918          * Handle glibc compatibility: these magic entries must \
919          * be at the lowest addresses in the final auxv.        \
920          */                                             \
921         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
922         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
923         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
924         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
925         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
926     } while (0)
927 
928 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
929 {
930     _regs->gpr[1] = infop->start_stack;
931 #if defined(TARGET_PPC64)
932     if (get_ppc64_abi(infop) < 2) {
933         uint64_t val;
934         get_user_u64(val, infop->entry + 8);
935         _regs->gpr[2] = val + infop->load_bias;
936         get_user_u64(val, infop->entry);
937         infop->entry = val + infop->load_bias;
938     } else {
939         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
940     }
941 #endif
942     _regs->nip = infop->entry;
943 }
944 
945 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
946 #define ELF_NREG 48
947 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
948 
949 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
950 {
951     int i;
952     target_ulong ccr = 0;
953 
954     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
955         (*regs)[i] = tswapreg(env->gpr[i]);
956     }
957 
958     (*regs)[32] = tswapreg(env->nip);
959     (*regs)[33] = tswapreg(env->msr);
960     (*regs)[35] = tswapreg(env->ctr);
961     (*regs)[36] = tswapreg(env->lr);
962     (*regs)[37] = tswapreg(cpu_read_xer(env));
963 
964     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
965         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
966     }
967     (*regs)[38] = tswapreg(ccr);
968 }
969 
970 #define USE_ELF_CORE_DUMP
971 #define ELF_EXEC_PAGESIZE       4096
972 
973 #endif
974 
975 #ifdef TARGET_LOONGARCH64
976 
977 #define ELF_START_MMAP 0x80000000
978 
979 #define ELF_CLASS   ELFCLASS64
980 #define ELF_ARCH    EM_LOONGARCH
981 #define EXSTACK_DEFAULT true
982 
983 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
984 
985 static inline void init_thread(struct target_pt_regs *regs,
986                                struct image_info *infop)
987 {
988     /*Set crmd PG,DA = 1,0 */
989     regs->csr.crmd = 2 << 3;
990     regs->csr.era = infop->entry;
991     regs->regs[3] = infop->start_stack;
992 }
993 
994 /* See linux kernel: arch/loongarch/include/asm/elf.h */
995 #define ELF_NREG 45
996 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
997 
998 enum {
999     TARGET_EF_R0 = 0,
1000     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1001     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1002 };
1003 
1004 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1005                                const CPULoongArchState *env)
1006 {
1007     int i;
1008 
1009     (*regs)[TARGET_EF_R0] = 0;
1010 
1011     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1012         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1013     }
1014 
1015     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1016     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1017 }
1018 
1019 #define USE_ELF_CORE_DUMP
1020 #define ELF_EXEC_PAGESIZE        4096
1021 
1022 #define ELF_HWCAP get_elf_hwcap()
1023 
1024 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1025 enum {
1026     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1027     HWCAP_LOONGARCH_LAM      = (1 << 1),
1028     HWCAP_LOONGARCH_UAL      = (1 << 2),
1029     HWCAP_LOONGARCH_FPU      = (1 << 3),
1030     HWCAP_LOONGARCH_LSX      = (1 << 4),
1031     HWCAP_LOONGARCH_LASX     = (1 << 5),
1032     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1033     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1034     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1035     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1036     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1037     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1038     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1039 };
1040 
1041 static uint32_t get_elf_hwcap(void)
1042 {
1043     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1044     uint32_t hwcaps = 0;
1045 
1046     hwcaps |= HWCAP_LOONGARCH_CRC32;
1047 
1048     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1049         hwcaps |= HWCAP_LOONGARCH_UAL;
1050     }
1051 
1052     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1053         hwcaps |= HWCAP_LOONGARCH_FPU;
1054     }
1055 
1056     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1057         hwcaps |= HWCAP_LOONGARCH_LAM;
1058     }
1059 
1060     return hwcaps;
1061 }
1062 
1063 #define ELF_PLATFORM "loongarch"
1064 
1065 #endif /* TARGET_LOONGARCH64 */
1066 
1067 #ifdef TARGET_MIPS
1068 
1069 #define ELF_START_MMAP 0x80000000
1070 
1071 #ifdef TARGET_MIPS64
1072 #define ELF_CLASS   ELFCLASS64
1073 #else
1074 #define ELF_CLASS   ELFCLASS32
1075 #endif
1076 #define ELF_ARCH    EM_MIPS
1077 #define EXSTACK_DEFAULT true
1078 
1079 #ifdef TARGET_ABI_MIPSN32
1080 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1081 #else
1082 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1083 #endif
1084 
1085 #define ELF_BASE_PLATFORM get_elf_base_platform()
1086 
1087 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1088     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1089     { return _base_platform; } } while (0)
1090 
1091 static const char *get_elf_base_platform(void)
1092 {
1093     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1094 
1095     /* 64 bit ISAs goes first */
1096     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1097     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1098     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1099     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1100     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1101     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1102     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1103 
1104     /* 32 bit ISAs */
1105     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1106     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1107     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1108     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1109     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1110 
1111     /* Fallback */
1112     return "mips";
1113 }
1114 #undef MATCH_PLATFORM_INSN
1115 
1116 static inline void init_thread(struct target_pt_regs *regs,
1117                                struct image_info *infop)
1118 {
1119     regs->cp0_status = 2 << CP0St_KSU;
1120     regs->cp0_epc = infop->entry;
1121     regs->regs[29] = infop->start_stack;
1122 }
1123 
1124 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1125 #define ELF_NREG 45
1126 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1127 
1128 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1129 enum {
1130 #ifdef TARGET_MIPS64
1131     TARGET_EF_R0 = 0,
1132 #else
1133     TARGET_EF_R0 = 6,
1134 #endif
1135     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1136     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1137     TARGET_EF_LO = TARGET_EF_R0 + 32,
1138     TARGET_EF_HI = TARGET_EF_R0 + 33,
1139     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1140     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1141     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1142     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1143 };
1144 
1145 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1146 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1147 {
1148     int i;
1149 
1150     for (i = 0; i < TARGET_EF_R0; i++) {
1151         (*regs)[i] = 0;
1152     }
1153     (*regs)[TARGET_EF_R0] = 0;
1154 
1155     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1156         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1157     }
1158 
1159     (*regs)[TARGET_EF_R26] = 0;
1160     (*regs)[TARGET_EF_R27] = 0;
1161     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1162     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1163     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1164     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1165     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1166     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1167 }
1168 
1169 #define USE_ELF_CORE_DUMP
1170 #define ELF_EXEC_PAGESIZE        4096
1171 
1172 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1173 enum {
1174     HWCAP_MIPS_R6           = (1 << 0),
1175     HWCAP_MIPS_MSA          = (1 << 1),
1176     HWCAP_MIPS_CRC32        = (1 << 2),
1177     HWCAP_MIPS_MIPS16       = (1 << 3),
1178     HWCAP_MIPS_MDMX         = (1 << 4),
1179     HWCAP_MIPS_MIPS3D       = (1 << 5),
1180     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1181     HWCAP_MIPS_DSP          = (1 << 7),
1182     HWCAP_MIPS_DSP2         = (1 << 8),
1183     HWCAP_MIPS_DSP3         = (1 << 9),
1184     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1185     HWCAP_LOONGSON_MMI      = (1 << 11),
1186     HWCAP_LOONGSON_EXT      = (1 << 12),
1187     HWCAP_LOONGSON_EXT2     = (1 << 13),
1188     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1189 };
1190 
1191 #define ELF_HWCAP get_elf_hwcap()
1192 
1193 #define GET_FEATURE_INSN(_flag, _hwcap) \
1194     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1195 
1196 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1197     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1198 
1199 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1200     do { \
1201         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1202             hwcaps |= _hwcap; \
1203         } \
1204     } while (0)
1205 
1206 static uint32_t get_elf_hwcap(void)
1207 {
1208     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1209     uint32_t hwcaps = 0;
1210 
1211     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1212                         2, HWCAP_MIPS_R6);
1213     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1214     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1215     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1216 
1217     return hwcaps;
1218 }
1219 
1220 #undef GET_FEATURE_REG_EQU
1221 #undef GET_FEATURE_REG_SET
1222 #undef GET_FEATURE_INSN
1223 
1224 #endif /* TARGET_MIPS */
1225 
1226 #ifdef TARGET_MICROBLAZE
1227 
1228 #define ELF_START_MMAP 0x80000000
1229 
1230 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1231 
1232 #define ELF_CLASS   ELFCLASS32
1233 #define ELF_ARCH    EM_MICROBLAZE
1234 
1235 static inline void init_thread(struct target_pt_regs *regs,
1236                                struct image_info *infop)
1237 {
1238     regs->pc = infop->entry;
1239     regs->r1 = infop->start_stack;
1240 
1241 }
1242 
1243 #define ELF_EXEC_PAGESIZE        4096
1244 
1245 #define USE_ELF_CORE_DUMP
1246 #define ELF_NREG 38
1247 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1248 
1249 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1251 {
1252     int i, pos = 0;
1253 
1254     for (i = 0; i < 32; i++) {
1255         (*regs)[pos++] = tswapreg(env->regs[i]);
1256     }
1257 
1258     (*regs)[pos++] = tswapreg(env->pc);
1259     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1260     (*regs)[pos++] = 0;
1261     (*regs)[pos++] = tswapreg(env->ear);
1262     (*regs)[pos++] = 0;
1263     (*regs)[pos++] = tswapreg(env->esr);
1264 }
1265 
1266 #endif /* TARGET_MICROBLAZE */
1267 
1268 #ifdef TARGET_NIOS2
1269 
1270 #define ELF_START_MMAP 0x80000000
1271 
1272 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1273 
1274 #define ELF_CLASS   ELFCLASS32
1275 #define ELF_ARCH    EM_ALTERA_NIOS2
1276 
1277 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1278 {
1279     regs->ea = infop->entry;
1280     regs->sp = infop->start_stack;
1281 }
1282 
1283 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1284 
1285 static bool init_guest_commpage(void)
1286 {
1287     static const uint8_t kuser_page[4 + 2 * 64] = {
1288         /* __kuser_helper_version */
1289         [0x00] = 0x02, 0x00, 0x00, 0x00,
1290 
1291         /* __kuser_cmpxchg */
1292         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1293                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1294 
1295         /* __kuser_sigtramp */
1296         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1297                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1298     };
1299 
1300     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1301     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1302                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1303 
1304     if (addr == MAP_FAILED) {
1305         perror("Allocating guest commpage");
1306         exit(EXIT_FAILURE);
1307     }
1308     if (addr != want) {
1309         return false;
1310     }
1311 
1312     memcpy(addr, kuser_page, sizeof(kuser_page));
1313 
1314     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1315         perror("Protecting guest commpage");
1316         exit(EXIT_FAILURE);
1317     }
1318 
1319     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1320                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1321     return true;
1322 }
1323 
1324 #define ELF_EXEC_PAGESIZE        4096
1325 
1326 #define USE_ELF_CORE_DUMP
1327 #define ELF_NREG 49
1328 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1329 
1330 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1331 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1332                                const CPUNios2State *env)
1333 {
1334     int i;
1335 
1336     (*regs)[0] = -1;
1337     for (i = 1; i < 8; i++)    /* r0-r7 */
1338         (*regs)[i] = tswapreg(env->regs[i + 7]);
1339 
1340     for (i = 8; i < 16; i++)   /* r8-r15 */
1341         (*regs)[i] = tswapreg(env->regs[i - 8]);
1342 
1343     for (i = 16; i < 24; i++)  /* r16-r23 */
1344         (*regs)[i] = tswapreg(env->regs[i + 7]);
1345     (*regs)[24] = -1;    /* R_ET */
1346     (*regs)[25] = -1;    /* R_BT */
1347     (*regs)[26] = tswapreg(env->regs[R_GP]);
1348     (*regs)[27] = tswapreg(env->regs[R_SP]);
1349     (*regs)[28] = tswapreg(env->regs[R_FP]);
1350     (*regs)[29] = tswapreg(env->regs[R_EA]);
1351     (*regs)[30] = -1;    /* R_SSTATUS */
1352     (*regs)[31] = tswapreg(env->regs[R_RA]);
1353 
1354     (*regs)[32] = tswapreg(env->pc);
1355 
1356     (*regs)[33] = -1; /* R_STATUS */
1357     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1358 
1359     for (i = 35; i < 49; i++)    /* ... */
1360         (*regs)[i] = -1;
1361 }
1362 
1363 #endif /* TARGET_NIOS2 */
1364 
1365 #ifdef TARGET_OPENRISC
1366 
1367 #define ELF_START_MMAP 0x08000000
1368 
1369 #define ELF_ARCH EM_OPENRISC
1370 #define ELF_CLASS ELFCLASS32
1371 #define ELF_DATA  ELFDATA2MSB
1372 
1373 static inline void init_thread(struct target_pt_regs *regs,
1374                                struct image_info *infop)
1375 {
1376     regs->pc = infop->entry;
1377     regs->gpr[1] = infop->start_stack;
1378 }
1379 
1380 #define USE_ELF_CORE_DUMP
1381 #define ELF_EXEC_PAGESIZE 8192
1382 
1383 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1384 #define ELF_NREG 34 /* gprs and pc, sr */
1385 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1386 
1387 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1388                                const CPUOpenRISCState *env)
1389 {
1390     int i;
1391 
1392     for (i = 0; i < 32; i++) {
1393         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1394     }
1395     (*regs)[32] = tswapreg(env->pc);
1396     (*regs)[33] = tswapreg(cpu_get_sr(env));
1397 }
1398 #define ELF_HWCAP 0
1399 #define ELF_PLATFORM NULL
1400 
1401 #endif /* TARGET_OPENRISC */
1402 
1403 #ifdef TARGET_SH4
1404 
1405 #define ELF_START_MMAP 0x80000000
1406 
1407 #define ELF_CLASS ELFCLASS32
1408 #define ELF_ARCH  EM_SH
1409 
1410 static inline void init_thread(struct target_pt_regs *regs,
1411                                struct image_info *infop)
1412 {
1413     /* Check other registers XXXXX */
1414     regs->pc = infop->entry;
1415     regs->regs[15] = infop->start_stack;
1416 }
1417 
1418 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1419 #define ELF_NREG 23
1420 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1421 
1422 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1423 enum {
1424     TARGET_REG_PC = 16,
1425     TARGET_REG_PR = 17,
1426     TARGET_REG_SR = 18,
1427     TARGET_REG_GBR = 19,
1428     TARGET_REG_MACH = 20,
1429     TARGET_REG_MACL = 21,
1430     TARGET_REG_SYSCALL = 22
1431 };
1432 
1433 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1434                                       const CPUSH4State *env)
1435 {
1436     int i;
1437 
1438     for (i = 0; i < 16; i++) {
1439         (*regs)[i] = tswapreg(env->gregs[i]);
1440     }
1441 
1442     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1443     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1444     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1445     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1446     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1447     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1448     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1449 }
1450 
1451 #define USE_ELF_CORE_DUMP
1452 #define ELF_EXEC_PAGESIZE        4096
1453 
1454 enum {
1455     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1456     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1457     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1458     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1459     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1460     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1461     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1462     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1463     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1464     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1465 };
1466 
1467 #define ELF_HWCAP get_elf_hwcap()
1468 
1469 static uint32_t get_elf_hwcap(void)
1470 {
1471     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1472     uint32_t hwcap = 0;
1473 
1474     hwcap |= SH_CPU_HAS_FPU;
1475 
1476     if (cpu->env.features & SH_FEATURE_SH4A) {
1477         hwcap |= SH_CPU_HAS_LLSC;
1478     }
1479 
1480     return hwcap;
1481 }
1482 
1483 #endif
1484 
1485 #ifdef TARGET_CRIS
1486 
1487 #define ELF_START_MMAP 0x80000000
1488 
1489 #define ELF_CLASS ELFCLASS32
1490 #define ELF_ARCH  EM_CRIS
1491 
1492 static inline void init_thread(struct target_pt_regs *regs,
1493                                struct image_info *infop)
1494 {
1495     regs->erp = infop->entry;
1496 }
1497 
1498 #define ELF_EXEC_PAGESIZE        8192
1499 
1500 #endif
1501 
1502 #ifdef TARGET_M68K
1503 
1504 #define ELF_START_MMAP 0x80000000
1505 
1506 #define ELF_CLASS       ELFCLASS32
1507 #define ELF_ARCH        EM_68K
1508 
1509 /* ??? Does this need to do anything?
