xref: /qemu/linux-user/elfload.c (revision 92eecfff)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
14 #include "qemu/selfmap.h"
15 #include "qapi/error.h"
16 
17 #ifdef _ARCH_PPC64
18 #undef ARCH_DLINFO
19 #undef ELF_PLATFORM
20 #undef ELF_HWCAP
21 #undef ELF_HWCAP2
22 #undef ELF_CLASS
23 #undef ELF_DATA
24 #undef ELF_ARCH
25 #endif
26 
27 #define ELF_OSABI   ELFOSABI_SYSV
28 
29 /* from personality.h */
30 
31 /*
32  * Flags for bug emulation.
33  *
34  * These occupy the top three bytes.
35  */
36 enum {
37     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
38     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
39                                            descriptors (signal handling) */
40     MMAP_PAGE_ZERO =    0x0100000,
41     ADDR_COMPAT_LAYOUT = 0x0200000,
42     READ_IMPLIES_EXEC = 0x0400000,
43     ADDR_LIMIT_32BIT =  0x0800000,
44     SHORT_INODE =       0x1000000,
45     WHOLE_SECONDS =     0x2000000,
46     STICKY_TIMEOUTS =   0x4000000,
47     ADDR_LIMIT_3GB =    0x8000000,
48 };
49 
50 /*
51  * Personality types.
52  *
53  * These go in the low byte.  Avoid using the top bit, it will
54  * conflict with error returns.
55  */
56 enum {
57     PER_LINUX =         0x0000,
58     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
59     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
60     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
61     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
62     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
63     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
64     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
65     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
66     PER_BSD =           0x0006,
67     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
68     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
69     PER_LINUX32 =       0x0008,
70     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
71     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
72     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
73     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
74     PER_RISCOS =        0x000c,
75     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
76     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
77     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
78     PER_HPUX =          0x0010,
79     PER_MASK =          0x00ff,
80 };
81 
82 /*
83  * Return the base personality without flags.
84  */
85 #define personality(pers)       (pers & PER_MASK)
86 
87 int info_is_fdpic(struct image_info *info)
88 {
89     return info->personality == PER_LINUX_FDPIC;
90 }
91 
92 /* this flag is uneffective under linux too, should be deleted */
93 #ifndef MAP_DENYWRITE
94 #define MAP_DENYWRITE 0
95 #endif
96 
97 /* should probably go in elf.h */
98 #ifndef ELIBBAD
99 #define ELIBBAD 80
100 #endif
101 
102 #ifdef TARGET_WORDS_BIGENDIAN
103 #define ELF_DATA        ELFDATA2MSB
104 #else
105 #define ELF_DATA        ELFDATA2LSB
106 #endif
107 
108 #ifdef TARGET_ABI_MIPSN32
109 typedef abi_ullong      target_elf_greg_t;
110 #define tswapreg(ptr)   tswap64(ptr)
111 #else
112 typedef abi_ulong       target_elf_greg_t;
113 #define tswapreg(ptr)   tswapal(ptr)
114 #endif
115 
116 #ifdef USE_UID16
117 typedef abi_ushort      target_uid_t;
118 typedef abi_ushort      target_gid_t;
119 #else
120 typedef abi_uint        target_uid_t;
121 typedef abi_uint        target_gid_t;
122 #endif
123 typedef abi_int         target_pid_t;
124 
125 #ifdef TARGET_I386
126 
127 #define ELF_PLATFORM get_elf_platform()
128 
129 static const char *get_elf_platform(void)
130 {
131     static char elf_platform[] = "i386";
132     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
133     if (family > 6)
134         family = 6;
135     if (family >= 3)
136         elf_platform[1] = '0' + family;
137     return elf_platform;
138 }
139 
140 #define ELF_HWCAP get_elf_hwcap()
141 
142 static uint32_t get_elf_hwcap(void)
143 {
144     X86CPU *cpu = X86_CPU(thread_cpu);
145 
146     return cpu->env.features[FEAT_1_EDX];
147 }
148 
149 #ifdef TARGET_X86_64
150 #define ELF_START_MMAP 0x2aaaaab000ULL
151 
152 #define ELF_CLASS      ELFCLASS64
153 #define ELF_ARCH       EM_X86_64
154 
155 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
156 {
157     regs->rax = 0;
158     regs->rsp = infop->start_stack;
159     regs->rip = infop->entry;
160 }
161 
162 #define ELF_NREG    27
163 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
164 
165 /*
166  * Note that ELF_NREG should be 29 as there should be place for
167  * TRAPNO and ERR "registers" as well but linux doesn't dump
168  * those.
169  *
170  * See linux kernel: arch/x86/include/asm/elf.h
171  */
172 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
173 {
174     (*regs)[0] = env->regs[15];
175     (*regs)[1] = env->regs[14];
176     (*regs)[2] = env->regs[13];
177     (*regs)[3] = env->regs[12];
178     (*regs)[4] = env->regs[R_EBP];
179     (*regs)[5] = env->regs[R_EBX];
180     (*regs)[6] = env->regs[11];
181     (*regs)[7] = env->regs[10];
182     (*regs)[8] = env->regs[9];
183     (*regs)[9] = env->regs[8];
184     (*regs)[10] = env->regs[R_EAX];
185     (*regs)[11] = env->regs[R_ECX];
186     (*regs)[12] = env->regs[R_EDX];
187     (*regs)[13] = env->regs[R_ESI];
188     (*regs)[14] = env->regs[R_EDI];
189     (*regs)[15] = env->regs[R_EAX]; /* XXX */
190     (*regs)[16] = env->eip;
191     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
192     (*regs)[18] = env->eflags;
193     (*regs)[19] = env->regs[R_ESP];
194     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
195     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
196     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
197     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
198     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
199     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
200     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
201 }
202 
203 #else
204 
205 #define ELF_START_MMAP 0x80000000
206 
207 /*
208  * This is used to ensure we don't load something for the wrong architecture.
209  */
210 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
211 
212 /*
213  * These are used to set parameters in the core dumps.
214  */
215 #define ELF_CLASS       ELFCLASS32
216 #define ELF_ARCH        EM_386
217 
218 static inline void init_thread(struct target_pt_regs *regs,
219                                struct image_info *infop)
220 {
221     regs->esp = infop->start_stack;
222     regs->eip = infop->entry;
223 
224     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
225        starts %edx contains a pointer to a function which might be
226        registered using `atexit'.  This provides a mean for the
227        dynamic linker to call DT_FINI functions for shared libraries
228        that have been loaded before the code runs.
229 
230        A value of 0 tells we have no such handler.  */
231     regs->edx = 0;
232 }
233 
234 #define ELF_NREG    17
235 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
236 
237 /*
238  * Note that ELF_NREG should be 19 as there should be place for
239  * TRAPNO and ERR "registers" as well but linux doesn't dump
240  * those.
241  *
242  * See linux kernel: arch/x86/include/asm/elf.h
243  */
244 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
245 {
246     (*regs)[0] = env->regs[R_EBX];
247     (*regs)[1] = env->regs[R_ECX];
248     (*regs)[2] = env->regs[R_EDX];
249     (*regs)[3] = env->regs[R_ESI];
250     (*regs)[4] = env->regs[R_EDI];
251     (*regs)[5] = env->regs[R_EBP];
252     (*regs)[6] = env->regs[R_EAX];
253     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
254     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
255     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
256     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
257     (*regs)[11] = env->regs[R_EAX]; /* XXX */
258     (*regs)[12] = env->eip;
259     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
260     (*regs)[14] = env->eflags;
261     (*regs)[15] = env->regs[R_ESP];
262     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
263 }
264 #endif
265 
266 #define USE_ELF_CORE_DUMP
267 #define ELF_EXEC_PAGESIZE       4096
268 
269 #endif
270 
271 #ifdef TARGET_ARM
272 
273 #ifndef TARGET_AARCH64
274 /* 32 bit ARM definitions */
275 
276 #define ELF_START_MMAP 0x80000000
277 
278 #define ELF_ARCH        EM_ARM
279 #define ELF_CLASS       ELFCLASS32
280 
281 static inline void init_thread(struct target_pt_regs *regs,
282                                struct image_info *infop)
283 {
284     abi_long stack = infop->start_stack;
285     memset(regs, 0, sizeof(*regs));
286 
287     regs->uregs[16] = ARM_CPU_MODE_USR;
288     if (infop->entry & 1) {
289         regs->uregs[16] |= CPSR_T;
290     }
291     regs->uregs[15] = infop->entry & 0xfffffffe;
292     regs->uregs[13] = infop->start_stack;
293     /* FIXME - what to for failure of get_user()? */
294     get_user_ual(regs->uregs[2], stack + 8); /* envp */
295     get_user_ual(regs->uregs[1], stack + 4); /* envp */
296     /* XXX: it seems that r0 is zeroed after ! */
297     regs->uregs[0] = 0;
298     /* For uClinux PIC binaries.  */
299     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
300     regs->uregs[10] = infop->start_data;
301 
302     /* Support ARM FDPIC.  */
303     if (info_is_fdpic(infop)) {
304         /* As described in the ABI document, r7 points to the loadmap info
305          * prepared by the kernel. If an interpreter is needed, r8 points
306          * to the interpreter loadmap and r9 points to the interpreter
307          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
308          * r9 points to the main program PT_DYNAMIC info.
309          */
310         regs->uregs[7] = infop->loadmap_addr;
311         if (infop->interpreter_loadmap_addr) {
312             /* Executable is dynamically loaded.  */
313             regs->uregs[8] = infop->interpreter_loadmap_addr;
314             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
315         } else {
316             regs->uregs[8] = 0;
317             regs->uregs[9] = infop->pt_dynamic_addr;
318         }
319     }
320 }
321 
322 #define ELF_NREG    18
323 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
324 
325 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
326 {
327     (*regs)[0] = tswapreg(env->regs[0]);
328     (*regs)[1] = tswapreg(env->regs[1]);
329     (*regs)[2] = tswapreg(env->regs[2]);
330     (*regs)[3] = tswapreg(env->regs[3]);
331     (*regs)[4] = tswapreg(env->regs[4]);
332     (*regs)[5] = tswapreg(env->regs[5]);
333     (*regs)[6] = tswapreg(env->regs[6]);
334     (*regs)[7] = tswapreg(env->regs[7]);
335     (*regs)[8] = tswapreg(env->regs[8]);
336     (*regs)[9] = tswapreg(env->regs[9]);
337     (*regs)[10] = tswapreg(env->regs[10]);
338     (*regs)[11] = tswapreg(env->regs[11]);
339     (*regs)[12] = tswapreg(env->regs[12]);
340     (*regs)[13] = tswapreg(env->regs[13]);
341     (*regs)[14] = tswapreg(env->regs[14]);
342     (*regs)[15] = tswapreg(env->regs[15]);
343 
344     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
345     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
346 }
347 
348 #define USE_ELF_CORE_DUMP
349 #define ELF_EXEC_PAGESIZE       4096
350 
351 enum
352 {
353     ARM_HWCAP_ARM_SWP       = 1 << 0,
354     ARM_HWCAP_ARM_HALF      = 1 << 1,
355     ARM_HWCAP_ARM_THUMB     = 1 << 2,
356     ARM_HWCAP_ARM_26BIT     = 1 << 3,
357     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
358     ARM_HWCAP_ARM_FPA       = 1 << 5,
359     ARM_HWCAP_ARM_VFP       = 1 << 6,
360     ARM_HWCAP_ARM_EDSP      = 1 << 7,
361     ARM_HWCAP_ARM_JAVA      = 1 << 8,
362     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
363     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
364     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
365     ARM_HWCAP_ARM_NEON      = 1 << 12,
366     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
367     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
368     ARM_HWCAP_ARM_TLS       = 1 << 15,
369     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
370     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
371     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
372     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
373     ARM_HWCAP_ARM_LPAE      = 1 << 20,
374     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
375 };
376 
377 enum {
378     ARM_HWCAP2_ARM_AES      = 1 << 0,
379     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
380     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
381     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
382     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
383 };
384 
385 /* The commpage only exists for 32 bit kernels */
386 
387 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
388 
389 static bool init_guest_commpage(void)
390 {
391     void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
392     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
393                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
394 
395     if (addr == MAP_FAILED) {
396         perror("Allocating guest commpage");
397         exit(EXIT_FAILURE);
398     }
399     if (addr != want) {
400         return false;
401     }
402 
403     /* Set kernel helper versions; rest of page is 0.  */
404     __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
405 
406     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
407         perror("Protecting guest commpage");
408         exit(EXIT_FAILURE);
409     }
410     return true;
411 }
412 
413 #define ELF_HWCAP get_elf_hwcap()
414 #define ELF_HWCAP2 get_elf_hwcap2()
415 
416 static uint32_t get_elf_hwcap(void)
417 {
418     ARMCPU *cpu = ARM_CPU(thread_cpu);
419     uint32_t hwcaps = 0;
420 
421     hwcaps |= ARM_HWCAP_ARM_SWP;
422     hwcaps |= ARM_HWCAP_ARM_HALF;
423     hwcaps |= ARM_HWCAP_ARM_THUMB;
424     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
425 
426     /* probe for the extra features */
427 #define GET_FEATURE(feat, hwcap) \
428     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
429 
430 #define GET_FEATURE_ID(feat, hwcap) \
431     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
432 
433     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
436     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
437     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
438     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
439     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
440     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
441     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
442     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
443 
444     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
445         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
446         hwcaps |= ARM_HWCAP_ARM_VFPv3;
447         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
448             hwcaps |= ARM_HWCAP_ARM_VFPD32;
449         } else {
450             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
451         }
452     }
453     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
454 
455     return hwcaps;
456 }
457 
458 static uint32_t get_elf_hwcap2(void)
459 {
460     ARMCPU *cpu = ARM_CPU(thread_cpu);
461     uint32_t hwcaps = 0;
462 
463     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
464     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
465     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
466     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
467     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
468     return hwcaps;
469 }
470 
471 #undef GET_FEATURE
472 #undef GET_FEATURE_ID
473 
474 #define ELF_PLATFORM get_elf_platform()
475 
476 static const char *get_elf_platform(void)
477 {
478     CPUARMState *env = thread_cpu->env_ptr;
479 
480 #ifdef TARGET_WORDS_BIGENDIAN
481 # define END  "b"
482 #else
483 # define END  "l"
484 #endif
485 
486     if (arm_feature(env, ARM_FEATURE_V8)) {
487         return "v8" END;
488     } else if (arm_feature(env, ARM_FEATURE_V7)) {
489         if (arm_feature(env, ARM_FEATURE_M)) {
490             return "v7m" END;
491         } else {
492             return "v7" END;
493         }
494     } else if (arm_feature(env, ARM_FEATURE_V6)) {
495         return "v6" END;
496     } else if (arm_feature(env, ARM_FEATURE_V5)) {
497         return "v5" END;
498     } else {
499         return "v4" END;
500     }
501 
502 #undef END
503 }
504 
505 #else
506 /* 64 bit ARM definitions */
507 #define ELF_START_MMAP 0x80000000
508 
509 #define ELF_ARCH        EM_AARCH64
510 #define ELF_CLASS       ELFCLASS64
511 #ifdef TARGET_WORDS_BIGENDIAN
512 # define ELF_PLATFORM    "aarch64_be"
513 #else
514 # define ELF_PLATFORM    "aarch64"
515 #endif
516 
517 static inline void init_thread(struct target_pt_regs *regs,
518                                struct image_info *infop)
519 {
520     abi_long stack = infop->start_stack;
521     memset(regs, 0, sizeof(*regs));
522 
523     regs->pc = infop->entry & ~0x3ULL;
524     regs->sp = stack;
525 }
526 
527 #define ELF_NREG    34
528 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
529 
530 static void elf_core_copy_regs(target_elf_gregset_t *regs,
531                                const CPUARMState *env)
532 {
533     int i;
534 
535     for (i = 0; i < 32; i++) {
536         (*regs)[i] = tswapreg(env->xregs[i]);
537     }
538     (*regs)[32] = tswapreg(env->pc);
539     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
540 }
541 
542 #define USE_ELF_CORE_DUMP
543 #define ELF_EXEC_PAGESIZE       4096
544 
545 enum {
546     ARM_HWCAP_A64_FP            = 1 << 0,
547     ARM_HWCAP_A64_ASIMD         = 1 << 1,
548     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
549     ARM_HWCAP_A64_AES           = 1 << 3,
550     ARM_HWCAP_A64_PMULL         = 1 << 4,
551     ARM_HWCAP_A64_SHA1          = 1 << 5,
552     ARM_HWCAP_A64_SHA2          = 1 << 6,
553     ARM_HWCAP_A64_CRC32         = 1 << 7,
554     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
555     ARM_HWCAP_A64_FPHP          = 1 << 9,
556     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
557     ARM_HWCAP_A64_CPUID         = 1 << 11,
558     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
559     ARM_HWCAP_A64_JSCVT         = 1 << 13,
560     ARM_HWCAP_A64_FCMA          = 1 << 14,
561     ARM_HWCAP_A64_LRCPC         = 1 << 15,
562     ARM_HWCAP_A64_DCPOP         = 1 << 16,
563     ARM_HWCAP_A64_SHA3          = 1 << 17,
564     ARM_HWCAP_A64_SM3           = 1 << 18,
565     ARM_HWCAP_A64_SM4           = 1 << 19,
566     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
