xref: /qemu/linux-user/elfload.c (revision bd2142c3)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "target_signal.h"
22 
23 #ifdef _ARCH_PPC64
24 #undef ARCH_DLINFO
25 #undef ELF_PLATFORM
26 #undef ELF_HWCAP
27 #undef ELF_HWCAP2
28 #undef ELF_CLASS
29 #undef ELF_DATA
30 #undef ELF_ARCH
31 #endif
32 
33 #define ELF_OSABI   ELFOSABI_SYSV
34 
35 /* from personality.h */
36 
37 /*
38  * Flags for bug emulation.
39  *
40  * These occupy the top three bytes.
41  */
42 enum {
43     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
44     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
45                                            descriptors (signal handling) */
46     MMAP_PAGE_ZERO =    0x0100000,
47     ADDR_COMPAT_LAYOUT = 0x0200000,
48     READ_IMPLIES_EXEC = 0x0400000,
49     ADDR_LIMIT_32BIT =  0x0800000,
50     SHORT_INODE =       0x1000000,
51     WHOLE_SECONDS =     0x2000000,
52     STICKY_TIMEOUTS =   0x4000000,
53     ADDR_LIMIT_3GB =    0x8000000,
54 };
55 
56 /*
57  * Personality types.
58  *
59  * These go in the low byte.  Avoid using the top bit, it will
60  * conflict with error returns.
61  */
62 enum {
63     PER_LINUX =         0x0000,
64     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
65     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
66     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
67     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
68     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
69     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
70     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
72     PER_BSD =           0x0006,
73     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
74     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
75     PER_LINUX32 =       0x0008,
76     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
77     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
78     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
79     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
80     PER_RISCOS =        0x000c,
81     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
82     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
83     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
84     PER_HPUX =          0x0010,
85     PER_MASK =          0x00ff,
86 };
87 
88 /*
89  * Return the base personality without flags.
90  */
91 #define personality(pers)       (pers & PER_MASK)
92 
93 int info_is_fdpic(struct image_info *info)
94 {
95     return info->personality == PER_LINUX_FDPIC;
96 }
97 
98 /* this flag is uneffective under linux too, should be deleted */
99 #ifndef MAP_DENYWRITE
100 #define MAP_DENYWRITE 0
101 #endif
102 
103 /* should probably go in elf.h */
104 #ifndef ELIBBAD
105 #define ELIBBAD 80
106 #endif
107 
108 #if TARGET_BIG_ENDIAN
109 #define ELF_DATA        ELFDATA2MSB
110 #else
111 #define ELF_DATA        ELFDATA2LSB
112 #endif
113 
114 #ifdef TARGET_ABI_MIPSN32
115 typedef abi_ullong      target_elf_greg_t;
116 #define tswapreg(ptr)   tswap64(ptr)
117 #else
118 typedef abi_ulong       target_elf_greg_t;
119 #define tswapreg(ptr)   tswapal(ptr)
120 #endif
121 
122 #ifdef USE_UID16
123 typedef abi_ushort      target_uid_t;
124 typedef abi_ushort      target_gid_t;
125 #else
126 typedef abi_uint        target_uid_t;
127 typedef abi_uint        target_gid_t;
128 #endif
129 typedef abi_int         target_pid_t;
130 
131 #ifdef TARGET_I386
132 
133 #define ELF_PLATFORM get_elf_platform()
134 
135 static const char *get_elf_platform(void)
136 {
137     static char elf_platform[] = "i386";
138     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
139     if (family > 6)
140         family = 6;
141     if (family >= 3)
142         elf_platform[1] = '0' + family;
143     return elf_platform;
144 }
145 
146 #define ELF_HWCAP get_elf_hwcap()
147 
148 static uint32_t get_elf_hwcap(void)
149 {
150     X86CPU *cpu = X86_CPU(thread_cpu);
151 
152     return cpu->env.features[FEAT_1_EDX];
153 }
154 
155 #ifdef TARGET_X86_64
156 #define ELF_START_MMAP 0x2aaaaab000ULL
157 
158 #define ELF_CLASS      ELFCLASS64
159 #define ELF_ARCH       EM_X86_64
160 
161 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
162 {
163     regs->rax = 0;
164     regs->rsp = infop->start_stack;
165     regs->rip = infop->entry;
166 }
167 
168 #define ELF_NREG    27
169 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
170 
171 /*
172  * Note that ELF_NREG should be 29 as there should be place for
173  * TRAPNO and ERR "registers" as well but linux doesn't dump
174  * those.
175  *
176  * See linux kernel: arch/x86/include/asm/elf.h
177  */
178 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
179 {
180     (*regs)[0] = tswapreg(env->regs[15]);
181     (*regs)[1] = tswapreg(env->regs[14]);
182     (*regs)[2] = tswapreg(env->regs[13]);
183     (*regs)[3] = tswapreg(env->regs[12]);
184     (*regs)[4] = tswapreg(env->regs[R_EBP]);
185     (*regs)[5] = tswapreg(env->regs[R_EBX]);
186     (*regs)[6] = tswapreg(env->regs[11]);
187     (*regs)[7] = tswapreg(env->regs[10]);
188     (*regs)[8] = tswapreg(env->regs[9]);
189     (*regs)[9] = tswapreg(env->regs[8]);
190     (*regs)[10] = tswapreg(env->regs[R_EAX]);
191     (*regs)[11] = tswapreg(env->regs[R_ECX]);
192     (*regs)[12] = tswapreg(env->regs[R_EDX]);
193     (*regs)[13] = tswapreg(env->regs[R_ESI]);
194     (*regs)[14] = tswapreg(env->regs[R_EDI]);
195     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
196     (*regs)[16] = tswapreg(env->eip);
197     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
198     (*regs)[18] = tswapreg(env->eflags);
199     (*regs)[19] = tswapreg(env->regs[R_ESP]);
200     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
201     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
202     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
203     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
204     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
205     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
206     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
207 }
208 
209 #else
210 
211 #define ELF_START_MMAP 0x80000000
212 
213 /*
214  * This is used to ensure we don't load something for the wrong architecture.
215  */
216 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
217 
218 /*
219  * These are used to set parameters in the core dumps.
220  */
221 #define ELF_CLASS       ELFCLASS32
222 #define ELF_ARCH        EM_386
223 
224 static inline void init_thread(struct target_pt_regs *regs,
225                                struct image_info *infop)
226 {
227     regs->esp = infop->start_stack;
228     regs->eip = infop->entry;
229 
230     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
231        starts %edx contains a pointer to a function which might be
232        registered using `atexit'.  This provides a mean for the
233        dynamic linker to call DT_FINI functions for shared libraries
234        that have been loaded before the code runs.
235 
236        A value of 0 tells we have no such handler.  */
237     regs->edx = 0;
238 }
239 
240 #define ELF_NREG    17
241 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
242 
243 /*
244  * Note that ELF_NREG should be 19 as there should be place for
245  * TRAPNO and ERR "registers" as well but linux doesn't dump
246  * those.
247  *
248  * See linux kernel: arch/x86/include/asm/elf.h
249  */
250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
251 {
252     (*regs)[0] = tswapreg(env->regs[R_EBX]);
253     (*regs)[1] = tswapreg(env->regs[R_ECX]);
254     (*regs)[2] = tswapreg(env->regs[R_EDX]);
255     (*regs)[3] = tswapreg(env->regs[R_ESI]);
256     (*regs)[4] = tswapreg(env->regs[R_EDI]);
257     (*regs)[5] = tswapreg(env->regs[R_EBP]);
258     (*regs)[6] = tswapreg(env->regs[R_EAX]);
259     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
260     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
261     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
262     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
263     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
264     (*regs)[12] = tswapreg(env->eip);
265     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
266     (*regs)[14] = tswapreg(env->eflags);
267     (*regs)[15] = tswapreg(env->regs[R_ESP]);
268     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
269 }
270 #endif
271 
272 #define USE_ELF_CORE_DUMP
273 #define ELF_EXEC_PAGESIZE       4096
274 
275 #endif
276 
277 #ifdef TARGET_ARM
278 
279 #ifndef TARGET_AARCH64
280 /* 32 bit ARM definitions */
281 
282 #define ELF_START_MMAP 0x80000000
283 
284 #define ELF_ARCH        EM_ARM
285 #define ELF_CLASS       ELFCLASS32
286 
287 static inline void init_thread(struct target_pt_regs *regs,
288                                struct image_info *infop)
289 {
290     abi_long stack = infop->start_stack;
291     memset(regs, 0, sizeof(*regs));
292 
293     regs->uregs[16] = ARM_CPU_MODE_USR;
294     if (infop->entry & 1) {
295         regs->uregs[16] |= CPSR_T;
296     }
297     regs->uregs[15] = infop->entry & 0xfffffffe;
298     regs->uregs[13] = infop->start_stack;
299     /* FIXME - what to for failure of get_user()? */
300     get_user_ual(regs->uregs[2], stack + 8); /* envp */
301     get_user_ual(regs->uregs[1], stack + 4); /* envp */
302     /* XXX: it seems that r0 is zeroed after ! */
303     regs->uregs[0] = 0;
304     /* For uClinux PIC binaries.  */
305     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
306     regs->uregs[10] = infop->start_data;
307 
308     /* Support ARM FDPIC.  */
309     if (info_is_fdpic(infop)) {
310         /* As described in the ABI document, r7 points to the loadmap info
311          * prepared by the kernel. If an interpreter is needed, r8 points
312          * to the interpreter loadmap and r9 points to the interpreter
313          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
314          * r9 points to the main program PT_DYNAMIC info.
315          */
316         regs->uregs[7] = infop->loadmap_addr;
317         if (infop->interpreter_loadmap_addr) {
318             /* Executable is dynamically loaded.  */
319             regs->uregs[8] = infop->interpreter_loadmap_addr;
320             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
321         } else {
322             regs->uregs[8] = 0;
323             regs->uregs[9] = infop->pt_dynamic_addr;
324         }
325     }
326 }
327 
328 #define ELF_NREG    18
329 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
330 
331 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
332 {
333     (*regs)[0] = tswapreg(env->regs[0]);
334     (*regs)[1] = tswapreg(env->regs[1]);
335     (*regs)[2] = tswapreg(env->regs[2]);
336     (*regs)[3] = tswapreg(env->regs[3]);
337     (*regs)[4] = tswapreg(env->regs[4]);
338     (*regs)[5] = tswapreg(env->regs[5]);
339     (*regs)[6] = tswapreg(env->regs[6]);
340     (*regs)[7] = tswapreg(env->regs[7]);
341     (*regs)[8] = tswapreg(env->regs[8]);
342     (*regs)[9] = tswapreg(env->regs[9]);
343     (*regs)[10] = tswapreg(env->regs[10]);
344     (*regs)[11] = tswapreg(env->regs[11]);
345     (*regs)[12] = tswapreg(env->regs[12]);
346     (*regs)[13] = tswapreg(env->regs[13]);
347     (*regs)[14] = tswapreg(env->regs[14]);
348     (*regs)[15] = tswapreg(env->regs[15]);
349 
350     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
351     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
352 }
353 
354 #define USE_ELF_CORE_DUMP
355 #define ELF_EXEC_PAGESIZE       4096
356 
357 enum
358 {
359     ARM_HWCAP_ARM_SWP       = 1 << 0,
360     ARM_HWCAP_ARM_HALF      = 1 << 1,
361     ARM_HWCAP_ARM_THUMB     = 1 << 2,
362     ARM_HWCAP_ARM_26BIT     = 1 << 3,
363     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
364     ARM_HWCAP_ARM_FPA       = 1 << 5,
365     ARM_HWCAP_ARM_VFP       = 1 << 6,
366     ARM_HWCAP_ARM_EDSP      = 1 << 7,
367     ARM_HWCAP_ARM_JAVA      = 1 << 8,
368     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
369     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
370     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
371     ARM_HWCAP_ARM_NEON      = 1 << 12,
372     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
373     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
374     ARM_HWCAP_ARM_TLS       = 1 << 15,
375     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
376     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
377     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
378     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
379     ARM_HWCAP_ARM_LPAE      = 1 << 20,
380     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
381 };
382 
383 enum {
384     ARM_HWCAP2_ARM_AES      = 1 << 0,
385     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
386     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
387     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
388     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
389 };
390 
391 /* The commpage only exists for 32 bit kernels */
392 
393 #define HI_COMMPAGE (intptr_t)0xffff0f00u
394 
395 static bool init_guest_commpage(void)
396 {
397     void *want = g2h_untagged(HI_COMMPAGE & -qemu_host_page_size);
398     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
399                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
400 
401     if (addr == MAP_FAILED) {
402         perror("Allocating guest commpage");
403         exit(EXIT_FAILURE);
404     }
405     if (addr != want) {
406         return false;
407     }
408 
409     /* Set kernel helper versions; rest of page is 0.  */
410     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
411 
412     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
413         perror("Protecting guest commpage");
414         exit(EXIT_FAILURE);
415     }
416     return true;
417 }
418 
419 #define ELF_HWCAP get_elf_hwcap()
420 #define ELF_HWCAP2 get_elf_hwcap2()
421 
422 static uint32_t get_elf_hwcap(void)
423 {
424     ARMCPU *cpu = ARM_CPU(thread_cpu);
425     uint32_t hwcaps = 0;
426 
427     hwcaps |= ARM_HWCAP_ARM_SWP;
428     hwcaps |= ARM_HWCAP_ARM_HALF;
429     hwcaps |= ARM_HWCAP_ARM_THUMB;
430     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
431 
432     /* probe for the extra features */
433 #define GET_FEATURE(feat, hwcap) \
434     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
435 
436 #define GET_FEATURE_ID(feat, hwcap) \
437     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
438 
439     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
440     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
441     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
442     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
443     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
444     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
446     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
447     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
448     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
449 
450     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
451         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
452         hwcaps |= ARM_HWCAP_ARM_VFPv3;
453         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
454             hwcaps |= ARM_HWCAP_ARM_VFPD32;
455         } else {
456             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
457         }
458     }
459     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
460 
461     return hwcaps;
462 }
463 
464 static uint32_t get_elf_hwcap2(void)
465 {
466     ARMCPU *cpu = ARM_CPU(thread_cpu);
467     uint32_t hwcaps = 0;
468 
469     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
470     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
471     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
472     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
473     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
474     return hwcaps;
475 }
476 
477 #undef GET_FEATURE
478 #undef GET_FEATURE_ID
479 
480 #define ELF_PLATFORM get_elf_platform()
481 
482 static const char *get_elf_platform(void)
483 {
484     CPUARMState *env = thread_cpu->env_ptr;
485 
486 #if TARGET_BIG_ENDIAN
487 # define END  "b"
488 #else
489 # define END  "l"
490 #endif
491 
492     if (arm_feature(env, ARM_FEATURE_V8)) {
493         return "v8" END;
494     } else if (arm_feature(env, ARM_FEATURE_V7)) {
495         if (arm_feature(env, ARM_FEATURE_M)) {
496             return "v7m" END;
497         } else {
498             return "v7" END;
499         }
500     } else if (arm_feature(env, ARM_FEATURE_V6)) {
501         return "v6" END;
502     } else if (arm_feature(env, ARM_FEATURE_V5)) {
503         return "v5" END;
504     } else {
505         return "v4" END;
506     }
507 
508 #undef END
509 }
510 
511 #else
512 /* 64 bit ARM definitions */
513 #define ELF_START_MMAP 0x80000000
514 
515 #define ELF_ARCH        EM_AARCH64
516 #define ELF_CLASS       ELFCLASS64
517 #if TARGET_BIG_ENDIAN
518 # define ELF_PLATFORM    "aarch64_be"
519 #else
520 # define ELF_PLATFORM    "aarch64"
521 #endif
522 
523 static inline void init_thread(struct target_pt_regs *regs,
524                                struct image_info *infop)
525 {
526     abi_long stack = infop->start_stack;
527     memset(regs, 0, sizeof(*regs));
528 
529     regs->pc = infop->entry & ~0x3ULL;
530     regs->sp = stack;
531 }
532 
533 #define ELF_NREG    34
534 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
535 
536 static void elf_core_copy_regs(target_elf_gregset_t *regs,
537                                const CPUARMState *env)
538 {
539     int i;
540 
541     for (i = 0; i < 32; i++) {
542         (*regs)[i] = tswapreg(env->xregs[i]);
543     }
544     (*regs)[32] = tswapreg(env->pc);
545     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
546 }
547 
548 #define USE_ELF_CORE_DUMP
549 #define ELF_EXEC_PAGESIZE       4096
550 
551 enum {
552     ARM_HWCAP_A64_FP            = 1 << 0,
553     ARM_HWCAP_A64_ASIMD         = 1 << 1,
554     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
555     ARM_HWCAP_A64_AES           = 1 << 3,
556     ARM_HWCAP_A64_PMULL         = 1 << 4,
557     ARM_HWCAP_A64_SHA1          = 1 << 5,
558     ARM_HWCAP_A64_SHA2          = 1 << 6,
559     ARM_HWCAP_A64_CRC32         = 1 << 7,
560     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
