xref: /qemu/linux-user/elfload.c (revision a1367443)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25 
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35 
36 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
37 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
38 #endif
39 
40 typedef struct {
41     const uint8_t *image;
42     const uint32_t *relocs;
43     unsigned image_size;
44     unsigned reloc_count;
45     unsigned sigreturn_ofs;
46     unsigned rt_sigreturn_ofs;
47 } VdsoImageInfo;
48 
49 #define ELF_OSABI   ELFOSABI_SYSV
50 
51 /* from personality.h */
52 
53 /*
54  * Flags for bug emulation.
55  *
56  * These occupy the top three bytes.
57  */
58 enum {
59     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
60     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
61                                            descriptors (signal handling) */
62     MMAP_PAGE_ZERO =    0x0100000,
63     ADDR_COMPAT_LAYOUT = 0x0200000,
64     READ_IMPLIES_EXEC = 0x0400000,
65     ADDR_LIMIT_32BIT =  0x0800000,
66     SHORT_INODE =       0x1000000,
67     WHOLE_SECONDS =     0x2000000,
68     STICKY_TIMEOUTS =   0x4000000,
69     ADDR_LIMIT_3GB =    0x8000000,
70 };
71 
72 /*
73  * Personality types.
74  *
75  * These go in the low byte.  Avoid using the top bit, it will
76  * conflict with error returns.
77  */
78 enum {
79     PER_LINUX =         0x0000,
80     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
81     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
82     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
83     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
84     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
85     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
86     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
87     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
88     PER_BSD =           0x0006,
89     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
90     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
91     PER_LINUX32 =       0x0008,
92     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
93     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
94     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
95     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
96     PER_RISCOS =        0x000c,
97     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
98     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
99     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
100     PER_HPUX =          0x0010,
101     PER_MASK =          0x00ff,
102 };
103 
104 /*
105  * Return the base personality without flags.
106  */
107 #define personality(pers)       (pers & PER_MASK)
108 
109 int info_is_fdpic(struct image_info *info)
110 {
111     return info->personality == PER_LINUX_FDPIC;
112 }
113 
114 /* this flag is uneffective under linux too, should be deleted */
115 #ifndef MAP_DENYWRITE
116 #define MAP_DENYWRITE 0
117 #endif
118 
119 /* should probably go in elf.h */
120 #ifndef ELIBBAD
121 #define ELIBBAD 80
122 #endif
123 
124 #if TARGET_BIG_ENDIAN
125 #define ELF_DATA        ELFDATA2MSB
126 #else
127 #define ELF_DATA        ELFDATA2LSB
128 #endif
129 
130 #ifdef TARGET_ABI_MIPSN32
131 typedef abi_ullong      target_elf_greg_t;
132 #define tswapreg(ptr)   tswap64(ptr)
133 #else
134 typedef abi_ulong       target_elf_greg_t;
135 #define tswapreg(ptr)   tswapal(ptr)
136 #endif
137 
138 #ifdef USE_UID16
139 typedef abi_ushort      target_uid_t;
140 typedef abi_ushort      target_gid_t;
141 #else
142 typedef abi_uint        target_uid_t;
143 typedef abi_uint        target_gid_t;
144 #endif
145 typedef abi_int         target_pid_t;
146 
147 #ifdef TARGET_I386
148 
149 #define ELF_HWCAP get_elf_hwcap()
150 
151 static uint32_t get_elf_hwcap(void)
152 {
153     X86CPU *cpu = X86_CPU(thread_cpu);
154 
155     return cpu->env.features[FEAT_1_EDX];
156 }
157 
158 #ifdef TARGET_X86_64
159 #define ELF_CLASS      ELFCLASS64
160 #define ELF_ARCH       EM_X86_64
161 
162 #define ELF_PLATFORM   "x86_64"
163 
164 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
165 {
166     regs->rax = 0;
167     regs->rsp = infop->start_stack;
168     regs->rip = infop->entry;
169 }
170 
171 #define ELF_NREG    27
172 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
173 
174 /*
175  * Note that ELF_NREG should be 29 as there should be place for
176  * TRAPNO and ERR "registers" as well but linux doesn't dump
177  * those.
178  *
179  * See linux kernel: arch/x86/include/asm/elf.h
180  */
181 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
182 {
183     (*regs)[0] = tswapreg(env->regs[15]);
184     (*regs)[1] = tswapreg(env->regs[14]);
185     (*regs)[2] = tswapreg(env->regs[13]);
186     (*regs)[3] = tswapreg(env->regs[12]);
187     (*regs)[4] = tswapreg(env->regs[R_EBP]);
188     (*regs)[5] = tswapreg(env->regs[R_EBX]);
189     (*regs)[6] = tswapreg(env->regs[11]);
190     (*regs)[7] = tswapreg(env->regs[10]);
191     (*regs)[8] = tswapreg(env->regs[9]);
192     (*regs)[9] = tswapreg(env->regs[8]);
193     (*regs)[10] = tswapreg(env->regs[R_EAX]);
194     (*regs)[11] = tswapreg(env->regs[R_ECX]);
195     (*regs)[12] = tswapreg(env->regs[R_EDX]);
196     (*regs)[13] = tswapreg(env->regs[R_ESI]);
197     (*regs)[14] = tswapreg(env->regs[R_EDI]);
198     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
199     (*regs)[16] = tswapreg(env->eip);
200     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
201     (*regs)[18] = tswapreg(env->eflags);
202     (*regs)[19] = tswapreg(env->regs[R_ESP]);
203     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
204     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
205     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
206     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
207     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
208     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
209     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
210 }
211 
212 #if ULONG_MAX > UINT32_MAX
213 #define INIT_GUEST_COMMPAGE
214 static bool init_guest_commpage(void)
215 {
216     /*
217      * The vsyscall page is at a high negative address aka kernel space,
218      * which means that we cannot actually allocate it with target_mmap.
219      * We still should be able to use page_set_flags, unless the user
220      * has specified -R reserved_va, which would trigger an assert().
221      */
222     if (reserved_va != 0 &&
223         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
224         error_report("Cannot allocate vsyscall page");
225         exit(EXIT_FAILURE);
226     }
227     page_set_flags(TARGET_VSYSCALL_PAGE,
228                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
229                    PAGE_EXEC | PAGE_VALID);
230     return true;
231 }
232 #endif
233 #else
234 
235 /*
236  * This is used to ensure we don't load something for the wrong architecture.
237  */
238 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
239 
240 /*
241  * These are used to set parameters in the core dumps.
242  */
243 #define ELF_CLASS       ELFCLASS32
244 #define ELF_ARCH        EM_386
245 
246 #define ELF_PLATFORM get_elf_platform()
247 #define EXSTACK_DEFAULT true
248 
249 static const char *get_elf_platform(void)
250 {
251     static char elf_platform[] = "i386";
252     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
253     if (family > 6) {
254         family = 6;
255     }
256     if (family >= 3) {
257         elf_platform[1] = '0' + family;
258     }
259     return elf_platform;
260 }
261 
262 static inline void init_thread(struct target_pt_regs *regs,
263                                struct image_info *infop)
264 {
265     regs->esp = infop->start_stack;
266     regs->eip = infop->entry;
267 
268     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
269        starts %edx contains a pointer to a function which might be
270        registered using `atexit'.  This provides a mean for the
271        dynamic linker to call DT_FINI functions for shared libraries
272        that have been loaded before the code runs.
273 
274        A value of 0 tells we have no such handler.  */
275     regs->edx = 0;
276 }
277 
278 #define ELF_NREG    17
279 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
280 
281 /*
282  * Note that ELF_NREG should be 19 as there should be place for
283  * TRAPNO and ERR "registers" as well but linux doesn't dump
284  * those.
285  *
286  * See linux kernel: arch/x86/include/asm/elf.h
287  */
288 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
289 {
290     (*regs)[0] = tswapreg(env->regs[R_EBX]);
291     (*regs)[1] = tswapreg(env->regs[R_ECX]);
292     (*regs)[2] = tswapreg(env->regs[R_EDX]);
293     (*regs)[3] = tswapreg(env->regs[R_ESI]);
294     (*regs)[4] = tswapreg(env->regs[R_EDI]);
295     (*regs)[5] = tswapreg(env->regs[R_EBP]);
296     (*regs)[6] = tswapreg(env->regs[R_EAX]);
297     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
298     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
299     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
300     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
301     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
302     (*regs)[12] = tswapreg(env->eip);
303     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
304     (*regs)[14] = tswapreg(env->eflags);
305     (*regs)[15] = tswapreg(env->regs[R_ESP]);
306     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
307 }
308 
309 /*
310  * i386 is the only target which supplies AT_SYSINFO for the vdso.
311  * All others only supply AT_SYSINFO_EHDR.
312  */
313 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
314 #define ARCH_DLINFO                                     \
315     do {                                                \
316         if (vdso_info) {                                \
317             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
318         }                                               \
319     } while (0)
320 
321 #define VDSO_HEADER "vdso.c.inc"
322 
323 #endif /* TARGET_X86_64 */
324 
325 #define USE_ELF_CORE_DUMP
326 #define ELF_EXEC_PAGESIZE       4096
327 
328 #endif /* TARGET_I386 */
329 
330 #ifdef TARGET_ARM
331 
332 #ifndef TARGET_AARCH64
333 /* 32 bit ARM definitions */
334 
335 #define ELF_ARCH        EM_ARM
336 #define ELF_CLASS       ELFCLASS32
337 #define EXSTACK_DEFAULT true
338 
339 static inline void init_thread(struct target_pt_regs *regs,
340                                struct image_info *infop)
341 {
342     abi_long stack = infop->start_stack;
343     memset(regs, 0, sizeof(*regs));
344 
345     regs->uregs[16] = ARM_CPU_MODE_USR;
346     if (infop->entry & 1) {
347         regs->uregs[16] |= CPSR_T;
348     }
349     regs->uregs[15] = infop->entry & 0xfffffffe;
350     regs->uregs[13] = infop->start_stack;
351     /* FIXME - what to for failure of get_user()? */
352     get_user_ual(regs->uregs[2], stack + 8); /* envp */
353     get_user_ual(regs->uregs[1], stack + 4); /* envp */
354     /* XXX: it seems that r0 is zeroed after ! */
355     regs->uregs[0] = 0;
356     /* For uClinux PIC binaries.  */
357     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
358     regs->uregs[10] = infop->start_data;
359 
360     /* Support ARM FDPIC.  */
361     if (info_is_fdpic(infop)) {
362         /* As described in the ABI document, r7 points to the loadmap info
363          * prepared by the kernel. If an interpreter is needed, r8 points
364          * to the interpreter loadmap and r9 points to the interpreter
365          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
366          * r9 points to the main program PT_DYNAMIC info.
367          */
368         regs->uregs[7] = infop->loadmap_addr;
369         if (infop->interpreter_loadmap_addr) {
370             /* Executable is dynamically loaded.  */
371             regs->uregs[8] = infop->interpreter_loadmap_addr;
372             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
373         } else {
374             regs->uregs[8] = 0;
375             regs->uregs[9] = infop->pt_dynamic_addr;
376         }
377     }
378 }
379 
380 #define ELF_NREG    18
381 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
382 
383 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
384 {
385     (*regs)[0] = tswapreg(env->regs[0]);
386     (*regs)[1] = tswapreg(env->regs[1]);
387     (*regs)[2] = tswapreg(env->regs[2]);
388     (*regs)[3] = tswapreg(env->regs[3]);
389     (*regs)[4] = tswapreg(env->regs[4]);
390     (*regs)[5] = tswapreg(env->regs[5]);
391     (*regs)[6] = tswapreg(env->regs[6]);
392     (*regs)[7] = tswapreg(env->regs[7]);
393     (*regs)[8] = tswapreg(env->regs[8]);
394     (*regs)[9] = tswapreg(env->regs[9]);
395     (*regs)[10] = tswapreg(env->regs[10]);
396     (*regs)[11] = tswapreg(env->regs[11]);
397     (*regs)[12] = tswapreg(env->regs[12]);
398     (*regs)[13] = tswapreg(env->regs[13]);
399     (*regs)[14] = tswapreg(env->regs[14]);
400     (*regs)[15] = tswapreg(env->regs[15]);
401 
402     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
403     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
404 }
405 
406 #define USE_ELF_CORE_DUMP
407 #define ELF_EXEC_PAGESIZE       4096
408 
409 enum
410 {
411     ARM_HWCAP_ARM_SWP       = 1 << 0,
412     ARM_HWCAP_ARM_HALF      = 1 << 1,
413     ARM_HWCAP_ARM_THUMB     = 1 << 2,
414     ARM_HWCAP_ARM_26BIT     = 1 << 3,
415     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
416     ARM_HWCAP_ARM_FPA       = 1 << 5,
417     ARM_HWCAP_ARM_VFP       = 1 << 6,
418     ARM_HWCAP_ARM_EDSP      = 1 << 7,
419     ARM_HWCAP_ARM_JAVA      = 1 << 8,
420     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
421     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
422     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
423     ARM_HWCAP_ARM_NEON      = 1 << 12,
424     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
425     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
426     ARM_HWCAP_ARM_TLS       = 1 << 15,
427     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
428     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
429     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
430     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
431     ARM_HWCAP_ARM_LPAE      = 1 << 20,
432     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
433     ARM_HWCAP_ARM_FPHP      = 1 << 22,
434     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
435     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
436     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
437     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
438     ARM_HWCAP_ARM_I8MM      = 1 << 27,
439 };
440 
441 enum {
442     ARM_HWCAP2_ARM_AES      = 1 << 0,
443     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
444     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
445     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
446     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
447     ARM_HWCAP2_ARM_SB       = 1 << 5,
448     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
449 };
450 
451 /* The commpage only exists for 32 bit kernels */
452 
453 #define HI_COMMPAGE (intptr_t)0xffff0f00u
454 
455 static bool init_guest_commpage(void)
456 {
457     ARMCPU *cpu = ARM_CPU(thread_cpu);
458     abi_ptr commpage;
459     void *want;
460     void *addr;
461 
462     /*
463      * M-profile allocates maximum of 2GB address space, so can never
464      * allocate the commpage.  Skip it.
465      */
466     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
467         return true;
468     }
469 
470     commpage = HI_COMMPAGE & -qemu_host_page_size;
471     want = g2h_untagged(commpage);
472     addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
473                 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
474 
475     if (addr == MAP_FAILED) {
476         perror("Allocating guest commpage");
477         exit(EXIT_FAILURE);
478     }
479     if (addr != want) {
480         return false;
481     }
482 
483     /* Set kernel helper versions; rest of page is 0.  */
484     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
485 
486     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
487         perror("Protecting guest commpage");
488         exit(EXIT_FAILURE);
489     }
490 
491     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
492                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
493     return true;
494 }
495 
496 #define ELF_HWCAP get_elf_hwcap()
497 #define ELF_HWCAP2 get_elf_hwcap2()
498 
499 uint32_t get_elf_hwcap(void)
500 {
501     ARMCPU *cpu = ARM_CPU(thread_cpu);
502     uint32_t hwcaps = 0;
503 
504     hwcaps |= ARM_HWCAP_ARM_SWP;
505     hwcaps |= ARM_HWCAP_ARM_HALF;
506     hwcaps |= ARM_HWCAP_ARM_THUMB;
507     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
508 
509     /* probe for the extra features */
510 #define GET_FEATURE(feat, hwcap) \
511     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
512 
513 #define GET_FEATURE_ID(feat, hwcap) \
514     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
515 
516     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
517     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
518     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
519     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
520     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
521     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
522     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
523     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
524     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
525     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
526 
527     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
528         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
529         hwcaps |= ARM_HWCAP_ARM_VFPv3;
530         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
531             hwcaps |= ARM_HWCAP_ARM_VFPD32;
532         } else {
533             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
534         }
535     }
536     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
537     /*
538      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
539      * isar_feature function for both. The kernel reports them as two hwcaps.
