xref: /qemu/linux-user/elfload.c (revision 93e9d730)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8 
9 #include "qemu.h"
10 #include "user-internals.h"
11 #include "signal-common.h"
12 #include "loader.h"
13 #include "user-mmap.h"
14 #include "disas/disas.h"
15 #include "qemu/bitops.h"
16 #include "qemu/path.h"
17 #include "qemu/queue.h"
18 #include "qemu/guest-random.h"
19 #include "qemu/units.h"
20 #include "qemu/selfmap.h"
21 #include "qemu/lockable.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "target_signal.h"
25 #include "tcg/debuginfo.h"
26 
27 #ifdef TARGET_ARM
28 #include "target/arm/cpu-features.h"
29 #endif
30 
31 #ifdef _ARCH_PPC64
32 #undef ARCH_DLINFO
33 #undef ELF_PLATFORM
34 #undef ELF_HWCAP
35 #undef ELF_HWCAP2
36 #undef ELF_CLASS
37 #undef ELF_DATA
38 #undef ELF_ARCH
39 #endif
40 
41 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
42 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
43 #endif
44 
45 typedef struct {
46     const uint8_t *image;
47     const uint32_t *relocs;
48     unsigned image_size;
49     unsigned reloc_count;
50     unsigned sigreturn_ofs;
51     unsigned rt_sigreturn_ofs;
52 } VdsoImageInfo;
53 
54 #define ELF_OSABI   ELFOSABI_SYSV
55 
56 /* from personality.h */
57 
58 /*
59  * Flags for bug emulation.
60  *
61  * These occupy the top three bytes.
62  */
63 enum {
64     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
65     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
66                                            descriptors (signal handling) */
67     MMAP_PAGE_ZERO =    0x0100000,
68     ADDR_COMPAT_LAYOUT = 0x0200000,
69     READ_IMPLIES_EXEC = 0x0400000,
70     ADDR_LIMIT_32BIT =  0x0800000,
71     SHORT_INODE =       0x1000000,
72     WHOLE_SECONDS =     0x2000000,
73     STICKY_TIMEOUTS =   0x4000000,
74     ADDR_LIMIT_3GB =    0x8000000,
75 };
76 
77 /*
78  * Personality types.
79  *
80  * These go in the low byte.  Avoid using the top bit, it will
81  * conflict with error returns.
82  */
83 enum {
84     PER_LINUX =         0x0000,
85     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
86     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
87     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
88     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
89     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
90     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
91     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
92     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
93     PER_BSD =           0x0006,
94     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
95     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
96     PER_LINUX32 =       0x0008,
97     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
98     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
99     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
100     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
101     PER_RISCOS =        0x000c,
102     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
103     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
104     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
105     PER_HPUX =          0x0010,
106     PER_MASK =          0x00ff,
107 };
108 
109 /*
110  * Return the base personality without flags.
111  */
112 #define personality(pers)       (pers & PER_MASK)
113 
114 int info_is_fdpic(struct image_info *info)
115 {
116     return info->personality == PER_LINUX_FDPIC;
117 }
118 
119 /* this flag is uneffective under linux too, should be deleted */
120 #ifndef MAP_DENYWRITE
121 #define MAP_DENYWRITE 0
122 #endif
123 
124 /* should probably go in elf.h */
125 #ifndef ELIBBAD
126 #define ELIBBAD 80
127 #endif
128 
129 #if TARGET_BIG_ENDIAN
130 #define ELF_DATA        ELFDATA2MSB
131 #else
132 #define ELF_DATA        ELFDATA2LSB
133 #endif
134 
135 #ifdef TARGET_ABI_MIPSN32
136 typedef abi_ullong      target_elf_greg_t;
137 #define tswapreg(ptr)   tswap64(ptr)
138 #else
139 typedef abi_ulong       target_elf_greg_t;
140 #define tswapreg(ptr)   tswapal(ptr)
141 #endif
142 
143 #ifdef USE_UID16
144 typedef abi_ushort      target_uid_t;
145 typedef abi_ushort      target_gid_t;
146 #else
147 typedef abi_uint        target_uid_t;
148 typedef abi_uint        target_gid_t;
149 #endif
150 typedef abi_int         target_pid_t;
151 
152 #ifdef TARGET_I386
153 
154 #define ELF_HWCAP get_elf_hwcap()
155 
156 static uint32_t get_elf_hwcap(void)
157 {
158     X86CPU *cpu = X86_CPU(thread_cpu);
159 
160     return cpu->env.features[FEAT_1_EDX];
161 }
162 
163 #ifdef TARGET_X86_64
164 #define ELF_CLASS      ELFCLASS64
165 #define ELF_ARCH       EM_X86_64
166 
167 #define ELF_PLATFORM   "x86_64"
168 
169 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
170 {
171     regs->rax = 0;
172     regs->rsp = infop->start_stack;
173     regs->rip = infop->entry;
174 }
175 
176 #define ELF_NREG    27
177 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
178 
179 /*
180  * Note that ELF_NREG should be 29 as there should be place for
181  * TRAPNO and ERR "registers" as well but linux doesn't dump
182  * those.
183  *
184  * See linux kernel: arch/x86/include/asm/elf.h
185  */
186 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
187 {
188     (*regs)[0] = tswapreg(env->regs[15]);
189     (*regs)[1] = tswapreg(env->regs[14]);
190     (*regs)[2] = tswapreg(env->regs[13]);
191     (*regs)[3] = tswapreg(env->regs[12]);
192     (*regs)[4] = tswapreg(env->regs[R_EBP]);
193     (*regs)[5] = tswapreg(env->regs[R_EBX]);
194     (*regs)[6] = tswapreg(env->regs[11]);
195     (*regs)[7] = tswapreg(env->regs[10]);
196     (*regs)[8] = tswapreg(env->regs[9]);
197     (*regs)[9] = tswapreg(env->regs[8]);
198     (*regs)[10] = tswapreg(env->regs[R_EAX]);
199     (*regs)[11] = tswapreg(env->regs[R_ECX]);
200     (*regs)[12] = tswapreg(env->regs[R_EDX]);
201     (*regs)[13] = tswapreg(env->regs[R_ESI]);
202     (*regs)[14] = tswapreg(env->regs[R_EDI]);
203     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
204     (*regs)[16] = tswapreg(env->eip);
205     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
206     (*regs)[18] = tswapreg(env->eflags);
207     (*regs)[19] = tswapreg(env->regs[R_ESP]);
208     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
209     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
210     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
211     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
212     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
213     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
214     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
215 }
216 
217 #if ULONG_MAX > UINT32_MAX
218 #define INIT_GUEST_COMMPAGE
219 static bool init_guest_commpage(void)
220 {
221     /*
222      * The vsyscall page is at a high negative address aka kernel space,
223      * which means that we cannot actually allocate it with target_mmap.
224      * We still should be able to use page_set_flags, unless the user
225      * has specified -R reserved_va, which would trigger an assert().
226      */
227     if (reserved_va != 0 &&
228         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
229         error_report("Cannot allocate vsyscall page");
230         exit(EXIT_FAILURE);
231     }
232     page_set_flags(TARGET_VSYSCALL_PAGE,
233                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
234                    PAGE_EXEC | PAGE_VALID);
235     return true;
236 }
237 #endif
238 #else
239 
240 /*
241  * This is used to ensure we don't load something for the wrong architecture.
242  */
243 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
244 
245 /*
246  * These are used to set parameters in the core dumps.
247  */
248 #define ELF_CLASS       ELFCLASS32
249 #define ELF_ARCH        EM_386
250 
251 #define ELF_PLATFORM get_elf_platform()
252 #define EXSTACK_DEFAULT true
253 
254 static const char *get_elf_platform(void)
255 {
256     static char elf_platform[] = "i386";
257     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
258     if (family > 6) {
259         family = 6;
260     }
261     if (family >= 3) {
262         elf_platform[1] = '0' + family;
263     }
264     return elf_platform;
265 }
266 
267 static inline void init_thread(struct target_pt_regs *regs,
268                                struct image_info *infop)
269 {
270     regs->esp = infop->start_stack;
271     regs->eip = infop->entry;
272 
273     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
274        starts %edx contains a pointer to a function which might be
275        registered using `atexit'.  This provides a mean for the
276        dynamic linker to call DT_FINI functions for shared libraries
277        that have been loaded before the code runs.
278 
279        A value of 0 tells we have no such handler.  */
280     regs->edx = 0;
281 }
282 
283 #define ELF_NREG    17
284 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
285 
286 /*
287  * Note that ELF_NREG should be 19 as there should be place for
288  * TRAPNO and ERR "registers" as well but linux doesn't dump
289  * those.
290  *
291  * See linux kernel: arch/x86/include/asm/elf.h
292  */
293 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
294 {
295     (*regs)[0] = tswapreg(env->regs[R_EBX]);
296     (*regs)[1] = tswapreg(env->regs[R_ECX]);
297     (*regs)[2] = tswapreg(env->regs[R_EDX]);
298     (*regs)[3] = tswapreg(env->regs[R_ESI]);
299     (*regs)[4] = tswapreg(env->regs[R_EDI]);
300     (*regs)[5] = tswapreg(env->regs[R_EBP]);
301     (*regs)[6] = tswapreg(env->regs[R_EAX]);
302     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
303     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
304     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
305     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
306     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
307     (*regs)[12] = tswapreg(env->eip);
308     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
309     (*regs)[14] = tswapreg(env->eflags);
310     (*regs)[15] = tswapreg(env->regs[R_ESP]);
311     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
312 }
313 
314 /*
315  * i386 is the only target which supplies AT_SYSINFO for the vdso.
316  * All others only supply AT_SYSINFO_EHDR.
317  */
318 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
319 #define ARCH_DLINFO                                     \
320     do {                                                \
321         if (vdso_info) {                                \
322             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
323         }                                               \
324     } while (0)
325 
326 #endif /* TARGET_X86_64 */
327 
328 #define VDSO_HEADER "vdso.c.inc"
329 
330 #define USE_ELF_CORE_DUMP
331 #define ELF_EXEC_PAGESIZE       4096
332 
333 #endif /* TARGET_I386 */
334 
335 #ifdef TARGET_ARM
336 
337 #ifndef TARGET_AARCH64
338 /* 32 bit ARM definitions */
339 
340 #define ELF_ARCH        EM_ARM
341 #define ELF_CLASS       ELFCLASS32
342 #define EXSTACK_DEFAULT true
343 
344 static inline void init_thread(struct target_pt_regs *regs,
345                                struct image_info *infop)
346 {
347     abi_long stack = infop->start_stack;
348     memset(regs, 0, sizeof(*regs));
349 
350     regs->uregs[16] = ARM_CPU_MODE_USR;
351     if (infop->entry & 1) {
352         regs->uregs[16] |= CPSR_T;
353     }
354     regs->uregs[15] = infop->entry & 0xfffffffe;
355     regs->uregs[13] = infop->start_stack;
356     /* FIXME - what to for failure of get_user()? */
357     get_user_ual(regs->uregs[2], stack + 8); /* envp */
358     get_user_ual(regs->uregs[1], stack + 4); /* envp */
359     /* XXX: it seems that r0 is zeroed after ! */
360     regs->uregs[0] = 0;
361     /* For uClinux PIC binaries.  */
362     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
363     regs->uregs[10] = infop->start_data;
364 
365     /* Support ARM FDPIC.  */
366     if (info_is_fdpic(infop)) {
367         /* As described in the ABI document, r7 points to the loadmap info
368          * prepared by the kernel. If an interpreter is needed, r8 points
369          * to the interpreter loadmap and r9 points to the interpreter
370          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
371          * r9 points to the main program PT_DYNAMIC info.
372          */
373         regs->uregs[7] = infop->loadmap_addr;
374         if (infop->interpreter_loadmap_addr) {
375             /* Executable is dynamically loaded.  */
376             regs->uregs[8] = infop->interpreter_loadmap_addr;
377             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
378         } else {
379             regs->uregs[8] = 0;
380             regs->uregs[9] = infop->pt_dynamic_addr;
381         }
382     }
383 }
384 
385 #define ELF_NREG    18
386 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
387 
388 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
389 {
390     (*regs)[0] = tswapreg(env->regs[0]);
391     (*regs)[1] = tswapreg(env->regs[1]);
392     (*regs)[2] = tswapreg(env->regs[2]);
393     (*regs)[3] = tswapreg(env->regs[3]);
394     (*regs)[4] = tswapreg(env->regs[4]);
395     (*regs)[5] = tswapreg(env->regs[5]);
396     (*regs)[6] = tswapreg(env->regs[6]);
397     (*regs)[7] = tswapreg(env->regs[7]);
398     (*regs)[8] = tswapreg(env->regs[8]);
399     (*regs)[9] = tswapreg(env->regs[9]);
400     (*regs)[10] = tswapreg(env->regs[10]);
401     (*regs)[11] = tswapreg(env->regs[11]);
402     (*regs)[12] = tswapreg(env->regs[12]);
403     (*regs)[13] = tswapreg(env->regs[13]);
404     (*regs)[14] = tswapreg(env->regs[14]);
405     (*regs)[15] = tswapreg(env->regs[15]);
406 
407     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
408     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
409 }
410 
411 #define USE_ELF_CORE_DUMP
412 #define ELF_EXEC_PAGESIZE       4096
413 
414 enum
415 {
416     ARM_HWCAP_ARM_SWP       = 1 << 0,
417     ARM_HWCAP_ARM_HALF      = 1 << 1,
418     ARM_HWCAP_ARM_THUMB     = 1 << 2,
419     ARM_HWCAP_ARM_26BIT     = 1 << 3,
420     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
421     ARM_HWCAP_ARM_FPA       = 1 << 5,
422     ARM_HWCAP_ARM_VFP       = 1 << 6,
423     ARM_HWCAP_ARM_EDSP      = 1 << 7,
424     ARM_HWCAP_ARM_JAVA      = 1 << 8,
425     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
426     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
427     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
428     ARM_HWCAP_ARM_NEON      = 1 << 12,
429     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
430     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
431     ARM_HWCAP_ARM_TLS       = 1 << 15,
432     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
433     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
434     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
435     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
436     ARM_HWCAP_ARM_LPAE      = 1 << 20,
437     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
438     ARM_HWCAP_ARM_FPHP      = 1 << 22,
439     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
440     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
441     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
442     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
443     ARM_HWCAP_ARM_I8MM      = 1 << 27,
444 };
445 
446 enum {
447     ARM_HWCAP2_ARM_AES      = 1 << 0,
448     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
449     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
450     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
451     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
452     ARM_HWCAP2_ARM_SB       = 1 << 5,
453     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
454 };
455 
456 /* The commpage only exists for 32 bit kernels */
457 
458 #define HI_COMMPAGE (intptr_t)0xffff0f00u
459 
460 static bool init_guest_commpage(void)
461 {
462     ARMCPU *cpu = ARM_CPU(thread_cpu);
463     abi_ptr commpage;
464     void *want;
465     void *addr;
466 
467     /*
468      * M-profile allocates maximum of 2GB address space, so can never
469      * allocate the commpage.  Skip it.
470      */
471     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
472         return true;
473     }
474 
475     commpage = HI_COMMPAGE & -qemu_host_page_size;
476     want = g2h_untagged(commpage);
477     addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
478                 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
479 
480     if (addr == MAP_FAILED) {
481         perror("Allocating guest commpage");
482         exit(EXIT_FAILURE);
483     }
484     if (addr != want) {
485         return false;
486     }
487 
488     /* Set kernel helper versions; rest of page is 0.  */
489     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
490 
491     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
492         perror("Protecting guest commpage");
493         exit(EXIT_FAILURE);
494     }
495 
496     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
497                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
498     return true;
499 }
500 
501 #define ELF_HWCAP get_elf_hwcap()
502 #define ELF_HWCAP2 get_elf_hwcap2()
503 
504 uint32_t get_elf_hwcap(void)
505 {
506     ARMCPU *cpu = ARM_CPU(thread_cpu);
507     uint32_t hwcaps = 0;
508 
509     hwcaps |= ARM_HWCAP_ARM_SWP;
510     hwcaps |= ARM_HWCAP_ARM_HALF;
511     hwcaps |= ARM_HWCAP_ARM_THUMB;
512     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
513 
514     /* probe for the extra features */
515 #define GET_FEATURE(feat, hwcap) \
516     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
517 
518 #define GET_FEATURE_ID(feat, hwcap) \
519     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
520 
521     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
522     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
523     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
524     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
525     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
526     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
527     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
528     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
529     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
530     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
531 
532     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
533         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
534         hwcaps |= ARM_HWCAP_ARM_VFPv3;
535         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
536             hwcaps |= ARM_HWCAP_ARM_VFPD32;
537         } else {
538             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
539         }
540     }
541     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
542     /*
543      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
544      * isar_feature function for both. The kernel reports them as two hwcaps.
