xref: /qemu/linux-user/elfload.c (revision bf88c124)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
85 
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
90 
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA        ELFDATA2MSB
93 #else
94 #define ELF_DATA        ELFDATA2LSB
95 #endif
96 
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong      target_elf_greg_t;
99 #define tswapreg(ptr)   tswap64(ptr)
100 #else
101 typedef abi_ulong       target_elf_greg_t;
102 #define tswapreg(ptr)   tswapal(ptr)
103 #endif
104 
105 #ifdef USE_UID16
106 typedef abi_ushort      target_uid_t;
107 typedef abi_ushort      target_gid_t;
108 #else
109 typedef abi_uint        target_uid_t;
110 typedef abi_uint        target_gid_t;
111 #endif
112 typedef abi_int         target_pid_t;
113 
114 #ifdef TARGET_I386
115 
116 #define ELF_PLATFORM get_elf_platform()
117 
118 static const char *get_elf_platform(void)
119 {
120     static char elf_platform[] = "i386";
121     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122     if (family > 6)
123         family = 6;
124     if (family >= 3)
125         elf_platform[1] = '0' + family;
126     return elf_platform;
127 }
128 
129 #define ELF_HWCAP get_elf_hwcap()
130 
131 static uint32_t get_elf_hwcap(void)
132 {
133     X86CPU *cpu = X86_CPU(thread_cpu);
134 
135     return cpu->env.features[FEAT_1_EDX];
136 }
137 
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
140 
141 #define ELF_CLASS      ELFCLASS64
142 #define ELF_ARCH       EM_X86_64
143 
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145 {
146     regs->rax = 0;
147     regs->rsp = infop->start_stack;
148     regs->rip = infop->entry;
149 }
150 
151 #define ELF_NREG    27
152 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
153 
154 /*
155  * Note that ELF_NREG should be 29 as there should be place for
156  * TRAPNO and ERR "registers" as well but linux doesn't dump
157  * those.
158  *
159  * See linux kernel: arch/x86/include/asm/elf.h
160  */
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
162 {
163     (*regs)[0] = env->regs[15];
164     (*regs)[1] = env->regs[14];
165     (*regs)[2] = env->regs[13];
166     (*regs)[3] = env->regs[12];
167     (*regs)[4] = env->regs[R_EBP];
168     (*regs)[5] = env->regs[R_EBX];
169     (*regs)[6] = env->regs[11];
170     (*regs)[7] = env->regs[10];
171     (*regs)[8] = env->regs[9];
172     (*regs)[9] = env->regs[8];
173     (*regs)[10] = env->regs[R_EAX];
174     (*regs)[11] = env->regs[R_ECX];
175     (*regs)[12] = env->regs[R_EDX];
176     (*regs)[13] = env->regs[R_ESI];
177     (*regs)[14] = env->regs[R_EDI];
178     (*regs)[15] = env->regs[R_EAX]; /* XXX */
179     (*regs)[16] = env->eip;
180     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181     (*regs)[18] = env->eflags;
182     (*regs)[19] = env->regs[R_ESP];
183     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190 }
191 
192 #else
193 
194 #define ELF_START_MMAP 0x80000000
195 
196 /*
197  * This is used to ensure we don't load something for the wrong architecture.
198  */
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200 
201 /*
202  * These are used to set parameters in the core dumps.
203  */
204 #define ELF_CLASS       ELFCLASS32
205 #define ELF_ARCH        EM_386
206 
207 static inline void init_thread(struct target_pt_regs *regs,
208                                struct image_info *infop)
209 {
210     regs->esp = infop->start_stack;
211     regs->eip = infop->entry;
212 
213     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214        starts %edx contains a pointer to a function which might be
215        registered using `atexit'.  This provides a mean for the
216        dynamic linker to call DT_FINI functions for shared libraries
217        that have been loaded before the code runs.
218 
219        A value of 0 tells we have no such handler.  */
220     regs->edx = 0;
221 }
222 
223 #define ELF_NREG    17
224 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
225 
226 /*
227  * Note that ELF_NREG should be 19 as there should be place for
228  * TRAPNO and ERR "registers" as well but linux doesn't dump
229  * those.
230  *
231  * See linux kernel: arch/x86/include/asm/elf.h
232  */
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
234 {
235     (*regs)[0] = env->regs[R_EBX];
236     (*regs)[1] = env->regs[R_ECX];
237     (*regs)[2] = env->regs[R_EDX];
238     (*regs)[3] = env->regs[R_ESI];
239     (*regs)[4] = env->regs[R_EDI];
240     (*regs)[5] = env->regs[R_EBP];
241     (*regs)[6] = env->regs[R_EAX];
242     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246     (*regs)[11] = env->regs[R_EAX]; /* XXX */
247     (*regs)[12] = env->eip;
248     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249     (*regs)[14] = env->eflags;
250     (*regs)[15] = env->regs[R_ESP];
251     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252 }
253 #endif
254 
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE       4096
257 
258 #endif
259 
260 #ifdef TARGET_ARM
261 
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
264 
265 #define ELF_START_MMAP 0x80000000
266 
267 #define ELF_ARCH        EM_ARM
268 #define ELF_CLASS       ELFCLASS32
269 
270 static inline void init_thread(struct target_pt_regs *regs,
271                                struct image_info *infop)
272 {
273     abi_long stack = infop->start_stack;
274     memset(regs, 0, sizeof(*regs));
275 
276     regs->uregs[16] = ARM_CPU_MODE_USR;
277     if (infop->entry & 1) {
278         regs->uregs[16] |= CPSR_T;
279     }
280     regs->uregs[15] = infop->entry & 0xfffffffe;
281     regs->uregs[13] = infop->start_stack;
282     /* FIXME - what to for failure of get_user()? */
283     get_user_ual(regs->uregs[2], stack + 8); /* envp */
284     get_user_ual(regs->uregs[1], stack + 4); /* envp */
285     /* XXX: it seems that r0 is zeroed after ! */
286     regs->uregs[0] = 0;
287     /* For uClinux PIC binaries.  */
288     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289     regs->uregs[10] = infop->start_data;
290 }
291 
292 #define ELF_NREG    18
293 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
294 
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
296 {
297     (*regs)[0] = tswapreg(env->regs[0]);
298     (*regs)[1] = tswapreg(env->regs[1]);
299     (*regs)[2] = tswapreg(env->regs[2]);
300     (*regs)[3] = tswapreg(env->regs[3]);
301     (*regs)[4] = tswapreg(env->regs[4]);
302     (*regs)[5] = tswapreg(env->regs[5]);
303     (*regs)[6] = tswapreg(env->regs[6]);
304     (*regs)[7] = tswapreg(env->regs[7]);
305     (*regs)[8] = tswapreg(env->regs[8]);
306     (*regs)[9] = tswapreg(env->regs[9]);
307     (*regs)[10] = tswapreg(env->regs[10]);
308     (*regs)[11] = tswapreg(env->regs[11]);
309     (*regs)[12] = tswapreg(env->regs[12]);
310     (*regs)[13] = tswapreg(env->regs[13]);
311     (*regs)[14] = tswapreg(env->regs[14]);
312     (*regs)[15] = tswapreg(env->regs[15]);
313 
314     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
316 }
317 
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE       4096
320 
321 enum
322 {
323     ARM_HWCAP_ARM_SWP       = 1 << 0,
324     ARM_HWCAP_ARM_HALF      = 1 << 1,
325     ARM_HWCAP_ARM_THUMB     = 1 << 2,
326     ARM_HWCAP_ARM_26BIT     = 1 << 3,
327     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328     ARM_HWCAP_ARM_FPA       = 1 << 5,
329     ARM_HWCAP_ARM_VFP       = 1 << 6,
330     ARM_HWCAP_ARM_EDSP      = 1 << 7,
331     ARM_HWCAP_ARM_JAVA      = 1 << 8,
332     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
333     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
334     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
335     ARM_HWCAP_ARM_NEON      = 1 << 12,
336     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
337     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
338     ARM_HWCAP_ARM_TLS       = 1 << 15,
339     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
340     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
341     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
342     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
343     ARM_HWCAP_ARM_LPAE      = 1 << 20,
344     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
345 };
346 
347 enum {
348     ARM_HWCAP2_ARM_AES      = 1 << 0,
349     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
350     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
351     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
352     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
353 };
354 
355 /* The commpage only exists for 32 bit kernels */
356 
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359  * Return 0 if the proposed guest space isn't suitable, but another
360  * address space should be tried.
