xref: /qemu/linux-user/elfload.c (revision b355f08a)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "loader.h"
11 #include "user-mmap.h"
12 #include "disas/disas.h"
13 #include "qemu/bitops.h"
14 #include "qemu/path.h"
15 #include "qemu/queue.h"
16 #include "qemu/guest-random.h"
17 #include "qemu/units.h"
18 #include "qemu/selfmap.h"
19 #include "qapi/error.h"
20 
21 #ifdef _ARCH_PPC64
22 #undef ARCH_DLINFO
23 #undef ELF_PLATFORM
24 #undef ELF_HWCAP
25 #undef ELF_HWCAP2
26 #undef ELF_CLASS
27 #undef ELF_DATA
28 #undef ELF_ARCH
29 #endif
30 
31 #define ELF_OSABI   ELFOSABI_SYSV
32 
33 /* from personality.h */
34 
35 /*
36  * Flags for bug emulation.
37  *
38  * These occupy the top three bytes.
39  */
40 enum {
41     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
42     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
43                                            descriptors (signal handling) */
44     MMAP_PAGE_ZERO =    0x0100000,
45     ADDR_COMPAT_LAYOUT = 0x0200000,
46     READ_IMPLIES_EXEC = 0x0400000,
47     ADDR_LIMIT_32BIT =  0x0800000,
48     SHORT_INODE =       0x1000000,
49     WHOLE_SECONDS =     0x2000000,
50     STICKY_TIMEOUTS =   0x4000000,
51     ADDR_LIMIT_3GB =    0x8000000,
52 };
53 
54 /*
55  * Personality types.
56  *
57  * These go in the low byte.  Avoid using the top bit, it will
58  * conflict with error returns.
59  */
60 enum {
61     PER_LINUX =         0x0000,
62     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
63     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
64     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
65     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
67     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
68     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
69     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
70     PER_BSD =           0x0006,
71     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
72     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
73     PER_LINUX32 =       0x0008,
74     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
75     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
76     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
77     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
78     PER_RISCOS =        0x000c,
79     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
80     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
81     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
82     PER_HPUX =          0x0010,
83     PER_MASK =          0x00ff,
84 };
85 
86 /*
87  * Return the base personality without flags.
88  */
89 #define personality(pers)       (pers & PER_MASK)
90 
91 int info_is_fdpic(struct image_info *info)
92 {
93     return info->personality == PER_LINUX_FDPIC;
94 }
95 
96 /* this flag is uneffective under linux too, should be deleted */
97 #ifndef MAP_DENYWRITE
98 #define MAP_DENYWRITE 0
99 #endif
100 
101 /* should probably go in elf.h */
102 #ifndef ELIBBAD
103 #define ELIBBAD 80
104 #endif
105 
106 #ifdef TARGET_WORDS_BIGENDIAN
107 #define ELF_DATA        ELFDATA2MSB
108 #else
109 #define ELF_DATA        ELFDATA2LSB
110 #endif
111 
112 #ifdef TARGET_ABI_MIPSN32
113 typedef abi_ullong      target_elf_greg_t;
114 #define tswapreg(ptr)   tswap64(ptr)
115 #else
116 typedef abi_ulong       target_elf_greg_t;
117 #define tswapreg(ptr)   tswapal(ptr)
118 #endif
119 
120 #ifdef USE_UID16
121 typedef abi_ushort      target_uid_t;
122 typedef abi_ushort      target_gid_t;
123 #else
124 typedef abi_uint        target_uid_t;
125 typedef abi_uint        target_gid_t;
126 #endif
127 typedef abi_int         target_pid_t;
128 
129 #ifdef TARGET_I386
130 
131 #define ELF_PLATFORM get_elf_platform()
132 
133 static const char *get_elf_platform(void)
134 {
135     static char elf_platform[] = "i386";
136     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
137     if (family > 6)
138         family = 6;
139     if (family >= 3)
140         elf_platform[1] = '0' + family;
141     return elf_platform;
142 }
143 
144 #define ELF_HWCAP get_elf_hwcap()
145 
146 static uint32_t get_elf_hwcap(void)
147 {
148     X86CPU *cpu = X86_CPU(thread_cpu);
149 
150     return cpu->env.features[FEAT_1_EDX];
151 }
152 
153 #ifdef TARGET_X86_64
154 #define ELF_START_MMAP 0x2aaaaab000ULL
155 
156 #define ELF_CLASS      ELFCLASS64
157 #define ELF_ARCH       EM_X86_64
158 
159 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
160 {
161     regs->rax = 0;
162     regs->rsp = infop->start_stack;
163     regs->rip = infop->entry;
164 }
165 
166 #define ELF_NREG    27
167 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
168 
169 /*
170  * Note that ELF_NREG should be 29 as there should be place for
171  * TRAPNO and ERR "registers" as well but linux doesn't dump
172  * those.
173  *
174  * See linux kernel: arch/x86/include/asm/elf.h
175  */
176 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
177 {
178     (*regs)[0] = tswapreg(env->regs[15]);
179     (*regs)[1] = tswapreg(env->regs[14]);
180     (*regs)[2] = tswapreg(env->regs[13]);
181     (*regs)[3] = tswapreg(env->regs[12]);
182     (*regs)[4] = tswapreg(env->regs[R_EBP]);
183     (*regs)[5] = tswapreg(env->regs[R_EBX]);
184     (*regs)[6] = tswapreg(env->regs[11]);
185     (*regs)[7] = tswapreg(env->regs[10]);
186     (*regs)[8] = tswapreg(env->regs[9]);
187     (*regs)[9] = tswapreg(env->regs[8]);
188     (*regs)[10] = tswapreg(env->regs[R_EAX]);
189     (*regs)[11] = tswapreg(env->regs[R_ECX]);
190     (*regs)[12] = tswapreg(env->regs[R_EDX]);
191     (*regs)[13] = tswapreg(env->regs[R_ESI]);
192     (*regs)[14] = tswapreg(env->regs[R_EDI]);
193     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
194     (*regs)[16] = tswapreg(env->eip);
195     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
196     (*regs)[18] = tswapreg(env->eflags);
197     (*regs)[19] = tswapreg(env->regs[R_ESP]);
198     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
199     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
200     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
201     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
202     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
203     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
204     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
205 }
206 
207 #else
208 
209 #define ELF_START_MMAP 0x80000000
210 
211 /*
212  * This is used to ensure we don't load something for the wrong architecture.
213  */
214 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
215 
216 /*
217  * These are used to set parameters in the core dumps.
218  */
219 #define ELF_CLASS       ELFCLASS32
220 #define ELF_ARCH        EM_386
221 
222 static inline void init_thread(struct target_pt_regs *regs,
223                                struct image_info *infop)
224 {
225     regs->esp = infop->start_stack;
226     regs->eip = infop->entry;
227 
228     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
229        starts %edx contains a pointer to a function which might be
230        registered using `atexit'.  This provides a mean for the
231        dynamic linker to call DT_FINI functions for shared libraries
232        that have been loaded before the code runs.
233 
234        A value of 0 tells we have no such handler.  */
235     regs->edx = 0;
236 }
237 
238 #define ELF_NREG    17
239 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
240 
241 /*
242  * Note that ELF_NREG should be 19 as there should be place for
243  * TRAPNO and ERR "registers" as well but linux doesn't dump
244  * those.
245  *
246  * See linux kernel: arch/x86/include/asm/elf.h
247  */
248 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
249 {
250     (*regs)[0] = tswapreg(env->regs[R_EBX]);
251     (*regs)[1] = tswapreg(env->regs[R_ECX]);
252     (*regs)[2] = tswapreg(env->regs[R_EDX]);
253     (*regs)[3] = tswapreg(env->regs[R_ESI]);
254     (*regs)[4] = tswapreg(env->regs[R_EDI]);
255     (*regs)[5] = tswapreg(env->regs[R_EBP]);
256     (*regs)[6] = tswapreg(env->regs[R_EAX]);
257     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
258     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
259     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
260     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
261     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
262     (*regs)[12] = tswapreg(env->eip);
263     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
264     (*regs)[14] = tswapreg(env->eflags);
265     (*regs)[15] = tswapreg(env->regs[R_ESP]);
266     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
267 }
268 #endif
269 
270 #define USE_ELF_CORE_DUMP
271 #define ELF_EXEC_PAGESIZE       4096
272 
273 #endif
274 
275 #ifdef TARGET_ARM
276 
277 #ifndef TARGET_AARCH64
278 /* 32 bit ARM definitions */
279 
280 #define ELF_START_MMAP 0x80000000
281 
282 #define ELF_ARCH        EM_ARM
283 #define ELF_CLASS       ELFCLASS32
284 
285 static inline void init_thread(struct target_pt_regs *regs,
286                                struct image_info *infop)
287 {
288     abi_long stack = infop->start_stack;
289     memset(regs, 0, sizeof(*regs));
290 
291     regs->uregs[16] = ARM_CPU_MODE_USR;
292     if (infop->entry & 1) {
293         regs->uregs[16] |= CPSR_T;
294     }
295     regs->uregs[15] = infop->entry & 0xfffffffe;
296     regs->uregs[13] = infop->start_stack;
297     /* FIXME - what to for failure of get_user()? */
298     get_user_ual(regs->uregs[2], stack + 8); /* envp */
299     get_user_ual(regs->uregs[1], stack + 4); /* envp */
300     /* XXX: it seems that r0 is zeroed after ! */
301     regs->uregs[0] = 0;
302     /* For uClinux PIC binaries.  */
303     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
304     regs->uregs[10] = infop->start_data;
305 
306     /* Support ARM FDPIC.  */
307     if (info_is_fdpic(infop)) {
308         /* As described in the ABI document, r7 points to the loadmap info
309          * prepared by the kernel. If an interpreter is needed, r8 points
310          * to the interpreter loadmap and r9 points to the interpreter
311          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
312          * r9 points to the main program PT_DYNAMIC info.
313          */
314         regs->uregs[7] = infop->loadmap_addr;
315         if (infop->interpreter_loadmap_addr) {
316             /* Executable is dynamically loaded.  */
317             regs->uregs[8] = infop->interpreter_loadmap_addr;
318             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
319         } else {
320             regs->uregs[8] = 0;
321             regs->uregs[9] = infop->pt_dynamic_addr;
322         }
323     }
324 }
325 
326 #define ELF_NREG    18
327 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
328 
329 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
330 {
331     (*regs)[0] = tswapreg(env->regs[0]);
332     (*regs)[1] = tswapreg(env->regs[1]);
333     (*regs)[2] = tswapreg(env->regs[2]);
334     (*regs)[3] = tswapreg(env->regs[3]);
335     (*regs)[4] = tswapreg(env->regs[4]);
336     (*regs)[5] = tswapreg(env->regs[5]);
337     (*regs)[6] = tswapreg(env->regs[6]);
338     (*regs)[7] = tswapreg(env->regs[7]);
339     (*regs)[8] = tswapreg(env->regs[8]);
340     (*regs)[9] = tswapreg(env->regs[9]);
341     (*regs)[10] = tswapreg(env->regs[10]);
342     (*regs)[11] = tswapreg(env->regs[11]);
343     (*regs)[12] = tswapreg(env->regs[12]);
344     (*regs)[13] = tswapreg(env->regs[13]);
345     (*regs)[14] = tswapreg(env->regs[14]);
346     (*regs)[15] = tswapreg(env->regs[15]);
347 
348     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
349     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
350 }
351 
352 #define USE_ELF_CORE_DUMP
353 #define ELF_EXEC_PAGESIZE       4096
354 
355 enum
356 {
357     ARM_HWCAP_ARM_SWP       = 1 << 0,
358     ARM_HWCAP_ARM_HALF      = 1 << 1,
359     ARM_HWCAP_ARM_THUMB     = 1 << 2,
360     ARM_HWCAP_ARM_26BIT     = 1 << 3,
361     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
362     ARM_HWCAP_ARM_FPA       = 1 << 5,
363     ARM_HWCAP_ARM_VFP       = 1 << 6,
364     ARM_HWCAP_ARM_EDSP      = 1 << 7,
365     ARM_HWCAP_ARM_JAVA      = 1 << 8,
366     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
367     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
368     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
369     ARM_HWCAP_ARM_NEON      = 1 << 12,
370     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
371     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
372     ARM_HWCAP_ARM_TLS       = 1 << 15,
373     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
374     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
375     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
376     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
377     ARM_HWCAP_ARM_LPAE      = 1 << 20,
378     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
379 };
380 
381 enum {
382     ARM_HWCAP2_ARM_AES      = 1 << 0,
383     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
384     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
385     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
386     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
387 };
388 
389 /* The commpage only exists for 32 bit kernels */
390 
391 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
392 
393 static bool init_guest_commpage(void)
394 {
395     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
396     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
397                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
398 
399     if (addr == MAP_FAILED) {
400         perror("Allocating guest commpage");
401         exit(EXIT_FAILURE);
402     }
403     if (addr != want) {
404         return false;
405     }
406 
407     /* Set kernel helper versions; rest of page is 0.  */
408     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
409 
410     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
411         perror("Protecting guest commpage");
412         exit(EXIT_FAILURE);
413     }
414     return true;
415 }
416 
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
419 
420 static uint32_t get_elf_hwcap(void)
421 {
422     ARMCPU *cpu = ARM_CPU(thread_cpu);
423     uint32_t hwcaps = 0;
424 
425     hwcaps |= ARM_HWCAP_ARM_SWP;
426     hwcaps |= ARM_HWCAP_ARM_HALF;
427     hwcaps |= ARM_HWCAP_ARM_THUMB;
428     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
429 
430     /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 
434 #define GET_FEATURE_ID(feat, hwcap) \
435     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
436 
437     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
438     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
439     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
440     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
441     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
442     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
443     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
444     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
445     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
446     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
447 
448     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
449         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
450         hwcaps |= ARM_HWCAP_ARM_VFPv3;
451         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
452             hwcaps |= ARM_HWCAP_ARM_VFPD32;
453         } else {
454             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
455         }
456     }
457     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
458 
459     return hwcaps;
460 }
461 
462 static uint32_t get_elf_hwcap2(void)
463 {
464     ARMCPU *cpu = ARM_CPU(thread_cpu);
465     uint32_t hwcaps = 0;
466 
467     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
468     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
469     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
470     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
471     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
472     return hwcaps;
473 }
474 
475 #undef GET_FEATURE
476 #undef GET_FEATURE_ID
477 
478 #define ELF_PLATFORM get_elf_platform()
479 
480 static const char *get_elf_platform(void)
481 {
482     CPUARMState *env = thread_cpu->env_ptr;
483 
484 #ifdef TARGET_WORDS_BIGENDIAN
485 # define END  "b"
486 #else
487 # define END  "l"
488 #endif
489 
490     if (arm_feature(env, ARM_FEATURE_V8)) {
491         return "v8" END;
492     } else if (arm_feature(env, ARM_FEATURE_V7)) {
493         if (arm_feature(env, ARM_FEATURE_M)) {
494             return "v7m" END;
495         } else {
496             return "v7" END;
497         }
498     } else if (arm_feature(env, ARM_FEATURE_V6)) {
499         return "v6" END;
500     } else if (arm_feature(env, ARM_FEATURE_V5)) {
501         return "v5" END;
502     } else {
503         return "v4" END;
504     }
505 
506 #undef END
507 }
508 
509 #else
510 /* 64 bit ARM definitions */
511 #define ELF_START_MMAP 0x80000000
512 
513 #define ELF_ARCH        EM_AARCH64
514 #define ELF_CLASS       ELFCLASS64
515 #ifdef TARGET_WORDS_BIGENDIAN
516 # define ELF_PLATFORM    "aarch64_be"
517 #else
518 # define ELF_PLATFORM    "aarch64"
519 #endif
520 
521 static inline void init_thread(struct target_pt_regs *regs,
522                                struct image_info *infop)
523 {
524     abi_long stack = infop->start_stack;
525     memset(regs, 0, sizeof(*regs));
526 
527     regs->pc = infop->entry & ~0x3ULL;
528     regs->sp = stack;
529 }
530 
531 #define ELF_NREG    34
532 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
533 
534 static void elf_core_copy_regs(target_elf_gregset_t *regs,
535                                const CPUARMState *env)
536 {
537     int i;
538 
539     for (i = 0; i < 32; i++) {
540         (*regs)[i] = tswapreg(env->xregs[i]);
541     }
542     (*regs)[32] = tswapreg(env->pc);
543     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
544 }
545 
546 #define USE_ELF_CORE_DUMP