545      */
546     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
547     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
548     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
549     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
550     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
551     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
552 
553     return hwcaps;
554 }
555 
556 uint64_t get_elf_hwcap2(void)
557 {
558     ARMCPU *cpu = ARM_CPU(thread_cpu);
559     uint64_t hwcaps = 0;
560 
561     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
562     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
563     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
564     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
565     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
566     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
567     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
568     return hwcaps;
569 }
570 
571 const char *elf_hwcap_str(uint32_t bit)
572 {
573     static const char *hwcap_str[] = {
574     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
575     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
576     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
577     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
578     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
579     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
580     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
581     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
582     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
583     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
584     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
585     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
586     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
587     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
588     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
589     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
590     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
591     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
592     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
593     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
594     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
595     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
596     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
597     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
598     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
599     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
600     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
601     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
602     };
603 
604     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
605 }
606 
607 const char *elf_hwcap2_str(uint32_t bit)
608 {
609     static const char *hwcap_str[] = {
610     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
611     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
612     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
613     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
614     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
615     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
616     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
617     };
618 
619     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
620 }
621 
622 #undef GET_FEATURE
623 #undef GET_FEATURE_ID
624 
625 #define ELF_PLATFORM get_elf_platform()
626 
627 static const char *get_elf_platform(void)
628 {
629     CPUARMState *env = cpu_env(thread_cpu);
630 
631 #if TARGET_BIG_ENDIAN
632 # define END  "b"
633 #else
634 # define END  "l"
635 #endif
636 
637     if (arm_feature(env, ARM_FEATURE_V8)) {
638         return "v8" END;
639     } else if (arm_feature(env, ARM_FEATURE_V7)) {
640         if (arm_feature(env, ARM_FEATURE_M)) {
641             return "v7m" END;
642         } else {
643             return "v7" END;
644         }
645     } else if (arm_feature(env, ARM_FEATURE_V6)) {
646         return "v6" END;
647     } else if (arm_feature(env, ARM_FEATURE_V5)) {
648         return "v5" END;
649     } else {
650         return "v4" END;
651     }
652 
653 #undef END
654 }
655 
656 #else
657 /* 64 bit ARM definitions */
658 
659 #define ELF_ARCH        EM_AARCH64
660 #define ELF_CLASS       ELFCLASS64
661 #if TARGET_BIG_ENDIAN
662 # define ELF_PLATFORM    "aarch64_be"
663 #else
664 # define ELF_PLATFORM    "aarch64"
665 #endif
666 
667 static inline void init_thread(struct target_pt_regs *regs,
668                                struct image_info *infop)
669 {
670     abi_long stack = infop->start_stack;
671     memset(regs, 0, sizeof(*regs));
672 
673     regs->pc = infop->entry & ~0x3ULL;
674     regs->sp = stack;
675 }
676 
677 #define ELF_NREG    34
678 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
679 
680 static void elf_core_copy_regs(target_elf_gregset_t *regs,
681                                const CPUARMState *env)
682 {
683     int i;
684 
685     for (i = 0; i < 32; i++) {
686         (*regs)[i] = tswapreg(env->xregs[i]);
687     }
688     (*regs)[32] = tswapreg(env->pc);
689     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
690 }
691 
692 #define USE_ELF_CORE_DUMP
693 #define ELF_EXEC_PAGESIZE       4096
694 
695 enum {
696     ARM_HWCAP_A64_FP            = 1 << 0,
697     ARM_HWCAP_A64_ASIMD         = 1 << 1,
698     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
699     ARM_HWCAP_A64_AES           = 1 << 3,
700     ARM_HWCAP_A64_PMULL         = 1 << 4,
701     ARM_HWCAP_A64_SHA1          = 1 << 5,
702     ARM_HWCAP_A64_SHA2          = 1 << 6,
703     ARM_HWCAP_A64_CRC32         = 1 << 7,
704     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
705     ARM_HWCAP_A64_FPHP          = 1 << 9,
706     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
707     ARM_HWCAP_A64_CPUID         = 1 << 11,
708     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
709     ARM_HWCAP_A64_JSCVT         = 1 << 13,
710     ARM_HWCAP_A64_FCMA          = 1 << 14,
711     ARM_HWCAP_A64_LRCPC         = 1 << 15,
712     ARM_HWCAP_A64_DCPOP         = 1 << 16,
713     ARM_HWCAP_A64_SHA3          = 1 << 17,
714     ARM_HWCAP_A64_SM3           = 1 << 18,
715     ARM_HWCAP_A64_SM4           = 1 << 19,
716     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
717     ARM_HWCAP_A64_SHA512        = 1 << 21,
718     ARM_HWCAP_A64_SVE           = 1 << 22,
719     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
720     ARM_HWCAP_A64_DIT           = 1 << 24,
721     ARM_HWCAP_A64_USCAT         = 1 << 25,
722     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
723     ARM_HWCAP_A64_FLAGM         = 1 << 27,
724     ARM_HWCAP_A64_SSBS          = 1 << 28,
725     ARM_HWCAP_A64_SB            = 1 << 29,
726     ARM_HWCAP_A64_PACA          = 1 << 30,
727     ARM_HWCAP_A64_PACG          = 1UL << 31,
728 
729     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
730     ARM_HWCAP2_A64_SVE2         = 1 << 1,
731     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
732     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
733     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
734     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
735     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
736     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
737     ARM_HWCAP2_A64_FRINT        = 1 << 8,
738     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
739     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
740     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
741     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
742     ARM_HWCAP2_A64_I8MM         = 1 << 13,
743     ARM_HWCAP2_A64_BF16         = 1 << 14,
744     ARM_HWCAP2_A64_DGH          = 1 << 15,
745     ARM_HWCAP2_A64_RNG          = 1 << 16,
746     ARM_HWCAP2_A64_BTI          = 1 << 17,
747     ARM_HWCAP2_A64_MTE          = 1 << 18,
748     ARM_HWCAP2_A64_ECV          = 1 << 19,
749     ARM_HWCAP2_A64_AFP          = 1 << 20,
750     ARM_HWCAP2_A64_RPRES        = 1 << 21,
751     ARM_HWCAP2_A64_MTE3         = 1 << 22,
752     ARM_HWCAP2_A64_SME          = 1 << 23,
753     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
754     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
755     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
756     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
757     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
758     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
759     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
760     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
761     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
762     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
763     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
764     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
765     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
766     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
767     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
768     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
769     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
770     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
771     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
772     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
773     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
774 };
775 
776 #define ELF_HWCAP   get_elf_hwcap()
777 #define ELF_HWCAP2  get_elf_hwcap2()
778 
779 #define GET_FEATURE_ID(feat, hwcap) \
780     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
781 
782 uint32_t get_elf_hwcap(void)
783 {
784     ARMCPU *cpu = ARM_CPU(thread_cpu);
785     uint32_t hwcaps = 0;
786 
787     hwcaps |= ARM_HWCAP_A64_FP;
788     hwcaps |= ARM_HWCAP_A64_ASIMD;
789     hwcaps |= ARM_HWCAP_A64_CPUID;
790 
791     /* probe for the extra features */
792 
793     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
794     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
795     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
796     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
797     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
798     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
799     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
800     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
801     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
802     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
803     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
804     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
805     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
806     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
807     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
808     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
809     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
810     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
811     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
812     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
813     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
814     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
815     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
816     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
817     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
818 
819     return hwcaps;
820 }
821 
822 uint64_t get_elf_hwcap2(void)
823 {
824     ARMCPU *cpu = ARM_CPU(thread_cpu);
825     uint64_t hwcaps = 0;
826 
827     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
828     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
829     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
830     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
831     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
832     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
833     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
834     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
835     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
836     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
837     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
838     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
839     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
840     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
841     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
842     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
843     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
844     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
845     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
846     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
847                               ARM_HWCAP2_A64_SME_F32F32 |
848                               ARM_HWCAP2_A64_SME_B16F32 |
849                               ARM_HWCAP2_A64_SME_F16F32 |
850                               ARM_HWCAP2_A64_SME_I8I32));
851     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
852     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
853     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
854     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
855     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
856 
857     return hwcaps;
858 }
859 
860 const char *elf_hwcap_str(uint32_t bit)
861 {
862     static const char *hwcap_str[] = {
863     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
864     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
865     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
866     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
867     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
868     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
869     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
870     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
871     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
872     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
873     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
874     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
875     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
876     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
877     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
878     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
879     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
880     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
881     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
882     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
883     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
884     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
885     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
886     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
887     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
888     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
889     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
890     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
891     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
892     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
893     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
894     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
895     };
896 
897     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
898 }
899 
900 const char *elf_hwcap2_str(uint32_t bit)
901 {
902     static const char *hwcap_str[] = {
903     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
904     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
905     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
906     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
907     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
908     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
909     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
910     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
911     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
912     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
913     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
914     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
915     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
916     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
917     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
918     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
919     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
920     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
921     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
922     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
923     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
924     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
925     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
926     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
927     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
928     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
929     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
930     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
931     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
932     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
933     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
934     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
935     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
936     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
937     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
938     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
939     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
940     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
941     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
942     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
943     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
944     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
945     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
946     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
947     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
948     };
949 
950     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
951 }
952 
953 #undef GET_FEATURE_ID
954 
955 #endif /* not TARGET_AARCH64 */
956 
957 #if TARGET_BIG_ENDIAN
958 # define VDSO_HEADER  "vdso-be.c.inc"
959 #else
960 # define VDSO_HEADER  "vdso-le.c.inc"
961 #endif
962 
963 #endif /* TARGET_ARM */
964 
965 #ifdef TARGET_SPARC
966 #ifdef TARGET_SPARC64
967 
968 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
969                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
970 #ifndef TARGET_ABI32
971 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
972 #else
973 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
974 #endif
975 
976 #define ELF_CLASS   ELFCLASS64
977 #define ELF_ARCH    EM_SPARCV9
978 #else
979 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
980                     | HWCAP_SPARC_MULDIV)
981 #define ELF_CLASS   ELFCLASS32
982 #define ELF_ARCH    EM_SPARC
983 #endif /* TARGET_SPARC64 */
984 
985 static inline void init_thread(struct target_pt_regs *regs,
986                                struct image_info *infop)
987 {
988     /* Note that target_cpu_copy_regs does not read psr/tstate. */
989     regs->pc = infop->entry;
990     regs->npc = regs->pc + 4;
991     regs->y = 0;
992     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
993                         - TARGET_STACK_BIAS);
994 }
995 #endif /* TARGET_SPARC */
996 
997 #ifdef TARGET_PPC
998 
999 #define ELF_MACHINE    PPC_ELF_MACHINE
1000 
1001 #if defined(TARGET_PPC64)
1002 
1003 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1004 
1005 #define ELF_CLASS       ELFCLASS64
1006 
1007 #else
1008 
1009 #define ELF_CLASS       ELFCLASS32
1010 #define EXSTACK_DEFAULT true
1011 
1012 #endif
1013 
1014 #define ELF_ARCH        EM_PPC
1015 
1016 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1017    See arch/powerpc/include/asm/cputable.h.  */
1018 enum {
1019     QEMU_PPC_FEATURE_32 = 0x80000000,
1020     QEMU_PPC_FEATURE_64 = 0x40000000,
1021     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1022     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1023     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1024     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1025     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1026     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1027     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1028     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1029     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1030     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1031     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1032     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1033     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1034     QEMU_PPC_FEATURE_CELL = 0x00010000,
1035     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1036     QEMU_PPC_FEATURE_SMT = 0x00004000,
1037     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1038     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1039     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1040     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1041     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1042     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1043     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1044     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1045 
1046     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1047     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1048 
1049     /* Feature definitions in AT_HWCAP2.  */
1050     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1051     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1052     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1053     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1054     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1055     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1056     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1057     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1058     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1059     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1060     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1061     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1062     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1063     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1064     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1065 };
1066 
1067 #define ELF_HWCAP get_elf_hwcap()
1068 
1069 static uint32_t get_elf_hwcap(void)
1070 {
1071     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1072     uint32_t features = 0;
1073 
1074     /* We don't have to be terribly complete here; the high points are
1075        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1076 #define GET_FEATURE(flag, feature)                                      \
1077     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1078 #define GET_FEATURE2(flags, feature) \
1079     do { \
1080         if ((cpu->env.insns_flags2 & flags) == flags) { \
1081             features |= feature; \
1082         } \
1083     } while (0)
1084     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1085     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1086     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1087     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1088     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1089     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1090     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1091     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1092     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1093     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1094     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1095                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1096                   QEMU_PPC_FEATURE_ARCH_2_06);
1097 #undef GET_FEATURE
1098 #undef GET_FEATURE2
1099 
1100     return features;
1101 }
1102 
1103 #define ELF_HWCAP2 get_elf_hwcap2()
1104 
1105 static uint32_t get_elf_hwcap2(void)
1106 {
1107     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1108     uint32_t features = 0;
1109 
1110 #define GET_FEATURE(flag, feature)                                      \
1111     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1112 #define GET_FEATURE2(flag, feature)                                      \
1113     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1114 
1115     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1116     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1117     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1118                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1119                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1120     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1121                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1122     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1123                  QEMU_PPC_FEATURE2_MMA);
1124 
1125 #undef GET_FEATURE
1126 #undef GET_FEATURE2
1127 
1128     return features;
1129 }
1130 
1131 /*
1132  * The requirements here are:
1133  * - keep the final alignment of sp (sp & 0xf)
1134  * - make sure the 32-bit value at the first 16 byte aligned position of
1135  *   AUXV is greater than 16 for glibc compatibility.
1136  *   AT_IGNOREPPC is used for that.