361  * Return -1 if there is no way the proposed guest space can be
362  * valid regardless of the base.
363  * The guest code may leave a page mapped and populate it if the
364  * address is suitable.
365  */
366 static int validate_guest_space(unsigned long guest_base,
367                                 unsigned long guest_size)
368 {
369     unsigned long real_start, test_page_addr;
370 
371     /* We need to check that we can force a fault on access to the
372      * commpage at 0xffff0fxx
373      */
374     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375 
376     /* If the commpage lies within the already allocated guest space,
377      * then there is no way we can allocate it.
378      */
379     if (test_page_addr >= guest_base
380         && test_page_addr <= (guest_base + guest_size)) {
381         return -1;
382     }
383 
384     /* Note it needs to be writeable to let us initialise it */
385     real_start = (unsigned long)
386                  mmap((void *)test_page_addr, qemu_host_page_size,
387                      PROT_READ | PROT_WRITE,
388                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389 
390     /* If we can't map it then try another address */
391     if (real_start == -1ul) {
392         return 0;
393     }
394 
395     if (real_start != test_page_addr) {
396         /* OS didn't put the page where we asked - unmap and reject */
397         munmap((void *)real_start, qemu_host_page_size);
398         return 0;
399     }
400 
401     /* Leave the page mapped
402      * Populate it (mmap should have left it all 0'd)
403      */
404 
405     /* Kernel helper versions */
406     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407 
408     /* Now it's populated make it RO */
409     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410         perror("Protecting guest commpage");
411         exit(-1);
412     }
413 
414     return 1; /* All good */
415 }
416 
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
419 
420 static uint32_t get_elf_hwcap(void)
421 {
422     ARMCPU *cpu = ARM_CPU(thread_cpu);
423     uint32_t hwcaps = 0;
424 
425     hwcaps |= ARM_HWCAP_ARM_SWP;
426     hwcaps |= ARM_HWCAP_ARM_HALF;
427     hwcaps |= ARM_HWCAP_ARM_THUMB;
428     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
429 
430     /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447      * to our VFP_FP16 feature bit.
448      */
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
451 
452     return hwcaps;
453 }
454 
455 static uint32_t get_elf_hwcap2(void)
456 {
457     ARMCPU *cpu = ARM_CPU(thread_cpu);
458     uint32_t hwcaps = 0;
459 
460     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465     return hwcaps;
466 }
467 
468 #undef GET_FEATURE
469 
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
473 
474 #define ELF_ARCH        EM_AARCH64
475 #define ELF_CLASS       ELFCLASS64
476 #define ELF_PLATFORM    "aarch64"
477 
478 static inline void init_thread(struct target_pt_regs *regs,
479                                struct image_info *infop)
480 {
481     abi_long stack = infop->start_stack;
482     memset(regs, 0, sizeof(*regs));
483 
484     regs->pc = infop->entry & ~0x3ULL;
485     regs->sp = stack;
486 }
487 
488 #define ELF_NREG    34
489 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
490 
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492                                const CPUARMState *env)
493 {
494     int i;
495 
496     for (i = 0; i < 32; i++) {
497         (*regs)[i] = tswapreg(env->xregs[i]);
498     }
499     (*regs)[32] = tswapreg(env->pc);
500     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501 }
502 
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE       4096
505 
506 enum {
507     ARM_HWCAP_A64_FP            = 1 << 0,
508     ARM_HWCAP_A64_ASIMD         = 1 << 1,
509     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
510     ARM_HWCAP_A64_AES           = 1 << 3,
511     ARM_HWCAP_A64_PMULL         = 1 << 4,
512     ARM_HWCAP_A64_SHA1          = 1 << 5,
513     ARM_HWCAP_A64_SHA2          = 1 << 6,
514     ARM_HWCAP_A64_CRC32         = 1 << 7,
515 };
516 
517 #define ELF_HWCAP get_elf_hwcap()
518 
519 static uint32_t get_elf_hwcap(void)
520 {
521     ARMCPU *cpu = ARM_CPU(thread_cpu);
522     uint32_t hwcaps = 0;
523 
524     hwcaps |= ARM_HWCAP_A64_FP;
525     hwcaps |= ARM_HWCAP_A64_ASIMD;
526 
527     /* probe for the extra features */
528 #define GET_FEATURE(feat, hwcap) \
529     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
530     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
531     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
532     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
534     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
535 #undef GET_FEATURE
536 
537     return hwcaps;
538 }
539 
540 #endif /* not TARGET_AARCH64 */
541 #endif /* TARGET_ARM */
542 
543 #ifdef TARGET_UNICORE32
544 
545 #define ELF_START_MMAP          0x80000000
546 
547 #define ELF_CLASS               ELFCLASS32
548 #define ELF_DATA                ELFDATA2LSB
549 #define ELF_ARCH                EM_UNICORE32
550 
551 static inline void init_thread(struct target_pt_regs *regs,
552         struct image_info *infop)
553 {
554     abi_long stack = infop->start_stack;
555     memset(regs, 0, sizeof(*regs));
556     regs->UC32_REG_asr = 0x10;
557     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558     regs->UC32_REG_sp = infop->start_stack;
559     /* FIXME - what to for failure of get_user()? */
560     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562     /* XXX: it seems that r0 is zeroed after ! */
563     regs->UC32_REG_00 = 0;
564 }
565 
566 #define ELF_NREG    34
567 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
568 
569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
570 {
571     (*regs)[0] = env->regs[0];
572     (*regs)[1] = env->regs[1];
573     (*regs)[2] = env->regs[2];
574     (*regs)[3] = env->regs[3];
575     (*regs)[4] = env->regs[4];
576     (*regs)[5] = env->regs[5];
577     (*regs)[6] = env->regs[6];
578     (*regs)[7] = env->regs[7];
579     (*regs)[8] = env->regs[8];
580     (*regs)[9] = env->regs[9];
581     (*regs)[10] = env->regs[10];
582     (*regs)[11] = env->regs[11];
583     (*regs)[12] = env->regs[12];
584     (*regs)[13] = env->regs[13];
585     (*regs)[14] = env->regs[14];
586     (*regs)[15] = env->regs[15];
587     (*regs)[16] = env->regs[16];
588     (*regs)[17] = env->regs[17];
589     (*regs)[18] = env->regs[18];
590     (*regs)[19] = env->regs[19];
591     (*regs)[20] = env->regs[20];
592     (*regs)[21] = env->regs[21];
593     (*regs)[22] = env->regs[22];
594     (*regs)[23] = env->regs[23];
595     (*regs)[24] = env->regs[24];
596     (*regs)[25] = env->regs[25];
597     (*regs)[26] = env->regs[26];
598     (*regs)[27] = env->regs[27];
599     (*regs)[28] = env->regs[28];
600     (*regs)[29] = env->regs[29];
601     (*regs)[30] = env->regs[30];
602     (*regs)[31] = env->regs[31];
603 
604     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
605     (*regs)[33] = env->regs[0]; /* XXX */
606 }
607 
608 #define USE_ELF_CORE_DUMP
609 #define ELF_EXEC_PAGESIZE               4096
610 
611 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612 
613 #endif
614 
615 #ifdef TARGET_SPARC
616 #ifdef TARGET_SPARC64
617 
618 #define ELF_START_MMAP 0x80000000
619 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
621 #ifndef TARGET_ABI32
622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
623 #else
624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625 #endif
626 
627 #define ELF_CLASS   ELFCLASS64
628 #define ELF_ARCH    EM_SPARCV9
629 
630 #define STACK_BIAS              2047
631 
632 static inline void init_thread(struct target_pt_regs *regs,
633                                struct image_info *infop)
634 {
635 #ifndef TARGET_ABI32
636     regs->tstate = 0;
637 #endif
638     regs->pc = infop->entry;
639     regs->npc = regs->pc + 4;
640     regs->y = 0;
641 #ifdef TARGET_ABI32
642     regs->u_regs[14] = infop->start_stack - 16 * 4;
643 #else
644     if (personality(infop->personality) == PER_LINUX32)
645         regs->u_regs[14] = infop->start_stack - 16 * 4;
646     else
647         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
648 #endif
649 }
650 
651 #else
652 #define ELF_START_MMAP 0x80000000
653 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654                     | HWCAP_SPARC_MULDIV)
655 
656 #define ELF_CLASS   ELFCLASS32
657 #define ELF_ARCH    EM_SPARC
658 
659 static inline void init_thread(struct target_pt_regs *regs,
660                                struct image_info *infop)
661 {
662     regs->psr = 0;
663     regs->pc = infop->entry;
664     regs->npc = regs->pc + 4;
665     regs->y = 0;
666     regs->u_regs[14] = infop->start_stack - 16 * 4;
667 }
668 
669 #endif
670 #endif
671 
672 #ifdef TARGET_PPC
673 
674 #define ELF_MACHINE    PPC_ELF_MACHINE
675 #define ELF_START_MMAP 0x80000000
676 
677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
678 