547 #define ELF_EXEC_PAGESIZE       4096
548 
549 enum {
550     ARM_HWCAP_A64_FP            = 1 << 0,
551     ARM_HWCAP_A64_ASIMD         = 1 << 1,
552     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
553     ARM_HWCAP_A64_AES           = 1 << 3,
554     ARM_HWCAP_A64_PMULL         = 1 << 4,
555     ARM_HWCAP_A64_SHA1          = 1 << 5,
556     ARM_HWCAP_A64_SHA2          = 1 << 6,
557     ARM_HWCAP_A64_CRC32         = 1 << 7,
558     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
559     ARM_HWCAP_A64_FPHP          = 1 << 9,
560     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
561     ARM_HWCAP_A64_CPUID         = 1 << 11,
562     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
563     ARM_HWCAP_A64_JSCVT         = 1 << 13,
564     ARM_HWCAP_A64_FCMA          = 1 << 14,
565     ARM_HWCAP_A64_LRCPC         = 1 << 15,
566     ARM_HWCAP_A64_DCPOP         = 1 << 16,
567     ARM_HWCAP_A64_SHA3          = 1 << 17,
568     ARM_HWCAP_A64_SM3           = 1 << 18,
569     ARM_HWCAP_A64_SM4           = 1 << 19,
570     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
571     ARM_HWCAP_A64_SHA512        = 1 << 21,
572     ARM_HWCAP_A64_SVE           = 1 << 22,
573     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
574     ARM_HWCAP_A64_DIT           = 1 << 24,
575     ARM_HWCAP_A64_USCAT         = 1 << 25,
576     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
577     ARM_HWCAP_A64_FLAGM         = 1 << 27,
578     ARM_HWCAP_A64_SSBS          = 1 << 28,
579     ARM_HWCAP_A64_SB            = 1 << 29,
580     ARM_HWCAP_A64_PACA          = 1 << 30,
581     ARM_HWCAP_A64_PACG          = 1UL << 31,
582 
583     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
584     ARM_HWCAP2_A64_SVE2         = 1 << 1,
585     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
586     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
587     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
588     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
589     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
590     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
591     ARM_HWCAP2_A64_FRINT        = 1 << 8,
592     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
593     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
594     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
595     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
596     ARM_HWCAP2_A64_I8MM         = 1 << 13,
597     ARM_HWCAP2_A64_BF16         = 1 << 14,
598     ARM_HWCAP2_A64_DGH          = 1 << 15,
599     ARM_HWCAP2_A64_RNG          = 1 << 16,
600     ARM_HWCAP2_A64_BTI          = 1 << 17,
601     ARM_HWCAP2_A64_MTE          = 1 << 18,
602 };
603 
604 #define ELF_HWCAP   get_elf_hwcap()
605 #define ELF_HWCAP2  get_elf_hwcap2()
606 
607 #define GET_FEATURE_ID(feat, hwcap) \
608     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
609 
610 static uint32_t get_elf_hwcap(void)
611 {
612     ARMCPU *cpu = ARM_CPU(thread_cpu);
613     uint32_t hwcaps = 0;
614 
615     hwcaps |= ARM_HWCAP_A64_FP;
616     hwcaps |= ARM_HWCAP_A64_ASIMD;
617     hwcaps |= ARM_HWCAP_A64_CPUID;
618 
619     /* probe for the extra features */
620 
621     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
622     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
623     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
624     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
625     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
626     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
627     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
628     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
629     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
630     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
631     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
632     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
633     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
634     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
635     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
636     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
637     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
638     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
639     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
640     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
641     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
642     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
643     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
644 
645     return hwcaps;
646 }
647 
648 static uint32_t get_elf_hwcap2(void)
649 {
650     ARMCPU *cpu = ARM_CPU(thread_cpu);
651     uint32_t hwcaps = 0;
652 
653     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
654     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
655     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
656     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
657     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
658     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
659     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
660     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
661     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
662     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
663     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
664     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
665     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
666     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
667     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
668     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
669     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
670     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
671 
672     return hwcaps;
673 }
674 
675 #undef GET_FEATURE_ID
676 
677 #endif /* not TARGET_AARCH64 */
678 #endif /* TARGET_ARM */
679 
680 #ifdef TARGET_SPARC
681 #ifdef TARGET_SPARC64
682 
683 #define ELF_START_MMAP 0x80000000
684 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
685                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
686 #ifndef TARGET_ABI32
687 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
688 #else
689 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
690 #endif
691 
692 #define ELF_CLASS   ELFCLASS64
693 #define ELF_ARCH    EM_SPARCV9
694 #else
695 #define ELF_START_MMAP 0x80000000
696 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
697                     | HWCAP_SPARC_MULDIV)
698 #define ELF_CLASS   ELFCLASS32
699 #define ELF_ARCH    EM_SPARC
700 #endif /* TARGET_SPARC64 */
701 
702 static inline void init_thread(struct target_pt_regs *regs,
703                                struct image_info *infop)
704 {
705     /* Note that target_cpu_copy_regs does not read psr/tstate. */
706     regs->pc = infop->entry;
707     regs->npc = regs->pc + 4;
708     regs->y = 0;
709     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
710                         - TARGET_STACK_BIAS);
711 }
712 #endif /* TARGET_SPARC */
713 
714 #ifdef TARGET_PPC
715 
716 #define ELF_MACHINE    PPC_ELF_MACHINE
717 #define ELF_START_MMAP 0x80000000
718 
719 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
720 
721 #define elf_check_arch(x) ( (x) == EM_PPC64 )
722 
723 #define ELF_CLASS       ELFCLASS64
724 
725 #else
726 
727 #define ELF_CLASS       ELFCLASS32
728 
729 #endif
730 
731 #define ELF_ARCH        EM_PPC
732 
733 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
734    See arch/powerpc/include/asm/cputable.h.  */
735 enum {
736     QEMU_PPC_FEATURE_32 = 0x80000000,
737     QEMU_PPC_FEATURE_64 = 0x40000000,
738     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
739     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
740     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
741     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
742     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
743     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
744     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
745     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
746     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
747     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
748     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
749     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
750     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
751     QEMU_PPC_FEATURE_CELL = 0x00010000,
752     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
753     QEMU_PPC_FEATURE_SMT = 0x00004000,
754     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
755     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
756     QEMU_PPC_FEATURE_PA6T = 0x00000800,
757     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
758     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
759     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
760     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
761     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
762 
763     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
764     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
765 
766     /* Feature definitions in AT_HWCAP2.  */
767     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
768     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
769     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
770     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
771     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
772     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
773     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
774     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
775     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
776     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
777     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
778     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
779     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
780 };
781 
782 #define ELF_HWCAP get_elf_hwcap()
783 
784 static uint32_t get_elf_hwcap(void)
785 {
786     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
787     uint32_t features = 0;
788 
789     /* We don't have to be terribly complete here; the high points are
790        Altivec/FP/SPE support.  Anything else is just a bonus.  */
791 #define GET_FEATURE(flag, feature)                                      \
792     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
793 #define GET_FEATURE2(flags, feature) \
794     do { \
795         if ((cpu->env.insns_flags2 & flags) == flags) { \
796             features |= feature; \
797         } \
798     } while (0)
799     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
800     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
801     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
802     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
803     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
804     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
805     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
806     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
807     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
808     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
809     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
810                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
811                   QEMU_PPC_FEATURE_ARCH_2_06);
812 #undef GET_FEATURE
813 #undef GET_FEATURE2
814 
815     return features;
816 }
817 
818 #define ELF_HWCAP2 get_elf_hwcap2()
819 
820 static uint32_t get_elf_hwcap2(void)
821 {
822     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
823     uint32_t features = 0;
824 
825 #define GET_FEATURE(flag, feature)                                      \
826     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
827 #define GET_FEATURE2(flag, feature)                                      \
828     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
829 
830     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
831     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
832     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
833                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
834                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
835     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
836                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
837 
838 #undef GET_FEATURE
839 #undef GET_FEATURE2
840 
841     return features;
842 }
843 
844 /*
845  * The requirements here are:
846  * - keep the final alignment of sp (sp & 0xf)
847  * - make sure the 32-bit value at the first 16 byte aligned position of
848  *   AUXV is greater than 16 for glibc compatibility.
849  *   AT_IGNOREPPC is used for that.
850  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
851  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
852  */
853 #define DLINFO_ARCH_ITEMS       5
854 #define ARCH_DLINFO                                     \
855     do {                                                \
856         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
857         /*                                              \
858          * Handle glibc compatibility: these magic entries must \
859          * be at the lowest addresses in the final auxv.        \
860          */                                             \
861         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
862         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
863         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
864         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
865         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
866     } while (0)
867 
868 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
869 {
870     _regs->gpr[1] = infop->start_stack;
871 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
872     if (get_ppc64_abi(infop) < 2) {
873         uint64_t val;
874         get_user_u64(val, infop->entry + 8);
875         _regs->gpr[2] = val + infop->load_bias;
876         get_user_u64(val, infop->entry);
877         infop->entry = val + infop->load_bias;
878     } else {
879         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
880     }
881 #endif
882     _regs->nip = infop->entry;
883 }
884 
885 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
886 #define ELF_NREG 48
887 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
888 
889 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
890 {
891     int i;
892     target_ulong ccr = 0;
893 
894     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
895         (*regs)[i] = tswapreg(env->gpr[i]);
896     }
897 
898     (*regs)[32] = tswapreg(env->nip);
899     (*regs)[33] = tswapreg(env->msr);
900     (*regs)[35] = tswapreg(env->ctr);
901     (*regs)[36] = tswapreg(env->lr);
902     (*regs)[37] = tswapreg(env->xer);
903 
904     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
905         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
906     }
907     (*regs)[38] = tswapreg(ccr);
908 }
909 
910 #define USE_ELF_CORE_DUMP
911 #define ELF_EXEC_PAGESIZE       4096
912 
913 #endif
914 
915 #ifdef TARGET_MIPS
916 
917 #define ELF_START_MMAP 0x80000000
918 
919 #ifdef TARGET_MIPS64
920 #define ELF_CLASS   ELFCLASS64
921 #else
922 #define ELF_CLASS   ELFCLASS32
923 #endif
924 #define ELF_ARCH    EM_MIPS
925 
926 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
927 
928 #ifdef TARGET_ABI_MIPSN32
929 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
930 #else
931 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
932 #endif
933 
934 static inline void init_thread(struct target_pt_regs *regs,
935                                struct image_info *infop)
936 {
937     regs->cp0_status = 2 << CP0St_KSU;
938     regs->cp0_epc = infop->entry;
939     regs->regs[29] = infop->start_stack;
940 }
941 
942 /* See linux kernel: arch/mips/include/asm/elf.h.  */
943 #define ELF_NREG 45
944 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
945 
946 /* See linux kernel: arch/mips/include/asm/reg.h.  */
947 enum {
948 #ifdef TARGET_MIPS64
949     TARGET_EF_R0 = 0,
950 #else
951     TARGET_EF_R0 = 6,
952 #endif
953     TARGET_EF_R26 = TARGET_EF_R0 + 26,
954     TARGET_EF_R27 = TARGET_EF_R0 + 27,
955     TARGET_EF_LO = TARGET_EF_R0 + 32,
956     TARGET_EF_HI = TARGET_EF_R0 + 33,
957     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
958     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
959     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
960     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
961 };
962 
963 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
964 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
965 {
966     int i;
967 
968     for (i = 0; i < TARGET_EF_R0; i++) {
969         (*regs)[i] = 0;
970     }
971     (*regs)[TARGET_EF_R0] = 0;
972 
973     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
974         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
975     }
976 
977     (*regs)[TARGET_EF_R26] = 0;
978     (*regs)[TARGET_EF_R27] = 0;
979     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
980     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
981     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
982     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
983     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
984     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
985 }
986 
987 #define USE_ELF_CORE_DUMP
988 #define ELF_EXEC_PAGESIZE        4096
989 
990 /* See arch/mips/include/uapi/asm/hwcap.h.  */
991 enum {
992     HWCAP_MIPS_R6           = (1 << 0),
993     HWCAP_MIPS_MSA          = (1 << 1),
994     HWCAP_MIPS_CRC32        = (1 << 2),
995     HWCAP_MIPS_MIPS16       = (1 << 3),
996     HWCAP_MIPS_MDMX         = (1 << 4),
997     HWCAP_MIPS_MIPS3D       = (1 << 5),
998     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