561     ARM_HWCAP_A64_FPHP          = 1 << 9,
562     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
563     ARM_HWCAP_A64_CPUID         = 1 << 11,
564     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
565     ARM_HWCAP_A64_JSCVT         = 1 << 13,
566     ARM_HWCAP_A64_FCMA          = 1 << 14,
567     ARM_HWCAP_A64_LRCPC         = 1 << 15,
568     ARM_HWCAP_A64_DCPOP         = 1 << 16,
569     ARM_HWCAP_A64_SHA3          = 1 << 17,
570     ARM_HWCAP_A64_SM3           = 1 << 18,
571     ARM_HWCAP_A64_SM4           = 1 << 19,
572     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
573     ARM_HWCAP_A64_SHA512        = 1 << 21,
574     ARM_HWCAP_A64_SVE           = 1 << 22,
575     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
576     ARM_HWCAP_A64_DIT           = 1 << 24,
577     ARM_HWCAP_A64_USCAT         = 1 << 25,
578     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
579     ARM_HWCAP_A64_FLAGM         = 1 << 27,
580     ARM_HWCAP_A64_SSBS          = 1 << 28,
581     ARM_HWCAP_A64_SB            = 1 << 29,
582     ARM_HWCAP_A64_PACA          = 1 << 30,
583     ARM_HWCAP_A64_PACG          = 1UL << 31,
584 
585     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
586     ARM_HWCAP2_A64_SVE2         = 1 << 1,
587     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
588     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
589     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
590     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
591     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
592     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
593     ARM_HWCAP2_A64_FRINT        = 1 << 8,
594     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
595     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
596     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
597     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
598     ARM_HWCAP2_A64_I8MM         = 1 << 13,
599     ARM_HWCAP2_A64_BF16         = 1 << 14,
600     ARM_HWCAP2_A64_DGH          = 1 << 15,
601     ARM_HWCAP2_A64_RNG          = 1 << 16,
602     ARM_HWCAP2_A64_BTI          = 1 << 17,
603     ARM_HWCAP2_A64_MTE          = 1 << 18,
604 };
605 
606 #define ELF_HWCAP   get_elf_hwcap()
607 #define ELF_HWCAP2  get_elf_hwcap2()
608 
609 #define GET_FEATURE_ID(feat, hwcap) \
610     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
611 
612 static uint32_t get_elf_hwcap(void)
613 {
614     ARMCPU *cpu = ARM_CPU(thread_cpu);
615     uint32_t hwcaps = 0;
616 
617     hwcaps |= ARM_HWCAP_A64_FP;
618     hwcaps |= ARM_HWCAP_A64_ASIMD;
619     hwcaps |= ARM_HWCAP_A64_CPUID;
620 
621     /* probe for the extra features */
622 
623     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
624     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
625     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
626     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
627     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
628     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
629     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
630     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
631     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
632     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
633     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
634     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
635     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
636     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
637     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
638     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
639     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
640     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
641     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
642     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
643     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
644     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
645     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
646 
647     return hwcaps;
648 }
649 
650 static uint32_t get_elf_hwcap2(void)
651 {
652     ARMCPU *cpu = ARM_CPU(thread_cpu);
653     uint32_t hwcaps = 0;
654 
655     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
656     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
657     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
658     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
659     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
660     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
661     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
662     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
663     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
664     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
665     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
666     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
667     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
668     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
669     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
670     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
671     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
672     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
673 
674     return hwcaps;
675 }
676 
677 #undef GET_FEATURE_ID
678 
679 #endif /* not TARGET_AARCH64 */
680 #endif /* TARGET_ARM */
681 
682 #ifdef TARGET_SPARC
683 #ifdef TARGET_SPARC64
684 
685 #define ELF_START_MMAP 0x80000000
686 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
687                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
688 #ifndef TARGET_ABI32
689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
690 #else
691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
692 #endif
693 
694 #define ELF_CLASS   ELFCLASS64
695 #define ELF_ARCH    EM_SPARCV9
696 #else
697 #define ELF_START_MMAP 0x80000000
698 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
699                     | HWCAP_SPARC_MULDIV)
700 #define ELF_CLASS   ELFCLASS32
701 #define ELF_ARCH    EM_SPARC
702 #endif /* TARGET_SPARC64 */
703 
704 static inline void init_thread(struct target_pt_regs *regs,
705                                struct image_info *infop)
706 {
707     /* Note that target_cpu_copy_regs does not read psr/tstate. */
708     regs->pc = infop->entry;
709     regs->npc = regs->pc + 4;
710     regs->y = 0;
711     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
712                         - TARGET_STACK_BIAS);
713 }
714 #endif /* TARGET_SPARC */
715 
716 #ifdef TARGET_PPC
717 
718 #define ELF_MACHINE    PPC_ELF_MACHINE
719 #define ELF_START_MMAP 0x80000000
720 
721 #if defined(TARGET_PPC64)
722 
723 #define elf_check_arch(x) ( (x) == EM_PPC64 )
724 
725 #define ELF_CLASS       ELFCLASS64
726 
727 #else
728 
729 #define ELF_CLASS       ELFCLASS32
730 
731 #endif
732 
733 #define ELF_ARCH        EM_PPC
734 
735 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
736    See arch/powerpc/include/asm/cputable.h.  */
737 enum {
738     QEMU_PPC_FEATURE_32 = 0x80000000,
739     QEMU_PPC_FEATURE_64 = 0x40000000,
740     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
741     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
742     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
743     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
744     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
745     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
746     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
747     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
748     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
749     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
750     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
751     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
752     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
753     QEMU_PPC_FEATURE_CELL = 0x00010000,
754     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
755     QEMU_PPC_FEATURE_SMT = 0x00004000,
756     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
757     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
758     QEMU_PPC_FEATURE_PA6T = 0x00000800,
759     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
760     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
761     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
762     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
763     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
764 
765     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
766     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
767 
768     /* Feature definitions in AT_HWCAP2.  */
769     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
770     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
771     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
772     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
773     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
774     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
775     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
776     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
777     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
778     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
779     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
780     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
781     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
782 };
783 
784 #define ELF_HWCAP get_elf_hwcap()
785 
786 static uint32_t get_elf_hwcap(void)
787 {
788     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
789     uint32_t features = 0;
790 
791     /* We don't have to be terribly complete here; the high points are
792        Altivec/FP/SPE support.  Anything else is just a bonus.  */
793 #define GET_FEATURE(flag, feature)                                      \
794     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
795 #define GET_FEATURE2(flags, feature) \
796     do { \
797         if ((cpu->env.insns_flags2 & flags) == flags) { \
798             features |= feature; \
799         } \
800     } while (0)
801     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
802     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
803     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
804     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
805     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
806     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
807     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
808     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
809     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
810     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
811     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
812                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
813                   QEMU_PPC_FEATURE_ARCH_2_06);
814 #undef GET_FEATURE
815 #undef GET_FEATURE2
816 
817     return features;
818 }
819 
820 #define ELF_HWCAP2 get_elf_hwcap2()
821 
822 static uint32_t get_elf_hwcap2(void)
823 {
824     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
825     uint32_t features = 0;
826 
827 #define GET_FEATURE(flag, feature)                                      \
828     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
829 #define GET_FEATURE2(flag, feature)                                      \
830     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
831 
832     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
833     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
834     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
835                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
836                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
837     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
838                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
839 
840 #undef GET_FEATURE
841 #undef GET_FEATURE2
842 
843     return features;
844 }
845 
846 /*
847  * The requirements here are:
848  * - keep the final alignment of sp (sp & 0xf)
849  * - make sure the 32-bit value at the first 16 byte aligned position of
850  *   AUXV is greater than 16 for glibc compatibility.
851  *   AT_IGNOREPPC is used for that.
852  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
853  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
854  */
855 #define DLINFO_ARCH_ITEMS       5
856 #define ARCH_DLINFO                                     \
857     do {                                                \
858         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
859         /*                                              \
860          * Handle glibc compatibility: these magic entries must \
861          * be at the lowest addresses in the final auxv.        \
862          */                                             \
863         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
864         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
865         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
866         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
867         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
868     } while (0)
869 
870 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
871 {
872     _regs->gpr[1] = infop->start_stack;
873 #if defined(TARGET_PPC64)
874     if (get_ppc64_abi(infop) < 2) {
875         uint64_t val;
876         get_user_u64(val, infop->entry + 8);
877         _regs->gpr[2] = val + infop->load_bias;
878         get_user_u64(val, infop->entry);
879         infop->entry = val + infop->load_bias;
880     } else {
881         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
882     }
883 #endif
884     _regs->nip = infop->entry;
885 }
886 
887 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
888 #define ELF_NREG 48
889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
890 
891 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
892 {
893     int i;
894     target_ulong ccr = 0;
895 
896     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
897         (*regs)[i] = tswapreg(env->gpr[i]);
898     }
899 
900     (*regs)[32] = tswapreg(env->nip);
901     (*regs)[33] = tswapreg(env->msr);
902     (*regs)[35] = tswapreg(env->ctr);
903     (*regs)[36] = tswapreg(env->lr);
904     (*regs)[37] = tswapreg(cpu_read_xer(env));
905 
906     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
907         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
908     }
909     (*regs)[38] = tswapreg(ccr);
910 }
911 
912 #define USE_ELF_CORE_DUMP
913 #define ELF_EXEC_PAGESIZE       4096
914 
915 #endif
916 
917 #ifdef TARGET_MIPS
918 
919 #define ELF_START_MMAP 0x80000000
920 
921 #ifdef TARGET_MIPS64
922 #define ELF_CLASS   ELFCLASS64
923 #else
924 #define ELF_CLASS   ELFCLASS32
925 #endif
926 #define ELF_ARCH    EM_MIPS
927 
928 #ifdef TARGET_ABI_MIPSN32
929 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
930 #else
931 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
932 #endif
933 
934 static inline void init_thread(struct target_pt_regs *regs,
935                                struct image_info *infop)
936 {
937     regs->cp0_status = 2 << CP0St_KSU;
938     regs->cp0_epc = infop->entry;
939     regs->regs[29] = infop->start_stack;
940 }
941 
942 /* See linux kernel: arch/mips/include/asm/elf.h.  */
943 #define ELF_NREG 45
944 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
945 
946 /* See linux kernel: arch/mips/include/asm/reg.h.  */
947 enum {
948 #ifdef TARGET_MIPS64
949     TARGET_EF_R0 = 0,
950 #else
951     TARGET_EF_R0 = 6,
952 #endif
953     TARGET_EF_R26 = TARGET_EF_R0 + 26,
954     TARGET_EF_R27 = TARGET_EF_R0 + 27,
955     TARGET_EF_LO = TARGET_EF_R0 + 32,
956     TARGET_EF_HI = TARGET_EF_R0 + 33,
957     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
958     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
959     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
960     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
961 };
962 
963 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
964 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
965 {
966     int i;
967 
968     for (i = 0; i < TARGET_EF_R0; i++) {
969         (*regs)[i] = 0;
970     }
971     (*regs)[TARGET_EF_R0] = 0;
972 
973     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
974         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
975     }
976 
977     (*regs)[TARGET_EF_R26] = 0;
978     (*regs)[TARGET_EF_R27] = 0;
979     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
980     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
981     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
982     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
983     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
984     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
985 }
986 
987 #define USE_ELF_CORE_DUMP
988 #define ELF_EXEC_PAGESIZE        4096
989 
990 /* See arch/mips/include/uapi/asm/hwcap.h.  */
991 enum {
992     HWCAP_MIPS_R6           = (1 << 0),
993     HWCAP_MIPS_MSA          = (1 << 1),
994     HWCAP_MIPS_CRC32        = (1 << 2),
995     HWCAP_MIPS_MIPS16       = (1 << 3),
996     HWCAP_MIPS_MDMX         = (1 << 4),
997     HWCAP_MIPS_MIPS3D       = (1 << 5),
998     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
999     HWCAP_MIPS_DSP          = (1 << 7),
1000     HWCAP_MIPS_DSP2         = (1 << 8),
1001     HWCAP_MIPS_DSP3         = (1 << 9),
1002     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1003     HWCAP_LOONGSON_MMI      = (1 << 11),
1004     HWCAP_LOONGSON_EXT      = (1 << 12),
1005     HWCAP_LOONGSON_EXT2     = (1 << 13),
1006     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1007 };
1008 
1009 #define ELF_HWCAP get_elf_hwcap()
1010 
1011 #define GET_FEATURE_INSN(_flag, _hwcap) \
1012     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1013 
1014 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1015     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1016 
1017 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1018     do { \
1019         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1020             hwcaps |= _hwcap; \