540      */
541     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
542     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
543     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
544     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
545     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
546     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
547 
548     return hwcaps;
549 }
550 
551 uint32_t get_elf_hwcap2(void)
552 {
553     ARMCPU *cpu = ARM_CPU(thread_cpu);
554     uint32_t hwcaps = 0;
555 
556     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
557     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
558     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
559     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
560     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
561     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
562     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
563     return hwcaps;
564 }
565 
566 const char *elf_hwcap_str(uint32_t bit)
567 {
568     static const char *hwcap_str[] = {
569     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
570     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
571     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
572     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
573     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
574     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
575     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
576     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
577     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
578     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
579     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
580     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
581     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
582     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
583     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
584     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
585     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
586     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
587     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
588     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
589     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
590     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
591     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
592     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
593     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
594     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
595     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
596     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
597     };
598 
599     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
600 }
601 
602 const char *elf_hwcap2_str(uint32_t bit)
603 {
604     static const char *hwcap_str[] = {
605     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
606     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
607     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
608     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
609     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
610     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
611     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
612     };
613 
614     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
615 }
616 
617 #undef GET_FEATURE
618 #undef GET_FEATURE_ID
619 
620 #define ELF_PLATFORM get_elf_platform()
621 
622 static const char *get_elf_platform(void)
623 {
624     CPUARMState *env = cpu_env(thread_cpu);
625 
626 #if TARGET_BIG_ENDIAN
627 # define END  "b"
628 #else
629 # define END  "l"
630 #endif
631 
632     if (arm_feature(env, ARM_FEATURE_V8)) {
633         return "v8" END;
634     } else if (arm_feature(env, ARM_FEATURE_V7)) {
635         if (arm_feature(env, ARM_FEATURE_M)) {
636             return "v7m" END;
637         } else {
638             return "v7" END;
639         }
640     } else if (arm_feature(env, ARM_FEATURE_V6)) {
641         return "v6" END;
642     } else if (arm_feature(env, ARM_FEATURE_V5)) {
643         return "v5" END;
644     } else {
645         return "v4" END;
646     }
647 
648 #undef END
649 }
650 
651 #else
652 /* 64 bit ARM definitions */
653 
654 #define ELF_ARCH        EM_AARCH64
655 #define ELF_CLASS       ELFCLASS64
656 #if TARGET_BIG_ENDIAN
657 # define ELF_PLATFORM    "aarch64_be"
658 #else
659 # define ELF_PLATFORM    "aarch64"
660 #endif
661 
662 static inline void init_thread(struct target_pt_regs *regs,
663                                struct image_info *infop)
664 {
665     abi_long stack = infop->start_stack;
666     memset(regs, 0, sizeof(*regs));
667 
668     regs->pc = infop->entry & ~0x3ULL;
669     regs->sp = stack;
670 }
671 
672 #define ELF_NREG    34
673 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
674 
675 static void elf_core_copy_regs(target_elf_gregset_t *regs,
676                                const CPUARMState *env)
677 {
678     int i;
679 
680     for (i = 0; i < 32; i++) {
681         (*regs)[i] = tswapreg(env->xregs[i]);
682     }
683     (*regs)[32] = tswapreg(env->pc);
684     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
685 }
686 
687 #define USE_ELF_CORE_DUMP
688 #define ELF_EXEC_PAGESIZE       4096
689 
690 enum {
691     ARM_HWCAP_A64_FP            = 1 << 0,
692     ARM_HWCAP_A64_ASIMD         = 1 << 1,
693     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
694     ARM_HWCAP_A64_AES           = 1 << 3,
695     ARM_HWCAP_A64_PMULL         = 1 << 4,
696     ARM_HWCAP_A64_SHA1          = 1 << 5,
697     ARM_HWCAP_A64_SHA2          = 1 << 6,
698     ARM_HWCAP_A64_CRC32         = 1 << 7,
699     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
700     ARM_HWCAP_A64_FPHP          = 1 << 9,
701     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
702     ARM_HWCAP_A64_CPUID         = 1 << 11,
703     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
704     ARM_HWCAP_A64_JSCVT         = 1 << 13,
705     ARM_HWCAP_A64_FCMA          = 1 << 14,
706     ARM_HWCAP_A64_LRCPC         = 1 << 15,
707     ARM_HWCAP_A64_DCPOP         = 1 << 16,
708     ARM_HWCAP_A64_SHA3          = 1 << 17,
709     ARM_HWCAP_A64_SM3           = 1 << 18,
710     ARM_HWCAP_A64_SM4           = 1 << 19,
711     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
712     ARM_HWCAP_A64_SHA512        = 1 << 21,
713     ARM_HWCAP_A64_SVE           = 1 << 22,
714     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
715     ARM_HWCAP_A64_DIT           = 1 << 24,
716     ARM_HWCAP_A64_USCAT         = 1 << 25,
717     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
718     ARM_HWCAP_A64_FLAGM         = 1 << 27,
719     ARM_HWCAP_A64_SSBS          = 1 << 28,
720     ARM_HWCAP_A64_SB            = 1 << 29,
721     ARM_HWCAP_A64_PACA          = 1 << 30,
722     ARM_HWCAP_A64_PACG          = 1UL << 31,
723 
724     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
725     ARM_HWCAP2_A64_SVE2         = 1 << 1,
726     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
727     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
728     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
729     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
730     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
731     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
732     ARM_HWCAP2_A64_FRINT        = 1 << 8,
733     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
734     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
735     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
736     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
737     ARM_HWCAP2_A64_I8MM         = 1 << 13,
738     ARM_HWCAP2_A64_BF16         = 1 << 14,
739     ARM_HWCAP2_A64_DGH          = 1 << 15,
740     ARM_HWCAP2_A64_RNG          = 1 << 16,
741     ARM_HWCAP2_A64_BTI          = 1 << 17,
742     ARM_HWCAP2_A64_MTE          = 1 << 18,
743     ARM_HWCAP2_A64_ECV          = 1 << 19,
744     ARM_HWCAP2_A64_AFP          = 1 << 20,
745     ARM_HWCAP2_A64_RPRES        = 1 << 21,
746     ARM_HWCAP2_A64_MTE3         = 1 << 22,
747     ARM_HWCAP2_A64_SME          = 1 << 23,
748     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
749     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
750     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
751     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
752     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
753     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
754     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
755     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
756     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
757     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
758     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
759     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
760     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
761     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
762     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
763     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
764     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
765     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
766     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
767     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
768     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
769 };
770 
771 #define ELF_HWCAP   get_elf_hwcap()
772 #define ELF_HWCAP2  get_elf_hwcap2()
773 
774 #define GET_FEATURE_ID(feat, hwcap) \
775     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
776 
777 uint32_t get_elf_hwcap(void)
778 {
779     ARMCPU *cpu = ARM_CPU(thread_cpu);
780     uint32_t hwcaps = 0;
781 
782     hwcaps |= ARM_HWCAP_A64_FP;
783     hwcaps |= ARM_HWCAP_A64_ASIMD;
784     hwcaps |= ARM_HWCAP_A64_CPUID;
785 
786     /* probe for the extra features */
787 
788     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
789     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
790     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
791     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
792     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
793     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
794     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
795     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
796     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
797     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
798     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
799     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
800     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
801     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
802     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
803     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
804     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
805     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
806     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
807     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
808     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
809     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
810     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
811 
812     return hwcaps;
813 }
814 
815 uint32_t get_elf_hwcap2(void)
816 {
817     ARMCPU *cpu = ARM_CPU(thread_cpu);
818     uint32_t hwcaps = 0;
819 
820     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
821     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
822     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
823     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
824     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
825     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
826     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
827     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
828     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
829     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
830     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
831     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
832     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
833     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
834     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
835     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
836     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
837     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
838     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
839                               ARM_HWCAP2_A64_SME_F32F32 |
840                               ARM_HWCAP2_A64_SME_B16F32 |
841                               ARM_HWCAP2_A64_SME_F16F32 |
842                               ARM_HWCAP2_A64_SME_I8I32));
843     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
844     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
845     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
846     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
847     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
848 
849     return hwcaps;
850 }
851 
852 const char *elf_hwcap_str(uint32_t bit)
853 {
854     static const char *hwcap_str[] = {
855     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
856     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
857     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
858     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
859     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
860     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
861     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
862     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
863     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
864     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
865     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
866     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
867     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
868     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
869     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
870     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
871     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
872     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
873     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
874     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
875     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
876     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
877     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
878     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
879     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
880     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
881     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
882     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
883     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
884     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
885     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
886     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
887     };
888 
889     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
890 }
891 
892 const char *elf_hwcap2_str(uint32_t bit)
893 {
894     static const char *hwcap_str[] = {
895     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
896     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
897     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
898     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
899     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
900     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
901     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
902     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
903     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
904     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
905     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
906     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
907     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
908     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
909     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
910     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
911     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
912     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
913     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
914     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
915     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
916     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
917     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
918     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
919     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
920     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
921     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
922     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
923     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
924     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
925     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
926     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
927     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
928     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
929     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
930     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
931     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
932     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
933     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
934     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
935     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
936     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
937     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
938     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
939     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
940     };
941 
942     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
943 }
944 
945 #undef GET_FEATURE_ID
946 
947 #endif /* not TARGET_AARCH64 */
948 #endif /* TARGET_ARM */
949 
950 #ifdef TARGET_SPARC
951 #ifdef TARGET_SPARC64
952 
953 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
954                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
955 #ifndef TARGET_ABI32
956 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
957 #else
958 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
959 #endif
960 
961 #define ELF_CLASS   ELFCLASS64
962 #define ELF_ARCH    EM_SPARCV9
963 #else
964 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
965                     | HWCAP_SPARC_MULDIV)
966 #define ELF_CLASS   ELFCLASS32
967 #define ELF_ARCH    EM_SPARC
968 #endif /* TARGET_SPARC64 */
969 
970 static inline void init_thread(struct target_pt_regs *regs,
971                                struct image_info *infop)
972 {
973     /* Note that target_cpu_copy_regs does not read psr/tstate. */
974     regs->pc = infop->entry;
975     regs->npc = regs->pc + 4;
976     regs->y = 0;
977     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
978                         - TARGET_STACK_BIAS);
979 }
980 #endif /* TARGET_SPARC */
981 
982 #ifdef TARGET_PPC
983 
984 #define ELF_MACHINE    PPC_ELF_MACHINE
985 
986 #if defined(TARGET_PPC64)
987 
988 #define elf_check_arch(x) ( (x) == EM_PPC64 )
989 
990 #define ELF_CLASS       ELFCLASS64
991 
992 #else
993 
994 #define ELF_CLASS       ELFCLASS32
995 #define EXSTACK_DEFAULT true
996 
997 #endif
998 
999 #define ELF_ARCH        EM_PPC
1000 
1001 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1002    See arch/powerpc/include/asm/cputable.h.  */
1003 enum {
1004     QEMU_PPC_FEATURE_32 = 0x80000000,
1005     QEMU_PPC_FEATURE_64 = 0x40000000,
1006     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1007     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1008     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1009     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1010     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1011     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1012     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1013     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1014     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1015     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1016     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1017     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1018     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1019     QEMU_PPC_FEATURE_CELL = 0x00010000,
1020     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1021     QEMU_PPC_FEATURE_SMT = 0x00004000,
1022     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1023     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1024     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1025     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1026     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1027     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1028     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1029     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1030 
1031     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1032     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1033 
1034     /* Feature definitions in AT_HWCAP2.  */
1035     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1036     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1037     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1038     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1039     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1040     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1041     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1042     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1043     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1044     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1045     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1046     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1047     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1048     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1049     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1050 };
1051 
1052 #define ELF_HWCAP get_elf_hwcap()
1053 
1054 static uint32_t get_elf_hwcap(void)
1055 {
1056     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1057     uint32_t features = 0;
1058 
1059     /* We don't have to be terribly complete here; the high points are
1060        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1061 #define GET_FEATURE(flag, feature)                                      \
1062     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1063 #define GET_FEATURE2(flags, feature) \
1064     do { \
1065         if ((cpu->env.insns_flags2 & flags) == flags) { \
1066             features |= feature; \
1067         } \
1068     } while (0)
1069     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1070     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1071     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1072     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1073     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1074     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1075     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1076     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1077     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1078     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1079     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1080                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1081                   QEMU_PPC_FEATURE_ARCH_2_06);
1082 #undef GET_FEATURE
1083 #undef GET_FEATURE2
1084 
1085     return features;
1086 }
1087 
1088 #define ELF_HWCAP2 get_elf_hwcap2()
1089 
1090 static uint32_t get_elf_hwcap2(void)
1091 {
1092     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1093     uint32_t features = 0;
1094 
1095 #define GET_FEATURE(flag, feature)                                      \
1096     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1097 #define GET_FEATURE2(flag, feature)                                      \
1098     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1099 
1100     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1101     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1102     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1103                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1104                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1105     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1106                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1107     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1108                  QEMU_PPC_FEATURE2_MMA);
1109 
1110 #undef GET_FEATURE
1111 #undef GET_FEATURE2
1112 
1113     return features;
1114 }
1115 
1116 /*
1117  * The requirements here are:
1118  * - keep the final alignment of sp (sp & 0xf)
1119  * - make sure the 32-bit value at the first 16 byte aligned position of
1120  *   AUXV is greater than 16 for glibc compatibility.
1121  *   AT_IGNOREPPC is used for that.
1122  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1123  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1124  */
1125 #define DLINFO_ARCH_ITEMS       5
1126 #define ARCH_DLINFO                                     \
1127     do {                                                \
1128         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1129         /*                                              \
1130          * Handle glibc compatibility: these magic entries must \
1131          * be at the lowest addresses in the final auxv.        \
1132          */                                             \
1133         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1134         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1135         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1136         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1137         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1138     } while (0)