999     HWCAP_MIPS_DSP          = (1 << 7),
1000     HWCAP_MIPS_DSP2         = (1 << 8),
1001     HWCAP_MIPS_DSP3         = (1 << 9),
1002     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1003     HWCAP_LOONGSON_MMI      = (1 << 11),
1004     HWCAP_LOONGSON_EXT      = (1 << 12),
1005     HWCAP_LOONGSON_EXT2     = (1 << 13),
1006     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1007 };
1008 
1009 #define ELF_HWCAP get_elf_hwcap()
1010 
1011 #define GET_FEATURE_INSN(_flag, _hwcap) \
1012     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1013 
1014 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1015     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1016 
1017 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1018     do { \
1019         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1020             hwcaps |= _hwcap; \
1021         } \
1022     } while (0)
1023 
1024 static uint32_t get_elf_hwcap(void)
1025 {
1026     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1027     uint32_t hwcaps = 0;
1028 
1029     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1030                         2, HWCAP_MIPS_R6);
1031     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1032     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1033     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1034 
1035     return hwcaps;
1036 }
1037 
1038 #undef GET_FEATURE_REG_EQU
1039 #undef GET_FEATURE_REG_SET
1040 #undef GET_FEATURE_INSN
1041 
1042 #endif /* TARGET_MIPS */
1043 
1044 #ifdef TARGET_MICROBLAZE
1045 
1046 #define ELF_START_MMAP 0x80000000
1047 
1048 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1049 
1050 #define ELF_CLASS   ELFCLASS32
1051 #define ELF_ARCH    EM_MICROBLAZE
1052 
1053 static inline void init_thread(struct target_pt_regs *regs,
1054                                struct image_info *infop)
1055 {
1056     regs->pc = infop->entry;
1057     regs->r1 = infop->start_stack;
1058 
1059 }
1060 
1061 #define ELF_EXEC_PAGESIZE        4096
1062 
1063 #define USE_ELF_CORE_DUMP
1064 #define ELF_NREG 38
1065 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1066 
1067 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1068 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1069 {
1070     int i, pos = 0;
1071 
1072     for (i = 0; i < 32; i++) {
1073         (*regs)[pos++] = tswapreg(env->regs[i]);
1074     }
1075 
1076     (*regs)[pos++] = tswapreg(env->pc);
1077     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1078     (*regs)[pos++] = 0;
1079     (*regs)[pos++] = tswapreg(env->ear);
1080     (*regs)[pos++] = 0;
1081     (*regs)[pos++] = tswapreg(env->esr);
1082 }
1083 
1084 #endif /* TARGET_MICROBLAZE */
1085 
1086 #ifdef TARGET_NIOS2
1087 
1088 #define ELF_START_MMAP 0x80000000
1089 
1090 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1091 
1092 #define ELF_CLASS   ELFCLASS32
1093 #define ELF_ARCH    EM_ALTERA_NIOS2
1094 
1095 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1096 {
1097     regs->ea = infop->entry;
1098     regs->sp = infop->start_stack;
1099     regs->estatus = 0x3;
1100 }
1101 
1102 #define ELF_EXEC_PAGESIZE        4096
1103 
1104 #define USE_ELF_CORE_DUMP
1105 #define ELF_NREG 49
1106 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1107 
1108 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1109 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1110                                const CPUNios2State *env)
1111 {
1112     int i;
1113 
1114     (*regs)[0] = -1;
1115     for (i = 1; i < 8; i++)    /* r0-r7 */
1116         (*regs)[i] = tswapreg(env->regs[i + 7]);
1117 
1118     for (i = 8; i < 16; i++)   /* r8-r15 */
1119         (*regs)[i] = tswapreg(env->regs[i - 8]);
1120 
1121     for (i = 16; i < 24; i++)  /* r16-r23 */
1122         (*regs)[i] = tswapreg(env->regs[i + 7]);
1123     (*regs)[24] = -1;    /* R_ET */
1124     (*regs)[25] = -1;    /* R_BT */
1125     (*regs)[26] = tswapreg(env->regs[R_GP]);
1126     (*regs)[27] = tswapreg(env->regs[R_SP]);
1127     (*regs)[28] = tswapreg(env->regs[R_FP]);
1128     (*regs)[29] = tswapreg(env->regs[R_EA]);
1129     (*regs)[30] = -1;    /* R_SSTATUS */
1130     (*regs)[31] = tswapreg(env->regs[R_RA]);
1131 
1132     (*regs)[32] = tswapreg(env->regs[R_PC]);
1133 
1134     (*regs)[33] = -1; /* R_STATUS */
1135     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1136 
1137     for (i = 35; i < 49; i++)    /* ... */
1138         (*regs)[i] = -1;
1139 }
1140 
1141 #endif /* TARGET_NIOS2 */
1142 
1143 #ifdef TARGET_OPENRISC
1144 
1145 #define ELF_START_MMAP 0x08000000
1146 
1147 #define ELF_ARCH EM_OPENRISC
1148 #define ELF_CLASS ELFCLASS32
1149 #define ELF_DATA  ELFDATA2MSB
1150 
1151 static inline void init_thread(struct target_pt_regs *regs,
1152                                struct image_info *infop)
1153 {
1154     regs->pc = infop->entry;
1155     regs->gpr[1] = infop->start_stack;
1156 }
1157 
1158 #define USE_ELF_CORE_DUMP
1159 #define ELF_EXEC_PAGESIZE 8192
1160 
1161 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1162 #define ELF_NREG 34 /* gprs and pc, sr */
1163 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1164 
1165 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1166                                const CPUOpenRISCState *env)
1167 {
1168     int i;
1169 
1170     for (i = 0; i < 32; i++) {
1171         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1172     }
1173     (*regs)[32] = tswapreg(env->pc);
1174     (*regs)[33] = tswapreg(cpu_get_sr(env));
1175 }
1176 #define ELF_HWCAP 0
1177 #define ELF_PLATFORM NULL
1178 
1179 #endif /* TARGET_OPENRISC */
1180 
1181 #ifdef TARGET_SH4
1182 
1183 #define ELF_START_MMAP 0x80000000
1184 
1185 #define ELF_CLASS ELFCLASS32
1186 #define ELF_ARCH  EM_SH
1187 
1188 static inline void init_thread(struct target_pt_regs *regs,
1189                                struct image_info *infop)
1190 {
1191     /* Check other registers XXXXX */
1192     regs->pc = infop->entry;
1193     regs->regs[15] = infop->start_stack;
1194 }
1195 
1196 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1197 #define ELF_NREG 23
1198 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1199 
1200 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1201 enum {
1202     TARGET_REG_PC = 16,
1203     TARGET_REG_PR = 17,
1204     TARGET_REG_SR = 18,
1205     TARGET_REG_GBR = 19,
1206     TARGET_REG_MACH = 20,
1207     TARGET_REG_MACL = 21,
1208     TARGET_REG_SYSCALL = 22
1209 };
1210 
1211 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1212                                       const CPUSH4State *env)
1213 {
1214     int i;
1215 
1216     for (i = 0; i < 16; i++) {
1217         (*regs)[i] = tswapreg(env->gregs[i]);
1218     }
1219 
1220     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1221     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1222     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1223     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1224     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1225     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1226     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1227 }
1228 
1229 #define USE_ELF_CORE_DUMP
1230 #define ELF_EXEC_PAGESIZE        4096
1231 
1232 enum {
1233     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1234     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1235     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1236     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1237     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1238     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1239     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1240     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1241     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1242     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1243 };
1244 
1245 #define ELF_HWCAP get_elf_hwcap()
1246 
1247 static uint32_t get_elf_hwcap(void)
1248 {
1249     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1250     uint32_t hwcap = 0;
1251 
1252     hwcap |= SH_CPU_HAS_FPU;
1253 
1254     if (cpu->env.features & SH_FEATURE_SH4A) {
1255         hwcap |= SH_CPU_HAS_LLSC;
1256     }
1257 
1258     return hwcap;
1259 }
1260 
1261 #endif
1262 
1263 #ifdef TARGET_CRIS
1264 
1265 #define ELF_START_MMAP 0x80000000
1266 
1267 #define ELF_CLASS ELFCLASS32
1268 #define ELF_ARCH  EM_CRIS
1269 
1270 static inline void init_thread(struct target_pt_regs *regs,
1271                                struct image_info *infop)
1272 {
1273     regs->erp = infop->entry;
1274 }
1275 
1276 #define ELF_EXEC_PAGESIZE        8192
1277 
1278 #endif
1279 
1280 #ifdef TARGET_M68K
1281 
1282 #define ELF_START_MMAP 0x80000000
1283 
1284 #define ELF_CLASS       ELFCLASS32
1285 #define ELF_ARCH        EM_68K
1286 
1287 /* ??? Does this need to do anything?
1288    #define ELF_PLAT_INIT(_r) */
1289 
1290 static inline void init_thread(struct target_pt_regs *regs,
1291                                struct image_info *infop)
1292 {
1293     regs->usp = infop->start_stack;
1294     regs->sr = 0;
1295     regs->pc = infop->entry;
1296 }
1297 
1298 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1299 #define ELF_NREG 20
1300 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1301 
1302 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1303 {
1304     (*regs)[0] = tswapreg(env->dregs[1]);
1305     (*regs)[1] = tswapreg(env->dregs[2]);
1306     (*regs)[2] = tswapreg(env->dregs[3]);
1307     (*regs)[3] = tswapreg(env->dregs[4]);
1308     (*regs)[4] = tswapreg(env->dregs[5]);
1309     (*regs)[5] = tswapreg(env->dregs[6]);
1310     (*regs)[6] = tswapreg(env->dregs[7]);
1311     (*regs)[7] = tswapreg(env->aregs[0]);
1312     (*regs)[8] = tswapreg(env->aregs[1]);
1313     (*regs)[9] = tswapreg(env->aregs[2]);
1314     (*regs)[10] = tswapreg(env->aregs[3]);
1315     (*regs)[11] = tswapreg(env->aregs[4]);
1316     (*regs)[12] = tswapreg(env->aregs[5]);
1317     (*regs)[13] = tswapreg(env->aregs[6]);
1318     (*regs)[14] = tswapreg(env->dregs[0]);
1319     (*regs)[15] = tswapreg(env->aregs[7]);
1320     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1321     (*regs)[17] = tswapreg(env->sr);
1322     (*regs)[18] = tswapreg(env->pc);
1323     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1324 }
1325 
1326 #define USE_ELF_CORE_DUMP
1327 #define ELF_EXEC_PAGESIZE       8192
1328 
1329 #endif
1330 
1331 #ifdef TARGET_ALPHA
1332 
1333 #define ELF_START_MMAP (0x30000000000ULL)
1334 
1335 #define ELF_CLASS      ELFCLASS64
1336 #define ELF_ARCH       EM_ALPHA
1337 
1338 static inline void init_thread(struct target_pt_regs *regs,
1339                                struct image_info *infop)
1340 {
1341     regs->pc = infop->entry;
1342     regs->ps = 8;
1343     regs->usp = infop->start_stack;
1344 }
1345 
1346 #define ELF_EXEC_PAGESIZE        8192
1347 
1348 #endif /* TARGET_ALPHA */
1349 
1350 #ifdef TARGET_S390X
1351 
1352 #define ELF_START_MMAP (0x20000000000ULL)
1353 
1354 #define ELF_CLASS	ELFCLASS64
1355 #define ELF_DATA	ELFDATA2MSB
1356 #define ELF_ARCH	EM_S390
1357 
1358 #include "elf.h"
1359 
1360 #define ELF_HWCAP get_elf_hwcap()
1361 
1362 #define GET_FEATURE(_feat, _hwcap) \
1363     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1364 
1365 static uint32_t get_elf_hwcap(void)
1366 {
1367     /*
1368      * Let's assume we always have esan3 and zarch.
1369      * 31-bit processes can use 64-bit registers (high gprs).
1370      */
1371     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1372 
1373     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1374     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1375     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1376     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1377     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1378         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1379         hwcap |= HWCAP_S390_ETF3EH;
1380     }
1381     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1382     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1383 
1384     return hwcap;
1385 }
1386 
1387 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1388 {
1389     regs->psw.addr = infop->entry;
1390     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1391     regs->gprs[15] = infop->start_stack;
1392 }
1393 
1394 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1395 #define ELF_NREG 27
1396 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1397 
1398 enum {
1399     TARGET_REG_PSWM = 0,
1400     TARGET_REG_PSWA = 1,
1401     TARGET_REG_GPRS = 2,
1402     TARGET_REG_ARS = 18,
1403     TARGET_REG_ORIG_R2 = 26,
1404 };
1405 
1406 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1407                                const CPUS390XState *env)
1408 {
1409     int i;
1410     uint32_t *aregs;
1411 
1412     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1413     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1414     for (i = 0; i < 16; i++) {
1415         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1416     }
1417     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1418     for (i = 0; i < 16; i++) {
1419         aregs[i] = tswap32(env->aregs[i]);
1420     }
1421     (*regs)[TARGET_REG_ORIG_R2] = 0;
1422 }
1423 
1424 #define USE_ELF_CORE_DUMP
1425 #define ELF_EXEC_PAGESIZE 4096
1426 
1427 #endif /* TARGET_S390X */
1428 
1429 #ifdef TARGET_RISCV
1430 
1431 #define ELF_START_MMAP 0x80000000
1432 #define ELF_ARCH  EM_RISCV
1433 
1434 #ifdef TARGET_RISCV32
1435 #define ELF_CLASS ELFCLASS32
1436 #else
1437 #define ELF_CLASS ELFCLASS64
1438 #endif
1439 
1440 #define ELF_HWCAP get_elf_hwcap()
1441 
1442 static uint32_t get_elf_hwcap(void)
1443 {
1444 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1445     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1446     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1447                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1448 
1449     return cpu->env.misa & mask;
1450 #undef MISA_BIT
1451 }
1452 
1453 static inline void init_thread(struct target_pt_regs *regs,
1454                                struct image_info *infop)
1455 {
1456     regs->sepc = infop->entry;
1457     regs->sp = infop->start_stack;
1458 }
1459 
1460 #define ELF_EXEC_PAGESIZE 4096
1461 
1462 #endif /* TARGET_RISCV */
1463 
1464 #ifdef TARGET_HPPA
1465 
1466 #define ELF_START_MMAP  0x80000000
1467 #define ELF_CLASS       ELFCLASS32
1468 #define ELF_ARCH        EM_PARISC
1469 #define ELF_PLATFORM    "PARISC"
1470 #define STACK_GROWS_DOWN 0
1471 #define STACK_ALIGNMENT  64
1472 
1473 static inline void init_thread(struct target_pt_regs *regs,
1474                                struct image_info *infop)
1475 {
1476     regs->iaoq[0] = infop->entry;
1477     regs->iaoq[1] = infop->entry + 4;
1478     regs->gr[23] = 0;
1479     regs->gr[24] = infop->arg_start;
1480     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1481     /* The top-of-stack contains a linkage buffer.  */
1482     regs->gr[30] = infop->start_stack + 64;
1483     regs->gr[31] = infop->entry;
1484 }
1485 
1486 #endif /* TARGET_HPPA */
1487 
1488 #ifdef TARGET_XTENSA
1489 
1490 #define ELF_START_MMAP 0x20000000
1491 
1492 #define ELF_CLASS       ELFCLASS32
1493 #define ELF_ARCH        EM_XTENSA
1494 
1495 static inline void init_thread(struct target_pt_regs *regs,
1496                                struct image_info *infop)
1497 {
1498     regs->windowbase = 0;
1499     regs->windowstart = 1;
1500     regs->areg[1] = infop->start_stack;
1501     regs->pc = infop->entry;
1502 }
1503 
1504 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1505 #define ELF_NREG 128
1506 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1507 
1508 enum {
1509     TARGET_REG_PC,
1510     TARGET_REG_PS,
1511     TARGET_REG_LBEG,
1512     TARGET_REG_LEND,
1513     TARGET_REG_LCOUNT,
1514     TARGET_REG_SAR,
1515     TARGET_REG_WINDOWSTART,
1516     TARGET_REG_WINDOWBASE,
1517     TARGET_REG_THREADPTR,
1518     TARGET_REG_AR0 = 64,
1519 };
1520 
1521 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1522                                const CPUXtensaState *env)
1523 {
1524     unsigned i;
1525 
1526     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1527     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1528     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1529     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1530     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1531     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1532     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1533     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1534     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1535     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1536     for (i = 0; i < env->config->nareg; ++i) {
1537         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1538     }
1539 }
1540 
1541 #define USE_ELF_CORE_DUMP
1542 #define ELF_EXEC_PAGESIZE       4096
1543 
1544 #endif /* TARGET_XTENSA */
1545 
1546 #ifdef TARGET_HEXAGON
1547 
1548 #define ELF_START_MMAP 0x20000000
1549 
1550 #define ELF_CLASS       ELFCLASS32
1551 #define ELF_ARCH        EM_HEXAGON
1552 
1553 static inline void init_thread(struct target_pt_regs *regs,
1554                                struct image_info *infop)
1555 {
1556     regs->sepc = infop->entry;
1557     regs->sp = infop->start_stack;
1558 }
1559 
1560 #endif /* TARGET_HEXAGON */
1561 
1562 #ifndef ELF_PLATFORM
1563 #define ELF_PLATFORM (NULL)
1564 #endif
1565 
1566 #ifndef ELF_MACHINE
1567 #define ELF_MACHINE ELF_ARCH
1568 #endif
1569 
1570 #ifndef elf_check_arch
1571 #define elf_check_arch(x) ((x) == ELF_ARCH)
1572 #endif
1573 
1574 #ifndef elf_check_abi
1575 #define elf_check_abi(x) (1)
1576 #endif
1577 
1578 #ifndef ELF_HWCAP
1579 #define ELF_HWCAP 0
1580 #endif
1581 
1582 #ifndef STACK_GROWS_DOWN
1583 #define STACK_GROWS_DOWN 1
1584 #endif
1585 
1586 #ifndef STACK_ALIGNMENT
1587 #define STACK_ALIGNMENT 16
1588 #endif
1589 
1590 #ifdef TARGET_ABI32
1591 #undef ELF_CLASS
1592 #define ELF_CLASS ELFCLASS32