1021         } \
1022     } while (0)
1023 
1024 static uint32_t get_elf_hwcap(void)
1025 {
1026     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1027     uint32_t hwcaps = 0;
1028 
1029     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1030                         2, HWCAP_MIPS_R6);
1031     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1032     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1033     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1034 
1035     return hwcaps;
1036 }
1037 
1038 #undef GET_FEATURE_REG_EQU
1039 #undef GET_FEATURE_REG_SET
1040 #undef GET_FEATURE_INSN
1041 
1042 #endif /* TARGET_MIPS */
1043 
1044 #ifdef TARGET_MICROBLAZE
1045 
1046 #define ELF_START_MMAP 0x80000000
1047 
1048 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1049 
1050 #define ELF_CLASS   ELFCLASS32
1051 #define ELF_ARCH    EM_MICROBLAZE
1052 
1053 static inline void init_thread(struct target_pt_regs *regs,
1054                                struct image_info *infop)
1055 {
1056     regs->pc = infop->entry;
1057     regs->r1 = infop->start_stack;
1058 
1059 }
1060 
1061 #define ELF_EXEC_PAGESIZE        4096
1062 
1063 #define USE_ELF_CORE_DUMP
1064 #define ELF_NREG 38
1065 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1066 
1067 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1068 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1069 {
1070     int i, pos = 0;
1071 
1072     for (i = 0; i < 32; i++) {
1073         (*regs)[pos++] = tswapreg(env->regs[i]);
1074     }
1075 
1076     (*regs)[pos++] = tswapreg(env->pc);
1077     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1078     (*regs)[pos++] = 0;
1079     (*regs)[pos++] = tswapreg(env->ear);
1080     (*regs)[pos++] = 0;
1081     (*regs)[pos++] = tswapreg(env->esr);
1082 }
1083 
1084 #endif /* TARGET_MICROBLAZE */
1085 
1086 #ifdef TARGET_NIOS2
1087 
1088 #define ELF_START_MMAP 0x80000000
1089 
1090 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1091 
1092 #define ELF_CLASS   ELFCLASS32
1093 #define ELF_ARCH    EM_ALTERA_NIOS2
1094 
1095 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1096 {
1097     regs->ea = infop->entry;
1098     regs->sp = infop->start_stack;
1099 }
1100 
1101 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1102 
1103 static bool init_guest_commpage(void)
1104 {
1105     static const uint8_t kuser_page[4 + 2 * 64] = {
1106         /* __kuser_helper_version */
1107         [0x00] = 0x02, 0x00, 0x00, 0x00,
1108 
1109         /* __kuser_cmpxchg */
1110         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1111                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1112 
1113         /* __kuser_sigtramp */
1114         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1115                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1116     };
1117 
1118     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1119     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1120                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1121 
1122     if (addr == MAP_FAILED) {
1123         perror("Allocating guest commpage");
1124         exit(EXIT_FAILURE);
1125     }
1126     if (addr != want) {
1127         return false;
1128     }
1129 
1130     memcpy(addr, kuser_page, sizeof(kuser_page));
1131 
1132     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1133         perror("Protecting guest commpage");
1134         exit(EXIT_FAILURE);
1135     }
1136 
1137     page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1138                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1139     return true;
1140 }
1141 
1142 #define ELF_EXEC_PAGESIZE        4096
1143 
1144 #define USE_ELF_CORE_DUMP
1145 #define ELF_NREG 49
1146 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1147 
1148 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1149 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1150                                const CPUNios2State *env)
1151 {
1152     int i;
1153 
1154     (*regs)[0] = -1;
1155     for (i = 1; i < 8; i++)    /* r0-r7 */
1156         (*regs)[i] = tswapreg(env->regs[i + 7]);
1157 
1158     for (i = 8; i < 16; i++)   /* r8-r15 */
1159         (*regs)[i] = tswapreg(env->regs[i - 8]);
1160 
1161     for (i = 16; i < 24; i++)  /* r16-r23 */
1162         (*regs)[i] = tswapreg(env->regs[i + 7]);
1163     (*regs)[24] = -1;    /* R_ET */
1164     (*regs)[25] = -1;    /* R_BT */
1165     (*regs)[26] = tswapreg(env->regs[R_GP]);
1166     (*regs)[27] = tswapreg(env->regs[R_SP]);
1167     (*regs)[28] = tswapreg(env->regs[R_FP]);
1168     (*regs)[29] = tswapreg(env->regs[R_EA]);
1169     (*regs)[30] = -1;    /* R_SSTATUS */
1170     (*regs)[31] = tswapreg(env->regs[R_RA]);
1171 
1172     (*regs)[32] = tswapreg(env->pc);
1173 
1174     (*regs)[33] = -1; /* R_STATUS */
1175     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1176 
1177     for (i = 35; i < 49; i++)    /* ... */
1178         (*regs)[i] = -1;
1179 }
1180 
1181 #endif /* TARGET_NIOS2 */
1182 
1183 #ifdef TARGET_OPENRISC
1184 
1185 #define ELF_START_MMAP 0x08000000
1186 
1187 #define ELF_ARCH EM_OPENRISC
1188 #define ELF_CLASS ELFCLASS32
1189 #define ELF_DATA  ELFDATA2MSB
1190 
1191 static inline void init_thread(struct target_pt_regs *regs,
1192                                struct image_info *infop)
1193 {
1194     regs->pc = infop->entry;
1195     regs->gpr[1] = infop->start_stack;
1196 }
1197 
1198 #define USE_ELF_CORE_DUMP
1199 #define ELF_EXEC_PAGESIZE 8192
1200 
1201 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1202 #define ELF_NREG 34 /* gprs and pc, sr */
1203 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1204 
1205 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1206                                const CPUOpenRISCState *env)
1207 {
1208     int i;
1209 
1210     for (i = 0; i < 32; i++) {
1211         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1212     }
1213     (*regs)[32] = tswapreg(env->pc);
1214     (*regs)[33] = tswapreg(cpu_get_sr(env));
1215 }
1216 #define ELF_HWCAP 0
1217 #define ELF_PLATFORM NULL
1218 
1219 #endif /* TARGET_OPENRISC */
1220 
1221 #ifdef TARGET_SH4
1222 
1223 #define ELF_START_MMAP 0x80000000
1224 
1225 #define ELF_CLASS ELFCLASS32
1226 #define ELF_ARCH  EM_SH
1227 
1228 static inline void init_thread(struct target_pt_regs *regs,
1229                                struct image_info *infop)
1230 {
1231     /* Check other registers XXXXX */
1232     regs->pc = infop->entry;
1233     regs->regs[15] = infop->start_stack;
1234 }
1235 
1236 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1237 #define ELF_NREG 23
1238 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1239 
1240 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1241 enum {
1242     TARGET_REG_PC = 16,
1243     TARGET_REG_PR = 17,
1244     TARGET_REG_SR = 18,
1245     TARGET_REG_GBR = 19,
1246     TARGET_REG_MACH = 20,
1247     TARGET_REG_MACL = 21,
1248     TARGET_REG_SYSCALL = 22
1249 };
1250 
1251 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1252                                       const CPUSH4State *env)
1253 {
1254     int i;
1255 
1256     for (i = 0; i < 16; i++) {
1257         (*regs)[i] = tswapreg(env->gregs[i]);
1258     }
1259 
1260     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1261     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1262     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1263     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1264     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1265     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1266     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1267 }
1268 
1269 #define USE_ELF_CORE_DUMP
1270 #define ELF_EXEC_PAGESIZE        4096
1271 
1272 enum {
1273     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1274     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1275     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1276     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1277     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1278     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1279     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1280     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1281     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1282     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1283 };
1284 
1285 #define ELF_HWCAP get_elf_hwcap()
1286 
1287 static uint32_t get_elf_hwcap(void)
1288 {
1289     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1290     uint32_t hwcap = 0;
1291 
1292     hwcap |= SH_CPU_HAS_FPU;
1293 
1294     if (cpu->env.features & SH_FEATURE_SH4A) {
1295         hwcap |= SH_CPU_HAS_LLSC;
1296     }
1297 
1298     return hwcap;
1299 }
1300 
1301 #endif
1302 
1303 #ifdef TARGET_CRIS
1304 
1305 #define ELF_START_MMAP 0x80000000
1306 
1307 #define ELF_CLASS ELFCLASS32
1308 #define ELF_ARCH  EM_CRIS
1309 
1310 static inline void init_thread(struct target_pt_regs *regs,
1311                                struct image_info *infop)
1312 {
1313     regs->erp = infop->entry;
1314 }
1315 
1316 #define ELF_EXEC_PAGESIZE        8192
1317 
1318 #endif
1319 
1320 #ifdef TARGET_M68K
1321 
1322 #define ELF_START_MMAP 0x80000000
1323 
1324 #define ELF_CLASS       ELFCLASS32
1325 #define ELF_ARCH        EM_68K
1326 
1327 /* ??? Does this need to do anything?
1328    #define ELF_PLAT_INIT(_r) */
1329 
1330 static inline void init_thread(struct target_pt_regs *regs,
1331                                struct image_info *infop)
1332 {
1333     regs->usp = infop->start_stack;
1334     regs->sr = 0;
1335     regs->pc = infop->entry;
1336 }
1337 
1338 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1339 #define ELF_NREG 20
1340 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1341 
1342 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1343 {
1344     (*regs)[0] = tswapreg(env->dregs[1]);
1345     (*regs)[1] = tswapreg(env->dregs[2]);
1346     (*regs)[2] = tswapreg(env->dregs[3]);
1347     (*regs)[3] = tswapreg(env->dregs[4]);
1348     (*regs)[4] = tswapreg(env->dregs[5]);
1349     (*regs)[5] = tswapreg(env->dregs[6]);
1350     (*regs)[6] = tswapreg(env->dregs[7]);
1351     (*regs)[7] = tswapreg(env->aregs[0]);
1352     (*regs)[8] = tswapreg(env->aregs[1]);
1353     (*regs)[9] = tswapreg(env->aregs[2]);
1354     (*regs)[10] = tswapreg(env->aregs[3]);
1355     (*regs)[11] = tswapreg(env->aregs[4]);
1356     (*regs)[12] = tswapreg(env->aregs[5]);
1357     (*regs)[13] = tswapreg(env->aregs[6]);
1358     (*regs)[14] = tswapreg(env->dregs[0]);
1359     (*regs)[15] = tswapreg(env->aregs[7]);
1360     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1361     (*regs)[17] = tswapreg(env->sr);
1362     (*regs)[18] = tswapreg(env->pc);
1363     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1364 }
1365 
1366 #define USE_ELF_CORE_DUMP
1367 #define ELF_EXEC_PAGESIZE       8192
1368 
1369 #endif
1370 
1371 #ifdef TARGET_ALPHA
1372 
1373 #define ELF_START_MMAP (0x30000000000ULL)
1374 
1375 #define ELF_CLASS      ELFCLASS64
1376 #define ELF_ARCH       EM_ALPHA
1377 
1378 static inline void init_thread(struct target_pt_regs *regs,
1379                                struct image_info *infop)
1380 {
1381     regs->pc = infop->entry;
1382     regs->ps = 8;
1383     regs->usp = infop->start_stack;
1384 }
1385 
1386 #define ELF_EXEC_PAGESIZE        8192
1387 
1388 #endif /* TARGET_ALPHA */
1389 
1390 #ifdef TARGET_S390X
1391 
1392 #define ELF_START_MMAP (0x20000000000ULL)
1393 
1394 #define ELF_CLASS	ELFCLASS64
1395 #define ELF_DATA	ELFDATA2MSB
1396 #define ELF_ARCH	EM_S390
1397 
1398 #include "elf.h"
1399 
1400 #define ELF_HWCAP get_elf_hwcap()
1401 
1402 #define GET_FEATURE(_feat, _hwcap) \
1403     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1404 
1405 static uint32_t get_elf_hwcap(void)
1406 {
1407     /*
1408      * Let's assume we always have esan3 and zarch.
1409      * 31-bit processes can use 64-bit registers (high gprs).
1410      */
1411     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1412 
1413     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1414     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1415     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1416     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1417     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1418         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1419         hwcap |= HWCAP_S390_ETF3EH;
1420     }
1421     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1422     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1423 
1424     return hwcap;
1425 }
1426 
1427 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1428 {
1429     regs->psw.addr = infop->entry;
1430     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1431     regs->gprs[15] = infop->start_stack;
1432 }
1433 
1434 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1435 #define ELF_NREG 27
1436 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1437 
1438 enum {
1439     TARGET_REG_PSWM = 0,
1440     TARGET_REG_PSWA = 1,
1441     TARGET_REG_GPRS = 2,
1442     TARGET_REG_ARS = 18,
1443     TARGET_REG_ORIG_R2 = 26,
1444 };
1445 
1446 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1447                                const CPUS390XState *env)
1448 {
1449     int i;
1450     uint32_t *aregs;
1451 
1452     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1453     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1454     for (i = 0; i < 16; i++) {
1455         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1456     }
1457     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1458     for (i = 0; i < 16; i++) {
1459         aregs[i] = tswap32(env->aregs[i]);
1460     }
1461     (*regs)[TARGET_REG_ORIG_R2] = 0;
1462 }
1463 
1464 #define USE_ELF_CORE_DUMP
1465 #define ELF_EXEC_PAGESIZE 4096
1466 
1467 #endif /* TARGET_S390X */
1468 
1469 #ifdef TARGET_RISCV
1470 
1471 #define ELF_START_MMAP 0x80000000
1472 #define ELF_ARCH  EM_RISCV
1473 
1474 #ifdef TARGET_RISCV32
1475 #define ELF_CLASS ELFCLASS32
1476 #else
1477 #define ELF_CLASS ELFCLASS64
1478 #endif
1479 
1480 #define ELF_HWCAP get_elf_hwcap()
1481 
1482 static uint32_t get_elf_hwcap(void)
1483 {
1484 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1485     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1486     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1487                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1488 
1489     return cpu->env.misa_ext & mask;
1490 #undef MISA_BIT
1491 }
1492 
1493 static inline void init_thread(struct target_pt_regs *regs,
1494                                struct image_info *infop)
1495 {
1496     regs->sepc = infop->entry;
1497     regs->sp = infop->start_stack;
1498 }
1499 
1500 #define ELF_EXEC_PAGESIZE 4096
1501 
1502 #endif /* TARGET_RISCV */
1503 
1504 #ifdef TARGET_HPPA
1505 
1506 #define ELF_START_MMAP  0x80000000
1507 #define ELF_CLASS       ELFCLASS32
1508 #define ELF_ARCH        EM_PARISC
1509 #define ELF_PLATFORM    "PARISC"
1510 #define STACK_GROWS_DOWN 0
1511 #define STACK_ALIGNMENT  64
1512 
1513 static inline void init_thread(struct target_pt_regs *regs,
1514                                struct image_info *infop)
1515 {
1516     regs->iaoq[0] = infop->entry;
1517     regs->iaoq[1] = infop->entry + 4;
1518     regs->gr[23] = 0;
1519     regs->gr[24] = infop->arg_start;
1520     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1521     /* The top-of-stack contains a linkage buffer.  */
1522     regs->gr[30] = infop->start_stack + 64;
1523     regs->gr[31] = infop->entry;
1524 }
1525 
1526 #endif /* TARGET_HPPA */
1527 
1528 #ifdef TARGET_XTENSA
1529 
1530 #define ELF_START_MMAP 0x20000000
1531 
1532 #define ELF_CLASS       ELFCLASS32
1533 #define ELF_ARCH        EM_XTENSA
1534 
1535 static inline void init_thread(struct target_pt_regs *regs,
1536                                struct image_info *infop)
1537 {
1538     regs->windowbase = 0;
1539     regs->windowstart = 1;
1540     regs->areg[1] = infop->start_stack;
1541     regs->pc = infop->entry;
1542 }
1543 
1544 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1545 #define ELF_NREG 128
1546 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1547 
1548 enum {
1549     TARGET_REG_PC,
1550     TARGET_REG_PS,
1551     TARGET_REG_LBEG,
1552     TARGET_REG_LEND,
1553     TARGET_REG_LCOUNT,
1554     TARGET_REG_SAR,
1555     TARGET_REG_WINDOWSTART,
1556     TARGET_REG_WINDOWBASE,
1557     TARGET_REG_THREADPTR,
1558     TARGET_REG_AR0 = 64,
1559 };
1560 
1561 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1562                                const CPUXtensaState *env)
1563 {
1564     unsigned i;
1565 
1566     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1567     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1568     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1569     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1570     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1571     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1572     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1573     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1574     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1575     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1576     for (i = 0; i < env->config->nareg; ++i) {
1577         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1578     }
1579 }
1580 
1581 #define USE_ELF_CORE_DUMP
1582 #define ELF_EXEC_PAGESIZE       4096
1583 
1584 #endif /* TARGET_XTENSA */
1585 
1586 #ifdef TARGET_HEXAGON
1587 
1588 #define ELF_START_MMAP 0x20000000
1589 
1590 #define ELF_CLASS       ELFCLASS32
1591 #define ELF_ARCH        EM_HEXAGON
1592 
1593 static inline void init_thread(struct target_pt_regs *regs,
1594                                struct image_info *infop)
1595 {
1596     regs->sepc = infop->entry;
1597     regs->sp = infop->start_stack;
1598 }
1599 
1600 #endif /* TARGET_HEXAGON */
1601 
1602 #ifndef ELF_PLATFORM
1603 #define ELF_PLATFORM (NULL)
1604 #endif
1605 
1606 #ifndef ELF_MACHINE
1607 #define ELF_MACHINE ELF_ARCH
1608 #endif
1609 
1610 #ifndef elf_check_arch
1611 #define elf_check_arch(x) ((x) == ELF_ARCH)
1612 #endif
1613 
1614 #ifndef elf_check_abi
1615 #define elf_check_abi(x) (1)
1616 #endif
1617 
1618 #ifndef ELF_HWCAP
1619 #define ELF_HWCAP 0