1139 
1140 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1141 {
1142     _regs->gpr[1] = infop->start_stack;
1143 #if defined(TARGET_PPC64)
1144     if (get_ppc64_abi(infop) < 2) {
1145         uint64_t val;
1146         get_user_u64(val, infop->entry + 8);
1147         _regs->gpr[2] = val + infop->load_bias;
1148         get_user_u64(val, infop->entry);
1149         infop->entry = val + infop->load_bias;
1150     } else {
1151         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1152     }
1153 #endif
1154     _regs->nip = infop->entry;
1155 }
1156 
1157 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1158 #define ELF_NREG 48
1159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1160 
1161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1162 {
1163     int i;
1164     target_ulong ccr = 0;
1165 
1166     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1167         (*regs)[i] = tswapreg(env->gpr[i]);
1168     }
1169 
1170     (*regs)[32] = tswapreg(env->nip);
1171     (*regs)[33] = tswapreg(env->msr);
1172     (*regs)[35] = tswapreg(env->ctr);
1173     (*regs)[36] = tswapreg(env->lr);
1174     (*regs)[37] = tswapreg(cpu_read_xer(env));
1175 
1176     ccr = ppc_get_cr(env);
1177     (*regs)[38] = tswapreg(ccr);
1178 }
1179 
1180 #define USE_ELF_CORE_DUMP
1181 #define ELF_EXEC_PAGESIZE       4096
1182 
1183 #endif
1184 
1185 #ifdef TARGET_LOONGARCH64
1186 
1187 #define ELF_CLASS   ELFCLASS64
1188 #define ELF_ARCH    EM_LOONGARCH
1189 #define EXSTACK_DEFAULT true
1190 
1191 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1192 
1193 static inline void init_thread(struct target_pt_regs *regs,
1194                                struct image_info *infop)
1195 {
1196     /*Set crmd PG,DA = 1,0 */
1197     regs->csr.crmd = 2 << 3;
1198     regs->csr.era = infop->entry;
1199     regs->regs[3] = infop->start_stack;
1200 }
1201 
1202 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1203 #define ELF_NREG 45
1204 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1205 
1206 enum {
1207     TARGET_EF_R0 = 0,
1208     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1209     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1210 };
1211 
1212 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1213                                const CPULoongArchState *env)
1214 {
1215     int i;
1216 
1217     (*regs)[TARGET_EF_R0] = 0;
1218 
1219     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1220         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1221     }
1222 
1223     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1224     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1225 }
1226 
1227 #define USE_ELF_CORE_DUMP
1228 #define ELF_EXEC_PAGESIZE        4096
1229 
1230 #define ELF_HWCAP get_elf_hwcap()
1231 
1232 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1233 enum {
1234     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1235     HWCAP_LOONGARCH_LAM      = (1 << 1),
1236     HWCAP_LOONGARCH_UAL      = (1 << 2),
1237     HWCAP_LOONGARCH_FPU      = (1 << 3),
1238     HWCAP_LOONGARCH_LSX      = (1 << 4),
1239     HWCAP_LOONGARCH_LASX     = (1 << 5),
1240     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1241     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1242     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1243     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1244     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1245     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1246     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1247 };
1248 
1249 static uint32_t get_elf_hwcap(void)
1250 {
1251     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1252     uint32_t hwcaps = 0;
1253 
1254     hwcaps |= HWCAP_LOONGARCH_CRC32;
1255 
1256     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1257         hwcaps |= HWCAP_LOONGARCH_UAL;
1258     }
1259 
1260     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1261         hwcaps |= HWCAP_LOONGARCH_FPU;
1262     }
1263 
1264     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1265         hwcaps |= HWCAP_LOONGARCH_LAM;
1266     }
1267 
1268     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1269         hwcaps |= HWCAP_LOONGARCH_LSX;
1270     }
1271 
1272     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1273         hwcaps |= HWCAP_LOONGARCH_LASX;
1274     }
1275 
1276     return hwcaps;
1277 }
1278 
1279 #define ELF_PLATFORM "loongarch"
1280 
1281 #endif /* TARGET_LOONGARCH64 */
1282 
1283 #ifdef TARGET_MIPS
1284 
1285 #ifdef TARGET_MIPS64
1286 #define ELF_CLASS   ELFCLASS64
1287 #else
1288 #define ELF_CLASS   ELFCLASS32
1289 #endif
1290 #define ELF_ARCH    EM_MIPS
1291 #define EXSTACK_DEFAULT true
1292 
1293 #ifdef TARGET_ABI_MIPSN32
1294 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1295 #else
1296 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1297 #endif
1298 
1299 #define ELF_BASE_PLATFORM get_elf_base_platform()
1300 
1301 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1302     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1303     { return _base_platform; } } while (0)
1304 
1305 static const char *get_elf_base_platform(void)
1306 {
1307     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1308 
1309     /* 64 bit ISAs goes first */
1310     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1311     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1312     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1313     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1314     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1315     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1316     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1317 
1318     /* 32 bit ISAs */
1319     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1320     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1321     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1322     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1323     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1324 
1325     /* Fallback */
1326     return "mips";
1327 }
1328 #undef MATCH_PLATFORM_INSN
1329 
1330 static inline void init_thread(struct target_pt_regs *regs,
1331                                struct image_info *infop)
1332 {
1333     regs->cp0_status = 2 << CP0St_KSU;
1334     regs->cp0_epc = infop->entry;
1335     regs->regs[29] = infop->start_stack;
1336 }
1337 
1338 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1339 #define ELF_NREG 45
1340 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1341 
1342 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1343 enum {
1344 #ifdef TARGET_MIPS64
1345     TARGET_EF_R0 = 0,
1346 #else
1347     TARGET_EF_R0 = 6,
1348 #endif
1349     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1350     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1351     TARGET_EF_LO = TARGET_EF_R0 + 32,
1352     TARGET_EF_HI = TARGET_EF_R0 + 33,
1353     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1354     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1355     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1356     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1357 };
1358 
1359 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1360 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1361 {
1362     int i;
1363 
1364     for (i = 0; i < TARGET_EF_R0; i++) {
1365         (*regs)[i] = 0;
1366     }
1367     (*regs)[TARGET_EF_R0] = 0;
1368 
1369     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1370         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1371     }
1372 
1373     (*regs)[TARGET_EF_R26] = 0;
1374     (*regs)[TARGET_EF_R27] = 0;
1375     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1376     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1377     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1378     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1379     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1380     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1381 }
1382 
1383 #define USE_ELF_CORE_DUMP
1384 #define ELF_EXEC_PAGESIZE        4096
1385 
1386 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1387 enum {
1388     HWCAP_MIPS_R6           = (1 << 0),
1389     HWCAP_MIPS_MSA          = (1 << 1),
1390     HWCAP_MIPS_CRC32        = (1 << 2),
1391     HWCAP_MIPS_MIPS16       = (1 << 3),
1392     HWCAP_MIPS_MDMX         = (1 << 4),
1393     HWCAP_MIPS_MIPS3D       = (1 << 5),
1394     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1395     HWCAP_MIPS_DSP          = (1 << 7),
1396     HWCAP_MIPS_DSP2         = (1 << 8),
1397     HWCAP_MIPS_DSP3         = (1 << 9),
1398     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1399     HWCAP_LOONGSON_MMI      = (1 << 11),
1400     HWCAP_LOONGSON_EXT      = (1 << 12),
1401     HWCAP_LOONGSON_EXT2     = (1 << 13),
1402     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1403 };
1404 
1405 #define ELF_HWCAP get_elf_hwcap()
1406 
1407 #define GET_FEATURE_INSN(_flag, _hwcap) \
1408     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1409 
1410 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1411     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1412 
1413 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1414     do { \
1415         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1416             hwcaps |= _hwcap; \
1417         } \
1418     } while (0)
1419 
1420 static uint32_t get_elf_hwcap(void)
1421 {
1422     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1423     uint32_t hwcaps = 0;
1424 
1425     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1426                         2, HWCAP_MIPS_R6);
1427     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1428     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1429     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1430 
1431     return hwcaps;
1432 }
1433 
1434 #undef GET_FEATURE_REG_EQU
1435 #undef GET_FEATURE_REG_SET
1436 #undef GET_FEATURE_INSN
1437 
1438 #endif /* TARGET_MIPS */
1439 
1440 #ifdef TARGET_MICROBLAZE
1441 
1442 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1443 
1444 #define ELF_CLASS   ELFCLASS32
1445 #define ELF_ARCH    EM_MICROBLAZE
1446 
1447 static inline void init_thread(struct target_pt_regs *regs,
1448                                struct image_info *infop)
1449 {
1450     regs->pc = infop->entry;
1451     regs->r1 = infop->start_stack;
1452 
1453 }
1454 
1455 #define ELF_EXEC_PAGESIZE        4096
1456 
1457 #define USE_ELF_CORE_DUMP
1458 #define ELF_NREG 38
1459 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1460 
1461 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1462 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1463 {
1464     int i, pos = 0;
1465 
1466     for (i = 0; i < 32; i++) {
1467         (*regs)[pos++] = tswapreg(env->regs[i]);
1468     }
1469 
1470     (*regs)[pos++] = tswapreg(env->pc);
1471     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1472     (*regs)[pos++] = 0;
1473     (*regs)[pos++] = tswapreg(env->ear);
1474     (*regs)[pos++] = 0;
1475     (*regs)[pos++] = tswapreg(env->esr);
1476 }
1477 
1478 #endif /* TARGET_MICROBLAZE */
1479 
1480 #ifdef TARGET_NIOS2
1481 
1482 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1483 
1484 #define ELF_CLASS   ELFCLASS32
1485 #define ELF_ARCH    EM_ALTERA_NIOS2
1486 
1487 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1488 {
1489     regs->ea = infop->entry;
1490     regs->sp = infop->start_stack;
1491 }
1492 
1493 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1494 
1495 static bool init_guest_commpage(void)
1496 {
1497     static const uint8_t kuser_page[4 + 2 * 64] = {
1498         /* __kuser_helper_version */
1499         [0x00] = 0x02, 0x00, 0x00, 0x00,
1500 
1501         /* __kuser_cmpxchg */
1502         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1503                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1504 
1505         /* __kuser_sigtramp */
1506         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1507                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1508     };
1509 
1510     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1511     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1512                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1513 
1514     if (addr == MAP_FAILED) {
1515         perror("Allocating guest commpage");
1516         exit(EXIT_FAILURE);
1517     }
1518     if (addr != want) {
1519         return false;
1520     }
1521 
1522     memcpy(addr, kuser_page, sizeof(kuser_page));
1523 
1524     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1525         perror("Protecting guest commpage");
1526         exit(EXIT_FAILURE);
1527     }
1528 
1529     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1530                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1531     return true;
1532 }
1533 
1534 #define ELF_EXEC_PAGESIZE        4096
1535 
1536 #define USE_ELF_CORE_DUMP
1537 #define ELF_NREG 49
1538 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1539 
1540 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1541 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1542                                const CPUNios2State *env)
1543 {
1544     int i;
1545 
1546     (*regs)[0] = -1;
1547     for (i = 1; i < 8; i++)    /* r0-r7 */
1548         (*regs)[i] = tswapreg(env->regs[i + 7]);
1549 
1550     for (i = 8; i < 16; i++)   /* r8-r15 */
1551         (*regs)[i] = tswapreg(env->regs[i - 8]);
1552 
1553     for (i = 16; i < 24; i++)  /* r16-r23 */
1554         (*regs)[i] = tswapreg(env->regs[i + 7]);
1555     (*regs)[24] = -1;    /* R_ET */
1556     (*regs)[25] = -1;    /* R_BT */
1557     (*regs)[26] = tswapreg(env->regs[R_GP]);
1558     (*regs)[27] = tswapreg(env->regs[R_SP]);
1559     (*regs)[28] = tswapreg(env->regs[R_FP]);
1560     (*regs)[29] = tswapreg(env->regs[R_EA]);
1561     (*regs)[30] = -1;    /* R_SSTATUS */
1562     (*regs)[31] = tswapreg(env->regs[R_RA]);
1563 
1564     (*regs)[32] = tswapreg(env->pc);
1565 
1566     (*regs)[33] = -1; /* R_STATUS */
1567     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1568 
1569     for (i = 35; i < 49; i++)    /* ... */
1570         (*regs)[i] = -1;
1571 }
1572 
1573 #endif /* TARGET_NIOS2 */
1574 
1575 #ifdef TARGET_OPENRISC
1576 
1577 #define ELF_ARCH EM_OPENRISC
1578 #define ELF_CLASS ELFCLASS32
1579 #define ELF_DATA  ELFDATA2MSB
1580 
1581 static inline void init_thread(struct target_pt_regs *regs,
1582                                struct image_info *infop)
1583 {
1584     regs->pc = infop->entry;
1585     regs->gpr[1] = infop->start_stack;
1586 }
1587 
1588 #define USE_ELF_CORE_DUMP
1589 #define ELF_EXEC_PAGESIZE 8192
1590 
1591 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1592 #define ELF_NREG 34 /* gprs and pc, sr */
1593 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1594 
1595 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1596                                const CPUOpenRISCState *env)
1597 {
1598     int i;
1599 
1600     for (i = 0; i < 32; i++) {
1601         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1602     }
1603     (*regs)[32] = tswapreg(env->pc);
1604     (*regs)[33] = tswapreg(cpu_get_sr(env));
1605 }
1606 #define ELF_HWCAP 0
1607 #define ELF_PLATFORM NULL
1608 
1609 #endif /* TARGET_OPENRISC */
1610 
1611 #ifdef TARGET_SH4
1612 
1613 #define ELF_CLASS ELFCLASS32
1614 #define ELF_ARCH  EM_SH
1615 
1616 static inline void init_thread(struct target_pt_regs *regs,
1617                                struct image_info *infop)
1618 {
1619     /* Check other registers XXXXX */
1620     regs->pc = infop->entry;
1621     regs->regs[15] = infop->start_stack;
1622 }
1623 
1624 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1625 #define ELF_NREG 23
1626 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1627 
1628 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1629 enum {
1630     TARGET_REG_PC = 16,
1631     TARGET_REG_PR = 17,
1632     TARGET_REG_SR = 18,
1633     TARGET_REG_GBR = 19,
1634     TARGET_REG_MACH = 20,
1635     TARGET_REG_MACL = 21,
1636     TARGET_REG_SYSCALL = 22
1637 };
1638 
1639 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1640                                       const CPUSH4State *env)
1641 {
1642     int i;
1643 
1644     for (i = 0; i < 16; i++) {
1645         (*regs)[i] = tswapreg(env->gregs[i]);
1646     }
1647 
1648     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1649     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1650     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1651     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1652     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1653     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1654     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1655 }
1656 
1657 #define USE_ELF_CORE_DUMP
1658 #define ELF_EXEC_PAGESIZE        4096
1659 
1660 enum {
1661     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1662     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1663     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1664     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1665     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1666     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1667     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1668     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1669     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1670     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1671 };
1672 
1673 #define ELF_HWCAP get_elf_hwcap()
1674 
1675 static uint32_t get_elf_hwcap(void)
1676 {
1677     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1678     uint32_t hwcap = 0;
1679 
1680     hwcap |= SH_CPU_HAS_FPU;
1681 
1682     if (cpu->env.features & SH_FEATURE_SH4A) {
1683         hwcap |= SH_CPU_HAS_LLSC;
1684     }
1685 
1686     return hwcap;
1687 }
1688 
1689 #endif
1690 
1691 #ifdef TARGET_CRIS
1692 
1693 #define ELF_CLASS ELFCLASS32
1694 #define ELF_ARCH  EM_CRIS
1695 
1696 static inline void init_thread(struct target_pt_regs *regs,
1697                                struct image_info *infop)
1698 {
1699     regs->erp = infop->entry;
1700 }
1701 
1702 #define ELF_EXEC_PAGESIZE        8192
1703 
1704 #endif
1705 
1706 #ifdef TARGET_M68K
1707 
1708 #define ELF_CLASS       ELFCLASS32
1709 #define ELF_ARCH        EM_68K
1710 
1711 /* ??? Does this need to do anything?
1712    #define ELF_PLAT_INIT(_r) */
1713 
1714 static inline void init_thread(struct target_pt_regs *regs,
1715                                struct image_info *infop)
1716 {
1717     regs->usp = infop->start_stack;
1718     regs->sr = 0;
1719     regs->pc = infop->entry;
1720 }
1721 
1722 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1723 #define ELF_NREG 20
1724 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1725 
1726 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1727 {
1728     (*regs)[0] = tswapreg(env->dregs[1]);
1729     (*regs)[1] = tswapreg(env->dregs[2]);
1730     (*regs)[2] = tswapreg(env->dregs[3]);
1731     (*regs)[3] = tswapreg(env->dregs[4]);
1732     (*regs)[4] = tswapreg(env->dregs[5]);
1733     (*regs)[5] = tswapreg(env->dregs[6]);
1734     (*regs)[6] = tswapreg(env->dregs[7]);
1735     (*regs)[7] = tswapreg(env->aregs[0]);
1736     (*regs)[8] = tswapreg(env->aregs[1]);
1737     (*regs)[9] = tswapreg(env->aregs[2]);
1738     (*regs)[10] = tswapreg(env->aregs[3]);
1739     (*regs)[11] = tswapreg(env->aregs[4]);
1740     (*regs)[12] = tswapreg(env->aregs[5]);
1741     (*regs)[13] = tswapreg(env->aregs[6]);
1742     (*regs)[14] = tswapreg(env->dregs[0]);
1743     (*regs)[15] = tswapreg(env->aregs[7]);
1744     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1745     (*regs)[17] = tswapreg(env->sr);
1746     (*regs)[18] = tswapreg(env->pc);
1747     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1748 }
1749 
1750 #define USE_ELF_CORE_DUMP
1751 #define ELF_EXEC_PAGESIZE       8192
1752 
1753 #endif
1754 
1755 #ifdef TARGET_ALPHA
1756 
1757 #define ELF_CLASS      ELFCLASS64
1758 #define ELF_ARCH       EM_ALPHA
1759 
1760 static inline void init_thread(struct target_pt_regs *regs,
1761                                struct image_info *infop)
1762 {
1763     regs->pc = infop->entry;
1764     regs->ps = 8;
1765     regs->usp = infop->start_stack;
1766 }
1767 
1768 #define ELF_EXEC_PAGESIZE        8192
1769 
1770 #endif /* TARGET_ALPHA */
1771 
1772 #ifdef TARGET_S390X
1773 
1774 #define ELF_CLASS	ELFCLASS64
1775 #define ELF_DATA	ELFDATA2MSB
1776 #define ELF_ARCH	EM_S390
1777 
1778 #include "elf.h"
1779 
1780 #define ELF_HWCAP get_elf_hwcap()
1781 
1782 #define GET_FEATURE(_feat, _hwcap) \
1783     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1784 
1785 uint32_t get_elf_hwcap(void)
1786 {
1787     /*
1788      * Let's assume we always have esan3 and zarch.
1789      * 31-bit processes can use 64-bit registers (high gprs).
1790      */
1791     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1792 
1793     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1794     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1795     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1796     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1797     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1798         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1799         hwcap |= HWCAP_S390_ETF3EH;
1800     }
1801     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1802     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1803     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1804 
1805     return hwcap;
1806 }
1807 
1808 const char *elf_hwcap_str(uint32_t bit)
1809 {
1810     static const char *hwcap_str[] = {
1811         [HWCAP_S390_NR_ESAN3]     = "esan3",
1812         [HWCAP_S390_NR_ZARCH]     = "zarch",
1813         [HWCAP_S390_NR_STFLE]     = "stfle",
1814         [HWCAP_S390_NR_MSA]       = "msa",
1815         [HWCAP_S390_NR_LDISP]     = "ldisp",
1816         [HWCAP_S390_NR_EIMM]      = "eimm",
1817         [HWCAP_S390_NR_DFP]       = "dfp",
1818         [HWCAP_S390_NR_HPAGE]     = "edat",
1819         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1820         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1821         [HWCAP_S390_NR_TE]        = "te",
1822         [HWCAP_S390_NR_VXRS]      = "vx",
1823         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1824         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1825         [HWCAP_S390_NR_GS]        = "gs",
1826         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1827         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1828         [HWCAP_S390_NR_SORT]      = "sort",
1829         [HWCAP_S390_NR_DFLT]      = "dflt",
1830         [HWCAP_S390_NR_NNPA]      = "nnpa",
1831         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1832         [HWCAP_S390_NR_SIE]       = "sie",
1833     };
1834 
1835     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1836 }
1837 
1838 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1839 {
1840     regs->psw.addr = infop->entry;
1841     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1842                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1843                      PSW_MASK_32;
1844     regs->gprs[15] = infop->start_stack;
1845 }
1846 
1847 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1848 #define ELF_NREG 27
1849 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1850 
1851 enum {
1852     TARGET_REG_PSWM = 0,
1853     TARGET_REG_PSWA = 1,
1854     TARGET_REG_GPRS = 2,
1855     TARGET_REG_ARS = 18,
1856     TARGET_REG_ORIG_R2 = 26,
1857 };
1858 
1859 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1860                                const CPUS390XState *env)
1861 {
1862     int i;
1863     uint32_t *aregs;
1864 
1865     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1866     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1867     for (i = 0; i < 16; i++) {
1868         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1869     }
1870     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1871     for (i = 0; i < 16; i++) {
1872         aregs[i] = tswap32(env->aregs[i]);
1873     }
1874     (*regs)[TARGET_REG_ORIG_R2] = 0;
1875 }
1876 
1877 #define USE_ELF_CORE_DUMP
1878 #define ELF_EXEC_PAGESIZE 4096
1879 
1880 #endif /* TARGET_S390X */
1881 
1882 #ifdef TARGET_RISCV
1883 
1884 #define ELF_ARCH  EM_RISCV
1885 
1886 #ifdef TARGET_RISCV32
1887 #define ELF_CLASS ELFCLASS32
1888 #else
1889 #define ELF_CLASS ELFCLASS64
1890 #endif
1891 
1892 #define ELF_HWCAP get_elf_hwcap()
1893 
1894 static uint32_t get_elf_hwcap(void)
1895 {
1896 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1897     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1898     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1899                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1900                     | MISA_BIT('V');
1901 
1902     return cpu->env.misa_ext & mask;
1903 #undef MISA_BIT
1904 }
1905 
1906 static inline void init_thread(struct target_pt_regs *regs,
1907                                struct image_info *infop)
1908 {
1909     regs->sepc = infop->entry;
1910     regs->sp = infop->start_stack;
1911 }
1912 
1913 #define ELF_EXEC_PAGESIZE 4096
1914 
1915 #endif /* TARGET_RISCV */
1916 
1917 #ifdef TARGET_HPPA
1918 
1919 #define ELF_CLASS       ELFCLASS32
1920 #define ELF_ARCH        EM_PARISC
1921 #define ELF_PLATFORM    "PARISC"
1922 #define STACK_GROWS_DOWN 0
1923 #define STACK_ALIGNMENT  64
1924 
1925 static inline void init_thread(struct target_pt_regs *regs,
1926                                struct image_info *infop)
1927 {
1928     regs->iaoq[0] = infop->entry;
1929     regs->iaoq[1] = infop->entry + 4;
1930     regs->gr[23] = 0;
1931     regs->gr[24] = infop->argv;
1932     regs->gr[25] = infop->argc;
1933     /* The top-of-stack contains a linkage buffer.  */
1934     regs->gr[30] = infop->start_stack + 64;
1935     regs->gr[31] = infop->entry;
1936 }
1937 
1938 #define LO_COMMPAGE  0
1939 
1940 static bool init_guest_commpage(void)
1941 {
1942     void *want = g2h_untagged(LO_COMMPAGE);
1943     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1944                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1945 
1946     if (addr == MAP_FAILED) {
1947         perror("Allocating guest commpage");
1948         exit(EXIT_FAILURE);
1949     }
1950     if (addr != want) {
1951         return false;
1952     }
1953 
1954     /*
1955      * On Linux, page zero is normally marked execute only + gateway.