1593 #undef bswaptls
1594 #define bswaptls(ptr) bswap32s(ptr)
1595 #endif
1596 
1597 #include "elf.h"
1598 
1599 /* We must delay the following stanzas until after "elf.h". */
1600 #if defined(TARGET_AARCH64)
1601 
1602 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1603                                     const uint32_t *data,
1604                                     struct image_info *info,
1605                                     Error **errp)
1606 {
1607     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1608         if (pr_datasz != sizeof(uint32_t)) {
1609             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1610             return false;
1611         }
1612         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1613         info->note_flags = *data;
1614     }
1615     return true;
1616 }
1617 #define ARCH_USE_GNU_PROPERTY 1
1618 
1619 #else
1620 
1621 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1622                                     const uint32_t *data,
1623                                     struct image_info *info,
1624                                     Error **errp)
1625 {
1626     g_assert_not_reached();
1627 }
1628 #define ARCH_USE_GNU_PROPERTY 0
1629 
1630 #endif
1631 
1632 struct exec
1633 {
1634     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1635     unsigned int a_text;   /* length of text, in bytes */
1636     unsigned int a_data;   /* length of data, in bytes */
1637     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1638     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1639     unsigned int a_entry;  /* start address */
1640     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1641     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1642 };
1643 
1644 
1645 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1646 #define OMAGIC 0407
1647 #define NMAGIC 0410
1648 #define ZMAGIC 0413
1649 #define QMAGIC 0314
1650 
1651 /* Necessary parameters */
1652 #define TARGET_ELF_EXEC_PAGESIZE \
1653         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1654          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1655 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1656 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1657                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1658 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1659 
1660 #define DLINFO_ITEMS 16
1661 
1662 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1663 {
1664     memcpy(to, from, n);
1665 }
1666 
1667 #ifdef BSWAP_NEEDED
1668 static void bswap_ehdr(struct elfhdr *ehdr)
1669 {
1670     bswap16s(&ehdr->e_type);            /* Object file type */
1671     bswap16s(&ehdr->e_machine);         /* Architecture */
1672     bswap32s(&ehdr->e_version);         /* Object file version */
1673     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1674     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1675     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1676     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1677     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1678     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1679     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1680     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1681     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1682     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1683 }
1684 
1685 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1686 {
1687     int i;
1688     for (i = 0; i < phnum; ++i, ++phdr) {
1689         bswap32s(&phdr->p_type);        /* Segment type */
1690         bswap32s(&phdr->p_flags);       /* Segment flags */
1691         bswaptls(&phdr->p_offset);      /* Segment file offset */
1692         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1693         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1694         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1695         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1696         bswaptls(&phdr->p_align);       /* Segment alignment */
1697     }
1698 }
1699 
1700 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1701 {
1702     int i;
1703     for (i = 0; i < shnum; ++i, ++shdr) {
1704         bswap32s(&shdr->sh_name);
1705         bswap32s(&shdr->sh_type);
1706         bswaptls(&shdr->sh_flags);
1707         bswaptls(&shdr->sh_addr);
1708         bswaptls(&shdr->sh_offset);
1709         bswaptls(&shdr->sh_size);
1710         bswap32s(&shdr->sh_link);
1711         bswap32s(&shdr->sh_info);
1712         bswaptls(&shdr->sh_addralign);
1713         bswaptls(&shdr->sh_entsize);
1714     }
1715 }
1716 
1717 static void bswap_sym(struct elf_sym *sym)
1718 {
1719     bswap32s(&sym->st_name);
1720     bswaptls(&sym->st_value);
1721     bswaptls(&sym->st_size);
1722     bswap16s(&sym->st_shndx);
1723 }
1724 
1725 #ifdef TARGET_MIPS
1726 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1727 {
1728     bswap16s(&abiflags->version);
1729     bswap32s(&abiflags->ases);
1730     bswap32s(&abiflags->isa_ext);
1731     bswap32s(&abiflags->flags1);
1732     bswap32s(&abiflags->flags2);
1733 }
1734 #endif
1735 #else
1736 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1737 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1738 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1739 static inline void bswap_sym(struct elf_sym *sym) { }
1740 #ifdef TARGET_MIPS
1741 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1742 #endif
1743 #endif
1744 
1745 #ifdef USE_ELF_CORE_DUMP
1746 static int elf_core_dump(int, const CPUArchState *);
1747 #endif /* USE_ELF_CORE_DUMP */
1748 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1749 
1750 /* Verify the portions of EHDR within E_IDENT for the target.
1751    This can be performed before bswapping the entire header.  */
1752 static bool elf_check_ident(struct elfhdr *ehdr)
1753 {
1754     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1755             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1756             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1757             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1758             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1759             && ehdr->e_ident[EI_DATA] == ELF_DATA
1760             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1761 }
1762 
1763 /* Verify the portions of EHDR outside of E_IDENT for the target.
1764    This has to wait until after bswapping the header.  */
1765 static bool elf_check_ehdr(struct elfhdr *ehdr)
1766 {
1767     return (elf_check_arch(ehdr->e_machine)
1768             && elf_check_abi(ehdr->e_flags)
1769             && ehdr->e_ehsize == sizeof(struct elfhdr)
1770             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1771             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1772 }
1773 
1774 /*
1775  * 'copy_elf_strings()' copies argument/envelope strings from user
1776  * memory to free pages in kernel mem. These are in a format ready
1777  * to be put directly into the top of new user memory.
1778  *
1779  */
1780 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1781                                   abi_ulong p, abi_ulong stack_limit)
1782 {
1783     char *tmp;
1784     int len, i;
1785     abi_ulong top = p;
1786 
1787     if (!p) {
1788         return 0;       /* bullet-proofing */
1789     }
1790 
1791     if (STACK_GROWS_DOWN) {
1792         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1793         for (i = argc - 1; i >= 0; --i) {
1794             tmp = argv[i];
1795             if (!tmp) {
1796                 fprintf(stderr, "VFS: argc is wrong");
1797                 exit(-1);
1798             }
1799             len = strlen(tmp) + 1;
1800             tmp += len;
1801 
1802             if (len > (p - stack_limit)) {
1803                 return 0;
1804             }
1805             while (len) {
1806                 int bytes_to_copy = (len > offset) ? offset : len;
1807                 tmp -= bytes_to_copy;
1808                 p -= bytes_to_copy;
1809                 offset -= bytes_to_copy;
1810                 len -= bytes_to_copy;
1811 
1812                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1813 
1814                 if (offset == 0) {
1815                     memcpy_to_target(p, scratch, top - p);
1816                     top = p;
1817                     offset = TARGET_PAGE_SIZE;
1818                 }
1819             }
1820         }
1821         if (p != top) {
1822             memcpy_to_target(p, scratch + offset, top - p);
1823         }
1824     } else {
1825         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1826         for (i = 0; i < argc; ++i) {
1827             tmp = argv[i];
1828             if (!tmp) {
1829                 fprintf(stderr, "VFS: argc is wrong");
1830                 exit(-1);
1831             }
1832             len = strlen(tmp) + 1;
1833             if (len > (stack_limit - p)) {
1834                 return 0;
1835             }
1836             while (len) {
1837                 int bytes_to_copy = (len > remaining) ? remaining : len;
1838 
1839                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1840 
1841                 tmp += bytes_to_copy;
1842                 remaining -= bytes_to_copy;
1843                 p += bytes_to_copy;
1844                 len -= bytes_to_copy;
1845 
1846                 if (remaining == 0) {
1847                     memcpy_to_target(top, scratch, p - top);
1848                     top = p;
1849                     remaining = TARGET_PAGE_SIZE;
1850                 }
1851             }
1852         }
1853         if (p != top) {
1854             memcpy_to_target(top, scratch, p - top);
1855         }
1856     }
1857 
1858     return p;
1859 }
1860 
1861 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1862  * argument/environment space. Newer kernels (>2.6.33) allow more,
1863  * dependent on stack size, but guarantee at least 32 pages for
1864  * backwards compatibility.
1865  */
1866 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1867 
1868 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1869                                  struct image_info *info)
1870 {
1871     abi_ulong size, error, guard;
1872 
1873     size = guest_stack_size;
1874     if (size < STACK_LOWER_LIMIT) {
1875         size = STACK_LOWER_LIMIT;
1876     }
1877     guard = TARGET_PAGE_SIZE;
1878     if (guard < qemu_real_host_page_size) {
1879         guard = qemu_real_host_page_size;
1880     }
1881 
1882     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1883                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1884     if (error == -1) {
1885         perror("mmap stack");
1886         exit(-1);
1887     }
1888 
1889     /* We reserve one extra page at the top of the stack as guard.  */
1890     if (STACK_GROWS_DOWN) {
1891         target_mprotect(error, guard, PROT_NONE);
1892         info->stack_limit = error + guard;
1893         return info->stack_limit + size - sizeof(void *);
1894     } else {
1895         target_mprotect(error + size, guard, PROT_NONE);
1896         info->stack_limit = error + size;
1897         return error;
1898     }
1899 }
1900 
1901 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1902    after the data section (i.e. bss).  */
1903 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1904 {
1905     uintptr_t host_start, host_map_start, host_end;
1906 
1907     last_bss = TARGET_PAGE_ALIGN(last_bss);
1908 
1909     /* ??? There is confusion between qemu_real_host_page_size and
1910        qemu_host_page_size here and elsewhere in target_mmap, which
1911        may lead to the end of the data section mapping from the file
1912        not being mapped.  At least there was an explicit test and
1913        comment for that here, suggesting that "the file size must
1914        be known".  The comment probably pre-dates the introduction
1915        of the fstat system call in target_mmap which does in fact
1916        find out the size.  What isn't clear is if the workaround
1917        here is still actually needed.  For now, continue with it,
1918        but merge it with the "normal" mmap that would allocate the bss.  */
1919 
1920     host_start = (uintptr_t) g2h_untagged(elf_bss);
1921     host_end = (uintptr_t) g2h_untagged(last_bss);
1922     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1923 
1924     if (host_map_start < host_end) {
1925         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1926                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1927         if (p == MAP_FAILED) {
1928             perror("cannot mmap brk");
1929             exit(-1);
1930         }
1931     }
1932 
1933     /* Ensure that the bss page(s) are valid */
1934     if ((page_get_flags(last_bss-1) & prot) != prot) {
1935         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1936     }
1937 
1938     if (host_start < host_map_start) {
1939         memset((void *)host_start, 0, host_map_start - host_start);
1940     }
1941 }
1942 
1943 #ifdef TARGET_ARM
1944 static int elf_is_fdpic(struct elfhdr *exec)
1945 {
1946     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1947 }
1948 #else
1949 /* Default implementation, always false.  */
1950 static int elf_is_fdpic(struct elfhdr *exec)
1951 {
1952     return 0;
1953 }
1954 #endif
1955 
1956 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1957 {
1958     uint16_t n;
1959     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1960 
1961     /* elf32_fdpic_loadseg */
1962     n = info->nsegs;
1963     while (n--) {
1964         sp -= 12;
1965         put_user_u32(loadsegs[n].addr, sp+0);
1966         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1967         put_user_u32(loadsegs[n].p_memsz, sp+8);
1968     }
1969 
1970     /* elf32_fdpic_loadmap */
1971     sp -= 4;
1972     put_user_u16(0, sp+0); /* version */
1973     put_user_u16(info->nsegs, sp+2); /* nsegs */
1974 
1975     info->personality = PER_LINUX_FDPIC;
1976     info->loadmap_addr = sp;
1977 
1978     return sp;
1979 }
1980 
1981 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1982                                    struct elfhdr *exec,
1983                                    struct image_info *info,
1984                                    struct image_info *interp_info)
1985 {
1986     abi_ulong sp;
1987     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1988     int size;
1989     int i;
1990     abi_ulong u_rand_bytes;
1991     uint8_t k_rand_bytes[16];
1992     abi_ulong u_platform;
1993     const char *k_platform;
1994     const int n = sizeof(elf_addr_t);
1995 
1996     sp = p;
1997 
1998     /* Needs to be before we load the env/argc/... */
1999     if (elf_is_fdpic(exec)) {
2000         /* Need 4 byte alignment for these structs */
2001         sp &= ~3;
2002         sp = loader_build_fdpic_loadmap(info, sp);
2003         info->other_info = interp_info;
2004         if (interp_info) {
2005             interp_info->other_info = info;
2006             sp = loader_build_fdpic_loadmap(interp_info, sp);
2007             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2008             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2009         } else {
2010             info->interpreter_loadmap_addr = 0;
2011             info->interpreter_pt_dynamic_addr = 0;
2012         }
2013     }
2014 
2015     u_platform = 0;
2016     k_platform = ELF_PLATFORM;
2017     if (k_platform) {
2018         size_t len = strlen(k_platform) + 1;
2019         if (STACK_GROWS_DOWN) {
2020             sp -= (len + n - 1) & ~(n - 1);
2021             u_platform = sp;
2022             /* FIXME - check return value of memcpy_to_target() for failure */
2023             memcpy_to_target(sp, k_platform, len);
2024         } else {
2025             memcpy_to_target(sp, k_platform, len);
2026             u_platform = sp;
2027             sp += len + 1;
2028         }
2029     }
2030 
2031     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2032      * the argv and envp pointers.
2033      */
2034     if (STACK_GROWS_DOWN) {
2035         sp = QEMU_ALIGN_DOWN(sp, 16);
2036     } else {
2037         sp = QEMU_ALIGN_UP(sp, 16);
2038     }
2039 
2040     /*
2041      * Generate 16 random bytes for userspace PRNG seeding.
2042      */
2043     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2044     if (STACK_GROWS_DOWN) {
2045         sp -= 16;
2046         u_rand_bytes = sp;
2047         /* FIXME - check return value of memcpy_to_target() for failure */
2048         memcpy_to_target(sp, k_rand_bytes, 16);
2049     } else {
2050         memcpy_to_target(sp, k_rand_bytes, 16);
2051         u_rand_bytes = sp;
2052         sp += 16;
2053     }
2054 
2055     size = (DLINFO_ITEMS + 1) * 2;
2056     if (k_platform)
2057         size += 2;
2058 #ifdef DLINFO_ARCH_ITEMS
2059     size += DLINFO_ARCH_ITEMS * 2;
2060 #endif
2061 #ifdef ELF_HWCAP2
2062     size += 2;
2063 #endif
2064     info->auxv_len = size * n;
2065 
2066     size += envc + argc + 2;
2067     size += 1;  /* argc itself */
2068     size *= n;
2069 
2070     /* Allocate space and finalize stack alignment for entry now.  */
2071     if (STACK_GROWS_DOWN) {
2072         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2073         sp = u_argc;
2074     } else {
2075         u_argc = sp;
2076         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2077     }
2078 
2079     u_argv = u_argc + n;
2080     u_envp = u_argv + (argc + 1) * n;
2081     u_auxv = u_envp + (envc + 1) * n;
2082     info->saved_auxv = u_auxv;
2083     info->arg_start = u_argv;
2084     info->arg_end = u_argv + argc * n;
2085 
2086     /* This is correct because Linux defines
2087      * elf_addr_t as Elf32_Off / Elf64_Off
2088      */
2089 #define NEW_AUX_ENT(id, val) do {               \
2090         put_user_ual(id, u_auxv);  u_auxv += n; \
2091         put_user_ual(val, u_auxv); u_auxv += n; \
2092     } while(0)
2093 
2094 #ifdef ARCH_DLINFO
2095     /*
2096      * ARCH_DLINFO must come first so platform specific code can enforce
2097      * special alignment requirements on the AUXV if necessary (eg. PPC).