1137  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1138  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1139  */
1140 #define DLINFO_ARCH_ITEMS       5
1141 #define ARCH_DLINFO                                     \
1142     do {                                                \
1143         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1144         /*                                              \
1145          * Handle glibc compatibility: these magic entries must \
1146          * be at the lowest addresses in the final auxv.        \
1147          */                                             \
1148         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1149         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1150         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1151         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1152         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1153     } while (0)
1154 
1155 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1156 {
1157     _regs->gpr[1] = infop->start_stack;
1158 #if defined(TARGET_PPC64)
1159     if (get_ppc64_abi(infop) < 2) {
1160         uint64_t val;
1161         get_user_u64(val, infop->entry + 8);
1162         _regs->gpr[2] = val + infop->load_bias;
1163         get_user_u64(val, infop->entry);
1164         infop->entry = val + infop->load_bias;
1165     } else {
1166         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1167     }
1168 #endif
1169     _regs->nip = infop->entry;
1170 }
1171 
1172 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1173 #define ELF_NREG 48
1174 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1175 
1176 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1177 {
1178     int i;
1179     target_ulong ccr = 0;
1180 
1181     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1182         (*regs)[i] = tswapreg(env->gpr[i]);
1183     }
1184 
1185     (*regs)[32] = tswapreg(env->nip);
1186     (*regs)[33] = tswapreg(env->msr);
1187     (*regs)[35] = tswapreg(env->ctr);
1188     (*regs)[36] = tswapreg(env->lr);
1189     (*regs)[37] = tswapreg(cpu_read_xer(env));
1190 
1191     ccr = ppc_get_cr(env);
1192     (*regs)[38] = tswapreg(ccr);
1193 }
1194 
1195 #define USE_ELF_CORE_DUMP
1196 #define ELF_EXEC_PAGESIZE       4096
1197 
1198 #ifndef TARGET_PPC64
1199 # define VDSO_HEADER  "vdso-32.c.inc"
1200 #elif TARGET_BIG_ENDIAN
1201 # define VDSO_HEADER  "vdso-64.c.inc"
1202 #else
1203 # define VDSO_HEADER  "vdso-64le.c.inc"
1204 #endif
1205 
1206 #endif
1207 
1208 #ifdef TARGET_LOONGARCH64
1209 
1210 #define ELF_CLASS   ELFCLASS64
1211 #define ELF_ARCH    EM_LOONGARCH
1212 #define EXSTACK_DEFAULT true
1213 
1214 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1215 
1216 #define VDSO_HEADER "vdso.c.inc"
1217 
1218 static inline void init_thread(struct target_pt_regs *regs,
1219                                struct image_info *infop)
1220 {
1221     /*Set crmd PG,DA = 1,0 */
1222     regs->csr.crmd = 2 << 3;
1223     regs->csr.era = infop->entry;
1224     regs->regs[3] = infop->start_stack;
1225 }
1226 
1227 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1228 #define ELF_NREG 45
1229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1230 
1231 enum {
1232     TARGET_EF_R0 = 0,
1233     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1234     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1235 };
1236 
1237 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1238                                const CPULoongArchState *env)
1239 {
1240     int i;
1241 
1242     (*regs)[TARGET_EF_R0] = 0;
1243 
1244     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1245         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1246     }
1247 
1248     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1249     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1250 }
1251 
1252 #define USE_ELF_CORE_DUMP
1253 #define ELF_EXEC_PAGESIZE        4096
1254 
1255 #define ELF_HWCAP get_elf_hwcap()
1256 
1257 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1258 enum {
1259     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1260     HWCAP_LOONGARCH_LAM      = (1 << 1),
1261     HWCAP_LOONGARCH_UAL      = (1 << 2),
1262     HWCAP_LOONGARCH_FPU      = (1 << 3),
1263     HWCAP_LOONGARCH_LSX      = (1 << 4),
1264     HWCAP_LOONGARCH_LASX     = (1 << 5),
1265     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1266     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1267     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1268     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1269     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1270     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1271     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1272 };
1273 
1274 static uint32_t get_elf_hwcap(void)
1275 {
1276     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1277     uint32_t hwcaps = 0;
1278 
1279     hwcaps |= HWCAP_LOONGARCH_CRC32;
1280 
1281     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1282         hwcaps |= HWCAP_LOONGARCH_UAL;
1283     }
1284 
1285     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1286         hwcaps |= HWCAP_LOONGARCH_FPU;
1287     }
1288 
1289     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1290         hwcaps |= HWCAP_LOONGARCH_LAM;
1291     }
1292 
1293     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1294         hwcaps |= HWCAP_LOONGARCH_LSX;
1295     }
1296 
1297     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1298         hwcaps |= HWCAP_LOONGARCH_LASX;
1299     }
1300 
1301     return hwcaps;
1302 }
1303 
1304 #define ELF_PLATFORM "loongarch"
1305 
1306 #endif /* TARGET_LOONGARCH64 */
1307 
1308 #ifdef TARGET_MIPS
1309 
1310 #ifdef TARGET_MIPS64
1311 #define ELF_CLASS   ELFCLASS64
1312 #else
1313 #define ELF_CLASS   ELFCLASS32
1314 #endif
1315 #define ELF_ARCH    EM_MIPS
1316 #define EXSTACK_DEFAULT true
1317 
1318 #ifdef TARGET_ABI_MIPSN32
1319 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1320 #else
1321 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1322 #endif
1323 
1324 #define ELF_BASE_PLATFORM get_elf_base_platform()
1325 
1326 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1327     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1328     { return _base_platform; } } while (0)
1329 
1330 static const char *get_elf_base_platform(void)
1331 {
1332     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1333 
1334     /* 64 bit ISAs goes first */
1335     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1336     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1337     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1338     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1339     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1340     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1341     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1342 
1343     /* 32 bit ISAs */
1344     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1345     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1346     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1347     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1348     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1349 
1350     /* Fallback */
1351     return "mips";
1352 }
1353 #undef MATCH_PLATFORM_INSN
1354 
1355 static inline void init_thread(struct target_pt_regs *regs,
1356                                struct image_info *infop)
1357 {
1358     regs->cp0_status = 2 << CP0St_KSU;
1359     regs->cp0_epc = infop->entry;
1360     regs->regs[29] = infop->start_stack;
1361 }
1362 
1363 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1364 #define ELF_NREG 45
1365 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1366 
1367 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1368 enum {
1369 #ifdef TARGET_MIPS64
1370     TARGET_EF_R0 = 0,
1371 #else
1372     TARGET_EF_R0 = 6,
1373 #endif
1374     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1375     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1376     TARGET_EF_LO = TARGET_EF_R0 + 32,
1377     TARGET_EF_HI = TARGET_EF_R0 + 33,
1378     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1379     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1380     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1381     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1382 };
1383 
1384 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1385 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1386 {
1387     int i;
1388 
1389     for (i = 0; i < TARGET_EF_R0; i++) {
1390         (*regs)[i] = 0;
1391     }
1392     (*regs)[TARGET_EF_R0] = 0;
1393 
1394     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1395         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1396     }
1397 
1398     (*regs)[TARGET_EF_R26] = 0;
1399     (*regs)[TARGET_EF_R27] = 0;
1400     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1401     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1402     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1403     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1404     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1405     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1406 }
1407 
1408 #define USE_ELF_CORE_DUMP
1409 #define ELF_EXEC_PAGESIZE        4096
1410 
1411 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1412 enum {
1413     HWCAP_MIPS_R6           = (1 << 0),
1414     HWCAP_MIPS_MSA          = (1 << 1),
1415     HWCAP_MIPS_CRC32        = (1 << 2),
1416     HWCAP_MIPS_MIPS16       = (1 << 3),
1417     HWCAP_MIPS_MDMX         = (1 << 4),
1418     HWCAP_MIPS_MIPS3D       = (1 << 5),
1419     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1420     HWCAP_MIPS_DSP          = (1 << 7),
1421     HWCAP_MIPS_DSP2         = (1 << 8),
1422     HWCAP_MIPS_DSP3         = (1 << 9),
1423     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1424     HWCAP_LOONGSON_MMI      = (1 << 11),
1425     HWCAP_LOONGSON_EXT      = (1 << 12),
1426     HWCAP_LOONGSON_EXT2     = (1 << 13),
1427     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1428 };
1429 
1430 #define ELF_HWCAP get_elf_hwcap()
1431 
1432 #define GET_FEATURE_INSN(_flag, _hwcap) \
1433     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1434 
1435 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1436     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1437 
1438 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1439     do { \
1440         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1441             hwcaps |= _hwcap; \
1442         } \
1443     } while (0)
1444 
1445 static uint32_t get_elf_hwcap(void)
1446 {
1447     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1448     uint32_t hwcaps = 0;
1449 
1450     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1451                         2, HWCAP_MIPS_R6);
1452     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1453     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1454     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1455 
1456     return hwcaps;
1457 }
1458 
1459 #undef GET_FEATURE_REG_EQU
1460 #undef GET_FEATURE_REG_SET
1461 #undef GET_FEATURE_INSN
1462 
1463 #endif /* TARGET_MIPS */
1464 
1465 #ifdef TARGET_MICROBLAZE
1466 
1467 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1468 
1469 #define ELF_CLASS   ELFCLASS32
1470 #define ELF_ARCH    EM_MICROBLAZE
1471 
1472 static inline void init_thread(struct target_pt_regs *regs,
1473                                struct image_info *infop)
1474 {
1475     regs->pc = infop->entry;
1476     regs->r1 = infop->start_stack;
1477 
1478 }
1479 
1480 #define ELF_EXEC_PAGESIZE        4096
1481 
1482 #define USE_ELF_CORE_DUMP
1483 #define ELF_NREG 38
1484 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1485 
1486 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1487 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1488 {
1489     int i, pos = 0;
1490 
1491     for (i = 0; i < 32; i++) {
1492         (*regs)[pos++] = tswapreg(env->regs[i]);
1493     }
1494 
1495     (*regs)[pos++] = tswapreg(env->pc);
1496     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1497     (*regs)[pos++] = 0;
1498     (*regs)[pos++] = tswapreg(env->ear);
1499     (*regs)[pos++] = 0;
1500     (*regs)[pos++] = tswapreg(env->esr);
1501 }
1502 
1503 #endif /* TARGET_MICROBLAZE */
1504 
1505 #ifdef TARGET_NIOS2
1506 
1507 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1508 
1509 #define ELF_CLASS   ELFCLASS32
1510 #define ELF_ARCH    EM_ALTERA_NIOS2
1511 
1512 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1513 {
1514     regs->ea = infop->entry;
1515     regs->sp = infop->start_stack;
1516 }
1517 
1518 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1519 
1520 static bool init_guest_commpage(void)
1521 {
1522     static const uint8_t kuser_page[4 + 2 * 64] = {
1523         /* __kuser_helper_version */
1524         [0x00] = 0x02, 0x00, 0x00, 0x00,
1525 
1526         /* __kuser_cmpxchg */
1527         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1528                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1529 
1530         /* __kuser_sigtramp */
1531         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1532                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1533     };
1534 
1535     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1536     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1537                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1538 
1539     if (addr == MAP_FAILED) {
1540         perror("Allocating guest commpage");
1541         exit(EXIT_FAILURE);
1542     }
1543     if (addr != want) {
1544         return false;
1545     }
1546 
1547     memcpy(addr, kuser_page, sizeof(kuser_page));
1548 
1549     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1550         perror("Protecting guest commpage");
1551         exit(EXIT_FAILURE);
1552     }
1553 
1554     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1555                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1556     return true;
1557 }
1558 
1559 #define ELF_EXEC_PAGESIZE        4096
1560 
1561 #define USE_ELF_CORE_DUMP
1562 #define ELF_NREG 49
1563 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1564 
1565 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1566 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1567                                const CPUNios2State *env)
1568 {
1569     int i;
1570 
1571     (*regs)[0] = -1;
1572     for (i = 1; i < 8; i++)    /* r0-r7 */
1573         (*regs)[i] = tswapreg(env->regs[i + 7]);
1574 
1575     for (i = 8; i < 16; i++)   /* r8-r15 */
1576         (*regs)[i] = tswapreg(env->regs[i - 8]);
1577 
1578     for (i = 16; i < 24; i++)  /* r16-r23 */
1579         (*regs)[i] = tswapreg(env->regs[i + 7]);
1580     (*regs)[24] = -1;    /* R_ET */
1581     (*regs)[25] = -1;    /* R_BT */
1582     (*regs)[26] = tswapreg(env->regs[R_GP]);
1583     (*regs)[27] = tswapreg(env->regs[R_SP]);
1584     (*regs)[28] = tswapreg(env->regs[R_FP]);
1585     (*regs)[29] = tswapreg(env->regs[R_EA]);
1586     (*regs)[30] = -1;    /* R_SSTATUS */
1587     (*regs)[31] = tswapreg(env->regs[R_RA]);
1588 
1589     (*regs)[32] = tswapreg(env->pc);
1590 
1591     (*regs)[33] = -1; /* R_STATUS */
1592     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1593 
1594     for (i = 35; i < 49; i++)    /* ... */
1595         (*regs)[i] = -1;
1596 }
1597 
1598 #endif /* TARGET_NIOS2 */
1599 
1600 #ifdef TARGET_OPENRISC
1601 
1602 #define ELF_ARCH EM_OPENRISC
1603 #define ELF_CLASS ELFCLASS32
1604 #define ELF_DATA  ELFDATA2MSB
1605 
1606 static inline void init_thread(struct target_pt_regs *regs,
1607                                struct image_info *infop)
1608 {
1609     regs->pc = infop->entry;
1610     regs->gpr[1] = infop->start_stack;
1611 }
1612 
1613 #define USE_ELF_CORE_DUMP
1614 #define ELF_EXEC_PAGESIZE 8192
1615 
1616 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1617 #define ELF_NREG 34 /* gprs and pc, sr */
1618 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1619 
1620 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1621                                const CPUOpenRISCState *env)
1622 {
1623     int i;
1624 
1625     for (i = 0; i < 32; i++) {
1626         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1627     }
1628     (*regs)[32] = tswapreg(env->pc);
1629     (*regs)[33] = tswapreg(cpu_get_sr(env));
1630 }
1631 #define ELF_HWCAP 0
1632 #define ELF_PLATFORM NULL
1633 
1634 #endif /* TARGET_OPENRISC */
1635 
1636 #ifdef TARGET_SH4
1637 
1638 #define ELF_CLASS ELFCLASS32
1639 #define ELF_ARCH  EM_SH
1640 
1641 static inline void init_thread(struct target_pt_regs *regs,
1642                                struct image_info *infop)
1643 {
1644     /* Check other registers XXXXX */
1645     regs->pc = infop->entry;
1646     regs->regs[15] = infop->start_stack;
1647 }
1648 
1649 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1650 #define ELF_NREG 23
1651 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1652 
1653 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1654 enum {
1655     TARGET_REG_PC = 16,
1656     TARGET_REG_PR = 17,
1657     TARGET_REG_SR = 18,
1658     TARGET_REG_GBR = 19,
1659     TARGET_REG_MACH = 20,
1660     TARGET_REG_MACL = 21,
1661     TARGET_REG_SYSCALL = 22
1662 };
1663 
1664 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1665                                       const CPUSH4State *env)
1666 {
1667     int i;
1668 
1669     for (i = 0; i < 16; i++) {
1670         (*regs)[i] = tswapreg(env->gregs[i]);
1671     }
1672 
1673     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1674     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1675     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1676     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1677     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1678     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1679     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1680 }
1681 
1682 #define USE_ELF_CORE_DUMP
1683 #define ELF_EXEC_PAGESIZE        4096
1684 
1685 enum {
1686     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1687     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1688     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1689     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1690     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1691     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1692     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1693     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1694     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1695     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1696 };
1697 
1698 #define ELF_HWCAP get_elf_hwcap()
1699 
1700 static uint32_t get_elf_hwcap(void)
1701 {
1702     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1703     uint32_t hwcap = 0;
1704 
1705     hwcap |= SH_CPU_HAS_FPU;
1706 
1707     if (cpu->env.features & SH_FEATURE_SH4A) {
1708         hwcap |= SH_CPU_HAS_LLSC;
1709     }
1710 
1711     return hwcap;
1712 }
1713 
1714 #endif
1715 
1716 #ifdef TARGET_CRIS
1717 
1718 #define ELF_CLASS ELFCLASS32
1719 #define ELF_ARCH  EM_CRIS
1720 
1721 static inline void init_thread(struct target_pt_regs *regs,
1722                                struct image_info *infop)
1723 {
1724     regs->erp = infop->entry;
1725 }
1726 
1727 #define ELF_EXEC_PAGESIZE        8192
1728 
1729 #endif
1730 
1731 #ifdef TARGET_M68K
1732 
1733 #define ELF_CLASS       ELFCLASS32
1734 #define ELF_ARCH        EM_68K
1735 
1736 /* ??? Does this need to do anything?
1737    #define ELF_PLAT_INIT(_r) */
1738 
1739 static inline void init_thread(struct target_pt_regs *regs,
1740                                struct image_info *infop)
1741 {
1742     regs->usp = infop->start_stack;
1743     regs->sr = 0;
1744     regs->pc = infop->entry;
1745 }
1746 
1747 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1748 #define ELF_NREG 20
1749 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1750 
1751 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1752 {
1753     (*regs)[0] = tswapreg(env->dregs[1]);
1754     (*regs)[1] = tswapreg(env->dregs[2]);
1755     (*regs)[2] = tswapreg(env->dregs[3]);
1756     (*regs)[3] = tswapreg(env->dregs[4]);
1757     (*regs)[4] = tswapreg(env->dregs[5]);
1758     (*regs)[5] = tswapreg(env->dregs[6]);
1759     (*regs)[6] = tswapreg(env->dregs[7]);
1760     (*regs)[7] = tswapreg(env->aregs[0]);
1761     (*regs)[8] = tswapreg(env->aregs[1]);
1762     (*regs)[9] = tswapreg(env->aregs[2]);
1763     (*regs)[10] = tswapreg(env->aregs[3]);
1764     (*regs)[11] = tswapreg(env->aregs[4]);
1765     (*regs)[12] = tswapreg(env->aregs[5]);
1766     (*regs)[13] = tswapreg(env->aregs[6]);
1767     (*regs)[14] = tswapreg(env->dregs[0]);
1768     (*regs)[15] = tswapreg(env->aregs[7]);
1769     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1770     (*regs)[17] = tswapreg(env->sr);
1771     (*regs)[18] = tswapreg(env->pc);
1772     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1773 }
1774 
1775 #define USE_ELF_CORE_DUMP
1776 #define ELF_EXEC_PAGESIZE       8192
1777 
1778 #endif
1779 
1780 #ifdef TARGET_ALPHA
1781 
1782 #define ELF_CLASS      ELFCLASS64
1783 #define ELF_ARCH       EM_ALPHA
1784 
1785 static inline void init_thread(struct target_pt_regs *regs,
1786                                struct image_info *infop)
1787 {
1788     regs->pc = infop->entry;
1789     regs->ps = 8;
1790     regs->usp = infop->start_stack;
1791 }
1792 
1793 #define ELF_EXEC_PAGESIZE        8192
1794 
1795 #endif /* TARGET_ALPHA */
1796 
1797 #ifdef TARGET_S390X
1798 
1799 #define ELF_CLASS	ELFCLASS64
1800 #define ELF_DATA	ELFDATA2MSB
1801 #define ELF_ARCH	EM_S390
1802 
1803 #include "elf.h"
1804 
1805 #define ELF_HWCAP get_elf_hwcap()
1806 
1807 #define GET_FEATURE(_feat, _hwcap) \
1808     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1809 
1810 uint32_t get_elf_hwcap(void)
1811 {
1812     /*
1813      * Let's assume we always have esan3 and zarch.
1814      * 31-bit processes can use 64-bit registers (high gprs).
1815      */
1816     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1817 
1818     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1819     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1820     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1821     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1822     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1823         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1824         hwcap |= HWCAP_S390_ETF3EH;
1825     }
1826     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1827     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1828     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1829 
1830     return hwcap;
1831 }
1832 
1833 const char *elf_hwcap_str(uint32_t bit)
1834 {
1835     static const char *hwcap_str[] = {
1836         [HWCAP_S390_NR_ESAN3]     = "esan3",
1837         [HWCAP_S390_NR_ZARCH]     = "zarch",
1838         [HWCAP_S390_NR_STFLE]     = "stfle",
1839         [HWCAP_S390_NR_MSA]       = "msa",
1840         [HWCAP_S390_NR_LDISP]     = "ldisp",
1841         [HWCAP_S390_NR_EIMM]      = "eimm",
1842         [HWCAP_S390_NR_DFP]       = "dfp",
1843         [HWCAP_S390_NR_HPAGE]     = "edat",
1844         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1845         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1846         [HWCAP_S390_NR_TE]        = "te",
1847         [HWCAP_S390_NR_VXRS]      = "vx",
1848         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1849         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1850         [HWCAP_S390_NR_GS]        = "gs",
1851         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1852         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1853         [HWCAP_S390_NR_SORT]      = "sort",
1854         [HWCAP_S390_NR_DFLT]      = "dflt",
1855         [HWCAP_S390_NR_NNPA]      = "nnpa",
1856         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1857         [HWCAP_S390_NR_SIE]       = "sie",
1858     };
1859 
1860     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1861 }
1862 
1863 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1864 {
1865     regs->psw.addr = infop->entry;
1866     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1867                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1868                      PSW_MASK_32;
1869     regs->gprs[15] = infop->start_stack;
1870 }
1871 
1872 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1873 #define ELF_NREG 27
1874 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1875 
1876 enum {
1877     TARGET_REG_PSWM = 0,
1878     TARGET_REG_PSWA = 1,
1879     TARGET_REG_GPRS = 2,
1880     TARGET_REG_ARS = 18,
1881     TARGET_REG_ORIG_R2 = 26,
1882 };
1883 
1884 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1885                                const CPUS390XState *env)
1886 {
1887     int i;
1888     uint32_t *aregs;
1889 
1890     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1891     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1892     for (i = 0; i < 16; i++) {
1893         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1894     }
1895     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1896     for (i = 0; i < 16; i++) {
1897         aregs[i] = tswap32(env->aregs[i]);
1898     }
1899     (*regs)[TARGET_REG_ORIG_R2] = 0;
1900 }
1901 
1902 #define USE_ELF_CORE_DUMP
1903 #define ELF_EXEC_PAGESIZE 4096
1904 
1905 #define VDSO_HEADER "vdso.c.inc"
1906 
1907 #endif /* TARGET_S390X */
1908 
1909 #ifdef TARGET_RISCV
1910 
1911 #define ELF_ARCH  EM_RISCV
1912 
1913 #ifdef TARGET_RISCV32
1914 #define ELF_CLASS ELFCLASS32
1915 #define VDSO_HEADER "vdso-32.c.inc"
1916 #else
1917 #define ELF_CLASS ELFCLASS64
1918 #define VDSO_HEADER "vdso-64.c.inc"
1919 #endif
1920 
1921 #define ELF_HWCAP get_elf_hwcap()
1922 
1923 static uint32_t get_elf_hwcap(void)
1924 {
1925 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1926     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1927     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1928                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1929                     | MISA_BIT('V');
1930 
1931     return cpu->env.misa_ext & mask;
1932 #undef MISA_BIT
1933 }
1934 
1935 static inline void init_thread(struct target_pt_regs *regs,
1936                                struct image_info *infop)
1937 {
1938     regs->sepc = infop->entry;
1939     regs->sp = infop->start_stack;
1940 }
1941 
1942 #define ELF_EXEC_PAGESIZE 4096
1943 
1944 #endif /* TARGET_RISCV */
1945 
1946 #ifdef TARGET_HPPA
1947 
1948 #define ELF_CLASS       ELFCLASS32
1949 #define ELF_ARCH        EM_PARISC
1950 #define ELF_PLATFORM    "PARISC"
1951 #define STACK_GROWS_DOWN 0
1952 #define STACK_ALIGNMENT  64
1953 
1954 #define VDSO_HEADER "vdso.c.inc"
1955 
1956 static inline void init_thread(struct target_pt_regs *regs,
1957                                struct image_info *infop)
1958 {
1959     regs->iaoq[0] = infop->entry;
1960     regs->iaoq[1] = infop->entry + 4;
1961     regs->gr[23] = 0;
1962     regs->gr[24] = infop->argv;
1963     regs->gr[25] = infop->argc;
1964     /* The top-of-stack contains a linkage buffer.  */
1965     regs->gr[30] = infop->start_stack + 64;
1966     regs->gr[31] = infop->entry;
1967 }
1968 
1969 #define LO_COMMPAGE  0
1970 
1971 static bool init_guest_commpage(void)
1972 {
1973     void *want = g2h_untagged(LO_COMMPAGE);
1974     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1975                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1976 
1977     if (addr == MAP_FAILED) {
1978         perror("Allocating guest commpage");
1979         exit(EXIT_FAILURE);
1980     }
1981     if (addr != want) {
1982         return false;
1983     }
1984 
1985     /*
1986      * On Linux, page zero is normally marked execute only + gateway.