679 #define elf_check_arch(x) ( (x) == EM_PPC64 )
680 
681 #define ELF_CLASS       ELFCLASS64
682 
683 #else
684 
685 #define ELF_CLASS       ELFCLASS32
686 
687 #endif
688 
689 #define ELF_ARCH        EM_PPC
690 
691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692    See arch/powerpc/include/asm/cputable.h.  */
693 enum {
694     QEMU_PPC_FEATURE_32 = 0x80000000,
695     QEMU_PPC_FEATURE_64 = 0x40000000,
696     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709     QEMU_PPC_FEATURE_CELL = 0x00010000,
710     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711     QEMU_PPC_FEATURE_SMT = 0x00004000,
712     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714     QEMU_PPC_FEATURE_PA6T = 0x00000800,
715     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720 
721     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
723 
724     /* Feature definitions in AT_HWCAP2.  */
725     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
731 };
732 
733 #define ELF_HWCAP get_elf_hwcap()
734 
735 static uint32_t get_elf_hwcap(void)
736 {
737     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
738     uint32_t features = 0;
739 
740     /* We don't have to be terribly complete here; the high points are
741        Altivec/FP/SPE support.  Anything else is just a bonus.  */
742 #define GET_FEATURE(flag, feature)                                      \
743     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
744 #define GET_FEATURE2(flags, feature) \
745     do { \
746         if ((cpu->env.insns_flags2 & flags) == flags) { \
747             features |= feature; \
748         } \
749     } while (0)
750     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
758     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762                   QEMU_PPC_FEATURE_ARCH_2_06);
763 #undef GET_FEATURE
764 #undef GET_FEATURE2
765 
766     return features;
767 }
768 
769 #define ELF_HWCAP2 get_elf_hwcap2()
770 
771 static uint32_t get_elf_hwcap2(void)
772 {
773     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774     uint32_t features = 0;
775 
776 #define GET_FEATURE(flag, feature)                                      \
777     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flag, feature)                                      \
779     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780 
781     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
785 
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
788 
789     return features;
790 }
791 
792 /*
793  * The requirements here are:
794  * - keep the final alignment of sp (sp & 0xf)
795  * - make sure the 32-bit value at the first 16 byte aligned position of
796  *   AUXV is greater than 16 for glibc compatibility.
797  *   AT_IGNOREPPC is used for that.
798  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800  */
801 #define DLINFO_ARCH_ITEMS       5
802 #define ARCH_DLINFO                                     \
803     do {                                                \
804         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
805         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
806         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
807         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
808         /*                                              \
809          * Now handle glibc compatibility.              \
810          */                                             \
811         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
812         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
813     } while (0)
814 
815 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
816 {
817     _regs->gpr[1] = infop->start_stack;
818 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
819     if (get_ppc64_abi(infop) < 2) {
820         uint64_t val;
821         get_user_u64(val, infop->entry + 8);
822         _regs->gpr[2] = val + infop->load_bias;
823         get_user_u64(val, infop->entry);
824         infop->entry = val + infop->load_bias;
825     } else {
826         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
827     }
828 #endif
829     _regs->nip = infop->entry;
830 }
831 
832 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
833 #define ELF_NREG 48
834 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
835 
836 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
837 {
838     int i;
839     target_ulong ccr = 0;
840 
841     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
842         (*regs)[i] = tswapreg(env->gpr[i]);
843     }
844 
845     (*regs)[32] = tswapreg(env->nip);
846     (*regs)[33] = tswapreg(env->msr);
847     (*regs)[35] = tswapreg(env->ctr);
848     (*regs)[36] = tswapreg(env->lr);
849     (*regs)[37] = tswapreg(env->xer);
850 
851     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
852         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
853     }
854     (*regs)[38] = tswapreg(ccr);
855 }
856 
857 #define USE_ELF_CORE_DUMP
858 #define ELF_EXEC_PAGESIZE       4096
859 
860 #endif
861 
862 #ifdef TARGET_MIPS
863 
864 #define ELF_START_MMAP 0x80000000
865 
866 #ifdef TARGET_MIPS64
867 #define ELF_CLASS   ELFCLASS64
868 #else
869 #define ELF_CLASS   ELFCLASS32
870 #endif
871 #define ELF_ARCH    EM_MIPS
872 
873 static inline void init_thread(struct target_pt_regs *regs,
874                                struct image_info *infop)
875 {
876     regs->cp0_status = 2 << CP0St_KSU;
877     regs->cp0_epc = infop->entry;
878     regs->regs[29] = infop->start_stack;
879 }
880 
881 /* See linux kernel: arch/mips/include/asm/elf.h.  */
882 #define ELF_NREG 45
883 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
884 
885 /* See linux kernel: arch/mips/include/asm/reg.h.  */
886 enum {
887 #ifdef TARGET_MIPS64
888     TARGET_EF_R0 = 0,
889 #else
890     TARGET_EF_R0 = 6,
891 #endif
892     TARGET_EF_R26 = TARGET_EF_R0 + 26,
893     TARGET_EF_R27 = TARGET_EF_R0 + 27,
894     TARGET_EF_LO = TARGET_EF_R0 + 32,
895     TARGET_EF_HI = TARGET_EF_R0 + 33,
896     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
897     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
898     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
899     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
900 };
901 
902 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
903 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
904 {
905     int i;
906 
907     for (i = 0; i < TARGET_EF_R0; i++) {
908         (*regs)[i] = 0;
909     }
910     (*regs)[TARGET_EF_R0] = 0;
911 
912     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
913         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
914     }
915 
916     (*regs)[TARGET_EF_R26] = 0;
917     (*regs)[TARGET_EF_R27] = 0;
918     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
919     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
920     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
921     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
922     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
923     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
924 }
925 
926 #define USE_ELF_CORE_DUMP
927 #define ELF_EXEC_PAGESIZE        4096
928 
929 #endif /* TARGET_MIPS */
930 
931 #ifdef TARGET_MICROBLAZE
932 
933 #define ELF_START_MMAP 0x80000000
934 
935 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
936 
937 #define ELF_CLASS   ELFCLASS32
938 #define ELF_ARCH    EM_MICROBLAZE
939 
940 static inline void init_thread(struct target_pt_regs *regs,
941                                struct image_info *infop)
942 {
943     regs->pc = infop->entry;
944     regs->r1 = infop->start_stack;
945 
946 }
947 
948 #define ELF_EXEC_PAGESIZE        4096
949 
950 #define USE_ELF_CORE_DUMP
951 #define ELF_NREG 38
952 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
953 
954 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
955 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
956 {
957     int i, pos = 0;
958 
959     for (i = 0; i < 32; i++) {
960         (*regs)[pos++] = tswapreg(env->regs[i]);
961     }
962 
963     for (i = 0; i < 6; i++) {
964         (*regs)[pos++] = tswapreg(env->sregs[i]);
965     }
966 }
967 
968 #endif /* TARGET_MICROBLAZE */
969 
970 #ifdef TARGET_NIOS2
971 
972 #define ELF_START_MMAP 0x80000000
973 
974 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
975 
976 #define ELF_CLASS   ELFCLASS32
977 #define ELF_ARCH    EM_ALTERA_NIOS2
978 
979 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
980 {
981     regs->ea = infop->entry;
982     regs->sp = infop->start_stack;
983     regs->estatus = 0x3;
984 }
985 
986 #define ELF_EXEC_PAGESIZE        4096
987 
988 #define USE_ELF_CORE_DUMP
989 #define ELF_NREG 49
990 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
991 
992 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
993 static void elf_core_copy_regs(target_elf_gregset_t *regs,
994                                const CPUNios2State *env)
995 {
996     int i;
997 
998     (*regs)[0] = -1;
999     for (i = 1; i < 8; i++)    /* r0-r7 */