1510    #define ELF_PLAT_INIT(_r) */
1511 
1512 static inline void init_thread(struct target_pt_regs *regs,
1513                                struct image_info *infop)
1514 {
1515     regs->usp = infop->start_stack;
1516     regs->sr = 0;
1517     regs->pc = infop->entry;
1518 }
1519 
1520 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1521 #define ELF_NREG 20
1522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1523 
1524 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1525 {
1526     (*regs)[0] = tswapreg(env->dregs[1]);
1527     (*regs)[1] = tswapreg(env->dregs[2]);
1528     (*regs)[2] = tswapreg(env->dregs[3]);
1529     (*regs)[3] = tswapreg(env->dregs[4]);
1530     (*regs)[4] = tswapreg(env->dregs[5]);
1531     (*regs)[5] = tswapreg(env->dregs[6]);
1532     (*regs)[6] = tswapreg(env->dregs[7]);
1533     (*regs)[7] = tswapreg(env->aregs[0]);
1534     (*regs)[8] = tswapreg(env->aregs[1]);
1535     (*regs)[9] = tswapreg(env->aregs[2]);
1536     (*regs)[10] = tswapreg(env->aregs[3]);
1537     (*regs)[11] = tswapreg(env->aregs[4]);
1538     (*regs)[12] = tswapreg(env->aregs[5]);
1539     (*regs)[13] = tswapreg(env->aregs[6]);
1540     (*regs)[14] = tswapreg(env->dregs[0]);
1541     (*regs)[15] = tswapreg(env->aregs[7]);
1542     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1543     (*regs)[17] = tswapreg(env->sr);
1544     (*regs)[18] = tswapreg(env->pc);
1545     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1546 }
1547 
1548 #define USE_ELF_CORE_DUMP
1549 #define ELF_EXEC_PAGESIZE       8192
1550 
1551 #endif
1552 
1553 #ifdef TARGET_ALPHA
1554 
1555 #define ELF_START_MMAP (0x30000000000ULL)
1556 
1557 #define ELF_CLASS      ELFCLASS64
1558 #define ELF_ARCH       EM_ALPHA
1559 
1560 static inline void init_thread(struct target_pt_regs *regs,
1561                                struct image_info *infop)
1562 {
1563     regs->pc = infop->entry;
1564     regs->ps = 8;
1565     regs->usp = infop->start_stack;
1566 }
1567 
1568 #define ELF_EXEC_PAGESIZE        8192
1569 
1570 #endif /* TARGET_ALPHA */
1571 
1572 #ifdef TARGET_S390X
1573 
1574 #define ELF_START_MMAP (0x20000000000ULL)
1575 
1576 #define ELF_CLASS	ELFCLASS64
1577 #define ELF_DATA	ELFDATA2MSB
1578 #define ELF_ARCH	EM_S390
1579 
1580 #include "elf.h"
1581 
1582 #define ELF_HWCAP get_elf_hwcap()
1583 
1584 #define GET_FEATURE(_feat, _hwcap) \
1585     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1586 
1587 static uint32_t get_elf_hwcap(void)
1588 {
1589     /*
1590      * Let's assume we always have esan3 and zarch.
1591      * 31-bit processes can use 64-bit registers (high gprs).
1592      */
1593     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1594 
1595     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1596     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1597     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1598     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1599     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1600         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1601         hwcap |= HWCAP_S390_ETF3EH;
1602     }
1603     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1604     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1605 
1606     return hwcap;
1607 }
1608 
1609 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1610 {
1611     regs->psw.addr = infop->entry;
1612     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1613     regs->gprs[15] = infop->start_stack;
1614 }
1615 
1616 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1617 #define ELF_NREG 27
1618 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1619 
1620 enum {
1621     TARGET_REG_PSWM = 0,
1622     TARGET_REG_PSWA = 1,
1623     TARGET_REG_GPRS = 2,
1624     TARGET_REG_ARS = 18,
1625     TARGET_REG_ORIG_R2 = 26,
1626 };
1627 
1628 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1629                                const CPUS390XState *env)
1630 {
1631     int i;
1632     uint32_t *aregs;
1633 
1634     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1635     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1636     for (i = 0; i < 16; i++) {
1637         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1638     }
1639     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1640     for (i = 0; i < 16; i++) {
1641         aregs[i] = tswap32(env->aregs[i]);
1642     }
1643     (*regs)[TARGET_REG_ORIG_R2] = 0;
1644 }
1645 
1646 #define USE_ELF_CORE_DUMP
1647 #define ELF_EXEC_PAGESIZE 4096
1648 
1649 #endif /* TARGET_S390X */
1650 
1651 #ifdef TARGET_RISCV
1652 
1653 #define ELF_START_MMAP 0x80000000
1654 #define ELF_ARCH  EM_RISCV
1655 
1656 #ifdef TARGET_RISCV32
1657 #define ELF_CLASS ELFCLASS32
1658 #else
1659 #define ELF_CLASS ELFCLASS64
1660 #endif
1661 
1662 #define ELF_HWCAP get_elf_hwcap()
1663 
1664 static uint32_t get_elf_hwcap(void)
1665 {
1666 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1667     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1668     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1669                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1670 
1671     return cpu->env.misa_ext & mask;
1672 #undef MISA_BIT
1673 }
1674 
1675 static inline void init_thread(struct target_pt_regs *regs,
1676                                struct image_info *infop)
1677 {
1678     regs->sepc = infop->entry;
1679     regs->sp = infop->start_stack;
1680 }
1681 
1682 #define ELF_EXEC_PAGESIZE 4096
1683 
1684 #endif /* TARGET_RISCV */
1685 
1686 #ifdef TARGET_HPPA
1687 
1688 #define ELF_START_MMAP  0x80000000
1689 #define ELF_CLASS       ELFCLASS32
1690 #define ELF_ARCH        EM_PARISC
1691 #define ELF_PLATFORM    "PARISC"
1692 #define STACK_GROWS_DOWN 0
1693 #define STACK_ALIGNMENT  64
1694 
1695 static inline void init_thread(struct target_pt_regs *regs,
1696                                struct image_info *infop)
1697 {
1698     regs->iaoq[0] = infop->entry;
1699     regs->iaoq[1] = infop->entry + 4;
1700     regs->gr[23] = 0;
1701     regs->gr[24] = infop->argv;
1702     regs->gr[25] = infop->argc;
1703     /* The top-of-stack contains a linkage buffer.  */
1704     regs->gr[30] = infop->start_stack + 64;
1705     regs->gr[31] = infop->entry;
1706 }
1707 
1708 #define LO_COMMPAGE  0
1709 
1710 static bool init_guest_commpage(void)
1711 {
1712     void *want = g2h_untagged(LO_COMMPAGE);
1713     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1714                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1715 
1716     if (addr == MAP_FAILED) {
1717         perror("Allocating guest commpage");
1718         exit(EXIT_FAILURE);
1719     }
1720     if (addr != want) {
1721         return false;
1722     }
1723 
1724     /*
1725      * On Linux, page zero is normally marked execute only + gateway.
1726      * Normal read or write is supposed to fail (thus PROT_NONE above),
1727      * but specific offsets have kernel code mapped to raise permissions
1728      * and implement syscalls.  Here, simply mark the page executable.
1729      * Special case the entry points during translation (see do_page_zero).