1987      * Normal read or write is supposed to fail (thus PROT_NONE above),
1988      * but specific offsets have kernel code mapped to raise permissions
1989      * and implement syscalls.  Here, simply mark the page executable.
1990      * Special case the entry points during translation (see do_page_zero).
1991      */
1992     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1993                    PAGE_EXEC | PAGE_VALID);
1994     return true;
1995 }
1996 
1997 #endif /* TARGET_HPPA */
1998 
1999 #ifdef TARGET_XTENSA
2000 
2001 #define ELF_CLASS       ELFCLASS32
2002 #define ELF_ARCH        EM_XTENSA
2003 
2004 static inline void init_thread(struct target_pt_regs *regs,
2005                                struct image_info *infop)
2006 {
2007     regs->windowbase = 0;
2008     regs->windowstart = 1;
2009     regs->areg[1] = infop->start_stack;
2010     regs->pc = infop->entry;
2011     if (info_is_fdpic(infop)) {
2012         regs->areg[4] = infop->loadmap_addr;
2013         regs->areg[5] = infop->interpreter_loadmap_addr;
2014         if (infop->interpreter_loadmap_addr) {
2015             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
2016         } else {
2017             regs->areg[6] = infop->pt_dynamic_addr;
2018         }
2019     }
2020 }
2021 
2022 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
2023 #define ELF_NREG 128
2024 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
2025 
2026 enum {
2027     TARGET_REG_PC,
2028     TARGET_REG_PS,
2029     TARGET_REG_LBEG,
2030     TARGET_REG_LEND,
2031     TARGET_REG_LCOUNT,
2032     TARGET_REG_SAR,
2033     TARGET_REG_WINDOWSTART,
2034     TARGET_REG_WINDOWBASE,
2035     TARGET_REG_THREADPTR,
2036     TARGET_REG_AR0 = 64,
2037 };
2038 
2039 static void elf_core_copy_regs(target_elf_gregset_t *regs,
2040                                const CPUXtensaState *env)
2041 {
2042     unsigned i;
2043 
2044     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
2045     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
2046     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
2047     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
2048     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
2049     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
2050     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
2051     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
2052     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
2053     xtensa_sync_phys_from_window((CPUXtensaState *)env);
2054     for (i = 0; i < env->config->nareg; ++i) {
2055         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
2056     }
2057 }
2058 
2059 #define USE_ELF_CORE_DUMP
2060 #define ELF_EXEC_PAGESIZE       4096
2061 
2062 #endif /* TARGET_XTENSA */
2063 
2064 #ifdef TARGET_HEXAGON
2065 
2066 #define ELF_CLASS       ELFCLASS32
2067 #define ELF_ARCH        EM_HEXAGON
2068 
2069 static inline void init_thread(struct target_pt_regs *regs,
2070                                struct image_info *infop)
2071 {
2072     regs->sepc = infop->entry;
2073     regs->sp = infop->start_stack;
2074 }
2075 
2076 #endif /* TARGET_HEXAGON */
2077 
2078 #ifndef ELF_BASE_PLATFORM
2079 #define ELF_BASE_PLATFORM (NULL)
2080 #endif
2081 
2082 #ifndef ELF_PLATFORM
2083 #define ELF_PLATFORM (NULL)
2084 #endif
2085 
2086 #ifndef ELF_MACHINE
2087 #define ELF_MACHINE ELF_ARCH
2088 #endif
2089 
2090 #ifndef elf_check_arch
2091 #define elf_check_arch(x) ((x) == ELF_ARCH)
2092 #endif
2093 
2094 #ifndef elf_check_abi
2095 #define elf_check_abi(x) (1)
2096 #endif
2097 
2098 #ifndef ELF_HWCAP
2099 #define ELF_HWCAP 0
2100 #endif
2101 
2102 #ifndef STACK_GROWS_DOWN
2103 #define STACK_GROWS_DOWN 1
2104 #endif
2105 
2106 #ifndef STACK_ALIGNMENT
2107 #define STACK_ALIGNMENT 16
2108 #endif
2109 
2110 #ifdef TARGET_ABI32
2111 #undef ELF_CLASS
2112 #define ELF_CLASS ELFCLASS32
2113 #undef bswaptls
2114 #define bswaptls(ptr) bswap32s(ptr)
2115 #endif
2116 
2117 #ifndef EXSTACK_DEFAULT
2118 #define EXSTACK_DEFAULT false
2119 #endif
2120 
2121 #include "elf.h"
2122 
2123 /* We must delay the following stanzas until after "elf.h". */
2124 #if defined(TARGET_AARCH64)
2125 
2126 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2127                                     const uint32_t *data,
2128                                     struct image_info *info,
2129                                     Error **errp)
2130 {
2131     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2132         if (pr_datasz != sizeof(uint32_t)) {
2133             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2134             return false;
2135         }
2136         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2137         info->note_flags = *data;
2138     }
2139     return true;
2140 }
2141 #define ARCH_USE_GNU_PROPERTY 1
2142 
2143 #else
2144 
2145 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2146                                     const uint32_t *data,
2147                                     struct image_info *info,
2148                                     Error **errp)
2149 {
2150     g_assert_not_reached();
2151 }
2152 #define ARCH_USE_GNU_PROPERTY 0
2153 
2154 #endif
2155 
2156 struct exec
2157 {
2158     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2159     unsigned int a_text;   /* length of text, in bytes */
2160     unsigned int a_data;   /* length of data, in bytes */
2161     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2162     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2163     unsigned int a_entry;  /* start address */
2164     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2165     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2166 };
2167 
2168 
2169 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2170 #define OMAGIC 0407
2171 #define NMAGIC 0410
2172 #define ZMAGIC 0413
2173 #define QMAGIC 0314
2174 
2175 #define DLINFO_ITEMS 16
2176 
2177 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2178 {
2179     memcpy(to, from, n);
2180 }
2181 
2182 #ifdef BSWAP_NEEDED
2183 static void bswap_ehdr(struct elfhdr *ehdr)
2184 {
2185     bswap16s(&ehdr->e_type);            /* Object file type */
2186     bswap16s(&ehdr->e_machine);         /* Architecture */
2187     bswap32s(&ehdr->e_version);         /* Object file version */
2188     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2189     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2190     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2191     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2192     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2193     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2194     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2195     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2196     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2197     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2198 }
2199 
2200 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2201 {
2202     int i;
2203     for (i = 0; i < phnum; ++i, ++phdr) {
2204         bswap32s(&phdr->p_type);        /* Segment type */
2205         bswap32s(&phdr->p_flags);       /* Segment flags */
2206         bswaptls(&phdr->p_offset);      /* Segment file offset */
2207         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2208         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2209         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2210         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2211         bswaptls(&phdr->p_align);       /* Segment alignment */
2212     }
2213 }
2214 
2215 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2216 {
2217     int i;
2218     for (i = 0; i < shnum; ++i, ++shdr) {
2219         bswap32s(&shdr->sh_name);
2220         bswap32s(&shdr->sh_type);
2221         bswaptls(&shdr->sh_flags);
2222         bswaptls(&shdr->sh_addr);
2223         bswaptls(&shdr->sh_offset);
2224         bswaptls(&shdr->sh_size);
2225         bswap32s(&shdr->sh_link);
2226         bswap32s(&shdr->sh_info);
2227         bswaptls(&shdr->sh_addralign);
2228         bswaptls(&shdr->sh_entsize);
2229     }
2230 }
2231 
2232 static void bswap_sym(struct elf_sym *sym)
2233 {
2234     bswap32s(&sym->st_name);
2235     bswaptls(&sym->st_value);
2236     bswaptls(&sym->st_size);
2237     bswap16s(&sym->st_shndx);
2238 }
2239 
2240 #ifdef TARGET_MIPS
2241 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2242 {
2243     bswap16s(&abiflags->version);
2244     bswap32s(&abiflags->ases);
2245     bswap32s(&abiflags->isa_ext);
2246     bswap32s(&abiflags->flags1);
2247     bswap32s(&abiflags->flags2);
2248 }
2249 #endif
2250 #else
2251 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2252 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2253 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2254 static inline void bswap_sym(struct elf_sym *sym) { }
2255 #ifdef TARGET_MIPS
2256 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2257 #endif
2258 #endif
2259 
2260 #ifdef USE_ELF_CORE_DUMP
2261 static int elf_core_dump(int, const CPUArchState *);
2262 #endif /* USE_ELF_CORE_DUMP */
2263 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2264                          abi_ulong load_bias);
2265 
2266 /* Verify the portions of EHDR within E_IDENT for the target.
2267    This can be performed before bswapping the entire header.  */
2268 static bool elf_check_ident(struct elfhdr *ehdr)
2269 {
2270     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2271             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2272             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2273             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2274             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2275             && ehdr->e_ident[EI_DATA] == ELF_DATA
2276             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2277 }
2278 
2279 /* Verify the portions of EHDR outside of E_IDENT for the target.
2280    This has to wait until after bswapping the header.  */
2281 static bool elf_check_ehdr(struct elfhdr *ehdr)
2282 {
2283     return (elf_check_arch(ehdr->e_machine)
2284             && elf_check_abi(ehdr->e_flags)
2285             && ehdr->e_ehsize == sizeof(struct elfhdr)
2286             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2287             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2288 }
2289 
2290 /*
2291  * 'copy_elf_strings()' copies argument/envelope strings from user
2292  * memory to free pages in kernel mem. These are in a format ready
2293  * to be put directly into the top of new user memory.
2294  *
2295  */
2296 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2297                                   abi_ulong p, abi_ulong stack_limit)
2298 {
2299     char *tmp;
2300     int len, i;
2301     abi_ulong top = p;
2302 
2303     if (!p) {
2304         return 0;       /* bullet-proofing */
2305     }
2306 
2307     if (STACK_GROWS_DOWN) {
2308         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2309         for (i = argc - 1; i >= 0; --i) {
2310             tmp = argv[i];
2311             if (!tmp) {
2312                 fprintf(stderr, "VFS: argc is wrong");
2313                 exit(-1);
2314             }
2315             len = strlen(tmp) + 1;
2316             tmp += len;
2317 
2318             if (len > (p - stack_limit)) {
2319                 return 0;
2320             }
2321             while (len) {
2322                 int bytes_to_copy = (len > offset) ? offset : len;
2323                 tmp -= bytes_to_copy;
2324                 p -= bytes_to_copy;
2325                 offset -= bytes_to_copy;
2326                 len -= bytes_to_copy;
2327 
2328                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2329 
2330                 if (offset == 0) {
2331                     memcpy_to_target(p, scratch, top - p);
2332                     top = p;
2333                     offset = TARGET_PAGE_SIZE;
2334                 }
2335             }
2336         }
2337         if (p != top) {
2338             memcpy_to_target(p, scratch + offset, top - p);
2339         }
2340     } else {
2341         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2342         for (i = 0; i < argc; ++i) {
2343             tmp = argv[i];
2344             if (!tmp) {
2345                 fprintf(stderr, "VFS: argc is wrong");
2346                 exit(-1);
2347             }
2348             len = strlen(tmp) + 1;
2349             if (len > (stack_limit - p)) {
2350                 return 0;
2351             }
2352             while (len) {
2353                 int bytes_to_copy = (len > remaining) ? remaining : len;
2354 
2355                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2356 
2357                 tmp += bytes_to_copy;
2358                 remaining -= bytes_to_copy;
2359                 p += bytes_to_copy;
2360                 len -= bytes_to_copy;
2361 
2362                 if (remaining == 0) {
2363                     memcpy_to_target(top, scratch, p - top);
2364                     top = p;
2365                     remaining = TARGET_PAGE_SIZE;
2366                 }
2367             }
2368         }
2369         if (p != top) {
2370             memcpy_to_target(top, scratch, p - top);
2371         }
2372     }
2373 
2374     return p;
2375 }
2376 
2377 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2378  * argument/environment space. Newer kernels (>2.6.33) allow more,
2379  * dependent on stack size, but guarantee at least 32 pages for
2380  * backwards compatibility.
2381  */
2382 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2383 
2384 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2385                                  struct image_info *info)
2386 {
2387     abi_ulong size, error, guard;
2388     int prot;
2389 
2390     size = guest_stack_size;
2391     if (size < STACK_LOWER_LIMIT) {
2392         size = STACK_LOWER_LIMIT;
2393     }
2394 
2395     if (STACK_GROWS_DOWN) {
2396         guard = TARGET_PAGE_SIZE;
2397         if (guard < qemu_real_host_page_size()) {
2398             guard = qemu_real_host_page_size();
2399         }
2400     } else {
2401         /* no guard page for hppa target where stack grows upwards. */
2402         guard = 0;
2403     }
2404 
2405     prot = PROT_READ | PROT_WRITE;
2406     if (info->exec_stack) {
2407         prot |= PROT_EXEC;
2408     }
2409     error = target_mmap(0, size + guard, prot,
2410                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2411     if (error == -1) {
2412         perror("mmap stack");
2413         exit(-1);
2414     }
2415 
2416     /* We reserve one extra page at the top of the stack as guard.  */
2417     if (STACK_GROWS_DOWN) {
2418         target_mprotect(error, guard, PROT_NONE);
2419         info->stack_limit = error + guard;
2420         return info->stack_limit + size - sizeof(void *);
2421     } else {
2422         info->stack_limit = error + size;
2423         return error;
2424     }
2425 }
2426 
2427 /**
2428  * zero_bss:
2429  *
2430  * Map and zero the bss.  We need to explicitly zero any fractional pages
2431  * after the data section (i.e. bss).  Return false on mapping failure.
2432  */
2433 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2434                      int prot, Error **errp)
2435 {
2436     abi_ulong align_bss;
2437 
2438     /* We only expect writable bss; the code segment shouldn't need this. */
2439     if (!(prot & PROT_WRITE)) {
2440         error_setg(errp, "PT_LOAD with non-writable bss");
2441         return false;
2442     }
2443 
2444     align_bss = TARGET_PAGE_ALIGN(start_bss);
2445     end_bss = TARGET_PAGE_ALIGN(end_bss);
2446 
2447     if (start_bss < align_bss) {
2448         int flags = page_get_flags(start_bss);
2449 
2450         if (!(flags & PAGE_BITS)) {
2451             /*
2452              * The whole address space of the executable was reserved
2453              * at the start, therefore all pages will be VALID.
2454              * But assuming there are no PROT_NONE PT_LOAD segments,
2455              * a PROT_NONE page means no data all bss, and we can
2456              * simply extend the new anon mapping back to the start
2457              * of the page of bss.
2458              */
2459             align_bss -= TARGET_PAGE_SIZE;
2460         } else {
2461             /*
2462              * The start of the bss shares a page with something.
2463              * The only thing that we expect is the data section,
2464              * which would already be marked writable.
2465              * Overlapping the RX code segment seems malformed.