567     ARM_HWCAP_A64_SHA512        = 1 << 21,
568     ARM_HWCAP_A64_SVE           = 1 << 22,
569     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
570     ARM_HWCAP_A64_DIT           = 1 << 24,
571     ARM_HWCAP_A64_USCAT         = 1 << 25,
572     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
573     ARM_HWCAP_A64_FLAGM         = 1 << 27,
574     ARM_HWCAP_A64_SSBS          = 1 << 28,
575     ARM_HWCAP_A64_SB            = 1 << 29,
576     ARM_HWCAP_A64_PACA          = 1 << 30,
577     ARM_HWCAP_A64_PACG          = 1UL << 31,
578 
579     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
580     ARM_HWCAP2_A64_SVE2         = 1 << 1,
581     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
582     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
583     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
584     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
585     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
586     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
587     ARM_HWCAP2_A64_FRINT        = 1 << 8,
588 };
589 
590 #define ELF_HWCAP   get_elf_hwcap()
591 #define ELF_HWCAP2  get_elf_hwcap2()
592 
593 #define GET_FEATURE_ID(feat, hwcap) \
594     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
595 
596 static uint32_t get_elf_hwcap(void)
597 {
598     ARMCPU *cpu = ARM_CPU(thread_cpu);
599     uint32_t hwcaps = 0;
600 
601     hwcaps |= ARM_HWCAP_A64_FP;
602     hwcaps |= ARM_HWCAP_A64_ASIMD;
603     hwcaps |= ARM_HWCAP_A64_CPUID;
604 
605     /* probe for the extra features */
606 
607     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
608     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
609     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
610     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
611     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
612     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
613     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
614     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
615     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
616     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
617     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
618     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
619     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
620     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
621     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
622     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
623     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
624     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
625     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
626     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
627     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
628     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
629     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
630 
631     return hwcaps;
632 }
633 
634 static uint32_t get_elf_hwcap2(void)
635 {
636     ARMCPU *cpu = ARM_CPU(thread_cpu);
637     uint32_t hwcaps = 0;
638 
639     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
640     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
641     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
642 
643     return hwcaps;
644 }
645 
646 #undef GET_FEATURE_ID
647 
648 #endif /* not TARGET_AARCH64 */
649 #endif /* TARGET_ARM */
650 
651 #ifdef TARGET_SPARC
652 #ifdef TARGET_SPARC64
653 
654 #define ELF_START_MMAP 0x80000000
655 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
656                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
657 #ifndef TARGET_ABI32
658 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
659 #else
660 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
661 #endif
662 
663 #define ELF_CLASS   ELFCLASS64
664 #define ELF_ARCH    EM_SPARCV9
665 
666 #define STACK_BIAS              2047
667 
668 static inline void init_thread(struct target_pt_regs *regs,
669                                struct image_info *infop)
670 {
671 #ifndef TARGET_ABI32
672     regs->tstate = 0;
673 #endif
674     regs->pc = infop->entry;
675     regs->npc = regs->pc + 4;
676     regs->y = 0;
677 #ifdef TARGET_ABI32
678     regs->u_regs[14] = infop->start_stack - 16 * 4;
679 #else
680     if (personality(infop->personality) == PER_LINUX32)
681         regs->u_regs[14] = infop->start_stack - 16 * 4;
682     else
683         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
684 #endif
685 }
686 
687 #else
688 #define ELF_START_MMAP 0x80000000
689 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
690                     | HWCAP_SPARC_MULDIV)
691 
692 #define ELF_CLASS   ELFCLASS32
693 #define ELF_ARCH    EM_SPARC
694 
695 static inline void init_thread(struct target_pt_regs *regs,
696                                struct image_info *infop)
697 {
698     regs->psr = 0;
699     regs->pc = infop->entry;
700     regs->npc = regs->pc + 4;
701     regs->y = 0;
702     regs->u_regs[14] = infop->start_stack - 16 * 4;
703 }
704 
705 #endif
706 #endif
707 
708 #ifdef TARGET_PPC
709 
710 #define ELF_MACHINE    PPC_ELF_MACHINE
711 #define ELF_START_MMAP 0x80000000
712 
713 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
714 
715 #define elf_check_arch(x) ( (x) == EM_PPC64 )
716 
717 #define ELF_CLASS       ELFCLASS64
718 
719 #else
720 
721 #define ELF_CLASS       ELFCLASS32
722 
723 #endif
724 
725 #define ELF_ARCH        EM_PPC
726 
727 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
728    See arch/powerpc/include/asm/cputable.h.  */
729 enum {
730     QEMU_PPC_FEATURE_32 = 0x80000000,
731     QEMU_PPC_FEATURE_64 = 0x40000000,
732     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
733     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
734     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
735     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
736     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
737     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
738     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
739     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
740     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
741     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
742     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
743     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
744     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
745     QEMU_PPC_FEATURE_CELL = 0x00010000,
746     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
747     QEMU_PPC_FEATURE_SMT = 0x00004000,
748     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
749     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
750     QEMU_PPC_FEATURE_PA6T = 0x00000800,
751     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
752     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
753     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
754     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
755     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
756 
757     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
758     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
759 
760     /* Feature definitions in AT_HWCAP2.  */
761     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
762     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
763     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
764     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
765     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
766     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
767     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
768     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
769     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
770     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
771     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
772     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
773     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
774 };
775 
776 #define ELF_HWCAP get_elf_hwcap()
777 
778 static uint32_t get_elf_hwcap(void)
779 {
780     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
781     uint32_t features = 0;
782 
783     /* We don't have to be terribly complete here; the high points are
784        Altivec/FP/SPE support.  Anything else is just a bonus.  */
785 #define GET_FEATURE(flag, feature)                                      \
786     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
787 #define GET_FEATURE2(flags, feature) \
788     do { \
789         if ((cpu->env.insns_flags2 & flags) == flags) { \
790             features |= feature; \
791         } \
792     } while (0)
793     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
794     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
795     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
796     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
797     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
798     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
799     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
800     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
801     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
802     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
803     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
804                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
805                   QEMU_PPC_FEATURE_ARCH_2_06);
806 #undef GET_FEATURE
807 #undef GET_FEATURE2
808 
809     return features;
810 }
811 
812 #define ELF_HWCAP2 get_elf_hwcap2()
813 
814 static uint32_t get_elf_hwcap2(void)
815 {
816     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
817     uint32_t features = 0;
818 
819 #define GET_FEATURE(flag, feature)                                      \
820     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
821 #define GET_FEATURE2(flag, feature)                                      \
822     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
823 
824     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
825     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
826     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
827                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
828                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
829     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
830                  QEMU_PPC_FEATURE2_DARN);
831 
832 #undef GET_FEATURE
833 #undef GET_FEATURE2
834 
835     return features;
836 }
837 
838 /*
839  * The requirements here are:
840  * - keep the final alignment of sp (sp & 0xf)
841  * - make sure the 32-bit value at the first 16 byte aligned position of
842  *   AUXV is greater than 16 for glibc compatibility.
843  *   AT_IGNOREPPC is used for that.
844  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
845  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
846  */
847 #define DLINFO_ARCH_ITEMS       5
848 #define ARCH_DLINFO                                     \
849     do {                                                \
850         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
851         /*                                              \
852          * Handle glibc compatibility: these magic entries must \
853          * be at the lowest addresses in the final auxv.        \
854          */                                             \
855         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
856         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
857         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
858         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
859         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
860     } while (0)
861 
862 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
863 {
864     _regs->gpr[1] = infop->start_stack;
865 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
866     if (get_ppc64_abi(infop) < 2) {
867         uint64_t val;
868         get_user_u64(val, infop->entry + 8);
869         _regs->gpr[2] = val + infop->load_bias;
870         get_user_u64(val, infop->entry);
871         infop->entry = val + infop->load_bias;
872     } else {
873         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
874     }
875 #endif
876     _regs->nip = infop->entry;
877 }
878 
879 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
880 #define ELF_NREG 48
881 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
882 
883 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
884 {
885     int i;
886     target_ulong ccr = 0;
887 
888     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
889         (*regs)[i] = tswapreg(env->gpr[i]);
890     }
891 
892     (*regs)[32] = tswapreg(env->nip);
893     (*regs)[33] = tswapreg(env->msr);
894     (*regs)[35] = tswapreg(env->ctr);
895     (*regs)[36] = tswapreg(env->lr);
896     (*regs)[37] = tswapreg(env->xer);
897 
898     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
899         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
900     }
901     (*regs)[38] = tswapreg(ccr);
902 }
903 
904 #define USE_ELF_CORE_DUMP
905 #define ELF_EXEC_PAGESIZE       4096
906 
907 #endif
908 
909 #ifdef TARGET_MIPS
910 
911 #define ELF_START_MMAP 0x80000000
912 
913 #ifdef TARGET_MIPS64
914 #define ELF_CLASS   ELFCLASS64
915 #else
916 #define ELF_CLASS   ELFCLASS32
917 #endif
918 #define ELF_ARCH    EM_MIPS
919 
920 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
921 
922 #ifdef TARGET_ABI_MIPSN32
923 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
924 #else
925 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
926 #endif
927 
928 static inline void init_thread(struct target_pt_regs *regs,
929                                struct image_info *infop)
930 {
931     regs->cp0_status = 2 << CP0St_KSU;
932     regs->cp0_epc = infop->entry;
933     regs->regs[29] = infop->start_stack;
934 }
935 
936 /* See linux kernel: arch/mips/include/asm/elf.h.  */
937 #define ELF_NREG 45
938 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
939 
940 /* See linux kernel: arch/mips/include/asm/reg.h.  */
941 enum {
942 #ifdef TARGET_MIPS64
943     TARGET_EF_R0 = 0,
944 #else
945     TARGET_EF_R0 = 6,
946 #endif
947     TARGET_EF_R26 = TARGET_EF_R0 + 26,
948     TARGET_EF_R27 = TARGET_EF_R0 + 27,
949     TARGET_EF_LO = TARGET_EF_R0 + 32,
950     TARGET_EF_HI = TARGET_EF_R0 + 33,
951     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
952     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
953     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
954     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
955 };
956 
957 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
958 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
959 {
960     int i;
961 
962     for (i = 0; i < TARGET_EF_R0; i++) {
963         (*regs)[i] = 0;
964     }
965     (*regs)[TARGET_EF_R0] = 0;
966 
967     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
968         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
969     }
970 
971     (*regs)[TARGET_EF_R26] = 0;
972     (*regs)[TARGET_EF_R27] = 0;
973     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
974     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
975     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
976     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
977     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
978     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
979 }
980 
981 #define USE_ELF_CORE_DUMP
982 #define ELF_EXEC_PAGESIZE        4096
983 
984 /* See arch/mips/include/uapi/asm/hwcap.h.  */
985 enum {
986     HWCAP_MIPS_R6           = (1 << 0),
987     HWCAP_MIPS_MSA          = (1 << 1),
988 };
989 
990 #define ELF_HWCAP get_elf_hwcap()
991 
992 static uint32_t get_elf_hwcap(void)
993 {
994     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
995     uint32_t hwcaps = 0;
996 
997 #define GET_FEATURE(flag, hwcap) \
998     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
999 
1000     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1001     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1002 
1003 #undef GET_FEATURE
1004 
1005     return hwcaps;
1006 }
1007 
1008 #endif /* TARGET_MIPS */
1009 
1010 #ifdef TARGET_MICROBLAZE
1011 
1012 #define ELF_START_MMAP 0x80000000
1013 
1014 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1015 
1016 #define ELF_CLASS   ELFCLASS32
1017 #define ELF_ARCH    EM_MICROBLAZE
1018 
1019 static inline void init_thread(struct target_pt_regs *regs,
1020                                struct image_info *infop)
1021 {
1022     regs->pc = infop->entry;
1023     regs->r1 = infop->start_stack;
1024 
1025 }
1026 
1027 #define ELF_EXEC_PAGESIZE        4096
1028 
1029 #define USE_ELF_CORE_DUMP
1030 #define ELF_NREG 38
1031 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1032 
1033 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1034 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1035 {
1036     int i, pos = 0;
1037 
1038     for (i = 0; i < 32; i++) {
1039         (*regs)[pos++] = tswapreg(env->regs[i]);
1040     }
1041 
1042     (*regs)[pos++] = tswapreg(env->pc);
1043     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1044     (*regs)[pos++] = 0;
1045     (*regs)[pos++] = tswapreg(env->ear);
1046     (*regs)[pos++] = 0;
1047     (*regs)[pos++] = tswapreg(env->esr);
1048 }
1049 
1050 #endif /* TARGET_MICROBLAZE */
1051 
1052 #ifdef TARGET_NIOS2
1053 
1054 #define ELF_START_MMAP 0x80000000
1055 
1056 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1057 
1058 #define ELF_CLASS   ELFCLASS32
1059 #define ELF_ARCH    EM_ALTERA_NIOS2
1060 
1061 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1062 {
1063     regs->ea = infop->entry;
1064     regs->sp = infop->start_stack;
1065     regs->estatus = 0x3;
1066 }
1067 
1068 #define ELF_EXEC_PAGESIZE        4096
1069 
1070 #define USE_ELF_CORE_DUMP
1071 #define ELF_NREG 49
1072 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1073 
1074 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1075 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1076                                const CPUNios2State *env)
1077 {
1078     int i;
1079 
1080     (*regs)[0] = -1;
1081     for (i = 1; i < 8; i++)    /* r0-r7 */
1082         (*regs)[i] = tswapreg(env->regs[i + 7]);
1083 
1084     for (i = 8; i < 16; i++)   /* r8-r15 */
1085         (*regs)[i] = tswapreg(env->regs[i - 8]);
1086 
1087     for (i = 16; i < 24; i++)  /* r16-r23 */
1088         (*regs)[i] = tswapreg(env->regs[i + 7]);
1089     (*regs)[24] = -1;    /* R_ET */