1730      */
1731     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1732                    PAGE_EXEC | PAGE_VALID);
1733     return true;
1734 }
1735 
1736 #endif /* TARGET_HPPA */
1737 
1738 #ifdef TARGET_XTENSA
1739 
1740 #define ELF_START_MMAP 0x20000000
1741 
1742 #define ELF_CLASS       ELFCLASS32
1743 #define ELF_ARCH        EM_XTENSA
1744 
1745 static inline void init_thread(struct target_pt_regs *regs,
1746                                struct image_info *infop)
1747 {
1748     regs->windowbase = 0;
1749     regs->windowstart = 1;
1750     regs->areg[1] = infop->start_stack;
1751     regs->pc = infop->entry;
1752     if (info_is_fdpic(infop)) {
1753         regs->areg[4] = infop->loadmap_addr;
1754         regs->areg[5] = infop->interpreter_loadmap_addr;
1755         if (infop->interpreter_loadmap_addr) {
1756             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1757         } else {
1758             regs->areg[6] = infop->pt_dynamic_addr;
1759         }
1760     }
1761 }
1762 
1763 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1764 #define ELF_NREG 128
1765 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1766 
1767 enum {
1768     TARGET_REG_PC,
1769     TARGET_REG_PS,
1770     TARGET_REG_LBEG,
1771     TARGET_REG_LEND,
1772     TARGET_REG_LCOUNT,
1773     TARGET_REG_SAR,
1774     TARGET_REG_WINDOWSTART,
1775     TARGET_REG_WINDOWBASE,
1776     TARGET_REG_THREADPTR,
1777     TARGET_REG_AR0 = 64,
1778 };
1779 
1780 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1781                                const CPUXtensaState *env)
1782 {
1783     unsigned i;
1784 
1785     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1786     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1787     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1788     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1789     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1790     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1791     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1792     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1793     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1794     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1795     for (i = 0; i < env->config->nareg; ++i) {
1796         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1797     }
1798 }
1799 
1800 #define USE_ELF_CORE_DUMP
1801 #define ELF_EXEC_PAGESIZE       4096
1802 
1803 #endif /* TARGET_XTENSA */
1804 
1805 #ifdef TARGET_HEXAGON
1806 
1807 #define ELF_START_MMAP 0x20000000
1808 
1809 #define ELF_CLASS       ELFCLASS32
1810 #define ELF_ARCH        EM_HEXAGON
1811 
1812 static inline void init_thread(struct target_pt_regs *regs,
1813                                struct image_info *infop)
1814 {
1815     regs->sepc = infop->entry;
1816     regs->sp = infop->start_stack;
1817 }
1818 
1819 #endif /* TARGET_HEXAGON */
1820 
1821 #ifndef ELF_BASE_PLATFORM
1822 #define ELF_BASE_PLATFORM (NULL)
1823 #endif
1824 
1825 #ifndef ELF_PLATFORM
1826 #define ELF_PLATFORM (NULL)
1827 #endif
1828 
1829 #ifndef ELF_MACHINE
1830 #define ELF_MACHINE ELF_ARCH
1831 #endif
1832 
1833 #ifndef elf_check_arch
1834 #define elf_check_arch(x) ((x) == ELF_ARCH)
1835 #endif
1836 
1837 #ifndef elf_check_abi
1838 #define elf_check_abi(x) (1)
1839 #endif
1840 
1841 #ifndef ELF_HWCAP
1842 #define ELF_HWCAP 0
1843 #endif
1844 
1845 #ifndef STACK_GROWS_DOWN
1846 #define STACK_GROWS_DOWN 1
1847 #endif
1848 
1849 #ifndef STACK_ALIGNMENT
1850 #define STACK_ALIGNMENT 16
1851 #endif
1852 
1853 #ifdef TARGET_ABI32
1854 #undef ELF_CLASS
1855 #define ELF_CLASS ELFCLASS32
1856 #undef bswaptls
1857 #define bswaptls(ptr) bswap32s(ptr)
1858 #endif
1859 
1860 #ifndef EXSTACK_DEFAULT
1861 #define EXSTACK_DEFAULT false
1862 #endif
1863 
1864 #include "elf.h"
1865 
1866 /* We must delay the following stanzas until after "elf.h". */
1867 #if defined(TARGET_AARCH64)
1868 
1869 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1870                                     const uint32_t *data,
1871                                     struct image_info *info,
1872                                     Error **errp)
1873 {
1874     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1875         if (pr_datasz != sizeof(uint32_t)) {
1876             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1877             return false;
1878         }
1879         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1880         info->note_flags = *data;
1881     }
1882     return true;
1883 }
1884 #define ARCH_USE_GNU_PROPERTY 1
1885 
1886 #else
1887 
1888 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1889                                     const uint32_t *data,
1890                                     struct image_info *info,
1891                                     Error **errp)
1892 {
1893     g_assert_not_reached();
1894 }
1895 #define ARCH_USE_GNU_PROPERTY 0
1896 
1897 #endif
1898 
1899 struct exec
1900 {
1901     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1902     unsigned int a_text;   /* length of text, in bytes */
1903     unsigned int a_data;   /* length of data, in bytes */
1904     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1905     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1906     unsigned int a_entry;  /* start address */
1907     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1908     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1909 };
1910 
1911 
1912 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1913 #define OMAGIC 0407
1914 #define NMAGIC 0410
1915 #define ZMAGIC 0413
1916 #define QMAGIC 0314
1917 
1918 /* Necessary parameters */
1919 #define TARGET_ELF_EXEC_PAGESIZE \
1920         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1921          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1922 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1923 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1924                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1925 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1926 
1927 #define DLINFO_ITEMS 16
1928 
1929 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1930 {
1931     memcpy(to, from, n);
1932 }
1933 
1934 #ifdef BSWAP_NEEDED
1935 static void bswap_ehdr(struct elfhdr *ehdr)
1936 {
1937     bswap16s(&ehdr->e_type);            /* Object file type */
1938     bswap16s(&ehdr->e_machine);         /* Architecture */
1939     bswap32s(&ehdr->e_version);         /* Object file version */
1940     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1941     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1942     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1943     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1944     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1945     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1946     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1947     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1948     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1949     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1950 }
1951 
1952 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1953 {
1954     int i;
1955     for (i = 0; i < phnum; ++i, ++phdr) {
1956         bswap32s(&phdr->p_type);        /* Segment type */
1957         bswap32s(&phdr->p_flags);       /* Segment flags */
1958         bswaptls(&phdr->p_offset);      /* Segment file offset */
1959         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1960         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1961         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1962         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1963         bswaptls(&phdr->p_align);       /* Segment alignment */
1964     }
1965 }
1966 
1967 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1968 {
1969     int i;
1970     for (i = 0; i < shnum; ++i, ++shdr) {
1971         bswap32s(&shdr->sh_name);
1972         bswap32s(&shdr->sh_type);
1973         bswaptls(&shdr->sh_flags);
1974         bswaptls(&shdr->sh_addr);
1975         bswaptls(&shdr->sh_offset);
1976         bswaptls(&shdr->sh_size);
1977         bswap32s(&shdr->sh_link);
1978         bswap32s(&shdr->sh_info);
1979         bswaptls(&shdr->sh_addralign);
1980         bswaptls(&shdr->sh_entsize);
1981     }
1982 }
1983 
1984 static void bswap_sym(struct elf_sym *sym)
1985 {
1986     bswap32s(&sym->st_name);
1987     bswaptls(&sym->st_value);
1988     bswaptls(&sym->st_size);
1989     bswap16s(&sym->st_shndx);
1990 }
1991 
1992 #ifdef TARGET_MIPS
1993 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1994 {
1995     bswap16s(&abiflags->version);
1996     bswap32s(&abiflags->ases);
1997     bswap32s(&abiflags->isa_ext);
1998     bswap32s(&abiflags->flags1);
1999     bswap32s(&abiflags->flags2);
2000 }
2001 #endif
2002 #else
2003 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2004 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2005 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2006 static inline void bswap_sym(struct elf_sym *sym) { }
2007 #ifdef TARGET_MIPS
2008 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2009 #endif
2010 #endif
2011 
2012 #ifdef USE_ELF_CORE_DUMP
2013 static int elf_core_dump(int, const CPUArchState *);
2014 #endif /* USE_ELF_CORE_DUMP */
2015 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2016 
2017 /* Verify the portions of EHDR within E_IDENT for the target.
2018    This can be performed before bswapping the entire header.  */
2019 static bool elf_check_ident(struct elfhdr *ehdr)
2020 {
2021     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2022             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2023             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2024             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2025             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2026             && ehdr->e_ident[EI_DATA] == ELF_DATA
2027             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2028 }
2029 
2030 /* Verify the portions of EHDR outside of E_IDENT for the target.
2031    This has to wait until after bswapping the header.  */
2032 static bool elf_check_ehdr(struct elfhdr *ehdr)
2033 {
2034     return (elf_check_arch(ehdr->e_machine)
2035             && elf_check_abi(ehdr->e_flags)
2036             && ehdr->e_ehsize == sizeof(struct elfhdr)
2037             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2038             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2039 }
2040 
2041 /*
2042  * 'copy_elf_strings()' copies argument/envelope strings from user
2043  * memory to free pages in kernel mem. These are in a format ready
2044  * to be put directly into the top of new user memory.
2045  *
2046  */
2047 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2048                                   abi_ulong p, abi_ulong stack_limit)
2049 {
2050     char *tmp;
2051     int len, i;
2052     abi_ulong top = p;
2053 
2054     if (!p) {
2055         return 0;       /* bullet-proofing */
2056     }
2057 
2058     if (STACK_GROWS_DOWN) {
2059         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2060         for (i = argc - 1; i >= 0; --i) {
2061             tmp = argv[i];
2062             if (!tmp) {
2063                 fprintf(stderr, "VFS: argc is wrong");
2064                 exit(-1);
2065             }
2066             len = strlen(tmp) + 1;
2067             tmp += len;
2068 
2069             if (len > (p - stack_limit)) {
2070                 return 0;
2071             }
2072             while (len) {
2073                 int bytes_to_copy = (len > offset) ? offset : len;
2074                 tmp -= bytes_to_copy;
2075                 p -= bytes_to_copy;
2076                 offset -= bytes_to_copy;
2077                 len -= bytes_to_copy;
2078 
2079                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2080 
2081                 if (offset == 0) {
2082                     memcpy_to_target(p, scratch, top - p);
2083                     top = p;
2084                     offset = TARGET_PAGE_SIZE;
2085                 }
2086             }
2087         }
2088         if (p != top) {
2089             memcpy_to_target(p, scratch + offset, top - p);
2090         }
2091     } else {
2092         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2093         for (i = 0; i < argc; ++i) {
2094             tmp = argv[i];
2095             if (!tmp) {
2096                 fprintf(stderr, "VFS: argc is wrong");
2097                 exit(-1);
2098             }
2099             len = strlen(tmp) + 1;
2100             if (len > (stack_limit - p)) {
2101                 return 0;
2102             }
2103             while (len) {
2104                 int bytes_to_copy = (len > remaining) ? remaining : len;
2105 
2106                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2107 
2108                 tmp += bytes_to_copy;
2109                 remaining -= bytes_to_copy;
2110                 p += bytes_to_copy;
2111                 len -= bytes_to_copy;
2112 
2113                 if (remaining == 0) {
2114                     memcpy_to_target(top, scratch, p - top);
2115                     top = p;
2116                     remaining = TARGET_PAGE_SIZE;
2117                 }
2118             }
2119         }
2120         if (p != top) {
2121             memcpy_to_target(top, scratch, p - top);
2122         }
2123     }
2124 
2125     return p;
2126 }
2127 
2128 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2129  * argument/environment space. Newer kernels (>2.6.33) allow more,
2130  * dependent on stack size, but guarantee at least 32 pages for
2131  * backwards compatibility.
2132  */
2133 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2134 
2135 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2136                                  struct image_info *info)
2137 {
2138     abi_ulong size, error, guard;
2139     int prot;
2140 
2141     size = guest_stack_size;
2142     if (size < STACK_LOWER_LIMIT) {
2143         size = STACK_LOWER_LIMIT;
2144     }
2145 
2146     if (STACK_GROWS_DOWN) {
2147         guard = TARGET_PAGE_SIZE;
2148         if (guard < qemu_real_host_page_size()) {
2149             guard = qemu_real_host_page_size();
2150         }
2151     } else {
2152         /* no guard page for hppa target where stack grows upwards. */
2153         guard = 0;
2154     }
2155 
2156     prot = PROT_READ | PROT_WRITE;
2157     if (info->exec_stack) {
2158         prot |= PROT_EXEC;
2159     }
2160     error = target_mmap(0, size + guard, prot,
2161                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2162     if (error == -1) {
2163         perror("mmap stack");
2164         exit(-1);
2165     }
2166 
2167     /* We reserve one extra page at the top of the stack as guard.  */
2168     if (STACK_GROWS_DOWN) {
2169         target_mprotect(error, guard, PROT_NONE);
2170         info->stack_limit = error + guard;
2171         return info->stack_limit + size - sizeof(void *);
2172     } else {
2173         info->stack_limit = error + size;
2174         return error;
2175     }
2176 }
2177 
2178 /* Map and zero the bss.  We need to explicitly zero any fractional pages
2179    after the data section (i.e. bss).  */
2180 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2181 {
2182     uintptr_t host_start, host_map_start, host_end;
2183 
2184     last_bss = TARGET_PAGE_ALIGN(last_bss);
2185 
2186     /* ??? There is confusion between qemu_real_host_page_size and
2187        qemu_host_page_size here and elsewhere in target_mmap, which
2188        may lead to the end of the data section mapping from the file
2189        not being mapped.  At least there was an explicit test and
2190        comment for that here, suggesting that "the file size must
2191        be known".  The comment probably pre-dates the introduction
2192        of the fstat system call in target_mmap which does in fact
2193        find out the size.  What isn't clear is if the workaround
2194        here is still actually needed.  For now, continue with it,
2195        but merge it with the "normal" mmap that would allocate the bss.  */
2196 
2197     host_start = (uintptr_t) g2h_untagged(elf_bss);
2198     host_end = (uintptr_t) g2h_untagged(last_bss);
2199     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2200 
2201     if (host_map_start < host_end) {
2202         void *p = mmap((void *)host_map_start, host_end - host_map_start,
2203                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2204         if (p == MAP_FAILED) {
2205             perror("cannot mmap brk");
2206             exit(-1);
2207         }
2208     }
2209 
2210     /* Ensure that the bss page(s) are valid */
2211     if ((page_get_flags(last_bss-1) & prot) != prot) {
2212         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2213                        prot | PAGE_VALID);
2214     }
2215 
2216     if (host_start < host_map_start) {
2217         memset((void *)host_start, 0, host_map_start - host_start);
2218     }
2219 }
2220 
2221 #if defined(TARGET_ARM)
2222 static int elf_is_fdpic(struct elfhdr *exec)
2223 {
2224     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2225 }
2226 #elif defined(TARGET_XTENSA)
2227 static int elf_is_fdpic(struct elfhdr *exec)
2228 {
2229     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2230 }
2231 #else
2232 /* Default implementation, always false.  */
2233 static int elf_is_fdpic(struct elfhdr *exec)
2234 {
2235     return 0;
2236 }
2237 #endif
2238 
2239 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2240 {
2241     uint16_t n;
2242     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2243 
2244     /* elf32_fdpic_loadseg */
2245     n = info->nsegs;
2246     while (n--) {
2247         sp -= 12;
2248         put_user_u32(loadsegs[n].addr, sp+0);
2249         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2250         put_user_u32(loadsegs[n].p_memsz, sp+8);
2251     }
2252 
2253     /* elf32_fdpic_loadmap */
2254     sp -= 4;
2255     put_user_u16(0, sp+0); /* version */
2256     put_user_u16(info->nsegs, sp+2); /* nsegs */
2257 
2258     info->personality = PER_LINUX_FDPIC;
2259     info->loadmap_addr = sp;
2260 
2261     return sp;
2262 }
2263 
2264 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2265                                    struct elfhdr *exec,
2266                                    struct image_info *info,
2267                                    struct image_info *interp_info)
2268 {
2269     abi_ulong sp;
2270     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2271     int size;
2272     int i;
2273     abi_ulong u_rand_bytes;
2274     uint8_t k_rand_bytes[16];
2275     abi_ulong u_platform, u_base_platform;
2276     const char *k_platform, *k_base_platform;
2277     const int n = sizeof(elf_addr_t);
2278 
2279     sp = p;
2280 
2281     /* Needs to be before we load the env/argc/... */
2282     if (elf_is_fdpic(exec)) {
2283         /* Need 4 byte alignment for these structs */
2284         sp &= ~3;
2285         sp = loader_build_fdpic_loadmap(info, sp);
2286         info->other_info = interp_info;
2287         if (interp_info) {
2288             interp_info->other_info = info;
2289             sp = loader_build_fdpic_loadmap(interp_info, sp);
2290             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2291             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2292         } else {
2293             info->interpreter_loadmap_addr = 0;
2294             info->interpreter_pt_dynamic_addr = 0;
2295         }
2296     }
2297 
2298     u_base_platform = 0;
2299     k_base_platform = ELF_BASE_PLATFORM;
2300     if (k_base_platform) {
2301         size_t len = strlen(k_base_platform) + 1;
2302         if (STACK_GROWS_DOWN) {
2303             sp -= (len + n - 1) & ~(n - 1);
2304             u_base_platform = sp;
2305             /* FIXME - check return value of memcpy_to_target() for failure */
2306             memcpy_to_target(sp, k_base_platform, len);
2307         } else {
2308             memcpy_to_target(sp, k_base_platform, len);
2309             u_base_platform = sp;
2310             sp += len + 1;
2311         }
2312     }
2313 
2314     u_platform = 0;
2315     k_platform = ELF_PLATFORM;
2316     if (k_platform) {
2317         size_t len = strlen(k_platform) + 1;
2318         if (STACK_GROWS_DOWN) {
2319             sp -= (len + n - 1) & ~(n - 1);
2320             u_platform = sp;
2321             /* FIXME - check return value of memcpy_to_target() for failure */
2322             memcpy_to_target(sp, k_platform, len);
2323         } else {
2324             memcpy_to_target(sp, k_platform, len);
2325             u_platform = sp;
2326             sp += len + 1;
2327         }
2328     }
2329 
2330     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2331      * the argv and envp pointers.