2466              */
2467             if (!(flags & PAGE_WRITE)) {
2468                 error_setg(errp, "PT_LOAD with bss overlapping "
2469                            "non-writable page");
2470                 return false;
2471             }
2472 
2473             /* The page is already mapped and writable. */
2474             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2475         }
2476     }
2477 
2478     if (align_bss < end_bss &&
2479         target_mmap(align_bss, end_bss - align_bss, prot,
2480                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2481         error_setg_errno(errp, errno, "Error mapping bss");
2482         return false;
2483     }
2484     return true;
2485 }
2486 
2487 #if defined(TARGET_ARM)
2488 static int elf_is_fdpic(struct elfhdr *exec)
2489 {
2490     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2491 }
2492 #elif defined(TARGET_XTENSA)
2493 static int elf_is_fdpic(struct elfhdr *exec)
2494 {
2495     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2496 }
2497 #else
2498 /* Default implementation, always false.  */
2499 static int elf_is_fdpic(struct elfhdr *exec)
2500 {
2501     return 0;
2502 }
2503 #endif
2504 
2505 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2506 {
2507     uint16_t n;
2508     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2509 
2510     /* elf32_fdpic_loadseg */
2511     n = info->nsegs;
2512     while (n--) {
2513         sp -= 12;
2514         put_user_u32(loadsegs[n].addr, sp+0);
2515         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2516         put_user_u32(loadsegs[n].p_memsz, sp+8);
2517     }
2518 
2519     /* elf32_fdpic_loadmap */
2520     sp -= 4;
2521     put_user_u16(0, sp+0); /* version */
2522     put_user_u16(info->nsegs, sp+2); /* nsegs */
2523 
2524     info->personality = PER_LINUX_FDPIC;
2525     info->loadmap_addr = sp;
2526 
2527     return sp;
2528 }
2529 
2530 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2531                                    struct elfhdr *exec,
2532                                    struct image_info *info,
2533                                    struct image_info *interp_info,
2534                                    struct image_info *vdso_info)
2535 {
2536     abi_ulong sp;
2537     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2538     int size;
2539     int i;
2540     abi_ulong u_rand_bytes;
2541     uint8_t k_rand_bytes[16];
2542     abi_ulong u_platform, u_base_platform;
2543     const char *k_platform, *k_base_platform;
2544     const int n = sizeof(elf_addr_t);
2545 
2546     sp = p;
2547 
2548     /* Needs to be before we load the env/argc/... */
2549     if (elf_is_fdpic(exec)) {
2550         /* Need 4 byte alignment for these structs */
2551         sp &= ~3;
2552         sp = loader_build_fdpic_loadmap(info, sp);
2553         info->other_info = interp_info;
2554         if (interp_info) {
2555             interp_info->other_info = info;
2556             sp = loader_build_fdpic_loadmap(interp_info, sp);
2557             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2558             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2559         } else {
2560             info->interpreter_loadmap_addr = 0;
2561             info->interpreter_pt_dynamic_addr = 0;
2562         }
2563     }
2564 
2565     u_base_platform = 0;
2566     k_base_platform = ELF_BASE_PLATFORM;
2567     if (k_base_platform) {
2568         size_t len = strlen(k_base_platform) + 1;
2569         if (STACK_GROWS_DOWN) {
2570             sp -= (len + n - 1) & ~(n - 1);
2571             u_base_platform = sp;
2572             /* FIXME - check return value of memcpy_to_target() for failure */
2573             memcpy_to_target(sp, k_base_platform, len);
2574         } else {
2575             memcpy_to_target(sp, k_base_platform, len);
2576             u_base_platform = sp;
2577             sp += len + 1;
2578         }
2579     }
2580 
2581     u_platform = 0;
2582     k_platform = ELF_PLATFORM;
2583     if (k_platform) {
2584         size_t len = strlen(k_platform) + 1;
2585         if (STACK_GROWS_DOWN) {
2586             sp -= (len + n - 1) & ~(n - 1);
2587             u_platform = sp;
2588             /* FIXME - check return value of memcpy_to_target() for failure */
2589             memcpy_to_target(sp, k_platform, len);
2590         } else {
2591             memcpy_to_target(sp, k_platform, len);
2592             u_platform = sp;
2593             sp += len + 1;
2594         }
2595     }
2596 
2597     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2598      * the argv and envp pointers.
2599      */
2600     if (STACK_GROWS_DOWN) {
2601         sp = QEMU_ALIGN_DOWN(sp, 16);
2602     } else {
2603         sp = QEMU_ALIGN_UP(sp, 16);
2604     }
2605 
2606     /*
2607      * Generate 16 random bytes for userspace PRNG seeding.
2608      */
2609     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2610     if (STACK_GROWS_DOWN) {
2611         sp -= 16;
2612         u_rand_bytes = sp;
2613         /* FIXME - check return value of memcpy_to_target() for failure */
2614         memcpy_to_target(sp, k_rand_bytes, 16);
2615     } else {
2616         memcpy_to_target(sp, k_rand_bytes, 16);
2617         u_rand_bytes = sp;
2618         sp += 16;
2619     }
2620 
2621     size = (DLINFO_ITEMS + 1) * 2;
2622     if (k_base_platform) {
2623         size += 2;
2624     }
2625     if (k_platform) {
2626         size += 2;
2627     }
2628     if (vdso_info) {
2629         size += 2;
2630     }
2631 #ifdef DLINFO_ARCH_ITEMS
2632     size += DLINFO_ARCH_ITEMS * 2;
2633 #endif
2634 #ifdef ELF_HWCAP2
2635     size += 2;
2636 #endif
2637     info->auxv_len = size * n;
2638 
2639     size += envc + argc + 2;
2640     size += 1;  /* argc itself */
2641     size *= n;
2642 
2643     /* Allocate space and finalize stack alignment for entry now.  */
2644     if (STACK_GROWS_DOWN) {
2645         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2646         sp = u_argc;
2647     } else {
2648         u_argc = sp;
2649         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2650     }
2651 
2652     u_argv = u_argc + n;
2653     u_envp = u_argv + (argc + 1) * n;
2654     u_auxv = u_envp + (envc + 1) * n;
2655     info->saved_auxv = u_auxv;
2656     info->argc = argc;
2657     info->envc = envc;
2658     info->argv = u_argv;
2659     info->envp = u_envp;
2660 
2661     /* This is correct because Linux defines
2662      * elf_addr_t as Elf32_Off / Elf64_Off
2663      */
2664 #define NEW_AUX_ENT(id, val) do {               \
2665         put_user_ual(id, u_auxv);  u_auxv += n; \
2666         put_user_ual(val, u_auxv); u_auxv += n; \
2667     } while(0)
2668 
2669 #ifdef ARCH_DLINFO
2670     /*
2671      * ARCH_DLINFO must come first so platform specific code can enforce
2672      * special alignment requirements on the AUXV if necessary (eg. PPC).
2673      */
2674     ARCH_DLINFO;
2675 #endif
2676     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2677      * on info->auxv_len will trigger.
2678      */
2679     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2680     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2681     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2682     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2683         /* Target doesn't support host page size alignment */
2684         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2685     } else {
2686         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2687                                                qemu_host_page_size)));
2688     }
2689     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2690     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2691     NEW_AUX_ENT(AT_ENTRY, info->entry);
2692     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2693     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2694     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2695     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2696     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2697     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2698     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2699     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2700     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2701 
2702 #ifdef ELF_HWCAP2
2703     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2704 #endif
2705 
2706     if (u_base_platform) {
2707         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2708     }
2709     if (u_platform) {
2710         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2711     }
2712     if (vdso_info) {
2713         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2714     }
2715     NEW_AUX_ENT (AT_NULL, 0);
2716 #undef NEW_AUX_ENT
2717 
2718     /* Check that our initial calculation of the auxv length matches how much
2719      * we actually put into it.
2720      */
2721     assert(info->auxv_len == u_auxv - info->saved_auxv);
2722 
2723     put_user_ual(argc, u_argc);
2724 
2725     p = info->arg_strings;
2726     for (i = 0; i < argc; ++i) {
2727         put_user_ual(p, u_argv);
2728         u_argv += n;
2729         p += target_strlen(p) + 1;
2730     }
2731     put_user_ual(0, u_argv);
2732 
2733     p = info->env_strings;
2734     for (i = 0; i < envc; ++i) {
2735         put_user_ual(p, u_envp);
2736         u_envp += n;
2737         p += target_strlen(p) + 1;
2738     }
2739     put_user_ual(0, u_envp);
2740 
2741     return sp;
2742 }
2743 
2744 #if defined(HI_COMMPAGE)
2745 #define LO_COMMPAGE -1
2746 #elif defined(LO_COMMPAGE)
2747 #define HI_COMMPAGE 0
2748 #else
2749 #define HI_COMMPAGE 0
2750 #define LO_COMMPAGE -1
2751 #ifndef INIT_GUEST_COMMPAGE
2752 #define init_guest_commpage() true
2753 #endif
2754 #endif
2755 
2756 /**
2757  * pgb_try_mmap:
2758  * @addr: host start address
2759  * @addr_last: host last address
2760  * @keep: do not unmap the probe region
2761  *
2762  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2763  * return 0 if it is not available to map, and -1 on mmap error.
2764  * If @keep, the region is left mapped on success, otherwise unmapped.
2765  */
2766 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2767 {
2768     size_t size = addr_last - addr + 1;
2769     void *p = mmap((void *)addr, size, PROT_NONE,
2770                    MAP_ANONYMOUS | MAP_PRIVATE |
2771                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2772     int ret;
2773 
2774     if (p == MAP_FAILED) {
2775         return errno == EEXIST ? 0 : -1;
2776     }
2777     ret = p == (void *)addr;
2778     if (!keep || !ret) {
2779         munmap(p, size);
2780     }
2781     return ret;
2782 }
2783 
2784 /**
2785  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2786  * @addr: host address
2787  * @addr_last: host last address
2788  * @brk: host brk
2789  *
2790  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2791  */
2792 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2793                                  uintptr_t brk, bool keep)
2794 {
2795     uintptr_t brk_last = brk + 16 * MiB - 1;
2796 
2797     /* Do not map anything close to the host brk. */
2798     if (addr <= brk_last && brk <= addr_last) {
2799         return 0;
2800     }
2801     return pgb_try_mmap(addr, addr_last, keep);
2802 }
2803 
2804 /**
2805  * pgb_try_mmap_set:
2806  * @ga: set of guest addrs
2807  * @base: guest_base
2808  * @brk: host brk
2809  *
2810  * Return true if all @ga can be mapped by the host at @base.
2811  * On success, retain the mapping at index 0 for reserved_va.
2812  */
2813 
2814 typedef struct PGBAddrs {
2815     uintptr_t bounds[3][2]; /* start/last pairs */
2816     int nbounds;
2817 } PGBAddrs;
2818 
2819 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2820 {
2821     for (int i = ga->nbounds - 1; i >= 0; --i) {
2822         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2823                                   ga->bounds[i][1] + base,
2824                                   brk, i == 0 && reserved_va) <= 0) {
2825             return false;
2826         }
2827     }
2828     return true;
2829 }
2830 
2831 /**
2832  * pgb_addr_set:
2833  * @ga: output set of guest addrs
2834  * @guest_loaddr: guest image low address
2835  * @guest_loaddr: guest image high address
2836  * @identity: create for identity mapping
2837  *
2838  * Fill in @ga with the image, COMMPAGE and NULL page.
2839  */
2840 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2841                          abi_ulong guest_hiaddr, bool try_identity)
2842 {
2843     int n;
2844 
2845     /*
2846      * With a low commpage, or a guest mapped very low,
2847      * we may not be able to use the identity map.
2848      */
2849     if (try_identity) {
2850         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2851             return false;
2852         }
2853         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2854             return false;
2855         }
2856     }
2857 
2858     memset(ga, 0, sizeof(*ga));
2859     n = 0;
2860 
2861     if (reserved_va) {
2862         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2863         ga->bounds[n][1] = reserved_va;
2864         n++;
2865         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2866     } else {
2867         /* Add any LO_COMMPAGE or NULL page. */
2868         if (LO_COMMPAGE != -1) {
2869             ga->bounds[n][0] = 0;
2870             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2871             n++;
2872         } else if (!try_identity) {
2873             ga->bounds[n][0] = 0;
2874             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2875             n++;
2876         }
2877 
2878         /* Add the guest image for ET_EXEC. */
2879         if (guest_loaddr) {
2880             ga->bounds[n][0] = guest_loaddr;
2881             ga->bounds[n][1] = guest_hiaddr;
2882             n++;
2883         }
2884     }
2885 
2886     /*
2887      * Temporarily disable
2888      *   "comparison is always false due to limited range of data type"
2889      * due to comparison between unsigned and (possible) 0.
2890      */
2891 #pragma GCC diagnostic push
2892 #pragma GCC diagnostic ignored "-Wtype-limits"
2893 
2894     /* Add any HI_COMMPAGE not covered by reserved_va. */
2895     if (reserved_va < HI_COMMPAGE) {
2896         ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
2897         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2898         n++;
2899     }
2900 
2901 #pragma GCC diagnostic pop
2902 
2903     ga->nbounds = n;
2904     return true;
2905 }
2906 
2907 static void pgb_fail_in_use(const char *image_name)
2908 {
2909     error_report("%s: requires virtual address space that is in use "
2910                  "(omit the -B option or choose a different value)",
2911                  image_name);
2912     exit(EXIT_FAILURE);
2913 }
2914 
2915 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2916                       uintptr_t guest_hiaddr, uintptr_t align)
2917 {
2918     PGBAddrs ga;
2919     uintptr_t brk = (uintptr_t)sbrk(0);
2920 
2921     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2922         fprintf(stderr, "Requested guest base %p does not satisfy "
2923                 "host minimum alignment (0x%" PRIxPTR ")\n",
2924                 (void *)guest_base, align);
2925         exit(EXIT_FAILURE);
2926     }
2927 
2928     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2929         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2930         pgb_fail_in_use(image_name);
2931     }
2932 }
2933 
2934 /**
2935  * pgb_find_fallback:
2936  *
2937  * This is a fallback method for finding holes in the host address space
2938  * if we don't have the benefit of being able to access /proc/self/map.
2939  * It can potentially take a very long time as we can only dumbly iterate
2940  * up the host address space seeing if the allocation would work.
2941  */
2942 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2943                                    uintptr_t brk)
2944 {
2945     /* TODO: come up with a better estimate of how much to skip. */
2946     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2947 
2948     for (uintptr_t base = skip; ; base += skip) {
2949         base = ROUND_UP(base, align);
2950         if (pgb_try_mmap_set(ga, base, brk)) {
2951             return base;
2952         }
2953         if (base >= -skip) {
2954             return -1;
2955         }
2956     }
2957 }
2958 
2959 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2960                                IntervalTreeRoot *root)
2961 {
2962     for (int i = ga->nbounds - 1; i >= 0; --i) {
2963         uintptr_t s = base + ga->bounds[i][0];
2964         uintptr_t l = base + ga->bounds[i][1];
2965         IntervalTreeNode *n;
2966 
2967         if (l < s) {
2968             /* Wraparound. Skip to advance S to mmap_min_addr. */
2969             return mmap_min_addr - s;
2970         }
2971 
2972         n = interval_tree_iter_first(root, s, l);
2973         if (n != NULL) {
2974             /* Conflict.  Skip to advance S to LAST + 1. */
2975             return n->last - s + 1;
2976         }
2977     }
2978     return 0;  /* success */
2979 }
2980 
2981 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2982                                 uintptr_t align, uintptr_t brk)
2983 {
2984     uintptr_t last = mmap_min_addr;
2985     uintptr_t base, skip;
2986 
2987     while (true) {
2988         base = ROUND_UP(last, align);
2989         if (base < last) {
2990             return -1;
2991         }
2992 
2993         skip = pgb_try_itree(ga, base, root);
2994         if (skip == 0) {
2995             break;
2996         }
2997 
2998         last = base + skip;
2999         if (last < base) {
3000             return -1;
3001         }
3002     }
3003 
3004     /*
3005      * We've chosen 'base' based on holes in the interval tree,
3006      * but we don't yet know if it is a valid host address.
3007      * Because it is the first matching hole, if the host addresses
3008      * are invalid we know there are no further matches.
3009      */
3010     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
3011 }
3012 
3013 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
3014                         uintptr_t guest_hiaddr, uintptr_t align)
3015 {
3016     IntervalTreeRoot *root;
3017     uintptr_t brk, ret;
3018     PGBAddrs ga;
3019 
3020     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
3021 
3022     /* Try the identity map first. */
3023     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
3024         brk = (uintptr_t)sbrk(0);
3025         if (pgb_try_mmap_set(&ga, 0, brk)) {
3026             guest_base = 0;
3027             return;
3028         }
3029     }
3030 
3031     /*
3032      * Rebuild the address set for non-identity map.
3033      * This differs in the mapping of the guest NULL page.
3034      */
3035     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
3036 
3037     root = read_self_maps();
3038 
3039     /* Read brk after we've read the maps, which will malloc. */
3040     brk = (uintptr_t)sbrk(0);
3041 
3042     if (!root) {
3043         ret = pgb_find_fallback(&ga, align, brk);
3044     } else {
3045         /*
3046          * Reserve the area close to the host brk.
3047          * This will be freed with the rest of the tree.
3048          */
3049         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
3050         b->start = brk;
3051         b->last = brk + 16 * MiB - 1;
3052         interval_tree_insert(b, root);
3053 
3054         ret = pgb_find_itree(&ga, root, align, brk);
3055         free_self_maps(root);
3056     }
3057 
3058     if (ret == -1) {
3059         int w = TARGET_LONG_BITS / 4;
3060 
3061         error_report("%s: Unable to find a guest_base to satisfy all "
3062                      "guest address mapping requirements", image_name);
3063 
3064         for (int i = 0; i < ga.nbounds; ++i) {
3065             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
3066                          w, (uint64_t)ga.bounds[i][0],
3067                          w, (uint64_t)ga.bounds[i][1]);
3068         }
3069         exit(EXIT_FAILURE);
3070     }
3071     guest_base = ret;
3072 }
3073 
3074 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3075                       abi_ulong guest_hiaddr)
3076 {
3077     /* In order to use host shmat, we must be able to honor SHMLBA.  */
3078     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
3079 
3080     /* Sanity check the guest binary. */
3081     if (reserved_va) {
3082         if (guest_hiaddr > reserved_va) {
3083             error_report("%s: requires more than reserved virtual "
3084                          "address space (0x%" PRIx64 " > 0x%lx)",
3085                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3086             exit(EXIT_FAILURE);
3087         }
3088     } else {
3089         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3090             error_report("%s: requires more virtual address space "
3091                          "than the host can provide (0x%" PRIx64 ")",
3092                          image_name, (uint64_t)guest_hiaddr + 1);
3093             exit(EXIT_FAILURE);
3094         }
3095     }
3096 
3097     if (have_guest_base) {
3098         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3099     } else {
3100         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3101     }
3102 
3103     /* Reserve and initialize the commpage. */
3104     if (!init_guest_commpage()) {
3105         /* We have already probed for the commpage being free. */
3106         g_assert_not_reached();
3107     }
3108 
3109     assert(QEMU_IS_ALIGNED(guest_base, align));
3110     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3111                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3112 }
3113 
3114 enum {
3115     /* The string "GNU\0" as a magic number. */
3116     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3117     NOTE_DATA_SZ = 1 * KiB,
3118     NOTE_NAME_SZ = 4,
3119     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3120 };
3121 
3122 /*
3123  * Process a single gnu_property entry.