1956      * Normal read or write is supposed to fail (thus PROT_NONE above),
1957      * but specific offsets have kernel code mapped to raise permissions
1958      * and implement syscalls.  Here, simply mark the page executable.
1959      * Special case the entry points during translation (see do_page_zero).
1960      */
1961     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1962                    PAGE_EXEC | PAGE_VALID);
1963     return true;
1964 }
1965 
1966 #endif /* TARGET_HPPA */
1967 
1968 #ifdef TARGET_XTENSA
1969 
1970 #define ELF_CLASS       ELFCLASS32
1971 #define ELF_ARCH        EM_XTENSA
1972 
1973 static inline void init_thread(struct target_pt_regs *regs,
1974                                struct image_info *infop)
1975 {
1976     regs->windowbase = 0;
1977     regs->windowstart = 1;
1978     regs->areg[1] = infop->start_stack;
1979     regs->pc = infop->entry;
1980     if (info_is_fdpic(infop)) {
1981         regs->areg[4] = infop->loadmap_addr;
1982         regs->areg[5] = infop->interpreter_loadmap_addr;
1983         if (infop->interpreter_loadmap_addr) {
1984             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1985         } else {
1986             regs->areg[6] = infop->pt_dynamic_addr;
1987         }
1988     }
1989 }
1990 
1991 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1992 #define ELF_NREG 128
1993 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1994 
1995 enum {
1996     TARGET_REG_PC,
1997     TARGET_REG_PS,
1998     TARGET_REG_LBEG,
1999     TARGET_REG_LEND,
2000     TARGET_REG_LCOUNT,
2001     TARGET_REG_SAR,
2002     TARGET_REG_WINDOWSTART,
2003     TARGET_REG_WINDOWBASE,
2004     TARGET_REG_THREADPTR,
2005     TARGET_REG_AR0 = 64,
2006 };
2007 
2008 static void elf_core_copy_regs(target_elf_gregset_t *regs,
2009                                const CPUXtensaState *env)
2010 {
2011     unsigned i;
2012 
2013     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
2014     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
2015     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
2016     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
2017     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
2018     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
2019     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
2020     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
2021     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
2022     xtensa_sync_phys_from_window((CPUXtensaState *)env);
2023     for (i = 0; i < env->config->nareg; ++i) {
2024         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
2025     }
2026 }
2027 
2028 #define USE_ELF_CORE_DUMP
2029 #define ELF_EXEC_PAGESIZE       4096
2030 
2031 #endif /* TARGET_XTENSA */
2032 
2033 #ifdef TARGET_HEXAGON
2034 
2035 #define ELF_CLASS       ELFCLASS32
2036 #define ELF_ARCH        EM_HEXAGON
2037 
2038 static inline void init_thread(struct target_pt_regs *regs,
2039                                struct image_info *infop)
2040 {
2041     regs->sepc = infop->entry;
2042     regs->sp = infop->start_stack;
2043 }
2044 
2045 #endif /* TARGET_HEXAGON */
2046 
2047 #ifndef ELF_BASE_PLATFORM
2048 #define ELF_BASE_PLATFORM (NULL)
2049 #endif
2050 
2051 #ifndef ELF_PLATFORM
2052 #define ELF_PLATFORM (NULL)
2053 #endif
2054 
2055 #ifndef ELF_MACHINE
2056 #define ELF_MACHINE ELF_ARCH
2057 #endif
2058 
2059 #ifndef elf_check_arch
2060 #define elf_check_arch(x) ((x) == ELF_ARCH)
2061 #endif
2062 
2063 #ifndef elf_check_abi
2064 #define elf_check_abi(x) (1)
2065 #endif
2066 
2067 #ifndef ELF_HWCAP
2068 #define ELF_HWCAP 0
2069 #endif
2070 
2071 #ifndef STACK_GROWS_DOWN
2072 #define STACK_GROWS_DOWN 1
2073 #endif
2074 
2075 #ifndef STACK_ALIGNMENT
2076 #define STACK_ALIGNMENT 16
2077 #endif
2078 
2079 #ifdef TARGET_ABI32
2080 #undef ELF_CLASS
2081 #define ELF_CLASS ELFCLASS32
2082 #undef bswaptls
2083 #define bswaptls(ptr) bswap32s(ptr)
2084 #endif
2085 
2086 #ifndef EXSTACK_DEFAULT
2087 #define EXSTACK_DEFAULT false
2088 #endif
2089 
2090 #include "elf.h"
2091 
2092 /* We must delay the following stanzas until after "elf.h". */
2093 #if defined(TARGET_AARCH64)
2094 
2095 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2096                                     const uint32_t *data,
2097                                     struct image_info *info,
2098                                     Error **errp)
2099 {
2100     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2101         if (pr_datasz != sizeof(uint32_t)) {
2102             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2103             return false;
2104         }
2105         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2106         info->note_flags = *data;
2107     }
2108     return true;
2109 }
2110 #define ARCH_USE_GNU_PROPERTY 1
2111 
2112 #else
2113 
2114 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2115                                     const uint32_t *data,
2116                                     struct image_info *info,
2117                                     Error **errp)
2118 {
2119     g_assert_not_reached();
2120 }
2121 #define ARCH_USE_GNU_PROPERTY 0
2122 
2123 #endif
2124 
2125 struct exec
2126 {
2127     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2128     unsigned int a_text;   /* length of text, in bytes */
2129     unsigned int a_data;   /* length of data, in bytes */
2130     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2131     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2132     unsigned int a_entry;  /* start address */
2133     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2134     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2135 };
2136 
2137 
2138 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2139 #define OMAGIC 0407
2140 #define NMAGIC 0410
2141 #define ZMAGIC 0413
2142 #define QMAGIC 0314
2143 
2144 #define DLINFO_ITEMS 16
2145 
2146 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2147 {
2148     memcpy(to, from, n);
2149 }
2150 
2151 #ifdef BSWAP_NEEDED
2152 static void bswap_ehdr(struct elfhdr *ehdr)
2153 {
2154     bswap16s(&ehdr->e_type);            /* Object file type */
2155     bswap16s(&ehdr->e_machine);         /* Architecture */
2156     bswap32s(&ehdr->e_version);         /* Object file version */
2157     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2158     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2159     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2160     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2161     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2162     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2163     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2164     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2165     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2166     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2167 }
2168 
2169 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2170 {
2171     int i;
2172     for (i = 0; i < phnum; ++i, ++phdr) {
2173         bswap32s(&phdr->p_type);        /* Segment type */
2174         bswap32s(&phdr->p_flags);       /* Segment flags */
2175         bswaptls(&phdr->p_offset);      /* Segment file offset */
2176         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2177         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2178         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2179         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2180         bswaptls(&phdr->p_align);       /* Segment alignment */
2181     }
2182 }
2183 
2184 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2185 {
2186     int i;
2187     for (i = 0; i < shnum; ++i, ++shdr) {
2188         bswap32s(&shdr->sh_name);
2189         bswap32s(&shdr->sh_type);
2190         bswaptls(&shdr->sh_flags);
2191         bswaptls(&shdr->sh_addr);
2192         bswaptls(&shdr->sh_offset);
2193         bswaptls(&shdr->sh_size);
2194         bswap32s(&shdr->sh_link);
2195         bswap32s(&shdr->sh_info);
2196         bswaptls(&shdr->sh_addralign);
2197         bswaptls(&shdr->sh_entsize);
2198     }
2199 }
2200 
2201 static void bswap_sym(struct elf_sym *sym)
2202 {
2203     bswap32s(&sym->st_name);
2204     bswaptls(&sym->st_value);
2205     bswaptls(&sym->st_size);
2206     bswap16s(&sym->st_shndx);
2207 }
2208 
2209 #ifdef TARGET_MIPS
2210 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2211 {
2212     bswap16s(&abiflags->version);
2213     bswap32s(&abiflags->ases);
2214     bswap32s(&abiflags->isa_ext);
2215     bswap32s(&abiflags->flags1);
2216     bswap32s(&abiflags->flags2);
2217 }
2218 #endif
2219 #else
2220 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2221 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2222 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2223 static inline void bswap_sym(struct elf_sym *sym) { }
2224 #ifdef TARGET_MIPS
2225 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2226 #endif
2227 #endif
2228 
2229 #ifdef USE_ELF_CORE_DUMP
2230 static int elf_core_dump(int, const CPUArchState *);
2231 #endif /* USE_ELF_CORE_DUMP */
2232 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2233                          abi_ulong load_bias);
2234 
2235 /* Verify the portions of EHDR within E_IDENT for the target.
2236    This can be performed before bswapping the entire header.  */
2237 static bool elf_check_ident(struct elfhdr *ehdr)
2238 {
2239     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2240             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2241             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2242             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2243             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2244             && ehdr->e_ident[EI_DATA] == ELF_DATA
2245             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2246 }
2247 
2248 /* Verify the portions of EHDR outside of E_IDENT for the target.
2249    This has to wait until after bswapping the header.  */
2250 static bool elf_check_ehdr(struct elfhdr *ehdr)
2251 {
2252     return (elf_check_arch(ehdr->e_machine)
2253             && elf_check_abi(ehdr->e_flags)
2254             && ehdr->e_ehsize == sizeof(struct elfhdr)
2255             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2256             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2257 }
2258 
2259 /*
2260  * 'copy_elf_strings()' copies argument/envelope strings from user
2261  * memory to free pages in kernel mem. These are in a format ready
2262  * to be put directly into the top of new user memory.
2263  *
2264  */
2265 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2266                                   abi_ulong p, abi_ulong stack_limit)
2267 {
2268     char *tmp;
2269     int len, i;
2270     abi_ulong top = p;
2271 
2272     if (!p) {
2273         return 0;       /* bullet-proofing */
2274     }
2275 
2276     if (STACK_GROWS_DOWN) {
2277         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2278         for (i = argc - 1; i >= 0; --i) {
2279             tmp = argv[i];
2280             if (!tmp) {
2281                 fprintf(stderr, "VFS: argc is wrong");
2282                 exit(-1);
2283             }
2284             len = strlen(tmp) + 1;
2285             tmp += len;
2286 
2287             if (len > (p - stack_limit)) {
2288                 return 0;
2289             }
2290             while (len) {
2291                 int bytes_to_copy = (len > offset) ? offset : len;
2292                 tmp -= bytes_to_copy;
2293                 p -= bytes_to_copy;
2294                 offset -= bytes_to_copy;
2295                 len -= bytes_to_copy;
2296 
2297                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2298 
2299                 if (offset == 0) {
2300                     memcpy_to_target(p, scratch, top - p);
2301                     top = p;
2302                     offset = TARGET_PAGE_SIZE;
2303                 }
2304             }
2305         }
2306         if (p != top) {
2307             memcpy_to_target(p, scratch + offset, top - p);
2308         }
2309     } else {
2310         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2311         for (i = 0; i < argc; ++i) {
2312             tmp = argv[i];
2313             if (!tmp) {
2314                 fprintf(stderr, "VFS: argc is wrong");
2315                 exit(-1);
2316             }
2317             len = strlen(tmp) + 1;
2318             if (len > (stack_limit - p)) {
2319                 return 0;
2320             }
2321             while (len) {
2322                 int bytes_to_copy = (len > remaining) ? remaining : len;
2323 
2324                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2325 
2326                 tmp += bytes_to_copy;
2327                 remaining -= bytes_to_copy;
2328                 p += bytes_to_copy;
2329                 len -= bytes_to_copy;
2330 
2331                 if (remaining == 0) {
2332                     memcpy_to_target(top, scratch, p - top);
2333                     top = p;
2334                     remaining = TARGET_PAGE_SIZE;
2335                 }
2336             }
2337         }
2338         if (p != top) {
2339             memcpy_to_target(top, scratch, p - top);
2340         }
2341     }
2342 
2343     return p;
2344 }
2345 
2346 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2347  * argument/environment space. Newer kernels (>2.6.33) allow more,
2348  * dependent on stack size, but guarantee at least 32 pages for
2349  * backwards compatibility.
2350  */
2351 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2352 
2353 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2354                                  struct image_info *info)
2355 {
2356     abi_ulong size, error, guard;
2357     int prot;
2358 
2359     size = guest_stack_size;
2360     if (size < STACK_LOWER_LIMIT) {
2361         size = STACK_LOWER_LIMIT;
2362     }
2363 
2364     if (STACK_GROWS_DOWN) {
2365         guard = TARGET_PAGE_SIZE;
2366         if (guard < qemu_real_host_page_size()) {
2367             guard = qemu_real_host_page_size();
2368         }
2369     } else {
2370         /* no guard page for hppa target where stack grows upwards. */
2371         guard = 0;
2372     }
2373 
2374     prot = PROT_READ | PROT_WRITE;
2375     if (info->exec_stack) {
2376         prot |= PROT_EXEC;
2377     }
2378     error = target_mmap(0, size + guard, prot,
2379                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2380     if (error == -1) {
2381         perror("mmap stack");
2382         exit(-1);
2383     }
2384 
2385     /* We reserve one extra page at the top of the stack as guard.  */
2386     if (STACK_GROWS_DOWN) {
2387         target_mprotect(error, guard, PROT_NONE);
2388         info->stack_limit = error + guard;
2389         return info->stack_limit + size - sizeof(void *);
2390     } else {
2391         info->stack_limit = error + size;
2392         return error;
2393     }
2394 }
2395 
2396 /**
2397  * zero_bss:
2398  *
2399  * Map and zero the bss.  We need to explicitly zero any fractional pages
2400  * after the data section (i.e. bss).  Return false on mapping failure.
2401  */
2402 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2403                      int prot, Error **errp)
2404 {
2405     abi_ulong align_bss;
2406 
2407     /* We only expect writable bss; the code segment shouldn't need this. */
2408     if (!(prot & PROT_WRITE)) {
2409         error_setg(errp, "PT_LOAD with non-writable bss");
2410         return false;
2411     }
2412 
2413     align_bss = TARGET_PAGE_ALIGN(start_bss);
2414     end_bss = TARGET_PAGE_ALIGN(end_bss);
2415 
2416     if (start_bss < align_bss) {
2417         int flags = page_get_flags(start_bss);
2418 
2419         if (!(flags & PAGE_BITS)) {
2420             /*
2421              * The whole address space of the executable was reserved
2422              * at the start, therefore all pages will be VALID.
2423              * But assuming there are no PROT_NONE PT_LOAD segments,
2424              * a PROT_NONE page means no data all bss, and we can
2425              * simply extend the new anon mapping back to the start
2426              * of the page of bss.
2427              */
2428             align_bss -= TARGET_PAGE_SIZE;
2429         } else {
2430             /*
2431              * The start of the bss shares a page with something.
2432              * The only thing that we expect is the data section,
2433              * which would already be marked writable.
2434              * Overlapping the RX code segment seems malformed.