2098      */
2099     ARCH_DLINFO;
2100 #endif
2101     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2102      * on info->auxv_len will trigger.
2103      */
2104     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2105     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2106     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2107     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2108         /* Target doesn't support host page size alignment */
2109         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2110     } else {
2111         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2112                                                qemu_host_page_size)));
2113     }
2114     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2115     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2116     NEW_AUX_ENT(AT_ENTRY, info->entry);
2117     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2118     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2119     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2120     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2121     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2122     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2123     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2124     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2125     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2126 
2127 #ifdef ELF_HWCAP2
2128     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2129 #endif
2130 
2131     if (u_platform) {
2132         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2133     }
2134     NEW_AUX_ENT (AT_NULL, 0);
2135 #undef NEW_AUX_ENT
2136 
2137     /* Check that our initial calculation of the auxv length matches how much
2138      * we actually put into it.
2139      */
2140     assert(info->auxv_len == u_auxv - info->saved_auxv);
2141 
2142     put_user_ual(argc, u_argc);
2143 
2144     p = info->arg_strings;
2145     for (i = 0; i < argc; ++i) {
2146         put_user_ual(p, u_argv);
2147         u_argv += n;
2148         p += target_strlen(p) + 1;
2149     }
2150     put_user_ual(0, u_argv);
2151 
2152     p = info->env_strings;
2153     for (i = 0; i < envc; ++i) {
2154         put_user_ual(p, u_envp);
2155         u_envp += n;
2156         p += target_strlen(p) + 1;
2157     }
2158     put_user_ual(0, u_envp);
2159 
2160     return sp;
2161 }
2162 
2163 #ifndef ARM_COMMPAGE
2164 #define ARM_COMMPAGE 0
2165 #define init_guest_commpage() true
2166 #endif
2167 
2168 static void pgb_fail_in_use(const char *image_name)
2169 {
2170     error_report("%s: requires virtual address space that is in use "
2171                  "(omit the -B option or choose a different value)",
2172                  image_name);
2173     exit(EXIT_FAILURE);
2174 }
2175 
2176 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2177                                 abi_ulong guest_hiaddr, long align)
2178 {
2179     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2180     void *addr, *test;
2181 
2182     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2183         fprintf(stderr, "Requested guest base %p does not satisfy "
2184                 "host minimum alignment (0x%lx)\n",
2185                 (void *)guest_base, align);
2186         exit(EXIT_FAILURE);
2187     }
2188 
2189     /* Sanity check the guest binary. */
2190     if (reserved_va) {
2191         if (guest_hiaddr > reserved_va) {
2192             error_report("%s: requires more than reserved virtual "
2193                          "address space (0x%" PRIx64 " > 0x%lx)",
2194                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2195             exit(EXIT_FAILURE);
2196         }
2197     } else {
2198 #if HOST_LONG_BITS < TARGET_ABI_BITS
2199         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2200             error_report("%s: requires more virtual address space "
2201                          "than the host can provide (0x%" PRIx64 ")",
2202                          image_name, (uint64_t)guest_hiaddr - guest_base);
2203             exit(EXIT_FAILURE);
2204         }
2205 #endif
2206     }
2207 
2208     /*
2209      * Expand the allocation to the entire reserved_va.
2210      * Exclude the mmap_min_addr hole.
2211      */
2212     if (reserved_va) {
2213         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2214                         : mmap_min_addr - guest_base);
2215         guest_hiaddr = reserved_va;
2216     }
2217 
2218     /* Reserve the address space for the binary, or reserved_va. */
2219     test = g2h_untagged(guest_loaddr);
2220     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2221     if (test != addr) {
2222         pgb_fail_in_use(image_name);
2223     }
2224 }
2225 
2226 /**
2227  * pgd_find_hole_fallback: potential mmap address
2228  * @guest_size: size of available space
2229  * @brk: location of break
2230  * @align: memory alignment
2231  *
2232  * This is a fallback method for finding a hole in the host address
2233  * space if we don't have the benefit of being able to access
2234  * /proc/self/map. It can potentially take a very long time as we can
2235  * only dumbly iterate up the host address space seeing if the
2236  * allocation would work.
2237  */
2238 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2239                                         long align, uintptr_t offset)
2240 {
2241     uintptr_t base;
2242 
2243     /* Start (aligned) at the bottom and work our way up */
2244     base = ROUND_UP(mmap_min_addr, align);
2245 
2246     while (true) {
2247         uintptr_t align_start, end;
2248         align_start = ROUND_UP(base, align);
2249         end = align_start + guest_size + offset;
2250 
2251         /* if brk is anywhere in the range give ourselves some room to grow. */
2252         if (align_start <= brk && brk < end) {
2253             base = brk + (16 * MiB);
2254             continue;
2255         } else if (align_start + guest_size < align_start) {
2256             /* we have run out of space */
2257             return -1;
2258         } else {
2259             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2260                 MAP_FIXED_NOREPLACE;
2261             void * mmap_start = mmap((void *) align_start, guest_size,
2262                                      PROT_NONE, flags, -1, 0);
2263             if (mmap_start != MAP_FAILED) {
2264                 munmap(mmap_start, guest_size);
2265                 if (mmap_start == (void *) align_start) {
2266                     return (uintptr_t) mmap_start + offset;
2267                 }
2268             }
2269             base += qemu_host_page_size;
2270         }
2271     }
2272 }
2273 
2274 /* Return value for guest_base, or -1 if no hole found. */
2275 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2276                                long align, uintptr_t offset)
2277 {
2278     GSList *maps, *iter;
2279     uintptr_t this_start, this_end, next_start, brk;
2280     intptr_t ret = -1;
2281 
2282     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2283 
2284     maps = read_self_maps();
2285 
2286     /* Read brk after we've read the maps, which will malloc. */
2287     brk = (uintptr_t)sbrk(0);
2288 
2289     if (!maps) {
2290         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2291         return ret == -1 ? -1 : ret - guest_loaddr;
2292     }
2293 
2294     /* The first hole is before the first map entry. */
2295     this_start = mmap_min_addr;
2296 
2297     for (iter = maps; iter;
2298          this_start = next_start, iter = g_slist_next(iter)) {
2299         uintptr_t align_start, hole_size;
2300 
2301         this_end = ((MapInfo *)iter->data)->start;
2302         next_start = ((MapInfo *)iter->data)->end;
2303         align_start = ROUND_UP(this_start + offset, align);
2304 
2305         /* Skip holes that are too small. */
2306         if (align_start >= this_end) {
2307             continue;
2308         }
2309         hole_size = this_end - align_start;
2310         if (hole_size < guest_size) {
2311             continue;
2312         }
2313 
2314         /* If this hole contains brk, give ourselves some room to grow. */
2315         if (this_start <= brk && brk < this_end) {
2316             hole_size -= guest_size;
2317             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2318                 align_start += 1 * GiB;
2319             } else if (hole_size >= 16 * MiB) {
2320                 align_start += 16 * MiB;
2321             } else {
2322                 align_start = (this_end - guest_size) & -align;
2323                 if (align_start < this_start) {
2324                     continue;
2325                 }
2326             }
2327         }
2328 
2329         /* Record the lowest successful match. */
2330         if (ret < 0) {
2331             ret = align_start - guest_loaddr;
2332         }
2333         /* If this hole contains the identity map, select it. */
2334         if (align_start <= guest_loaddr &&
2335             guest_loaddr + guest_size <= this_end) {
2336             ret = 0;
2337         }
2338         /* If this hole ends above the identity map, stop looking. */
2339         if (this_end >= guest_loaddr) {
2340             break;
2341         }
2342     }
2343     free_self_maps(maps);
2344 
2345     return ret;
2346 }
2347 
2348 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2349                        abi_ulong orig_hiaddr, long align)
2350 {
2351     uintptr_t loaddr = orig_loaddr;
2352     uintptr_t hiaddr = orig_hiaddr;
2353     uintptr_t offset = 0;
2354     uintptr_t addr;
2355 
2356     if (hiaddr != orig_hiaddr) {
2357         error_report("%s: requires virtual address space that the "
2358                      "host cannot provide (0x%" PRIx64 ")",
2359                      image_name, (uint64_t)orig_hiaddr);
2360         exit(EXIT_FAILURE);
2361     }
2362 
2363     loaddr &= -align;
2364     if (ARM_COMMPAGE) {
2365         /*
2366          * Extend the allocation to include the commpage.
2367          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2368          * need to ensure there is space bellow the guest_base so we
2369          * can map the commpage in the place needed when the address
2370          * arithmetic wraps around.
2371          */
2372         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2373             hiaddr = (uintptr_t) 4 << 30;
2374         } else {
2375             offset = -(ARM_COMMPAGE & -align);
2376         }
2377     }
2378 
2379     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2380     if (addr == -1) {
2381         /*
2382          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2383          * that can satisfy both.  But as the normal arm32 link base address
2384          * is ~32k, and we extend down to include the commpage, making the
2385          * overhead only ~96k, this is unlikely.
2386          */
2387         error_report("%s: Unable to allocate %#zx bytes of "
2388                      "virtual address space", image_name,
2389                      (size_t)(hiaddr - loaddr));
2390         exit(EXIT_FAILURE);
2391     }
2392 
2393     guest_base = addr;
2394 }
2395 
2396 static void pgb_dynamic(const char *image_name, long align)
2397 {
2398     /*
2399      * The executable is dynamic and does not require a fixed address.
2400      * All we need is a commpage that satisfies align.
2401      * If we do not need a commpage, leave guest_base == 0.
2402      */
2403     if (ARM_COMMPAGE) {
2404         uintptr_t addr, commpage;
2405 
2406         /* 64-bit hosts should have used reserved_va. */
2407         assert(sizeof(uintptr_t) == 4);
2408 
2409         /*
2410          * By putting the commpage at the first hole, that puts guest_base
2411          * just above that, and maximises the positive guest addresses.
2412          */
2413         commpage = ARM_COMMPAGE & -align;
2414         addr = pgb_find_hole(commpage, -commpage, align, 0);
2415         assert(addr != -1);
2416         guest_base = addr;
2417     }
2418 }
2419 
2420 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2421                             abi_ulong guest_hiaddr, long align)
2422 {
2423     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2424     void *addr, *test;
2425 
2426     if (guest_hiaddr > reserved_va) {
2427         error_report("%s: requires more than reserved virtual "
2428                      "address space (0x%" PRIx64 " > 0x%lx)",
2429                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2430         exit(EXIT_FAILURE);
2431     }
2432 
2433     /* Widen the "image" to the entire reserved address space. */
2434     pgb_static(image_name, 0, reserved_va, align);
2435 
2436     /* osdep.h defines this as 0 if it's missing */
2437     flags |= MAP_FIXED_NOREPLACE;
2438 
2439     /* Reserve the memory on the host. */
2440     assert(guest_base != 0);
2441     test = g2h_untagged(0);
2442     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2443     if (addr == MAP_FAILED || addr != test) {
2444         error_report("Unable to reserve 0x%lx bytes of virtual address "
2445                      "space at %p (%s) for use as guest address space (check your"
2446                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2447                      "using -R option)", reserved_va, test, strerror(errno));
2448         exit(EXIT_FAILURE);
2449     }
2450 }
2451 
2452 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2453                       abi_ulong guest_hiaddr)
2454 {
2455     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2456     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2457 
2458     if (have_guest_base) {
2459         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2460     } else if (reserved_va) {
2461         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2462     } else if (guest_loaddr) {
2463         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2464     } else {
2465         pgb_dynamic(image_name, align);
2466     }
2467 
2468     /* Reserve and initialize the commpage. */
2469     if (!init_guest_commpage()) {
2470         /*
2471          * With have_guest_base, the user has selected the address and
2472          * we are trying to work with that.  Otherwise, we have selected
2473          * free space and init_guest_commpage must succeeded.
2474          */
2475         assert(have_guest_base);
2476         pgb_fail_in_use(image_name);
2477     }
2478 
2479     assert(QEMU_IS_ALIGNED(guest_base, align));
2480     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2481                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2482 }
2483 
2484 enum {
2485     /* The string "GNU\0" as a magic number. */
2486     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2487     NOTE_DATA_SZ = 1 * KiB,
2488     NOTE_NAME_SZ = 4,
2489     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2490 };
2491 
2492 /*
2493  * Process a single gnu_property entry.
2494  * Return false for error.
2495  */
2496 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2497                                struct image_info *info, bool have_prev_type,
2498                                uint32_t *prev_type, Error **errp)
2499 {
2500     uint32_t pr_type, pr_datasz, step;
2501 
2502     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2503         goto error_data;
2504     }
2505     datasz -= *off;
2506     data += *off / sizeof(uint32_t);
2507 
2508     if (datasz < 2 * sizeof(uint32_t)) {
2509         goto error_data;
2510     }
2511     pr_type = data[0];
2512     pr_datasz = data[1];
2513     data += 2;
2514     datasz -= 2 * sizeof(uint32_t);
2515     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2516     if (step > datasz) {
2517         goto error_data;
2518     }
2519 
2520     /* Properties are supposed to be unique and sorted on pr_type. */
2521     if (have_prev_type && pr_type <= *prev_type) {
2522         if (pr_type == *prev_type) {
2523             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2524         } else {
2525             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2526         }
2527         return false;
2528     }
2529     *prev_type = pr_type;
2530 
2531     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2532         return false;
2533     }
2534 
2535     *off += 2 * sizeof(uint32_t) + step;
2536     return true;
2537 
2538  error_data:
2539     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2540     return false;
2541 }
2542 
2543 /* Process NT_GNU_PROPERTY_TYPE_0. */
2544 static bool parse_elf_properties(int image_fd,
2545                                  struct image_info *info,
2546                                  const struct elf_phdr *phdr,
2547                                  char bprm_buf[BPRM_BUF_SIZE],
2548                                  Error **errp)
2549 {
2550     union {
2551         struct elf_note nhdr;
2552         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2553     } note;
2554 
2555     int n, off, datasz;
2556     bool have_prev_type;
2557     uint32_t prev_type;
2558 
2559     /* Unless the arch requires properties, ignore them. */
2560     if (!ARCH_USE_GNU_PROPERTY) {
2561         return true;
2562     }
2563 
2564     /* If the properties are crazy large, that's too bad. */
2565     n = phdr->p_filesz;
2566     if (n > sizeof(note)) {
2567         error_setg(errp, "PT_GNU_PROPERTY too large");
2568         return false;
2569     }
2570     if (n < sizeof(note.nhdr)) {
2571         error_setg(errp, "PT_GNU_PROPERTY too small");
2572         return false;
2573     }
2574 
2575     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2576         memcpy(&note, bprm_buf + phdr->p_offset, n);
2577     } else {
2578         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2579         if (len != n) {
2580             error_setg_errno(errp, errno, "Error reading file header");
2581             return false;
2582         }
2583     }
2584 
2585     /*
2586      * The contents of a valid PT_GNU_PROPERTY is a sequence
2587      * of uint32_t -- swap them all now.