1000         (*regs)[i] = tswapreg(env->regs[i + 7]);
1001 
1002     for (i = 8; i < 16; i++)   /* r8-r15 */
1003         (*regs)[i] = tswapreg(env->regs[i - 8]);
1004 
1005     for (i = 16; i < 24; i++)  /* r16-r23 */
1006         (*regs)[i] = tswapreg(env->regs[i + 7]);
1007     (*regs)[24] = -1;    /* R_ET */
1008     (*regs)[25] = -1;    /* R_BT */
1009     (*regs)[26] = tswapreg(env->regs[R_GP]);
1010     (*regs)[27] = tswapreg(env->regs[R_SP]);
1011     (*regs)[28] = tswapreg(env->regs[R_FP]);
1012     (*regs)[29] = tswapreg(env->regs[R_EA]);
1013     (*regs)[30] = -1;    /* R_SSTATUS */
1014     (*regs)[31] = tswapreg(env->regs[R_RA]);
1015 
1016     (*regs)[32] = tswapreg(env->regs[R_PC]);
1017 
1018     (*regs)[33] = -1; /* R_STATUS */
1019     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1020 
1021     for (i = 35; i < 49; i++)    /* ... */
1022         (*regs)[i] = -1;
1023 }
1024 
1025 #endif /* TARGET_NIOS2 */
1026 
1027 #ifdef TARGET_OPENRISC
1028 
1029 #define ELF_START_MMAP 0x08000000
1030 
1031 #define ELF_ARCH EM_OPENRISC
1032 #define ELF_CLASS ELFCLASS32
1033 #define ELF_DATA  ELFDATA2MSB
1034 
1035 static inline void init_thread(struct target_pt_regs *regs,
1036                                struct image_info *infop)
1037 {
1038     regs->pc = infop->entry;
1039     regs->gpr[1] = infop->start_stack;
1040 }
1041 
1042 #define USE_ELF_CORE_DUMP
1043 #define ELF_EXEC_PAGESIZE 8192
1044 
1045 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1046 #define ELF_NREG 34 /* gprs and pc, sr */
1047 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1048 
1049 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1050                                const CPUOpenRISCState *env)
1051 {
1052     int i;
1053 
1054     for (i = 0; i < 32; i++) {
1055         (*regs)[i] = tswapreg(env->gpr[i]);
1056     }
1057     (*regs)[32] = tswapreg(env->pc);
1058     (*regs)[33] = tswapreg(cpu_get_sr(env));
1059 }
1060 #define ELF_HWCAP 0
1061 #define ELF_PLATFORM NULL
1062 
1063 #endif /* TARGET_OPENRISC */
1064 
1065 #ifdef TARGET_SH4
1066 
1067 #define ELF_START_MMAP 0x80000000
1068 
1069 #define ELF_CLASS ELFCLASS32
1070 #define ELF_ARCH  EM_SH
1071 
1072 static inline void init_thread(struct target_pt_regs *regs,
1073                                struct image_info *infop)
1074 {
1075     /* Check other registers XXXXX */
1076     regs->pc = infop->entry;
1077     regs->regs[15] = infop->start_stack;
1078 }
1079 
1080 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1081 #define ELF_NREG 23
1082 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1083 
1084 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1085 enum {
1086     TARGET_REG_PC = 16,
1087     TARGET_REG_PR = 17,
1088     TARGET_REG_SR = 18,
1089     TARGET_REG_GBR = 19,
1090     TARGET_REG_MACH = 20,
1091     TARGET_REG_MACL = 21,
1092     TARGET_REG_SYSCALL = 22
1093 };
1094 
1095 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1096                                       const CPUSH4State *env)
1097 {
1098     int i;
1099 
1100     for (i = 0; i < 16; i++) {
1101         (*regs[i]) = tswapreg(env->gregs[i]);
1102     }
1103 
1104     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1105     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1106     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1107     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1108     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1109     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1110     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1111 }
1112 
1113 #define USE_ELF_CORE_DUMP
1114 #define ELF_EXEC_PAGESIZE        4096
1115 
1116 enum {
1117     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1118     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1119     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1120     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1121     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1122     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1123     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1124     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1125     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1126     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1127 };
1128 
1129 #define ELF_HWCAP get_elf_hwcap()
1130 
1131 static uint32_t get_elf_hwcap(void)
1132 {
1133     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1134     uint32_t hwcap = 0;
1135 
1136     hwcap |= SH_CPU_HAS_FPU;
1137 
1138     if (cpu->env.features & SH_FEATURE_SH4A) {
1139         hwcap |= SH_CPU_HAS_LLSC;
1140     }
1141 
1142     return hwcap;
1143 }
1144 
1145 #endif
1146 
1147 #ifdef TARGET_CRIS
1148 
1149 #define ELF_START_MMAP 0x80000000
1150 
1151 #define ELF_CLASS ELFCLASS32
1152 #define ELF_ARCH  EM_CRIS
1153 
1154 static inline void init_thread(struct target_pt_regs *regs,
1155                                struct image_info *infop)
1156 {
1157     regs->erp = infop->entry;
1158 }
1159 
1160 #define ELF_EXEC_PAGESIZE        8192
1161 
1162 #endif
1163 
1164 #ifdef TARGET_M68K
1165 
1166 #define ELF_START_MMAP 0x80000000
1167 
1168 #define ELF_CLASS       ELFCLASS32
1169 #define ELF_ARCH        EM_68K
1170 
1171 /* ??? Does this need to do anything?
1172    #define ELF_PLAT_INIT(_r) */
1173 
1174 static inline void init_thread(struct target_pt_regs *regs,
1175                                struct image_info *infop)
1176 {
1177     regs->usp = infop->start_stack;
1178     regs->sr = 0;
1179     regs->pc = infop->entry;
1180 }
1181 
1182 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1183 #define ELF_NREG 20
1184 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1185 
1186 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1187 {
1188     (*regs)[0] = tswapreg(env->dregs[1]);
1189     (*regs)[1] = tswapreg(env->dregs[2]);
1190     (*regs)[2] = tswapreg(env->dregs[3]);
1191     (*regs)[3] = tswapreg(env->dregs[4]);
1192     (*regs)[4] = tswapreg(env->dregs[5]);
1193     (*regs)[5] = tswapreg(env->dregs[6]);
1194     (*regs)[6] = tswapreg(env->dregs[7]);
1195     (*regs)[7] = tswapreg(env->aregs[0]);
1196     (*regs)[8] = tswapreg(env->aregs[1]);
1197     (*regs)[9] = tswapreg(env->aregs[2]);
1198     (*regs)[10] = tswapreg(env->aregs[3]);
1199     (*regs)[11] = tswapreg(env->aregs[4]);
1200     (*regs)[12] = tswapreg(env->aregs[5]);
1201     (*regs)[13] = tswapreg(env->aregs[6]);
1202     (*regs)[14] = tswapreg(env->dregs[0]);
1203     (*regs)[15] = tswapreg(env->aregs[7]);
1204     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1205     (*regs)[17] = tswapreg(env->sr);
1206     (*regs)[18] = tswapreg(env->pc);
1207     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1208 }
1209 
1210 #define USE_ELF_CORE_DUMP
1211 #define ELF_EXEC_PAGESIZE       8192
1212 
1213 #endif
1214 
1215 #ifdef TARGET_ALPHA
1216 
1217 #define ELF_START_MMAP (0x30000000000ULL)
1218 
1219 #define ELF_CLASS      ELFCLASS64
1220 #define ELF_ARCH       EM_ALPHA
1221 
1222 static inline void init_thread(struct target_pt_regs *regs,
1223                                struct image_info *infop)
1224 {
1225     regs->pc = infop->entry;
1226     regs->ps = 8;
1227     regs->usp = infop->start_stack;
1228 }
1229 
1230 #define ELF_EXEC_PAGESIZE        8192
1231 
1232 #endif /* TARGET_ALPHA */
1233 
1234 #ifdef TARGET_S390X
1235 
1236 #define ELF_START_MMAP (0x20000000000ULL)
1237 
1238 #define ELF_CLASS	ELFCLASS64
1239 #define ELF_DATA	ELFDATA2MSB
1240 #define ELF_ARCH	EM_S390
1241 
1242 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1243 {
1244     regs->psw.addr = infop->entry;
1245     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1246     regs->gprs[15] = infop->start_stack;
1247 }
1248 
1249 #endif /* TARGET_S390X */
1250 
1251 #ifdef TARGET_TILEGX
1252 
1253 /* 42 bits real used address, a half for user mode */
1254 #define ELF_START_MMAP (0x00000020000000000ULL)
1255 
1256 #define elf_check_arch(x) ((x) == EM_TILEGX)
1257 
1258 #define ELF_CLASS   ELFCLASS64
1259 #define ELF_DATA    ELFDATA2LSB
1260 #define ELF_ARCH    EM_TILEGX
1261 
1262 static inline void init_thread(struct target_pt_regs *regs,
1263                                struct image_info *infop)
1264 {
1265     regs->pc = infop->entry;
1266     regs->sp = infop->start_stack;
1267 
1268 }
1269 
1270 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1271 
1272 #endif /* TARGET_TILEGX */
1273 
1274 #ifdef TARGET_HPPA
1275 
1276 #define ELF_START_MMAP  0x80000000
1277 #define ELF_CLASS       ELFCLASS32
1278 #define ELF_ARCH        EM_PARISC
1279 #define ELF_PLATFORM    "PARISC"
1280 #define STACK_GROWS_DOWN 0
1281 #define STACK_ALIGNMENT  64
1282 
1283 static inline void init_thread(struct target_pt_regs *regs,
1284                                struct image_info *infop)
1285 {
1286     regs->iaoq[0] = infop->entry;
1287     regs->iaoq[1] = infop->entry + 4;
1288     regs->gr[23] = 0;
1289     regs->gr[24] = infop->arg_start;
1290     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1291     /* The top-of-stack contains a linkage buffer.  */