2435              */
2436             if (!(flags & PAGE_WRITE)) {
2437                 error_setg(errp, "PT_LOAD with bss overlapping "
2438                            "non-writable page");
2439                 return false;
2440             }
2441 
2442             /* The page is already mapped and writable. */
2443             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2444         }
2445     }
2446 
2447     if (align_bss < end_bss &&
2448         target_mmap(align_bss, end_bss - align_bss, prot,
2449                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2450         error_setg_errno(errp, errno, "Error mapping bss");
2451         return false;
2452     }
2453     return true;
2454 }
2455 
2456 #if defined(TARGET_ARM)
2457 static int elf_is_fdpic(struct elfhdr *exec)
2458 {
2459     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2460 }
2461 #elif defined(TARGET_XTENSA)
2462 static int elf_is_fdpic(struct elfhdr *exec)
2463 {
2464     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2465 }
2466 #else
2467 /* Default implementation, always false.  */
2468 static int elf_is_fdpic(struct elfhdr *exec)
2469 {
2470     return 0;
2471 }
2472 #endif
2473 
2474 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2475 {
2476     uint16_t n;
2477     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2478 
2479     /* elf32_fdpic_loadseg */
2480     n = info->nsegs;
2481     while (n--) {
2482         sp -= 12;
2483         put_user_u32(loadsegs[n].addr, sp+0);
2484         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2485         put_user_u32(loadsegs[n].p_memsz, sp+8);
2486     }
2487 
2488     /* elf32_fdpic_loadmap */
2489     sp -= 4;
2490     put_user_u16(0, sp+0); /* version */
2491     put_user_u16(info->nsegs, sp+2); /* nsegs */
2492 
2493     info->personality = PER_LINUX_FDPIC;
2494     info->loadmap_addr = sp;
2495 
2496     return sp;
2497 }
2498 
2499 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2500                                    struct elfhdr *exec,
2501                                    struct image_info *info,
2502                                    struct image_info *interp_info,
2503                                    struct image_info *vdso_info)
2504 {
2505     abi_ulong sp;
2506     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2507     int size;
2508     int i;
2509     abi_ulong u_rand_bytes;
2510     uint8_t k_rand_bytes[16];
2511     abi_ulong u_platform, u_base_platform;
2512     const char *k_platform, *k_base_platform;
2513     const int n = sizeof(elf_addr_t);
2514 
2515     sp = p;
2516 
2517     /* Needs to be before we load the env/argc/... */
2518     if (elf_is_fdpic(exec)) {
2519         /* Need 4 byte alignment for these structs */
2520         sp &= ~3;
2521         sp = loader_build_fdpic_loadmap(info, sp);
2522         info->other_info = interp_info;
2523         if (interp_info) {
2524             interp_info->other_info = info;
2525             sp = loader_build_fdpic_loadmap(interp_info, sp);
2526             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2527             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2528         } else {
2529             info->interpreter_loadmap_addr = 0;
2530             info->interpreter_pt_dynamic_addr = 0;
2531         }
2532     }
2533 
2534     u_base_platform = 0;
2535     k_base_platform = ELF_BASE_PLATFORM;
2536     if (k_base_platform) {
2537         size_t len = strlen(k_base_platform) + 1;
2538         if (STACK_GROWS_DOWN) {
2539             sp -= (len + n - 1) & ~(n - 1);
2540             u_base_platform = sp;
2541             /* FIXME - check return value of memcpy_to_target() for failure */
2542             memcpy_to_target(sp, k_base_platform, len);
2543         } else {
2544             memcpy_to_target(sp, k_base_platform, len);
2545             u_base_platform = sp;
2546             sp += len + 1;
2547         }
2548     }
2549 
2550     u_platform = 0;
2551     k_platform = ELF_PLATFORM;
2552     if (k_platform) {
2553         size_t len = strlen(k_platform) + 1;
2554         if (STACK_GROWS_DOWN) {
2555             sp -= (len + n - 1) & ~(n - 1);
2556             u_platform = sp;
2557             /* FIXME - check return value of memcpy_to_target() for failure */
2558             memcpy_to_target(sp, k_platform, len);
2559         } else {
2560             memcpy_to_target(sp, k_platform, len);
2561             u_platform = sp;
2562             sp += len + 1;
2563         }
2564     }
2565 
2566     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2567      * the argv and envp pointers.
2568      */
2569     if (STACK_GROWS_DOWN) {
2570         sp = QEMU_ALIGN_DOWN(sp, 16);
2571     } else {
2572         sp = QEMU_ALIGN_UP(sp, 16);
2573     }
2574 
2575     /*
2576      * Generate 16 random bytes for userspace PRNG seeding.
2577      */
2578     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2579     if (STACK_GROWS_DOWN) {
2580         sp -= 16;
2581         u_rand_bytes = sp;
2582         /* FIXME - check return value of memcpy_to_target() for failure */
2583         memcpy_to_target(sp, k_rand_bytes, 16);
2584     } else {
2585         memcpy_to_target(sp, k_rand_bytes, 16);
2586         u_rand_bytes = sp;
2587         sp += 16;
2588     }
2589 
2590     size = (DLINFO_ITEMS + 1) * 2;
2591     if (k_base_platform) {
2592         size += 2;
2593     }
2594     if (k_platform) {
2595         size += 2;
2596     }
2597     if (vdso_info) {
2598         size += 2;
2599     }
2600 #ifdef DLINFO_ARCH_ITEMS
2601     size += DLINFO_ARCH_ITEMS * 2;
2602 #endif
2603 #ifdef ELF_HWCAP2
2604     size += 2;
2605 #endif
2606     info->auxv_len = size * n;
2607 
2608     size += envc + argc + 2;
2609     size += 1;  /* argc itself */
2610     size *= n;
2611 
2612     /* Allocate space and finalize stack alignment for entry now.  */
2613     if (STACK_GROWS_DOWN) {
2614         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2615         sp = u_argc;
2616     } else {
2617         u_argc = sp;
2618         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2619     }
2620 
2621     u_argv = u_argc + n;
2622     u_envp = u_argv + (argc + 1) * n;
2623     u_auxv = u_envp + (envc + 1) * n;
2624     info->saved_auxv = u_auxv;
2625     info->argc = argc;
2626     info->envc = envc;
2627     info->argv = u_argv;
2628     info->envp = u_envp;
2629 
2630     /* This is correct because Linux defines
2631      * elf_addr_t as Elf32_Off / Elf64_Off
2632      */
2633 #define NEW_AUX_ENT(id, val) do {               \
2634         put_user_ual(id, u_auxv);  u_auxv += n; \
2635         put_user_ual(val, u_auxv); u_auxv += n; \
2636     } while(0)
2637 
2638 #ifdef ARCH_DLINFO
2639     /*
2640      * ARCH_DLINFO must come first so platform specific code can enforce
2641      * special alignment requirements on the AUXV if necessary (eg. PPC).
2642      */
2643     ARCH_DLINFO;
2644 #endif
2645     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2646      * on info->auxv_len will trigger.
2647      */
2648     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2649     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2650     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2651     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2652         /* Target doesn't support host page size alignment */
2653         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2654     } else {
2655         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2656                                                qemu_host_page_size)));
2657     }
2658     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2659     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2660     NEW_AUX_ENT(AT_ENTRY, info->entry);
2661     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2662     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2663     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2664     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2665     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2666     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2667     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2668     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2669     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2670 
2671 #ifdef ELF_HWCAP2
2672     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2673 #endif
2674 
2675     if (u_base_platform) {
2676         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2677     }
2678     if (u_platform) {
2679         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2680     }
2681     if (vdso_info) {
2682         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2683     }
2684     NEW_AUX_ENT (AT_NULL, 0);
2685 #undef NEW_AUX_ENT
2686 
2687     /* Check that our initial calculation of the auxv length matches how much
2688      * we actually put into it.
2689      */
2690     assert(info->auxv_len == u_auxv - info->saved_auxv);
2691 
2692     put_user_ual(argc, u_argc);
2693 
2694     p = info->arg_strings;
2695     for (i = 0; i < argc; ++i) {
2696         put_user_ual(p, u_argv);
2697         u_argv += n;
2698         p += target_strlen(p) + 1;
2699     }
2700     put_user_ual(0, u_argv);
2701 
2702     p = info->env_strings;
2703     for (i = 0; i < envc; ++i) {
2704         put_user_ual(p, u_envp);
2705         u_envp += n;
2706         p += target_strlen(p) + 1;
2707     }
2708     put_user_ual(0, u_envp);
2709 
2710     return sp;
2711 }
2712 
2713 #if defined(HI_COMMPAGE)
2714 #define LO_COMMPAGE -1
2715 #elif defined(LO_COMMPAGE)
2716 #define HI_COMMPAGE 0
2717 #else
2718 #define HI_COMMPAGE 0
2719 #define LO_COMMPAGE -1
2720 #ifndef INIT_GUEST_COMMPAGE
2721 #define init_guest_commpage() true
2722 #endif
2723 #endif
2724 
2725 /**
2726  * pgb_try_mmap:
2727  * @addr: host start address
2728  * @addr_last: host last address
2729  * @keep: do not unmap the probe region
2730  *
2731  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2732  * return 0 if it is not available to map, and -1 on mmap error.
2733  * If @keep, the region is left mapped on success, otherwise unmapped.
2734  */
2735 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2736 {
2737     size_t size = addr_last - addr + 1;
2738     void *p = mmap((void *)addr, size, PROT_NONE,
2739                    MAP_ANONYMOUS | MAP_PRIVATE |
2740                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2741     int ret;
2742 
2743     if (p == MAP_FAILED) {
2744         return errno == EEXIST ? 0 : -1;
2745     }
2746     ret = p == (void *)addr;
2747     if (!keep || !ret) {
2748         munmap(p, size);
2749     }
2750     return ret;
2751 }
2752 
2753 /**
2754  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2755  * @addr: host address
2756  * @addr_last: host last address
2757  * @brk: host brk
2758  *
2759  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2760  */
2761 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2762                                  uintptr_t brk, bool keep)
2763 {
2764     uintptr_t brk_last = brk + 16 * MiB - 1;
2765 
2766     /* Do not map anything close to the host brk. */
2767     if (addr <= brk_last && brk <= addr_last) {
2768         return 0;
2769     }
2770     return pgb_try_mmap(addr, addr_last, keep);
2771 }
2772 
2773 /**
2774  * pgb_try_mmap_set:
2775  * @ga: set of guest addrs
2776  * @base: guest_base
2777  * @brk: host brk
2778  *
2779  * Return true if all @ga can be mapped by the host at @base.
2780  * On success, retain the mapping at index 0 for reserved_va.
2781  */
2782 
2783 typedef struct PGBAddrs {
2784     uintptr_t bounds[3][2]; /* start/last pairs */
2785     int nbounds;
2786 } PGBAddrs;
2787 
2788 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2789 {
2790     for (int i = ga->nbounds - 1; i >= 0; --i) {
2791         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2792                                   ga->bounds[i][1] + base,
2793                                   brk, i == 0 && reserved_va) <= 0) {
2794             return false;
2795         }
2796     }
2797     return true;
2798 }
2799 
2800 /**
2801  * pgb_addr_set:
2802  * @ga: output set of guest addrs
2803  * @guest_loaddr: guest image low address
2804  * @guest_loaddr: guest image high address
2805  * @identity: create for identity mapping
2806  *
2807  * Fill in @ga with the image, COMMPAGE and NULL page.
2808  */
2809 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2810                          abi_ulong guest_hiaddr, bool try_identity)
2811 {
2812     int n;
2813 
2814     /*
2815      * With a low commpage, or a guest mapped very low,
2816      * we may not be able to use the identity map.
2817      */
2818     if (try_identity) {
2819         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2820             return false;
2821         }
2822         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2823             return false;
2824         }
2825     }
2826 
2827     memset(ga, 0, sizeof(*ga));
2828     n = 0;
2829 
2830     if (reserved_va) {
2831         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2832         ga->bounds[n][1] = reserved_va;
2833         n++;
2834         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2835     } else {
2836         /* Add any LO_COMMPAGE or NULL page. */
2837         if (LO_COMMPAGE != -1) {
2838             ga->bounds[n][0] = 0;
2839             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2840             n++;
2841         } else if (!try_identity) {
2842             ga->bounds[n][0] = 0;
2843             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2844             n++;
2845         }
2846 
2847         /* Add the guest image for ET_EXEC. */
2848         if (guest_loaddr) {
2849             ga->bounds[n][0] = guest_loaddr;
2850             ga->bounds[n][1] = guest_hiaddr;
2851             n++;
2852         }
2853     }
2854 
2855     /*
2856      * Temporarily disable
2857      *   "comparison is always false due to limited range of data type"
2858      * due to comparison between unsigned and (possible) 0.
2859      */
2860 #pragma GCC diagnostic push
2861 #pragma GCC diagnostic ignored "-Wtype-limits"
2862 
2863     /* Add any HI_COMMPAGE not covered by reserved_va. */
2864     if (reserved_va < HI_COMMPAGE) {
2865         ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
2866         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2867         n++;
2868     }
2869 
2870 #pragma GCC diagnostic pop
2871 
2872     ga->nbounds = n;
2873     return true;
2874 }
2875 
2876 static void pgb_fail_in_use(const char *image_name)
2877 {
2878     error_report("%s: requires virtual address space that is in use "
2879                  "(omit the -B option or choose a different value)",
2880                  image_name);
2881     exit(EXIT_FAILURE);
2882 }
2883 
2884 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2885                       uintptr_t guest_hiaddr, uintptr_t align)
2886 {
2887     PGBAddrs ga;
2888     uintptr_t brk = (uintptr_t)sbrk(0);
2889 
2890     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2891         fprintf(stderr, "Requested guest base %p does not satisfy "
2892                 "host minimum alignment (0x%" PRIxPTR ")\n",
2893                 (void *)guest_base, align);
2894         exit(EXIT_FAILURE);
2895     }
2896 
2897     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2898         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2899         pgb_fail_in_use(image_name);
2900     }
2901 }
2902 
2903 /**
2904  * pgb_find_fallback:
2905  *
2906  * This is a fallback method for finding holes in the host address space
2907  * if we don't have the benefit of being able to access /proc/self/map.
2908  * It can potentially take a very long time as we can only dumbly iterate
2909  * up the host address space seeing if the allocation would work.
2910  */
2911 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2912                                    uintptr_t brk)
2913 {
2914     /* TODO: come up with a better estimate of how much to skip. */
2915     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2916 
2917     for (uintptr_t base = skip; ; base += skip) {
2918         base = ROUND_UP(base, align);
2919         if (pgb_try_mmap_set(ga, base, brk)) {
2920             return base;
2921         }
2922         if (base >= -skip) {
2923             return -1;
2924         }
2925     }
2926 }
2927 
2928 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2929                                IntervalTreeRoot *root)
2930 {
2931     for (int i = ga->nbounds - 1; i >= 0; --i) {
2932         uintptr_t s = base + ga->bounds[i][0];
2933         uintptr_t l = base + ga->bounds[i][1];
2934         IntervalTreeNode *n;
2935 
2936         if (l < s) {
2937             /* Wraparound. Skip to advance S to mmap_min_addr. */
2938             return mmap_min_addr - s;
2939         }
2940 
2941         n = interval_tree_iter_first(root, s, l);
2942         if (n != NULL) {
2943             /* Conflict.  Skip to advance S to LAST + 1. */
2944             return n->last - s + 1;
2945         }
2946     }
2947     return 0;  /* success */
2948 }
2949 
2950 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2951                                 uintptr_t align, uintptr_t brk)
2952 {
2953     uintptr_t last = mmap_min_addr;
2954     uintptr_t base, skip;
2955 
2956     while (true) {
2957         base = ROUND_UP(last, align);
2958         if (base < last) {
2959             return -1;
2960         }
2961 
2962         skip = pgb_try_itree(ga, base, root);
2963         if (skip == 0) {
2964             break;
2965         }
2966 
2967         last = base + skip;
2968         if (last < base) {
2969             return -1;
2970         }
2971     }
2972 
2973     /*
2974      * We've chosen 'base' based on holes in the interval tree,
2975      * but we don't yet know if it is a valid host address.
2976      * Because it is the first matching hole, if the host addresses
2977      * are invalid we know there are no further matches.
2978      */
2979     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2980 }
2981 
2982 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2983                         uintptr_t guest_hiaddr, uintptr_t align)
2984 {
2985     IntervalTreeRoot *root;
2986     uintptr_t brk, ret;
2987     PGBAddrs ga;
2988 
2989     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2990 
2991     /* Try the identity map first. */
2992     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2993         brk = (uintptr_t)sbrk(0);
2994         if (pgb_try_mmap_set(&ga, 0, brk)) {
2995             guest_base = 0;
2996             return;
2997         }
2998     }
2999 
3000     /*
3001      * Rebuild the address set for non-identity map.
3002      * This differs in the mapping of the guest NULL page.
3003      */
3004     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
3005 
3006     root = read_self_maps();
3007 
3008     /* Read brk after we've read the maps, which will malloc. */
3009     brk = (uintptr_t)sbrk(0);
3010 
3011     if (!root) {
3012         ret = pgb_find_fallback(&ga, align, brk);
3013     } else {
3014         /*
3015          * Reserve the area close to the host brk.
3016          * This will be freed with the rest of the tree.
3017          */
3018         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
3019         b->start = brk;
3020         b->last = brk + 16 * MiB - 1;
3021         interval_tree_insert(b, root);
3022 
3023         ret = pgb_find_itree(&ga, root, align, brk);
3024         free_self_maps(root);
3025     }
3026 
3027     if (ret == -1) {
3028         int w = TARGET_LONG_BITS / 4;
3029 
3030         error_report("%s: Unable to find a guest_base to satisfy all "
3031                      "guest address mapping requirements", image_name);
3032 
3033         for (int i = 0; i < ga.nbounds; ++i) {
3034             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
3035                          w, (uint64_t)ga.bounds[i][0],
3036                          w, (uint64_t)ga.bounds[i][1]);
3037         }
3038         exit(EXIT_FAILURE);
3039     }
3040     guest_base = ret;
3041 }
3042 
3043 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3044                       abi_ulong guest_hiaddr)
3045 {
3046     /* In order to use host shmat, we must be able to honor SHMLBA.  */
3047     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
3048 
3049     /* Sanity check the guest binary. */
3050     if (reserved_va) {
3051         if (guest_hiaddr > reserved_va) {
3052             error_report("%s: requires more than reserved virtual "
3053                          "address space (0x%" PRIx64 " > 0x%lx)",
3054                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3055             exit(EXIT_FAILURE);
3056         }
3057     } else {
3058         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3059             error_report("%s: requires more virtual address space "
3060                          "than the host can provide (0x%" PRIx64 ")",
3061                          image_name, (uint64_t)guest_hiaddr + 1);
3062             exit(EXIT_FAILURE);
3063         }
3064     }
3065 
3066     if (have_guest_base) {
3067         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3068     } else {
3069         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3070     }
3071 
3072     /* Reserve and initialize the commpage. */
3073     if (!init_guest_commpage()) {
3074         /* We have already probed for the commpage being free. */
3075         g_assert_not_reached();
3076     }
3077 
3078     assert(QEMU_IS_ALIGNED(guest_base, align));
3079     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3080                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3081 }
3082 
3083 enum {
3084     /* The string "GNU\0" as a magic number. */
3085     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3086     NOTE_DATA_SZ = 1 * KiB,
3087     NOTE_NAME_SZ = 4,
3088     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3089 };
3090 
3091 /*
3092  * Process a single gnu_property entry.