2588      */
2589 #ifdef BSWAP_NEEDED
2590     for (int i = 0; i < n / 4; i++) {
2591         bswap32s(note.data + i);
2592     }
2593 #endif
2594 
2595     /*
2596      * Note that nhdr is 3 words, and that the "name" described by namesz
2597      * immediately follows nhdr and is thus at the 4th word.  Further, all
2598      * of the inputs to the kernel's round_up are multiples of 4.
2599      */
2600     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2601         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2602         note.data[3] != GNU0_MAGIC) {
2603         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2604         return false;
2605     }
2606     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2607 
2608     datasz = note.nhdr.n_descsz + off;
2609     if (datasz > n) {
2610         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2611         return false;
2612     }
2613 
2614     have_prev_type = false;
2615     prev_type = 0;
2616     while (1) {
2617         if (off == datasz) {
2618             return true;  /* end, exit ok */
2619         }
2620         if (!parse_elf_property(note.data, &off, datasz, info,
2621                                 have_prev_type, &prev_type, errp)) {
2622             return false;
2623         }
2624         have_prev_type = true;
2625     }
2626 }
2627 
2628 /* Load an ELF image into the address space.
2629 
2630    IMAGE_NAME is the filename of the image, to use in error messages.
2631    IMAGE_FD is the open file descriptor for the image.
2632 
2633    BPRM_BUF is a copy of the beginning of the file; this of course
2634    contains the elf file header at offset 0.  It is assumed that this
2635    buffer is sufficiently aligned to present no problems to the host
2636    in accessing data at aligned offsets within the buffer.
2637 
2638    On return: INFO values will be filled in, as necessary or available.  */
2639 
2640 static void load_elf_image(const char *image_name, int image_fd,
2641                            struct image_info *info, char **pinterp_name,
2642                            char bprm_buf[BPRM_BUF_SIZE])
2643 {
2644     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2645     struct elf_phdr *phdr;
2646     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2647     int i, retval, prot_exec;
2648     Error *err = NULL;
2649 
2650     /* First of all, some simple consistency checks */
2651     if (!elf_check_ident(ehdr)) {
2652         error_setg(&err, "Invalid ELF image for this architecture");
2653         goto exit_errmsg;
2654     }
2655     bswap_ehdr(ehdr);
2656     if (!elf_check_ehdr(ehdr)) {
2657         error_setg(&err, "Invalid ELF image for this architecture");
2658         goto exit_errmsg;
2659     }
2660 
2661     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2662     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2663         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2664     } else {
2665         phdr = (struct elf_phdr *) alloca(i);
2666         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2667         if (retval != i) {
2668             goto exit_read;
2669         }
2670     }
2671     bswap_phdr(phdr, ehdr->e_phnum);
2672 
2673     info->nsegs = 0;
2674     info->pt_dynamic_addr = 0;
2675 
2676     mmap_lock();
2677 
2678     /*
2679      * Find the maximum size of the image and allocate an appropriate
2680      * amount of memory to handle that.  Locate the interpreter, if any.
2681      */
2682     loaddr = -1, hiaddr = 0;
2683     info->alignment = 0;
2684     for (i = 0; i < ehdr->e_phnum; ++i) {
2685         struct elf_phdr *eppnt = phdr + i;
2686         if (eppnt->p_type == PT_LOAD) {
2687             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2688             if (a < loaddr) {
2689                 loaddr = a;
2690             }
2691             a = eppnt->p_vaddr + eppnt->p_memsz;
2692             if (a > hiaddr) {
2693                 hiaddr = a;
2694             }
2695             ++info->nsegs;
2696             info->alignment |= eppnt->p_align;
2697         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2698             g_autofree char *interp_name = NULL;
2699 
2700             if (*pinterp_name) {
2701                 error_setg(&err, "Multiple PT_INTERP entries");
2702                 goto exit_errmsg;
2703             }
2704 
2705             interp_name = g_malloc(eppnt->p_filesz);
2706 
2707             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2708                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2709                        eppnt->p_filesz);
2710             } else {
2711                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2712                                eppnt->p_offset);
2713                 if (retval != eppnt->p_filesz) {
2714                     goto exit_read;
2715                 }
2716             }
2717             if (interp_name[eppnt->p_filesz - 1] != 0) {
2718                 error_setg(&err, "Invalid PT_INTERP entry");
2719                 goto exit_errmsg;
2720             }
2721             *pinterp_name = g_steal_pointer(&interp_name);
2722         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2723             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2724                 goto exit_errmsg;
2725             }
2726         }
2727     }
2728 
2729     if (pinterp_name != NULL) {
2730         /*
2731          * This is the main executable.
2732          *
2733          * Reserve extra space for brk.
2734          * We hold on to this space while placing the interpreter
2735          * and the stack, lest they be placed immediately after
2736          * the data segment and block allocation from the brk.
2737          *
2738          * 16MB is chosen as "large enough" without being so large
2739          * as to allow the result to not fit with a 32-bit guest on
2740          * a 32-bit host.
2741          */
2742         info->reserve_brk = 16 * MiB;
2743         hiaddr += info->reserve_brk;
2744 
2745         if (ehdr->e_type == ET_EXEC) {
2746             /*
2747              * Make sure that the low address does not conflict with
2748              * MMAP_MIN_ADDR or the QEMU application itself.
2749              */
2750             probe_guest_base(image_name, loaddr, hiaddr);
2751         } else {
2752             /*
2753              * The binary is dynamic, but we still need to
2754              * select guest_base.  In this case we pass a size.
2755              */
2756             probe_guest_base(image_name, 0, hiaddr - loaddr);
2757         }
2758     }
2759 
2760     /*
2761      * Reserve address space for all of this.
2762      *
2763      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2764      * exactly the address range that is required.
2765      *
2766      * Otherwise this is ET_DYN, and we are searching for a location
2767      * that can hold the memory space required.  If the image is
2768      * pre-linked, LOADDR will be non-zero, and the kernel should
2769      * honor that address if it happens to be free.
2770      *
2771      * In both cases, we will overwrite pages in this range with mappings
2772      * from the executable.
2773      */
2774     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2775                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2776                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2777                             -1, 0);
2778     if (load_addr == -1) {
2779         goto exit_mmap;
2780     }
2781     load_bias = load_addr - loaddr;
2782 
2783     if (elf_is_fdpic(ehdr)) {
2784         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2785             g_malloc(sizeof(*loadsegs) * info->nsegs);
2786 
2787         for (i = 0; i < ehdr->e_phnum; ++i) {
2788             switch (phdr[i].p_type) {
2789             case PT_DYNAMIC:
2790                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2791                 break;
2792             case PT_LOAD:
2793                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2794                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2795                 loadsegs->p_memsz = phdr[i].p_memsz;
2796                 ++loadsegs;
2797                 break;
2798             }
2799         }
2800     }
2801 
2802     info->load_bias = load_bias;
2803     info->code_offset = load_bias;
2804     info->data_offset = load_bias;
2805     info->load_addr = load_addr;
2806     info->entry = ehdr->e_entry + load_bias;
2807     info->start_code = -1;
2808     info->end_code = 0;
2809     info->start_data = -1;
2810     info->end_data = 0;
2811     info->brk = 0;
2812     info->elf_flags = ehdr->e_flags;
2813 
2814     prot_exec = PROT_EXEC;
2815 #ifdef TARGET_AARCH64
2816     /*
2817      * If the BTI feature is present, this indicates that the executable
2818      * pages of the startup binary should be mapped with PROT_BTI, so that
2819      * branch targets are enforced.
2820      *
2821      * The startup binary is either the interpreter or the static executable.
2822      * The interpreter is responsible for all pages of a dynamic executable.
2823      *
2824      * Elf notes are backward compatible to older cpus.
2825      * Do not enable BTI unless it is supported.
2826      */
2827     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2828         && (pinterp_name == NULL || *pinterp_name == 0)
2829         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2830         prot_exec |= TARGET_PROT_BTI;
2831     }
2832 #endif
2833 
2834     for (i = 0; i < ehdr->e_phnum; i++) {
2835         struct elf_phdr *eppnt = phdr + i;
2836         if (eppnt->p_type == PT_LOAD) {
2837             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2838             int elf_prot = 0;
2839 
2840             if (eppnt->p_flags & PF_R) {
2841                 elf_prot |= PROT_READ;
2842             }
2843             if (eppnt->p_flags & PF_W) {
2844                 elf_prot |= PROT_WRITE;
2845             }
2846             if (eppnt->p_flags & PF_X) {
2847                 elf_prot |= prot_exec;
2848             }
2849 
2850             vaddr = load_bias + eppnt->p_vaddr;
2851             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2852             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2853 
2854             vaddr_ef = vaddr + eppnt->p_filesz;
2855             vaddr_em = vaddr + eppnt->p_memsz;
2856 
2857             /*
2858              * Some segments may be completely empty, with a non-zero p_memsz
2859              * but no backing file segment.
2860              */
2861             if (eppnt->p_filesz != 0) {
2862                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2863                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2864                                     MAP_PRIVATE | MAP_FIXED,
2865                                     image_fd, eppnt->p_offset - vaddr_po);
2866 
2867                 if (error == -1) {
2868                     goto exit_mmap;
2869                 }
2870 
2871                 /*
2872                  * If the load segment requests extra zeros (e.g. bss), map it.
2873                  */
2874                 if (eppnt->p_filesz < eppnt->p_memsz) {
2875                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2876                 }
2877             } else if (eppnt->p_memsz != 0) {
2878                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2879                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2880                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2881                                     -1, 0);
2882 
2883                 if (error == -1) {
2884                     goto exit_mmap;
2885                 }
2886             }
2887 
2888             /* Find the full program boundaries.  */
2889             if (elf_prot & PROT_EXEC) {
2890                 if (vaddr < info->start_code) {
2891                     info->start_code = vaddr;
2892                 }
2893                 if (vaddr_ef > info->end_code) {
2894                     info->end_code = vaddr_ef;
2895                 }
2896             }
2897             if (elf_prot & PROT_WRITE) {
2898                 if (vaddr < info->start_data) {
2899                     info->start_data = vaddr;
2900                 }
2901                 if (vaddr_ef > info->end_data) {
2902                     info->end_data = vaddr_ef;
2903                 }
2904             }
2905             if (vaddr_em > info->brk) {
2906                 info->brk = vaddr_em;
2907             }
2908 #ifdef TARGET_MIPS
2909         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2910             Mips_elf_abiflags_v0 abiflags;
2911             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2912                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2913                 goto exit_errmsg;
2914             }
2915             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2916                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2917                        sizeof(Mips_elf_abiflags_v0));
2918             } else {
2919                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2920                                eppnt->p_offset);
2921                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2922                     goto exit_read;
2923                 }
2924             }
2925             bswap_mips_abiflags(&abiflags);
2926             info->fp_abi = abiflags.fp_abi;
2927 #endif
2928         }
2929     }
2930 
2931     if (info->end_data == 0) {
2932         info->start_data = info->end_code;
2933         info->end_data = info->end_code;
2934     }
2935 
2936     if (qemu_log_enabled()) {
2937         load_symbols(ehdr, image_fd, load_bias);
2938     }
2939 
2940     mmap_unlock();
2941 
2942     close(image_fd);
2943     return;
2944 
2945  exit_read:
2946     if (retval >= 0) {
2947         error_setg(&err, "Incomplete read of file header");
2948     } else {
2949         error_setg_errno(&err, errno, "Error reading file header");
2950     }
2951     goto exit_errmsg;
2952  exit_mmap:
2953     error_setg_errno(&err, errno, "Error mapping file");
2954     goto exit_errmsg;
2955  exit_errmsg:
2956     error_reportf_err(err, "%s: ", image_name);
2957     exit(-1);
2958 }
2959 
2960 static void load_elf_interp(const char *filename, struct image_info *info,
2961                             char bprm_buf[BPRM_BUF_SIZE])
2962 {
2963     int fd, retval;
2964     Error *err = NULL;
2965 
2966     fd = open(path(filename), O_RDONLY);
2967     if (fd < 0) {
2968         error_setg_file_open(&err, errno, filename);
2969         error_report_err(err);
2970         exit(-1);
2971     }
2972 
2973     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2974     if (retval < 0) {
2975         error_setg_errno(&err, errno, "Error reading file header");
2976         error_reportf_err(err, "%s: ", filename);
2977         exit(-1);
2978     }
2979 
2980     if (retval < BPRM_BUF_SIZE) {
2981         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2982     }
2983 
2984     load_elf_image(filename, fd, info, NULL, bprm_buf);
2985 }
2986 
2987 static int symfind(const void *s0, const void *s1)
2988 {
2989     target_ulong addr = *(target_ulong *)s0;
2990     struct elf_sym *sym = (struct elf_sym *)s1;
2991     int result = 0;
2992     if (addr < sym->st_value) {
2993         result = -1;
2994     } else if (addr >= sym->st_value + sym->st_size) {
2995         result = 1;
2996     }
2997     return result;
2998 }
2999 
3000 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3001 {
3002 #if ELF_CLASS == ELFCLASS32
3003     struct elf_sym *syms = s->disas_symtab.elf32;
3004 #else
3005     struct elf_sym *syms = s->disas_symtab.elf64;
3006 #endif
3007 
3008     // binary search
3009     struct elf_sym *sym;
3010 
3011     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3012     if (sym != NULL) {
3013         return s->disas_strtab + sym->st_name;
3014     }
3015 
3016     return "";
3017 }
3018 
3019 /* FIXME: This should use elf_ops.h  */
3020 static int symcmp(const void *s0, const void *s1)
3021 {
3022     struct elf_sym *sym0 = (struct elf_sym *)s0;
3023     struct elf_sym *sym1 = (struct elf_sym *)s1;
3024     return (sym0->st_value < sym1->st_value)
3025         ? -1
3026         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3027 }
3028 
3029 /* Best attempt to load symbols from this ELF object. */
3030 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3031 {
3032     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3033     uint64_t segsz;
3034     struct elf_shdr *shdr;
3035     char *strings = NULL;
3036     struct syminfo *s = NULL;
3037     struct elf_sym *new_syms, *syms = NULL;
3038 
3039     shnum = hdr->e_shnum;
3040     i = shnum * sizeof(struct elf_shdr);
3041     shdr = (struct elf_shdr *)alloca(i);
3042     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3043         return;
3044     }
3045 
3046     bswap_shdr(shdr, shnum);
3047     for (i = 0; i < shnum; ++i) {
3048         if (shdr[i].sh_type == SHT_SYMTAB) {
3049             sym_idx = i;
3050             str_idx = shdr[i].sh_link;
3051             goto found;
3052         }
3053     }
3054 
3055     /* There will be no symbol table if the file was stripped.  */
3056     return;
3057 
3058  found:
3059     /* Now know where the strtab and symtab are.  Snarf them.  */
3060     s = g_try_new(struct syminfo, 1);
3061     if (!s) {
3062         goto give_up;
3063     }
3064 
3065     segsz = shdr[str_idx].sh_size;
3066     s->disas_strtab = strings = g_try_malloc(segsz);
3067     if (!strings ||
3068         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3069         goto give_up;
3070     }
3071 
3072     segsz = shdr[sym_idx].sh_size;
3073     syms = g_try_malloc(segsz);
3074     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3075         goto give_up;
3076     }
3077 
3078     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3079         /* Implausibly large symbol table: give up rather than ploughing
3080          * on with the number of symbols calculation overflowing
3081          */
3082         goto give_up;
3083     }
3084     nsyms = segsz / sizeof(struct elf_sym);
3085     for (i = 0; i < nsyms; ) {
3086         bswap_sym(syms + i);
3087         /* Throw away entries which we do not need.  */
3088         if (syms[i].st_shndx == SHN_UNDEF
3089             || syms[i].st_shndx >= SHN_LORESERVE
3090             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3091             if (i < --nsyms) {
3092                 syms[i] = syms[nsyms];
3093             }
3094         } else {