1090     (*regs)[25] = -1;    /* R_BT */
1091     (*regs)[26] = tswapreg(env->regs[R_GP]);
1092     (*regs)[27] = tswapreg(env->regs[R_SP]);
1093     (*regs)[28] = tswapreg(env->regs[R_FP]);
1094     (*regs)[29] = tswapreg(env->regs[R_EA]);
1095     (*regs)[30] = -1;    /* R_SSTATUS */
1096     (*regs)[31] = tswapreg(env->regs[R_RA]);
1097 
1098     (*regs)[32] = tswapreg(env->regs[R_PC]);
1099 
1100     (*regs)[33] = -1; /* R_STATUS */
1101     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1102 
1103     for (i = 35; i < 49; i++)    /* ... */
1104         (*regs)[i] = -1;
1105 }
1106 
1107 #endif /* TARGET_NIOS2 */
1108 
1109 #ifdef TARGET_OPENRISC
1110 
1111 #define ELF_START_MMAP 0x08000000
1112 
1113 #define ELF_ARCH EM_OPENRISC
1114 #define ELF_CLASS ELFCLASS32
1115 #define ELF_DATA  ELFDATA2MSB
1116 
1117 static inline void init_thread(struct target_pt_regs *regs,
1118                                struct image_info *infop)
1119 {
1120     regs->pc = infop->entry;
1121     regs->gpr[1] = infop->start_stack;
1122 }
1123 
1124 #define USE_ELF_CORE_DUMP
1125 #define ELF_EXEC_PAGESIZE 8192
1126 
1127 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1128 #define ELF_NREG 34 /* gprs and pc, sr */
1129 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1130 
1131 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1132                                const CPUOpenRISCState *env)
1133 {
1134     int i;
1135 
1136     for (i = 0; i < 32; i++) {
1137         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1138     }
1139     (*regs)[32] = tswapreg(env->pc);
1140     (*regs)[33] = tswapreg(cpu_get_sr(env));
1141 }
1142 #define ELF_HWCAP 0
1143 #define ELF_PLATFORM NULL
1144 
1145 #endif /* TARGET_OPENRISC */
1146 
1147 #ifdef TARGET_SH4
1148 
1149 #define ELF_START_MMAP 0x80000000
1150 
1151 #define ELF_CLASS ELFCLASS32
1152 #define ELF_ARCH  EM_SH
1153 
1154 static inline void init_thread(struct target_pt_regs *regs,
1155                                struct image_info *infop)
1156 {
1157     /* Check other registers XXXXX */
1158     regs->pc = infop->entry;
1159     regs->regs[15] = infop->start_stack;
1160 }
1161 
1162 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1163 #define ELF_NREG 23
1164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1165 
1166 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1167 enum {
1168     TARGET_REG_PC = 16,
1169     TARGET_REG_PR = 17,
1170     TARGET_REG_SR = 18,
1171     TARGET_REG_GBR = 19,
1172     TARGET_REG_MACH = 20,
1173     TARGET_REG_MACL = 21,
1174     TARGET_REG_SYSCALL = 22
1175 };
1176 
1177 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1178                                       const CPUSH4State *env)
1179 {
1180     int i;
1181 
1182     for (i = 0; i < 16; i++) {
1183         (*regs)[i] = tswapreg(env->gregs[i]);
1184     }
1185 
1186     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1187     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1188     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1189     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1190     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1191     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1192     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1193 }
1194 
1195 #define USE_ELF_CORE_DUMP
1196 #define ELF_EXEC_PAGESIZE        4096
1197 
1198 enum {
1199     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1200     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1201     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1202     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1203     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1204     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1205     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1206     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1207     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1208     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1209 };
1210 
1211 #define ELF_HWCAP get_elf_hwcap()
1212 
1213 static uint32_t get_elf_hwcap(void)
1214 {
1215     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1216     uint32_t hwcap = 0;
1217 
1218     hwcap |= SH_CPU_HAS_FPU;
1219 
1220     if (cpu->env.features & SH_FEATURE_SH4A) {
1221         hwcap |= SH_CPU_HAS_LLSC;
1222     }
1223 
1224     return hwcap;
1225 }
1226 
1227 #endif
1228 
1229 #ifdef TARGET_CRIS
1230 
1231 #define ELF_START_MMAP 0x80000000
1232 
1233 #define ELF_CLASS ELFCLASS32
1234 #define ELF_ARCH  EM_CRIS
1235 
1236 static inline void init_thread(struct target_pt_regs *regs,
1237                                struct image_info *infop)
1238 {
1239     regs->erp = infop->entry;
1240 }
1241 
1242 #define ELF_EXEC_PAGESIZE        8192
1243 
1244 #endif
1245 
1246 #ifdef TARGET_M68K
1247 
1248 #define ELF_START_MMAP 0x80000000
1249 
1250 #define ELF_CLASS       ELFCLASS32
1251 #define ELF_ARCH        EM_68K
1252 
1253 /* ??? Does this need to do anything?
1254    #define ELF_PLAT_INIT(_r) */
1255 
1256 static inline void init_thread(struct target_pt_regs *regs,
1257                                struct image_info *infop)
1258 {
1259     regs->usp = infop->start_stack;
1260     regs->sr = 0;
1261     regs->pc = infop->entry;
1262 }
1263 
1264 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1265 #define ELF_NREG 20
1266 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1267 
1268 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1269 {
1270     (*regs)[0] = tswapreg(env->dregs[1]);
1271     (*regs)[1] = tswapreg(env->dregs[2]);
1272     (*regs)[2] = tswapreg(env->dregs[3]);
1273     (*regs)[3] = tswapreg(env->dregs[4]);
1274     (*regs)[4] = tswapreg(env->dregs[5]);
1275     (*regs)[5] = tswapreg(env->dregs[6]);
1276     (*regs)[6] = tswapreg(env->dregs[7]);
1277     (*regs)[7] = tswapreg(env->aregs[0]);
1278     (*regs)[8] = tswapreg(env->aregs[1]);
1279     (*regs)[9] = tswapreg(env->aregs[2]);
1280     (*regs)[10] = tswapreg(env->aregs[3]);
1281     (*regs)[11] = tswapreg(env->aregs[4]);
1282     (*regs)[12] = tswapreg(env->aregs[5]);
1283     (*regs)[13] = tswapreg(env->aregs[6]);
1284     (*regs)[14] = tswapreg(env->dregs[0]);
1285     (*regs)[15] = tswapreg(env->aregs[7]);
1286     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1287     (*regs)[17] = tswapreg(env->sr);
1288     (*regs)[18] = tswapreg(env->pc);
1289     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1290 }
1291 
1292 #define USE_ELF_CORE_DUMP
1293 #define ELF_EXEC_PAGESIZE       8192
1294 
1295 #endif
1296 
1297 #ifdef TARGET_ALPHA
1298 
1299 #define ELF_START_MMAP (0x30000000000ULL)
1300 
1301 #define ELF_CLASS      ELFCLASS64
1302 #define ELF_ARCH       EM_ALPHA
1303 
1304 static inline void init_thread(struct target_pt_regs *regs,
1305                                struct image_info *infop)
1306 {
1307     regs->pc = infop->entry;
1308     regs->ps = 8;
1309     regs->usp = infop->start_stack;
1310 }
1311 
1312 #define ELF_EXEC_PAGESIZE        8192
1313 
1314 #endif /* TARGET_ALPHA */
1315 
1316 #ifdef TARGET_S390X
1317 
1318 #define ELF_START_MMAP (0x20000000000ULL)
1319 
1320 #define ELF_CLASS	ELFCLASS64
1321 #define ELF_DATA	ELFDATA2MSB
1322 #define ELF_ARCH	EM_S390
1323 
1324 #include "elf.h"
1325 
1326 #define ELF_HWCAP get_elf_hwcap()
1327 
1328 #define GET_FEATURE(_feat, _hwcap) \
1329     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1330 
1331 static uint32_t get_elf_hwcap(void)
1332 {
1333     /*
1334      * Let's assume we always have esan3 and zarch.
1335      * 31-bit processes can use 64-bit registers (high gprs).
1336      */
1337     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1338 
1339     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1340     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1341     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1342     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1343     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1344         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1345         hwcap |= HWCAP_S390_ETF3EH;
1346     }
1347     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1348 
1349     return hwcap;
1350 }
1351 
1352 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1353 {
1354     regs->psw.addr = infop->entry;
1355     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1356     regs->gprs[15] = infop->start_stack;
1357 }
1358 
1359 #endif /* TARGET_S390X */
1360 
1361 #ifdef TARGET_TILEGX
1362 
1363 /* 42 bits real used address, a half for user mode */
1364 #define ELF_START_MMAP (0x00000020000000000ULL)
1365 
1366 #define elf_check_arch(x) ((x) == EM_TILEGX)
1367 
1368 #define ELF_CLASS   ELFCLASS64
1369 #define ELF_DATA    ELFDATA2LSB
1370 #define ELF_ARCH    EM_TILEGX
1371 
1372 static inline void init_thread(struct target_pt_regs *regs,
1373                                struct image_info *infop)
1374 {
1375     regs->pc = infop->entry;
1376     regs->sp = infop->start_stack;
1377 
1378 }
1379 
1380 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1381 
1382 #endif /* TARGET_TILEGX */
1383 
1384 #ifdef TARGET_RISCV
1385 
1386 #define ELF_START_MMAP 0x80000000
1387 #define ELF_ARCH  EM_RISCV
1388 
1389 #ifdef TARGET_RISCV32
1390 #define ELF_CLASS ELFCLASS32
1391 #else
1392 #define ELF_CLASS ELFCLASS64
1393 #endif
1394 
1395 static inline void init_thread(struct target_pt_regs *regs,
1396                                struct image_info *infop)
1397 {
1398     regs->sepc = infop->entry;
1399     regs->sp = infop->start_stack;
1400 }
1401 
1402 #define ELF_EXEC_PAGESIZE 4096
1403 
1404 #endif /* TARGET_RISCV */
1405 
1406 #ifdef TARGET_HPPA
1407 
1408 #define ELF_START_MMAP  0x80000000
1409 #define ELF_CLASS       ELFCLASS32
1410 #define ELF_ARCH        EM_PARISC
1411 #define ELF_PLATFORM    "PARISC"
1412 #define STACK_GROWS_DOWN 0
1413 #define STACK_ALIGNMENT  64
1414 
1415 static inline void init_thread(struct target_pt_regs *regs,
1416                                struct image_info *infop)
1417 {
1418     regs->iaoq[0] = infop->entry;
1419     regs->iaoq[1] = infop->entry + 4;
1420     regs->gr[23] = 0;
1421     regs->gr[24] = infop->arg_start;
1422     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1423     /* The top-of-stack contains a linkage buffer.  */
1424     regs->gr[30] = infop->start_stack + 64;
1425     regs->gr[31] = infop->entry;
1426 }
1427 
1428 #endif /* TARGET_HPPA */
1429 
1430 #ifdef TARGET_XTENSA
1431 
1432 #define ELF_START_MMAP 0x20000000
1433 
1434 #define ELF_CLASS       ELFCLASS32
1435 #define ELF_ARCH        EM_XTENSA
1436 
1437 static inline void init_thread(struct target_pt_regs *regs,
1438                                struct image_info *infop)
1439 {
1440     regs->windowbase = 0;
1441     regs->windowstart = 1;
1442     regs->areg[1] = infop->start_stack;
1443     regs->pc = infop->entry;
1444 }
1445 
1446 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1447 #define ELF_NREG 128
1448 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1449 
1450 enum {
1451     TARGET_REG_PC,
1452     TARGET_REG_PS,
1453     TARGET_REG_LBEG,
1454     TARGET_REG_LEND,
1455     TARGET_REG_LCOUNT,
1456     TARGET_REG_SAR,
1457     TARGET_REG_WINDOWSTART,
1458     TARGET_REG_WINDOWBASE,
1459     TARGET_REG_THREADPTR,
1460     TARGET_REG_AR0 = 64,
1461 };
1462 
1463 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1464                                const CPUXtensaState *env)
1465 {
1466     unsigned i;
1467 
1468     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1469     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1470     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1471     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1472     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1473     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1474     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1475     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1476     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1477     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1478     for (i = 0; i < env->config->nareg; ++i) {
1479         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1480     }
1481 }
1482 
1483 #define USE_ELF_CORE_DUMP
1484 #define ELF_EXEC_PAGESIZE       4096
1485 
1486 #endif /* TARGET_XTENSA */
1487 
1488 #ifndef ELF_PLATFORM
1489 #define ELF_PLATFORM (NULL)
1490 #endif
1491 
1492 #ifndef ELF_MACHINE
1493 #define ELF_MACHINE ELF_ARCH
1494 #endif
1495 
1496 #ifndef elf_check_arch
1497 #define elf_check_arch(x) ((x) == ELF_ARCH)
1498 #endif
1499 
1500 #ifndef elf_check_abi
1501 #define elf_check_abi(x) (1)
1502 #endif
1503 
1504 #ifndef ELF_HWCAP
1505 #define ELF_HWCAP 0
1506 #endif
1507 
1508 #ifndef STACK_GROWS_DOWN
1509 #define STACK_GROWS_DOWN 1
1510 #endif
1511 
1512 #ifndef STACK_ALIGNMENT
1513 #define STACK_ALIGNMENT 16
1514 #endif
1515 
1516 #ifdef TARGET_ABI32
1517 #undef ELF_CLASS
1518 #define ELF_CLASS ELFCLASS32
1519 #undef bswaptls
1520 #define bswaptls(ptr) bswap32s(ptr)
1521 #endif
1522 
1523 #include "elf.h"
1524 
1525 /* We must delay the following stanzas until after "elf.h". */
1526 #if defined(TARGET_AARCH64)
1527 
1528 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1529                                     const uint32_t *data,
1530                                     struct image_info *info,
1531                                     Error **errp)
1532 {
1533     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1534         if (pr_datasz != sizeof(uint32_t)) {
1535             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1536             return false;
1537         }
1538         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1539         info->note_flags = *data;
1540     }
1541     return true;
1542 }
1543 #define ARCH_USE_GNU_PROPERTY 1
1544 
1545 #else
1546 
1547 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1548                                     const uint32_t *data,
1549                                     struct image_info *info,
1550                                     Error **errp)
1551 {
1552     g_assert_not_reached();
1553 }
1554 #define ARCH_USE_GNU_PROPERTY 0
1555 
1556 #endif
1557 
1558 struct exec
1559 {
1560     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1561     unsigned int a_text;   /* length of text, in bytes */
1562     unsigned int a_data;   /* length of data, in bytes */
1563     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1564     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1565     unsigned int a_entry;  /* start address */
1566     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1567     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1568 };
1569 
1570 
1571 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1572 #define OMAGIC 0407
1573 #define NMAGIC 0410
1574 #define ZMAGIC 0413
1575 #define QMAGIC 0314
1576 
1577 /* Necessary parameters */
1578 #define TARGET_ELF_EXEC_PAGESIZE \
1579         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1580          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1581 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1582 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1583                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1584 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1585 
1586 #define DLINFO_ITEMS 16
1587 
1588 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1589 {
1590     memcpy(to, from, n);
1591 }
1592 
1593 #ifdef BSWAP_NEEDED
1594 static void bswap_ehdr(struct elfhdr *ehdr)
1595 {
1596     bswap16s(&ehdr->e_type);            /* Object file type */
1597     bswap16s(&ehdr->e_machine);         /* Architecture */
1598     bswap32s(&ehdr->e_version);         /* Object file version */
1599     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1600     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1601     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1602     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1603     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1604     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1605     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1606     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1607     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1608     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1609 }
1610 
1611 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1612 {
1613     int i;
1614     for (i = 0; i < phnum; ++i, ++phdr) {
1615         bswap32s(&phdr->p_type);        /* Segment type */
1616         bswap32s(&phdr->p_flags);       /* Segment flags */
1617         bswaptls(&phdr->p_offset);      /* Segment file offset */
1618         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1619         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1620         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1621         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1622         bswaptls(&phdr->p_align);       /* Segment alignment */
1623     }
1624 }
1625 
1626 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1627 {
1628     int i;
1629     for (i = 0; i < shnum; ++i, ++shdr) {
1630         bswap32s(&shdr->sh_name);
1631         bswap32s(&shdr->sh_type);
1632         bswaptls(&shdr->sh_flags);
1633         bswaptls(&shdr->sh_addr);
1634         bswaptls(&shdr->sh_offset);
1635         bswaptls(&shdr->sh_size);
1636         bswap32s(&shdr->sh_link);
1637         bswap32s(&shdr->sh_info);
1638         bswaptls(&shdr->sh_addralign);
1639         bswaptls(&shdr->sh_entsize);
1640     }
1641 }
1642 
1643 static void bswap_sym(struct elf_sym *sym)
1644 {
1645     bswap32s(&sym->st_name);
1646     bswaptls(&sym->st_value);
1647     bswaptls(&sym->st_size);
1648     bswap16s(&sym->st_shndx);
1649 }
1650 
1651 #ifdef TARGET_MIPS
1652 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1653 {
1654     bswap16s(&abiflags->version);
1655     bswap32s(&abiflags->ases);
1656     bswap32s(&abiflags->isa_ext);
1657     bswap32s(&abiflags->flags1);
1658     bswap32s(&abiflags->flags2);
1659 }
1660 #endif
1661 #else
1662 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1663 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1664 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1665 static inline void bswap_sym(struct elf_sym *sym) { }
1666 #ifdef TARGET_MIPS
1667 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1668 #endif
1669 #endif
1670 
1671 #ifdef USE_ELF_CORE_DUMP
1672 static int elf_core_dump(int, const CPUArchState *);
1673 #endif /* USE_ELF_CORE_DUMP */
1674 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1675 
1676 /* Verify the portions of EHDR within E_IDENT for the target.