1620 #endif
1621 
1622 #ifndef STACK_GROWS_DOWN
1623 #define STACK_GROWS_DOWN 1
1624 #endif
1625 
1626 #ifndef STACK_ALIGNMENT
1627 #define STACK_ALIGNMENT 16
1628 #endif
1629 
1630 #ifdef TARGET_ABI32
1631 #undef ELF_CLASS
1632 #define ELF_CLASS ELFCLASS32
1633 #undef bswaptls
1634 #define bswaptls(ptr) bswap32s(ptr)
1635 #endif
1636 
1637 #include "elf.h"
1638 
1639 /* We must delay the following stanzas until after "elf.h". */
1640 #if defined(TARGET_AARCH64)
1641 
1642 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1643                                     const uint32_t *data,
1644                                     struct image_info *info,
1645                                     Error **errp)
1646 {
1647     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1648         if (pr_datasz != sizeof(uint32_t)) {
1649             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1650             return false;
1651         }
1652         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1653         info->note_flags = *data;
1654     }
1655     return true;
1656 }
1657 #define ARCH_USE_GNU_PROPERTY 1
1658 
1659 #else
1660 
1661 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1662                                     const uint32_t *data,
1663                                     struct image_info *info,
1664                                     Error **errp)
1665 {
1666     g_assert_not_reached();
1667 }
1668 #define ARCH_USE_GNU_PROPERTY 0
1669 
1670 #endif
1671 
1672 struct exec
1673 {
1674     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1675     unsigned int a_text;   /* length of text, in bytes */
1676     unsigned int a_data;   /* length of data, in bytes */
1677     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1678     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1679     unsigned int a_entry;  /* start address */
1680     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1681     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1682 };
1683 
1684 
1685 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1686 #define OMAGIC 0407
1687 #define NMAGIC 0410
1688 #define ZMAGIC 0413
1689 #define QMAGIC 0314
1690 
1691 /* Necessary parameters */
1692 #define TARGET_ELF_EXEC_PAGESIZE \
1693         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1694          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1695 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1696 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1697                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1698 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1699 
1700 #define DLINFO_ITEMS 16
1701 
1702 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1703 {
1704     memcpy(to, from, n);
1705 }
1706 
1707 #ifdef BSWAP_NEEDED
1708 static void bswap_ehdr(struct elfhdr *ehdr)
1709 {
1710     bswap16s(&ehdr->e_type);            /* Object file type */
1711     bswap16s(&ehdr->e_machine);         /* Architecture */
1712     bswap32s(&ehdr->e_version);         /* Object file version */
1713     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1714     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1715     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1716     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1717     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1718     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1719     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1720     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1721     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1722     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1723 }
1724 
1725 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1726 {
1727     int i;
1728     for (i = 0; i < phnum; ++i, ++phdr) {
1729         bswap32s(&phdr->p_type);        /* Segment type */
1730         bswap32s(&phdr->p_flags);       /* Segment flags */
1731         bswaptls(&phdr->p_offset);      /* Segment file offset */
1732         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1733         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1734         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1735         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1736         bswaptls(&phdr->p_align);       /* Segment alignment */
1737     }
1738 }
1739 
1740 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1741 {
1742     int i;
1743     for (i = 0; i < shnum; ++i, ++shdr) {
1744         bswap32s(&shdr->sh_name);
1745         bswap32s(&shdr->sh_type);
1746         bswaptls(&shdr->sh_flags);
1747         bswaptls(&shdr->sh_addr);
1748         bswaptls(&shdr->sh_offset);
1749         bswaptls(&shdr->sh_size);
1750         bswap32s(&shdr->sh_link);
1751         bswap32s(&shdr->sh_info);
1752         bswaptls(&shdr->sh_addralign);
1753         bswaptls(&shdr->sh_entsize);
1754     }
1755 }
1756 
1757 static void bswap_sym(struct elf_sym *sym)
1758 {
1759     bswap32s(&sym->st_name);
1760     bswaptls(&sym->st_value);
1761     bswaptls(&sym->st_size);
1762     bswap16s(&sym->st_shndx);
1763 }
1764 
1765 #ifdef TARGET_MIPS
1766 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1767 {
1768     bswap16s(&abiflags->version);
1769     bswap32s(&abiflags->ases);
1770     bswap32s(&abiflags->isa_ext);
1771     bswap32s(&abiflags->flags1);
1772     bswap32s(&abiflags->flags2);
1773 }
1774 #endif
1775 #else
1776 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1777 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1778 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1779 static inline void bswap_sym(struct elf_sym *sym) { }
1780 #ifdef TARGET_MIPS
1781 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1782 #endif
1783 #endif
1784 
1785 #ifdef USE_ELF_CORE_DUMP
1786 static int elf_core_dump(int, const CPUArchState *);
1787 #endif /* USE_ELF_CORE_DUMP */
1788 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1789 
1790 /* Verify the portions of EHDR within E_IDENT for the target.
1791    This can be performed before bswapping the entire header.  */
1792 static bool elf_check_ident(struct elfhdr *ehdr)
1793 {
1794     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1795             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1796             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1797             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1798             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1799             && ehdr->e_ident[EI_DATA] == ELF_DATA
1800             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1801 }
1802 
1803 /* Verify the portions of EHDR outside of E_IDENT for the target.
1804    This has to wait until after bswapping the header.  */
1805 static bool elf_check_ehdr(struct elfhdr *ehdr)
1806 {
1807     return (elf_check_arch(ehdr->e_machine)
1808             && elf_check_abi(ehdr->e_flags)
1809             && ehdr->e_ehsize == sizeof(struct elfhdr)
1810             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1811             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1812 }
1813 
1814 /*
1815  * 'copy_elf_strings()' copies argument/envelope strings from user
1816  * memory to free pages in kernel mem. These are in a format ready
1817  * to be put directly into the top of new user memory.
1818  *
1819  */
1820 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1821                                   abi_ulong p, abi_ulong stack_limit)
1822 {
1823     char *tmp;
1824     int len, i;
1825     abi_ulong top = p;
1826 
1827     if (!p) {
1828         return 0;       /* bullet-proofing */
1829     }
1830 
1831     if (STACK_GROWS_DOWN) {
1832         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1833         for (i = argc - 1; i >= 0; --i) {
1834             tmp = argv[i];
1835             if (!tmp) {
1836                 fprintf(stderr, "VFS: argc is wrong");
1837                 exit(-1);
1838             }
1839             len = strlen(tmp) + 1;
1840             tmp += len;
1841 
1842             if (len > (p - stack_limit)) {
1843                 return 0;
1844             }
1845             while (len) {
1846                 int bytes_to_copy = (len > offset) ? offset : len;
1847                 tmp -= bytes_to_copy;
1848                 p -= bytes_to_copy;
1849                 offset -= bytes_to_copy;
1850                 len -= bytes_to_copy;
1851 
1852                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1853 
1854                 if (offset == 0) {
1855                     memcpy_to_target(p, scratch, top - p);
1856                     top = p;
1857                     offset = TARGET_PAGE_SIZE;
1858                 }
1859             }
1860         }
1861         if (p != top) {
1862             memcpy_to_target(p, scratch + offset, top - p);
1863         }
1864     } else {
1865         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1866         for (i = 0; i < argc; ++i) {
1867             tmp = argv[i];
1868             if (!tmp) {
1869                 fprintf(stderr, "VFS: argc is wrong");
1870                 exit(-1);
1871             }
1872             len = strlen(tmp) + 1;
1873             if (len > (stack_limit - p)) {
1874                 return 0;
1875             }
1876             while (len) {
1877                 int bytes_to_copy = (len > remaining) ? remaining : len;
1878 
1879                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1880 
1881                 tmp += bytes_to_copy;
1882                 remaining -= bytes_to_copy;
1883                 p += bytes_to_copy;
1884                 len -= bytes_to_copy;
1885 
1886                 if (remaining == 0) {
1887                     memcpy_to_target(top, scratch, p - top);
1888                     top = p;
1889                     remaining = TARGET_PAGE_SIZE;
1890                 }
1891             }
1892         }
1893         if (p != top) {
1894             memcpy_to_target(top, scratch, p - top);
1895         }
1896     }
1897 
1898     return p;
1899 }
1900 
1901 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1902  * argument/environment space. Newer kernels (>2.6.33) allow more,
1903  * dependent on stack size, but guarantee at least 32 pages for
1904  * backwards compatibility.
1905  */
1906 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1907 
1908 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1909                                  struct image_info *info)
1910 {
1911     abi_ulong size, error, guard;
1912 
1913     size = guest_stack_size;
1914     if (size < STACK_LOWER_LIMIT) {
1915         size = STACK_LOWER_LIMIT;
1916     }
1917     guard = TARGET_PAGE_SIZE;
1918     if (guard < qemu_real_host_page_size()) {
1919         guard = qemu_real_host_page_size();
1920     }
1921 
1922     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1923                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1924     if (error == -1) {
1925         perror("mmap stack");
1926         exit(-1);
1927     }
1928 
1929     /* We reserve one extra page at the top of the stack as guard.  */
1930     if (STACK_GROWS_DOWN) {
1931         target_mprotect(error, guard, PROT_NONE);
1932         info->stack_limit = error + guard;
1933         return info->stack_limit + size - sizeof(void *);
1934     } else {
1935         target_mprotect(error + size, guard, PROT_NONE);
1936         info->stack_limit = error + size;
1937         return error;
1938     }
1939 }
1940 
1941 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1942    after the data section (i.e. bss).  */
1943 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1944 {
1945     uintptr_t host_start, host_map_start, host_end;
1946 
1947     last_bss = TARGET_PAGE_ALIGN(last_bss);
1948 
1949     /* ??? There is confusion between qemu_real_host_page_size and
1950        qemu_host_page_size here and elsewhere in target_mmap, which
1951        may lead to the end of the data section mapping from the file
1952        not being mapped.  At least there was an explicit test and
1953        comment for that here, suggesting that "the file size must
1954        be known".  The comment probably pre-dates the introduction
1955        of the fstat system call in target_mmap which does in fact
1956        find out the size.  What isn't clear is if the workaround
1957        here is still actually needed.  For now, continue with it,
1958        but merge it with the "normal" mmap that would allocate the bss.  */
1959 
1960     host_start = (uintptr_t) g2h_untagged(elf_bss);
1961     host_end = (uintptr_t) g2h_untagged(last_bss);
1962     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1963 
1964     if (host_map_start < host_end) {
1965         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1966                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1967         if (p == MAP_FAILED) {
1968             perror("cannot mmap brk");
1969             exit(-1);
1970         }
1971     }
1972 
1973     /* Ensure that the bss page(s) are valid */
1974     if ((page_get_flags(last_bss-1) & prot) != prot) {
1975         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1976     }
1977 
1978     if (host_start < host_map_start) {
1979         memset((void *)host_start, 0, host_map_start - host_start);
1980     }
1981 }
1982 
1983 #ifdef TARGET_ARM
1984 static int elf_is_fdpic(struct elfhdr *exec)
1985 {
1986     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1987 }
1988 #else
1989 /* Default implementation, always false.  */
1990 static int elf_is_fdpic(struct elfhdr *exec)
1991 {
1992     return 0;
1993 }
1994 #endif
1995 
1996 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1997 {
1998     uint16_t n;
1999     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2000 
2001     /* elf32_fdpic_loadseg */
2002     n = info->nsegs;
2003     while (n--) {
2004         sp -= 12;
2005         put_user_u32(loadsegs[n].addr, sp+0);
2006         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2007         put_user_u32(loadsegs[n].p_memsz, sp+8);
2008     }
2009 
2010     /* elf32_fdpic_loadmap */
2011     sp -= 4;
2012     put_user_u16(0, sp+0); /* version */
2013     put_user_u16(info->nsegs, sp+2); /* nsegs */
2014 
2015     info->personality = PER_LINUX_FDPIC;
2016     info->loadmap_addr = sp;
2017 
2018     return sp;
2019 }
2020 
2021 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2022                                    struct elfhdr *exec,
2023                                    struct image_info *info,
2024                                    struct image_info *interp_info)
2025 {
2026     abi_ulong sp;
2027     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2028     int size;
2029     int i;
2030     abi_ulong u_rand_bytes;
2031     uint8_t k_rand_bytes[16];
2032     abi_ulong u_platform;
2033     const char *k_platform;
2034     const int n = sizeof(elf_addr_t);
2035 
2036     sp = p;
2037 
2038     /* Needs to be before we load the env/argc/... */
2039     if (elf_is_fdpic(exec)) {
2040         /* Need 4 byte alignment for these structs */
2041         sp &= ~3;
2042         sp = loader_build_fdpic_loadmap(info, sp);
2043         info->other_info = interp_info;
2044         if (interp_info) {
2045             interp_info->other_info = info;
2046             sp = loader_build_fdpic_loadmap(interp_info, sp);
2047             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2048             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2049         } else {
2050             info->interpreter_loadmap_addr = 0;
2051             info->interpreter_pt_dynamic_addr = 0;
2052         }
2053     }
2054 
2055     u_platform = 0;
2056     k_platform = ELF_PLATFORM;
2057     if (k_platform) {
2058         size_t len = strlen(k_platform) + 1;
2059         if (STACK_GROWS_DOWN) {
2060             sp -= (len + n - 1) & ~(n - 1);
2061             u_platform = sp;
2062             /* FIXME - check return value of memcpy_to_target() for failure */
2063             memcpy_to_target(sp, k_platform, len);
2064         } else {
2065             memcpy_to_target(sp, k_platform, len);
2066             u_platform = sp;
2067             sp += len + 1;
2068         }
2069     }
2070 
2071     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2072      * the argv and envp pointers.
2073      */
2074     if (STACK_GROWS_DOWN) {
2075         sp = QEMU_ALIGN_DOWN(sp, 16);
2076     } else {
2077         sp = QEMU_ALIGN_UP(sp, 16);
2078     }
2079 
2080     /*
2081      * Generate 16 random bytes for userspace PRNG seeding.
2082      */
2083     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2084     if (STACK_GROWS_DOWN) {
2085         sp -= 16;
2086         u_rand_bytes = sp;
2087         /* FIXME - check return value of memcpy_to_target() for failure */
2088         memcpy_to_target(sp, k_rand_bytes, 16);
2089     } else {
2090         memcpy_to_target(sp, k_rand_bytes, 16);
2091         u_rand_bytes = sp;
2092         sp += 16;
2093     }
2094 
2095     size = (DLINFO_ITEMS + 1) * 2;
2096     if (k_platform)
2097         size += 2;
2098 #ifdef DLINFO_ARCH_ITEMS
2099     size += DLINFO_ARCH_ITEMS * 2;
2100 #endif
2101 #ifdef ELF_HWCAP2
2102     size += 2;
2103 #endif
2104     info->auxv_len = size * n;
2105 
2106     size += envc + argc + 2;
2107     size += 1;  /* argc itself */
2108     size *= n;
2109 
2110     /* Allocate space and finalize stack alignment for entry now.  */
2111     if (STACK_GROWS_DOWN) {
2112         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2113         sp = u_argc;
2114     } else {
2115         u_argc = sp;
2116         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2117     }
2118 
2119     u_argv = u_argc + n;
2120     u_envp = u_argv + (argc + 1) * n;
2121     u_auxv = u_envp + (envc + 1) * n;
2122     info->saved_auxv = u_auxv;
2123     info->arg_start = u_argv;
2124     info->arg_end = u_argv + argc * n;
2125 
2126     /* This is correct because Linux defines
2127      * elf_addr_t as Elf32_Off / Elf64_Off
2128      */
2129 #define NEW_AUX_ENT(id, val) do {               \
2130         put_user_ual(id, u_auxv);  u_auxv += n; \
2131         put_user_ual(val, u_auxv); u_auxv += n; \
2132     } while(0)
2133 
2134 #ifdef ARCH_DLINFO
2135     /*
2136      * ARCH_DLINFO must come first so platform specific code can enforce
2137      * special alignment requirements on the AUXV if necessary (eg. PPC).