1292     regs->gr[30] = infop->start_stack + 64;
1293     regs->gr[31] = infop->entry;
1294 }
1295 
1296 #endif /* TARGET_HPPA */
1297 
1298 #ifndef ELF_PLATFORM
1299 #define ELF_PLATFORM (NULL)
1300 #endif
1301 
1302 #ifndef ELF_MACHINE
1303 #define ELF_MACHINE ELF_ARCH
1304 #endif
1305 
1306 #ifndef elf_check_arch
1307 #define elf_check_arch(x) ((x) == ELF_ARCH)
1308 #endif
1309 
1310 #ifndef ELF_HWCAP
1311 #define ELF_HWCAP 0
1312 #endif
1313 
1314 #ifndef STACK_GROWS_DOWN
1315 #define STACK_GROWS_DOWN 1
1316 #endif
1317 
1318 #ifndef STACK_ALIGNMENT
1319 #define STACK_ALIGNMENT 16
1320 #endif
1321 
1322 #ifdef TARGET_ABI32
1323 #undef ELF_CLASS
1324 #define ELF_CLASS ELFCLASS32
1325 #undef bswaptls
1326 #define bswaptls(ptr) bswap32s(ptr)
1327 #endif
1328 
1329 #include "elf.h"
1330 
1331 struct exec
1332 {
1333     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1334     unsigned int a_text;   /* length of text, in bytes */
1335     unsigned int a_data;   /* length of data, in bytes */
1336     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1337     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1338     unsigned int a_entry;  /* start address */
1339     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1340     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1341 };
1342 
1343 
1344 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1345 #define OMAGIC 0407
1346 #define NMAGIC 0410
1347 #define ZMAGIC 0413
1348 #define QMAGIC 0314
1349 
1350 /* Necessary parameters */
1351 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1352 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1353                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1354 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1355 
1356 #define DLINFO_ITEMS 14
1357 
1358 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1359 {
1360     memcpy(to, from, n);
1361 }
1362 
1363 #ifdef BSWAP_NEEDED
1364 static void bswap_ehdr(struct elfhdr *ehdr)
1365 {
1366     bswap16s(&ehdr->e_type);            /* Object file type */
1367     bswap16s(&ehdr->e_machine);         /* Architecture */
1368     bswap32s(&ehdr->e_version);         /* Object file version */
1369     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1370     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1371     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1372     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1373     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1374     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1375     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1376     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1377     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1378     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1379 }
1380 
1381 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1382 {
1383     int i;
1384     for (i = 0; i < phnum; ++i, ++phdr) {
1385         bswap32s(&phdr->p_type);        /* Segment type */
1386         bswap32s(&phdr->p_flags);       /* Segment flags */
1387         bswaptls(&phdr->p_offset);      /* Segment file offset */
1388         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1389         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1390         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1391         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1392         bswaptls(&phdr->p_align);       /* Segment alignment */
1393     }
1394 }
1395 
1396 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1397 {
1398     int i;
1399     for (i = 0; i < shnum; ++i, ++shdr) {
1400         bswap32s(&shdr->sh_name);
1401         bswap32s(&shdr->sh_type);
1402         bswaptls(&shdr->sh_flags);
1403         bswaptls(&shdr->sh_addr);
1404         bswaptls(&shdr->sh_offset);
1405         bswaptls(&shdr->sh_size);
1406         bswap32s(&shdr->sh_link);
1407         bswap32s(&shdr->sh_info);
1408         bswaptls(&shdr->sh_addralign);
1409         bswaptls(&shdr->sh_entsize);
1410     }
1411 }
1412 
1413 static void bswap_sym(struct elf_sym *sym)
1414 {
1415     bswap32s(&sym->st_name);
1416     bswaptls(&sym->st_value);
1417     bswaptls(&sym->st_size);
1418     bswap16s(&sym->st_shndx);
1419 }
1420 #else
1421 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1422 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1423 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1424 static inline void bswap_sym(struct elf_sym *sym) { }
1425 #endif
1426 
1427 #ifdef USE_ELF_CORE_DUMP
1428 static int elf_core_dump(int, const CPUArchState *);
1429 #endif /* USE_ELF_CORE_DUMP */
1430 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1431 
1432 /* Verify the portions of EHDR within E_IDENT for the target.
1433    This can be performed before bswapping the entire header.  */
1434 static bool elf_check_ident(struct elfhdr *ehdr)
1435 {
1436     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1437             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1438             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1439             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1440             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1441             && ehdr->e_ident[EI_DATA] == ELF_DATA
1442             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1443 }
1444 
1445 /* Verify the portions of EHDR outside of E_IDENT for the target.
1446    This has to wait until after bswapping the header.  */
1447 static bool elf_check_ehdr(struct elfhdr *ehdr)
1448 {
1449     return (elf_check_arch(ehdr->e_machine)
1450             && ehdr->e_ehsize == sizeof(struct elfhdr)
1451             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1452             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1453 }
1454 
1455 /*
1456  * 'copy_elf_strings()' copies argument/envelope strings from user
1457  * memory to free pages in kernel mem. These are in a format ready
1458  * to be put directly into the top of new user memory.
1459  *
1460  */
1461 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1462                                   abi_ulong p, abi_ulong stack_limit)
1463 {
1464     char *tmp;
1465     int len, i;
1466     abi_ulong top = p;
1467 
1468     if (!p) {
1469         return 0;       /* bullet-proofing */
1470     }
1471 
1472     if (STACK_GROWS_DOWN) {
1473         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1474         for (i = argc - 1; i >= 0; --i) {
1475             tmp = argv[i];
1476             if (!tmp) {
1477                 fprintf(stderr, "VFS: argc is wrong");
1478                 exit(-1);
1479             }
1480             len = strlen(tmp) + 1;
1481             tmp += len;
1482 
1483             if (len > (p - stack_limit)) {
1484                 return 0;
1485             }
1486             while (len) {
1487                 int bytes_to_copy = (len > offset) ? offset : len;
1488                 tmp -= bytes_to_copy;
1489                 p -= bytes_to_copy;
1490                 offset -= bytes_to_copy;
1491                 len -= bytes_to_copy;
1492 
1493                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1494 
1495                 if (offset == 0) {
1496                     memcpy_to_target(p, scratch, top - p);
1497                     top = p;
1498                     offset = TARGET_PAGE_SIZE;
1499                 }
1500             }
1501         }
1502         if (p != top) {
1503             memcpy_to_target(p, scratch + offset, top - p);
1504         }
1505     } else {
1506         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1507         for (i = 0; i < argc; ++i) {
1508             tmp = argv[i];
1509             if (!tmp) {
1510                 fprintf(stderr, "VFS: argc is wrong");
1511                 exit(-1);
1512             }
1513             len = strlen(tmp) + 1;
1514             if (len > (stack_limit - p)) {
1515                 return 0;
1516             }
1517             while (len) {
1518                 int bytes_to_copy = (len > remaining) ? remaining : len;
1519 
1520                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1521 
1522                 tmp += bytes_to_copy;
1523                 remaining -= bytes_to_copy;
1524                 p += bytes_to_copy;
1525                 len -= bytes_to_copy;
1526 
1527                 if (remaining == 0) {
1528                     memcpy_to_target(top, scratch, p - top);
1529                     top = p;
1530                     remaining = TARGET_PAGE_SIZE;
1531                 }
1532             }
1533         }
1534         if (p != top) {
1535             memcpy_to_target(top, scratch, p - top);
1536         }
1537     }
1538 
1539     return p;
1540 }
1541 
1542 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1543  * argument/environment space. Newer kernels (>2.6.33) allow more,
1544  * dependent on stack size, but guarantee at least 32 pages for
1545  * backwards compatibility.