1677    This can be performed before bswapping the entire header.  */
1678 static bool elf_check_ident(struct elfhdr *ehdr)
1679 {
1680     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1681             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1682             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1683             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1684             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1685             && ehdr->e_ident[EI_DATA] == ELF_DATA
1686             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1687 }
1688 
1689 /* Verify the portions of EHDR outside of E_IDENT for the target.
1690    This has to wait until after bswapping the header.  */
1691 static bool elf_check_ehdr(struct elfhdr *ehdr)
1692 {
1693     return (elf_check_arch(ehdr->e_machine)
1694             && elf_check_abi(ehdr->e_flags)
1695             && ehdr->e_ehsize == sizeof(struct elfhdr)
1696             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1697             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1698 }
1699 
1700 /*
1701  * 'copy_elf_strings()' copies argument/envelope strings from user
1702  * memory to free pages in kernel mem. These are in a format ready
1703  * to be put directly into the top of new user memory.
1704  *
1705  */
1706 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1707                                   abi_ulong p, abi_ulong stack_limit)
1708 {
1709     char *tmp;
1710     int len, i;
1711     abi_ulong top = p;
1712 
1713     if (!p) {
1714         return 0;       /* bullet-proofing */
1715     }
1716 
1717     if (STACK_GROWS_DOWN) {
1718         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1719         for (i = argc - 1; i >= 0; --i) {
1720             tmp = argv[i];
1721             if (!tmp) {
1722                 fprintf(stderr, "VFS: argc is wrong");
1723                 exit(-1);
1724             }
1725             len = strlen(tmp) + 1;
1726             tmp += len;
1727 
1728             if (len > (p - stack_limit)) {
1729                 return 0;
1730             }
1731             while (len) {
1732                 int bytes_to_copy = (len > offset) ? offset : len;
1733                 tmp -= bytes_to_copy;
1734                 p -= bytes_to_copy;
1735                 offset -= bytes_to_copy;
1736                 len -= bytes_to_copy;
1737 
1738                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1739 
1740                 if (offset == 0) {
1741                     memcpy_to_target(p, scratch, top - p);
1742                     top = p;
1743                     offset = TARGET_PAGE_SIZE;
1744                 }
1745             }
1746         }
1747         if (p != top) {
1748             memcpy_to_target(p, scratch + offset, top - p);
1749         }
1750     } else {
1751         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1752         for (i = 0; i < argc; ++i) {
1753             tmp = argv[i];
1754             if (!tmp) {
1755                 fprintf(stderr, "VFS: argc is wrong");
1756                 exit(-1);
1757             }
1758             len = strlen(tmp) + 1;
1759             if (len > (stack_limit - p)) {
1760                 return 0;
1761             }
1762             while (len) {
1763                 int bytes_to_copy = (len > remaining) ? remaining : len;
1764 
1765                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1766 
1767                 tmp += bytes_to_copy;
1768                 remaining -= bytes_to_copy;
1769                 p += bytes_to_copy;
1770                 len -= bytes_to_copy;
1771 
1772                 if (remaining == 0) {
1773                     memcpy_to_target(top, scratch, p - top);
1774                     top = p;
1775                     remaining = TARGET_PAGE_SIZE;
1776                 }
1777             }
1778         }
1779         if (p != top) {
1780             memcpy_to_target(top, scratch, p - top);
1781         }
1782     }
1783 
1784     return p;
1785 }
1786 
1787 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1788  * argument/environment space. Newer kernels (>2.6.33) allow more,
1789  * dependent on stack size, but guarantee at least 32 pages for
1790  * backwards compatibility.
1791  */
1792 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1793 
1794 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1795                                  struct image_info *info)
1796 {
1797     abi_ulong size, error, guard;
1798 
1799     size = guest_stack_size;
1800     if (size < STACK_LOWER_LIMIT) {
1801         size = STACK_LOWER_LIMIT;
1802     }
1803     guard = TARGET_PAGE_SIZE;
1804     if (guard < qemu_real_host_page_size) {
1805         guard = qemu_real_host_page_size;
1806     }
1807 
1808     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1809                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1810     if (error == -1) {
1811         perror("mmap stack");
1812         exit(-1);
1813     }
1814 
1815     /* We reserve one extra page at the top of the stack as guard.  */
1816     if (STACK_GROWS_DOWN) {
1817         target_mprotect(error, guard, PROT_NONE);
1818         info->stack_limit = error + guard;
1819         return info->stack_limit + size - sizeof(void *);
1820     } else {
1821         target_mprotect(error + size, guard, PROT_NONE);
1822         info->stack_limit = error + size;
1823         return error;
1824     }
1825 }
1826 
1827 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1828    after the data section (i.e. bss).  */
1829 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1830 {
1831     uintptr_t host_start, host_map_start, host_end;
1832 
1833     last_bss = TARGET_PAGE_ALIGN(last_bss);
1834 
1835     /* ??? There is confusion between qemu_real_host_page_size and
1836        qemu_host_page_size here and elsewhere in target_mmap, which
1837        may lead to the end of the data section mapping from the file
1838        not being mapped.  At least there was an explicit test and
1839        comment for that here, suggesting that "the file size must
1840        be known".  The comment probably pre-dates the introduction
1841        of the fstat system call in target_mmap which does in fact
1842        find out the size.  What isn't clear is if the workaround
1843        here is still actually needed.  For now, continue with it,
1844        but merge it with the "normal" mmap that would allocate the bss.  */
1845 
1846     host_start = (uintptr_t) g2h(elf_bss);
1847     host_end = (uintptr_t) g2h(last_bss);
1848     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1849 
1850     if (host_map_start < host_end) {
1851         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1852                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1853         if (p == MAP_FAILED) {
1854             perror("cannot mmap brk");
1855             exit(-1);
1856         }
1857     }
1858 
1859     /* Ensure that the bss page(s) are valid */
1860     if ((page_get_flags(last_bss-1) & prot) != prot) {
1861         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1862     }
1863 
1864     if (host_start < host_map_start) {
1865         memset((void *)host_start, 0, host_map_start - host_start);
1866     }
1867 }
1868 
1869 #ifdef TARGET_ARM
1870 static int elf_is_fdpic(struct elfhdr *exec)
1871 {
1872     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1873 }
1874 #else
1875 /* Default implementation, always false.  */
1876 static int elf_is_fdpic(struct elfhdr *exec)
1877 {
1878     return 0;
1879 }
1880 #endif
1881 
1882 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1883 {
1884     uint16_t n;
1885     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1886 
1887     /* elf32_fdpic_loadseg */
1888     n = info->nsegs;
1889     while (n--) {
1890         sp -= 12;
1891         put_user_u32(loadsegs[n].addr, sp+0);
1892         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1893         put_user_u32(loadsegs[n].p_memsz, sp+8);
1894     }
1895 
1896     /* elf32_fdpic_loadmap */
1897     sp -= 4;
1898     put_user_u16(0, sp+0); /* version */
1899     put_user_u16(info->nsegs, sp+2); /* nsegs */
1900 
1901     info->personality = PER_LINUX_FDPIC;
1902     info->loadmap_addr = sp;
1903 
1904     return sp;
1905 }
1906 
1907 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1908                                    struct elfhdr *exec,
1909                                    struct image_info *info,
1910                                    struct image_info *interp_info)
1911 {
1912     abi_ulong sp;
1913     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1914     int size;
1915     int i;
1916     abi_ulong u_rand_bytes;
1917     uint8_t k_rand_bytes[16];
1918     abi_ulong u_platform;
1919     const char *k_platform;
1920     const int n = sizeof(elf_addr_t);
1921 
1922     sp = p;
1923 
1924     /* Needs to be before we load the env/argc/... */
1925     if (elf_is_fdpic(exec)) {
1926         /* Need 4 byte alignment for these structs */
1927         sp &= ~3;
1928         sp = loader_build_fdpic_loadmap(info, sp);
1929         info->other_info = interp_info;
1930         if (interp_info) {
1931             interp_info->other_info = info;
1932             sp = loader_build_fdpic_loadmap(interp_info, sp);
1933             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1934             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1935         } else {
1936             info->interpreter_loadmap_addr = 0;
1937             info->interpreter_pt_dynamic_addr = 0;
1938         }
1939     }
1940 
1941     u_platform = 0;
1942     k_platform = ELF_PLATFORM;
1943     if (k_platform) {
1944         size_t len = strlen(k_platform) + 1;
1945         if (STACK_GROWS_DOWN) {
1946             sp -= (len + n - 1) & ~(n - 1);
1947             u_platform = sp;
1948             /* FIXME - check return value of memcpy_to_target() for failure */
1949             memcpy_to_target(sp, k_platform, len);
1950         } else {
1951             memcpy_to_target(sp, k_platform, len);
1952             u_platform = sp;
1953             sp += len + 1;
1954         }
1955     }
1956 
1957     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1958      * the argv and envp pointers.
1959      */
1960     if (STACK_GROWS_DOWN) {
1961         sp = QEMU_ALIGN_DOWN(sp, 16);
1962     } else {
1963         sp = QEMU_ALIGN_UP(sp, 16);
1964     }
1965 
1966     /*
1967      * Generate 16 random bytes for userspace PRNG seeding.
1968      */
1969     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1970     if (STACK_GROWS_DOWN) {
1971         sp -= 16;
1972         u_rand_bytes = sp;
1973         /* FIXME - check return value of memcpy_to_target() for failure */
1974         memcpy_to_target(sp, k_rand_bytes, 16);
1975     } else {
1976         memcpy_to_target(sp, k_rand_bytes, 16);
1977         u_rand_bytes = sp;
1978         sp += 16;
1979     }
1980 
1981     size = (DLINFO_ITEMS + 1) * 2;
1982     if (k_platform)
1983         size += 2;
1984 #ifdef DLINFO_ARCH_ITEMS
1985     size += DLINFO_ARCH_ITEMS * 2;
1986 #endif
1987 #ifdef ELF_HWCAP2
1988     size += 2;
1989 #endif
1990     info->auxv_len = size * n;
1991 
1992     size += envc + argc + 2;
1993     size += 1;  /* argc itself */
1994     size *= n;
1995 
1996     /* Allocate space and finalize stack alignment for entry now.  */
1997     if (STACK_GROWS_DOWN) {
1998         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1999         sp = u_argc;
2000     } else {
2001         u_argc = sp;
2002         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2003     }
2004 
2005     u_argv = u_argc + n;
2006     u_envp = u_argv + (argc + 1) * n;
2007     u_auxv = u_envp + (envc + 1) * n;
2008     info->saved_auxv = u_auxv;
2009     info->arg_start = u_argv;
2010     info->arg_end = u_argv + argc * n;
2011 
2012     /* This is correct because Linux defines
2013      * elf_addr_t as Elf32_Off / Elf64_Off
2014      */
2015 #define NEW_AUX_ENT(id, val) do {               \
2016         put_user_ual(id, u_auxv);  u_auxv += n; \
2017         put_user_ual(val, u_auxv); u_auxv += n; \
2018     } while(0)
2019 
2020 #ifdef ARCH_DLINFO
2021     /*
2022      * ARCH_DLINFO must come first so platform specific code can enforce
2023      * special alignment requirements on the AUXV if necessary (eg. PPC).
2024      */
2025     ARCH_DLINFO;
2026 #endif
2027     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2028      * on info->auxv_len will trigger.
2029      */
2030     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2031     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2032     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2033     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2034         /* Target doesn't support host page size alignment */
2035         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2036     } else {
2037         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2038                                                qemu_host_page_size)));
2039     }
2040     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2041     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2042     NEW_AUX_ENT(AT_ENTRY, info->entry);
2043     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2044     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2045     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2046     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2047     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2048     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2049     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2050     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2051     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2052 
2053 #ifdef ELF_HWCAP2
2054     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2055 #endif
2056 
2057     if (u_platform) {
2058         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2059     }
2060     NEW_AUX_ENT (AT_NULL, 0);
2061 #undef NEW_AUX_ENT
2062 
2063     /* Check that our initial calculation of the auxv length matches how much
2064      * we actually put into it.