3095 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3096             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3097             syms[i].st_value &= ~(target_ulong)1;
3098 #endif
3099             syms[i].st_value += load_bias;
3100             i++;
3101         }
3102     }
3103 
3104     /* No "useful" symbol.  */
3105     if (nsyms == 0) {
3106         goto give_up;
3107     }
3108 
3109     /* Attempt to free the storage associated with the local symbols
3110        that we threw away.  Whether or not this has any effect on the
3111        memory allocation depends on the malloc implementation and how
3112        many symbols we managed to discard.  */
3113     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3114     if (new_syms == NULL) {
3115         goto give_up;
3116     }
3117     syms = new_syms;
3118 
3119     qsort(syms, nsyms, sizeof(*syms), symcmp);
3120 
3121     s->disas_num_syms = nsyms;
3122 #if ELF_CLASS == ELFCLASS32
3123     s->disas_symtab.elf32 = syms;
3124 #else
3125     s->disas_symtab.elf64 = syms;
3126 #endif
3127     s->lookup_symbol = lookup_symbolxx;
3128     s->next = syminfos;
3129     syminfos = s;
3130 
3131     return;
3132 
3133 give_up:
3134     g_free(s);
3135     g_free(strings);
3136     g_free(syms);
3137 }
3138 
3139 uint32_t get_elf_eflags(int fd)
3140 {
3141     struct elfhdr ehdr;
3142     off_t offset;
3143     int ret;
3144 
3145     /* Read ELF header */
3146     offset = lseek(fd, 0, SEEK_SET);
3147     if (offset == (off_t) -1) {
3148         return 0;
3149     }
3150     ret = read(fd, &ehdr, sizeof(ehdr));
3151     if (ret < sizeof(ehdr)) {
3152         return 0;
3153     }
3154     offset = lseek(fd, offset, SEEK_SET);
3155     if (offset == (off_t) -1) {
3156         return 0;
3157     }
3158 
3159     /* Check ELF signature */
3160     if (!elf_check_ident(&ehdr)) {
3161         return 0;
3162     }
3163 
3164     /* check header */
3165     bswap_ehdr(&ehdr);
3166     if (!elf_check_ehdr(&ehdr)) {
3167         return 0;
3168     }
3169 
3170     /* return architecture id */
3171     return ehdr.e_flags;
3172 }
3173 
3174 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3175 {
3176     struct image_info interp_info;
3177     struct elfhdr elf_ex;
3178     char *elf_interpreter = NULL;
3179     char *scratch;
3180 
3181     memset(&interp_info, 0, sizeof(interp_info));
3182 #ifdef TARGET_MIPS
3183     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3184 #endif
3185 
3186     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3187 
3188     load_elf_image(bprm->filename, bprm->fd, info,
3189                    &elf_interpreter, bprm->buf);
3190 
3191     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3192        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3193        when we load the interpreter.  */
3194     elf_ex = *(struct elfhdr *)bprm->buf;
3195 
3196     /* Do this so that we can load the interpreter, if need be.  We will
3197        change some of these later */
3198     bprm->p = setup_arg_pages(bprm, info);
3199 
3200     scratch = g_new0(char, TARGET_PAGE_SIZE);
3201     if (STACK_GROWS_DOWN) {
3202         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3203                                    bprm->p, info->stack_limit);
3204         info->file_string = bprm->p;
3205         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3206                                    bprm->p, info->stack_limit);
3207         info->env_strings = bprm->p;
3208         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3209                                    bprm->p, info->stack_limit);
3210         info->arg_strings = bprm->p;
3211     } else {
3212         info->arg_strings = bprm->p;
3213         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3214                                    bprm->p, info->stack_limit);
3215         info->env_strings = bprm->p;
3216         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3217                                    bprm->p, info->stack_limit);
3218         info->file_string = bprm->p;
3219         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3220                                    bprm->p, info->stack_limit);
3221     }
3222 
3223     g_free(scratch);
3224 
3225     if (!bprm->p) {
3226         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3227         exit(-1);
3228     }
3229 
3230     if (elf_interpreter) {
3231         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3232 
3233         /* If the program interpreter is one of these two, then assume
3234            an iBCS2 image.  Otherwise assume a native linux image.  */
3235 
3236         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3237             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3238             info->personality = PER_SVR4;
3239 
3240             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3241                and some applications "depend" upon this behavior.  Since
3242                we do not have the power to recompile these, we emulate
3243                the SVr4 behavior.  Sigh.  */
3244             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3245                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3246         }
3247 #ifdef TARGET_MIPS
3248         info->interp_fp_abi = interp_info.fp_abi;
3249 #endif
3250     }
3251 
3252     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3253                                 info, (elf_interpreter ? &interp_info : NULL));
3254     info->start_stack = bprm->p;
3255 
3256     /* If we have an interpreter, set that as the program's entry point.
3257        Copy the load_bias as well, to help PPC64 interpret the entry
3258        point as a function descriptor.  Do this after creating elf tables
3259        so that we copy the original program entry point into the AUXV.  */
3260     if (elf_interpreter) {
3261         info->load_bias = interp_info.load_bias;
3262         info->entry = interp_info.entry;
3263         g_free(elf_interpreter);
3264     }
3265 
3266 #ifdef USE_ELF_CORE_DUMP
3267     bprm->core_dump = &elf_core_dump;
3268 #endif
3269 
3270     /*
3271      * If we reserved extra space for brk, release it now.
3272      * The implementation of do_brk in syscalls.c expects to be able
3273      * to mmap pages in this space.
3274      */
3275     if (info->reserve_brk) {
3276         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3277         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3278         target_munmap(start_brk, end_brk - start_brk);
3279     }
3280 
3281     return 0;
3282 }
3283 
3284 #ifdef USE_ELF_CORE_DUMP
3285 /*
3286  * Definitions to generate Intel SVR4-like core files.
3287  * These mostly have the same names as the SVR4 types with "target_elf_"
3288  * tacked on the front to prevent clashes with linux definitions,
3289  * and the typedef forms have been avoided.  This is mostly like
3290  * the SVR4 structure, but more Linuxy, with things that Linux does
3291  * not support and which gdb doesn't really use excluded.
3292  *
3293  * Fields we don't dump (their contents is zero) in linux-user qemu
3294  * are marked with XXX.
3295  *
3296  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3297  *
3298  * Porting ELF coredump for target is (quite) simple process.  First you
3299  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3300  * the target resides):
3301  *
3302  * #define USE_ELF_CORE_DUMP
3303  *
3304  * Next you define type of register set used for dumping.  ELF specification
3305  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3306  *
3307  * typedef <target_regtype> target_elf_greg_t;
3308  * #define ELF_NREG <number of registers>
3309  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3310  *
3311  * Last step is to implement target specific function that copies registers
3312  * from given cpu into just specified register set.  Prototype is:
3313  *
3314  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3315  *                                const CPUArchState *env);
3316  *
3317  * Parameters:
3318  *     regs - copy register values into here (allocated and zeroed by caller)
3319  *     env - copy registers from here
3320  *
3321  * Example for ARM target is provided in this file.
3322  */
3323 
3324 /* An ELF note in memory */
3325 struct memelfnote {
3326     const char *name;
3327     size_t     namesz;
3328     size_t     namesz_rounded;
3329     int        type;
3330     size_t     datasz;
3331     size_t     datasz_rounded;
3332     void       *data;
3333     size_t     notesz;
3334 };
3335 
3336 struct target_elf_siginfo {
3337     abi_int    si_signo; /* signal number */
3338     abi_int    si_code;  /* extra code */
3339     abi_int    si_errno; /* errno */
3340 };
3341 
3342 struct target_elf_prstatus {
3343     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3344     abi_short          pr_cursig;    /* Current signal */
3345     abi_ulong          pr_sigpend;   /* XXX */
3346     abi_ulong          pr_sighold;   /* XXX */
3347     target_pid_t       pr_pid;
3348     target_pid_t       pr_ppid;
3349     target_pid_t       pr_pgrp;
3350     target_pid_t       pr_sid;
3351     struct target_timeval pr_utime;  /* XXX User time */
3352     struct target_timeval pr_stime;  /* XXX System time */
3353     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3354     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3355     target_elf_gregset_t      pr_reg;       /* GP registers */
3356     abi_int            pr_fpvalid;   /* XXX */
3357 };
3358 
3359 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3360 
3361 struct target_elf_prpsinfo {
3362     char         pr_state;       /* numeric process state */
3363     char         pr_sname;       /* char for pr_state */
3364     char         pr_zomb;        /* zombie */
3365     char         pr_nice;        /* nice val */
3366     abi_ulong    pr_flag;        /* flags */
3367     target_uid_t pr_uid;
3368     target_gid_t pr_gid;
3369     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3370     /* Lots missing */
3371     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3372     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3373 };
3374 
3375 /* Here is the structure in which status of each thread is captured. */
3376 struct elf_thread_status {
3377     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3378     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3379 #if 0
3380     elf_fpregset_t fpu;             /* NT_PRFPREG */
3381     struct task_struct *thread;
3382     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3383 #endif
3384     struct memelfnote notes[1];
3385     int num_notes;
3386 };
3387 
3388 struct elf_note_info {
3389     struct memelfnote   *notes;
3390     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3391     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3392 
3393     QTAILQ_HEAD(, elf_thread_status) thread_list;
3394 #if 0
3395     /*
3396      * Current version of ELF coredump doesn't support
3397      * dumping fp regs etc.
3398      */
3399     elf_fpregset_t *fpu;
3400     elf_fpxregset_t *xfpu;
3401     int thread_status_size;
3402 #endif
3403     int notes_size;
3404     int numnote;
3405 };
3406 
3407 struct vm_area_struct {
3408     target_ulong   vma_start;  /* start vaddr of memory region */
3409     target_ulong   vma_end;    /* end vaddr of memory region */
3410     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3411     QTAILQ_ENTRY(vm_area_struct) vma_link;
3412 };
3413 
3414 struct mm_struct {
3415     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3416     int mm_count;           /* number of mappings */
3417 };
3418 
3419 static struct mm_struct *vma_init(void);
3420 static void vma_delete(struct mm_struct *);
3421 static int vma_add_mapping(struct mm_struct *, target_ulong,
3422                            target_ulong, abi_ulong);
3423 static int vma_get_mapping_count(const struct mm_struct *);
3424 static struct vm_area_struct *vma_first(const struct mm_struct *);
3425 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3426 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3427 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3428                       unsigned long flags);
3429 
3430 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3431 static void fill_note(struct memelfnote *, const char *, int,
3432                       unsigned int, void *);
3433 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3434 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3435 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3436 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3437 static size_t note_size(const struct memelfnote *);
3438 static void free_note_info(struct elf_note_info *);
3439 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3440 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3441 
3442 static int dump_write(int, const void *, size_t);
3443 static int write_note(struct memelfnote *, int);
3444 static int write_note_info(struct elf_note_info *, int);
3445 
3446 #ifdef BSWAP_NEEDED
3447 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3448 {
3449     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3450     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3451     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3452     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3453     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3454     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3455     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3456     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3457     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3458     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3459     /* cpu times are not filled, so we skip them */
3460     /* regs should be in correct format already */
3461     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3462 }
3463 
3464 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3465 {
3466     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3467     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3468     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3469     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3470     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3471     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3472     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3473 }
3474 
3475 static void bswap_note(struct elf_note *en)
3476 {
3477     bswap32s(&en->n_namesz);
3478     bswap32s(&en->n_descsz);
3479     bswap32s(&en->n_type);
3480 }
3481 #else
3482 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3483 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3484 static inline void bswap_note(struct elf_note *en) { }
3485 #endif /* BSWAP_NEEDED */
3486 
3487 /*
3488  * Minimal support for linux memory regions.  These are needed
3489  * when we are finding out what memory exactly belongs to
3490  * emulated process.  No locks needed here, as long as
3491  * thread that received the signal is stopped.
3492  */
3493 
3494 static struct mm_struct *vma_init(void)
3495 {
3496     struct mm_struct *mm;
3497 
3498     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3499         return (NULL);
3500 
3501     mm->mm_count = 0;
3502     QTAILQ_INIT(&mm->mm_mmap);
3503 
3504     return (mm);
3505 }
3506 
3507 static void vma_delete(struct mm_struct *mm)
3508 {
3509     struct vm_area_struct *vma;
3510 
3511     while ((vma = vma_first(mm)) != NULL) {
3512         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3513         g_free(vma);
3514     }
3515     g_free(mm);
3516 }
3517 
3518 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3519                            target_ulong end, abi_ulong flags)
3520 {
3521     struct vm_area_struct *vma;
3522 
3523     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3524         return (-1);
3525 
3526     vma->vma_start = start;
3527     vma->vma_end = end;
3528     vma->vma_flags = flags;
3529 
3530     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3531     mm->mm_count++;
3532 
3533     return (0);
3534 }
3535 
3536 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3537 {
3538     return (QTAILQ_FIRST(&mm->mm_mmap));
3539 }
3540 
3541 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3542 {
3543     return (QTAILQ_NEXT(vma, vma_link));
3544 }
3545 
3546 static int vma_get_mapping_count(const struct mm_struct *mm)
3547 {
3548     return (mm->mm_count);
3549 }
3550 
3551 /*
3552  * Calculate file (dump) size of given memory region.
3553  */
3554 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3555 {
3556     /* if we cannot even read the first page, skip it */
3557     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3558         return (0);
3559 
3560     /*
3561      * Usually we don't dump executable pages as they contain
3562      * non-writable code that debugger can read directly from
3563      * target library etc.  However, thread stacks are marked
3564      * also executable so we read in first page of given region
3565      * and check whether it contains elf header.  If there is
3566      * no elf header, we dump it.
3567      */
3568     if (vma->vma_flags & PROT_EXEC) {
3569         char page[TARGET_PAGE_SIZE];
3570 
3571         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3572             return 0;
3573         }
3574         if ((page[EI_MAG0] == ELFMAG0) &&
3575             (page[EI_MAG1] == ELFMAG1) &&
3576             (page[EI_MAG2] == ELFMAG2) &&
3577             (page[EI_MAG3] == ELFMAG3)) {
3578             /*
3579              * Mappings are possibly from ELF binary.  Don't dump
3580              * them.
3581              */
3582             return (0);
3583         }
3584     }
3585 
3586     return (vma->vma_end - vma->vma_start);
3587 }
3588 
3589 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3590                       unsigned long flags)
3591 {
3592     struct mm_struct *mm = (struct mm_struct *)priv;
3593 
3594     vma_add_mapping(mm, start, end, flags);
3595     return (0);
3596 }
3597 
3598 static void fill_note(struct memelfnote *note, const char *name, int type,
3599                       unsigned int sz, void *data)
3600 {
3601     unsigned int namesz;
3602 
3603     namesz = strlen(name) + 1;
3604     note->name = name;
3605     note->namesz = namesz;
3606     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3607     note->type = type;
3608     note->datasz = sz;
3609     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3610 
3611     note->data = data;
3612 
3613     /*
3614      * We calculate rounded up note size here as specified by
3615      * ELF document.