3093  * Return false for error.
3094  */
3095 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3096                                struct image_info *info, bool have_prev_type,
3097                                uint32_t *prev_type, Error **errp)
3098 {
3099     uint32_t pr_type, pr_datasz, step;
3100 
3101     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3102         goto error_data;
3103     }
3104     datasz -= *off;
3105     data += *off / sizeof(uint32_t);
3106 
3107     if (datasz < 2 * sizeof(uint32_t)) {
3108         goto error_data;
3109     }
3110     pr_type = data[0];
3111     pr_datasz = data[1];
3112     data += 2;
3113     datasz -= 2 * sizeof(uint32_t);
3114     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3115     if (step > datasz) {
3116         goto error_data;
3117     }
3118 
3119     /* Properties are supposed to be unique and sorted on pr_type. */
3120     if (have_prev_type && pr_type <= *prev_type) {
3121         if (pr_type == *prev_type) {
3122             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3123         } else {
3124             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3125         }
3126         return false;
3127     }
3128     *prev_type = pr_type;
3129 
3130     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3131         return false;
3132     }
3133 
3134     *off += 2 * sizeof(uint32_t) + step;
3135     return true;
3136 
3137  error_data:
3138     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3139     return false;
3140 }
3141 
3142 /* Process NT_GNU_PROPERTY_TYPE_0. */
3143 static bool parse_elf_properties(const ImageSource *src,
3144                                  struct image_info *info,
3145                                  const struct elf_phdr *phdr,
3146                                  Error **errp)
3147 {
3148     union {
3149         struct elf_note nhdr;
3150         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3151     } note;
3152 
3153     int n, off, datasz;
3154     bool have_prev_type;
3155     uint32_t prev_type;
3156 
3157     /* Unless the arch requires properties, ignore them. */
3158     if (!ARCH_USE_GNU_PROPERTY) {
3159         return true;
3160     }
3161 
3162     /* If the properties are crazy large, that's too bad. */
3163     n = phdr->p_filesz;
3164     if (n > sizeof(note)) {
3165         error_setg(errp, "PT_GNU_PROPERTY too large");
3166         return false;
3167     }
3168     if (n < sizeof(note.nhdr)) {
3169         error_setg(errp, "PT_GNU_PROPERTY too small");
3170         return false;
3171     }
3172 
3173     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3174         return false;
3175     }
3176 
3177     /*
3178      * The contents of a valid PT_GNU_PROPERTY is a sequence
3179      * of uint32_t -- swap them all now.
3180      */
3181 #ifdef BSWAP_NEEDED
3182     for (int i = 0; i < n / 4; i++) {
3183         bswap32s(note.data + i);
3184     }
3185 #endif
3186 
3187     /*
3188      * Note that nhdr is 3 words, and that the "name" described by namesz
3189      * immediately follows nhdr and is thus at the 4th word.  Further, all
3190      * of the inputs to the kernel's round_up are multiples of 4.
3191      */
3192     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3193         note.nhdr.n_namesz != NOTE_NAME_SZ ||
3194         note.data[3] != GNU0_MAGIC) {
3195         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3196         return false;
3197     }
3198     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3199 
3200     datasz = note.nhdr.n_descsz + off;
3201     if (datasz > n) {
3202         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3203         return false;
3204     }
3205 
3206     have_prev_type = false;
3207     prev_type = 0;
3208     while (1) {
3209         if (off == datasz) {
3210             return true;  /* end, exit ok */
3211         }
3212         if (!parse_elf_property(note.data, &off, datasz, info,
3213                                 have_prev_type, &prev_type, errp)) {
3214             return false;
3215         }
3216         have_prev_type = true;
3217     }
3218 }
3219 
3220 /**
3221  * load_elf_image: Load an ELF image into the address space.
3222  * @image_name: the filename of the image, to use in error messages.
3223  * @src: the ImageSource from which to read.
3224  * @info: info collected from the loaded image.
3225  * @ehdr: the ELF header, not yet bswapped.
3226  * @pinterp_name: record any PT_INTERP string found.
3227  *
3228  * On return: @info values will be filled in, as necessary or available.
3229  */
3230 
3231 static void load_elf_image(const char *image_name, const ImageSource *src,
3232                            struct image_info *info, struct elfhdr *ehdr,
3233                            char **pinterp_name)
3234 {
3235     g_autofree struct elf_phdr *phdr = NULL;
3236     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3237     int i, prot_exec;
3238     Error *err = NULL;
3239 
3240     /*
3241      * First of all, some simple consistency checks.
3242      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3243      * for later use by load_elf_binary and create_elf_tables.
3244      */
3245     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3246         goto exit_errmsg;
3247     }
3248     if (!elf_check_ident(ehdr)) {
3249         error_setg(&err, "Invalid ELF image for this architecture");
3250         goto exit_errmsg;
3251     }
3252     bswap_ehdr(ehdr);
3253     if (!elf_check_ehdr(ehdr)) {
3254         error_setg(&err, "Invalid ELF image for this architecture");
3255         goto exit_errmsg;
3256     }
3257 
3258     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3259                              ehdr->e_phnum * sizeof(struct elf_phdr),
3260                              src, &err);
3261     if (phdr == NULL) {
3262         goto exit_errmsg;
3263     }
3264     bswap_phdr(phdr, ehdr->e_phnum);
3265 
3266     info->nsegs = 0;
3267     info->pt_dynamic_addr = 0;
3268 
3269     mmap_lock();
3270 
3271     /*
3272      * Find the maximum size of the image and allocate an appropriate
3273      * amount of memory to handle that.  Locate the interpreter, if any.
3274      */
3275     loaddr = -1, hiaddr = 0;
3276     info->alignment = 0;
3277     info->exec_stack = EXSTACK_DEFAULT;
3278     for (i = 0; i < ehdr->e_phnum; ++i) {
3279         struct elf_phdr *eppnt = phdr + i;
3280         if (eppnt->p_type == PT_LOAD) {
3281             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3282             if (a < loaddr) {
3283                 loaddr = a;
3284             }
3285             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3286             if (a > hiaddr) {
3287                 hiaddr = a;
3288             }
3289             ++info->nsegs;
3290             info->alignment |= eppnt->p_align;
3291         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3292             g_autofree char *interp_name = NULL;
3293 
3294             if (*pinterp_name) {
3295                 error_setg(&err, "Multiple PT_INTERP entries");
3296                 goto exit_errmsg;
3297             }
3298 
3299             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3300                                             src, &err);
3301             if (interp_name == NULL) {
3302                 goto exit_errmsg;
3303             }
3304             if (interp_name[eppnt->p_filesz - 1] != 0) {
3305                 error_setg(&err, "Invalid PT_INTERP entry");
3306                 goto exit_errmsg;
3307             }
3308             *pinterp_name = g_steal_pointer(&interp_name);
3309         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3310             if (!parse_elf_properties(src, info, eppnt, &err)) {
3311                 goto exit_errmsg;
3312             }
3313         } else if (eppnt->p_type == PT_GNU_STACK) {
3314             info->exec_stack = eppnt->p_flags & PF_X;
3315         }
3316     }
3317 
3318     load_addr = loaddr;
3319 
3320     if (pinterp_name != NULL) {
3321         if (ehdr->e_type == ET_EXEC) {
3322             /*
3323              * Make sure that the low address does not conflict with
3324              * MMAP_MIN_ADDR or the QEMU application itself.
3325              */
3326             probe_guest_base(image_name, loaddr, hiaddr);
3327         } else {
3328             abi_ulong align;
3329 
3330             /*
3331              * The binary is dynamic, but we still need to
3332              * select guest_base.  In this case we pass a size.
3333              */
3334             probe_guest_base(image_name, 0, hiaddr - loaddr);
3335 
3336             /*
3337              * Avoid collision with the loader by providing a different
3338              * default load address.
3339              */
3340             load_addr += elf_et_dyn_base;
3341 
3342             /*
3343              * TODO: Better support for mmap alignment is desirable.
3344              * Since we do not have complete control over the guest
3345              * address space, we prefer the kernel to choose some address
3346              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3347              * But without MAP_FIXED we cannot guarantee alignment,
3348              * only suggest it.
3349              */
3350             align = pow2ceil(info->alignment);
3351             if (align) {
3352                 load_addr &= -align;
3353             }
3354         }
3355     }
3356 
3357     /*
3358      * Reserve address space for all of this.
3359      *
3360      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3361      * exactly the address range that is required.  Without reserved_va,
3362      * the guest address space is not isolated.  We have attempted to avoid
3363      * conflict with the host program itself via probe_guest_base, but using
3364      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3365      *
3366      * Otherwise this is ET_DYN, and we are searching for a location
3367      * that can hold the memory space required.  If the image is
3368      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3369      * honor that address if it happens to be free.
3370      *
3371      * In both cases, we will overwrite pages in this range with mappings
3372      * from the executable.
3373      */
3374     load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3375                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3376                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3377                             -1, 0);
3378     if (load_addr == -1) {
3379         goto exit_mmap;
3380     }
3381     load_bias = load_addr - loaddr;
3382 
3383     if (elf_is_fdpic(ehdr)) {
3384         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3385             g_malloc(sizeof(*loadsegs) * info->nsegs);
3386 
3387         for (i = 0; i < ehdr->e_phnum; ++i) {
3388             switch (phdr[i].p_type) {
3389             case PT_DYNAMIC:
3390                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3391                 break;
3392             case PT_LOAD:
3393                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3394                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3395                 loadsegs->p_memsz = phdr[i].p_memsz;
3396                 ++loadsegs;
3397                 break;
3398             }
3399         }
3400     }
3401 
3402     info->load_bias = load_bias;
3403     info->code_offset = load_bias;
3404     info->data_offset = load_bias;
3405     info->load_addr = load_addr;
3406     info->entry = ehdr->e_entry + load_bias;
3407     info->start_code = -1;
3408     info->end_code = 0;
3409     info->start_data = -1;
3410     info->end_data = 0;
3411     /* Usual start for brk is after all sections of the main executable. */
3412     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3413     info->elf_flags = ehdr->e_flags;
3414 
3415     prot_exec = PROT_EXEC;
3416 #ifdef TARGET_AARCH64
3417     /*
3418      * If the BTI feature is present, this indicates that the executable
3419      * pages of the startup binary should be mapped with PROT_BTI, so that
3420      * branch targets are enforced.
3421      *
3422      * The startup binary is either the interpreter or the static executable.
3423      * The interpreter is responsible for all pages of a dynamic executable.
3424      *
3425      * Elf notes are backward compatible to older cpus.
3426      * Do not enable BTI unless it is supported.
3427      */
3428     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3429         && (pinterp_name == NULL || *pinterp_name == 0)
3430         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3431         prot_exec |= TARGET_PROT_BTI;
3432     }
3433 #endif
3434 
3435     for (i = 0; i < ehdr->e_phnum; i++) {
3436         struct elf_phdr *eppnt = phdr + i;
3437         if (eppnt->p_type == PT_LOAD) {
3438             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3439             int elf_prot = 0;
3440 
3441             if (eppnt->p_flags & PF_R) {
3442                 elf_prot |= PROT_READ;
3443             }
3444             if (eppnt->p_flags & PF_W) {
3445                 elf_prot |= PROT_WRITE;
3446             }
3447             if (eppnt->p_flags & PF_X) {
3448                 elf_prot |= prot_exec;
3449             }
3450 
3451             vaddr = load_bias + eppnt->p_vaddr;
3452             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3453             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3454 
3455             vaddr_ef = vaddr + eppnt->p_filesz;
3456             vaddr_em = vaddr + eppnt->p_memsz;
3457 
3458             /*
3459              * Some segments may be completely empty, with a non-zero p_memsz
3460              * but no backing file segment.
3461              */
3462             if (eppnt->p_filesz != 0) {
3463                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3464                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3465                                     src, eppnt->p_offset - vaddr_po);
3466                 if (error == -1) {
3467                     goto exit_mmap;
3468                 }
3469             }
3470 
3471             /* If the load segment requests extra zeros (e.g. bss), map it. */
3472             if (vaddr_ef < vaddr_em &&
3473                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3474                 goto exit_errmsg;
3475             }
3476 
3477             /* Find the full program boundaries.  */
3478             if (elf_prot & PROT_EXEC) {
3479                 if (vaddr < info->start_code) {
3480                     info->start_code = vaddr;
3481                 }
3482                 if (vaddr_ef > info->end_code) {
3483                     info->end_code = vaddr_ef;
3484                 }
3485             }
3486             if (elf_prot & PROT_WRITE) {
3487                 if (vaddr < info->start_data) {
3488                     info->start_data = vaddr;
3489                 }
3490                 if (vaddr_ef > info->end_data) {
3491                     info->end_data = vaddr_ef;
3492                 }
3493             }
3494 #ifdef TARGET_MIPS
3495         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3496             Mips_elf_abiflags_v0 abiflags;
3497 
3498             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3499                              src, &err)) {
3500                 goto exit_errmsg;
3501             }
3502             bswap_mips_abiflags(&abiflags);
3503             info->fp_abi = abiflags.fp_abi;
3504 #endif
3505         }
3506     }
3507 
3508     if (info->end_data == 0) {
3509         info->start_data = info->end_code;
3510         info->end_data = info->end_code;
3511     }
3512 
3513     if (qemu_log_enabled()) {
3514         load_symbols(ehdr, src, load_bias);
3515     }
3516 
3517     debuginfo_report_elf(image_name, src->fd, load_bias);
3518 
3519     mmap_unlock();
3520 
3521     close(src->fd);
3522     return;
3523 
3524  exit_mmap:
3525     error_setg_errno(&err, errno, "Error mapping file");
3526     goto exit_errmsg;
3527  exit_errmsg:
3528     error_reportf_err(err, "%s: ", image_name);
3529     exit(-1);
3530 }
3531 
3532 static void load_elf_interp(const char *filename, struct image_info *info,
3533                             char bprm_buf[BPRM_BUF_SIZE])
3534 {
3535     struct elfhdr ehdr;
3536     ImageSource src;
3537     int fd, retval;
3538     Error *err = NULL;
3539 
3540     fd = open(path(filename), O_RDONLY);
3541     if (fd < 0) {
3542         error_setg_file_open(&err, errno, filename);
3543         error_report_err(err);
3544         exit(-1);
3545     }
3546 
3547     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3548     if (retval < 0) {
3549         error_setg_errno(&err, errno, "Error reading file header");
3550         error_reportf_err(err, "%s: ", filename);
3551         exit(-1);
3552     }
3553 
3554     src.fd = fd;
3555     src.cache = bprm_buf;
3556     src.cache_size = retval;
3557 
3558     load_elf_image(filename, &src, info, &ehdr, NULL);
3559 }
3560 
3561 #ifdef VDSO_HEADER
3562 #include VDSO_HEADER
3563 #define  vdso_image_info()  &vdso_image_info
3564 #else
3565 #define  vdso_image_info()  NULL
3566 #endif
3567 
3568 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3569 {
3570     ImageSource src;
3571     struct elfhdr ehdr;
3572     abi_ulong load_bias, load_addr;
3573 
3574     src.fd = -1;
3575     src.cache = vdso->image;
3576     src.cache_size = vdso->image_size;
3577 
3578     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3579     load_addr = info->load_addr;
3580     load_bias = info->load_bias;
3581 
3582     /*
3583      * We need to relocate the VDSO image.  The one built into the kernel
3584      * is built for a fixed address.  The one built for QEMU is not, since
3585      * that requires close control of the guest address space.
3586      * We pre-processed the image to locate all of the addresses that need
3587      * to be updated.