2065      */
2066     assert(info->auxv_len == u_auxv - info->saved_auxv);
2067 
2068     put_user_ual(argc, u_argc);
2069 
2070     p = info->arg_strings;
2071     for (i = 0; i < argc; ++i) {
2072         put_user_ual(p, u_argv);
2073         u_argv += n;
2074         p += target_strlen(p) + 1;
2075     }
2076     put_user_ual(0, u_argv);
2077 
2078     p = info->env_strings;
2079     for (i = 0; i < envc; ++i) {
2080         put_user_ual(p, u_envp);
2081         u_envp += n;
2082         p += target_strlen(p) + 1;
2083     }
2084     put_user_ual(0, u_envp);
2085 
2086     return sp;
2087 }
2088 
2089 #ifndef ARM_COMMPAGE
2090 #define ARM_COMMPAGE 0
2091 #define init_guest_commpage() true
2092 #endif
2093 
2094 static void pgb_fail_in_use(const char *image_name)
2095 {
2096     error_report("%s: requires virtual address space that is in use "
2097                  "(omit the -B option or choose a different value)",
2098                  image_name);
2099     exit(EXIT_FAILURE);
2100 }
2101 
2102 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2103                                 abi_ulong guest_hiaddr, long align)
2104 {
2105     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2106     void *addr, *test;
2107 
2108     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2109         fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2110                 "host minimum alignment (0x%lx)\n",
2111                 guest_base, align);
2112         exit(EXIT_FAILURE);
2113     }
2114 
2115     /* Sanity check the guest binary. */
2116     if (reserved_va) {
2117         if (guest_hiaddr > reserved_va) {
2118             error_report("%s: requires more than reserved virtual "
2119                          "address space (0x%" PRIx64 " > 0x%lx)",
2120                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2121             exit(EXIT_FAILURE);
2122         }
2123     } else {
2124 #if HOST_LONG_BITS < TARGET_ABI_BITS
2125         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2126             error_report("%s: requires more virtual address space "
2127                          "than the host can provide (0x%" PRIx64 ")",
2128                          image_name, (uint64_t)guest_hiaddr - guest_base);
2129             exit(EXIT_FAILURE);
2130         }
2131 #endif
2132     }
2133 
2134     /*
2135      * Expand the allocation to the entire reserved_va.
2136      * Exclude the mmap_min_addr hole.
2137      */
2138     if (reserved_va) {
2139         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2140                         : mmap_min_addr - guest_base);
2141         guest_hiaddr = reserved_va;
2142     }
2143 
2144     /* Reserve the address space for the binary, or reserved_va. */
2145     test = g2h(guest_loaddr);
2146     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2147     if (test != addr) {
2148         pgb_fail_in_use(image_name);
2149     }
2150 }
2151 
2152 /**
2153  * pgd_find_hole_fallback: potential mmap address
2154  * @guest_size: size of available space
2155  * @brk: location of break
2156  * @align: memory alignment
2157  *
2158  * This is a fallback method for finding a hole in the host address
2159  * space if we don't have the benefit of being able to access
2160  * /proc/self/map. It can potentially take a very long time as we can
2161  * only dumbly iterate up the host address space seeing if the
2162  * allocation would work.
2163  */
2164 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2165                                         long align, uintptr_t offset)
2166 {
2167     uintptr_t base;
2168 
2169     /* Start (aligned) at the bottom and work our way up */
2170     base = ROUND_UP(mmap_min_addr, align);
2171 
2172     while (true) {
2173         uintptr_t align_start, end;
2174         align_start = ROUND_UP(base, align);
2175         end = align_start + guest_size + offset;
2176 
2177         /* if brk is anywhere in the range give ourselves some room to grow. */
2178         if (align_start <= brk && brk < end) {
2179             base = brk + (16 * MiB);
2180             continue;
2181         } else if (align_start + guest_size < align_start) {
2182             /* we have run out of space */
2183             return -1;
2184         } else {
2185             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2186                 MAP_FIXED_NOREPLACE;
2187             void * mmap_start = mmap((void *) align_start, guest_size,
2188                                      PROT_NONE, flags, -1, 0);
2189             if (mmap_start != MAP_FAILED) {
2190                 munmap((void *) align_start, guest_size);
2191                 if (MAP_FIXED_NOREPLACE != 0 ||
2192                     mmap_start == (void *) align_start) {
2193                     return (uintptr_t) mmap_start + offset;
2194                 }
2195             }
2196             base += qemu_host_page_size;
2197         }
2198     }
2199 }
2200 
2201 /* Return value for guest_base, or -1 if no hole found. */
2202 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2203                                long align, uintptr_t offset)
2204 {
2205     GSList *maps, *iter;
2206     uintptr_t this_start, this_end, next_start, brk;
2207     intptr_t ret = -1;
2208 
2209     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2210 
2211     maps = read_self_maps();
2212 
2213     /* Read brk after we've read the maps, which will malloc. */
2214     brk = (uintptr_t)sbrk(0);
2215 
2216     if (!maps) {
2217         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2218     }
2219 
2220     /* The first hole is before the first map entry. */
2221     this_start = mmap_min_addr;
2222 
2223     for (iter = maps; iter;
2224          this_start = next_start, iter = g_slist_next(iter)) {
2225         uintptr_t align_start, hole_size;
2226 
2227         this_end = ((MapInfo *)iter->data)->start;
2228         next_start = ((MapInfo *)iter->data)->end;
2229         align_start = ROUND_UP(this_start + offset, align);
2230 
2231         /* Skip holes that are too small. */
2232         if (align_start >= this_end) {
2233             continue;
2234         }
2235         hole_size = this_end - align_start;
2236         if (hole_size < guest_size) {
2237             continue;
2238         }
2239 
2240         /* If this hole contains brk, give ourselves some room to grow. */
2241         if (this_start <= brk && brk < this_end) {
2242             hole_size -= guest_size;
2243             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2244                 align_start += 1 * GiB;
2245             } else if (hole_size >= 16 * MiB) {
2246                 align_start += 16 * MiB;
2247             } else {
2248                 align_start = (this_end - guest_size) & -align;
2249                 if (align_start < this_start) {
2250                     continue;
2251                 }
2252             }
2253         }
2254 
2255         /* Record the lowest successful match. */
2256         if (ret < 0) {
2257             ret = align_start - guest_loaddr;
2258         }
2259         /* If this hole contains the identity map, select it. */
2260         if (align_start <= guest_loaddr &&
2261             guest_loaddr + guest_size <= this_end) {
2262             ret = 0;
2263         }
2264         /* If this hole ends above the identity map, stop looking. */
2265         if (this_end >= guest_loaddr) {
2266             break;
2267         }
2268     }
2269     free_self_maps(maps);
2270 
2271     return ret;
2272 }
2273 
2274 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2275                        abi_ulong orig_hiaddr, long align)
2276 {
2277     uintptr_t loaddr = orig_loaddr;
2278     uintptr_t hiaddr = orig_hiaddr;
2279     uintptr_t offset = 0;
2280     uintptr_t addr;
2281 
2282     if (hiaddr != orig_hiaddr) {
2283         error_report("%s: requires virtual address space that the "
2284                      "host cannot provide (0x%" PRIx64 ")",
2285                      image_name, (uint64_t)orig_hiaddr);
2286         exit(EXIT_FAILURE);
2287     }
2288 
2289     loaddr &= -align;
2290     if (ARM_COMMPAGE) {
2291         /*
2292          * Extend the allocation to include the commpage.
2293          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2294          * need to ensure there is space bellow the guest_base so we
2295          * can map the commpage in the place needed when the address
2296          * arithmetic wraps around.
2297          */
2298         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2299             hiaddr = (uintptr_t) 4 << 30;
2300         } else {
2301             offset = -(ARM_COMMPAGE & -align);
2302         }
2303     }
2304 
2305     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2306     if (addr == -1) {
2307         /*
2308          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2309          * that can satisfy both.  But as the normal arm32 link base address
2310          * is ~32k, and we extend down to include the commpage, making the
2311          * overhead only ~96k, this is unlikely.
2312          */
2313         error_report("%s: Unable to allocate %#zx bytes of "
2314                      "virtual address space", image_name,
2315                      (size_t)(hiaddr - loaddr));
2316         exit(EXIT_FAILURE);
2317     }
2318 
2319     guest_base = addr;
2320 }
2321 
2322 static void pgb_dynamic(const char *image_name, long align)
2323 {
2324     /*
2325      * The executable is dynamic and does not require a fixed address.
2326      * All we need is a commpage that satisfies align.
2327      * If we do not need a commpage, leave guest_base == 0.
2328      */
2329     if (ARM_COMMPAGE) {
2330         uintptr_t addr, commpage;
2331 
2332         /* 64-bit hosts should have used reserved_va. */
2333         assert(sizeof(uintptr_t) == 4);
2334 
2335         /*
2336          * By putting the commpage at the first hole, that puts guest_base
2337          * just above that, and maximises the positive guest addresses.
2338          */
2339         commpage = ARM_COMMPAGE & -align;
2340         addr = pgb_find_hole(commpage, -commpage, align, 0);
2341         assert(addr != -1);
2342         guest_base = addr;
2343     }
2344 }
2345 
2346 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2347                             abi_ulong guest_hiaddr, long align)
2348 {
2349     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2350     void *addr, *test;
2351 
2352     if (guest_hiaddr > reserved_va) {
2353         error_report("%s: requires more than reserved virtual "
2354                      "address space (0x%" PRIx64 " > 0x%lx)",
2355                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2356         exit(EXIT_FAILURE);
2357     }
2358 
2359     /* Widen the "image" to the entire reserved address space. */
2360     pgb_static(image_name, 0, reserved_va, align);
2361 
2362     /* osdep.h defines this as 0 if it's missing */
2363     flags |= MAP_FIXED_NOREPLACE;
2364 
2365     /* Reserve the memory on the host. */
2366     assert(guest_base != 0);
2367     test = g2h(0);
2368     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2369     if (addr == MAP_FAILED || addr != test) {
2370         error_report("Unable to reserve 0x%lx bytes of virtual address "
2371                      "space at %p (%s) for use as guest address space (check your"
2372                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2373                      "using -R option)", reserved_va, test, strerror(errno));
2374         exit(EXIT_FAILURE);
2375     }
2376 }
2377 
2378 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2379                       abi_ulong guest_hiaddr)
2380 {
2381     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2382     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2383 
2384     if (have_guest_base) {
2385         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2386     } else if (reserved_va) {
2387         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2388     } else if (guest_loaddr) {
2389         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2390     } else {
2391         pgb_dynamic(image_name, align);
2392     }
2393 
2394     /* Reserve and initialize the commpage. */
2395     if (!init_guest_commpage()) {
2396         /*
2397          * With have_guest_base, the user has selected the address and
2398          * we are trying to work with that.  Otherwise, we have selected
2399          * free space and init_guest_commpage must succeeded.
2400          */
2401         assert(have_guest_base);
2402         pgb_fail_in_use(image_name);
2403     }
2404 
2405     assert(QEMU_IS_ALIGNED(guest_base, align));
2406     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2407                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2408 }
2409 
2410 enum {
2411     /* The string "GNU\0" as a magic number. */
2412     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2413     NOTE_DATA_SZ = 1 * KiB,
2414     NOTE_NAME_SZ = 4,
2415     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2416 };
2417 
2418 /*
2419  * Process a single gnu_property entry.
2420  * Return false for error.
2421  */
2422 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2423                                struct image_info *info, bool have_prev_type,
2424                                uint32_t *prev_type, Error **errp)
2425 {
2426     uint32_t pr_type, pr_datasz, step;
2427 
2428     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2429         goto error_data;
2430     }
2431     datasz -= *off;
2432     data += *off / sizeof(uint32_t);
2433 
2434     if (datasz < 2 * sizeof(uint32_t)) {
2435         goto error_data;
2436     }
2437     pr_type = data[0];
2438     pr_datasz = data[1];
2439     data += 2;
2440     datasz -= 2 * sizeof(uint32_t);
2441     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2442     if (step > datasz) {
2443         goto error_data;
2444     }
2445 
2446     /* Properties are supposed to be unique and sorted on pr_type. */
2447     if (have_prev_type && pr_type <= *prev_type) {
2448         if (pr_type == *prev_type) {
2449             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2450         } else {
2451             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2452         }
2453         return false;
2454     }
2455     *prev_type = pr_type;
2456 
2457     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2458         return false;
2459     }
2460 
2461     *off += 2 * sizeof(uint32_t) + step;
2462     return true;
2463 
2464  error_data:
2465     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2466     return false;
2467 }
2468 
2469 /* Process NT_GNU_PROPERTY_TYPE_0. */
2470 static bool parse_elf_properties(int image_fd,
2471                                  struct image_info *info,
2472                                  const struct elf_phdr *phdr,
2473                                  char bprm_buf[BPRM_BUF_SIZE],
2474                                  Error **errp)
2475 {
2476     union {
2477         struct elf_note nhdr;
2478         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2479     } note;
2480 
2481     int n, off, datasz;
2482     bool have_prev_type;
2483     uint32_t prev_type;
2484 
2485     /* Unless the arch requires properties, ignore them. */
2486     if (!ARCH_USE_GNU_PROPERTY) {
2487         return true;
2488     }
2489 
2490     /* If the properties are crazy large, that's too bad. */
2491     n = phdr->p_filesz;
2492     if (n > sizeof(note)) {
2493         error_setg(errp, "PT_GNU_PROPERTY too large");
2494         return false;
2495     }
2496     if (n < sizeof(note.nhdr)) {
2497         error_setg(errp, "PT_GNU_PROPERTY too small");
2498         return false;
2499     }
2500 
2501     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2502         memcpy(&note, bprm_buf + phdr->p_offset, n);
2503     } else {
2504         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2505         if (len != n) {
2506             error_setg_errno(errp, errno, "Error reading file header");
2507             return false;
2508         }
2509     }
2510 
2511     /*
2512      * The contents of a valid PT_GNU_PROPERTY is a sequence
2513      * of uint32_t -- swap them all now.
2514      */
2515 #ifdef BSWAP_NEEDED
2516     for (int i = 0; i < n / 4; i++) {
2517         bswap32s(note.data + i);
2518     }
2519 #endif
2520 
2521     /*
2522      * Note that nhdr is 3 words, and that the "name" described by namesz
2523      * immediately follows nhdr and is thus at the 4th word.  Further, all
2524      * of the inputs to the kernel's round_up are multiples of 4.
2525      */
2526     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2527         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2528         note.data[3] != GNU0_MAGIC) {
2529         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2530         return false;
2531     }
2532     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2533 
2534     datasz = note.nhdr.n_descsz + off;
2535     if (datasz > n) {
2536         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2537         return false;
2538     }
2539 
2540     have_prev_type = false;
2541     prev_type = 0;
2542     while (1) {
2543         if (off == datasz) {
2544             return true;  /* end, exit ok */
2545         }
2546         if (!parse_elf_property(note.data, &off, datasz, info,
2547                                 have_prev_type, &prev_type, errp)) {
2548             return false;
2549         }
2550         have_prev_type = true;
2551     }
2552 }
2553 
2554 /* Load an ELF image into the address space.