2332      */
2333     if (STACK_GROWS_DOWN) {
2334         sp = QEMU_ALIGN_DOWN(sp, 16);
2335     } else {
2336         sp = QEMU_ALIGN_UP(sp, 16);
2337     }
2338 
2339     /*
2340      * Generate 16 random bytes for userspace PRNG seeding.
2341      */
2342     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2343     if (STACK_GROWS_DOWN) {
2344         sp -= 16;
2345         u_rand_bytes = sp;
2346         /* FIXME - check return value of memcpy_to_target() for failure */
2347         memcpy_to_target(sp, k_rand_bytes, 16);
2348     } else {
2349         memcpy_to_target(sp, k_rand_bytes, 16);
2350         u_rand_bytes = sp;
2351         sp += 16;
2352     }
2353 
2354     size = (DLINFO_ITEMS + 1) * 2;
2355     if (k_base_platform)
2356         size += 2;
2357     if (k_platform)
2358         size += 2;
2359 #ifdef DLINFO_ARCH_ITEMS
2360     size += DLINFO_ARCH_ITEMS * 2;
2361 #endif
2362 #ifdef ELF_HWCAP2
2363     size += 2;
2364 #endif
2365     info->auxv_len = size * n;
2366 
2367     size += envc + argc + 2;
2368     size += 1;  /* argc itself */
2369     size *= n;
2370 
2371     /* Allocate space and finalize stack alignment for entry now.  */
2372     if (STACK_GROWS_DOWN) {
2373         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2374         sp = u_argc;
2375     } else {
2376         u_argc = sp;
2377         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2378     }
2379 
2380     u_argv = u_argc + n;
2381     u_envp = u_argv + (argc + 1) * n;
2382     u_auxv = u_envp + (envc + 1) * n;
2383     info->saved_auxv = u_auxv;
2384     info->argc = argc;
2385     info->envc = envc;
2386     info->argv = u_argv;
2387     info->envp = u_envp;
2388 
2389     /* This is correct because Linux defines
2390      * elf_addr_t as Elf32_Off / Elf64_Off
2391      */
2392 #define NEW_AUX_ENT(id, val) do {               \
2393         put_user_ual(id, u_auxv);  u_auxv += n; \
2394         put_user_ual(val, u_auxv); u_auxv += n; \
2395     } while(0)
2396 
2397 #ifdef ARCH_DLINFO
2398     /*
2399      * ARCH_DLINFO must come first so platform specific code can enforce
2400      * special alignment requirements on the AUXV if necessary (eg. PPC).
2401      */
2402     ARCH_DLINFO;
2403 #endif
2404     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2405      * on info->auxv_len will trigger.
2406      */
2407     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2408     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2409     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2410     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2411         /* Target doesn't support host page size alignment */
2412         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2413     } else {
2414         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2415                                                qemu_host_page_size)));
2416     }
2417     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2418     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2419     NEW_AUX_ENT(AT_ENTRY, info->entry);
2420     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2421     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2422     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2423     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2424     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2425     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2426     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2427     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2428     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2429 
2430 #ifdef ELF_HWCAP2
2431     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2432 #endif
2433 
2434     if (u_base_platform) {
2435         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2436     }
2437     if (u_platform) {
2438         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2439     }
2440     NEW_AUX_ENT (AT_NULL, 0);
2441 #undef NEW_AUX_ENT
2442 
2443     /* Check that our initial calculation of the auxv length matches how much
2444      * we actually put into it.
2445      */
2446     assert(info->auxv_len == u_auxv - info->saved_auxv);
2447 
2448     put_user_ual(argc, u_argc);
2449 
2450     p = info->arg_strings;
2451     for (i = 0; i < argc; ++i) {
2452         put_user_ual(p, u_argv);
2453         u_argv += n;
2454         p += target_strlen(p) + 1;
2455     }
2456     put_user_ual(0, u_argv);
2457 
2458     p = info->env_strings;
2459     for (i = 0; i < envc; ++i) {
2460         put_user_ual(p, u_envp);
2461         u_envp += n;
2462         p += target_strlen(p) + 1;
2463     }
2464     put_user_ual(0, u_envp);
2465 
2466     return sp;
2467 }
2468 
2469 #if defined(HI_COMMPAGE)
2470 #define LO_COMMPAGE -1
2471 #elif defined(LO_COMMPAGE)
2472 #define HI_COMMPAGE 0
2473 #else
2474 #define HI_COMMPAGE 0
2475 #define LO_COMMPAGE -1
2476 #ifndef INIT_GUEST_COMMPAGE
2477 #define init_guest_commpage() true
2478 #endif
2479 #endif
2480 
2481 static void pgb_fail_in_use(const char *image_name)
2482 {
2483     error_report("%s: requires virtual address space that is in use "
2484                  "(omit the -B option or choose a different value)",
2485                  image_name);
2486     exit(EXIT_FAILURE);
2487 }
2488 
2489 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2490                                 abi_ulong guest_hiaddr, long align)
2491 {
2492     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2493     void *addr, *test;
2494 
2495     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2496         fprintf(stderr, "Requested guest base %p does not satisfy "
2497                 "host minimum alignment (0x%lx)\n",
2498                 (void *)guest_base, align);
2499         exit(EXIT_FAILURE);
2500     }
2501 
2502     /* Sanity check the guest binary. */
2503     if (reserved_va) {
2504         if (guest_hiaddr > reserved_va) {
2505             error_report("%s: requires more than reserved virtual "
2506                          "address space (0x%" PRIx64 " > 0x%lx)",
2507                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2508             exit(EXIT_FAILURE);
2509         }
2510     } else {
2511 #if HOST_LONG_BITS < TARGET_ABI_BITS
2512         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2513             error_report("%s: requires more virtual address space "
2514                          "than the host can provide (0x%" PRIx64 ")",
2515                          image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
2516             exit(EXIT_FAILURE);
2517         }
2518 #endif
2519     }
2520 
2521     /*
2522      * Expand the allocation to the entire reserved_va.
2523      * Exclude the mmap_min_addr hole.
2524      */
2525     if (reserved_va) {
2526         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2527                         : mmap_min_addr - guest_base);
2528         guest_hiaddr = reserved_va;
2529     }
2530 
2531     /* Reserve the address space for the binary, or reserved_va. */
2532     test = g2h_untagged(guest_loaddr);
2533     addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
2534     if (test != addr) {
2535         pgb_fail_in_use(image_name);
2536     }
2537     qemu_log_mask(CPU_LOG_PAGE,
2538                   "%s: base @ %p for %" PRIu64 " bytes\n",
2539                   __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
2540 }
2541 
2542 /**
2543  * pgd_find_hole_fallback: potential mmap address
2544  * @guest_size: size of available space
2545  * @brk: location of break
2546  * @align: memory alignment
2547  *
2548  * This is a fallback method for finding a hole in the host address
2549  * space if we don't have the benefit of being able to access
2550  * /proc/self/map. It can potentially take a very long time as we can
2551  * only dumbly iterate up the host address space seeing if the
2552  * allocation would work.
2553  */
2554 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2555                                         long align, uintptr_t offset)
2556 {
2557     uintptr_t base;
2558 
2559     /* Start (aligned) at the bottom and work our way up */
2560     base = ROUND_UP(mmap_min_addr, align);
2561 
2562     while (true) {
2563         uintptr_t align_start, end;
2564         align_start = ROUND_UP(base, align);
2565         end = align_start + guest_size + offset;
2566 
2567         /* if brk is anywhere in the range give ourselves some room to grow. */
2568         if (align_start <= brk && brk < end) {
2569             base = brk + (16 * MiB);
2570             continue;
2571         } else if (align_start + guest_size < align_start) {
2572             /* we have run out of space */
2573             return -1;
2574         } else {
2575             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2576                 MAP_FIXED_NOREPLACE;
2577             void * mmap_start = mmap((void *) align_start, guest_size,
2578                                      PROT_NONE, flags, -1, 0);
2579             if (mmap_start != MAP_FAILED) {
2580                 munmap(mmap_start, guest_size);
2581                 if (mmap_start == (void *) align_start) {
2582                     qemu_log_mask(CPU_LOG_PAGE,
2583                                   "%s: base @ %p for %" PRIdPTR" bytes\n",
2584                                   __func__, mmap_start + offset, guest_size);
2585                     return (uintptr_t) mmap_start + offset;
2586                 }
2587             }
2588             base += qemu_host_page_size;
2589         }
2590     }
2591 }
2592 
2593 /* Return value for guest_base, or -1 if no hole found. */
2594 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2595                                long align, uintptr_t offset)
2596 {
2597     GSList *maps, *iter;
2598     uintptr_t this_start, this_end, next_start, brk;
2599     intptr_t ret = -1;
2600 
2601     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2602 
2603     maps = read_self_maps();
2604 
2605     /* Read brk after we've read the maps, which will malloc. */
2606     brk = (uintptr_t)sbrk(0);
2607 
2608     if (!maps) {
2609         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2610     }
2611 
2612     /* The first hole is before the first map entry. */
2613     this_start = mmap_min_addr;
2614 
2615     for (iter = maps; iter;
2616          this_start = next_start, iter = g_slist_next(iter)) {
2617         uintptr_t align_start, hole_size;
2618 
2619         this_end = ((MapInfo *)iter->data)->start;
2620         next_start = ((MapInfo *)iter->data)->end;
2621         align_start = ROUND_UP(this_start + offset, align);
2622 
2623         /* Skip holes that are too small. */
2624         if (align_start >= this_end) {
2625             continue;
2626         }
2627         hole_size = this_end - align_start;
2628         if (hole_size < guest_size) {
2629             continue;
2630         }
2631 
2632         /* If this hole contains brk, give ourselves some room to grow. */
2633         if (this_start <= brk && brk < this_end) {
2634             hole_size -= guest_size;
2635             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2636                 align_start += 1 * GiB;
2637             } else if (hole_size >= 16 * MiB) {
2638                 align_start += 16 * MiB;
2639             } else {
2640                 align_start = (this_end - guest_size) & -align;
2641                 if (align_start < this_start) {
2642                     continue;
2643                 }
2644             }
2645         }
2646 
2647         /* Record the lowest successful match. */
2648         if (ret < 0) {
2649             ret = align_start;
2650         }
2651         /* If this hole contains the identity map, select it. */
2652         if (align_start <= guest_loaddr &&
2653             guest_loaddr + guest_size <= this_end) {
2654             ret = 0;
2655         }
2656         /* If this hole ends above the identity map, stop looking. */
2657         if (this_end >= guest_loaddr) {
2658             break;
2659         }
2660     }
2661     free_self_maps(maps);
2662 
2663     if (ret != -1) {
2664         qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2665                       " for %" PRIuPTR " bytes\n",
2666                       __func__, ret, guest_size);
2667     }
2668 
2669     return ret;
2670 }
2671 
2672 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2673                        abi_ulong orig_hiaddr, long align)
2674 {
2675     uintptr_t loaddr = orig_loaddr;
2676     uintptr_t hiaddr = orig_hiaddr;
2677     uintptr_t offset = 0;
2678     uintptr_t addr;
2679 
2680     if (hiaddr != orig_hiaddr) {
2681         error_report("%s: requires virtual address space that the "
2682                      "host cannot provide (0x%" PRIx64 ")",
2683                      image_name, (uint64_t)orig_hiaddr + 1);
2684         exit(EXIT_FAILURE);
2685     }
2686 
2687     loaddr &= -align;
2688     if (HI_COMMPAGE) {
2689         /*
2690          * Extend the allocation to include the commpage.
2691          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2692          * need to ensure there is space bellow the guest_base so we
2693          * can map the commpage in the place needed when the address
2694          * arithmetic wraps around.
2695          */
2696         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2697             hiaddr = UINT32_MAX;
2698         } else {
2699             offset = -(HI_COMMPAGE & -align);
2700         }
2701     } else if (LO_COMMPAGE != -1) {
2702         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2703     }
2704 
2705     addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
2706     if (addr == -1) {
2707         /*
2708          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2709          * that can satisfy both.  But as the normal arm32 link base address
2710          * is ~32k, and we extend down to include the commpage, making the
2711          * overhead only ~96k, this is unlikely.