3124  * Return false for error.
3125  */
3126 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3127                                struct image_info *info, bool have_prev_type,
3128                                uint32_t *prev_type, Error **errp)
3129 {
3130     uint32_t pr_type, pr_datasz, step;
3131 
3132     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3133         goto error_data;
3134     }
3135     datasz -= *off;
3136     data += *off / sizeof(uint32_t);
3137 
3138     if (datasz < 2 * sizeof(uint32_t)) {
3139         goto error_data;
3140     }
3141     pr_type = data[0];
3142     pr_datasz = data[1];
3143     data += 2;
3144     datasz -= 2 * sizeof(uint32_t);
3145     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3146     if (step > datasz) {
3147         goto error_data;
3148     }
3149 
3150     /* Properties are supposed to be unique and sorted on pr_type. */
3151     if (have_prev_type && pr_type <= *prev_type) {
3152         if (pr_type == *prev_type) {
3153             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3154         } else {
3155             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3156         }
3157         return false;
3158     }
3159     *prev_type = pr_type;
3160 
3161     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3162         return false;
3163     }
3164 
3165     *off += 2 * sizeof(uint32_t) + step;
3166     return true;
3167 
3168  error_data:
3169     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3170     return false;
3171 }
3172 
3173 /* Process NT_GNU_PROPERTY_TYPE_0. */
3174 static bool parse_elf_properties(const ImageSource *src,
3175                                  struct image_info *info,
3176                                  const struct elf_phdr *phdr,
3177                                  Error **errp)
3178 {
3179     union {
3180         struct elf_note nhdr;
3181         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3182     } note;
3183 
3184     int n, off, datasz;
3185     bool have_prev_type;
3186     uint32_t prev_type;
3187 
3188     /* Unless the arch requires properties, ignore them. */
3189     if (!ARCH_USE_GNU_PROPERTY) {
3190         return true;
3191     }
3192 
3193     /* If the properties are crazy large, that's too bad. */
3194     n = phdr->p_filesz;
3195     if (n > sizeof(note)) {
3196         error_setg(errp, "PT_GNU_PROPERTY too large");
3197         return false;
3198     }
3199     if (n < sizeof(note.nhdr)) {
3200         error_setg(errp, "PT_GNU_PROPERTY too small");
3201         return false;
3202     }
3203 
3204     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3205         return false;
3206     }
3207 
3208     /*
3209      * The contents of a valid PT_GNU_PROPERTY is a sequence
3210      * of uint32_t -- swap them all now.
3211      */
3212 #ifdef BSWAP_NEEDED
3213     for (int i = 0; i < n / 4; i++) {
3214         bswap32s(note.data + i);
3215     }
3216 #endif
3217 
3218     /*
3219      * Note that nhdr is 3 words, and that the "name" described by namesz
3220      * immediately follows nhdr and is thus at the 4th word.  Further, all
3221      * of the inputs to the kernel's round_up are multiples of 4.
3222      */
3223     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3224         note.nhdr.n_namesz != NOTE_NAME_SZ ||
3225         note.data[3] != GNU0_MAGIC) {
3226         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3227         return false;
3228     }
3229     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3230 
3231     datasz = note.nhdr.n_descsz + off;
3232     if (datasz > n) {
3233         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3234         return false;
3235     }
3236 
3237     have_prev_type = false;
3238     prev_type = 0;
3239     while (1) {
3240         if (off == datasz) {
3241             return true;  /* end, exit ok */
3242         }
3243         if (!parse_elf_property(note.data, &off, datasz, info,
3244                                 have_prev_type, &prev_type, errp)) {
3245             return false;
3246         }
3247         have_prev_type = true;
3248     }
3249 }
3250 
3251 /**
3252  * load_elf_image: Load an ELF image into the address space.
3253  * @image_name: the filename of the image, to use in error messages.
3254  * @src: the ImageSource from which to read.
3255  * @info: info collected from the loaded image.
3256  * @ehdr: the ELF header, not yet bswapped.
3257  * @pinterp_name: record any PT_INTERP string found.
3258  *
3259  * On return: @info values will be filled in, as necessary or available.
3260  */
3261 
3262 static void load_elf_image(const char *image_name, const ImageSource *src,
3263                            struct image_info *info, struct elfhdr *ehdr,
3264                            char **pinterp_name)
3265 {
3266     g_autofree struct elf_phdr *phdr = NULL;
3267     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3268     int i, prot_exec;
3269     Error *err = NULL;
3270 
3271     /*
3272      * First of all, some simple consistency checks.
3273      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3274      * for later use by load_elf_binary and create_elf_tables.
3275      */
3276     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3277         goto exit_errmsg;
3278     }
3279     if (!elf_check_ident(ehdr)) {
3280         error_setg(&err, "Invalid ELF image for this architecture");
3281         goto exit_errmsg;
3282     }
3283     bswap_ehdr(ehdr);
3284     if (!elf_check_ehdr(ehdr)) {
3285         error_setg(&err, "Invalid ELF image for this architecture");
3286         goto exit_errmsg;
3287     }
3288 
3289     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3290                              ehdr->e_phnum * sizeof(struct elf_phdr),
3291                              src, &err);
3292     if (phdr == NULL) {
3293         goto exit_errmsg;
3294     }
3295     bswap_phdr(phdr, ehdr->e_phnum);
3296 
3297     info->nsegs = 0;
3298     info->pt_dynamic_addr = 0;
3299 
3300     mmap_lock();
3301 
3302     /*
3303      * Find the maximum size of the image and allocate an appropriate
3304      * amount of memory to handle that.  Locate the interpreter, if any.
3305      */
3306     loaddr = -1, hiaddr = 0;
3307     info->alignment = 0;
3308     info->exec_stack = EXSTACK_DEFAULT;
3309     for (i = 0; i < ehdr->e_phnum; ++i) {
3310         struct elf_phdr *eppnt = phdr + i;
3311         if (eppnt->p_type == PT_LOAD) {
3312             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3313             if (a < loaddr) {
3314                 loaddr = a;
3315             }
3316             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3317             if (a > hiaddr) {
3318                 hiaddr = a;
3319             }
3320             ++info->nsegs;
3321             info->alignment |= eppnt->p_align;
3322         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3323             g_autofree char *interp_name = NULL;
3324 
3325             if (*pinterp_name) {
3326                 error_setg(&err, "Multiple PT_INTERP entries");
3327                 goto exit_errmsg;
3328             }
3329 
3330             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3331                                             src, &err);
3332             if (interp_name == NULL) {
3333                 goto exit_errmsg;
3334             }
3335             if (interp_name[eppnt->p_filesz - 1] != 0) {
3336                 error_setg(&err, "Invalid PT_INTERP entry");
3337                 goto exit_errmsg;
3338             }
3339             *pinterp_name = g_steal_pointer(&interp_name);
3340         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3341             if (!parse_elf_properties(src, info, eppnt, &err)) {
3342                 goto exit_errmsg;
3343             }
3344         } else if (eppnt->p_type == PT_GNU_STACK) {
3345             info->exec_stack = eppnt->p_flags & PF_X;
3346         }
3347     }
3348 
3349     load_addr = loaddr;
3350 
3351     if (pinterp_name != NULL) {
3352         if (ehdr->e_type == ET_EXEC) {
3353             /*
3354              * Make sure that the low address does not conflict with
3355              * MMAP_MIN_ADDR or the QEMU application itself.
3356              */
3357             probe_guest_base(image_name, loaddr, hiaddr);
3358         } else {
3359             abi_ulong align;
3360 
3361             /*
3362              * The binary is dynamic, but we still need to
3363              * select guest_base.  In this case we pass a size.
3364              */
3365             probe_guest_base(image_name, 0, hiaddr - loaddr);
3366 
3367             /*
3368              * Avoid collision with the loader by providing a different
3369              * default load address.
3370              */
3371             load_addr += elf_et_dyn_base;
3372 
3373             /*
3374              * TODO: Better support for mmap alignment is desirable.
3375              * Since we do not have complete control over the guest
3376              * address space, we prefer the kernel to choose some address
3377              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3378              * But without MAP_FIXED we cannot guarantee alignment,
3379              * only suggest it.
3380              */
3381             align = pow2ceil(info->alignment);
3382             if (align) {
3383                 load_addr &= -align;
3384             }
3385         }
3386     }
3387 
3388     /*
3389      * Reserve address space for all of this.
3390      *
3391      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3392      * exactly the address range that is required.  Without reserved_va,
3393      * the guest address space is not isolated.  We have attempted to avoid
3394      * conflict with the host program itself via probe_guest_base, but using
3395      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3396      *
3397      * Otherwise this is ET_DYN, and we are searching for a location
3398      * that can hold the memory space required.  If the image is
3399      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3400      * honor that address if it happens to be free.
3401      *
3402      * In both cases, we will overwrite pages in this range with mappings
3403      * from the executable.
3404      */
3405     load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3406                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3407                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3408                             -1, 0);
3409     if (load_addr == -1) {
3410         goto exit_mmap;
3411     }
3412     load_bias = load_addr - loaddr;
3413 
3414     if (elf_is_fdpic(ehdr)) {
3415         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3416             g_malloc(sizeof(*loadsegs) * info->nsegs);
3417 
3418         for (i = 0; i < ehdr->e_phnum; ++i) {
3419             switch (phdr[i].p_type) {
3420             case PT_DYNAMIC:
3421                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3422                 break;
3423             case PT_LOAD:
3424                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3425                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3426                 loadsegs->p_memsz = phdr[i].p_memsz;
3427                 ++loadsegs;
3428                 break;
3429             }
3430         }
3431     }
3432 
3433     info->load_bias = load_bias;
3434     info->code_offset = load_bias;
3435     info->data_offset = load_bias;
3436     info->load_addr = load_addr;
3437     info->entry = ehdr->e_entry + load_bias;
3438     info->start_code = -1;
3439     info->end_code = 0;
3440     info->start_data = -1;
3441     info->end_data = 0;
3442     /* Usual start for brk is after all sections of the main executable. */
3443     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3444     info->elf_flags = ehdr->e_flags;
3445 
3446     prot_exec = PROT_EXEC;
3447 #ifdef TARGET_AARCH64
3448     /*
3449      * If the BTI feature is present, this indicates that the executable
3450      * pages of the startup binary should be mapped with PROT_BTI, so that
3451      * branch targets are enforced.
3452      *
3453      * The startup binary is either the interpreter or the static executable.
3454      * The interpreter is responsible for all pages of a dynamic executable.
3455      *
3456      * Elf notes are backward compatible to older cpus.
3457      * Do not enable BTI unless it is supported.
3458      */
3459     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3460         && (pinterp_name == NULL || *pinterp_name == 0)
3461         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3462         prot_exec |= TARGET_PROT_BTI;
3463     }
3464 #endif
3465 
3466     for (i = 0; i < ehdr->e_phnum; i++) {
3467         struct elf_phdr *eppnt = phdr + i;
3468         if (eppnt->p_type == PT_LOAD) {
3469             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3470             int elf_prot = 0;
3471 
3472             if (eppnt->p_flags & PF_R) {
3473                 elf_prot |= PROT_READ;
3474             }
3475             if (eppnt->p_flags & PF_W) {
3476                 elf_prot |= PROT_WRITE;
3477             }
3478             if (eppnt->p_flags & PF_X) {
3479                 elf_prot |= prot_exec;
3480             }
3481 
3482             vaddr = load_bias + eppnt->p_vaddr;
3483             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3484             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3485 
3486             vaddr_ef = vaddr + eppnt->p_filesz;
3487             vaddr_em = vaddr + eppnt->p_memsz;
3488 
3489             /*
3490              * Some segments may be completely empty, with a non-zero p_memsz
3491              * but no backing file segment.
3492              */
3493             if (eppnt->p_filesz != 0) {
3494                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3495                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3496                                     src, eppnt->p_offset - vaddr_po);
3497                 if (error == -1) {
3498                     goto exit_mmap;
3499                 }
3500             }
3501 
3502             /* If the load segment requests extra zeros (e.g. bss), map it. */
3503             if (vaddr_ef < vaddr_em &&
3504                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3505                 goto exit_errmsg;
3506             }
3507 
3508             /* Find the full program boundaries.  */
3509             if (elf_prot & PROT_EXEC) {
3510                 if (vaddr < info->start_code) {
3511                     info->start_code = vaddr;
3512                 }
3513                 if (vaddr_ef > info->end_code) {
3514                     info->end_code = vaddr_ef;
3515                 }
3516             }
3517             if (elf_prot & PROT_WRITE) {
3518                 if (vaddr < info->start_data) {
3519                     info->start_data = vaddr;
3520                 }
3521                 if (vaddr_ef > info->end_data) {
3522                     info->end_data = vaddr_ef;
3523                 }
3524             }
3525 #ifdef TARGET_MIPS
3526         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3527             Mips_elf_abiflags_v0 abiflags;
3528 
3529             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3530                              src, &err)) {
3531                 goto exit_errmsg;
3532             }
3533             bswap_mips_abiflags(&abiflags);
3534             info->fp_abi = abiflags.fp_abi;
3535 #endif
3536         }
3537     }
3538 
3539     if (info->end_data == 0) {
3540         info->start_data = info->end_code;
3541         info->end_data = info->end_code;
3542     }
3543 
3544     if (qemu_log_enabled()) {
3545         load_symbols(ehdr, src, load_bias);
3546     }
3547 
3548     debuginfo_report_elf(image_name, src->fd, load_bias);
3549 
3550     mmap_unlock();
3551 
3552     close(src->fd);
3553     return;
3554 
3555  exit_mmap:
3556     error_setg_errno(&err, errno, "Error mapping file");
3557     goto exit_errmsg;
3558  exit_errmsg:
3559     error_reportf_err(err, "%s: ", image_name);
3560     exit(-1);
3561 }
3562 
3563 static void load_elf_interp(const char *filename, struct image_info *info,
3564                             char bprm_buf[BPRM_BUF_SIZE])
3565 {
3566     struct elfhdr ehdr;
3567     ImageSource src;
3568     int fd, retval;
3569     Error *err = NULL;
3570 
3571     fd = open(path(filename), O_RDONLY);
3572     if (fd < 0) {
3573         error_setg_file_open(&err, errno, filename);
3574         error_report_err(err);
3575         exit(-1);
3576     }
3577 
3578     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3579     if (retval < 0) {
3580         error_setg_errno(&err, errno, "Error reading file header");
3581         error_reportf_err(err, "%s: ", filename);
3582         exit(-1);
3583     }
3584 
3585     src.fd = fd;
3586     src.cache = bprm_buf;
3587     src.cache_size = retval;
3588 
3589     load_elf_image(filename, &src, info, &ehdr, NULL);
3590 }
3591 
3592 #ifdef VDSO_HEADER
3593 #include VDSO_HEADER
3594 #define  vdso_image_info()  &vdso_image_info
3595 #else
3596 #define  vdso_image_info()  NULL
3597 #endif
3598 
3599 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3600 {
3601     ImageSource src;
3602     struct elfhdr ehdr;
3603     abi_ulong load_bias, load_addr;
3604 
3605     src.fd = -1;
3606     src.cache = vdso->image;
3607     src.cache_size = vdso->image_size;
3608 
3609     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3610     load_addr = info->load_addr;
3611     load_bias = info->load_bias;
3612 
3613     /*
3614      * We need to relocate the VDSO image.  The one built into the kernel
3615      * is built for a fixed address.  The one built for QEMU is not, since
3616      * that requires close control of the guest address space.
3617      * We pre-processed the image to locate all of the addresses that need
3618      * to be updated.