3588      */
3589     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3590         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3591         *addr = tswapal(tswapal(*addr) + load_bias);
3592     }
3593 
3594     /* Install signal trampolines, if present. */
3595     if (vdso->sigreturn_ofs) {
3596         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3597     }
3598     if (vdso->rt_sigreturn_ofs) {
3599         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3600     }
3601 
3602     /* Remove write from VDSO segment. */
3603     target_mprotect(info->start_data, info->end_data - info->start_data,
3604                     PROT_READ | PROT_EXEC);
3605 }
3606 
3607 static int symfind(const void *s0, const void *s1)
3608 {
3609     struct elf_sym *sym = (struct elf_sym *)s1;
3610     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3611     int result = 0;
3612 
3613     if (addr < sym->st_value) {
3614         result = -1;
3615     } else if (addr >= sym->st_value + sym->st_size) {
3616         result = 1;
3617     }
3618     return result;
3619 }
3620 
3621 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3622 {
3623 #if ELF_CLASS == ELFCLASS32
3624     struct elf_sym *syms = s->disas_symtab.elf32;
3625 #else
3626     struct elf_sym *syms = s->disas_symtab.elf64;
3627 #endif
3628 
3629     // binary search
3630     struct elf_sym *sym;
3631 
3632     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3633     if (sym != NULL) {
3634         return s->disas_strtab + sym->st_name;
3635     }
3636 
3637     return "";
3638 }
3639 
3640 /* FIXME: This should use elf_ops.h  */
3641 static int symcmp(const void *s0, const void *s1)
3642 {
3643     struct elf_sym *sym0 = (struct elf_sym *)s0;
3644     struct elf_sym *sym1 = (struct elf_sym *)s1;
3645     return (sym0->st_value < sym1->st_value)
3646         ? -1
3647         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3648 }
3649 
3650 /* Best attempt to load symbols from this ELF object. */
3651 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3652                          abi_ulong load_bias)
3653 {
3654     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3655     g_autofree struct elf_shdr *shdr = NULL;
3656     char *strings = NULL;
3657     struct elf_sym *syms = NULL;
3658     struct elf_sym *new_syms;
3659     uint64_t segsz;
3660 
3661     shnum = hdr->e_shnum;
3662     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3663                              src, NULL);
3664     if (shdr == NULL) {
3665         return;
3666     }
3667 
3668     bswap_shdr(shdr, shnum);
3669     for (i = 0; i < shnum; ++i) {
3670         if (shdr[i].sh_type == SHT_SYMTAB) {
3671             sym_idx = i;
3672             str_idx = shdr[i].sh_link;
3673             goto found;
3674         }
3675     }
3676 
3677     /* There will be no symbol table if the file was stripped.  */
3678     return;
3679 
3680  found:
3681     /* Now know where the strtab and symtab are.  Snarf them.  */
3682 
3683     segsz = shdr[str_idx].sh_size;
3684     strings = g_try_malloc(segsz);
3685     if (!strings) {
3686         goto give_up;
3687     }
3688     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3689         goto give_up;
3690     }
3691 
3692     segsz = shdr[sym_idx].sh_size;
3693     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3694         /*
3695          * Implausibly large symbol table: give up rather than ploughing
3696          * on with the number of symbols calculation overflowing.
3697          */
3698         goto give_up;
3699     }
3700     nsyms = segsz / sizeof(struct elf_sym);
3701     syms = g_try_malloc(segsz);
3702     if (!syms) {
3703         goto give_up;
3704     }
3705     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3706         goto give_up;
3707     }
3708 
3709     for (i = 0; i < nsyms; ) {
3710         bswap_sym(syms + i);
3711         /* Throw away entries which we do not need.  */
3712         if (syms[i].st_shndx == SHN_UNDEF
3713             || syms[i].st_shndx >= SHN_LORESERVE
3714             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3715             if (i < --nsyms) {
3716                 syms[i] = syms[nsyms];
3717             }
3718         } else {
3719 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3720             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3721             syms[i].st_value &= ~(target_ulong)1;
3722 #endif
3723             syms[i].st_value += load_bias;
3724             i++;
3725         }
3726     }
3727 
3728     /* No "useful" symbol.  */
3729     if (nsyms == 0) {
3730         goto give_up;
3731     }
3732 
3733     /*
3734      * Attempt to free the storage associated with the local symbols
3735      * that we threw away.  Whether or not this has any effect on the
3736      * memory allocation depends on the malloc implementation and how
3737      * many symbols we managed to discard.
3738      */
3739     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3740     if (new_syms == NULL) {
3741         goto give_up;
3742     }
3743     syms = new_syms;
3744 
3745     qsort(syms, nsyms, sizeof(*syms), symcmp);
3746 
3747     {
3748         struct syminfo *s = g_new(struct syminfo, 1);
3749 
3750         s->disas_strtab = strings;
3751         s->disas_num_syms = nsyms;
3752 #if ELF_CLASS == ELFCLASS32
3753         s->disas_symtab.elf32 = syms;
3754 #else
3755         s->disas_symtab.elf64 = syms;
3756 #endif
3757         s->lookup_symbol = lookup_symbolxx;
3758         s->next = syminfos;
3759         syminfos = s;
3760     }
3761     return;
3762 
3763  give_up:
3764     g_free(strings);
3765     g_free(syms);
3766 }
3767 
3768 uint32_t get_elf_eflags(int fd)
3769 {
3770     struct elfhdr ehdr;
3771     off_t offset;
3772     int ret;
3773 
3774     /* Read ELF header */
3775     offset = lseek(fd, 0, SEEK_SET);
3776     if (offset == (off_t) -1) {
3777         return 0;
3778     }
3779     ret = read(fd, &ehdr, sizeof(ehdr));
3780     if (ret < sizeof(ehdr)) {
3781         return 0;
3782     }
3783     offset = lseek(fd, offset, SEEK_SET);
3784     if (offset == (off_t) -1) {
3785         return 0;
3786     }
3787 
3788     /* Check ELF signature */
3789     if (!elf_check_ident(&ehdr)) {
3790         return 0;
3791     }
3792 
3793     /* check header */
3794     bswap_ehdr(&ehdr);
3795     if (!elf_check_ehdr(&ehdr)) {
3796         return 0;
3797     }
3798 
3799     /* return architecture id */
3800     return ehdr.e_flags;
3801 }
3802 
3803 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3804 {
3805     /*
3806      * We need a copy of the elf header for passing to create_elf_tables.
3807      * We will have overwritten the original when we re-use bprm->buf
3808      * while loading the interpreter.  Allocate the storage for this now
3809      * and let elf_load_image do any swapping that may be required.
3810      */
3811     struct elfhdr ehdr;
3812     struct image_info interp_info, vdso_info;
3813     char *elf_interpreter = NULL;
3814     char *scratch;
3815 
3816     memset(&interp_info, 0, sizeof(interp_info));
3817 #ifdef TARGET_MIPS
3818     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3819 #endif
3820 
3821     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3822 
3823     /* Do this so that we can load the interpreter, if need be.  We will
3824        change some of these later */
3825     bprm->p = setup_arg_pages(bprm, info);
3826 
3827     scratch = g_new0(char, TARGET_PAGE_SIZE);
3828     if (STACK_GROWS_DOWN) {
3829         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3830                                    bprm->p, info->stack_limit);
3831         info->file_string = bprm->p;
3832         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3833                                    bprm->p, info->stack_limit);
3834         info->env_strings = bprm->p;
3835         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3836                                    bprm->p, info->stack_limit);
3837         info->arg_strings = bprm->p;
3838     } else {
3839         info->arg_strings = bprm->p;
3840         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3841                                    bprm->p, info->stack_limit);
3842         info->env_strings = bprm->p;
3843         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3844                                    bprm->p, info->stack_limit);
3845         info->file_string = bprm->p;
3846         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3847                                    bprm->p, info->stack_limit);
3848     }
3849 
3850     g_free(scratch);
3851 
3852     if (!bprm->p) {
3853         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3854         exit(-1);
3855     }
3856 
3857     if (elf_interpreter) {
3858         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3859 
3860         /*
3861          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3862          * with the mappings the interpreter can be loaded above but
3863          * near the main executable, which can leave very little room
3864          * for the heap.
3865          * If the current brk has less than 16MB, use the end of the
3866          * interpreter.
3867          */
3868         if (interp_info.brk > info->brk &&
3869             interp_info.load_bias - info->brk < 16 * MiB)  {
3870             info->brk = interp_info.brk;
3871         }
3872 
3873         /* If the program interpreter is one of these two, then assume
3874            an iBCS2 image.  Otherwise assume a native linux image.  */
3875 
3876         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3877             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3878             info->personality = PER_SVR4;
3879 
3880             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3881                and some applications "depend" upon this behavior.  Since
3882                we do not have the power to recompile these, we emulate
3883                the SVr4 behavior.  Sigh.  */
3884             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3885                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3886         }
3887 #ifdef TARGET_MIPS
3888         info->interp_fp_abi = interp_info.fp_abi;
3889 #endif
3890     }
3891 
3892     /*
3893      * Load a vdso if available, which will amongst other things contain the
3894      * signal trampolines.  Otherwise, allocate a separate page for them.
3895      */
3896     const VdsoImageInfo *vdso = vdso_image_info();
3897     if (vdso) {
3898         load_elf_vdso(&vdso_info, vdso);
3899     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3900         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3901                                           PROT_READ | PROT_WRITE,
3902                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3903         if (tramp_page == -1) {
3904             return -errno;
3905         }
3906 
3907         setup_sigtramp(tramp_page);
3908         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3909     }
3910 
3911     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3912                                 elf_interpreter ? &interp_info : NULL,
3913                                 vdso ? &vdso_info : NULL);
3914     info->start_stack = bprm->p;
3915 
3916     /* If we have an interpreter, set that as the program's entry point.
3917        Copy the load_bias as well, to help PPC64 interpret the entry
3918        point as a function descriptor.  Do this after creating elf tables
3919        so that we copy the original program entry point into the AUXV.  */
3920     if (elf_interpreter) {
3921         info->load_bias = interp_info.load_bias;
3922         info->entry = interp_info.entry;
3923         g_free(elf_interpreter);
3924     }
3925 
3926 #ifdef USE_ELF_CORE_DUMP
3927     bprm->core_dump = &elf_core_dump;
3928 #endif
3929 
3930     return 0;
3931 }
3932 
3933 #ifdef USE_ELF_CORE_DUMP
3934 /*
3935  * Definitions to generate Intel SVR4-like core files.
3936  * These mostly have the same names as the SVR4 types with "target_elf_"
3937  * tacked on the front to prevent clashes with linux definitions,
3938  * and the typedef forms have been avoided.  This is mostly like
3939  * the SVR4 structure, but more Linuxy, with things that Linux does
3940  * not support and which gdb doesn't really use excluded.
3941  *
3942  * Fields we don't dump (their contents is zero) in linux-user qemu
3943  * are marked with XXX.
3944  *
3945  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3946  *
3947  * Porting ELF coredump for target is (quite) simple process.  First you
3948  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3949  * the target resides):
3950  *
3951  * #define USE_ELF_CORE_DUMP
3952  *
3953  * Next you define type of register set used for dumping.  ELF specification
3954  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3955  *
3956  * typedef <target_regtype> target_elf_greg_t;
3957  * #define ELF_NREG <number of registers>
3958  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3959  *
3960  * Last step is to implement target specific function that copies registers
3961  * from given cpu into just specified register set.  Prototype is:
3962  *
3963  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3964  *                                const CPUArchState *env);
3965  *
3966  * Parameters:
3967  *     regs - copy register values into here (allocated and zeroed by caller)
3968  *     env - copy registers from here
3969  *
3970  * Example for ARM target is provided in this file.
3971  */
3972 
3973 /* An ELF note in memory */
3974 struct memelfnote {
3975     const char *name;
3976     size_t     namesz;
3977     size_t     namesz_rounded;
3978     int        type;
3979     size_t     datasz;
3980     size_t     datasz_rounded;
3981     void       *data;
3982     size_t     notesz;
3983 };
3984 
3985 struct target_elf_siginfo {
3986     abi_int    si_signo; /* signal number */
3987     abi_int    si_code;  /* extra code */
3988     abi_int    si_errno; /* errno */
3989 };
3990 
3991 struct target_elf_prstatus {
3992     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3993     abi_short          pr_cursig;    /* Current signal */
3994     abi_ulong          pr_sigpend;   /* XXX */
3995     abi_ulong          pr_sighold;   /* XXX */
3996     target_pid_t       pr_pid;
3997     target_pid_t       pr_ppid;
3998     target_pid_t       pr_pgrp;
3999     target_pid_t       pr_sid;
4000     struct target_timeval pr_utime;  /* XXX User time */
4001     struct target_timeval pr_stime;  /* XXX System time */
4002     struct target_timeval pr_cutime; /* XXX Cumulative user time */
4003     struct target_timeval pr_cstime; /* XXX Cumulative system time */
4004     target_elf_gregset_t      pr_reg;       /* GP registers */
4005     abi_int            pr_fpvalid;   /* XXX */
4006 };
4007 
4008 #define ELF_PRARGSZ     (80) /* Number of chars for args */
4009 
4010 struct target_elf_prpsinfo {
4011     char         pr_state;       /* numeric process state */
4012     char         pr_sname;       /* char for pr_state */
4013     char         pr_zomb;        /* zombie */
4014     char         pr_nice;        /* nice val */
4015     abi_ulong    pr_flag;        /* flags */
4016     target_uid_t pr_uid;
4017     target_gid_t pr_gid;
4018     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
4019     /* Lots missing */
4020     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
4021     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
4022 };
4023 
4024 /* Here is the structure in which status of each thread is captured. */
4025 struct elf_thread_status {
4026     QTAILQ_ENTRY(elf_thread_status)  ets_link;
4027     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
4028 #if 0
4029     elf_fpregset_t fpu;             /* NT_PRFPREG */
4030     struct task_struct *thread;
4031     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
4032 #endif
4033     struct memelfnote notes[1];
4034     int num_notes;
4035 };
4036 
4037 struct elf_note_info {
4038     struct memelfnote   *notes;
4039     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
4040     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
4041 
4042     QTAILQ_HEAD(, elf_thread_status) thread_list;
4043 #if 0
4044     /*
4045      * Current version of ELF coredump doesn't support
4046      * dumping fp regs etc.
4047      */
4048     elf_fpregset_t *fpu;
4049     elf_fpxregset_t *xfpu;
4050     int thread_status_size;
4051 #endif
4052     int notes_size;
4053     int numnote;
4054 };
4055 
4056 struct vm_area_struct {
4057     target_ulong   vma_start;  /* start vaddr of memory region */
4058     target_ulong   vma_end;    /* end vaddr of memory region */
4059     abi_ulong      vma_flags;  /* protection etc. flags for the region */
4060     QTAILQ_ENTRY(vm_area_struct) vma_link;
4061 };
4062 
4063 struct mm_struct {
4064     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
4065     int mm_count;           /* number of mappings */
4066 };
4067 
4068 static struct mm_struct *vma_init(void);
4069 static void vma_delete(struct mm_struct *);
4070 static int vma_add_mapping(struct mm_struct *, target_ulong,
4071                            target_ulong, abi_ulong);
4072 static int vma_get_mapping_count(const struct mm_struct *);
4073 static struct vm_area_struct *vma_first(const struct mm_struct *);
4074 static struct vm_area_struct *vma_next(struct vm_area_struct *);
4075 static abi_ulong vma_dump_size(const struct vm_area_struct *);
4076 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4077                       unsigned long flags);
4078 
4079 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
4080 static void fill_note(struct memelfnote *, const char *, int,
4081                       unsigned int, void *);
4082 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
4083 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
4084 static void fill_auxv_note(struct memelfnote *, const TaskState *);
4085 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
4086 static size_t note_size(const struct memelfnote *);
4087 static void free_note_info(struct elf_note_info *);
4088 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
4089 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
4090 
4091 static int dump_write(int, const void *, size_t);
4092 static int write_note(struct memelfnote *, int);
4093 static int write_note_info(struct elf_note_info *, int);
4094 
4095 #ifdef BSWAP_NEEDED
4096 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
4097 {
4098     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4099     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4100     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
4101     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
4102     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4103     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4104     prstatus->pr_pid = tswap32(prstatus->pr_pid);
4105     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4106     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4107     prstatus->pr_sid = tswap32(prstatus->pr_sid);
4108     /* cpu times are not filled, so we skip them */
4109     /* regs should be in correct format already */
4110     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4111 }
4112 
4113 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4114 {
4115     psinfo->pr_flag = tswapal(psinfo->pr_flag);
4116     psinfo->pr_uid = tswap16(psinfo->pr_uid);
4117     psinfo->pr_gid = tswap16(psinfo->pr_gid);
4118     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4119     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4120     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4121     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4122 }
4123 
4124 static void bswap_note(struct elf_note *en)
4125 {
4126     bswap32s(&en->n_namesz);
4127     bswap32s(&en->n_descsz);
4128     bswap32s(&en->n_type);
4129 }
4130 #else
4131 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4132 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4133 static inline void bswap_note(struct elf_note *en) { }
4134 #endif /* BSWAP_NEEDED */
4135 
4136 /*
4137  * Minimal support for linux memory regions.  These are needed
4138  * when we are finding out what memory exactly belongs to
4139  * emulated process.  No locks needed here, as long as
4140  * thread that received the signal is stopped.
4141  */
4142 
4143 static struct mm_struct *vma_init(void)
4144 {
4145     struct mm_struct *mm;
4146 
4147     if ((mm = g_malloc(sizeof (*mm))) == NULL)
4148         return (NULL);
4149 
4150     mm->mm_count = 0;
4151     QTAILQ_INIT(&mm->mm_mmap);
4152 
4153     return (mm);
4154 }
4155 
4156 static void vma_delete(struct mm_struct *mm)
4157 {
4158     struct vm_area_struct *vma;
4159 
4160     while ((vma = vma_first(mm)) != NULL) {
4161         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
4162         g_free(vma);
4163     }
4164     g_free(mm);
4165 }
4166 
4167 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
4168                            target_ulong end, abi_ulong flags)
4169 {
4170     struct vm_area_struct *vma;
4171 
4172     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
4173         return (-1);
4174 
4175     vma->vma_start = start;
4176     vma->vma_end = end;
4177     vma->vma_flags = flags;
4178 
4179     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
4180     mm->mm_count++;
4181 
4182     return (0);
4183 }
4184 
4185 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
4186 {
4187     return (QTAILQ_FIRST(&mm->mm_mmap));
4188 }
4189 
4190 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
4191 {
4192     return (QTAILQ_NEXT(vma, vma_link));
4193 }
4194 
4195 static int vma_get_mapping_count(const struct mm_struct *mm)
4196 {
4197     return (mm->mm_count);
4198 }
4199 
4200 /*
4201  * Calculate file (dump) size of given memory region.