2712          */
2713         error_report("%s: Unable to allocate %#zx bytes of "
2714                      "virtual address space", image_name,
2715                      (size_t)(hiaddr - loaddr));
2716         exit(EXIT_FAILURE);
2717     }
2718 
2719     guest_base = addr;
2720 
2721     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2722                   __func__, addr, hiaddr - loaddr);
2723 }
2724 
2725 static void pgb_dynamic(const char *image_name, long align)
2726 {
2727     /*
2728      * The executable is dynamic and does not require a fixed address.
2729      * All we need is a commpage that satisfies align.
2730      * If we do not need a commpage, leave guest_base == 0.
2731      */
2732     if (HI_COMMPAGE) {
2733         uintptr_t addr, commpage;
2734 
2735         /* 64-bit hosts should have used reserved_va. */
2736         assert(sizeof(uintptr_t) == 4);
2737 
2738         /*
2739          * By putting the commpage at the first hole, that puts guest_base
2740          * just above that, and maximises the positive guest addresses.
2741          */
2742         commpage = HI_COMMPAGE & -align;
2743         addr = pgb_find_hole(commpage, -commpage, align, 0);
2744         assert(addr != -1);
2745         guest_base = addr;
2746     }
2747 }
2748 
2749 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2750                             abi_ulong guest_hiaddr, long align)
2751 {
2752     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2753     void *addr, *test;
2754 
2755     if (guest_hiaddr > reserved_va) {
2756         error_report("%s: requires more than reserved virtual "
2757                      "address space (0x%" PRIx64 " > 0x%lx)",
2758                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2759         exit(EXIT_FAILURE);
2760     }
2761 
2762     /* Widen the "image" to the entire reserved address space. */
2763     pgb_static(image_name, 0, reserved_va, align);
2764 
2765     /* osdep.h defines this as 0 if it's missing */
2766     flags |= MAP_FIXED_NOREPLACE;
2767 
2768     /* Reserve the memory on the host. */
2769     assert(guest_base != 0);
2770     test = g2h_untagged(0);
2771     addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
2772     if (addr == MAP_FAILED || addr != test) {
2773         error_report("Unable to reserve 0x%lx bytes of virtual address "
2774                      "space at %p (%s) for use as guest address space (check your "
2775                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2776                      "using -R option)", reserved_va + 1, test, strerror(errno));
2777         exit(EXIT_FAILURE);
2778     }
2779 
2780     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2781                   __func__, addr, reserved_va + 1);
2782 }
2783 
2784 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2785                       abi_ulong guest_hiaddr)
2786 {
2787     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2788     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2789 
2790     if (have_guest_base) {
2791         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2792     } else if (reserved_va) {
2793         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2794     } else if (guest_loaddr) {
2795         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2796     } else {
2797         pgb_dynamic(image_name, align);
2798     }
2799 
2800     /* Reserve and initialize the commpage. */
2801     if (!init_guest_commpage()) {
2802         /*
2803          * With have_guest_base, the user has selected the address and
2804          * we are trying to work with that.  Otherwise, we have selected
2805          * free space and init_guest_commpage must succeeded.
2806          */
2807         assert(have_guest_base);
2808         pgb_fail_in_use(image_name);
2809     }
2810 
2811     assert(QEMU_IS_ALIGNED(guest_base, align));
2812     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2813                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2814 }
2815 
2816 enum {
2817     /* The string "GNU\0" as a magic number. */
2818     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2819     NOTE_DATA_SZ = 1 * KiB,
2820     NOTE_NAME_SZ = 4,
2821     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2822 };
2823 
2824 /*
2825  * Process a single gnu_property entry.
2826  * Return false for error.
2827  */
2828 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2829                                struct image_info *info, bool have_prev_type,
2830                                uint32_t *prev_type, Error **errp)
2831 {
2832     uint32_t pr_type, pr_datasz, step;
2833 
2834     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2835         goto error_data;
2836     }
2837     datasz -= *off;
2838     data += *off / sizeof(uint32_t);
2839 
2840     if (datasz < 2 * sizeof(uint32_t)) {
2841         goto error_data;
2842     }
2843     pr_type = data[0];
2844     pr_datasz = data[1];
2845     data += 2;
2846     datasz -= 2 * sizeof(uint32_t);
2847     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2848     if (step > datasz) {
2849         goto error_data;
2850     }
2851 
2852     /* Properties are supposed to be unique and sorted on pr_type. */
2853     if (have_prev_type && pr_type <= *prev_type) {
2854         if (pr_type == *prev_type) {
2855             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2856         } else {
2857             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2858         }
2859         return false;
2860     }
2861     *prev_type = pr_type;
2862 
2863     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2864         return false;
2865     }
2866 
2867     *off += 2 * sizeof(uint32_t) + step;
2868     return true;
2869 
2870  error_data:
2871     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2872     return false;
2873 }
2874 
2875 /* Process NT_GNU_PROPERTY_TYPE_0. */
2876 static bool parse_elf_properties(int image_fd,
2877                                  struct image_info *info,
2878                                  const struct elf_phdr *phdr,
2879                                  char bprm_buf[BPRM_BUF_SIZE],
2880                                  Error **errp)
2881 {
2882     union {
2883         struct elf_note nhdr;
2884         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2885     } note;
2886 
2887     int n, off, datasz;
2888     bool have_prev_type;
2889     uint32_t prev_type;
2890 
2891     /* Unless the arch requires properties, ignore them. */
2892     if (!ARCH_USE_GNU_PROPERTY) {
2893         return true;
2894     }
2895 
2896     /* If the properties are crazy large, that's too bad. */
2897     n = phdr->p_filesz;
2898     if (n > sizeof(note)) {
2899         error_setg(errp, "PT_GNU_PROPERTY too large");
2900         return false;
2901     }
2902     if (n < sizeof(note.nhdr)) {
2903         error_setg(errp, "PT_GNU_PROPERTY too small");
2904         return false;
2905     }
2906 
2907     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2908         memcpy(&note, bprm_buf + phdr->p_offset, n);
2909     } else {
2910         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2911         if (len != n) {
2912             error_setg_errno(errp, errno, "Error reading file header");
2913             return false;
2914         }
2915     }
2916 
2917     /*
2918      * The contents of a valid PT_GNU_PROPERTY is a sequence
2919      * of uint32_t -- swap them all now.
2920      */
2921 #ifdef BSWAP_NEEDED
2922     for (int i = 0; i < n / 4; i++) {
2923         bswap32s(note.data + i);
2924     }
2925 #endif
2926 
2927     /*
2928      * Note that nhdr is 3 words, and that the "name" described by namesz
2929      * immediately follows nhdr and is thus at the 4th word.  Further, all
2930      * of the inputs to the kernel's round_up are multiples of 4.
2931      */
2932     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2933         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2934         note.data[3] != GNU0_MAGIC) {
2935         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2936         return false;
2937     }
2938     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2939 
2940     datasz = note.nhdr.n_descsz + off;
2941     if (datasz > n) {
2942         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2943         return false;
2944     }
2945 
2946     have_prev_type = false;
2947     prev_type = 0;
2948     while (1) {
2949         if (off == datasz) {
2950             return true;  /* end, exit ok */
2951         }
2952         if (!parse_elf_property(note.data, &off, datasz, info,
2953                                 have_prev_type, &prev_type, errp)) {
2954             return false;
2955         }
2956         have_prev_type = true;
2957     }
2958 }
2959 
2960 /* Load an ELF image into the address space.
2961 
2962    IMAGE_NAME is the filename of the image, to use in error messages.
2963    IMAGE_FD is the open file descriptor for the image.
2964 
2965    BPRM_BUF is a copy of the beginning of the file; this of course
2966    contains the elf file header at offset 0.  It is assumed that this
2967    buffer is sufficiently aligned to present no problems to the host
2968    in accessing data at aligned offsets within the buffer.
2969 
2970    On return: INFO values will be filled in, as necessary or available.  */
2971 
2972 static void load_elf_image(const char *image_name, int image_fd,
2973                            struct image_info *info, char **pinterp_name,
2974                            char bprm_buf[BPRM_BUF_SIZE])
2975 {
2976     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2977     struct elf_phdr *phdr;
2978     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2979     int i, retval, prot_exec;
2980     Error *err = NULL;
2981 
2982     /* First of all, some simple consistency checks */
2983     if (!elf_check_ident(ehdr)) {
2984         error_setg(&err, "Invalid ELF image for this architecture");
2985         goto exit_errmsg;
2986     }
2987     bswap_ehdr(ehdr);
2988     if (!elf_check_ehdr(ehdr)) {
2989         error_setg(&err, "Invalid ELF image for this architecture");
2990         goto exit_errmsg;
2991     }
2992 
2993     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2994     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2995         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2996     } else {
2997         phdr = (struct elf_phdr *) alloca(i);
2998         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2999         if (retval != i) {
3000             goto exit_read;
3001         }
3002     }
3003     bswap_phdr(phdr, ehdr->e_phnum);
3004 
3005     info->nsegs = 0;
3006     info->pt_dynamic_addr = 0;
3007 
3008     mmap_lock();
3009 
3010     /*
3011      * Find the maximum size of the image and allocate an appropriate
3012      * amount of memory to handle that.  Locate the interpreter, if any.
3013      */
3014     loaddr = -1, hiaddr = 0;
3015     info->alignment = 0;
3016     info->exec_stack = EXSTACK_DEFAULT;
3017     for (i = 0; i < ehdr->e_phnum; ++i) {
3018         struct elf_phdr *eppnt = phdr + i;
3019         if (eppnt->p_type == PT_LOAD) {
3020             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3021             if (a < loaddr) {
3022                 loaddr = a;
3023             }
3024             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3025             if (a > hiaddr) {
3026                 hiaddr = a;
3027             }
3028             ++info->nsegs;
3029             info->alignment |= eppnt->p_align;
3030         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3031             g_autofree char *interp_name = NULL;
3032 
3033             if (*pinterp_name) {
3034                 error_setg(&err, "Multiple PT_INTERP entries");
3035                 goto exit_errmsg;
3036             }
3037 
3038             interp_name = g_malloc(eppnt->p_filesz);
3039 
3040             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3041                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3042                        eppnt->p_filesz);
3043             } else {
3044                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3045                                eppnt->p_offset);
3046                 if (retval != eppnt->p_filesz) {
3047                     goto exit_read;
3048                 }
3049             }
3050             if (interp_name[eppnt->p_filesz - 1] != 0) {
3051                 error_setg(&err, "Invalid PT_INTERP entry");
3052                 goto exit_errmsg;
3053             }
3054             *pinterp_name = g_steal_pointer(&interp_name);
3055         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3056             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3057                 goto exit_errmsg;
3058             }
3059         } else if (eppnt->p_type == PT_GNU_STACK) {
3060             info->exec_stack = eppnt->p_flags & PF_X;
3061         }
3062     }
3063 
3064     if (pinterp_name != NULL) {
3065         /*
3066          * This is the main executable.
3067          *
3068          * Reserve extra space for brk.
3069          * We hold on to this space while placing the interpreter
3070          * and the stack, lest they be placed immediately after
3071          * the data segment and block allocation from the brk.
3072          *
3073          * 16MB is chosen as "large enough" without being so large as
3074          * to allow the result to not fit with a 32-bit guest on a
3075          * 32-bit host. However some 64 bit guests (e.g. s390x)
3076          * attempt to place their heap further ahead and currently
3077          * nothing stops them smashing into QEMUs address space.
3078          */
3079 #if TARGET_LONG_BITS == 64
3080         info->reserve_brk = 32 * MiB;
3081 #else
3082         info->reserve_brk = 16 * MiB;
3083 #endif
3084         hiaddr += info->reserve_brk;
3085 
3086         if (ehdr->e_type == ET_EXEC) {
3087             /*
3088              * Make sure that the low address does not conflict with
3089              * MMAP_MIN_ADDR or the QEMU application itself.
3090              */
3091             probe_guest_base(image_name, loaddr, hiaddr);
3092         } else {
3093             /*
3094              * The binary is dynamic, but we still need to
3095              * select guest_base.  In this case we pass a size.
3096              */
3097             probe_guest_base(image_name, 0, hiaddr - loaddr);
3098         }
3099     }
3100 
3101     /*
3102      * Reserve address space for all of this.
3103      *
3104      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3105      * exactly the address range that is required.
3106      *
3107      * Otherwise this is ET_DYN, and we are searching for a location
3108      * that can hold the memory space required.  If the image is
3109      * pre-linked, LOADDR will be non-zero, and the kernel should
3110      * honor that address if it happens to be free.
3111      *
3112      * In both cases, we will overwrite pages in this range with mappings
3113      * from the executable.