1546  */
1547 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1548 
1549 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1550                                  struct image_info *info)
1551 {
1552     abi_ulong size, error, guard;
1553 
1554     size = guest_stack_size;
1555     if (size < STACK_LOWER_LIMIT) {
1556         size = STACK_LOWER_LIMIT;
1557     }
1558     guard = TARGET_PAGE_SIZE;
1559     if (guard < qemu_real_host_page_size) {
1560         guard = qemu_real_host_page_size;
1561     }
1562 
1563     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1564                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1565     if (error == -1) {
1566         perror("mmap stack");
1567         exit(-1);
1568     }
1569 
1570     /* We reserve one extra page at the top of the stack as guard.  */
1571     if (STACK_GROWS_DOWN) {
1572         target_mprotect(error, guard, PROT_NONE);
1573         info->stack_limit = error + guard;
1574         return info->stack_limit + size - sizeof(void *);
1575     } else {
1576         target_mprotect(error + size, guard, PROT_NONE);
1577         info->stack_limit = error + size;
1578         return error;
1579     }
1580 }
1581 
1582 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1583    after the data section (i.e. bss).  */
1584 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1585 {
1586     uintptr_t host_start, host_map_start, host_end;
1587 
1588     last_bss = TARGET_PAGE_ALIGN(last_bss);
1589 
1590     /* ??? There is confusion between qemu_real_host_page_size and
1591        qemu_host_page_size here and elsewhere in target_mmap, which
1592        may lead to the end of the data section mapping from the file
1593        not being mapped.  At least there was an explicit test and
1594        comment for that here, suggesting that "the file size must
1595        be known".  The comment probably pre-dates the introduction
1596        of the fstat system call in target_mmap which does in fact
1597        find out the size.  What isn't clear is if the workaround
1598        here is still actually needed.  For now, continue with it,
1599        but merge it with the "normal" mmap that would allocate the bss.  */
1600 
1601     host_start = (uintptr_t) g2h(elf_bss);
1602     host_end = (uintptr_t) g2h(last_bss);
1603     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1604 
1605     if (host_map_start < host_end) {
1606         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1607                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1608         if (p == MAP_FAILED) {
1609             perror("cannot mmap brk");
1610             exit(-1);
1611         }
1612     }
1613 
1614     /* Ensure that the bss page(s) are valid */
1615     if ((page_get_flags(last_bss-1) & prot) != prot) {
1616         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1617     }
1618 
1619     if (host_start < host_map_start) {
1620         memset((void *)host_start, 0, host_map_start - host_start);
1621     }
1622 }
1623 
1624 #ifdef CONFIG_USE_FDPIC
1625 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1626 {
1627     uint16_t n;
1628     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1629 
1630     /* elf32_fdpic_loadseg */
1631     n = info->nsegs;
1632     while (n--) {
1633         sp -= 12;
1634         put_user_u32(loadsegs[n].addr, sp+0);
1635         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1636         put_user_u32(loadsegs[n].p_memsz, sp+8);
1637     }
1638 
1639     /* elf32_fdpic_loadmap */
1640     sp -= 4;
1641     put_user_u16(0, sp+0); /* version */
1642     put_user_u16(info->nsegs, sp+2); /* nsegs */
1643 
1644     info->personality = PER_LINUX_FDPIC;
1645     info->loadmap_addr = sp;
1646 
1647     return sp;
1648 }
1649 #endif
1650 
1651 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1652                                    struct elfhdr *exec,
1653                                    struct image_info *info,
1654                                    struct image_info *interp_info)
1655 {
1656     abi_ulong sp;
1657     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1658     int size;
1659     int i;
1660     abi_ulong u_rand_bytes;
1661     uint8_t k_rand_bytes[16];
1662     abi_ulong u_platform;
1663     const char *k_platform;
1664     const int n = sizeof(elf_addr_t);
1665 
1666     sp = p;
1667 
1668 #ifdef CONFIG_USE_FDPIC
1669     /* Needs to be before we load the env/argc/... */
1670     if (elf_is_fdpic(exec)) {
1671         /* Need 4 byte alignment for these structs */
1672         sp &= ~3;
1673         sp = loader_build_fdpic_loadmap(info, sp);
1674         info->other_info = interp_info;
1675         if (interp_info) {
1676             interp_info->other_info = info;
1677             sp = loader_build_fdpic_loadmap(interp_info, sp);
1678         }
1679     }
1680 #endif
1681 
1682     u_platform = 0;
1683     k_platform = ELF_PLATFORM;
1684     if (k_platform) {
1685         size_t len = strlen(k_platform) + 1;
1686         if (STACK_GROWS_DOWN) {
1687             sp -= (len + n - 1) & ~(n - 1);
1688             u_platform = sp;
1689             /* FIXME - check return value of memcpy_to_target() for failure */
1690             memcpy_to_target(sp, k_platform, len);
1691         } else {
1692             memcpy_to_target(sp, k_platform, len);
1693             u_platform = sp;
1694             sp += len + 1;
1695         }
1696     }
1697 
1698     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1699      * the argv and envp pointers.
1700      */
1701     if (STACK_GROWS_DOWN) {
1702         sp = QEMU_ALIGN_DOWN(sp, 16);
1703     } else {
1704         sp = QEMU_ALIGN_UP(sp, 16);
1705     }
1706 
1707     /*
1708      * Generate 16 random bytes for userspace PRNG seeding (not
1709      * cryptically secure but it's not the aim of QEMU).
1710      */
1711     for (i = 0; i < 16; i++) {
1712         k_rand_bytes[i] = rand();
1713     }
1714     if (STACK_GROWS_DOWN) {
1715         sp -= 16;
1716         u_rand_bytes = sp;
1717         /* FIXME - check return value of memcpy_to_target() for failure */
1718         memcpy_to_target(sp, k_rand_bytes, 16);
1719     } else {
1720         memcpy_to_target(sp, k_rand_bytes, 16);
1721         u_rand_bytes = sp;
1722         sp += 16;
1723     }
1724 
1725     size = (DLINFO_ITEMS + 1) * 2;
1726     if (k_platform)
1727         size += 2;
1728 #ifdef DLINFO_ARCH_ITEMS
1729     size += DLINFO_ARCH_ITEMS * 2;
1730 #endif
1731 #ifdef ELF_HWCAP2
1732     size += 2;
1733 #endif
1734     size += envc + argc + 2;
1735     size += 1;  /* argc itself */
1736     size *= n;
1737 
1738     /* Allocate space and finalize stack alignment for entry now.  */
1739     if (STACK_GROWS_DOWN) {
1740         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1741         sp = u_argc;
1742     } else {
1743         u_argc = sp;
1744         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1745     }
1746 
1747     u_argv = u_argc + n;
1748     u_envp = u_argv + (argc + 1) * n;
1749     u_auxv = u_envp + (envc + 1) * n;
1750     info->saved_auxv = u_auxv;
1751     info->arg_start = u_argv;
1752     info->arg_end = u_argv + argc * n;
1753 
1754     /* This is correct because Linux defines
1755      * elf_addr_t as Elf32_Off / Elf64_Off
1756      */
1757 #define NEW_AUX_ENT(id, val) do {               \
1758         put_user_ual(id, u_auxv);  u_auxv += n; \
1759         put_user_ual(val, u_auxv); u_auxv += n; \
1760     } while(0)
1761 
1762     /* There must be exactly DLINFO_ITEMS entries here.  */
1763     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1764     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1765     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1766     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1767     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1768     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1769     NEW_AUX_ENT(AT_ENTRY, info->entry);
1770     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1771     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1772     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1773     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1774     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1775     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1776     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1777 
1778 #ifdef ELF_HWCAP2
1779     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1780 #endif
1781 
1782     if (u_platform) {
1783         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1784     }
1785 #ifdef ARCH_DLINFO
1786     /*
1787      * ARCH_DLINFO must come last so platform specific code can enforce
1788      * special alignment requirements on the AUXV if necessary (eg. PPC).