2555 
2556    IMAGE_NAME is the filename of the image, to use in error messages.
2557    IMAGE_FD is the open file descriptor for the image.
2558 
2559    BPRM_BUF is a copy of the beginning of the file; this of course
2560    contains the elf file header at offset 0.  It is assumed that this
2561    buffer is sufficiently aligned to present no problems to the host
2562    in accessing data at aligned offsets within the buffer.
2563 
2564    On return: INFO values will be filled in, as necessary or available.  */
2565 
2566 static void load_elf_image(const char *image_name, int image_fd,
2567                            struct image_info *info, char **pinterp_name,
2568                            char bprm_buf[BPRM_BUF_SIZE])
2569 {
2570     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2571     struct elf_phdr *phdr;
2572     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2573     int i, retval, prot_exec;
2574     Error *err = NULL;
2575 
2576     /* First of all, some simple consistency checks */
2577     if (!elf_check_ident(ehdr)) {
2578         error_setg(&err, "Invalid ELF image for this architecture");
2579         goto exit_errmsg;
2580     }
2581     bswap_ehdr(ehdr);
2582     if (!elf_check_ehdr(ehdr)) {
2583         error_setg(&err, "Invalid ELF image for this architecture");
2584         goto exit_errmsg;
2585     }
2586 
2587     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2588     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2589         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2590     } else {
2591         phdr = (struct elf_phdr *) alloca(i);
2592         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2593         if (retval != i) {
2594             goto exit_read;
2595         }
2596     }
2597     bswap_phdr(phdr, ehdr->e_phnum);
2598 
2599     info->nsegs = 0;
2600     info->pt_dynamic_addr = 0;
2601 
2602     mmap_lock();
2603 
2604     /*
2605      * Find the maximum size of the image and allocate an appropriate
2606      * amount of memory to handle that.  Locate the interpreter, if any.
2607      */
2608     loaddr = -1, hiaddr = 0;
2609     info->alignment = 0;
2610     for (i = 0; i < ehdr->e_phnum; ++i) {
2611         struct elf_phdr *eppnt = phdr + i;
2612         if (eppnt->p_type == PT_LOAD) {
2613             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2614             if (a < loaddr) {
2615                 loaddr = a;
2616             }
2617             a = eppnt->p_vaddr + eppnt->p_memsz;
2618             if (a > hiaddr) {
2619                 hiaddr = a;
2620             }
2621             ++info->nsegs;
2622             info->alignment |= eppnt->p_align;
2623         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2624             g_autofree char *interp_name = NULL;
2625 
2626             if (*pinterp_name) {
2627                 error_setg(&err, "Multiple PT_INTERP entries");
2628                 goto exit_errmsg;
2629             }
2630 
2631             interp_name = g_malloc(eppnt->p_filesz);
2632 
2633             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2634                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2635                        eppnt->p_filesz);
2636             } else {
2637                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2638                                eppnt->p_offset);
2639                 if (retval != eppnt->p_filesz) {
2640                     goto exit_read;
2641                 }
2642             }
2643             if (interp_name[eppnt->p_filesz - 1] != 0) {
2644                 error_setg(&err, "Invalid PT_INTERP entry");
2645                 goto exit_errmsg;
2646             }
2647             *pinterp_name = g_steal_pointer(&interp_name);
2648         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2649             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2650                 goto exit_errmsg;
2651             }
2652         }
2653     }
2654 
2655     if (pinterp_name != NULL) {
2656         /*
2657          * This is the main executable.
2658          *
2659          * Reserve extra space for brk.
2660          * We hold on to this space while placing the interpreter
2661          * and the stack, lest they be placed immediately after
2662          * the data segment and block allocation from the brk.
2663          *
2664          * 16MB is chosen as "large enough" without being so large
2665          * as to allow the result to not fit with a 32-bit guest on
2666          * a 32-bit host.
2667          */
2668         info->reserve_brk = 16 * MiB;
2669         hiaddr += info->reserve_brk;
2670 
2671         if (ehdr->e_type == ET_EXEC) {
2672             /*
2673              * Make sure that the low address does not conflict with
2674              * MMAP_MIN_ADDR or the QEMU application itself.
2675              */
2676             probe_guest_base(image_name, loaddr, hiaddr);
2677         } else {
2678             /*
2679              * The binary is dynamic, but we still need to
2680              * select guest_base.  In this case we pass a size.
2681              */
2682             probe_guest_base(image_name, 0, hiaddr - loaddr);
2683         }
2684     }
2685 
2686     /*
2687      * Reserve address space for all of this.
2688      *
2689      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2690      * exactly the address range that is required.
2691      *
2692      * Otherwise this is ET_DYN, and we are searching for a location
2693      * that can hold the memory space required.  If the image is
2694      * pre-linked, LOADDR will be non-zero, and the kernel should
2695      * honor that address if it happens to be free.
2696      *
2697      * In both cases, we will overwrite pages in this range with mappings
2698      * from the executable.
2699      */
2700     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2701                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2702                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2703                             -1, 0);
2704     if (load_addr == -1) {
2705         goto exit_mmap;
2706     }
2707     load_bias = load_addr - loaddr;
2708 
2709     if (elf_is_fdpic(ehdr)) {
2710         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2711             g_malloc(sizeof(*loadsegs) * info->nsegs);
2712 
2713         for (i = 0; i < ehdr->e_phnum; ++i) {
2714             switch (phdr[i].p_type) {
2715             case PT_DYNAMIC:
2716                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2717                 break;
2718             case PT_LOAD:
2719                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2720                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2721                 loadsegs->p_memsz = phdr[i].p_memsz;
2722                 ++loadsegs;
2723                 break;
2724             }
2725         }
2726     }
2727 
2728     info->load_bias = load_bias;
2729     info->code_offset = load_bias;
2730     info->data_offset = load_bias;
2731     info->load_addr = load_addr;
2732     info->entry = ehdr->e_entry + load_bias;
2733     info->start_code = -1;
2734     info->end_code = 0;
2735     info->start_data = -1;
2736     info->end_data = 0;
2737     info->brk = 0;
2738     info->elf_flags = ehdr->e_flags;
2739 
2740     prot_exec = PROT_EXEC;
2741 #ifdef TARGET_AARCH64
2742     /*
2743      * If the BTI feature is present, this indicates that the executable
2744      * pages of the startup binary should be mapped with PROT_BTI, so that
2745      * branch targets are enforced.
2746      *
2747      * The startup binary is either the interpreter or the static executable.
2748      * The interpreter is responsible for all pages of a dynamic executable.
2749      *
2750      * Elf notes are backward compatible to older cpus.
2751      * Do not enable BTI unless it is supported.
2752      */
2753     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2754         && (pinterp_name == NULL || *pinterp_name == 0)
2755         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2756         prot_exec |= TARGET_PROT_BTI;
2757     }
2758 #endif
2759 
2760     for (i = 0; i < ehdr->e_phnum; i++) {
2761         struct elf_phdr *eppnt = phdr + i;
2762         if (eppnt->p_type == PT_LOAD) {
2763             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2764             int elf_prot = 0;
2765 
2766             if (eppnt->p_flags & PF_R) {
2767                 elf_prot |= PROT_READ;
2768             }
2769             if (eppnt->p_flags & PF_W) {
2770                 elf_prot |= PROT_WRITE;
2771             }
2772             if (eppnt->p_flags & PF_X) {
2773                 elf_prot |= prot_exec;
2774             }
2775 
2776             vaddr = load_bias + eppnt->p_vaddr;
2777             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2778             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2779             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2780 
2781             /*
2782              * Some segments may be completely empty without any backing file
2783              * segment, in that case just let zero_bss allocate an empty buffer
2784              * for it.
2785              */
2786             if (eppnt->p_filesz != 0) {
2787                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2788                                     MAP_PRIVATE | MAP_FIXED,
2789                                     image_fd, eppnt->p_offset - vaddr_po);
2790 
2791                 if (error == -1) {
2792                     goto exit_mmap;
2793                 }
2794             }
2795 
2796             vaddr_ef = vaddr + eppnt->p_filesz;
2797             vaddr_em = vaddr + eppnt->p_memsz;
2798 
2799             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2800             if (vaddr_ef < vaddr_em) {
2801                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2802             }
2803 
2804             /* Find the full program boundaries.  */
2805             if (elf_prot & PROT_EXEC) {
2806                 if (vaddr < info->start_code) {
2807                     info->start_code = vaddr;
2808                 }
2809                 if (vaddr_ef > info->end_code) {
2810                     info->end_code = vaddr_ef;
2811                 }
2812             }
2813             if (elf_prot & PROT_WRITE) {
2814                 if (vaddr < info->start_data) {
2815                     info->start_data = vaddr;
2816                 }
2817                 if (vaddr_ef > info->end_data) {
2818                     info->end_data = vaddr_ef;
2819                 }
2820             }
2821             if (vaddr_em > info->brk) {
2822                 info->brk = vaddr_em;
2823             }
2824 #ifdef TARGET_MIPS
2825         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2826             Mips_elf_abiflags_v0 abiflags;
2827             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2828                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2829                 goto exit_errmsg;
2830             }
2831             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2832                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2833                        sizeof(Mips_elf_abiflags_v0));
2834             } else {
2835                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2836                                eppnt->p_offset);
2837                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2838                     goto exit_read;
2839                 }
2840             }
2841             bswap_mips_abiflags(&abiflags);
2842             info->fp_abi = abiflags.fp_abi;
2843 #endif
2844         }
2845     }
2846 
2847     if (info->end_data == 0) {
2848         info->start_data = info->end_code;
2849         info->end_data = info->end_code;
2850     }
2851 
2852     if (qemu_log_enabled()) {
2853         load_symbols(ehdr, image_fd, load_bias);
2854     }
2855 
2856     mmap_unlock();
2857 
2858     close(image_fd);
2859     return;
2860 
2861  exit_read:
2862     if (retval >= 0) {
2863         error_setg(&err, "Incomplete read of file header");
2864     } else {
2865         error_setg_errno(&err, errno, "Error reading file header");
2866     }
2867     goto exit_errmsg;
2868  exit_mmap:
2869     error_setg_errno(&err, errno, "Error mapping file");
2870     goto exit_errmsg;
2871  exit_errmsg:
2872     error_reportf_err(err, "%s: ", image_name);
2873     exit(-1);
2874 }
2875 
2876 static void load_elf_interp(const char *filename, struct image_info *info,
2877                             char bprm_buf[BPRM_BUF_SIZE])
2878 {
2879     int fd, retval;
2880     Error *err = NULL;
2881 
2882     fd = open(path(filename), O_RDONLY);
2883     if (fd < 0) {
2884         error_setg_file_open(&err, errno, filename);
2885         error_report_err(err);
2886         exit(-1);
2887     }
2888 
2889     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2890     if (retval < 0) {
2891         error_setg_errno(&err, errno, "Error reading file header");
2892         error_reportf_err(err, "%s: ", filename);
2893         exit(-1);
2894     }
2895 
2896     if (retval < BPRM_BUF_SIZE) {
2897         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2898     }
2899 
2900     load_elf_image(filename, fd, info, NULL, bprm_buf);
2901 }
2902 
2903 static int symfind(const void *s0, const void *s1)
2904 {
2905     target_ulong addr = *(target_ulong *)s0;
2906     struct elf_sym *sym = (struct elf_sym *)s1;
2907     int result = 0;
2908     if (addr < sym->st_value) {
2909         result = -1;
2910     } else if (addr >= sym->st_value + sym->st_size) {
2911         result = 1;
2912     }
2913     return result;
2914 }
2915 
2916 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2917 {
2918 #if ELF_CLASS == ELFCLASS32
2919     struct elf_sym *syms = s->disas_symtab.elf32;
2920 #else
2921     struct elf_sym *syms = s->disas_symtab.elf64;
2922 #endif
2923 
2924     // binary search
2925     struct elf_sym *sym;
2926 
2927     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2928     if (sym != NULL) {
2929         return s->disas_strtab + sym->st_name;
2930     }
2931 
2932     return "";
2933 }
2934 
2935 /* FIXME: This should use elf_ops.h  */
2936 static int symcmp(const void *s0, const void *s1)
2937 {
2938     struct elf_sym *sym0 = (struct elf_sym *)s0;
2939     struct elf_sym *sym1 = (struct elf_sym *)s1;
2940     return (sym0->st_value < sym1->st_value)
2941         ? -1
2942         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2943 }
2944 
2945 /* Best attempt to load symbols from this ELF object. */
2946 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2947 {
2948     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2949     uint64_t segsz;
2950     struct elf_shdr *shdr;
2951     char *strings = NULL;
2952     struct syminfo *s = NULL;
2953     struct elf_sym *new_syms, *syms = NULL;
2954 
2955     shnum = hdr->e_shnum;
2956     i = shnum * sizeof(struct elf_shdr);
2957     shdr = (struct elf_shdr *)alloca(i);
2958     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2959         return;
2960     }
2961 
2962     bswap_shdr(shdr, shnum);
2963     for (i = 0; i < shnum; ++i) {
2964         if (shdr[i].sh_type == SHT_SYMTAB) {
2965             sym_idx = i;
2966             str_idx = shdr[i].sh_link;
2967             goto found;
2968         }
2969     }
2970 
2971     /* There will be no symbol table if the file was stripped.  */
2972     return;
2973 
2974  found:
2975     /* Now know where the strtab and symtab are.  Snarf them.  */
2976     s = g_try_new(struct syminfo, 1);
2977     if (!s) {
2978         goto give_up;
2979     }
2980 
2981     segsz = shdr[str_idx].sh_size;
2982     s->disas_strtab = strings = g_try_malloc(segsz);
2983     if (!strings ||
2984         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2985         goto give_up;
2986     }
2987 
2988     segsz = shdr[sym_idx].sh_size;
2989     syms = g_try_malloc(segsz);
2990     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2991         goto give_up;
2992     }
2993 
2994     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2995         /* Implausibly large symbol table: give up rather than ploughing
2996          * on with the number of symbols calculation overflowing
2997          */
2998         goto give_up;
2999     }
3000     nsyms = segsz / sizeof(struct elf_sym);
3001     for (i = 0; i < nsyms; ) {
3002         bswap_sym(syms + i);
3003         /* Throw away entries which we do not need.  */
3004         if (syms[i].st_shndx == SHN_UNDEF
3005             || syms[i].st_shndx >= SHN_LORESERVE
3006             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3007             if (i < --nsyms) {
3008                 syms[i] = syms[nsyms];
3009             }
3010         } else {
3011 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3012             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3013             syms[i].st_value &= ~(target_ulong)1;
3014 #endif
3015             syms[i].st_value += load_bias;
3016             i++;
3017         }
3018     }
3019 
3020     /* No "useful" symbol.  */
3021     if (nsyms == 0) {
3022         goto give_up;
3023     }
3024 
3025     /* Attempt to free the storage associated with the local symbols
3026        that we threw away.  Whether or not this has any effect on the
3027        memory allocation depends on the malloc implementation and how
3028        many symbols we managed to discard.  */
3029     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3030     if (new_syms == NULL) {
3031         goto give_up;
3032     }
3033     syms = new_syms;
3034 
3035     qsort(syms, nsyms, sizeof(*syms), symcmp);
3036 
3037     s->disas_num_syms = nsyms;
3038 #if ELF_CLASS == ELFCLASS32
3039     s->disas_symtab.elf32 = syms;
3040 #else
3041     s->disas_symtab.elf64 = syms;
3042 #endif
3043     s->lookup_symbol = lookup_symbolxx;
3044     s->next = syminfos;
3045     syminfos = s;
3046 
3047     return;
3048 
3049 give_up:
3050     g_free(s);
3051     g_free(strings);
3052     g_free(syms);
3053 }
3054 
3055 uint32_t get_elf_eflags(int fd)
3056 {
3057     struct elfhdr ehdr;
3058     off_t offset;
3059     int ret;
3060 
3061     /* Read ELF header */
3062     offset = lseek(fd, 0, SEEK_SET);
3063     if (offset == (off_t) -1) {
3064         return 0;
3065     }
3066     ret = read(fd, &ehdr, sizeof(ehdr));
3067     if (ret < sizeof(ehdr)) {
3068         return 0;
3069     }
3070     offset = lseek(fd, offset, SEEK_SET);
3071     if (offset == (off_t) -1) {
3072         return 0;
3073     }
3074 
3075     /* Check ELF signature */
3076     if (!elf_check_ident(&ehdr)) {
3077         return 0;
3078     }
3079 
3080     /* check header */
3081     bswap_ehdr(&ehdr);
3082     if (!elf_check_ehdr(&ehdr)) {
3083         return 0;
3084     }
3085 
3086     /* return architecture id */
3087     return ehdr.e_flags;
3088 }
3089 
3090 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3091 {
3092     struct image_info interp_info;
3093     struct elfhdr elf_ex;
3094     char *elf_interpreter = NULL;
3095     char *scratch;
3096 
3097     memset(&interp_info, 0, sizeof(interp_info));
3098 #ifdef TARGET_MIPS
3099     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3100 #endif
3101 
3102     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3103 
3104     load_elf_image(bprm->filename, bprm->fd, info,
3105                    &elf_interpreter, bprm->buf);
3106 
3107     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3108        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3109        when we load the interpreter.  */
3110     elf_ex = *(struct elfhdr *)bprm->buf;
3111 
3112     /* Do this so that we can load the interpreter, if need be.  We will
3113        change some of these later */
3114     bprm->p = setup_arg_pages(bprm, info);
3115 
3116     scratch = g_new0(char, TARGET_PAGE_SIZE);
3117     if (STACK_GROWS_DOWN) {
3118         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3119                                    bprm->p, info->stack_limit);
3120         info->file_string = bprm->p;
3121         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3122                                    bprm->p, info->stack_limit);
3123         info->env_strings = bprm->p;
3124         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3125                                    bprm->p, info->stack_limit);
3126         info->arg_strings = bprm->p;
3127     } else {
3128         info->arg_strings = bprm->p;
3129         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3130                                    bprm->p, info->stack_limit);
3131         info->env_strings = bprm->p;
3132         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3133                                    bprm->p, info->stack_limit);
3134         info->file_string = bprm->p;
3135         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3136                                    bprm->p, info->stack_limit);
3137     }
3138 
3139     g_free(scratch);
3140 
3141     if (!bprm->p) {
3142         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3143         exit(-1);
3144     }
3145 
3146     if (elf_interpreter) {
3147         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3148 
3149         /* If the program interpreter is one of these two, then assume
3150            an iBCS2 image.  Otherwise assume a native linux image.  */
3151 
3152         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3153             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3154             info->personality = PER_SVR4;
3155 
3156             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3157                and some applications "depend" upon this behavior.  Since
3158                we do not have the power to recompile these, we emulate
3159                the SVr4 behavior.  Sigh.  */
3160             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3161                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3162         }
3163 #ifdef TARGET_MIPS
3164         info->interp_fp_abi = interp_info.fp_abi;
3165 #endif
3166     }
3167 
3168     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3169                                 info, (elf_interpreter ? &interp_info : NULL));
3170     info->start_stack = bprm->p;
3171 
3172     /* If we have an interpreter, set that as the program's entry point.