3114      */
3115     load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3116                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3117                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3118                             -1, 0);
3119     if (load_addr == -1) {
3120         goto exit_mmap;
3121     }
3122     load_bias = load_addr - loaddr;
3123 
3124     if (elf_is_fdpic(ehdr)) {
3125         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3126             g_malloc(sizeof(*loadsegs) * info->nsegs);
3127 
3128         for (i = 0; i < ehdr->e_phnum; ++i) {
3129             switch (phdr[i].p_type) {
3130             case PT_DYNAMIC:
3131                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3132                 break;
3133             case PT_LOAD:
3134                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3135                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3136                 loadsegs->p_memsz = phdr[i].p_memsz;
3137                 ++loadsegs;
3138                 break;
3139             }
3140         }
3141     }
3142 
3143     info->load_bias = load_bias;
3144     info->code_offset = load_bias;
3145     info->data_offset = load_bias;
3146     info->load_addr = load_addr;
3147     info->entry = ehdr->e_entry + load_bias;
3148     info->start_code = -1;
3149     info->end_code = 0;
3150     info->start_data = -1;
3151     info->end_data = 0;
3152     info->brk = 0;
3153     info->elf_flags = ehdr->e_flags;
3154 
3155     prot_exec = PROT_EXEC;
3156 #ifdef TARGET_AARCH64
3157     /*
3158      * If the BTI feature is present, this indicates that the executable
3159      * pages of the startup binary should be mapped with PROT_BTI, so that
3160      * branch targets are enforced.
3161      *
3162      * The startup binary is either the interpreter or the static executable.
3163      * The interpreter is responsible for all pages of a dynamic executable.
3164      *
3165      * Elf notes are backward compatible to older cpus.
3166      * Do not enable BTI unless it is supported.
3167      */
3168     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3169         && (pinterp_name == NULL || *pinterp_name == 0)
3170         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3171         prot_exec |= TARGET_PROT_BTI;
3172     }
3173 #endif
3174 
3175     for (i = 0; i < ehdr->e_phnum; i++) {
3176         struct elf_phdr *eppnt = phdr + i;
3177         if (eppnt->p_type == PT_LOAD) {
3178             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3179             int elf_prot = 0;
3180 
3181             if (eppnt->p_flags & PF_R) {
3182                 elf_prot |= PROT_READ;
3183             }
3184             if (eppnt->p_flags & PF_W) {
3185                 elf_prot |= PROT_WRITE;
3186             }
3187             if (eppnt->p_flags & PF_X) {
3188                 elf_prot |= prot_exec;
3189             }
3190 
3191             vaddr = load_bias + eppnt->p_vaddr;
3192             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3193             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3194 
3195             vaddr_ef = vaddr + eppnt->p_filesz;
3196             vaddr_em = vaddr + eppnt->p_memsz;
3197 
3198             /*
3199              * Some segments may be completely empty, with a non-zero p_memsz
3200              * but no backing file segment.
3201              */
3202             if (eppnt->p_filesz != 0) {
3203                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3204                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3205                                     MAP_PRIVATE | MAP_FIXED,
3206                                     image_fd, eppnt->p_offset - vaddr_po);
3207 
3208                 if (error == -1) {
3209                     goto exit_mmap;
3210                 }
3211 
3212                 /*
3213                  * If the load segment requests extra zeros (e.g. bss), map it.
3214                  */
3215                 if (eppnt->p_filesz < eppnt->p_memsz) {
3216                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
3217                 }
3218             } else if (eppnt->p_memsz != 0) {
3219                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3220                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3221                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3222                                     -1, 0);
3223 
3224                 if (error == -1) {
3225                     goto exit_mmap;
3226                 }
3227             }
3228 
3229             /* Find the full program boundaries.  */
3230             if (elf_prot & PROT_EXEC) {
3231                 if (vaddr < info->start_code) {
3232                     info->start_code = vaddr;
3233                 }
3234                 if (vaddr_ef > info->end_code) {
3235                     info->end_code = vaddr_ef;
3236                 }
3237             }
3238             if (elf_prot & PROT_WRITE) {
3239                 if (vaddr < info->start_data) {
3240                     info->start_data = vaddr;
3241                 }
3242                 if (vaddr_ef > info->end_data) {
3243                     info->end_data = vaddr_ef;
3244                 }
3245             }
3246             if (vaddr_em > info->brk) {
3247                 info->brk = vaddr_em;
3248             }
3249 #ifdef TARGET_MIPS
3250         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3251             Mips_elf_abiflags_v0 abiflags;
3252             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3253                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3254                 goto exit_errmsg;
3255             }
3256             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3257                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3258                        sizeof(Mips_elf_abiflags_v0));
3259             } else {
3260                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3261                                eppnt->p_offset);
3262                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3263                     goto exit_read;
3264                 }
3265             }
3266             bswap_mips_abiflags(&abiflags);
3267             info->fp_abi = abiflags.fp_abi;
3268 #endif
3269         }
3270     }
3271 
3272     if (info->end_data == 0) {
3273         info->start_data = info->end_code;
3274         info->end_data = info->end_code;
3275     }
3276 
3277     if (qemu_log_enabled()) {
3278         load_symbols(ehdr, image_fd, load_bias);
3279     }
3280 
3281     debuginfo_report_elf(image_name, image_fd, load_bias);
3282 
3283     mmap_unlock();
3284 
3285     close(image_fd);
3286     return;
3287 
3288  exit_read:
3289     if (retval >= 0) {
3290         error_setg(&err, "Incomplete read of file header");
3291     } else {
3292         error_setg_errno(&err, errno, "Error reading file header");
3293     }
3294     goto exit_errmsg;
3295  exit_mmap:
3296     error_setg_errno(&err, errno, "Error mapping file");
3297     goto exit_errmsg;
3298  exit_errmsg:
3299     error_reportf_err(err, "%s: ", image_name);
3300     exit(-1);
3301 }
3302 
3303 static void load_elf_interp(const char *filename, struct image_info *info,
3304                             char bprm_buf[BPRM_BUF_SIZE])
3305 {
3306     int fd, retval;
3307     Error *err = NULL;
3308 
3309     fd = open(path(filename), O_RDONLY);
3310     if (fd < 0) {
3311         error_setg_file_open(&err, errno, filename);
3312         error_report_err(err);
3313         exit(-1);
3314     }
3315 
3316     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3317     if (retval < 0) {
3318         error_setg_errno(&err, errno, "Error reading file header");
3319         error_reportf_err(err, "%s: ", filename);
3320         exit(-1);
3321     }
3322 
3323     if (retval < BPRM_BUF_SIZE) {
3324         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3325     }
3326 
3327     load_elf_image(filename, fd, info, NULL, bprm_buf);
3328 }
3329 
3330 static int symfind(const void *s0, const void *s1)
3331 {
3332     target_ulong addr = *(target_ulong *)s0;
3333     struct elf_sym *sym = (struct elf_sym *)s1;
3334     int result = 0;
3335     if (addr < sym->st_value) {
3336         result = -1;
3337     } else if (addr >= sym->st_value + sym->st_size) {
3338         result = 1;
3339     }
3340     return result;
3341 }
3342 
3343 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3344 {
3345 #if ELF_CLASS == ELFCLASS32
3346     struct elf_sym *syms = s->disas_symtab.elf32;
3347 #else
3348     struct elf_sym *syms = s->disas_symtab.elf64;
3349 #endif
3350 
3351     // binary search
3352     struct elf_sym *sym;
3353 
3354     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3355     if (sym != NULL) {
3356         return s->disas_strtab + sym->st_name;
3357     }
3358 
3359     return "";
3360 }
3361 
3362 /* FIXME: This should use elf_ops.h  */
3363 static int symcmp(const void *s0, const void *s1)
3364 {
3365     struct elf_sym *sym0 = (struct elf_sym *)s0;
3366     struct elf_sym *sym1 = (struct elf_sym *)s1;
3367     return (sym0->st_value < sym1->st_value)
3368         ? -1
3369         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3370 }
3371 
3372 /* Best attempt to load symbols from this ELF object. */
3373 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3374 {
3375     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3376     uint64_t segsz;
3377     struct elf_shdr *shdr;
3378     char *strings = NULL;
3379     struct syminfo *s = NULL;
3380     struct elf_sym *new_syms, *syms = NULL;
3381 
3382     shnum = hdr->e_shnum;
3383     i = shnum * sizeof(struct elf_shdr);
3384     shdr = (struct elf_shdr *)alloca(i);
3385     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3386         return;
3387     }
3388 
3389     bswap_shdr(shdr, shnum);
3390     for (i = 0; i < shnum; ++i) {
3391         if (shdr[i].sh_type == SHT_SYMTAB) {
3392             sym_idx = i;
3393             str_idx = shdr[i].sh_link;
3394             goto found;
3395         }
3396     }
3397 
3398     /* There will be no symbol table if the file was stripped.  */
3399     return;
3400 
3401  found:
3402     /* Now know where the strtab and symtab are.  Snarf them.  */
3403     s = g_try_new(struct syminfo, 1);
3404     if (!s) {
3405         goto give_up;
3406     }
3407 
3408     segsz = shdr[str_idx].sh_size;
3409     s->disas_strtab = strings = g_try_malloc(segsz);
3410     if (!strings ||
3411         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3412         goto give_up;
3413     }
3414 
3415     segsz = shdr[sym_idx].sh_size;
3416     syms = g_try_malloc(segsz);
3417     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3418         goto give_up;
3419     }
3420 
3421     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3422         /* Implausibly large symbol table: give up rather than ploughing
3423          * on with the number of symbols calculation overflowing
3424          */
3425         goto give_up;
3426     }
3427     nsyms = segsz / sizeof(struct elf_sym);
3428     for (i = 0; i < nsyms; ) {
3429         bswap_sym(syms + i);
3430         /* Throw away entries which we do not need.  */
3431         if (syms[i].st_shndx == SHN_UNDEF
3432             || syms[i].st_shndx >= SHN_LORESERVE
3433             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3434             if (i < --nsyms) {
3435                 syms[i] = syms[nsyms];
3436             }
3437         } else {
3438 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3439             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3440             syms[i].st_value &= ~(target_ulong)1;
3441 #endif
3442             syms[i].st_value += load_bias;
3443             i++;
3444         }
3445     }
3446 
3447     /* No "useful" symbol.  */
3448     if (nsyms == 0) {
3449         goto give_up;
3450     }
3451 
3452     /* Attempt to free the storage associated with the local symbols
3453        that we threw away.  Whether or not this has any effect on the
3454        memory allocation depends on the malloc implementation and how
3455        many symbols we managed to discard.  */
3456     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3457     if (new_syms == NULL) {
3458         goto give_up;
3459     }
3460     syms = new_syms;
3461 
3462     qsort(syms, nsyms, sizeof(*syms), symcmp);
3463 
3464     s->disas_num_syms = nsyms;
3465 #if ELF_CLASS == ELFCLASS32
3466     s->disas_symtab.elf32 = syms;
3467 #else
3468     s->disas_symtab.elf64 = syms;
3469 #endif
3470     s->lookup_symbol = lookup_symbolxx;
3471     s->next = syminfos;
3472     syminfos = s;
3473 
3474     return;
3475 
3476 give_up:
3477     g_free(s);
3478     g_free(strings);
3479     g_free(syms);
3480 }
3481 
3482 uint32_t get_elf_eflags(int fd)
3483 {
3484     struct elfhdr ehdr;
3485     off_t offset;
3486     int ret;
3487 
3488     /* Read ELF header */
3489     offset = lseek(fd, 0, SEEK_SET);
3490     if (offset == (off_t) -1) {
3491         return 0;
3492     }
3493     ret = read(fd, &ehdr, sizeof(ehdr));
3494     if (ret < sizeof(ehdr)) {
3495         return 0;
3496     }
3497     offset = lseek(fd, offset, SEEK_SET);
3498     if (offset == (off_t) -1) {
3499         return 0;
3500     }
3501 
3502     /* Check ELF signature */
3503     if (!elf_check_ident(&ehdr)) {
3504         return 0;
3505     }
3506 
3507     /* check header */
3508     bswap_ehdr(&ehdr);
3509     if (!elf_check_ehdr(&ehdr)) {
3510         return 0;
3511     }
3512 
3513     /* return architecture id */
3514     return ehdr.e_flags;
3515 }
3516 
3517 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3518 {
3519     struct image_info interp_info;
3520     struct elfhdr elf_ex;
3521     char *elf_interpreter = NULL;
3522     char *scratch;
3523 
3524     memset(&interp_info, 0, sizeof(interp_info));
3525 #ifdef TARGET_MIPS
3526     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3527 #endif
3528 
3529     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3530 
3531     load_elf_image(bprm->filename, bprm->fd, info,
3532                    &elf_interpreter, bprm->buf);
3533 
3534     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3535        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3536        when we load the interpreter.  */
3537     elf_ex = *(struct elfhdr *)bprm->buf;
3538 
3539     /* Do this so that we can load the interpreter, if need be.  We will
3540        change some of these later */
3541     bprm->p = setup_arg_pages(bprm, info);
3542 
3543     scratch = g_new0(char, TARGET_PAGE_SIZE);
3544     if (STACK_GROWS_DOWN) {
3545         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3546                                    bprm->p, info->stack_limit);
3547         info->file_string = bprm->p;
3548         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3549                                    bprm->p, info->stack_limit);
3550         info->env_strings = bprm->p;
3551         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3552                                    bprm->p, info->stack_limit);
3553         info->arg_strings = bprm->p;
3554     } else {
3555         info->arg_strings = bprm->p;
3556         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3557                                    bprm->p, info->stack_limit);
3558         info->env_strings = bprm->p;
3559         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3560                                    bprm->p, info->stack_limit);
3561         info->file_string = bprm->p;
3562         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3563                                    bprm->p, info->stack_limit);
3564     }
3565 
3566     g_free(scratch);
3567 
3568     if (!bprm->p) {
3569         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3570         exit(-1);
3571     }
3572 
3573     if (elf_interpreter) {
3574         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3575 
3576         /* If the program interpreter is one of these two, then assume
3577            an iBCS2 image.  Otherwise assume a native linux image.  */
3578 
3579         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3580             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3581             info->personality = PER_SVR4;
3582 
3583             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3584                and some applications "depend" upon this behavior.  Since
3585                we do not have the power to recompile these, we emulate
3586                the SVr4 behavior.  Sigh.  */
3587             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3588                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3589         }
3590 #ifdef TARGET_MIPS
3591         info->interp_fp_abi = interp_info.fp_abi;
3592 #endif
3593     }
3594 
3595     /*
3596      * TODO: load a vdso, which would also contain the signal trampolines.