3619      */
3620     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3621         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3622         *addr = tswapal(tswapal(*addr) + load_bias);
3623     }
3624 
3625     /* Install signal trampolines, if present. */
3626     if (vdso->sigreturn_ofs) {
3627         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3628     }
3629     if (vdso->rt_sigreturn_ofs) {
3630         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3631     }
3632 
3633     /* Remove write from VDSO segment. */
3634     target_mprotect(info->start_data, info->end_data - info->start_data,
3635                     PROT_READ | PROT_EXEC);
3636 }
3637 
3638 static int symfind(const void *s0, const void *s1)
3639 {
3640     struct elf_sym *sym = (struct elf_sym *)s1;
3641     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3642     int result = 0;
3643 
3644     if (addr < sym->st_value) {
3645         result = -1;
3646     } else if (addr >= sym->st_value + sym->st_size) {
3647         result = 1;
3648     }
3649     return result;
3650 }
3651 
3652 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3653 {
3654 #if ELF_CLASS == ELFCLASS32
3655     struct elf_sym *syms = s->disas_symtab.elf32;
3656 #else
3657     struct elf_sym *syms = s->disas_symtab.elf64;
3658 #endif
3659 
3660     // binary search
3661     struct elf_sym *sym;
3662 
3663     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3664     if (sym != NULL) {
3665         return s->disas_strtab + sym->st_name;
3666     }
3667 
3668     return "";
3669 }
3670 
3671 /* FIXME: This should use elf_ops.h  */
3672 static int symcmp(const void *s0, const void *s1)
3673 {
3674     struct elf_sym *sym0 = (struct elf_sym *)s0;
3675     struct elf_sym *sym1 = (struct elf_sym *)s1;
3676     return (sym0->st_value < sym1->st_value)
3677         ? -1
3678         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3679 }
3680 
3681 /* Best attempt to load symbols from this ELF object. */
3682 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3683                          abi_ulong load_bias)
3684 {
3685     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3686     g_autofree struct elf_shdr *shdr = NULL;
3687     char *strings = NULL;
3688     struct elf_sym *syms = NULL;
3689     struct elf_sym *new_syms;
3690     uint64_t segsz;
3691 
3692     shnum = hdr->e_shnum;
3693     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3694                              src, NULL);
3695     if (shdr == NULL) {
3696         return;
3697     }
3698 
3699     bswap_shdr(shdr, shnum);
3700     for (i = 0; i < shnum; ++i) {
3701         if (shdr[i].sh_type == SHT_SYMTAB) {
3702             sym_idx = i;
3703             str_idx = shdr[i].sh_link;
3704             goto found;
3705         }
3706     }
3707 
3708     /* There will be no symbol table if the file was stripped.  */
3709     return;
3710 
3711  found:
3712     /* Now know where the strtab and symtab are.  Snarf them.  */
3713 
3714     segsz = shdr[str_idx].sh_size;
3715     strings = g_try_malloc(segsz);
3716     if (!strings) {
3717         goto give_up;
3718     }
3719     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3720         goto give_up;
3721     }
3722 
3723     segsz = shdr[sym_idx].sh_size;
3724     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3725         /*
3726          * Implausibly large symbol table: give up rather than ploughing
3727          * on with the number of symbols calculation overflowing.
3728          */
3729         goto give_up;
3730     }
3731     nsyms = segsz / sizeof(struct elf_sym);
3732     syms = g_try_malloc(segsz);
3733     if (!syms) {
3734         goto give_up;
3735     }
3736     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3737         goto give_up;
3738     }
3739 
3740     for (i = 0; i < nsyms; ) {
3741         bswap_sym(syms + i);
3742         /* Throw away entries which we do not need.  */
3743         if (syms[i].st_shndx == SHN_UNDEF
3744             || syms[i].st_shndx >= SHN_LORESERVE
3745             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3746             if (i < --nsyms) {
3747                 syms[i] = syms[nsyms];
3748             }
3749         } else {
3750 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3751             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3752             syms[i].st_value &= ~(target_ulong)1;
3753 #endif
3754             syms[i].st_value += load_bias;
3755             i++;
3756         }
3757     }
3758 
3759     /* No "useful" symbol.  */
3760     if (nsyms == 0) {
3761         goto give_up;
3762     }
3763 
3764     /*
3765      * Attempt to free the storage associated with the local symbols
3766      * that we threw away.  Whether or not this has any effect on the
3767      * memory allocation depends on the malloc implementation and how
3768      * many symbols we managed to discard.
3769      */
3770     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3771     if (new_syms == NULL) {
3772         goto give_up;
3773     }
3774     syms = new_syms;
3775 
3776     qsort(syms, nsyms, sizeof(*syms), symcmp);
3777 
3778     {
3779         struct syminfo *s = g_new(struct syminfo, 1);
3780 
3781         s->disas_strtab = strings;
3782         s->disas_num_syms = nsyms;
3783 #if ELF_CLASS == ELFCLASS32
3784         s->disas_symtab.elf32 = syms;
3785 #else
3786         s->disas_symtab.elf64 = syms;
3787 #endif
3788         s->lookup_symbol = lookup_symbolxx;
3789         s->next = syminfos;
3790         syminfos = s;
3791     }
3792     return;
3793 
3794  give_up:
3795     g_free(strings);
3796     g_free(syms);
3797 }
3798 
3799 uint32_t get_elf_eflags(int fd)
3800 {
3801     struct elfhdr ehdr;
3802     off_t offset;
3803     int ret;
3804 
3805     /* Read ELF header */
3806     offset = lseek(fd, 0, SEEK_SET);
3807     if (offset == (off_t) -1) {
3808         return 0;
3809     }
3810     ret = read(fd, &ehdr, sizeof(ehdr));
3811     if (ret < sizeof(ehdr)) {
3812         return 0;
3813     }
3814     offset = lseek(fd, offset, SEEK_SET);
3815     if (offset == (off_t) -1) {
3816         return 0;
3817     }
3818 
3819     /* Check ELF signature */
3820     if (!elf_check_ident(&ehdr)) {
3821         return 0;
3822     }
3823 
3824     /* check header */
3825     bswap_ehdr(&ehdr);
3826     if (!elf_check_ehdr(&ehdr)) {
3827         return 0;
3828     }
3829 
3830     /* return architecture id */
3831     return ehdr.e_flags;
3832 }
3833 
3834 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3835 {
3836     /*
3837      * We need a copy of the elf header for passing to create_elf_tables.
3838      * We will have overwritten the original when we re-use bprm->buf
3839      * while loading the interpreter.  Allocate the storage for this now
3840      * and let elf_load_image do any swapping that may be required.
3841      */
3842     struct elfhdr ehdr;
3843     struct image_info interp_info, vdso_info;
3844     char *elf_interpreter = NULL;
3845     char *scratch;
3846 
3847     memset(&interp_info, 0, sizeof(interp_info));
3848 #ifdef TARGET_MIPS
3849     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3850 #endif
3851 
3852     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3853 
3854     /* Do this so that we can load the interpreter, if need be.  We will
3855        change some of these later */
3856     bprm->p = setup_arg_pages(bprm, info);
3857 
3858     scratch = g_new0(char, TARGET_PAGE_SIZE);
3859     if (STACK_GROWS_DOWN) {
3860         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3861                                    bprm->p, info->stack_limit);
3862         info->file_string = bprm->p;
3863         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3864                                    bprm->p, info->stack_limit);
3865         info->env_strings = bprm->p;
3866         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3867                                    bprm->p, info->stack_limit);
3868         info->arg_strings = bprm->p;
3869     } else {
3870         info->arg_strings = bprm->p;
3871         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3872                                    bprm->p, info->stack_limit);
3873         info->env_strings = bprm->p;
3874         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3875                                    bprm->p, info->stack_limit);
3876         info->file_string = bprm->p;
3877         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3878                                    bprm->p, info->stack_limit);
3879     }
3880 
3881     g_free(scratch);
3882 
3883     if (!bprm->p) {
3884         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3885         exit(-1);
3886     }
3887 
3888     if (elf_interpreter) {
3889         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3890 
3891         /*
3892          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3893          * with the mappings the interpreter can be loaded above but
3894          * near the main executable, which can leave very little room
3895          * for the heap.
3896          * If the current brk has less than 16MB, use the end of the
3897          * interpreter.
3898          */
3899         if (interp_info.brk > info->brk &&
3900             interp_info.load_bias - info->brk < 16 * MiB)  {
3901             info->brk = interp_info.brk;
3902         }
3903 
3904         /* If the program interpreter is one of these two, then assume
3905            an iBCS2 image.  Otherwise assume a native linux image.  */
3906 
3907         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3908             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3909             info->personality = PER_SVR4;
3910 
3911             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3912                and some applications "depend" upon this behavior.  Since
3913                we do not have the power to recompile these, we emulate
3914                the SVr4 behavior.  Sigh.  */
3915             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3916                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3917         }
3918 #ifdef TARGET_MIPS
3919         info->interp_fp_abi = interp_info.fp_abi;
3920 #endif
3921     }
3922 
3923     /*
3924      * Load a vdso if available, which will amongst other things contain the
3925      * signal trampolines.  Otherwise, allocate a separate page for them.
3926      */
3927     const VdsoImageInfo *vdso = vdso_image_info();
3928     if (vdso) {
3929         load_elf_vdso(&vdso_info, vdso);
3930         info->vdso = vdso_info.load_bias;
3931     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3932         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3933                                           PROT_READ | PROT_WRITE,
3934                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3935         if (tramp_page == -1) {
3936             return -errno;
3937         }
3938 
3939         setup_sigtramp(tramp_page);
3940         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3941     }
3942 
3943     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3944                                 elf_interpreter ? &interp_info : NULL,
3945                                 vdso ? &vdso_info : NULL);
3946     info->start_stack = bprm->p;
3947 
3948     /* If we have an interpreter, set that as the program's entry point.
3949        Copy the load_bias as well, to help PPC64 interpret the entry
3950        point as a function descriptor.  Do this after creating elf tables
3951        so that we copy the original program entry point into the AUXV.  */
3952     if (elf_interpreter) {
3953         info->load_bias = interp_info.load_bias;
3954         info->entry = interp_info.entry;
3955         g_free(elf_interpreter);
3956     }
3957 
3958 #ifdef USE_ELF_CORE_DUMP
3959     bprm->core_dump = &elf_core_dump;
3960 #endif
3961 
3962     return 0;
3963 }
3964 
3965 #ifdef USE_ELF_CORE_DUMP
3966 /*
3967  * Definitions to generate Intel SVR4-like core files.
3968  * These mostly have the same names as the SVR4 types with "target_elf_"
3969  * tacked on the front to prevent clashes with linux definitions,
3970  * and the typedef forms have been avoided.  This is mostly like
3971  * the SVR4 structure, but more Linuxy, with things that Linux does
3972  * not support and which gdb doesn't really use excluded.
3973  *
3974  * Fields we don't dump (their contents is zero) in linux-user qemu
3975  * are marked with XXX.
3976  *
3977  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3978  *
3979  * Porting ELF coredump for target is (quite) simple process.  First you
3980  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3981  * the target resides):
3982  *
3983  * #define USE_ELF_CORE_DUMP
3984  *
3985  * Next you define type of register set used for dumping.  ELF specification
3986  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3987  *
3988  * typedef <target_regtype> target_elf_greg_t;
3989  * #define ELF_NREG <number of registers>
3990  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3991  *
3992  * Last step is to implement target specific function that copies registers
3993  * from given cpu into just specified register set.  Prototype is:
3994  *
3995  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3996  *                                const CPUArchState *env);
3997  *
3998  * Parameters:
3999  *     regs - copy register values into here (allocated and zeroed by caller)
4000  *     env - copy registers from here
4001  *
4002  * Example for ARM target is provided in this file.
4003  */
4004 
4005 /* An ELF note in memory */
4006 struct memelfnote {
4007     const char *name;
4008     size_t     namesz;
4009     size_t     namesz_rounded;
4010     int        type;
4011     size_t     datasz;
4012     size_t     datasz_rounded;
4013     void       *data;
4014     size_t     notesz;
4015 };
4016 
4017 struct target_elf_siginfo {
4018     abi_int    si_signo; /* signal number */
4019     abi_int    si_code;  /* extra code */
4020     abi_int    si_errno; /* errno */
4021 };
4022 
4023 struct target_elf_prstatus {
4024     struct target_elf_siginfo pr_info;      /* Info associated with signal */
4025     abi_short          pr_cursig;    /* Current signal */
4026     abi_ulong          pr_sigpend;   /* XXX */
4027     abi_ulong          pr_sighold;   /* XXX */
4028     target_pid_t       pr_pid;
4029     target_pid_t       pr_ppid;
4030     target_pid_t       pr_pgrp;
4031     target_pid_t       pr_sid;
4032     struct target_timeval pr_utime;  /* XXX User time */
4033     struct target_timeval pr_stime;  /* XXX System time */
4034     struct target_timeval pr_cutime; /* XXX Cumulative user time */
4035     struct target_timeval pr_cstime; /* XXX Cumulative system time */
4036     target_elf_gregset_t      pr_reg;       /* GP registers */
4037     abi_int            pr_fpvalid;   /* XXX */
4038 };
4039 
4040 #define ELF_PRARGSZ     (80) /* Number of chars for args */
4041 
4042 struct target_elf_prpsinfo {
4043     char         pr_state;       /* numeric process state */
4044     char         pr_sname;       /* char for pr_state */
4045     char         pr_zomb;        /* zombie */
4046     char         pr_nice;        /* nice val */
4047     abi_ulong    pr_flag;        /* flags */
4048     target_uid_t pr_uid;
4049     target_gid_t pr_gid;
4050     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
4051     /* Lots missing */
4052     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
4053     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
4054 };
4055 
4056 /* Here is the structure in which status of each thread is captured. */
4057 struct elf_thread_status {
4058     QTAILQ_ENTRY(elf_thread_status)  ets_link;
4059     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
4060 #if 0
4061     elf_fpregset_t fpu;             /* NT_PRFPREG */
4062     struct task_struct *thread;
4063     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
4064 #endif
4065     struct memelfnote notes[1];
4066     int num_notes;
4067 };
4068 
4069 struct elf_note_info {
4070     struct memelfnote   *notes;
4071     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
4072     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
4073 
4074     QTAILQ_HEAD(, elf_thread_status) thread_list;
4075 #if 0
4076     /*
4077      * Current version of ELF coredump doesn't support
4078      * dumping fp regs etc.
4079      */
4080     elf_fpregset_t *fpu;
4081     elf_fpxregset_t *xfpu;
4082     int thread_status_size;
4083 #endif
4084     int notes_size;
4085     int numnote;
4086 };
4087 
4088 struct vm_area_struct {
4089     target_ulong   vma_start;  /* start vaddr of memory region */
4090     target_ulong   vma_end;    /* end vaddr of memory region */
4091     abi_ulong      vma_flags;  /* protection etc. flags for the region */
4092     QTAILQ_ENTRY(vm_area_struct) vma_link;
4093 };
4094 
4095 struct mm_struct {
4096     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
4097     int mm_count;           /* number of mappings */
4098 };
4099 
4100 static struct mm_struct *vma_init(void);
4101 static void vma_delete(struct mm_struct *);
4102 static int vma_add_mapping(struct mm_struct *, target_ulong,
4103                            target_ulong, abi_ulong);
4104 static int vma_get_mapping_count(const struct mm_struct *);
4105 static struct vm_area_struct *vma_first(const struct mm_struct *);
4106 static struct vm_area_struct *vma_next(struct vm_area_struct *);
4107 static abi_ulong vma_dump_size(const struct vm_area_struct *);
4108 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4109                       unsigned long flags);
4110 
4111 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
4112 static void fill_note(struct memelfnote *, const char *, int,
4113                       unsigned int, void *);
4114 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
4115 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
4116 static void fill_auxv_note(struct memelfnote *, const TaskState *);
4117 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
4118 static size_t note_size(const struct memelfnote *);
4119 static void free_note_info(struct elf_note_info *);
4120 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
4121 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
4122 
4123 static int dump_write(int, const void *, size_t);
4124 static int write_note(struct memelfnote *, int);
4125 static int write_note_info(struct elf_note_info *, int);
4126 
4127 #ifdef BSWAP_NEEDED
4128 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
4129 {
4130     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4131     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4132     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
4133     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
4134     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4135     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4136     prstatus->pr_pid = tswap32(prstatus->pr_pid);
4137     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4138     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4139     prstatus->pr_sid = tswap32(prstatus->pr_sid);
4140     /* cpu times are not filled, so we skip them */
4141     /* regs should be in correct format already */
4142     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4143 }
4144 
4145 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4146 {
4147     psinfo->pr_flag = tswapal(psinfo->pr_flag);
4148     psinfo->pr_uid = tswap16(psinfo->pr_uid);
4149     psinfo->pr_gid = tswap16(psinfo->pr_gid);
4150     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4151     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4152     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4153     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4154 }
4155 
4156 static void bswap_note(struct elf_note *en)
4157 {
4158     bswap32s(&en->n_namesz);
4159     bswap32s(&en->n_descsz);
4160     bswap32s(&en->n_type);
4161 }
4162 #else
4163 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4164 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4165 static inline void bswap_note(struct elf_note *en) { }
4166 #endif /* BSWAP_NEEDED */
4167 
4168 /*
4169  * Minimal support for linux memory regions.  These are needed
4170  * when we are finding out what memory exactly belongs to
4171  * emulated process.  No locks needed here, as long as
4172  * thread that received the signal is stopped.
4173  */
4174 
4175 static struct mm_struct *vma_init(void)
4176 {
4177     struct mm_struct *mm;
4178 
4179     if ((mm = g_malloc(sizeof (*mm))) == NULL)
4180         return (NULL);
4181 
4182     mm->mm_count = 0;
4183     QTAILQ_INIT(&mm->mm_mmap);
4184 
4185     return (mm);
4186 }
4187 
4188 static void vma_delete(struct mm_struct *mm)
4189 {
4190     struct vm_area_struct *vma;
4191 
4192     while ((vma = vma_first(mm)) != NULL) {
4193         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
4194         g_free(vma);
4195     }
4196     g_free(mm);
4197 }
4198 
4199 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
4200                            target_ulong end, abi_ulong flags)
4201 {
4202     struct vm_area_struct *vma;
4203 
4204     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
4205         return (-1);
4206 
4207     vma->vma_start = start;
4208     vma->vma_end = end;
4209     vma->vma_flags = flags;
4210 
4211     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
4212     mm->mm_count++;
4213 
4214     return (0);
4215 }
4216 
4217 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
4218 {
4219     return (QTAILQ_FIRST(&mm->mm_mmap));
4220 }
4221 
4222 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
4223 {
4224     return (QTAILQ_NEXT(vma, vma_link));
4225 }
4226 
4227 static int vma_get_mapping_count(const struct mm_struct *mm)
4228 {
4229     return (mm->mm_count);
4230 }
4231 
4232 /*
4233  * Calculate file (dump) size of given memory region.