3616      */
3617     note->notesz = sizeof (struct elf_note) +
3618         note->namesz_rounded + note->datasz_rounded;
3619 }
3620 
3621 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3622                             uint32_t flags)
3623 {
3624     (void) memset(elf, 0, sizeof(*elf));
3625 
3626     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3627     elf->e_ident[EI_CLASS] = ELF_CLASS;
3628     elf->e_ident[EI_DATA] = ELF_DATA;
3629     elf->e_ident[EI_VERSION] = EV_CURRENT;
3630     elf->e_ident[EI_OSABI] = ELF_OSABI;
3631 
3632     elf->e_type = ET_CORE;
3633     elf->e_machine = machine;
3634     elf->e_version = EV_CURRENT;
3635     elf->e_phoff = sizeof(struct elfhdr);
3636     elf->e_flags = flags;
3637     elf->e_ehsize = sizeof(struct elfhdr);
3638     elf->e_phentsize = sizeof(struct elf_phdr);
3639     elf->e_phnum = segs;
3640 
3641     bswap_ehdr(elf);
3642 }
3643 
3644 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3645 {
3646     phdr->p_type = PT_NOTE;
3647     phdr->p_offset = offset;
3648     phdr->p_vaddr = 0;
3649     phdr->p_paddr = 0;
3650     phdr->p_filesz = sz;
3651     phdr->p_memsz = 0;
3652     phdr->p_flags = 0;
3653     phdr->p_align = 0;
3654 
3655     bswap_phdr(phdr, 1);
3656 }
3657 
3658 static size_t note_size(const struct memelfnote *note)
3659 {
3660     return (note->notesz);
3661 }
3662 
3663 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3664                           const TaskState *ts, int signr)
3665 {
3666     (void) memset(prstatus, 0, sizeof (*prstatus));
3667     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3668     prstatus->pr_pid = ts->ts_tid;
3669     prstatus->pr_ppid = getppid();
3670     prstatus->pr_pgrp = getpgrp();
3671     prstatus->pr_sid = getsid(0);
3672 
3673     bswap_prstatus(prstatus);
3674 }
3675 
3676 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3677 {
3678     char *base_filename;
3679     unsigned int i, len;
3680 
3681     (void) memset(psinfo, 0, sizeof (*psinfo));
3682 
3683     len = ts->info->env_strings - ts->info->arg_strings;
3684     if (len >= ELF_PRARGSZ)
3685         len = ELF_PRARGSZ - 1;
3686     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3687         return -EFAULT;
3688     }
3689     for (i = 0; i < len; i++)
3690         if (psinfo->pr_psargs[i] == 0)
3691             psinfo->pr_psargs[i] = ' ';
3692     psinfo->pr_psargs[len] = 0;
3693 
3694     psinfo->pr_pid = getpid();
3695     psinfo->pr_ppid = getppid();
3696     psinfo->pr_pgrp = getpgrp();
3697     psinfo->pr_sid = getsid(0);
3698     psinfo->pr_uid = getuid();
3699     psinfo->pr_gid = getgid();
3700 
3701     base_filename = g_path_get_basename(ts->bprm->filename);
3702     /*
3703      * Using strncpy here is fine: at max-length,
3704      * this field is not NUL-terminated.
3705      */
3706     (void) strncpy(psinfo->pr_fname, base_filename,
3707                    sizeof(psinfo->pr_fname));
3708 
3709     g_free(base_filename);
3710     bswap_psinfo(psinfo);
3711     return (0);
3712 }
3713 
3714 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3715 {
3716     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3717     elf_addr_t orig_auxv = auxv;
3718     void *ptr;
3719     int len = ts->info->auxv_len;
3720 
3721     /*
3722      * Auxiliary vector is stored in target process stack.  It contains
3723      * {type, value} pairs that we need to dump into note.  This is not
3724      * strictly necessary but we do it here for sake of completeness.
3725      */
3726 
3727     /* read in whole auxv vector and copy it to memelfnote */
3728     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3729     if (ptr != NULL) {
3730         fill_note(note, "CORE", NT_AUXV, len, ptr);
3731         unlock_user(ptr, auxv, len);
3732     }
3733 }
3734 
3735 /*
3736  * Constructs name of coredump file.  We have following convention
3737  * for the name:
3738  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3739  *
3740  * Returns the filename
3741  */
3742 static char *core_dump_filename(const TaskState *ts)
3743 {
3744     g_autoptr(GDateTime) now = g_date_time_new_now_local();
3745     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3746     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3747 
3748     return g_strdup_printf("qemu_%s_%s_%d.core",
3749                            base_filename, nowstr, (int)getpid());
3750 }
3751 
3752 static int dump_write(int fd, const void *ptr, size_t size)
3753 {
3754     const char *bufp = (const char *)ptr;
3755     ssize_t bytes_written, bytes_left;
3756     struct rlimit dumpsize;
3757     off_t pos;
3758 
3759     bytes_written = 0;
3760     getrlimit(RLIMIT_CORE, &dumpsize);
3761     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3762         if (errno == ESPIPE) { /* not a seekable stream */
3763             bytes_left = size;
3764         } else {
3765             return pos;
3766         }
3767     } else {
3768         if (dumpsize.rlim_cur <= pos) {
3769             return -1;
3770         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3771             bytes_left = size;
3772         } else {
3773             size_t limit_left=dumpsize.rlim_cur - pos;
3774             bytes_left = limit_left >= size ? size : limit_left ;
3775         }
3776     }
3777 
3778     /*
3779      * In normal conditions, single write(2) should do but
3780      * in case of socket etc. this mechanism is more portable.
3781      */
3782     do {
3783         bytes_written = write(fd, bufp, bytes_left);
3784         if (bytes_written < 0) {
3785             if (errno == EINTR)
3786                 continue;
3787             return (-1);
3788         } else if (bytes_written == 0) { /* eof */
3789             return (-1);
3790         }
3791         bufp += bytes_written;
3792         bytes_left -= bytes_written;
3793     } while (bytes_left > 0);
3794 
3795     return (0);
3796 }
3797 
3798 static int write_note(struct memelfnote *men, int fd)
3799 {
3800     struct elf_note en;
3801 
3802     en.n_namesz = men->namesz;
3803     en.n_type = men->type;
3804     en.n_descsz = men->datasz;
3805 
3806     bswap_note(&en);
3807 
3808     if (dump_write(fd, &en, sizeof(en)) != 0)
3809         return (-1);
3810     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3811         return (-1);
3812     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3813         return (-1);
3814 
3815     return (0);
3816 }
3817 
3818 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3819 {
3820     CPUState *cpu = env_cpu((CPUArchState *)env);
3821     TaskState *ts = (TaskState *)cpu->opaque;
3822     struct elf_thread_status *ets;
3823 
3824     ets = g_malloc0(sizeof (*ets));
3825     ets->num_notes = 1; /* only prstatus is dumped */
3826     fill_prstatus(&ets->prstatus, ts, 0);
3827     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3828     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3829               &ets->prstatus);
3830 
3831     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3832 
3833     info->notes_size += note_size(&ets->notes[0]);
3834 }
3835 
3836 static void init_note_info(struct elf_note_info *info)
3837 {
3838     /* Initialize the elf_note_info structure so that it is at
3839      * least safe to call free_note_info() on it. Must be
3840      * called before calling fill_note_info().
3841      */
3842     memset(info, 0, sizeof (*info));
3843     QTAILQ_INIT(&info->thread_list);
3844 }
3845 
3846 static int fill_note_info(struct elf_note_info *info,
3847                           long signr, const CPUArchState *env)
3848 {
3849 #define NUMNOTES 3
3850     CPUState *cpu = env_cpu((CPUArchState *)env);
3851     TaskState *ts = (TaskState *)cpu->opaque;
3852     int i;
3853 
3854     info->notes = g_new0(struct memelfnote, NUMNOTES);
3855     if (info->notes == NULL)
3856         return (-ENOMEM);
3857     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3858     if (info->prstatus == NULL)
3859         return (-ENOMEM);
3860     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3861     if (info->prstatus == NULL)
3862         return (-ENOMEM);
3863 
3864     /*
3865      * First fill in status (and registers) of current thread
3866      * including process info & aux vector.
3867      */
3868     fill_prstatus(info->prstatus, ts, signr);
3869     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3870     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3871               sizeof (*info->prstatus), info->prstatus);
3872     fill_psinfo(info->psinfo, ts);
3873     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3874               sizeof (*info->psinfo), info->psinfo);
3875     fill_auxv_note(&info->notes[2], ts);
3876     info->numnote = 3;
3877 
3878     info->notes_size = 0;
3879     for (i = 0; i < info->numnote; i++)
3880         info->notes_size += note_size(&info->notes[i]);
3881 
3882     /* read and fill status of all threads */
3883     cpu_list_lock();
3884     CPU_FOREACH(cpu) {
3885         if (cpu == thread_cpu) {
3886             continue;
3887         }
3888         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3889     }
3890     cpu_list_unlock();
3891 
3892     return (0);
3893 }
3894 
3895 static void free_note_info(struct elf_note_info *info)
3896 {
3897     struct elf_thread_status *ets;
3898 
3899     while (!QTAILQ_EMPTY(&info->thread_list)) {
3900         ets = QTAILQ_FIRST(&info->thread_list);
3901         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3902         g_free(ets);
3903     }
3904 
3905     g_free(info->prstatus);
3906     g_free(info->psinfo);
3907     g_free(info->notes);
3908 }
3909 
3910 static int write_note_info(struct elf_note_info *info, int fd)
3911 {
3912     struct elf_thread_status *ets;
3913     int i, error = 0;
3914 
3915     /* write prstatus, psinfo and auxv for current thread */
3916     for (i = 0; i < info->numnote; i++)
3917         if ((error = write_note(&info->notes[i], fd)) != 0)
3918             return (error);
3919 
3920     /* write prstatus for each thread */
3921     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3922         if ((error = write_note(&ets->notes[0], fd)) != 0)
3923             return (error);
3924     }
3925 
3926     return (0);
3927 }
3928 
3929 /*
3930  * Write out ELF coredump.
3931  *
3932  * See documentation of ELF object file format in:
3933  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3934  *
3935  * Coredump format in linux is following:
3936  *
3937  * 0   +----------------------+         \
3938  *     | ELF header           | ET_CORE  |
3939  *     +----------------------+          |
3940  *     | ELF program headers  |          |--- headers
3941  *     | - NOTE section       |          |
3942  *     | - PT_LOAD sections   |          |
3943  *     +----------------------+         /
3944  *     | NOTEs:               |
3945  *     | - NT_PRSTATUS        |
3946  *     | - NT_PRSINFO         |
3947  *     | - NT_AUXV            |
3948  *     +----------------------+ <-- aligned to target page
3949  *     | Process memory dump  |
3950  *     :                      :
3951  *     .                      .
3952  *     :                      :
3953  *     |                      |
3954  *     +----------------------+
3955  *
3956  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3957  * NT_PRSINFO  -> struct elf_prpsinfo
3958  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3959  *
3960  * Format follows System V format as close as possible.  Current
3961  * version limitations are as follows:
3962  *     - no floating point registers are dumped
3963  *
3964  * Function returns 0 in case of success, negative errno otherwise.
3965  *
3966  * TODO: make this work also during runtime: it should be
3967  * possible to force coredump from running process and then
3968  * continue processing.  For example qemu could set up SIGUSR2
3969  * handler (provided that target process haven't registered
3970  * handler for that) that does the dump when signal is received.
3971  */
3972 static int elf_core_dump(int signr, const CPUArchState *env)
3973 {
3974     const CPUState *cpu = env_cpu((CPUArchState *)env);
3975     const TaskState *ts = (const TaskState *)cpu->opaque;
3976     struct vm_area_struct *vma = NULL;
3977     g_autofree char *corefile = NULL;
3978     struct elf_note_info info;
3979     struct elfhdr elf;
3980     struct elf_phdr phdr;
3981     struct rlimit dumpsize;
3982     struct mm_struct *mm = NULL;
3983     off_t offset = 0, data_offset = 0;
3984     int segs = 0;
3985     int fd = -1;
3986 
3987     init_note_info(&info);
3988 
3989     errno = 0;
3990     getrlimit(RLIMIT_CORE, &dumpsize);
3991     if (dumpsize.rlim_cur == 0)
3992         return 0;
3993 
3994     corefile = core_dump_filename(ts);
3995 
3996     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3997                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3998         return (-errno);
3999 
4000     /*
4001      * Walk through target process memory mappings and
4002      * set up structure containing this information.  After
4003      * this point vma_xxx functions can be used.
4004      */
4005     if ((mm = vma_init()) == NULL)
4006         goto out;
4007 
4008     walk_memory_regions(mm, vma_walker);
4009     segs = vma_get_mapping_count(mm);
4010 
4011     /*
4012      * Construct valid coredump ELF header.  We also
4013      * add one more segment for notes.
4014      */
4015     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4016     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4017         goto out;
4018 
4019     /* fill in the in-memory version of notes */
4020     if (fill_note_info(&info, signr, env) < 0)
4021         goto out;
4022 
4023     offset += sizeof (elf);                             /* elf header */
4024     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4025 
4026     /* write out notes program header */
4027     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4028 
4029     offset += info.notes_size;
4030     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4031         goto out;
4032 
4033     /*
4034      * ELF specification wants data to start at page boundary so
4035      * we align it here.
4036      */
4037     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4038 
4039     /*
4040      * Write program headers for memory regions mapped in
4041      * the target process.
4042      */
4043     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4044         (void) memset(&phdr, 0, sizeof (phdr));
4045 
4046         phdr.p_type = PT_LOAD;
4047         phdr.p_offset = offset;
4048         phdr.p_vaddr = vma->vma_start;
4049         phdr.p_paddr = 0;
4050         phdr.p_filesz = vma_dump_size(vma);
4051         offset += phdr.p_filesz;
4052         phdr.p_memsz = vma->vma_end - vma->vma_start;
4053         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4054         if (vma->vma_flags & PROT_WRITE)
4055             phdr.p_flags |= PF_W;
4056         if (vma->vma_flags & PROT_EXEC)
4057             phdr.p_flags |= PF_X;
4058         phdr.p_align = ELF_EXEC_PAGESIZE;
4059 
4060         bswap_phdr(&phdr, 1);
4061         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4062             goto out;
4063         }
4064     }
4065 
4066     /*
4067      * Next we write notes just after program headers.  No
4068      * alignment needed here.
4069      */
4070     if (write_note_info(&info, fd) < 0)
4071         goto out;
4072 
4073     /* align data to page boundary */
4074     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4075         goto out;
4076 
4077     /*
4078      * Finally we can dump process memory into corefile as well.
4079      */
4080     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4081         abi_ulong addr;
4082         abi_ulong end;
4083 
4084         end = vma->vma_start + vma_dump_size(vma);
4085 
4086         for (addr = vma->vma_start; addr < end;
4087              addr += TARGET_PAGE_SIZE) {
4088             char page[TARGET_PAGE_SIZE];
4089             int error;
4090 
4091             /*
4092              *  Read in page from target process memory and
4093              *  write it to coredump file.
4094              */
4095             error = copy_from_user(page, addr, sizeof (page));
4096             if (error != 0) {
4097                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4098                                addr);
4099                 errno = -error;
4100                 goto out;
4101             }
4102             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4103                 goto out;
4104         }
4105     }
4106 
4107  out:
4108     free_note_info(&info);
4109     if (mm != NULL)
4110         vma_delete(mm);
4111     (void) close(fd);
4112 
4113     if (errno != 0)
4114         return (-errno);
4115     return (0);
4116 }
4117 #endif /* USE_ELF_CORE_DUMP */
4118 
4119 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4120 {
4121     init_thread(regs, infop);
4122 }
4123