4202  */
4203 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
4204 {
4205     /* if we cannot even read the first page, skip it */
4206     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
4207         return (0);
4208 
4209     /*
4210      * Usually we don't dump executable pages as they contain
4211      * non-writable code that debugger can read directly from
4212      * target library etc.  However, thread stacks are marked
4213      * also executable so we read in first page of given region
4214      * and check whether it contains elf header.  If there is
4215      * no elf header, we dump it.
4216      */
4217     if (vma->vma_flags & PROT_EXEC) {
4218         char page[TARGET_PAGE_SIZE];
4219 
4220         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
4221             return 0;
4222         }
4223         if ((page[EI_MAG0] == ELFMAG0) &&
4224             (page[EI_MAG1] == ELFMAG1) &&
4225             (page[EI_MAG2] == ELFMAG2) &&
4226             (page[EI_MAG3] == ELFMAG3)) {
4227             /*
4228              * Mappings are possibly from ELF binary.  Don't dump
4229              * them.
4230              */
4231             return (0);
4232         }
4233     }
4234 
4235     return (vma->vma_end - vma->vma_start);
4236 }
4237 
4238 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4239                       unsigned long flags)
4240 {
4241     struct mm_struct *mm = (struct mm_struct *)priv;
4242 
4243     vma_add_mapping(mm, start, end, flags);
4244     return (0);
4245 }
4246 
4247 static void fill_note(struct memelfnote *note, const char *name, int type,
4248                       unsigned int sz, void *data)
4249 {
4250     unsigned int namesz;
4251 
4252     namesz = strlen(name) + 1;
4253     note->name = name;
4254     note->namesz = namesz;
4255     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4256     note->type = type;
4257     note->datasz = sz;
4258     note->datasz_rounded = roundup(sz, sizeof (int32_t));
4259 
4260     note->data = data;
4261 
4262     /*
4263      * We calculate rounded up note size here as specified by
4264      * ELF document.
4265      */
4266     note->notesz = sizeof (struct elf_note) +
4267         note->namesz_rounded + note->datasz_rounded;
4268 }
4269 
4270 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4271                             uint32_t flags)
4272 {
4273     (void) memset(elf, 0, sizeof(*elf));
4274 
4275     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4276     elf->e_ident[EI_CLASS] = ELF_CLASS;
4277     elf->e_ident[EI_DATA] = ELF_DATA;
4278     elf->e_ident[EI_VERSION] = EV_CURRENT;
4279     elf->e_ident[EI_OSABI] = ELF_OSABI;
4280 
4281     elf->e_type = ET_CORE;
4282     elf->e_machine = machine;
4283     elf->e_version = EV_CURRENT;
4284     elf->e_phoff = sizeof(struct elfhdr);
4285     elf->e_flags = flags;
4286     elf->e_ehsize = sizeof(struct elfhdr);
4287     elf->e_phentsize = sizeof(struct elf_phdr);
4288     elf->e_phnum = segs;
4289 
4290     bswap_ehdr(elf);
4291 }
4292 
4293 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4294 {
4295     phdr->p_type = PT_NOTE;
4296     phdr->p_offset = offset;
4297     phdr->p_vaddr = 0;
4298     phdr->p_paddr = 0;
4299     phdr->p_filesz = sz;
4300     phdr->p_memsz = 0;
4301     phdr->p_flags = 0;
4302     phdr->p_align = 0;
4303 
4304     bswap_phdr(phdr, 1);
4305 }
4306 
4307 static size_t note_size(const struct memelfnote *note)
4308 {
4309     return (note->notesz);
4310 }
4311 
4312 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4313                           const TaskState *ts, int signr)
4314 {
4315     (void) memset(prstatus, 0, sizeof (*prstatus));
4316     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4317     prstatus->pr_pid = ts->ts_tid;
4318     prstatus->pr_ppid = getppid();
4319     prstatus->pr_pgrp = getpgrp();
4320     prstatus->pr_sid = getsid(0);
4321 
4322     bswap_prstatus(prstatus);
4323 }
4324 
4325 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4326 {
4327     char *base_filename;
4328     unsigned int i, len;
4329 
4330     (void) memset(psinfo, 0, sizeof (*psinfo));
4331 
4332     len = ts->info->env_strings - ts->info->arg_strings;
4333     if (len >= ELF_PRARGSZ)
4334         len = ELF_PRARGSZ - 1;
4335     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4336         return -EFAULT;
4337     }
4338     for (i = 0; i < len; i++)
4339         if (psinfo->pr_psargs[i] == 0)
4340             psinfo->pr_psargs[i] = ' ';
4341     psinfo->pr_psargs[len] = 0;
4342 
4343     psinfo->pr_pid = getpid();
4344     psinfo->pr_ppid = getppid();
4345     psinfo->pr_pgrp = getpgrp();
4346     psinfo->pr_sid = getsid(0);
4347     psinfo->pr_uid = getuid();
4348     psinfo->pr_gid = getgid();
4349 
4350     base_filename = g_path_get_basename(ts->bprm->filename);
4351     /*
4352      * Using strncpy here is fine: at max-length,
4353      * this field is not NUL-terminated.
4354      */
4355     (void) strncpy(psinfo->pr_fname, base_filename,
4356                    sizeof(psinfo->pr_fname));
4357 
4358     g_free(base_filename);
4359     bswap_psinfo(psinfo);
4360     return (0);
4361 }
4362 
4363 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4364 {
4365     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4366     elf_addr_t orig_auxv = auxv;
4367     void *ptr;
4368     int len = ts->info->auxv_len;
4369 
4370     /*
4371      * Auxiliary vector is stored in target process stack.  It contains
4372      * {type, value} pairs that we need to dump into note.  This is not
4373      * strictly necessary but we do it here for sake of completeness.
4374      */
4375 
4376     /* read in whole auxv vector and copy it to memelfnote */
4377     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4378     if (ptr != NULL) {
4379         fill_note(note, "CORE", NT_AUXV, len, ptr);
4380         unlock_user(ptr, auxv, len);
4381     }
4382 }
4383 
4384 /*
4385  * Constructs name of coredump file.  We have following convention
4386  * for the name:
4387  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4388  *
4389  * Returns the filename
4390  */
4391 static char *core_dump_filename(const TaskState *ts)
4392 {
4393     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4394     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4395     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4396 
4397     return g_strdup_printf("qemu_%s_%s_%d.core",
4398                            base_filename, nowstr, (int)getpid());
4399 }
4400 
4401 static int dump_write(int fd, const void *ptr, size_t size)
4402 {
4403     const char *bufp = (const char *)ptr;
4404     ssize_t bytes_written, bytes_left;
4405     struct rlimit dumpsize;
4406     off_t pos;
4407 
4408     bytes_written = 0;
4409     getrlimit(RLIMIT_CORE, &dumpsize);
4410     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4411         if (errno == ESPIPE) { /* not a seekable stream */
4412             bytes_left = size;
4413         } else {
4414             return pos;
4415         }
4416     } else {
4417         if (dumpsize.rlim_cur <= pos) {
4418             return -1;
4419         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4420             bytes_left = size;
4421         } else {
4422             size_t limit_left=dumpsize.rlim_cur - pos;
4423             bytes_left = limit_left >= size ? size : limit_left ;
4424         }
4425     }
4426 
4427     /*
4428      * In normal conditions, single write(2) should do but
4429      * in case of socket etc. this mechanism is more portable.
4430      */
4431     do {
4432         bytes_written = write(fd, bufp, bytes_left);
4433         if (bytes_written < 0) {
4434             if (errno == EINTR)
4435                 continue;
4436             return (-1);
4437         } else if (bytes_written == 0) { /* eof */
4438             return (-1);
4439         }
4440         bufp += bytes_written;
4441         bytes_left -= bytes_written;
4442     } while (bytes_left > 0);
4443 
4444     return (0);
4445 }
4446 
4447 static int write_note(struct memelfnote *men, int fd)
4448 {
4449     struct elf_note en;
4450 
4451     en.n_namesz = men->namesz;
4452     en.n_type = men->type;
4453     en.n_descsz = men->datasz;
4454 
4455     bswap_note(&en);
4456 
4457     if (dump_write(fd, &en, sizeof(en)) != 0)
4458         return (-1);
4459     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4460         return (-1);
4461     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4462         return (-1);
4463 
4464     return (0);
4465 }
4466 
4467 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4468 {
4469     CPUState *cpu = env_cpu((CPUArchState *)env);
4470     TaskState *ts = (TaskState *)cpu->opaque;
4471     struct elf_thread_status *ets;
4472 
4473     ets = g_malloc0(sizeof (*ets));
4474     ets->num_notes = 1; /* only prstatus is dumped */
4475     fill_prstatus(&ets->prstatus, ts, 0);
4476     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4477     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4478               &ets->prstatus);
4479 
4480     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4481 
4482     info->notes_size += note_size(&ets->notes[0]);
4483 }
4484 
4485 static void init_note_info(struct elf_note_info *info)
4486 {
4487     /* Initialize the elf_note_info structure so that it is at
4488      * least safe to call free_note_info() on it. Must be
4489      * called before calling fill_note_info().
4490      */
4491     memset(info, 0, sizeof (*info));
4492     QTAILQ_INIT(&info->thread_list);
4493 }
4494 
4495 static int fill_note_info(struct elf_note_info *info,
4496                           long signr, const CPUArchState *env)
4497 {
4498 #define NUMNOTES 3
4499     CPUState *cpu = env_cpu((CPUArchState *)env);
4500     TaskState *ts = (TaskState *)cpu->opaque;
4501     int i;
4502 
4503     info->notes = g_new0(struct memelfnote, NUMNOTES);
4504     if (info->notes == NULL)
4505         return (-ENOMEM);
4506     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4507     if (info->prstatus == NULL)
4508         return (-ENOMEM);
4509     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4510     if (info->prstatus == NULL)
4511         return (-ENOMEM);
4512 
4513     /*
4514      * First fill in status (and registers) of current thread
4515      * including process info & aux vector.
4516      */
4517     fill_prstatus(info->prstatus, ts, signr);
4518     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4519     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4520               sizeof (*info->prstatus), info->prstatus);
4521     fill_psinfo(info->psinfo, ts);
4522     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4523               sizeof (*info->psinfo), info->psinfo);
4524     fill_auxv_note(&info->notes[2], ts);
4525     info->numnote = 3;
4526 
4527     info->notes_size = 0;
4528     for (i = 0; i < info->numnote; i++)
4529         info->notes_size += note_size(&info->notes[i]);
4530 
4531     /* read and fill status of all threads */
4532     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4533         CPU_FOREACH(cpu) {
4534             if (cpu == thread_cpu) {
4535                 continue;
4536             }
4537             fill_thread_info(info, cpu_env(cpu));
4538         }
4539     }
4540 
4541     return (0);
4542 }
4543 
4544 static void free_note_info(struct elf_note_info *info)
4545 {
4546     struct elf_thread_status *ets;
4547 
4548     while (!QTAILQ_EMPTY(&info->thread_list)) {
4549         ets = QTAILQ_FIRST(&info->thread_list);
4550         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4551         g_free(ets);
4552     }
4553 
4554     g_free(info->prstatus);
4555     g_free(info->psinfo);
4556     g_free(info->notes);
4557 }
4558 
4559 static int write_note_info(struct elf_note_info *info, int fd)
4560 {
4561     struct elf_thread_status *ets;
4562     int i, error = 0;
4563 
4564     /* write prstatus, psinfo and auxv for current thread */
4565     for (i = 0; i < info->numnote; i++)
4566         if ((error = write_note(&info->notes[i], fd)) != 0)
4567             return (error);
4568 
4569     /* write prstatus for each thread */
4570     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4571         if ((error = write_note(&ets->notes[0], fd)) != 0)
4572             return (error);
4573     }
4574 
4575     return (0);
4576 }
4577 
4578 /*
4579  * Write out ELF coredump.
4580  *
4581  * See documentation of ELF object file format in:
4582  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4583  *
4584  * Coredump format in linux is following:
4585  *
4586  * 0   +----------------------+         \
4587  *     | ELF header           | ET_CORE  |
4588  *     +----------------------+          |
4589  *     | ELF program headers  |          |--- headers
4590  *     | - NOTE section       |          |
4591  *     | - PT_LOAD sections   |          |
4592  *     +----------------------+         /
4593  *     | NOTEs:               |
4594  *     | - NT_PRSTATUS        |
4595  *     | - NT_PRSINFO         |
4596  *     | - NT_AUXV            |
4597  *     +----------------------+ <-- aligned to target page
4598  *     | Process memory dump  |
4599  *     :                      :
4600  *     .                      .
4601  *     :                      :
4602  *     |                      |
4603  *     +----------------------+
4604  *
4605  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4606  * NT_PRSINFO  -> struct elf_prpsinfo
4607  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4608  *
4609  * Format follows System V format as close as possible.  Current
4610  * version limitations are as follows:
4611  *     - no floating point registers are dumped
4612  *
4613  * Function returns 0 in case of success, negative errno otherwise.
4614  *
4615  * TODO: make this work also during runtime: it should be
4616  * possible to force coredump from running process and then
4617  * continue processing.  For example qemu could set up SIGUSR2
4618  * handler (provided that target process haven't registered
4619  * handler for that) that does the dump when signal is received.
4620  */
4621 static int elf_core_dump(int signr, const CPUArchState *env)
4622 {
4623     const CPUState *cpu = env_cpu((CPUArchState *)env);
4624     const TaskState *ts = (const TaskState *)cpu->opaque;
4625     struct vm_area_struct *vma = NULL;
4626     g_autofree char *corefile = NULL;
4627     struct elf_note_info info;
4628     struct elfhdr elf;
4629     struct elf_phdr phdr;
4630     struct rlimit dumpsize;
4631     struct mm_struct *mm = NULL;
4632     off_t offset = 0, data_offset = 0;
4633     int segs = 0;
4634     int fd = -1;
4635 
4636     init_note_info(&info);
4637 
4638     errno = 0;
4639     getrlimit(RLIMIT_CORE, &dumpsize);
4640     if (dumpsize.rlim_cur == 0)
4641         return 0;
4642 
4643     corefile = core_dump_filename(ts);
4644 
4645     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4646                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4647         return (-errno);
4648 
4649     /*
4650      * Walk through target process memory mappings and
4651      * set up structure containing this information.  After
4652      * this point vma_xxx functions can be used.
4653      */
4654     if ((mm = vma_init()) == NULL)
4655         goto out;
4656 
4657     walk_memory_regions(mm, vma_walker);
4658     segs = vma_get_mapping_count(mm);
4659 
4660     /*
4661      * Construct valid coredump ELF header.  We also
4662      * add one more segment for notes.
4663      */
4664     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4665     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4666         goto out;
4667 
4668     /* fill in the in-memory version of notes */
4669     if (fill_note_info(&info, signr, env) < 0)
4670         goto out;
4671 
4672     offset += sizeof (elf);                             /* elf header */
4673     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4674 
4675     /* write out notes program header */
4676     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4677 
4678     offset += info.notes_size;
4679     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4680         goto out;
4681 
4682     /*
4683      * ELF specification wants data to start at page boundary so
4684      * we align it here.
4685      */
4686     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4687 
4688     /*
4689      * Write program headers for memory regions mapped in
4690      * the target process.
4691      */
4692     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4693         (void) memset(&phdr, 0, sizeof (phdr));
4694 
4695         phdr.p_type = PT_LOAD;
4696         phdr.p_offset = offset;
4697         phdr.p_vaddr = vma->vma_start;
4698         phdr.p_paddr = 0;
4699         phdr.p_filesz = vma_dump_size(vma);
4700         offset += phdr.p_filesz;
4701         phdr.p_memsz = vma->vma_end - vma->vma_start;
4702         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4703         if (vma->vma_flags & PROT_WRITE)
4704             phdr.p_flags |= PF_W;
4705         if (vma->vma_flags & PROT_EXEC)
4706             phdr.p_flags |= PF_X;
4707         phdr.p_align = ELF_EXEC_PAGESIZE;
4708 
4709         bswap_phdr(&phdr, 1);
4710         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4711             goto out;
4712         }
4713     }
4714 
4715     /*
4716      * Next we write notes just after program headers.  No
4717      * alignment needed here.
4718      */
4719     if (write_note_info(&info, fd) < 0)
4720         goto out;
4721 
4722     /* align data to page boundary */
4723     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4724         goto out;
4725 
4726     /*
4727      * Finally we can dump process memory into corefile as well.
4728      */
4729     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4730         abi_ulong addr;
4731         abi_ulong end;
4732 
4733         end = vma->vma_start + vma_dump_size(vma);
4734 
4735         for (addr = vma->vma_start; addr < end;
4736              addr += TARGET_PAGE_SIZE) {
4737             char page[TARGET_PAGE_SIZE];
4738             int error;
4739 
4740             /*
4741              *  Read in page from target process memory and
4742              *  write it to coredump file.
4743              */
4744             error = copy_from_user(page, addr, sizeof (page));
4745             if (error != 0) {
4746                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4747                                addr);
4748                 errno = -error;
4749                 goto out;
4750             }
4751             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4752                 goto out;
4753         }
4754     }
4755 
4756  out:
4757     free_note_info(&info);
4758     if (mm != NULL)
4759         vma_delete(mm);
4760     (void) close(fd);
4761 
4762     if (errno != 0)
4763         return (-errno);
4764     return (0);
4765 }
4766 #endif /* USE_ELF_CORE_DUMP */
4767 
4768 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4769 {
4770     init_thread(regs, infop);
4771 }
4772