3597      * Otherwise, allocate a private page to hold them.
3598      */
3599     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3600         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3601                                           PROT_READ | PROT_WRITE,
3602                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3603         if (tramp_page == -1) {
3604             return -errno;
3605         }
3606 
3607         setup_sigtramp(tramp_page);
3608         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3609     }
3610 
3611     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3612                                 info, (elf_interpreter ? &interp_info : NULL));
3613     info->start_stack = bprm->p;
3614 
3615     /* If we have an interpreter, set that as the program's entry point.
3616        Copy the load_bias as well, to help PPC64 interpret the entry
3617        point as a function descriptor.  Do this after creating elf tables
3618        so that we copy the original program entry point into the AUXV.  */
3619     if (elf_interpreter) {
3620         info->load_bias = interp_info.load_bias;
3621         info->entry = interp_info.entry;
3622         g_free(elf_interpreter);
3623     }
3624 
3625 #ifdef USE_ELF_CORE_DUMP
3626     bprm->core_dump = &elf_core_dump;
3627 #endif
3628 
3629     /*
3630      * If we reserved extra space for brk, release it now.
3631      * The implementation of do_brk in syscalls.c expects to be able
3632      * to mmap pages in this space.
3633      */
3634     if (info->reserve_brk) {
3635         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3636         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3637         target_munmap(start_brk, end_brk - start_brk);
3638     }
3639 
3640     return 0;
3641 }
3642 
3643 #ifdef USE_ELF_CORE_DUMP
3644 /*
3645  * Definitions to generate Intel SVR4-like core files.
3646  * These mostly have the same names as the SVR4 types with "target_elf_"
3647  * tacked on the front to prevent clashes with linux definitions,
3648  * and the typedef forms have been avoided.  This is mostly like
3649  * the SVR4 structure, but more Linuxy, with things that Linux does
3650  * not support and which gdb doesn't really use excluded.
3651  *
3652  * Fields we don't dump (their contents is zero) in linux-user qemu
3653  * are marked with XXX.
3654  *
3655  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3656  *
3657  * Porting ELF coredump for target is (quite) simple process.  First you
3658  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3659  * the target resides):
3660  *
3661  * #define USE_ELF_CORE_DUMP
3662  *
3663  * Next you define type of register set used for dumping.  ELF specification
3664  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3665  *
3666  * typedef <target_regtype> target_elf_greg_t;
3667  * #define ELF_NREG <number of registers>
3668  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3669  *
3670  * Last step is to implement target specific function that copies registers
3671  * from given cpu into just specified register set.  Prototype is:
3672  *
3673  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3674  *                                const CPUArchState *env);
3675  *
3676  * Parameters:
3677  *     regs - copy register values into here (allocated and zeroed by caller)
3678  *     env - copy registers from here
3679  *
3680  * Example for ARM target is provided in this file.
3681  */
3682 
3683 /* An ELF note in memory */
3684 struct memelfnote {
3685     const char *name;
3686     size_t     namesz;
3687     size_t     namesz_rounded;
3688     int        type;
3689     size_t     datasz;
3690     size_t     datasz_rounded;
3691     void       *data;
3692     size_t     notesz;
3693 };
3694 
3695 struct target_elf_siginfo {
3696     abi_int    si_signo; /* signal number */
3697     abi_int    si_code;  /* extra code */
3698     abi_int    si_errno; /* errno */
3699 };
3700 
3701 struct target_elf_prstatus {
3702     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3703     abi_short          pr_cursig;    /* Current signal */
3704     abi_ulong          pr_sigpend;   /* XXX */
3705     abi_ulong          pr_sighold;   /* XXX */
3706     target_pid_t       pr_pid;
3707     target_pid_t       pr_ppid;
3708     target_pid_t       pr_pgrp;
3709     target_pid_t       pr_sid;
3710     struct target_timeval pr_utime;  /* XXX User time */
3711     struct target_timeval pr_stime;  /* XXX System time */
3712     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3713     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3714     target_elf_gregset_t      pr_reg;       /* GP registers */
3715     abi_int            pr_fpvalid;   /* XXX */
3716 };
3717 
3718 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3719 
3720 struct target_elf_prpsinfo {
3721     char         pr_state;       /* numeric process state */
3722     char         pr_sname;       /* char for pr_state */
3723     char         pr_zomb;        /* zombie */
3724     char         pr_nice;        /* nice val */
3725     abi_ulong    pr_flag;        /* flags */
3726     target_uid_t pr_uid;
3727     target_gid_t pr_gid;
3728     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3729     /* Lots missing */
3730     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3731     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3732 };
3733 
3734 /* Here is the structure in which status of each thread is captured. */
3735 struct elf_thread_status {
3736     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3737     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3738 #if 0
3739     elf_fpregset_t fpu;             /* NT_PRFPREG */
3740     struct task_struct *thread;
3741     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3742 #endif
3743     struct memelfnote notes[1];
3744     int num_notes;
3745 };
3746 
3747 struct elf_note_info {
3748     struct memelfnote   *notes;
3749     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3750     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3751 
3752     QTAILQ_HEAD(, elf_thread_status) thread_list;
3753 #if 0
3754     /*
3755      * Current version of ELF coredump doesn't support
3756      * dumping fp regs etc.
3757      */
3758     elf_fpregset_t *fpu;
3759     elf_fpxregset_t *xfpu;
3760     int thread_status_size;
3761 #endif
3762     int notes_size;
3763     int numnote;
3764 };
3765 
3766 struct vm_area_struct {
3767     target_ulong   vma_start;  /* start vaddr of memory region */
3768     target_ulong   vma_end;    /* end vaddr of memory region */
3769     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3770     QTAILQ_ENTRY(vm_area_struct) vma_link;
3771 };
3772 
3773 struct mm_struct {
3774     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3775     int mm_count;           /* number of mappings */
3776 };
3777 
3778 static struct mm_struct *vma_init(void);
3779 static void vma_delete(struct mm_struct *);
3780 static int vma_add_mapping(struct mm_struct *, target_ulong,
3781                            target_ulong, abi_ulong);
3782 static int vma_get_mapping_count(const struct mm_struct *);
3783 static struct vm_area_struct *vma_first(const struct mm_struct *);
3784 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3785 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3786 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3787                       unsigned long flags);
3788 
3789 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3790 static void fill_note(struct memelfnote *, const char *, int,
3791                       unsigned int, void *);
3792 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3793 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3794 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3795 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3796 static size_t note_size(const struct memelfnote *);
3797 static void free_note_info(struct elf_note_info *);
3798 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3799 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3800 
3801 static int dump_write(int, const void *, size_t);
3802 static int write_note(struct memelfnote *, int);
3803 static int write_note_info(struct elf_note_info *, int);
3804 
3805 #ifdef BSWAP_NEEDED
3806 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3807 {
3808     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3809     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3810     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3811     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3812     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3813     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3814     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3815     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3816     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3817     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3818     /* cpu times are not filled, so we skip them */
3819     /* regs should be in correct format already */
3820     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3821 }
3822 
3823 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3824 {
3825     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3826     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3827     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3828     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3829     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3830     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3831     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3832 }
3833 
3834 static void bswap_note(struct elf_note *en)
3835 {
3836     bswap32s(&en->n_namesz);
3837     bswap32s(&en->n_descsz);
3838     bswap32s(&en->n_type);
3839 }
3840 #else
3841 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3842 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3843 static inline void bswap_note(struct elf_note *en) { }
3844 #endif /* BSWAP_NEEDED */
3845 
3846 /*
3847  * Minimal support for linux memory regions.  These are needed
3848  * when we are finding out what memory exactly belongs to
3849  * emulated process.  No locks needed here, as long as
3850  * thread that received the signal is stopped.
3851  */
3852 
3853 static struct mm_struct *vma_init(void)
3854 {
3855     struct mm_struct *mm;
3856 
3857     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3858         return (NULL);
3859 
3860     mm->mm_count = 0;
3861     QTAILQ_INIT(&mm->mm_mmap);
3862 
3863     return (mm);
3864 }
3865 
3866 static void vma_delete(struct mm_struct *mm)
3867 {
3868     struct vm_area_struct *vma;
3869 
3870     while ((vma = vma_first(mm)) != NULL) {
3871         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3872         g_free(vma);
3873     }
3874     g_free(mm);
3875 }
3876 
3877 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3878                            target_ulong end, abi_ulong flags)
3879 {
3880     struct vm_area_struct *vma;
3881 
3882     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3883         return (-1);
3884 
3885     vma->vma_start = start;
3886     vma->vma_end = end;
3887     vma->vma_flags = flags;
3888 
3889     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3890     mm->mm_count++;
3891 
3892     return (0);
3893 }
3894 
3895 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3896 {
3897     return (QTAILQ_FIRST(&mm->mm_mmap));
3898 }
3899 
3900 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3901 {
3902     return (QTAILQ_NEXT(vma, vma_link));
3903 }
3904 
3905 static int vma_get_mapping_count(const struct mm_struct *mm)
3906 {
3907     return (mm->mm_count);
3908 }
3909 
3910 /*
3911  * Calculate file (dump) size of given memory region.
3912  */
3913 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3914 {
3915     /* if we cannot even read the first page, skip it */
3916     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3917         return (0);
3918 
3919     /*
3920      * Usually we don't dump executable pages as they contain
3921      * non-writable code that debugger can read directly from
3922      * target library etc.  However, thread stacks are marked
3923      * also executable so we read in first page of given region
3924      * and check whether it contains elf header.  If there is
3925      * no elf header, we dump it.
3926      */
3927     if (vma->vma_flags & PROT_EXEC) {
3928         char page[TARGET_PAGE_SIZE];
3929 
3930         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3931             return 0;
3932         }
3933         if ((page[EI_MAG0] == ELFMAG0) &&
3934             (page[EI_MAG1] == ELFMAG1) &&
3935             (page[EI_MAG2] == ELFMAG2) &&
3936             (page[EI_MAG3] == ELFMAG3)) {
3937             /*
3938              * Mappings are possibly from ELF binary.  Don't dump
3939              * them.
3940              */
3941             return (0);
3942         }
3943     }
3944 
3945     return (vma->vma_end - vma->vma_start);
3946 }
3947 
3948 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3949                       unsigned long flags)
3950 {
3951     struct mm_struct *mm = (struct mm_struct *)priv;
3952 
3953     vma_add_mapping(mm, start, end, flags);
3954     return (0);
3955 }
3956 
3957 static void fill_note(struct memelfnote *note, const char *name, int type,
3958                       unsigned int sz, void *data)
3959 {
3960     unsigned int namesz;
3961 
3962     namesz = strlen(name) + 1;
3963     note->name = name;
3964     note->namesz = namesz;
3965     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3966     note->type = type;
3967     note->datasz = sz;
3968     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3969 
3970     note->data = data;
3971 
3972     /*
3973      * We calculate rounded up note size here as specified by
3974      * ELF document.
3975      */
3976     note->notesz = sizeof (struct elf_note) +
3977         note->namesz_rounded + note->datasz_rounded;
3978 }
3979 
3980 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3981                             uint32_t flags)
3982 {
3983     (void) memset(elf, 0, sizeof(*elf));
3984 
3985     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3986     elf->e_ident[EI_CLASS] = ELF_CLASS;
3987     elf->e_ident[EI_DATA] = ELF_DATA;
3988     elf->e_ident[EI_VERSION] = EV_CURRENT;
3989     elf->e_ident[EI_OSABI] = ELF_OSABI;
3990 
3991     elf->e_type = ET_CORE;
3992     elf->e_machine = machine;
3993     elf->e_version = EV_CURRENT;
3994     elf->e_phoff = sizeof(struct elfhdr);
3995     elf->e_flags = flags;
3996     elf->e_ehsize = sizeof(struct elfhdr);
3997     elf->e_phentsize = sizeof(struct elf_phdr);
3998     elf->e_phnum = segs;
3999 
4000     bswap_ehdr(elf);
4001 }
4002 
4003 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4004 {
4005     phdr->p_type = PT_NOTE;
4006     phdr->p_offset = offset;
4007     phdr->p_vaddr = 0;
4008     phdr->p_paddr = 0;
4009     phdr->p_filesz = sz;
4010     phdr->p_memsz = 0;
4011     phdr->p_flags = 0;
4012     phdr->p_align = 0;
4013 
4014     bswap_phdr(phdr, 1);
4015 }
4016 
4017 static size_t note_size(const struct memelfnote *note)
4018 {
4019     return (note->notesz);
4020 }
4021 
4022 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4023                           const TaskState *ts, int signr)
4024 {
4025     (void) memset(prstatus, 0, sizeof (*prstatus));
4026     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4027     prstatus->pr_pid = ts->ts_tid;
4028     prstatus->pr_ppid = getppid();
4029     prstatus->pr_pgrp = getpgrp();
4030     prstatus->pr_sid = getsid(0);
4031 
4032     bswap_prstatus(prstatus);
4033 }
4034 
4035 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4036 {
4037     char *base_filename;
4038     unsigned int i, len;
4039 
4040     (void) memset(psinfo, 0, sizeof (*psinfo));
4041 
4042     len = ts->info->env_strings - ts->info->arg_strings;
4043     if (len >= ELF_PRARGSZ)
4044         len = ELF_PRARGSZ - 1;
4045     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4046         return -EFAULT;
4047     }
4048     for (i = 0; i < len; i++)
4049         if (psinfo->pr_psargs[i] == 0)
4050             psinfo->pr_psargs[i] = ' ';
4051     psinfo->pr_psargs[len] = 0;
4052 
4053     psinfo->pr_pid = getpid();
4054     psinfo->pr_ppid = getppid();
4055     psinfo->pr_pgrp = getpgrp();
4056     psinfo->pr_sid = getsid(0);
4057     psinfo->pr_uid = getuid();
4058     psinfo->pr_gid = getgid();
4059 
4060     base_filename = g_path_get_basename(ts->bprm->filename);
4061     /*
4062      * Using strncpy here is fine: at max-length,
4063      * this field is not NUL-terminated.