3173        Copy the load_bias as well, to help PPC64 interpret the entry
3174        point as a function descriptor.  Do this after creating elf tables
3175        so that we copy the original program entry point into the AUXV.  */
3176     if (elf_interpreter) {
3177         info->load_bias = interp_info.load_bias;
3178         info->entry = interp_info.entry;
3179         g_free(elf_interpreter);
3180     }
3181 
3182 #ifdef USE_ELF_CORE_DUMP
3183     bprm->core_dump = &elf_core_dump;
3184 #endif
3185 
3186     /*
3187      * If we reserved extra space for brk, release it now.
3188      * The implementation of do_brk in syscalls.c expects to be able
3189      * to mmap pages in this space.
3190      */
3191     if (info->reserve_brk) {
3192         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3193         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3194         target_munmap(start_brk, end_brk - start_brk);
3195     }
3196 
3197     return 0;
3198 }
3199 
3200 #ifdef USE_ELF_CORE_DUMP
3201 /*
3202  * Definitions to generate Intel SVR4-like core files.
3203  * These mostly have the same names as the SVR4 types with "target_elf_"
3204  * tacked on the front to prevent clashes with linux definitions,
3205  * and the typedef forms have been avoided.  This is mostly like
3206  * the SVR4 structure, but more Linuxy, with things that Linux does
3207  * not support and which gdb doesn't really use excluded.
3208  *
3209  * Fields we don't dump (their contents is zero) in linux-user qemu
3210  * are marked with XXX.
3211  *
3212  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3213  *
3214  * Porting ELF coredump for target is (quite) simple process.  First you
3215  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3216  * the target resides):
3217  *
3218  * #define USE_ELF_CORE_DUMP
3219  *
3220  * Next you define type of register set used for dumping.  ELF specification
3221  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3222  *
3223  * typedef <target_regtype> target_elf_greg_t;
3224  * #define ELF_NREG <number of registers>
3225  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3226  *
3227  * Last step is to implement target specific function that copies registers
3228  * from given cpu into just specified register set.  Prototype is:
3229  *
3230  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3231  *                                const CPUArchState *env);
3232  *
3233  * Parameters:
3234  *     regs - copy register values into here (allocated and zeroed by caller)
3235  *     env - copy registers from here
3236  *
3237  * Example for ARM target is provided in this file.
3238  */
3239 
3240 /* An ELF note in memory */
3241 struct memelfnote {
3242     const char *name;
3243     size_t     namesz;
3244     size_t     namesz_rounded;
3245     int        type;
3246     size_t     datasz;
3247     size_t     datasz_rounded;
3248     void       *data;
3249     size_t     notesz;
3250 };
3251 
3252 struct target_elf_siginfo {
3253     abi_int    si_signo; /* signal number */
3254     abi_int    si_code;  /* extra code */
3255     abi_int    si_errno; /* errno */
3256 };
3257 
3258 struct target_elf_prstatus {
3259     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3260     abi_short          pr_cursig;    /* Current signal */
3261     abi_ulong          pr_sigpend;   /* XXX */
3262     abi_ulong          pr_sighold;   /* XXX */
3263     target_pid_t       pr_pid;
3264     target_pid_t       pr_ppid;
3265     target_pid_t       pr_pgrp;
3266     target_pid_t       pr_sid;
3267     struct target_timeval pr_utime;  /* XXX User time */
3268     struct target_timeval pr_stime;  /* XXX System time */
3269     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3270     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3271     target_elf_gregset_t      pr_reg;       /* GP registers */
3272     abi_int            pr_fpvalid;   /* XXX */
3273 };
3274 
3275 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3276 
3277 struct target_elf_prpsinfo {
3278     char         pr_state;       /* numeric process state */
3279     char         pr_sname;       /* char for pr_state */
3280     char         pr_zomb;        /* zombie */
3281     char         pr_nice;        /* nice val */
3282     abi_ulong    pr_flag;        /* flags */
3283     target_uid_t pr_uid;
3284     target_gid_t pr_gid;
3285     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3286     /* Lots missing */
3287     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3288     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3289 };
3290 
3291 /* Here is the structure in which status of each thread is captured. */
3292 struct elf_thread_status {
3293     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3294     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3295 #if 0
3296     elf_fpregset_t fpu;             /* NT_PRFPREG */
3297     struct task_struct *thread;
3298     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3299 #endif
3300     struct memelfnote notes[1];
3301     int num_notes;
3302 };
3303 
3304 struct elf_note_info {
3305     struct memelfnote   *notes;
3306     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3307     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3308 
3309     QTAILQ_HEAD(, elf_thread_status) thread_list;
3310 #if 0
3311     /*
3312      * Current version of ELF coredump doesn't support
3313      * dumping fp regs etc.
3314      */
3315     elf_fpregset_t *fpu;
3316     elf_fpxregset_t *xfpu;
3317     int thread_status_size;
3318 #endif
3319     int notes_size;
3320     int numnote;
3321 };
3322 
3323 struct vm_area_struct {
3324     target_ulong   vma_start;  /* start vaddr of memory region */
3325     target_ulong   vma_end;    /* end vaddr of memory region */
3326     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3327     QTAILQ_ENTRY(vm_area_struct) vma_link;
3328 };
3329 
3330 struct mm_struct {
3331     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3332     int mm_count;           /* number of mappings */
3333 };
3334 
3335 static struct mm_struct *vma_init(void);
3336 static void vma_delete(struct mm_struct *);
3337 static int vma_add_mapping(struct mm_struct *, target_ulong,
3338                            target_ulong, abi_ulong);
3339 static int vma_get_mapping_count(const struct mm_struct *);
3340 static struct vm_area_struct *vma_first(const struct mm_struct *);
3341 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3342 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3343 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3344                       unsigned long flags);
3345 
3346 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3347 static void fill_note(struct memelfnote *, const char *, int,
3348                       unsigned int, void *);
3349 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3350 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3351 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3352 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3353 static size_t note_size(const struct memelfnote *);
3354 static void free_note_info(struct elf_note_info *);
3355 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3356 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3357 static int core_dump_filename(const TaskState *, char *, size_t);
3358 
3359 static int dump_write(int, const void *, size_t);
3360 static int write_note(struct memelfnote *, int);
3361 static int write_note_info(struct elf_note_info *, int);
3362 
3363 #ifdef BSWAP_NEEDED
3364 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3365 {
3366     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3367     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3368     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3369     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3370     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3371     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3372     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3373     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3374     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3375     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3376     /* cpu times are not filled, so we skip them */
3377     /* regs should be in correct format already */
3378     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3379 }
3380 
3381 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3382 {
3383     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3384     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3385     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3386     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3387     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3388     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3389     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3390 }
3391 
3392 static void bswap_note(struct elf_note *en)
3393 {
3394     bswap32s(&en->n_namesz);
3395     bswap32s(&en->n_descsz);
3396     bswap32s(&en->n_type);
3397 }
3398 #else
3399 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3400 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3401 static inline void bswap_note(struct elf_note *en) { }
3402 #endif /* BSWAP_NEEDED */
3403 
3404 /*
3405  * Minimal support for linux memory regions.  These are needed
3406  * when we are finding out what memory exactly belongs to
3407  * emulated process.  No locks needed here, as long as
3408  * thread that received the signal is stopped.
3409  */
3410 
3411 static struct mm_struct *vma_init(void)
3412 {
3413     struct mm_struct *mm;
3414 
3415     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3416         return (NULL);
3417 
3418     mm->mm_count = 0;
3419     QTAILQ_INIT(&mm->mm_mmap);
3420 
3421     return (mm);
3422 }
3423 
3424 static void vma_delete(struct mm_struct *mm)
3425 {
3426     struct vm_area_struct *vma;
3427 
3428     while ((vma = vma_first(mm)) != NULL) {
3429         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3430         g_free(vma);
3431     }
3432     g_free(mm);
3433 }
3434 
3435 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3436                            target_ulong end, abi_ulong flags)
3437 {
3438     struct vm_area_struct *vma;
3439 
3440     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3441         return (-1);
3442 
3443     vma->vma_start = start;
3444     vma->vma_end = end;
3445     vma->vma_flags = flags;
3446 
3447     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3448     mm->mm_count++;
3449 
3450     return (0);
3451 }
3452 
3453 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3454 {
3455     return (QTAILQ_FIRST(&mm->mm_mmap));
3456 }
3457 
3458 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3459 {
3460     return (QTAILQ_NEXT(vma, vma_link));
3461 }
3462 
3463 static int vma_get_mapping_count(const struct mm_struct *mm)
3464 {
3465     return (mm->mm_count);
3466 }
3467 
3468 /*
3469  * Calculate file (dump) size of given memory region.
3470  */
3471 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3472 {
3473     /* if we cannot even read the first page, skip it */
3474     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3475         return (0);
3476 
3477     /*
3478      * Usually we don't dump executable pages as they contain
3479      * non-writable code that debugger can read directly from
3480      * target library etc.  However, thread stacks are marked
3481      * also executable so we read in first page of given region
3482      * and check whether it contains elf header.  If there is
3483      * no elf header, we dump it.
3484      */
3485     if (vma->vma_flags & PROT_EXEC) {
3486         char page[TARGET_PAGE_SIZE];
3487 
3488         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3489             return 0;
3490         }
3491         if ((page[EI_MAG0] == ELFMAG0) &&
3492             (page[EI_MAG1] == ELFMAG1) &&
3493             (page[EI_MAG2] == ELFMAG2) &&
3494             (page[EI_MAG3] == ELFMAG3)) {
3495             /*
3496              * Mappings are possibly from ELF binary.  Don't dump
3497              * them.
3498              */
3499             return (0);
3500         }
3501     }
3502 
3503     return (vma->vma_end - vma->vma_start);
3504 }
3505 
3506 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3507                       unsigned long flags)
3508 {
3509     struct mm_struct *mm = (struct mm_struct *)priv;
3510 
3511     vma_add_mapping(mm, start, end, flags);
3512     return (0);
3513 }
3514 
3515 static void fill_note(struct memelfnote *note, const char *name, int type,
3516                       unsigned int sz, void *data)
3517 {
3518     unsigned int namesz;
3519 
3520     namesz = strlen(name) + 1;
3521     note->name = name;
3522     note->namesz = namesz;
3523     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3524     note->type = type;
3525     note->datasz = sz;
3526     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3527 
3528     note->data = data;
3529 
3530     /*
3531      * We calculate rounded up note size here as specified by
3532      * ELF document.