1789      */
1790     ARCH_DLINFO;
1791 #endif
1792     NEW_AUX_ENT (AT_NULL, 0);
1793 #undef NEW_AUX_ENT
1794 
1795     info->auxv_len = u_argv - info->saved_auxv;
1796 
1797     put_user_ual(argc, u_argc);
1798 
1799     p = info->arg_strings;
1800     for (i = 0; i < argc; ++i) {
1801         put_user_ual(p, u_argv);
1802         u_argv += n;
1803         p += target_strlen(p) + 1;
1804     }
1805     put_user_ual(0, u_argv);
1806 
1807     p = info->env_strings;
1808     for (i = 0; i < envc; ++i) {
1809         put_user_ual(p, u_envp);
1810         u_envp += n;
1811         p += target_strlen(p) + 1;
1812     }
1813     put_user_ual(0, u_envp);
1814 
1815     return sp;
1816 }
1817 
1818 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1819 /* If the guest doesn't have a validation function just agree */
1820 static int validate_guest_space(unsigned long guest_base,
1821                                 unsigned long guest_size)
1822 {
1823     return 1;
1824 }
1825 #endif
1826 
1827 unsigned long init_guest_space(unsigned long host_start,
1828                                unsigned long host_size,
1829                                unsigned long guest_start,
1830                                bool fixed)
1831 {
1832     unsigned long current_start, real_start;
1833     int flags;
1834 
1835     assert(host_start || host_size);
1836 
1837     /* If just a starting address is given, then just verify that
1838      * address.  */
1839     if (host_start && !host_size) {
1840         if (validate_guest_space(host_start, host_size) == 1) {
1841             return host_start;
1842         } else {
1843             return (unsigned long)-1;
1844         }
1845     }
1846 
1847     /* Setup the initial flags and start address.  */
1848     current_start = host_start & qemu_host_page_mask;
1849     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1850     if (fixed) {
1851         flags |= MAP_FIXED;
1852     }
1853 
1854     /* Otherwise, a non-zero size region of memory needs to be mapped
1855      * and validated.  */
1856     while (1) {
1857         unsigned long real_size = host_size;
1858 
1859         /* Do not use mmap_find_vma here because that is limited to the
1860          * guest address space.  We are going to make the
1861          * guest address space fit whatever we're given.
1862          */
1863         real_start = (unsigned long)
1864             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1865         if (real_start == (unsigned long)-1) {
1866             return (unsigned long)-1;
1867         }
1868 
1869         /* Ensure the address is properly aligned.  */
1870         if (real_start & ~qemu_host_page_mask) {
1871             munmap((void *)real_start, host_size);
1872             real_size = host_size + qemu_host_page_size;
1873             real_start = (unsigned long)
1874                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1875             if (real_start == (unsigned long)-1) {
1876                 return (unsigned long)-1;
1877             }
1878             real_start = HOST_PAGE_ALIGN(real_start);
1879         }
1880 
1881         /* Check to see if the address is valid.  */
1882         if (!host_start || real_start == current_start) {
1883             int valid = validate_guest_space(real_start - guest_start,
1884                                              real_size);
1885             if (valid == 1) {
1886                 break;
1887             } else if (valid == -1) {
1888                 return (unsigned long)-1;
1889             }
1890             /* valid == 0, so try again. */
1891         }
1892 
1893         /* That address didn't work.  Unmap and try a different one.
1894          * The address the host picked because is typically right at
1895          * the top of the host address space and leaves the guest with
1896          * no usable address space.  Resort to a linear search.  We
1897          * already compensated for mmap_min_addr, so this should not
1898          * happen often.  Probably means we got unlucky and host
1899          * address space randomization put a shared library somewhere
1900          * inconvenient.
1901          */
1902         munmap((void *)real_start, host_size);
1903         current_start += qemu_host_page_size;
1904         if (host_start == current_start) {
1905             /* Theoretically possible if host doesn't have any suitably
1906              * aligned areas.  Normally the first mmap will fail.
1907              */
1908             return (unsigned long)-1;
1909         }
1910     }
1911 
1912     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1913 
1914     return real_start;
1915 }
1916 
1917 static void probe_guest_base(const char *image_name,
1918                              abi_ulong loaddr, abi_ulong hiaddr)
1919 {
1920     /* Probe for a suitable guest base address, if the user has not set
1921      * it explicitly, and set guest_base appropriately.
1922      * In case of error we will print a suitable message and exit.
1923      */
1924     const char *errmsg;
1925     if (!have_guest_base && !reserved_va) {
1926         unsigned long host_start, real_start, host_size;
1927 
1928         /* Round addresses to page boundaries.  */
1929         loaddr &= qemu_host_page_mask;
1930         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1931 
1932         if (loaddr < mmap_min_addr) {
1933             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1934         } else {
1935             host_start = loaddr;
1936             if (host_start != loaddr) {
1937                 errmsg = "Address overflow loading ELF binary";
1938                 goto exit_errmsg;
1939             }
1940         }
1941         host_size = hiaddr - loaddr;
1942 
1943         /* Setup the initial guest memory space with ranges gleaned from
1944          * the ELF image that is being loaded.
1945          */
1946         real_start = init_guest_space(host_start, host_size, loaddr, false);
1947         if (real_start == (unsigned long)-1) {
1948             errmsg = "Unable to find space for application";
1949             goto exit_errmsg;
1950         }
1951         guest_base = real_start - loaddr;
1952 
1953         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1954                       TARGET_ABI_FMT_lx " to 0x%lx\n",
1955                       loaddr, real_start);
1956     }
1957     return;
1958 
1959 exit_errmsg:
1960     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1961     exit(-1);
1962 }
1963 
1964 
1965 /* Load an ELF image into the address space.
1966 
1967    IMAGE_NAME is the filename of the image, to use in error messages.
1968    IMAGE_FD is the open file descriptor for the image.
1969 
1970    BPRM_BUF is a copy of the beginning of the file; this of course
1971    contains the elf file header at offset 0.  It is assumed that this
1972    buffer is sufficiently aligned to present no problems to the host
1973    in accessing data at aligned offsets within the buffer.