4064      */
4065     (void) strncpy(psinfo->pr_fname, base_filename,
4066                    sizeof(psinfo->pr_fname));
4067 
4068     g_free(base_filename);
4069     bswap_psinfo(psinfo);
4070     return (0);
4071 }
4072 
4073 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4074 {
4075     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4076     elf_addr_t orig_auxv = auxv;
4077     void *ptr;
4078     int len = ts->info->auxv_len;
4079 
4080     /*
4081      * Auxiliary vector is stored in target process stack.  It contains
4082      * {type, value} pairs that we need to dump into note.  This is not
4083      * strictly necessary but we do it here for sake of completeness.
4084      */
4085 
4086     /* read in whole auxv vector and copy it to memelfnote */
4087     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4088     if (ptr != NULL) {
4089         fill_note(note, "CORE", NT_AUXV, len, ptr);
4090         unlock_user(ptr, auxv, len);
4091     }
4092 }
4093 
4094 /*
4095  * Constructs name of coredump file.  We have following convention
4096  * for the name:
4097  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4098  *
4099  * Returns the filename
4100  */
4101 static char *core_dump_filename(const TaskState *ts)
4102 {
4103     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4104     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4105     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4106 
4107     return g_strdup_printf("qemu_%s_%s_%d.core",
4108                            base_filename, nowstr, (int)getpid());
4109 }
4110 
4111 static int dump_write(int fd, const void *ptr, size_t size)
4112 {
4113     const char *bufp = (const char *)ptr;
4114     ssize_t bytes_written, bytes_left;
4115     struct rlimit dumpsize;
4116     off_t pos;
4117 
4118     bytes_written = 0;
4119     getrlimit(RLIMIT_CORE, &dumpsize);
4120     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4121         if (errno == ESPIPE) { /* not a seekable stream */
4122             bytes_left = size;
4123         } else {
4124             return pos;
4125         }
4126     } else {
4127         if (dumpsize.rlim_cur <= pos) {
4128             return -1;
4129         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4130             bytes_left = size;
4131         } else {
4132             size_t limit_left=dumpsize.rlim_cur - pos;
4133             bytes_left = limit_left >= size ? size : limit_left ;
4134         }
4135     }
4136 
4137     /*
4138      * In normal conditions, single write(2) should do but
4139      * in case of socket etc. this mechanism is more portable.
4140      */
4141     do {
4142         bytes_written = write(fd, bufp, bytes_left);
4143         if (bytes_written < 0) {
4144             if (errno == EINTR)
4145                 continue;
4146             return (-1);
4147         } else if (bytes_written == 0) { /* eof */
4148             return (-1);
4149         }
4150         bufp += bytes_written;
4151         bytes_left -= bytes_written;
4152     } while (bytes_left > 0);
4153 
4154     return (0);
4155 }
4156 
4157 static int write_note(struct memelfnote *men, int fd)
4158 {
4159     struct elf_note en;
4160 
4161     en.n_namesz = men->namesz;
4162     en.n_type = men->type;
4163     en.n_descsz = men->datasz;
4164 
4165     bswap_note(&en);
4166 
4167     if (dump_write(fd, &en, sizeof(en)) != 0)
4168         return (-1);
4169     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4170         return (-1);
4171     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4172         return (-1);
4173 
4174     return (0);
4175 }
4176 
4177 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4178 {
4179     CPUState *cpu = env_cpu((CPUArchState *)env);
4180     TaskState *ts = (TaskState *)cpu->opaque;
4181     struct elf_thread_status *ets;
4182 
4183     ets = g_malloc0(sizeof (*ets));
4184     ets->num_notes = 1; /* only prstatus is dumped */
4185     fill_prstatus(&ets->prstatus, ts, 0);
4186     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4187     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4188               &ets->prstatus);
4189 
4190     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4191 
4192     info->notes_size += note_size(&ets->notes[0]);
4193 }
4194 
4195 static void init_note_info(struct elf_note_info *info)
4196 {
4197     /* Initialize the elf_note_info structure so that it is at
4198      * least safe to call free_note_info() on it. Must be
4199      * called before calling fill_note_info().
4200      */
4201     memset(info, 0, sizeof (*info));
4202     QTAILQ_INIT(&info->thread_list);
4203 }
4204 
4205 static int fill_note_info(struct elf_note_info *info,
4206                           long signr, const CPUArchState *env)
4207 {
4208 #define NUMNOTES 3
4209     CPUState *cpu = env_cpu((CPUArchState *)env);
4210     TaskState *ts = (TaskState *)cpu->opaque;
4211     int i;
4212 
4213     info->notes = g_new0(struct memelfnote, NUMNOTES);
4214     if (info->notes == NULL)
4215         return (-ENOMEM);
4216     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4217     if (info->prstatus == NULL)
4218         return (-ENOMEM);
4219     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4220     if (info->prstatus == NULL)
4221         return (-ENOMEM);
4222 
4223     /*
4224      * First fill in status (and registers) of current thread
4225      * including process info & aux vector.
4226      */
4227     fill_prstatus(info->prstatus, ts, signr);
4228     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4229     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4230               sizeof (*info->prstatus), info->prstatus);
4231     fill_psinfo(info->psinfo, ts);
4232     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4233               sizeof (*info->psinfo), info->psinfo);
4234     fill_auxv_note(&info->notes[2], ts);
4235     info->numnote = 3;
4236 
4237     info->notes_size = 0;
4238     for (i = 0; i < info->numnote; i++)
4239         info->notes_size += note_size(&info->notes[i]);
4240 
4241     /* read and fill status of all threads */
4242     cpu_list_lock();
4243     CPU_FOREACH(cpu) {
4244         if (cpu == thread_cpu) {
4245             continue;
4246         }
4247         fill_thread_info(info, cpu->env_ptr);
4248     }
4249     cpu_list_unlock();
4250 
4251     return (0);
4252 }
4253 
4254 static void free_note_info(struct elf_note_info *info)
4255 {
4256     struct elf_thread_status *ets;
4257 
4258     while (!QTAILQ_EMPTY(&info->thread_list)) {
4259         ets = QTAILQ_FIRST(&info->thread_list);
4260         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4261         g_free(ets);
4262     }
4263 
4264     g_free(info->prstatus);
4265     g_free(info->psinfo);
4266     g_free(info->notes);
4267 }
4268 
4269 static int write_note_info(struct elf_note_info *info, int fd)
4270 {
4271     struct elf_thread_status *ets;
4272     int i, error = 0;
4273 
4274     /* write prstatus, psinfo and auxv for current thread */
4275     for (i = 0; i < info->numnote; i++)
4276         if ((error = write_note(&info->notes[i], fd)) != 0)
4277             return (error);
4278 
4279     /* write prstatus for each thread */
4280     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4281         if ((error = write_note(&ets->notes[0], fd)) != 0)
4282             return (error);
4283     }
4284 
4285     return (0);
4286 }
4287 
4288 /*
4289  * Write out ELF coredump.
4290  *
4291  * See documentation of ELF object file format in:
4292  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4293  *
4294  * Coredump format in linux is following:
4295  *
4296  * 0   +----------------------+         \
4297  *     | ELF header           | ET_CORE  |
4298  *     +----------------------+          |
4299  *     | ELF program headers  |          |--- headers
4300  *     | - NOTE section       |          |
4301  *     | - PT_LOAD sections   |          |
4302  *     +----------------------+         /
4303  *     | NOTEs:               |
4304  *     | - NT_PRSTATUS        |
4305  *     | - NT_PRSINFO         |
4306  *     | - NT_AUXV            |
4307  *     +----------------------+ <-- aligned to target page
4308  *     | Process memory dump  |
4309  *     :                      :
4310  *     .                      .
4311  *     :                      :
4312  *     |                      |
4313  *     +----------------------+
4314  *
4315  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4316  * NT_PRSINFO  -> struct elf_prpsinfo
4317  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4318  *
4319  * Format follows System V format as close as possible.  Current
4320  * version limitations are as follows:
4321  *     - no floating point registers are dumped
4322  *
4323  * Function returns 0 in case of success, negative errno otherwise.
4324  *
4325  * TODO: make this work also during runtime: it should be
4326  * possible to force coredump from running process and then
4327  * continue processing.  For example qemu could set up SIGUSR2
4328  * handler (provided that target process haven't registered
4329  * handler for that) that does the dump when signal is received.
4330  */
4331 static int elf_core_dump(int signr, const CPUArchState *env)
4332 {
4333     const CPUState *cpu = env_cpu((CPUArchState *)env);
4334     const TaskState *ts = (const TaskState *)cpu->opaque;
4335     struct vm_area_struct *vma = NULL;
4336     g_autofree char *corefile = NULL;
4337     struct elf_note_info info;
4338     struct elfhdr elf;
4339     struct elf_phdr phdr;
4340     struct rlimit dumpsize;
4341     struct mm_struct *mm = NULL;
4342     off_t offset = 0, data_offset = 0;
4343     int segs = 0;
4344     int fd = -1;
4345 
4346     init_note_info(&info);
4347 
4348     errno = 0;
4349     getrlimit(RLIMIT_CORE, &dumpsize);
4350     if (dumpsize.rlim_cur == 0)
4351         return 0;
4352 
4353     corefile = core_dump_filename(ts);
4354 
4355     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4356                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4357         return (-errno);
4358 
4359     /*
4360      * Walk through target process memory mappings and
4361      * set up structure containing this information.  After
4362      * this point vma_xxx functions can be used.
4363      */
4364     if ((mm = vma_init()) == NULL)
4365         goto out;
4366 
4367     walk_memory_regions(mm, vma_walker);
4368     segs = vma_get_mapping_count(mm);
4369 
4370     /*
4371      * Construct valid coredump ELF header.  We also
4372      * add one more segment for notes.
4373      */
4374     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4375     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4376         goto out;
4377 
4378     /* fill in the in-memory version of notes */
4379     if (fill_note_info(&info, signr, env) < 0)
4380         goto out;
4381 
4382     offset += sizeof (elf);                             /* elf header */
4383     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4384 
4385     /* write out notes program header */
4386     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4387 
4388     offset += info.notes_size;
4389     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4390         goto out;
4391 
4392     /*
4393      * ELF specification wants data to start at page boundary so
4394      * we align it here.
4395      */
4396     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4397 
4398     /*
4399      * Write program headers for memory regions mapped in
4400      * the target process.
4401      */
4402     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4403         (void) memset(&phdr, 0, sizeof (phdr));
4404 
4405         phdr.p_type = PT_LOAD;
4406         phdr.p_offset = offset;
4407         phdr.p_vaddr = vma->vma_start;
4408         phdr.p_paddr = 0;
4409         phdr.p_filesz = vma_dump_size(vma);
4410         offset += phdr.p_filesz;
4411         phdr.p_memsz = vma->vma_end - vma->vma_start;
4412         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4413         if (vma->vma_flags & PROT_WRITE)
4414             phdr.p_flags |= PF_W;
4415         if (vma->vma_flags & PROT_EXEC)
4416             phdr.p_flags |= PF_X;
4417         phdr.p_align = ELF_EXEC_PAGESIZE;
4418 
4419         bswap_phdr(&phdr, 1);
4420         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4421             goto out;
4422         }
4423     }
4424 
4425     /*
4426      * Next we write notes just after program headers.  No
4427      * alignment needed here.
4428      */
4429     if (write_note_info(&info, fd) < 0)
4430         goto out;
4431 
4432     /* align data to page boundary */
4433     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4434         goto out;
4435 
4436     /*
4437      * Finally we can dump process memory into corefile as well.
4438      */
4439     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4440         abi_ulong addr;
4441         abi_ulong end;
4442 
4443         end = vma->vma_start + vma_dump_size(vma);
4444 
4445         for (addr = vma->vma_start; addr < end;
4446              addr += TARGET_PAGE_SIZE) {
4447             char page[TARGET_PAGE_SIZE];
4448             int error;
4449 
4450             /*
4451              *  Read in page from target process memory and
4452              *  write it to coredump file.
4453              */
4454             error = copy_from_user(page, addr, sizeof (page));
4455             if (error != 0) {
4456                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4457                                addr);
4458                 errno = -error;
4459                 goto out;
4460             }
4461             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4462                 goto out;
4463         }
4464     }
4465 
4466  out:
4467     free_note_info(&info);
4468     if (mm != NULL)
4469         vma_delete(mm);
4470     (void) close(fd);
4471 
4472     if (errno != 0)
4473         return (-errno);
4474     return (0);
4475 }
4476 #endif /* USE_ELF_CORE_DUMP */
4477 
4478 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4479 {
4480     init_thread(regs, infop);
4481 }
4482