2138      */
2139     ARCH_DLINFO;
2140 #endif
2141     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2142      * on info->auxv_len will trigger.
2143      */
2144     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2145     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2146     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2147     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2148         /* Target doesn't support host page size alignment */
2149         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2150     } else {
2151         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2152                                                qemu_host_page_size)));
2153     }
2154     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2155     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2156     NEW_AUX_ENT(AT_ENTRY, info->entry);
2157     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2158     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2159     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2160     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2161     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2162     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2163     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2164     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2165     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2166 
2167 #ifdef ELF_HWCAP2
2168     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2169 #endif
2170 
2171     if (u_platform) {
2172         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2173     }
2174     NEW_AUX_ENT (AT_NULL, 0);
2175 #undef NEW_AUX_ENT
2176 
2177     /* Check that our initial calculation of the auxv length matches how much
2178      * we actually put into it.
2179      */
2180     assert(info->auxv_len == u_auxv - info->saved_auxv);
2181 
2182     put_user_ual(argc, u_argc);
2183 
2184     p = info->arg_strings;
2185     for (i = 0; i < argc; ++i) {
2186         put_user_ual(p, u_argv);
2187         u_argv += n;
2188         p += target_strlen(p) + 1;
2189     }
2190     put_user_ual(0, u_argv);
2191 
2192     p = info->env_strings;
2193     for (i = 0; i < envc; ++i) {
2194         put_user_ual(p, u_envp);
2195         u_envp += n;
2196         p += target_strlen(p) + 1;
2197     }
2198     put_user_ual(0, u_envp);
2199 
2200     return sp;
2201 }
2202 
2203 #if defined(HI_COMMPAGE)
2204 #define LO_COMMPAGE 0
2205 #elif defined(LO_COMMPAGE)
2206 #define HI_COMMPAGE 0
2207 #else
2208 #define HI_COMMPAGE 0
2209 #define LO_COMMPAGE 0
2210 #define init_guest_commpage() true
2211 #endif
2212 
2213 static void pgb_fail_in_use(const char *image_name)
2214 {
2215     error_report("%s: requires virtual address space that is in use "
2216                  "(omit the -B option or choose a different value)",
2217                  image_name);
2218     exit(EXIT_FAILURE);
2219 }
2220 
2221 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2222                                 abi_ulong guest_hiaddr, long align)
2223 {
2224     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2225     void *addr, *test;
2226 
2227     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2228         fprintf(stderr, "Requested guest base %p does not satisfy "
2229                 "host minimum alignment (0x%lx)\n",
2230                 (void *)guest_base, align);
2231         exit(EXIT_FAILURE);
2232     }
2233 
2234     /* Sanity check the guest binary. */
2235     if (reserved_va) {
2236         if (guest_hiaddr > reserved_va) {
2237             error_report("%s: requires more than reserved virtual "
2238                          "address space (0x%" PRIx64 " > 0x%lx)",
2239                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2240             exit(EXIT_FAILURE);
2241         }
2242     } else {
2243 #if HOST_LONG_BITS < TARGET_ABI_BITS
2244         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2245             error_report("%s: requires more virtual address space "
2246                          "than the host can provide (0x%" PRIx64 ")",
2247                          image_name, (uint64_t)guest_hiaddr - guest_base);
2248             exit(EXIT_FAILURE);
2249         }
2250 #endif
2251     }
2252 
2253     /*
2254      * Expand the allocation to the entire reserved_va.
2255      * Exclude the mmap_min_addr hole.
2256      */
2257     if (reserved_va) {
2258         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2259                         : mmap_min_addr - guest_base);
2260         guest_hiaddr = reserved_va;
2261     }
2262 
2263     /* Reserve the address space for the binary, or reserved_va. */
2264     test = g2h_untagged(guest_loaddr);
2265     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2266     if (test != addr) {
2267         pgb_fail_in_use(image_name);
2268     }
2269     qemu_log_mask(CPU_LOG_PAGE,
2270                   "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n",
2271                   __func__, addr, guest_hiaddr - guest_loaddr);
2272 }
2273 
2274 /**
2275  * pgd_find_hole_fallback: potential mmap address
2276  * @guest_size: size of available space
2277  * @brk: location of break
2278  * @align: memory alignment
2279  *
2280  * This is a fallback method for finding a hole in the host address
2281  * space if we don't have the benefit of being able to access
2282  * /proc/self/map. It can potentially take a very long time as we can
2283  * only dumbly iterate up the host address space seeing if the
2284  * allocation would work.
2285  */
2286 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2287                                         long align, uintptr_t offset)
2288 {
2289     uintptr_t base;
2290 
2291     /* Start (aligned) at the bottom and work our way up */
2292     base = ROUND_UP(mmap_min_addr, align);
2293 
2294     while (true) {
2295         uintptr_t align_start, end;
2296         align_start = ROUND_UP(base, align);
2297         end = align_start + guest_size + offset;
2298 
2299         /* if brk is anywhere in the range give ourselves some room to grow. */
2300         if (align_start <= brk && brk < end) {
2301             base = brk + (16 * MiB);
2302             continue;
2303         } else if (align_start + guest_size < align_start) {
2304             /* we have run out of space */
2305             return -1;
2306         } else {
2307             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2308                 MAP_FIXED_NOREPLACE;
2309             void * mmap_start = mmap((void *) align_start, guest_size,
2310                                      PROT_NONE, flags, -1, 0);
2311             if (mmap_start != MAP_FAILED) {
2312                 munmap(mmap_start, guest_size);
2313                 if (mmap_start == (void *) align_start) {
2314                     qemu_log_mask(CPU_LOG_PAGE,
2315                                   "%s: base @ %p for %" PRIdPTR" bytes\n",
2316                                   __func__, mmap_start + offset, guest_size);
2317                     return (uintptr_t) mmap_start + offset;
2318                 }
2319             }
2320             base += qemu_host_page_size;
2321         }
2322     }
2323 }
2324 
2325 /* Return value for guest_base, or -1 if no hole found. */
2326 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2327                                long align, uintptr_t offset)
2328 {
2329     GSList *maps, *iter;
2330     uintptr_t this_start, this_end, next_start, brk;
2331     intptr_t ret = -1;
2332 
2333     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2334 
2335     maps = read_self_maps();
2336 
2337     /* Read brk after we've read the maps, which will malloc. */
2338     brk = (uintptr_t)sbrk(0);
2339 
2340     if (!maps) {
2341         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2342     }
2343 
2344     /* The first hole is before the first map entry. */
2345     this_start = mmap_min_addr;
2346 
2347     for (iter = maps; iter;
2348          this_start = next_start, iter = g_slist_next(iter)) {
2349         uintptr_t align_start, hole_size;
2350 
2351         this_end = ((MapInfo *)iter->data)->start;
2352         next_start = ((MapInfo *)iter->data)->end;
2353         align_start = ROUND_UP(this_start + offset, align);
2354 
2355         /* Skip holes that are too small. */
2356         if (align_start >= this_end) {
2357             continue;
2358         }
2359         hole_size = this_end - align_start;
2360         if (hole_size < guest_size) {
2361             continue;
2362         }
2363 
2364         /* If this hole contains brk, give ourselves some room to grow. */
2365         if (this_start <= brk && brk < this_end) {
2366             hole_size -= guest_size;
2367             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2368                 align_start += 1 * GiB;
2369             } else if (hole_size >= 16 * MiB) {
2370                 align_start += 16 * MiB;
2371             } else {
2372                 align_start = (this_end - guest_size) & -align;
2373                 if (align_start < this_start) {
2374                     continue;
2375                 }
2376             }
2377         }
2378 
2379         /* Record the lowest successful match. */
2380         if (ret < 0) {
2381             ret = align_start;
2382         }
2383         /* If this hole contains the identity map, select it. */
2384         if (align_start <= guest_loaddr &&
2385             guest_loaddr + guest_size <= this_end) {
2386             ret = 0;
2387         }
2388         /* If this hole ends above the identity map, stop looking. */
2389         if (this_end >= guest_loaddr) {
2390             break;
2391         }
2392     }
2393     free_self_maps(maps);
2394 
2395     if (ret != -1) {
2396         qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2397                       " for %" PRIuPTR " bytes\n",
2398                       __func__, ret, guest_size);
2399     }
2400 
2401     return ret;
2402 }
2403 
2404 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2405                        abi_ulong orig_hiaddr, long align)
2406 {
2407     uintptr_t loaddr = orig_loaddr;
2408     uintptr_t hiaddr = orig_hiaddr;
2409     uintptr_t offset = 0;
2410     uintptr_t addr;
2411 
2412     if (hiaddr != orig_hiaddr) {
2413         error_report("%s: requires virtual address space that the "
2414                      "host cannot provide (0x%" PRIx64 ")",
2415                      image_name, (uint64_t)orig_hiaddr);
2416         exit(EXIT_FAILURE);
2417     }
2418 
2419     loaddr &= -align;
2420     if (HI_COMMPAGE) {
2421         /*
2422          * Extend the allocation to include the commpage.
2423          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2424          * need to ensure there is space bellow the guest_base so we
2425          * can map the commpage in the place needed when the address
2426          * arithmetic wraps around.
2427          */
2428         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2429             hiaddr = (uintptr_t) 4 << 30;
2430         } else {
2431             offset = -(HI_COMMPAGE & -align);
2432         }
2433     } else if (LO_COMMPAGE != 0) {
2434         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2435     }
2436 
2437     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2438     if (addr == -1) {
2439         /*
2440          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2441          * that can satisfy both.  But as the normal arm32 link base address
2442          * is ~32k, and we extend down to include the commpage, making the
2443          * overhead only ~96k, this is unlikely.
2444          */
2445         error_report("%s: Unable to allocate %#zx bytes of "
2446                      "virtual address space", image_name,
2447                      (size_t)(hiaddr - loaddr));
2448         exit(EXIT_FAILURE);
2449     }
2450 
2451     guest_base = addr;
2452 
2453     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2454                   __func__, addr, hiaddr - loaddr);
2455 }
2456 
2457 static void pgb_dynamic(const char *image_name, long align)
2458 {
2459     /*
2460      * The executable is dynamic and does not require a fixed address.
2461      * All we need is a commpage that satisfies align.
2462      * If we do not need a commpage, leave guest_base == 0.
2463      */
2464     if (HI_COMMPAGE) {
2465         uintptr_t addr, commpage;
2466 
2467         /* 64-bit hosts should have used reserved_va. */
2468         assert(sizeof(uintptr_t) == 4);
2469 
2470         /*
2471          * By putting the commpage at the first hole, that puts guest_base
2472          * just above that, and maximises the positive guest addresses.
2473          */
2474         commpage = HI_COMMPAGE & -align;
2475         addr = pgb_find_hole(commpage, -commpage, align, 0);
2476         assert(addr != -1);
2477         guest_base = addr;
2478     }
2479 }
2480 
2481 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2482                             abi_ulong guest_hiaddr, long align)
2483 {
2484     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2485     void *addr, *test;
2486 
2487     if (guest_hiaddr > reserved_va) {
2488         error_report("%s: requires more than reserved virtual "
2489                      "address space (0x%" PRIx64 " > 0x%lx)",
2490                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2491         exit(EXIT_FAILURE);
2492     }
2493 
2494     /* Widen the "image" to the entire reserved address space. */
2495     pgb_static(image_name, 0, reserved_va, align);
2496 
2497     /* osdep.h defines this as 0 if it's missing */
2498     flags |= MAP_FIXED_NOREPLACE;
2499 
2500     /* Reserve the memory on the host. */
2501     assert(guest_base != 0);
2502     test = g2h_untagged(0);
2503     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2504     if (addr == MAP_FAILED || addr != test) {
2505         error_report("Unable to reserve 0x%lx bytes of virtual address "
2506                      "space at %p (%s) for use as guest address space (check your "
2507                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2508                      "using -R option)", reserved_va, test, strerror(errno));
2509         exit(EXIT_FAILURE);
2510     }
2511 
2512     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2513                   __func__, addr, reserved_va);
2514 }
2515 
2516 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2517                       abi_ulong guest_hiaddr)
2518 {
2519     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2520     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2521 
2522     if (have_guest_base) {
2523         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2524     } else if (reserved_va) {
2525         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2526     } else if (guest_loaddr) {
2527         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2528     } else {
2529         pgb_dynamic(image_name, align);
2530     }
2531 
2532     /* Reserve and initialize the commpage. */
2533     if (!init_guest_commpage()) {
2534         /*
2535          * With have_guest_base, the user has selected the address and
2536          * we are trying to work with that.  Otherwise, we have selected
2537          * free space and init_guest_commpage must succeeded.
2538          */
2539         assert(have_guest_base);
2540         pgb_fail_in_use(image_name);
2541     }
2542 
2543     assert(QEMU_IS_ALIGNED(guest_base, align));
2544     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2545                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2546 }
2547 
2548 enum {
2549     /* The string "GNU\0" as a magic number. */
2550     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2551     NOTE_DATA_SZ = 1 * KiB,
2552     NOTE_NAME_SZ = 4,
2553     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2554 };
2555 
2556 /*
2557  * Process a single gnu_property entry.
2558  * Return false for error.
2559  */
2560 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2561                                struct image_info *info, bool have_prev_type,
2562                                uint32_t *prev_type, Error **errp)
2563 {
2564     uint32_t pr_type, pr_datasz, step;
2565 
2566     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2567         goto error_data;
2568     }
2569     datasz -= *off;
2570     data += *off / sizeof(uint32_t);
2571 
2572     if (datasz < 2 * sizeof(uint32_t)) {
2573         goto error_data;
2574     }
2575     pr_type = data[0];
2576     pr_datasz = data[1];
2577     data += 2;
2578     datasz -= 2 * sizeof(uint32_t);
2579     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2580     if (step > datasz) {
2581         goto error_data;
2582     }
2583 
2584     /* Properties are supposed to be unique and sorted on pr_type. */
2585     if (have_prev_type && pr_type <= *prev_type) {
2586         if (pr_type == *prev_type) {
2587             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2588         } else {
2589             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2590         }
2591         return false;
2592     }
2593     *prev_type = pr_type;
2594 
2595     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2596         return false;
2597     }
2598 
2599     *off += 2 * sizeof(uint32_t) + step;
2600     return true;
2601 
2602  error_data:
2603     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2604     return false;
2605 }
2606 
2607 /* Process NT_GNU_PROPERTY_TYPE_0. */
2608 static bool parse_elf_properties(int image_fd,
2609                                  struct image_info *info,
2610                                  const struct elf_phdr *phdr,
2611                                  char bprm_buf[BPRM_BUF_SIZE],
2612                                  Error **errp)
2613 {
2614     union {
2615         struct elf_note nhdr;
2616         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2617     } note;
2618 
2619     int n, off, datasz;
2620     bool have_prev_type;
2621     uint32_t prev_type;
2622 
2623     /* Unless the arch requires properties, ignore them. */
2624     if (!ARCH_USE_GNU_PROPERTY) {
2625         return true;
2626     }
2627 
2628     /* If the properties are crazy large, that's too bad. */
2629     n = phdr->p_filesz;
2630     if (n > sizeof(note)) {
2631         error_setg(errp, "PT_GNU_PROPERTY too large");
2632         return false;
2633     }
2634     if (n < sizeof(note.nhdr)) {
2635         error_setg(errp, "PT_GNU_PROPERTY too small");
2636         return false;
2637     }
2638 
2639     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2640         memcpy(&note, bprm_buf + phdr->p_offset, n);
2641     } else {
2642         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2643         if (len != n) {
2644             error_setg_errno(errp, errno, "Error reading file header");
2645             return false;
2646         }
2647     }
2648 
2649     /*
2650      * The contents of a valid PT_GNU_PROPERTY is a sequence
2651      * of uint32_t -- swap them all now.