4234  */
4235 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
4236 {
4237     /* if we cannot even read the first page, skip it */
4238     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
4239         return (0);
4240 
4241     /*
4242      * Usually we don't dump executable pages as they contain
4243      * non-writable code that debugger can read directly from
4244      * target library etc.  However, thread stacks are marked
4245      * also executable so we read in first page of given region
4246      * and check whether it contains elf header.  If there is
4247      * no elf header, we dump it.
4248      */
4249     if (vma->vma_flags & PROT_EXEC) {
4250         char page[TARGET_PAGE_SIZE];
4251 
4252         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
4253             return 0;
4254         }
4255         if ((page[EI_MAG0] == ELFMAG0) &&
4256             (page[EI_MAG1] == ELFMAG1) &&
4257             (page[EI_MAG2] == ELFMAG2) &&
4258             (page[EI_MAG3] == ELFMAG3)) {
4259             /*
4260              * Mappings are possibly from ELF binary.  Don't dump
4261              * them.
4262              */
4263             return (0);
4264         }
4265     }
4266 
4267     return (vma->vma_end - vma->vma_start);
4268 }
4269 
4270 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4271                       unsigned long flags)
4272 {
4273     struct mm_struct *mm = (struct mm_struct *)priv;
4274 
4275     vma_add_mapping(mm, start, end, flags);
4276     return (0);
4277 }
4278 
4279 static void fill_note(struct memelfnote *note, const char *name, int type,
4280                       unsigned int sz, void *data)
4281 {
4282     unsigned int namesz;
4283 
4284     namesz = strlen(name) + 1;
4285     note->name = name;
4286     note->namesz = namesz;
4287     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4288     note->type = type;
4289     note->datasz = sz;
4290     note->datasz_rounded = roundup(sz, sizeof (int32_t));
4291 
4292     note->data = data;
4293 
4294     /*
4295      * We calculate rounded up note size here as specified by
4296      * ELF document.
4297      */
4298     note->notesz = sizeof (struct elf_note) +
4299         note->namesz_rounded + note->datasz_rounded;
4300 }
4301 
4302 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4303                             uint32_t flags)
4304 {
4305     (void) memset(elf, 0, sizeof(*elf));
4306 
4307     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4308     elf->e_ident[EI_CLASS] = ELF_CLASS;
4309     elf->e_ident[EI_DATA] = ELF_DATA;
4310     elf->e_ident[EI_VERSION] = EV_CURRENT;
4311     elf->e_ident[EI_OSABI] = ELF_OSABI;
4312 
4313     elf->e_type = ET_CORE;
4314     elf->e_machine = machine;
4315     elf->e_version = EV_CURRENT;
4316     elf->e_phoff = sizeof(struct elfhdr);
4317     elf->e_flags = flags;
4318     elf->e_ehsize = sizeof(struct elfhdr);
4319     elf->e_phentsize = sizeof(struct elf_phdr);
4320     elf->e_phnum = segs;
4321 
4322     bswap_ehdr(elf);
4323 }
4324 
4325 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4326 {
4327     phdr->p_type = PT_NOTE;
4328     phdr->p_offset = offset;
4329     phdr->p_vaddr = 0;
4330     phdr->p_paddr = 0;
4331     phdr->p_filesz = sz;
4332     phdr->p_memsz = 0;
4333     phdr->p_flags = 0;
4334     phdr->p_align = 0;
4335 
4336     bswap_phdr(phdr, 1);
4337 }
4338 
4339 static size_t note_size(const struct memelfnote *note)
4340 {
4341     return (note->notesz);
4342 }
4343 
4344 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4345                           const TaskState *ts, int signr)
4346 {
4347     (void) memset(prstatus, 0, sizeof (*prstatus));
4348     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4349     prstatus->pr_pid = ts->ts_tid;
4350     prstatus->pr_ppid = getppid();
4351     prstatus->pr_pgrp = getpgrp();
4352     prstatus->pr_sid = getsid(0);
4353 
4354     bswap_prstatus(prstatus);
4355 }
4356 
4357 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4358 {
4359     char *base_filename;
4360     unsigned int i, len;
4361 
4362     (void) memset(psinfo, 0, sizeof (*psinfo));
4363 
4364     len = ts->info->env_strings - ts->info->arg_strings;
4365     if (len >= ELF_PRARGSZ)
4366         len = ELF_PRARGSZ - 1;
4367     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4368         return -EFAULT;
4369     }
4370     for (i = 0; i < len; i++)
4371         if (psinfo->pr_psargs[i] == 0)
4372             psinfo->pr_psargs[i] = ' ';
4373     psinfo->pr_psargs[len] = 0;
4374 
4375     psinfo->pr_pid = getpid();
4376     psinfo->pr_ppid = getppid();
4377     psinfo->pr_pgrp = getpgrp();
4378     psinfo->pr_sid = getsid(0);
4379     psinfo->pr_uid = getuid();
4380     psinfo->pr_gid = getgid();
4381 
4382     base_filename = g_path_get_basename(ts->bprm->filename);
4383     /*
4384      * Using strncpy here is fine: at max-length,
4385      * this field is not NUL-terminated.
4386      */
4387     (void) strncpy(psinfo->pr_fname, base_filename,
4388                    sizeof(psinfo->pr_fname));
4389 
4390     g_free(base_filename);
4391     bswap_psinfo(psinfo);
4392     return (0);
4393 }
4394 
4395 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4396 {
4397     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4398     elf_addr_t orig_auxv = auxv;
4399     void *ptr;
4400     int len = ts->info->auxv_len;
4401 
4402     /*
4403      * Auxiliary vector is stored in target process stack.  It contains
4404      * {type, value} pairs that we need to dump into note.  This is not
4405      * strictly necessary but we do it here for sake of completeness.
4406      */
4407 
4408     /* read in whole auxv vector and copy it to memelfnote */
4409     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4410     if (ptr != NULL) {
4411         fill_note(note, "CORE", NT_AUXV, len, ptr);
4412         unlock_user(ptr, auxv, len);
4413     }
4414 }
4415 
4416 /*
4417  * Constructs name of coredump file.  We have following convention
4418  * for the name:
4419  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4420  *
4421  * Returns the filename
4422  */
4423 static char *core_dump_filename(const TaskState *ts)
4424 {
4425     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4426     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4427     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4428 
4429     return g_strdup_printf("qemu_%s_%s_%d.core",
4430                            base_filename, nowstr, (int)getpid());
4431 }
4432 
4433 static int dump_write(int fd, const void *ptr, size_t size)
4434 {
4435     const char *bufp = (const char *)ptr;
4436     ssize_t bytes_written, bytes_left;
4437     struct rlimit dumpsize;
4438     off_t pos;
4439 
4440     bytes_written = 0;
4441     getrlimit(RLIMIT_CORE, &dumpsize);
4442     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4443         if (errno == ESPIPE) { /* not a seekable stream */
4444             bytes_left = size;
4445         } else {
4446             return pos;
4447         }
4448     } else {
4449         if (dumpsize.rlim_cur <= pos) {
4450             return -1;
4451         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4452             bytes_left = size;
4453         } else {
4454             size_t limit_left=dumpsize.rlim_cur - pos;
4455             bytes_left = limit_left >= size ? size : limit_left ;
4456         }
4457     }
4458 
4459     /*
4460      * In normal conditions, single write(2) should do but
4461      * in case of socket etc. this mechanism is more portable.
4462      */
4463     do {
4464         bytes_written = write(fd, bufp, bytes_left);
4465         if (bytes_written < 0) {
4466             if (errno == EINTR)
4467                 continue;
4468             return (-1);
4469         } else if (bytes_written == 0) { /* eof */
4470             return (-1);
4471         }
4472         bufp += bytes_written;
4473         bytes_left -= bytes_written;
4474     } while (bytes_left > 0);
4475 
4476     return (0);
4477 }
4478 
4479 static int write_note(struct memelfnote *men, int fd)
4480 {
4481     struct elf_note en;
4482 
4483     en.n_namesz = men->namesz;
4484     en.n_type = men->type;
4485     en.n_descsz = men->datasz;
4486 
4487     bswap_note(&en);
4488 
4489     if (dump_write(fd, &en, sizeof(en)) != 0)
4490         return (-1);
4491     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4492         return (-1);
4493     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4494         return (-1);
4495 
4496     return (0);
4497 }
4498 
4499 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4500 {
4501     CPUState *cpu = env_cpu((CPUArchState *)env);
4502     TaskState *ts = (TaskState *)cpu->opaque;
4503     struct elf_thread_status *ets;
4504 
4505     ets = g_malloc0(sizeof (*ets));
4506     ets->num_notes = 1; /* only prstatus is dumped */
4507     fill_prstatus(&ets->prstatus, ts, 0);
4508     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4509     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4510               &ets->prstatus);
4511 
4512     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4513 
4514     info->notes_size += note_size(&ets->notes[0]);
4515 }
4516 
4517 static void init_note_info(struct elf_note_info *info)
4518 {
4519     /* Initialize the elf_note_info structure so that it is at
4520      * least safe to call free_note_info() on it. Must be
4521      * called before calling fill_note_info().
4522      */
4523     memset(info, 0, sizeof (*info));
4524     QTAILQ_INIT(&info->thread_list);
4525 }
4526 
4527 static int fill_note_info(struct elf_note_info *info,
4528                           long signr, const CPUArchState *env)
4529 {
4530 #define NUMNOTES 3
4531     CPUState *cpu = env_cpu((CPUArchState *)env);
4532     TaskState *ts = (TaskState *)cpu->opaque;
4533     int i;
4534 
4535     info->notes = g_new0(struct memelfnote, NUMNOTES);
4536     if (info->notes == NULL)
4537         return (-ENOMEM);
4538     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4539     if (info->prstatus == NULL)
4540         return (-ENOMEM);
4541     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4542     if (info->prstatus == NULL)
4543         return (-ENOMEM);
4544 
4545     /*
4546      * First fill in status (and registers) of current thread
4547      * including process info & aux vector.
4548      */
4549     fill_prstatus(info->prstatus, ts, signr);
4550     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4551     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4552               sizeof (*info->prstatus), info->prstatus);
4553     fill_psinfo(info->psinfo, ts);
4554     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4555               sizeof (*info->psinfo), info->psinfo);
4556     fill_auxv_note(&info->notes[2], ts);
4557     info->numnote = 3;
4558 
4559     info->notes_size = 0;
4560     for (i = 0; i < info->numnote; i++)
4561         info->notes_size += note_size(&info->notes[i]);
4562 
4563     /* read and fill status of all threads */
4564     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4565         CPU_FOREACH(cpu) {
4566             if (cpu == thread_cpu) {
4567                 continue;
4568             }
4569             fill_thread_info(info, cpu_env(cpu));
4570         }
4571     }
4572 
4573     return (0);
4574 }
4575 
4576 static void free_note_info(struct elf_note_info *info)
4577 {
4578     struct elf_thread_status *ets;
4579 
4580     while (!QTAILQ_EMPTY(&info->thread_list)) {
4581         ets = QTAILQ_FIRST(&info->thread_list);
4582         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4583         g_free(ets);
4584     }
4585 
4586     g_free(info->prstatus);
4587     g_free(info->psinfo);
4588     g_free(info->notes);
4589 }
4590 
4591 static int write_note_info(struct elf_note_info *info, int fd)
4592 {
4593     struct elf_thread_status *ets;
4594     int i, error = 0;
4595 
4596     /* write prstatus, psinfo and auxv for current thread */
4597     for (i = 0; i < info->numnote; i++)
4598         if ((error = write_note(&info->notes[i], fd)) != 0)
4599             return (error);
4600 
4601     /* write prstatus for each thread */
4602     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4603         if ((error = write_note(&ets->notes[0], fd)) != 0)
4604             return (error);
4605     }
4606 
4607     return (0);
4608 }
4609 
4610 /*
4611  * Write out ELF coredump.
4612  *
4613  * See documentation of ELF object file format in:
4614  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4615  *
4616  * Coredump format in linux is following:
4617  *
4618  * 0   +----------------------+         \
4619  *     | ELF header           | ET_CORE  |
4620  *     +----------------------+          |
4621  *     | ELF program headers  |          |--- headers
4622  *     | - NOTE section       |          |
4623  *     | - PT_LOAD sections   |          |
4624  *     +----------------------+         /
4625  *     | NOTEs:               |
4626  *     | - NT_PRSTATUS        |
4627  *     | - NT_PRSINFO         |
4628  *     | - NT_AUXV            |
4629  *     +----------------------+ <-- aligned to target page
4630  *     | Process memory dump  |
4631  *     :                      :
4632  *     .                      .
4633  *     :                      :
4634  *     |                      |
4635  *     +----------------------+
4636  *
4637  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4638  * NT_PRSINFO  -> struct elf_prpsinfo
4639  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4640  *
4641  * Format follows System V format as close as possible.  Current
4642  * version limitations are as follows:
4643  *     - no floating point registers are dumped
4644  *
4645  * Function returns 0 in case of success, negative errno otherwise.
4646  *
4647  * TODO: make this work also during runtime: it should be
4648  * possible to force coredump from running process and then
4649  * continue processing.  For example qemu could set up SIGUSR2
4650  * handler (provided that target process haven't registered
4651  * handler for that) that does the dump when signal is received.
4652  */
4653 static int elf_core_dump(int signr, const CPUArchState *env)
4654 {
4655     const CPUState *cpu = env_cpu((CPUArchState *)env);
4656     const TaskState *ts = (const TaskState *)cpu->opaque;
4657     struct vm_area_struct *vma = NULL;
4658     g_autofree char *corefile = NULL;
4659     struct elf_note_info info;
4660     struct elfhdr elf;
4661     struct elf_phdr phdr;
4662     struct rlimit dumpsize;
4663     struct mm_struct *mm = NULL;
4664     off_t offset = 0, data_offset = 0;
4665     int segs = 0;
4666     int fd = -1;
4667 
4668     init_note_info(&info);
4669 
4670     errno = 0;
4671 
4672     if (prctl(PR_GET_DUMPABLE) == 0) {
4673         return 0;
4674     }
4675 
4676     if (getrlimit(RLIMIT_CORE, &dumpsize) == 0 && dumpsize.rlim_cur == 0) {
4677         return 0;
4678     }
4679 
4680     corefile = core_dump_filename(ts);
4681 
4682     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4683                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4684         return (-errno);
4685 
4686     /*
4687      * Walk through target process memory mappings and
4688      * set up structure containing this information.  After
4689      * this point vma_xxx functions can be used.
4690      */
4691     if ((mm = vma_init()) == NULL)
4692         goto out;
4693 
4694     walk_memory_regions(mm, vma_walker);
4695     segs = vma_get_mapping_count(mm);
4696 
4697     /*
4698      * Construct valid coredump ELF header.  We also
4699      * add one more segment for notes.
4700      */
4701     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4702     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4703         goto out;
4704 
4705     /* fill in the in-memory version of notes */
4706     if (fill_note_info(&info, signr, env) < 0)
4707         goto out;
4708 
4709     offset += sizeof (elf);                             /* elf header */
4710     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4711 
4712     /* write out notes program header */
4713     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4714 
4715     offset += info.notes_size;
4716     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4717         goto out;
4718 
4719     /*
4720      * ELF specification wants data to start at page boundary so
4721      * we align it here.
4722      */
4723     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4724 
4725     /*
4726      * Write program headers for memory regions mapped in
4727      * the target process.
4728      */
4729     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4730         (void) memset(&phdr, 0, sizeof (phdr));
4731 
4732         phdr.p_type = PT_LOAD;
4733         phdr.p_offset = offset;
4734         phdr.p_vaddr = vma->vma_start;
4735         phdr.p_paddr = 0;
4736         phdr.p_filesz = vma_dump_size(vma);
4737         offset += phdr.p_filesz;
4738         phdr.p_memsz = vma->vma_end - vma->vma_start;
4739         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4740         if (vma->vma_flags & PROT_WRITE)
4741             phdr.p_flags |= PF_W;
4742         if (vma->vma_flags & PROT_EXEC)
4743             phdr.p_flags |= PF_X;
4744         phdr.p_align = ELF_EXEC_PAGESIZE;
4745 
4746         bswap_phdr(&phdr, 1);
4747         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4748             goto out;
4749         }
4750     }
4751 
4752     /*
4753      * Next we write notes just after program headers.  No
4754      * alignment needed here.
4755      */
4756     if (write_note_info(&info, fd) < 0)
4757         goto out;
4758 
4759     /* align data to page boundary */
4760     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4761         goto out;
4762 
4763     /*
4764      * Finally we can dump process memory into corefile as well.
4765      */
4766     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4767         abi_ulong addr;
4768         abi_ulong end;
4769 
4770         end = vma->vma_start + vma_dump_size(vma);
4771 
4772         for (addr = vma->vma_start; addr < end;
4773              addr += TARGET_PAGE_SIZE) {
4774             char page[TARGET_PAGE_SIZE];
4775             int error;
4776 
4777             /*
4778              *  Read in page from target process memory and
4779              *  write it to coredump file.
4780              */
4781             error = copy_from_user(page, addr, sizeof (page));
4782             if (error != 0) {
4783                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4784                                addr);
4785                 errno = -error;
4786                 goto out;
4787             }
4788             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4789                 goto out;
4790         }
4791     }
4792 
4793  out:
4794     free_note_info(&info);
4795     if (mm != NULL)
4796         vma_delete(mm);
4797     (void) close(fd);
4798 
4799     if (errno != 0)
4800         return (-errno);
4801     return (0);
4802 }
4803 #endif /* USE_ELF_CORE_DUMP */
4804 
4805 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4806 {
4807     init_thread(regs, infop);
4808 }
4809