3533      */
3534     note->notesz = sizeof (struct elf_note) +
3535         note->namesz_rounded + note->datasz_rounded;
3536 }
3537 
3538 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3539                             uint32_t flags)
3540 {
3541     (void) memset(elf, 0, sizeof(*elf));
3542 
3543     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3544     elf->e_ident[EI_CLASS] = ELF_CLASS;
3545     elf->e_ident[EI_DATA] = ELF_DATA;
3546     elf->e_ident[EI_VERSION] = EV_CURRENT;
3547     elf->e_ident[EI_OSABI] = ELF_OSABI;
3548 
3549     elf->e_type = ET_CORE;
3550     elf->e_machine = machine;
3551     elf->e_version = EV_CURRENT;
3552     elf->e_phoff = sizeof(struct elfhdr);
3553     elf->e_flags = flags;
3554     elf->e_ehsize = sizeof(struct elfhdr);
3555     elf->e_phentsize = sizeof(struct elf_phdr);
3556     elf->e_phnum = segs;
3557 
3558     bswap_ehdr(elf);
3559 }
3560 
3561 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3562 {
3563     phdr->p_type = PT_NOTE;
3564     phdr->p_offset = offset;
3565     phdr->p_vaddr = 0;
3566     phdr->p_paddr = 0;
3567     phdr->p_filesz = sz;
3568     phdr->p_memsz = 0;
3569     phdr->p_flags = 0;
3570     phdr->p_align = 0;
3571 
3572     bswap_phdr(phdr, 1);
3573 }
3574 
3575 static size_t note_size(const struct memelfnote *note)
3576 {
3577     return (note->notesz);
3578 }
3579 
3580 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3581                           const TaskState *ts, int signr)
3582 {
3583     (void) memset(prstatus, 0, sizeof (*prstatus));
3584     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3585     prstatus->pr_pid = ts->ts_tid;
3586     prstatus->pr_ppid = getppid();
3587     prstatus->pr_pgrp = getpgrp();
3588     prstatus->pr_sid = getsid(0);
3589 
3590     bswap_prstatus(prstatus);
3591 }
3592 
3593 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3594 {
3595     char *base_filename;
3596     unsigned int i, len;
3597 
3598     (void) memset(psinfo, 0, sizeof (*psinfo));
3599 
3600     len = ts->info->arg_end - ts->info->arg_start;
3601     if (len >= ELF_PRARGSZ)
3602         len = ELF_PRARGSZ - 1;
3603     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3604         return -EFAULT;
3605     for (i = 0; i < len; i++)
3606         if (psinfo->pr_psargs[i] == 0)
3607             psinfo->pr_psargs[i] = ' ';
3608     psinfo->pr_psargs[len] = 0;
3609 
3610     psinfo->pr_pid = getpid();
3611     psinfo->pr_ppid = getppid();
3612     psinfo->pr_pgrp = getpgrp();
3613     psinfo->pr_sid = getsid(0);
3614     psinfo->pr_uid = getuid();
3615     psinfo->pr_gid = getgid();
3616 
3617     base_filename = g_path_get_basename(ts->bprm->filename);
3618     /*
3619      * Using strncpy here is fine: at max-length,
3620      * this field is not NUL-terminated.
3621      */
3622     (void) strncpy(psinfo->pr_fname, base_filename,
3623                    sizeof(psinfo->pr_fname));
3624 
3625     g_free(base_filename);
3626     bswap_psinfo(psinfo);
3627     return (0);
3628 }
3629 
3630 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3631 {
3632     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3633     elf_addr_t orig_auxv = auxv;
3634     void *ptr;
3635     int len = ts->info->auxv_len;
3636 
3637     /*
3638      * Auxiliary vector is stored in target process stack.  It contains
3639      * {type, value} pairs that we need to dump into note.  This is not
3640      * strictly necessary but we do it here for sake of completeness.
3641      */
3642 
3643     /* read in whole auxv vector and copy it to memelfnote */
3644     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3645     if (ptr != NULL) {
3646         fill_note(note, "CORE", NT_AUXV, len, ptr);
3647         unlock_user(ptr, auxv, len);
3648     }
3649 }
3650 
3651 /*
3652  * Constructs name of coredump file.  We have following convention
3653  * for the name:
3654  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3655  *
3656  * Returns 0 in case of success, -1 otherwise (errno is set).
3657  */
3658 static int core_dump_filename(const TaskState *ts, char *buf,
3659                               size_t bufsize)
3660 {
3661     char timestamp[64];
3662     char *base_filename = NULL;
3663     struct timeval tv;
3664     struct tm tm;
3665 
3666     assert(bufsize >= PATH_MAX);
3667 
3668     if (gettimeofday(&tv, NULL) < 0) {
3669         (void) fprintf(stderr, "unable to get current timestamp: %s",
3670                        strerror(errno));
3671         return (-1);
3672     }
3673 
3674     base_filename = g_path_get_basename(ts->bprm->filename);
3675     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3676                     localtime_r(&tv.tv_sec, &tm));
3677     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3678                     base_filename, timestamp, (int)getpid());
3679     g_free(base_filename);
3680 
3681     return (0);
3682 }
3683 
3684 static int dump_write(int fd, const void *ptr, size_t size)
3685 {
3686     const char *bufp = (const char *)ptr;
3687     ssize_t bytes_written, bytes_left;
3688     struct rlimit dumpsize;
3689     off_t pos;
3690 
3691     bytes_written = 0;
3692     getrlimit(RLIMIT_CORE, &dumpsize);
3693     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3694         if (errno == ESPIPE) { /* not a seekable stream */
3695             bytes_left = size;
3696         } else {
3697             return pos;
3698         }
3699     } else {
3700         if (dumpsize.rlim_cur <= pos) {
3701             return -1;
3702         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3703             bytes_left = size;
3704         } else {
3705             size_t limit_left=dumpsize.rlim_cur - pos;
3706             bytes_left = limit_left >= size ? size : limit_left ;
3707         }
3708     }
3709 
3710     /*
3711      * In normal conditions, single write(2) should do but
3712      * in case of socket etc. this mechanism is more portable.
3713      */
3714     do {
3715         bytes_written = write(fd, bufp, bytes_left);
3716         if (bytes_written < 0) {
3717             if (errno == EINTR)
3718                 continue;
3719             return (-1);
3720         } else if (bytes_written == 0) { /* eof */
3721             return (-1);
3722         }
3723         bufp += bytes_written;
3724         bytes_left -= bytes_written;
3725     } while (bytes_left > 0);
3726 
3727     return (0);
3728 }
3729 
3730 static int write_note(struct memelfnote *men, int fd)
3731 {
3732     struct elf_note en;
3733 
3734     en.n_namesz = men->namesz;
3735     en.n_type = men->type;
3736     en.n_descsz = men->datasz;
3737 
3738     bswap_note(&en);
3739 
3740     if (dump_write(fd, &en, sizeof(en)) != 0)
3741         return (-1);
3742     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3743         return (-1);
3744     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3745         return (-1);
3746 
3747     return (0);
3748 }
3749 
3750 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3751 {
3752     CPUState *cpu = env_cpu((CPUArchState *)env);
3753     TaskState *ts = (TaskState *)cpu->opaque;
3754     struct elf_thread_status *ets;
3755 
3756     ets = g_malloc0(sizeof (*ets));
3757     ets->num_notes = 1; /* only prstatus is dumped */
3758     fill_prstatus(&ets->prstatus, ts, 0);
3759     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3760     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3761               &ets->prstatus);
3762 
3763     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3764 
3765     info->notes_size += note_size(&ets->notes[0]);
3766 }
3767 
3768 static void init_note_info(struct elf_note_info *info)
3769 {
3770     /* Initialize the elf_note_info structure so that it is at
3771      * least safe to call free_note_info() on it. Must be
3772      * called before calling fill_note_info().
3773      */
3774     memset(info, 0, sizeof (*info));
3775     QTAILQ_INIT(&info->thread_list);
3776 }
3777 
3778 static int fill_note_info(struct elf_note_info *info,
3779                           long signr, const CPUArchState *env)
3780 {
3781 #define NUMNOTES 3
3782     CPUState *cpu = env_cpu((CPUArchState *)env);
3783     TaskState *ts = (TaskState *)cpu->opaque;
3784     int i;
3785 
3786     info->notes = g_new0(struct memelfnote, NUMNOTES);
3787     if (info->notes == NULL)
3788         return (-ENOMEM);
3789     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3790     if (info->prstatus == NULL)
3791         return (-ENOMEM);
3792     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3793     if (info->prstatus == NULL)
3794         return (-ENOMEM);
3795 
3796     /*
3797      * First fill in status (and registers) of current thread
3798      * including process info & aux vector.
3799      */
3800     fill_prstatus(info->prstatus, ts, signr);
3801     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3802     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3803               sizeof (*info->prstatus), info->prstatus);
3804     fill_psinfo(info->psinfo, ts);
3805     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3806               sizeof (*info->psinfo), info->psinfo);
3807     fill_auxv_note(&info->notes[2], ts);
3808     info->numnote = 3;
3809 
3810     info->notes_size = 0;
3811     for (i = 0; i < info->numnote; i++)
3812         info->notes_size += note_size(&info->notes[i]);
3813 
3814     /* read and fill status of all threads */
3815     cpu_list_lock();
3816     CPU_FOREACH(cpu) {
3817         if (cpu == thread_cpu) {
3818             continue;
3819         }
3820         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3821     }
3822     cpu_list_unlock();
3823 
3824     return (0);
3825 }
3826 
3827 static void free_note_info(struct elf_note_info *info)
3828 {
3829     struct elf_thread_status *ets;
3830 
3831     while (!QTAILQ_EMPTY(&info->thread_list)) {
3832         ets = QTAILQ_FIRST(&info->thread_list);
3833         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3834         g_free(ets);
3835     }
3836 
3837     g_free(info->prstatus);
3838     g_free(info->psinfo);
3839     g_free(info->notes);
3840 }
3841 
3842 static int write_note_info(struct elf_note_info *info, int fd)
3843 {
3844     struct elf_thread_status *ets;
3845     int i, error = 0;
3846 
3847     /* write prstatus, psinfo and auxv for current thread */
3848     for (i = 0; i < info->numnote; i++)
3849         if ((error = write_note(&info->notes[i], fd)) != 0)
3850             return (error);
3851 
3852     /* write prstatus for each thread */
3853     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3854         if ((error = write_note(&ets->notes[0], fd)) != 0)
3855             return (error);
3856     }
3857 
3858     return (0);
3859 }
3860 
3861 /*
3862  * Write out ELF coredump.
3863  *
3864  * See documentation of ELF object file format in:
3865  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3866  *
3867  * Coredump format in linux is following:
3868  *
3869  * 0   +----------------------+         \
3870  *     | ELF header           | ET_CORE  |
3871  *     +----------------------+          |
3872  *     | ELF program headers  |          |--- headers
3873  *     | - NOTE section       |          |
3874  *     | - PT_LOAD sections   |          |
3875  *     +----------------------+         /
3876  *     | NOTEs:               |
3877  *     | - NT_PRSTATUS        |
3878  *     | - NT_PRSINFO         |
3879  *     | - NT_AUXV            |
3880  *     +----------------------+ <-- aligned to target page
3881  *     | Process memory dump  |
3882  *     :                      :
3883  *     .                      .
3884  *     :                      :
3885  *     |                      |
3886  *     +----------------------+
3887  *
3888  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3889  * NT_PRSINFO  -> struct elf_prpsinfo
3890  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3891  *
3892  * Format follows System V format as close as possible.  Current
3893  * version limitations are as follows:
3894  *     - no floating point registers are dumped
3895  *
3896  * Function returns 0 in case of success, negative errno otherwise.
3897  *
3898  * TODO: make this work also during runtime: it should be
3899  * possible to force coredump from running process and then
3900  * continue processing.  For example qemu could set up SIGUSR2
3901  * handler (provided that target process haven't registered
3902  * handler for that) that does the dump when signal is received.
3903  */
3904 static int elf_core_dump(int signr, const CPUArchState *env)
3905 {
3906     const CPUState *cpu = env_cpu((CPUArchState *)env);
3907     const TaskState *ts = (const TaskState *)cpu->opaque;
3908     struct vm_area_struct *vma = NULL;
3909     char corefile[PATH_MAX];
3910     struct elf_note_info info;
3911     struct elfhdr elf;
3912     struct elf_phdr phdr;
3913     struct rlimit dumpsize;
3914     struct mm_struct *mm = NULL;
3915     off_t offset = 0, data_offset = 0;
3916     int segs = 0;
3917     int fd = -1;
3918 
3919     init_note_info(&info);
3920 
3921     errno = 0;
3922     getrlimit(RLIMIT_CORE, &dumpsize);
3923     if (dumpsize.rlim_cur == 0)
3924         return 0;
3925 
3926     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3927         return (-errno);
3928 
3929     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3930                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3931         return (-errno);
3932 
3933     /*
3934      * Walk through target process memory mappings and
3935      * set up structure containing this information.  After
3936      * this point vma_xxx functions can be used.
3937      */
3938     if ((mm = vma_init()) == NULL)
3939         goto out;
3940 
3941     walk_memory_regions(mm, vma_walker);
3942     segs = vma_get_mapping_count(mm);
3943 
3944     /*
3945      * Construct valid coredump ELF header.  We also
3946      * add one more segment for notes.
3947      */
3948     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3949     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3950         goto out;
3951 
3952     /* fill in the in-memory version of notes */
3953     if (fill_note_info(&info, signr, env) < 0)
3954         goto out;
3955 
3956     offset += sizeof (elf);                             /* elf header */
3957     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3958 
3959     /* write out notes program header */
3960     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3961 
3962     offset += info.notes_size;
3963     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3964         goto out;
3965 
3966     /*
3967      * ELF specification wants data to start at page boundary so
3968      * we align it here.
3969      */
3970     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3971 
3972     /*
3973      * Write program headers for memory regions mapped in
3974      * the target process.
3975      */
3976     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3977         (void) memset(&phdr, 0, sizeof (phdr));
3978 
3979         phdr.p_type = PT_LOAD;
3980         phdr.p_offset = offset;
3981         phdr.p_vaddr = vma->vma_start;
3982         phdr.p_paddr = 0;
3983         phdr.p_filesz = vma_dump_size(vma);
3984         offset += phdr.p_filesz;
3985         phdr.p_memsz = vma->vma_end - vma->vma_start;
3986         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3987         if (vma->vma_flags & PROT_WRITE)
3988             phdr.p_flags |= PF_W;
3989         if (vma->vma_flags & PROT_EXEC)
3990             phdr.p_flags |= PF_X;
3991         phdr.p_align = ELF_EXEC_PAGESIZE;
3992 
3993         bswap_phdr(&phdr, 1);
3994         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3995             goto out;
3996         }
3997     }
3998 
3999     /*
4000      * Next we write notes just after program headers.  No
4001      * alignment needed here.
4002      */
4003     if (write_note_info(&info, fd) < 0)
4004         goto out;
4005 
4006     /* align data to page boundary */
4007     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4008         goto out;
4009 
4010     /*
4011      * Finally we can dump process memory into corefile as well.
4012      */
4013     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4014         abi_ulong addr;
4015         abi_ulong end;
4016 
4017         end = vma->vma_start + vma_dump_size(vma);
4018 
4019         for (addr = vma->vma_start; addr < end;
4020              addr += TARGET_PAGE_SIZE) {
4021             char page[TARGET_PAGE_SIZE];
4022             int error;
4023 
4024             /*
4025              *  Read in page from target process memory and
4026              *  write it to coredump file.
4027              */
4028             error = copy_from_user(page, addr, sizeof (page));
4029             if (error != 0) {
4030                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4031                                addr);
4032                 errno = -error;
4033                 goto out;
4034             }
4035             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4036                 goto out;
4037         }
4038     }
4039 
4040  out:
4041     free_note_info(&info);
4042     if (mm != NULL)
4043         vma_delete(mm);
4044     (void) close(fd);
4045 
4046     if (errno != 0)
4047         return (-errno);
4048     return (0);
4049 }
4050 #endif /* USE_ELF_CORE_DUMP */
4051 
4052 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4053 {
4054     init_thread(regs, infop);
4055 }
4056