2652      */
2653 #ifdef BSWAP_NEEDED
2654     for (int i = 0; i < n / 4; i++) {
2655         bswap32s(note.data + i);
2656     }
2657 #endif
2658 
2659     /*
2660      * Note that nhdr is 3 words, and that the "name" described by namesz
2661      * immediately follows nhdr and is thus at the 4th word.  Further, all
2662      * of the inputs to the kernel's round_up are multiples of 4.
2663      */
2664     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2665         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2666         note.data[3] != GNU0_MAGIC) {
2667         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2668         return false;
2669     }
2670     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2671 
2672     datasz = note.nhdr.n_descsz + off;
2673     if (datasz > n) {
2674         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2675         return false;
2676     }
2677 
2678     have_prev_type = false;
2679     prev_type = 0;
2680     while (1) {
2681         if (off == datasz) {
2682             return true;  /* end, exit ok */
2683         }
2684         if (!parse_elf_property(note.data, &off, datasz, info,
2685                                 have_prev_type, &prev_type, errp)) {
2686             return false;
2687         }
2688         have_prev_type = true;
2689     }
2690 }
2691 
2692 /* Load an ELF image into the address space.
2693 
2694    IMAGE_NAME is the filename of the image, to use in error messages.
2695    IMAGE_FD is the open file descriptor for the image.
2696 
2697    BPRM_BUF is a copy of the beginning of the file; this of course
2698    contains the elf file header at offset 0.  It is assumed that this
2699    buffer is sufficiently aligned to present no problems to the host
2700    in accessing data at aligned offsets within the buffer.
2701 
2702    On return: INFO values will be filled in, as necessary or available.  */
2703 
2704 static void load_elf_image(const char *image_name, int image_fd,
2705                            struct image_info *info, char **pinterp_name,
2706                            char bprm_buf[BPRM_BUF_SIZE])
2707 {
2708     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2709     struct elf_phdr *phdr;
2710     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2711     int i, retval, prot_exec;
2712     Error *err = NULL;
2713 
2714     /* First of all, some simple consistency checks */
2715     if (!elf_check_ident(ehdr)) {
2716         error_setg(&err, "Invalid ELF image for this architecture");
2717         goto exit_errmsg;
2718     }
2719     bswap_ehdr(ehdr);
2720     if (!elf_check_ehdr(ehdr)) {
2721         error_setg(&err, "Invalid ELF image for this architecture");
2722         goto exit_errmsg;
2723     }
2724 
2725     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2726     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2727         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2728     } else {
2729         phdr = (struct elf_phdr *) alloca(i);
2730         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2731         if (retval != i) {
2732             goto exit_read;
2733         }
2734     }
2735     bswap_phdr(phdr, ehdr->e_phnum);
2736 
2737     info->nsegs = 0;
2738     info->pt_dynamic_addr = 0;
2739 
2740     mmap_lock();
2741 
2742     /*
2743      * Find the maximum size of the image and allocate an appropriate
2744      * amount of memory to handle that.  Locate the interpreter, if any.
2745      */
2746     loaddr = -1, hiaddr = 0;
2747     info->alignment = 0;
2748     for (i = 0; i < ehdr->e_phnum; ++i) {
2749         struct elf_phdr *eppnt = phdr + i;
2750         if (eppnt->p_type == PT_LOAD) {
2751             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2752             if (a < loaddr) {
2753                 loaddr = a;
2754             }
2755             a = eppnt->p_vaddr + eppnt->p_memsz;
2756             if (a > hiaddr) {
2757                 hiaddr = a;
2758             }
2759             ++info->nsegs;
2760             info->alignment |= eppnt->p_align;
2761         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2762             g_autofree char *interp_name = NULL;
2763 
2764             if (*pinterp_name) {
2765                 error_setg(&err, "Multiple PT_INTERP entries");
2766                 goto exit_errmsg;
2767             }
2768 
2769             interp_name = g_malloc(eppnt->p_filesz);
2770 
2771             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2772                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2773                        eppnt->p_filesz);
2774             } else {
2775                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2776                                eppnt->p_offset);
2777                 if (retval != eppnt->p_filesz) {
2778                     goto exit_read;
2779                 }
2780             }
2781             if (interp_name[eppnt->p_filesz - 1] != 0) {
2782                 error_setg(&err, "Invalid PT_INTERP entry");
2783                 goto exit_errmsg;
2784             }
2785             *pinterp_name = g_steal_pointer(&interp_name);
2786         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2787             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2788                 goto exit_errmsg;
2789             }
2790         }
2791     }
2792 
2793     if (pinterp_name != NULL) {
2794         /*
2795          * This is the main executable.
2796          *
2797          * Reserve extra space for brk.
2798          * We hold on to this space while placing the interpreter
2799          * and the stack, lest they be placed immediately after
2800          * the data segment and block allocation from the brk.
2801          *
2802          * 16MB is chosen as "large enough" without being so large as
2803          * to allow the result to not fit with a 32-bit guest on a
2804          * 32-bit host. However some 64 bit guests (e.g. s390x)
2805          * attempt to place their heap further ahead and currently
2806          * nothing stops them smashing into QEMUs address space.
2807          */
2808 #if TARGET_LONG_BITS == 64
2809         info->reserve_brk = 32 * MiB;
2810 #else
2811         info->reserve_brk = 16 * MiB;
2812 #endif
2813         hiaddr += info->reserve_brk;
2814 
2815         if (ehdr->e_type == ET_EXEC) {
2816             /*
2817              * Make sure that the low address does not conflict with
2818              * MMAP_MIN_ADDR or the QEMU application itself.
2819              */
2820             probe_guest_base(image_name, loaddr, hiaddr);
2821         } else {
2822             /*
2823              * The binary is dynamic, but we still need to
2824              * select guest_base.  In this case we pass a size.
2825              */
2826             probe_guest_base(image_name, 0, hiaddr - loaddr);
2827         }
2828     }
2829 
2830     /*
2831      * Reserve address space for all of this.
2832      *
2833      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2834      * exactly the address range that is required.
2835      *
2836      * Otherwise this is ET_DYN, and we are searching for a location
2837      * that can hold the memory space required.  If the image is
2838      * pre-linked, LOADDR will be non-zero, and the kernel should
2839      * honor that address if it happens to be free.
2840      *
2841      * In both cases, we will overwrite pages in this range with mappings
2842      * from the executable.
2843      */
2844     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2845                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2846                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2847                             -1, 0);
2848     if (load_addr == -1) {
2849         goto exit_mmap;
2850     }
2851     load_bias = load_addr - loaddr;
2852 
2853     if (elf_is_fdpic(ehdr)) {
2854         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2855             g_malloc(sizeof(*loadsegs) * info->nsegs);
2856 
2857         for (i = 0; i < ehdr->e_phnum; ++i) {
2858             switch (phdr[i].p_type) {
2859             case PT_DYNAMIC:
2860                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2861                 break;
2862             case PT_LOAD:
2863                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2864                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2865                 loadsegs->p_memsz = phdr[i].p_memsz;
2866                 ++loadsegs;
2867                 break;
2868             }
2869         }
2870     }
2871 
2872     info->load_bias = load_bias;
2873     info->code_offset = load_bias;
2874     info->data_offset = load_bias;
2875     info->load_addr = load_addr;
2876     info->entry = ehdr->e_entry + load_bias;
2877     info->start_code = -1;
2878     info->end_code = 0;
2879     info->start_data = -1;
2880     info->end_data = 0;
2881     info->brk = 0;
2882     info->elf_flags = ehdr->e_flags;
2883 
2884     prot_exec = PROT_EXEC;
2885 #ifdef TARGET_AARCH64
2886     /*
2887      * If the BTI feature is present, this indicates that the executable
2888      * pages of the startup binary should be mapped with PROT_BTI, so that
2889      * branch targets are enforced.
2890      *
2891      * The startup binary is either the interpreter or the static executable.
2892      * The interpreter is responsible for all pages of a dynamic executable.
2893      *
2894      * Elf notes are backward compatible to older cpus.
2895      * Do not enable BTI unless it is supported.
2896      */
2897     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2898         && (pinterp_name == NULL || *pinterp_name == 0)
2899         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2900         prot_exec |= TARGET_PROT_BTI;
2901     }
2902 #endif
2903 
2904     for (i = 0; i < ehdr->e_phnum; i++) {
2905         struct elf_phdr *eppnt = phdr + i;
2906         if (eppnt->p_type == PT_LOAD) {
2907             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2908             int elf_prot = 0;
2909 
2910             if (eppnt->p_flags & PF_R) {
2911                 elf_prot |= PROT_READ;
2912             }
2913             if (eppnt->p_flags & PF_W) {
2914                 elf_prot |= PROT_WRITE;
2915             }
2916             if (eppnt->p_flags & PF_X) {
2917                 elf_prot |= prot_exec;
2918             }
2919 
2920             vaddr = load_bias + eppnt->p_vaddr;
2921             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2922             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2923 
2924             vaddr_ef = vaddr + eppnt->p_filesz;
2925             vaddr_em = vaddr + eppnt->p_memsz;
2926 
2927             /*
2928              * Some segments may be completely empty, with a non-zero p_memsz
2929              * but no backing file segment.
2930              */
2931             if (eppnt->p_filesz != 0) {
2932                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2933                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2934                                     MAP_PRIVATE | MAP_FIXED,
2935                                     image_fd, eppnt->p_offset - vaddr_po);
2936 
2937                 if (error == -1) {
2938                     goto exit_mmap;
2939                 }
2940 
2941                 /*
2942                  * If the load segment requests extra zeros (e.g. bss), map it.
2943                  */
2944                 if (eppnt->p_filesz < eppnt->p_memsz) {
2945                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2946                 }
2947             } else if (eppnt->p_memsz != 0) {
2948                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2949                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2950                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2951                                     -1, 0);
2952 
2953                 if (error == -1) {
2954                     goto exit_mmap;
2955                 }
2956             }
2957 
2958             /* Find the full program boundaries.  */
2959             if (elf_prot & PROT_EXEC) {
2960                 if (vaddr < info->start_code) {
2961                     info->start_code = vaddr;
2962                 }
2963                 if (vaddr_ef > info->end_code) {
2964                     info->end_code = vaddr_ef;
2965                 }
2966             }
2967             if (elf_prot & PROT_WRITE) {
2968                 if (vaddr < info->start_data) {
2969                     info->start_data = vaddr;
2970                 }
2971                 if (vaddr_ef > info->end_data) {
2972                     info->end_data = vaddr_ef;
2973                 }
2974             }
2975             if (vaddr_em > info->brk) {
2976                 info->brk = vaddr_em;
2977             }
2978 #ifdef TARGET_MIPS
2979         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2980             Mips_elf_abiflags_v0 abiflags;
2981             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2982                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2983                 goto exit_errmsg;
2984             }
2985             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2986                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2987                        sizeof(Mips_elf_abiflags_v0));
2988             } else {
2989                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2990                                eppnt->p_offset);
2991                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2992                     goto exit_read;
2993                 }
2994             }
2995             bswap_mips_abiflags(&abiflags);
2996             info->fp_abi = abiflags.fp_abi;
2997 #endif
2998         }
2999     }
3000 
3001     if (info->end_data == 0) {
3002         info->start_data = info->end_code;
3003         info->end_data = info->end_code;
3004     }
3005 
3006     if (qemu_log_enabled()) {
3007         load_symbols(ehdr, image_fd, load_bias);
3008     }
3009 
3010     mmap_unlock();
3011 
3012     close(image_fd);
3013     return;
3014 
3015  exit_read:
3016     if (retval >= 0) {
3017         error_setg(&err, "Incomplete read of file header");
3018     } else {
3019         error_setg_errno(&err, errno, "Error reading file header");
3020     }
3021     goto exit_errmsg;
3022  exit_mmap:
3023     error_setg_errno(&err, errno, "Error mapping file");
3024     goto exit_errmsg;
3025  exit_errmsg:
3026     error_reportf_err(err, "%s: ", image_name);
3027     exit(-1);
3028 }
3029 
3030 static void load_elf_interp(const char *filename, struct image_info *info,
3031                             char bprm_buf[BPRM_BUF_SIZE])
3032 {
3033     int fd, retval;
3034     Error *err = NULL;
3035 
3036     fd = open(path(filename), O_RDONLY);
3037     if (fd < 0) {
3038         error_setg_file_open(&err, errno, filename);
3039         error_report_err(err);
3040         exit(-1);
3041     }
3042 
3043     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3044     if (retval < 0) {
3045         error_setg_errno(&err, errno, "Error reading file header");
3046         error_reportf_err(err, "%s: ", filename);
3047         exit(-1);
3048     }
3049 
3050     if (retval < BPRM_BUF_SIZE) {
3051         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3052     }
3053 
3054     load_elf_image(filename, fd, info, NULL, bprm_buf);
3055 }
3056 
3057 static int symfind(const void *s0, const void *s1)
3058 {
3059     target_ulong addr = *(target_ulong *)s0;
3060     struct elf_sym *sym = (struct elf_sym *)s1;
3061     int result = 0;
3062     if (addr < sym->st_value) {
3063         result = -1;
3064     } else if (addr >= sym->st_value + sym->st_size) {
3065         result = 1;
3066     }
3067     return result;
3068 }
3069 
3070 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3071 {
3072 #if ELF_CLASS == ELFCLASS32
3073     struct elf_sym *syms = s->disas_symtab.elf32;
3074 #else
3075     struct elf_sym *syms = s->disas_symtab.elf64;
3076 #endif
3077 
3078     // binary search
3079     struct elf_sym *sym;
3080 
3081     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3082     if (sym != NULL) {
3083         return s->disas_strtab + sym->st_name;
3084     }
3085 
3086     return "";
3087 }
3088 
3089 /* FIXME: This should use elf_ops.h  */
3090 static int symcmp(const void *s0, const void *s1)
3091 {
3092     struct elf_sym *sym0 = (struct elf_sym *)s0;
3093     struct elf_sym *sym1 = (struct elf_sym *)s1;
3094     return (sym0->st_value < sym1->st_value)
3095         ? -1
3096         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3097 }
3098 
3099 /* Best attempt to load symbols from this ELF object. */
3100 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3101 {
3102     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3103     uint64_t segsz;
3104     struct elf_shdr *shdr;
3105     char *strings = NULL;
3106     struct syminfo *s = NULL;
3107     struct elf_sym *new_syms, *syms = NULL;
3108 
3109     shnum = hdr->e_shnum;
3110     i = shnum * sizeof(struct elf_shdr);
3111     shdr = (struct elf_shdr *)alloca(i);
3112     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3113         return;
3114     }
3115 
3116     bswap_shdr(shdr, shnum);
3117     for (i = 0; i < shnum; ++i) {
3118         if (shdr[i].sh_type == SHT_SYMTAB) {
3119             sym_idx = i;
3120             str_idx = shdr[i].sh_link;
3121             goto found;
3122         }
3123     }
3124 
3125     /* There will be no symbol table if the file was stripped.  */
3126     return;
3127 
3128  found:
3129     /* Now know where the strtab and symtab are.  Snarf them.  */
3130     s = g_try_new(struct syminfo, 1);
3131     if (!s) {
3132         goto give_up;
3133     }
3134 
3135     segsz = shdr[str_idx].sh_size;
3136     s->disas_strtab = strings = g_try_malloc(segsz);
3137     if (!strings ||
3138         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3139         goto give_up;
3140     }
3141 
3142     segsz = shdr[sym_idx].sh_size;
3143     syms = g_try_malloc(segsz);
3144     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3145         goto give_up;
3146     }
3147 
3148     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3149         /* Implausibly large symbol table: give up rather than ploughing
3150          * on with the number of symbols calculation overflowing
3151          */
3152         goto give_up;
3153     }
3154     nsyms = segsz / sizeof(struct elf_sym);
3155     for (i = 0; i < nsyms; ) {
3156         bswap_sym(syms + i);
3157         /* Throw away entries which we do not need.  */
3158         if (syms[i].st_shndx == SHN_UNDEF
3159             || syms[i].st_shndx >= SHN_LORESERVE
3160             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3161             if (i < --nsyms) {
3162                 syms[i] = syms[nsyms];
3163             }
3164         } else {
3165 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3166             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3167             syms[i].st_value &= ~(target_ulong)1;
3168 #endif
3169             syms[i].st_value += load_bias;
3170             i++;
3171         }
3172     }
3173 
3174     /* No "useful" symbol.  */
3175     if (nsyms == 0) {
3176         goto give_up;
3177     }
3178 
3179     /* Attempt to free the storage associated with the local symbols
3180        that we threw away.  Whether or not this has any effect on the
3181        memory allocation depends on the malloc implementation and how
3182        many symbols we managed to discard.  */
3183     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3184     if (new_syms == NULL) {
3185         goto give_up;
3186     }
3187     syms = new_syms;
3188 
3189     qsort(syms, nsyms, sizeof(*syms), symcmp);
3190 
3191     s->disas_num_syms = nsyms;
3192 #if ELF_CLASS == ELFCLASS32
3193     s->disas_symtab.elf32 = syms;
3194 #else
3195     s->disas_symtab.elf64 = syms;
3196 #endif
3197     s->lookup_symbol = lookup_symbolxx;
3198     s->next = syminfos;
3199     syminfos = s;
3200 
3201     return;
3202 
3203 give_up:
3204     g_free(s);
3205     g_free(strings);
3206     g_free(syms);
3207 }
3208 
3209 uint32_t get_elf_eflags(int fd)
3210 {
3211     struct elfhdr ehdr;
3212     off_t offset;
3213     int ret;
3214 
3215     /* Read ELF header */
3216     offset = lseek(fd, 0, SEEK_SET);
3217     if (offset == (off_t) -1) {
3218         return 0;
3219     }
3220     ret = read(fd, &ehdr, sizeof(ehdr));
3221     if (ret < sizeof(ehdr)) {
3222         return 0;
3223     }
3224     offset = lseek(fd, offset, SEEK_SET);
3225     if (offset == (off_t) -1) {
3226         return 0;
3227     }
3228 
3229     /* Check ELF signature */
3230     if (!elf_check_ident(&ehdr)) {
3231         return 0;
3232     }
3233 
3234     /* check header */
3235     bswap_ehdr(&ehdr);
3236     if (!elf_check_ehdr(&ehdr)) {
3237         return 0;
3238     }
3239 
3240     /* return architecture id */
3241     return ehdr.e_flags;
3242 }
3243 
3244 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3245 {
3246     struct image_info interp_info;
3247     struct elfhdr elf_ex;
3248     char *elf_interpreter = NULL;
3249     char *scratch;
3250 
3251     memset(&interp_info, 0, sizeof(interp_info));
3252 #ifdef TARGET_MIPS
3253     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3254 #endif
3255 
3256     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3257 
3258     load_elf_image(bprm->filename, bprm->fd, info,
3259                    &elf_interpreter, bprm->buf);
3260 
3261     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3262        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3263        when we load the interpreter.  */
3264     elf_ex = *(struct elfhdr *)bprm->buf;
3265 
3266     /* Do this so that we can load the interpreter, if need be.  We will
3267        change some of these later */
3268     bprm->p = setup_arg_pages(bprm, info);
3269 
3270     scratch = g_new0(char, TARGET_PAGE_SIZE);
3271     if (STACK_GROWS_DOWN) {
3272         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3273                                    bprm->p, info->stack_limit);
3274         info->file_string = bprm->p;
3275         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3276                                    bprm->p, info->stack_limit);
3277         info->env_strings = bprm->p;
3278         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3279                                    bprm->p, info->stack_limit);
3280         info->arg_strings = bprm->p;
3281     } else {
3282         info->arg_strings = bprm->p;
3283         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3284                                    bprm->p, info->stack_limit);
3285         info->env_strings = bprm->p;
3286         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3287                                    bprm->p, info->stack_limit);
3288         info->file_string = bprm->p;
3289         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3290                                    bprm->p, info->stack_limit);
3291     }
3292 
3293     g_free(scratch);
3294 
3295     if (!bprm->p) {
3296         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3297         exit(-1);
3298     }
3299 
3300     if (elf_interpreter) {
3301         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3302 
3303         /* If the program interpreter is one of these two, then assume
3304            an iBCS2 image.  Otherwise assume a native linux image.  */
3305 
3306         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3307             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3308             info->personality = PER_SVR4;
3309 
3310             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3311                and some applications "depend" upon this behavior.  Since
3312                we do not have the power to recompile these, we emulate
3313                the SVr4 behavior.  Sigh.  */
3314             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3315                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3316         }
3317 #ifdef TARGET_MIPS
3318         info->interp_fp_abi = interp_info.fp_abi;
3319 #endif
3320     }
3321 
3322     /*
3323      * TODO: load a vdso, which would also contain the signal trampolines.
3324      * Otherwise, allocate a private page to hold them.
3325      */
3326     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3327         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3328                                           PROT_READ | PROT_WRITE,
3329                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3330         if (tramp_page == -1) {
3331             return -errno;
3332         }
3333 
3334         setup_sigtramp(tramp_page);
3335         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3336     }
3337 
3338     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3339                                 info, (elf_interpreter ? &interp_info : NULL));
3340     info->start_stack = bprm->p;
3341 
3342     /* If we have an interpreter, set that as the program's entry point.
3343        Copy the load_bias as well, to help PPC64 interpret the entry
3344        point as a function descriptor.  Do this after creating elf tables
3345        so that we copy the original program entry point into the AUXV.  */
3346     if (elf_interpreter) {
3347         info->load_bias = interp_info.load_bias;
3348         info->entry = interp_info.entry;
3349         g_free(elf_interpreter);
3350     }
3351 
3352 #ifdef USE_ELF_CORE_DUMP
3353     bprm->core_dump = &elf_core_dump;
3354 #endif
3355 
3356     /*
3357      * If we reserved extra space for brk, release it now.
3358      * The implementation of do_brk in syscalls.c expects to be able
3359      * to mmap pages in this space.
3360      */
3361     if (info->reserve_brk) {
3362         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3363         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3364         target_munmap(start_brk, end_brk - start_brk);
3365     }
3366 
3367     return 0;
3368 }
3369 
3370 #ifdef USE_ELF_CORE_DUMP
3371 /*
3372  * Definitions to generate Intel SVR4-like core files.
3373  * These mostly have the same names as the SVR4 types with "target_elf_"
3374  * tacked on the front to prevent clashes with linux definitions,
3375  * and the typedef forms have been avoided.  This is mostly like
3376  * the SVR4 structure, but more Linuxy, with things that Linux does
3377  * not support and which gdb doesn't really use excluded.
3378  *
3379  * Fields we don't dump (their contents is zero) in linux-user qemu
3380  * are marked with XXX.
3381  *
3382  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3383  *
3384  * Porting ELF coredump for target is (quite) simple process.  First you
3385  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3386  * the target resides):
3387  *
3388  * #define USE_ELF_CORE_DUMP
3389  *
3390  * Next you define type of register set used for dumping.  ELF specification
3391  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3392  *
3393  * typedef <target_regtype> target_elf_greg_t;
3394  * #define ELF_NREG <number of registers>
3395  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3396  *
3397  * Last step is to implement target specific function that copies registers
3398  * from given cpu into just specified register set.  Prototype is:
3399  *
3400  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3401  *                                const CPUArchState *env);
3402  *
3403  * Parameters:
3404  *     regs - copy register values into here (allocated and zeroed by caller)
3405  *     env - copy registers from here
3406  *
3407  * Example for ARM target is provided in this file.
3408  */
3409 
3410 /* An ELF note in memory */
3411 struct memelfnote {
3412     const char *name;
3413     size_t     namesz;
3414     size_t     namesz_rounded;
3415     int        type;
3416     size_t     datasz;
3417     size_t     datasz_rounded;
3418     void       *data;
3419     size_t     notesz;
3420 };
3421 
3422 struct target_elf_siginfo {
3423     abi_int    si_signo; /* signal number */
3424     abi_int    si_code;  /* extra code */
3425     abi_int    si_errno; /* errno */
3426 };
3427 
3428 struct target_elf_prstatus {
3429     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3430     abi_short          pr_cursig;    /* Current signal */
3431     abi_ulong          pr_sigpend;   /* XXX */
3432     abi_ulong          pr_sighold;   /* XXX */
3433     target_pid_t       pr_pid;
3434     target_pid_t       pr_ppid;
3435     target_pid_t       pr_pgrp;
3436     target_pid_t       pr_sid;
3437     struct target_timeval pr_utime;  /* XXX User time */
3438     struct target_timeval pr_stime;  /* XXX System time */
3439     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3440     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3441     target_elf_gregset_t      pr_reg;       /* GP registers */
3442     abi_int            pr_fpvalid;   /* XXX */
3443 };
3444 
3445 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3446 
3447 struct target_elf_prpsinfo {
3448     char         pr_state;       /* numeric process state */
3449     char         pr_sname;       /* char for pr_state */
3450     char         pr_zomb;        /* zombie */
3451     char         pr_nice;        /* nice val */
3452     abi_ulong    pr_flag;        /* flags */
3453     target_uid_t pr_uid;
3454     target_gid_t pr_gid;
3455     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3456     /* Lots missing */
3457     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3458     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3459 };
3460 
3461 /* Here is the structure in which status of each thread is captured. */
3462 struct elf_thread_status {
3463     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3464     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3465 #if 0
3466     elf_fpregset_t fpu;             /* NT_PRFPREG */
3467     struct task_struct *thread;
3468     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3469 #endif
3470     struct memelfnote notes[1];
3471     int num_notes;
3472 };
3473 
3474 struct elf_note_info {
3475     struct memelfnote   *notes;
3476     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3477     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3478 
3479     QTAILQ_HEAD(, elf_thread_status) thread_list;
3480 #if 0
3481     /*
3482      * Current version of ELF coredump doesn't support
3483      * dumping fp regs etc.
3484      */
3485     elf_fpregset_t *fpu;
3486     elf_fpxregset_t *xfpu;
3487     int thread_status_size;
3488 #endif
3489     int notes_size;
3490     int numnote;
3491 };
3492 
3493 struct vm_area_struct {
3494     target_ulong   vma_start;  /* start vaddr of memory region */
3495     target_ulong   vma_end;    /* end vaddr of memory region */
3496     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3497     QTAILQ_ENTRY(vm_area_struct) vma_link;
3498 };
3499 
3500 struct mm_struct {
3501     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3502     int mm_count;           /* number of mappings */
3503 };
3504 
3505 static struct mm_struct *vma_init(void);
3506 static void vma_delete(struct mm_struct *);
3507 static int vma_add_mapping(struct mm_struct *, target_ulong,
3508                            target_ulong, abi_ulong);
3509 static int vma_get_mapping_count(const struct mm_struct *);
3510 static struct vm_area_struct *vma_first(const struct mm_struct *);
3511 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3512 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3513 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3514                       unsigned long flags);
3515 
3516 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3517 static void fill_note(struct memelfnote *, const char *, int,
3518                       unsigned int, void *);
3519 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3520 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3521 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3522 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3523 static size_t note_size(const struct memelfnote *);
3524 static void free_note_info(struct elf_note_info *);
3525 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3526 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3527 
3528 static int dump_write(int, const void *, size_t);
3529 static int write_note(struct memelfnote *, int);
3530 static int write_note_info(struct elf_note_info *, int);
3531 
3532 #ifdef BSWAP_NEEDED
3533 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3534 {
3535     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3536     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3537     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3538     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3539     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3540     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3541     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3542     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3543     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3544     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3545     /* cpu times are not filled, so we skip them */
3546     /* regs should be in correct format already */
3547     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3548 }
3549 
3550 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3551 {
3552     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3553     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3554     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3555     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3556     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3557     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3558     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3559 }
3560 
3561 static void bswap_note(struct elf_note *en)
3562 {
3563     bswap32s(&en->n_namesz);
3564     bswap32s(&en->n_descsz);
3565     bswap32s(&en->n_type);
3566 }
3567 #else
3568 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3569 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3570 static inline void bswap_note(struct elf_note *en) { }
3571 #endif /* BSWAP_NEEDED */
3572 
3573 /*
3574  * Minimal support for linux memory regions.  These are needed
3575  * when we are finding out what memory exactly belongs to
3576  * emulated process.  No locks needed here, as long as
3577  * thread that received the signal is stopped.
3578  */
3579 
3580 static struct mm_struct *vma_init(void)
3581 {
3582     struct mm_struct *mm;
3583 
3584     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3585         return (NULL);
3586 
3587     mm->mm_count = 0;
3588     QTAILQ_INIT(&mm->mm_mmap);
3589 
3590     return (mm);
3591 }
3592 
3593 static void vma_delete(struct mm_struct *mm)
3594 {
3595     struct vm_area_struct *vma;
3596 
3597     while ((vma = vma_first(mm)) != NULL) {
3598         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3599         g_free(vma);
3600     }
3601     g_free(mm);
3602 }
3603 
3604 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3605                            target_ulong end, abi_ulong flags)
3606 {
3607     struct vm_area_struct *vma;
3608 
3609     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3610         return (-1);
3611 
3612     vma->vma_start = start;
3613     vma->vma_end = end;
3614     vma->vma_flags = flags;
3615 
3616     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3617     mm->mm_count++;
3618 
3619     return (0);
3620 }
3621 
3622 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3623 {
3624     return (QTAILQ_FIRST(&mm->mm_mmap));
3625 }
3626 
3627 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3628 {
3629     return (QTAILQ_NEXT(vma, vma_link));
3630 }
3631 
3632 static int vma_get_mapping_count(const struct mm_struct *mm)
3633 {
3634     return (mm->mm_count);
3635 }
3636 
3637 /*
3638  * Calculate file (dump) size of given memory region.
3639  */
3640 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3641 {
3642     /* if we cannot even read the first page, skip it */
3643     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3644         return (0);
3645 
3646     /*
3647      * Usually we don't dump executable pages as they contain
3648      * non-writable code that debugger can read directly from
3649      * target library etc.  However, thread stacks are marked
3650      * also executable so we read in first page of given region
3651      * and check whether it contains elf header.  If there is
3652      * no elf header, we dump it.
3653      */
3654     if (vma->vma_flags & PROT_EXEC) {
3655         char page[TARGET_PAGE_SIZE];
3656 
3657         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3658             return 0;
3659         }
3660         if ((page[EI_MAG0] == ELFMAG0) &&
3661             (page[EI_MAG1] == ELFMAG1) &&
3662             (page[EI_MAG2] == ELFMAG2) &&
3663             (page[EI_MAG3] == ELFMAG3)) {
3664             /*
3665              * Mappings are possibly from ELF binary.  Don't dump
3666              * them.
3667              */
3668             return (0);
3669         }
3670     }
3671 
3672     return (vma->vma_end - vma->vma_start);
3673 }
3674 
3675 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3676                       unsigned long flags)
3677 {
3678     struct mm_struct *mm = (struct mm_struct *)priv;
3679 
3680     vma_add_mapping(mm, start, end, flags);
3681     return (0);
3682 }
3683 
3684 static void fill_note(struct memelfnote *note, const char *name, int type,
3685                       unsigned int sz, void *data)
3686 {
3687     unsigned int namesz;
3688 
3689     namesz = strlen(name) + 1;
3690     note->name = name;
3691     note->namesz = namesz;
3692     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3693     note->type = type;
3694     note->datasz = sz;
3695     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3696 
3697     note->data = data;
3698 
3699     /*
3700      * We calculate rounded up note size here as specified by
3701      * ELF document.
3702      */
3703     note->notesz = sizeof (struct elf_note) +
3704         note->namesz_rounded + note->datasz_rounded;
3705 }
3706 
3707 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3708                             uint32_t flags)
3709 {
3710     (void) memset(elf, 0, sizeof(*elf));
3711 
3712     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3713     elf->e_ident[EI_CLASS] = ELF_CLASS;
3714     elf->e_ident[EI_DATA] = ELF_DATA;
3715     elf->e_ident[EI_VERSION] = EV_CURRENT;
3716     elf->e_ident[EI_OSABI] = ELF_OSABI;
3717 
3718     elf->e_type = ET_CORE;
3719     elf->e_machine = machine;
3720     elf->e_version = EV_CURRENT;
3721     elf->e_phoff = sizeof(struct elfhdr);
3722     elf->e_flags = flags;
3723     elf->e_ehsize = sizeof(struct elfhdr);
3724     elf->e_phentsize = sizeof(struct elf_phdr);
3725     elf->e_phnum = segs;
3726 
3727     bswap_ehdr(elf);
3728 }
3729 
3730 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3731 {
3732     phdr->p_type = PT_NOTE;
3733     phdr->p_offset = offset;
3734     phdr->p_vaddr = 0;
3735     phdr->p_paddr = 0;
3736     phdr->p_filesz = sz;
3737     phdr->p_memsz = 0;
3738     phdr->p_flags = 0;
3739     phdr->p_align = 0;
3740 
3741     bswap_phdr(phdr, 1);
3742 }
3743 
3744 static size_t note_size(const struct memelfnote *note)
3745 {
3746     return (note->notesz);
3747 }
3748 
3749 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3750                           const TaskState *ts, int signr)
3751 {
3752     (void) memset(prstatus, 0, sizeof (*prstatus));
3753     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3754     prstatus->pr_pid = ts->ts_tid;
3755     prstatus->pr_ppid = getppid();
3756     prstatus->pr_pgrp = getpgrp();
3757     prstatus->pr_sid = getsid(0);
3758 
3759     bswap_prstatus(prstatus);
3760 }
3761 
3762 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3763 {
3764     char *base_filename;
3765     unsigned int i, len;
3766 
3767     (void) memset(psinfo, 0, sizeof (*psinfo));
3768 
3769     len = ts->info->env_strings - ts->info->arg_strings;
3770     if (len >= ELF_PRARGSZ)
3771         len = ELF_PRARGSZ - 1;
3772     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3773         return -EFAULT;
3774     }
3775     for (i = 0; i < len; i++)
3776         if (psinfo->pr_psargs[i] == 0)
3777             psinfo->pr_psargs[i] = ' ';
3778     psinfo->pr_psargs[len] = 0;
3779 
3780     psinfo->pr_pid = getpid();
3781     psinfo->pr_ppid = getppid();
3782     psinfo->pr_pgrp = getpgrp();
3783     psinfo->pr_sid = getsid(0);
3784     psinfo->pr_uid = getuid();
3785     psinfo->pr_gid = getgid();
3786 
3787     base_filename = g_path_get_basename(ts->bprm->filename);
3788     /*
3789      * Using strncpy here is fine: at max-length,
3790      * this field is not NUL-terminated.
3791      */
3792     (void) strncpy(psinfo->pr_fname, base_filename,
3793                    sizeof(psinfo->pr_fname));
3794 
3795     g_free(base_filename);
3796     bswap_psinfo(psinfo);
3797     return (0);
3798 }
3799 
3800 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3801 {
3802     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3803     elf_addr_t orig_auxv = auxv;
3804     void *ptr;
3805     int len = ts->info->auxv_len;
3806 
3807     /*
3808      * Auxiliary vector is stored in target process stack.  It contains
3809      * {type, value} pairs that we need to dump into note.  This is not
3810      * strictly necessary but we do it here for sake of completeness.
3811      */
3812 
3813     /* read in whole auxv vector and copy it to memelfnote */
3814     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3815     if (ptr != NULL) {
3816         fill_note(note, "CORE", NT_AUXV, len, ptr);
3817         unlock_user(ptr, auxv, len);
3818     }
3819 }
3820 
3821 /*
3822  * Constructs name of coredump file.  We have following convention
3823  * for the name:
3824  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3825  *
3826  * Returns the filename
3827  */
3828 static char *core_dump_filename(const TaskState *ts)
3829 {
3830     g_autoptr(GDateTime) now = g_date_time_new_now_local();
3831     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3832     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3833 
3834     return g_strdup_printf("qemu_%s_%s_%d.core",
3835                            base_filename, nowstr, (int)getpid());
3836 }
3837 
3838 static int dump_write(int fd, const void *ptr, size_t size)
3839 {
3840     const char *bufp = (const char *)ptr;
3841     ssize_t bytes_written, bytes_left;
3842     struct rlimit dumpsize;
3843     off_t pos;
3844 
3845     bytes_written = 0;
3846     getrlimit(RLIMIT_CORE, &dumpsize);
3847     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3848         if (errno == ESPIPE) { /* not a seekable stream */
3849             bytes_left = size;
3850         } else {
3851             return pos;
3852         }
3853     } else {
3854         if (dumpsize.rlim_cur <= pos) {
3855             return -1;
3856         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3857             bytes_left = size;
3858         } else {
3859             size_t limit_left=dumpsize.rlim_cur - pos;
3860             bytes_left = limit_left >= size ? size : limit_left ;
3861         }
3862     }
3863 
3864     /*
3865      * In normal conditions, single write(2) should do but
3866      * in case of socket etc. this mechanism is more portable.
3867      */
3868     do {
3869         bytes_written = write(fd, bufp, bytes_left);
3870         if (bytes_written < 0) {
3871             if (errno == EINTR)
3872                 continue;
3873             return (-1);
3874         } else if (bytes_written == 0) { /* eof */
3875             return (-1);
3876         }
3877         bufp += bytes_written;
3878         bytes_left -= bytes_written;
3879     } while (bytes_left > 0);
3880 
3881     return (0);
3882 }
3883 
3884 static int write_note(struct memelfnote *men, int fd)
3885 {
3886     struct elf_note en;
3887 
3888     en.n_namesz = men->namesz;
3889     en.n_type = men->type;
3890     en.n_descsz = men->datasz;
3891 
3892     bswap_note(&en);
3893 
3894     if (dump_write(fd, &en, sizeof(en)) != 0)
3895         return (-1);
3896     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3897         return (-1);
3898     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3899         return (-1);
3900 
3901     return (0);
3902 }
3903 
3904 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3905 {
3906     CPUState *cpu = env_cpu((CPUArchState *)env);
3907     TaskState *ts = (TaskState *)cpu->opaque;
3908     struct elf_thread_status *ets;
3909 
3910     ets = g_malloc0(sizeof (*ets));
3911     ets->num_notes = 1; /* only prstatus is dumped */
3912     fill_prstatus(&ets->prstatus, ts, 0);
3913     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3914     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3915               &ets->prstatus);
3916 
3917     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3918 
3919     info->notes_size += note_size(&ets->notes[0]);
3920 }
3921 
3922 static void init_note_info(struct elf_note_info *info)
3923 {
3924     /* Initialize the elf_note_info structure so that it is at
3925      * least safe to call free_note_info() on it. Must be
3926      * called before calling fill_note_info().
3927      */
3928     memset(info, 0, sizeof (*info));
3929     QTAILQ_INIT(&info->thread_list);
3930 }
3931 
3932 static int fill_note_info(struct elf_note_info *info,
3933                           long signr, const CPUArchState *env)
3934 {
3935 #define NUMNOTES 3
3936     CPUState *cpu = env_cpu((CPUArchState *)env);
3937     TaskState *ts = (TaskState *)cpu->opaque;
3938     int i;
3939 
3940     info->notes = g_new0(struct memelfnote, NUMNOTES);
3941     if (info->notes == NULL)
3942         return (-ENOMEM);
3943     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3944     if (info->prstatus == NULL)
3945         return (-ENOMEM);
3946     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3947     if (info->prstatus == NULL)
3948         return (-ENOMEM);
3949 
3950     /*
3951      * First fill in status (and registers) of current thread
3952      * including process info & aux vector.
3953      */
3954     fill_prstatus(info->prstatus, ts, signr);
3955     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3956     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3957               sizeof (*info->prstatus), info->prstatus);
3958     fill_psinfo(info->psinfo, ts);
3959     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3960               sizeof (*info->psinfo), info->psinfo);
3961     fill_auxv_note(&info->notes[2], ts);
3962     info->numnote = 3;
3963 
3964     info->notes_size = 0;
3965     for (i = 0; i < info->numnote; i++)
3966         info->notes_size += note_size(&info->notes[i]);
3967 
3968     /* read and fill status of all threads */
3969     cpu_list_lock();
3970     CPU_FOREACH(cpu) {
3971         if (cpu == thread_cpu) {
3972             continue;
3973         }
3974         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3975     }
3976     cpu_list_unlock();
3977 
3978     return (0);
3979 }
3980 
3981 static void free_note_info(struct elf_note_info *info)
3982 {
3983     struct elf_thread_status *ets;
3984 
3985     while (!QTAILQ_EMPTY(&info->thread_list)) {
3986         ets = QTAILQ_FIRST(&info->thread_list);
3987         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3988         g_free(ets);
3989     }
3990 
3991     g_free(info->prstatus);
3992     g_free(info->psinfo);
3993     g_free(info->notes);
3994 }
3995 
3996 static int write_note_info(struct elf_note_info *info, int fd)
3997 {
3998     struct elf_thread_status *ets;
3999     int i, error = 0;
4000 
4001     /* write prstatus, psinfo and auxv for current thread */
4002     for (i = 0; i < info->numnote; i++)
4003         if ((error = write_note(&info->notes[i], fd)) != 0)
4004             return (error);
4005 
4006     /* write prstatus for each thread */
4007     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4008         if ((error = write_note(&ets->notes[0], fd)) != 0)
4009             return (error);
4010     }
4011 
4012     return (0);
4013 }
4014 
4015 /*
4016  * Write out ELF coredump.
4017  *
4018  * See documentation of ELF object file format in:
4019  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4020  *
4021  * Coredump format in linux is following:
4022  *
4023  * 0   +----------------------+         \
4024  *     | ELF header           | ET_CORE  |
4025  *     +----------------------+          |
4026  *     | ELF program headers  |          |--- headers
4027  *     | - NOTE section       |          |
4028  *     | - PT_LOAD sections   |          |
4029  *     +----------------------+         /
4030  *     | NOTEs:               |
4031  *     | - NT_PRSTATUS        |
4032  *     | - NT_PRSINFO         |
4033  *     | - NT_AUXV            |
4034  *     +----------------------+ <-- aligned to target page
4035  *     | Process memory dump  |
4036  *     :                      :
4037  *     .                      .
4038  *     :                      :
4039  *     |                      |
4040  *     +----------------------+
4041  *
4042  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4043  * NT_PRSINFO  -> struct elf_prpsinfo
4044  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4045  *
4046  * Format follows System V format as close as possible.  Current
4047  * version limitations are as follows:
4048  *     - no floating point registers are dumped
4049  *
4050  * Function returns 0 in case of success, negative errno otherwise.
4051  *
4052  * TODO: make this work also during runtime: it should be
4053  * possible to force coredump from running process and then
4054  * continue processing.  For example qemu could set up SIGUSR2
4055  * handler (provided that target process haven't registered
4056  * handler for that) that does the dump when signal is received.
4057  */
4058 static int elf_core_dump(int signr, const CPUArchState *env)
4059 {
4060     const CPUState *cpu = env_cpu((CPUArchState *)env);
4061     const TaskState *ts = (const TaskState *)cpu->opaque;
4062     struct vm_area_struct *vma = NULL;
4063     g_autofree char *corefile = NULL;
4064     struct elf_note_info info;
4065     struct elfhdr elf;
4066     struct elf_phdr phdr;
4067     struct rlimit dumpsize;
4068     struct mm_struct *mm = NULL;
4069     off_t offset = 0, data_offset = 0;
4070     int segs = 0;
4071     int fd = -1;
4072 
4073     init_note_info(&info);
4074 
4075     errno = 0;
4076     getrlimit(RLIMIT_CORE, &dumpsize);
4077     if (dumpsize.rlim_cur == 0)
4078         return 0;
4079 
4080     corefile = core_dump_filename(ts);
4081 
4082     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4083                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4084         return (-errno);
4085 
4086     /*
4087      * Walk through target process memory mappings and
4088      * set up structure containing this information.  After
4089      * this point vma_xxx functions can be used.
4090      */
4091     if ((mm = vma_init()) == NULL)
4092         goto out;
4093 
4094     walk_memory_regions(mm, vma_walker);
4095     segs = vma_get_mapping_count(mm);
4096 
4097     /*
4098      * Construct valid coredump ELF header.  We also
4099      * add one more segment for notes.
4100      */
4101     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4102     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4103         goto out;
4104 
4105     /* fill in the in-memory version of notes */
4106     if (fill_note_info(&info, signr, env) < 0)
4107         goto out;
4108 
4109     offset += sizeof (elf);                             /* elf header */
4110     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4111 
4112     /* write out notes program header */
4113     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4114 
4115     offset += info.notes_size;
4116     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4117         goto out;
4118 
4119     /*
4120      * ELF specification wants data to start at page boundary so
4121      * we align it here.
4122      */
4123     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4124 
4125     /*
4126      * Write program headers for memory regions mapped in
4127      * the target process.
4128      */
4129     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4130         (void) memset(&phdr, 0, sizeof (phdr));
4131 
4132         phdr.p_type = PT_LOAD;
4133         phdr.p_offset = offset;
4134         phdr.p_vaddr = vma->vma_start;
4135         phdr.p_paddr = 0;
4136         phdr.p_filesz = vma_dump_size(vma);
4137         offset += phdr.p_filesz;
4138         phdr.p_memsz = vma->vma_end - vma->vma_start;
4139         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4140         if (vma->vma_flags & PROT_WRITE)
4141             phdr.p_flags |= PF_W;
4142         if (vma->vma_flags & PROT_EXEC)
4143             phdr.p_flags |= PF_X;
4144         phdr.p_align = ELF_EXEC_PAGESIZE;
4145 
4146         bswap_phdr(&phdr, 1);
4147         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4148             goto out;
4149         }
4150     }
4151 
4152     /*
4153      * Next we write notes just after program headers.  No
4154      * alignment needed here.
4155      */
4156     if (write_note_info(&info, fd) < 0)
4157         goto out;
4158 
4159     /* align data to page boundary */
4160     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4161         goto out;
4162 
4163     /*
4164      * Finally we can dump process memory into corefile as well.
4165      */
4166     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4167         abi_ulong addr;
4168         abi_ulong end;
4169 
4170         end = vma->vma_start + vma_dump_size(vma);
4171 
4172         for (addr = vma->vma_start; addr < end;
4173              addr += TARGET_PAGE_SIZE) {
4174             char page[TARGET_PAGE_SIZE];
4175             int error;
4176 
4177             /*
4178              *  Read in page from target process memory and
4179              *  write it to coredump file.
4180              */
4181             error = copy_from_user(page, addr, sizeof (page));
4182             if (error != 0) {
4183                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4184                                addr);
4185                 errno = -error;
4186                 goto out;
4187             }
4188             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4189                 goto out;
4190         }
4191     }
4192 
4193  out:
4194     free_note_info(&info);
4195     if (mm != NULL)
4196         vma_delete(mm);
4197     (void) close(fd);
4198 
4199     if (errno != 0)
4200         return (-errno);
4201     return (0);
4202 }
4203 #endif /* USE_ELF_CORE_DUMP */
4204 
4205 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4206 {
4207     init_thread(regs, infop);
4208 }
4209