1974 
1975    On return: INFO values will be filled in, as necessary or available.  */
1976 
1977 static void load_elf_image(const char *image_name, int image_fd,
1978                            struct image_info *info, char **pinterp_name,
1979                            char bprm_buf[BPRM_BUF_SIZE])
1980 {
1981     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1982     struct elf_phdr *phdr;
1983     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1984     int i, retval;
1985     const char *errmsg;
1986 
1987     /* First of all, some simple consistency checks */
1988     errmsg = "Invalid ELF image for this architecture";
1989     if (!elf_check_ident(ehdr)) {
1990         goto exit_errmsg;
1991     }
1992     bswap_ehdr(ehdr);
1993     if (!elf_check_ehdr(ehdr)) {
1994         goto exit_errmsg;
1995     }
1996 
1997     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1998     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1999         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2000     } else {
2001         phdr = (struct elf_phdr *) alloca(i);
2002         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2003         if (retval != i) {
2004             goto exit_read;
2005         }
2006     }
2007     bswap_phdr(phdr, ehdr->e_phnum);
2008 
2009 #ifdef CONFIG_USE_FDPIC
2010     info->nsegs = 0;
2011     info->pt_dynamic_addr = 0;
2012 #endif
2013 
2014     mmap_lock();
2015 
2016     /* Find the maximum size of the image and allocate an appropriate
2017        amount of memory to handle that.  */
2018     loaddr = -1, hiaddr = 0;
2019     for (i = 0; i < ehdr->e_phnum; ++i) {
2020         if (phdr[i].p_type == PT_LOAD) {
2021             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2022             if (a < loaddr) {
2023                 loaddr = a;
2024             }
2025             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2026             if (a > hiaddr) {
2027                 hiaddr = a;
2028             }
2029 #ifdef CONFIG_USE_FDPIC
2030             ++info->nsegs;
2031 #endif
2032         }
2033     }
2034 
2035     load_addr = loaddr;
2036     if (ehdr->e_type == ET_DYN) {
2037         /* The image indicates that it can be loaded anywhere.  Find a
2038            location that can hold the memory space required.  If the
2039            image is pre-linked, LOADDR will be non-zero.  Since we do
2040            not supply MAP_FIXED here we'll use that address if and
2041            only if it remains available.  */
2042         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2043                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2044                                 -1, 0);
2045         if (load_addr == -1) {
2046             goto exit_perror;
2047         }
2048     } else if (pinterp_name != NULL) {
2049         /* This is the main executable.  Make sure that the low
2050            address does not conflict with MMAP_MIN_ADDR or the
2051            QEMU application itself.  */
2052         probe_guest_base(image_name, loaddr, hiaddr);
2053     }
2054     load_bias = load_addr - loaddr;
2055 
2056 #ifdef CONFIG_USE_FDPIC
2057     {
2058         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2059             g_malloc(sizeof(*loadsegs) * info->nsegs);
2060 
2061         for (i = 0; i < ehdr->e_phnum; ++i) {
2062             switch (phdr[i].p_type) {
2063             case PT_DYNAMIC:
2064                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2065                 break;
2066             case PT_LOAD:
2067                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2068                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2069                 loadsegs->p_memsz = phdr[i].p_memsz;
2070                 ++loadsegs;
2071                 break;
2072             }
2073         }
2074     }
2075 #endif
2076 
2077     info->load_bias = load_bias;
2078     info->load_addr = load_addr;
2079     info->entry = ehdr->e_entry + load_bias;
2080     info->start_code = -1;
2081     info->end_code = 0;
2082     info->start_data = -1;
2083     info->end_data = 0;
2084     info->brk = 0;
2085     info->elf_flags = ehdr->e_flags;
2086 
2087     for (i = 0; i < ehdr->e_phnum; i++) {
2088         struct elf_phdr *eppnt = phdr + i;
2089         if (eppnt->p_type == PT_LOAD) {
2090             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2091             int elf_prot = 0;
2092 
2093             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2094             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2095             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2096 
2097             vaddr = load_bias + eppnt->p_vaddr;
2098             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2099             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2100 
2101             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2102                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2103                                 image_fd, eppnt->p_offset - vaddr_po);
2104             if (error == -1) {
2105                 goto exit_perror;
2106             }
2107 
2108             vaddr_ef = vaddr + eppnt->p_filesz;
2109             vaddr_em = vaddr + eppnt->p_memsz;
2110 
2111             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2112             if (vaddr_ef < vaddr_em) {
2113                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2114             }
2115 
2116             /* Find the full program boundaries.  */
2117             if (elf_prot & PROT_EXEC) {
2118                 if (vaddr < info->start_code) {
2119                     info->start_code = vaddr;
2120                 }
2121                 if (vaddr_ef > info->end_code) {
2122                     info->end_code = vaddr_ef;
2123                 }
2124             }
2125             if (elf_prot & PROT_WRITE) {
2126                 if (vaddr < info->start_data) {
2127                     info->start_data = vaddr;
2128                 }
2129                 if (vaddr_ef > info->end_data) {
2130                     info->end_data = vaddr_ef;
2131                 }
2132                 if (vaddr_em > info->brk) {
2133                     info->brk = vaddr_em;
2134                 }
2135             }
2136         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2137             char *interp_name;
2138 
2139             if (*pinterp_name) {
2140                 errmsg = "Multiple PT_INTERP entries";
2141                 goto exit_errmsg;
2142             }
2143             interp_name = malloc(eppnt->p_filesz);
2144             if (!interp_name) {
2145                 goto exit_perror;
2146             }
2147 
2148             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2149                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2150                        eppnt->p_filesz);
2151             } else {
2152                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2153                                eppnt->p_offset);
2154                 if (retval != eppnt->p_filesz) {
2155                     goto exit_perror;
2156                 }
2157             }
2158             if (interp_name[eppnt->p_filesz - 1] != 0) {
2159                 errmsg = "Invalid PT_INTERP entry";
2160                 goto exit_errmsg;
2161             }
2162             *pinterp_name = interp_name;
2163         }
2164     }
2165 
2166     if (info->end_data == 0) {
2167         info->start_data = info->end_code;
2168         info->end_data = info->end_code;
2169         info->brk = info->end_code;
2170     }
2171 
2172     if (qemu_log_enabled()) {
2173         load_symbols(ehdr, image_fd, load_bias);
2174     }
2175 
2176     mmap_unlock();
2177 
2178     close(image_fd);
2179     return;
2180 
2181  exit_read:
2182     if (retval >= 0) {
2183         errmsg = "Incomplete read of file header";
2184         goto exit_errmsg;
2185     }
2186  exit_perror:
2187     errmsg = strerror(errno);
2188  exit_errmsg:
2189     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2190     exit(-1);
2191 }
2192 
2193 static void load_elf_interp(const char *filename, struct image_info *info,
2194                             char bprm_buf[BPRM_BUF_SIZE])
2195 {
2196     int fd, retval;
2197 
2198     fd = open(path(filename), O_RDONLY);
2199     if (fd < 0) {
2200         goto exit_perror;
2201     }
2202 
2203     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2204     if (retval < 0) {
2205         goto exit_perror;
2206     }
2207     if (retval < BPRM_BUF_SIZE) {
2208         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2209     }
2210 
2211     load_elf_image(filename, fd, info, NULL, bprm_buf);
2212     return;
2213 
2214  exit_perror:
2215     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2216     exit(-1);
2217 }
2218 
2219 static int symfind(const void *s0, const void *s1)
2220 {
2221     target_ulong addr = *(target_ulong *)s0;
2222     struct elf_sym *sym = (struct elf_sym *)s1;
2223     int result = 0;
2224     if (addr < sym->st_value) {
2225         result = -1;
2226     } else if (addr >= sym->st_value + sym->st_size) {
2227         result = 1;
2228     }
2229     return result;
2230 }
2231 
2232 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2233 {
2234 #if ELF_CLASS == ELFCLASS32
2235     struct elf_sym *syms = s->disas_symtab.elf32;
2236 #else
2237     struct elf_sym *syms = s->disas_symtab.elf64;
2238 #endif
2239 
2240     // binary search
2241     struct elf_sym *sym;
2242 
2243     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2244     if (sym != NULL) {
2245         return s->disas_strtab + sym->st_name;
2246     }
2247 
2248     return "";
2249 }
2250 
2251 /* FIXME: This should use elf_ops.h  */
2252 static int symcmp(const void *s0, const void *s1)
2253 {
2254     struct elf_sym *sym0 = (struct elf_sym *)s0;
2255     struct elf_sym *sym1 = (struct elf_sym *)s1;
2256     return (sym0->st_value < sym1->st_value)
2257         ? -1
2258         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2259 }
2260 
2261 /* Best attempt to load symbols from this ELF object. */
2262 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2263 {
2264     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2265     uint64_t segsz;
2266     struct elf_shdr *shdr;
2267     char *strings = NULL;
2268     struct syminfo *s = NULL;
2269     struct elf_sym *new_syms, *syms = NULL;
2270 
2271     shnum = hdr->e_shnum;
2272     i = shnum * sizeof(struct elf_shdr);
2273     shdr = (struct elf_shdr *)alloca(i);
2274     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2275         return;
2276     }
2277 
2278     bswap_shdr(shdr, shnum);
2279     for (i = 0; i < shnum; ++i) {
2280         if (shdr[i].sh_type == SHT_SYMTAB) {
2281             sym_idx = i;
2282             str_idx = shdr[i].sh_link;
2283             goto found;
2284         }
2285     }
2286 
2287     /* There will be no symbol table if the file was stripped.  */
2288     return;
2289 
2290  found:
2291     /* Now know where the strtab and symtab are.  Snarf them.  */
2292     s = g_try_new(struct syminfo, 1);
2293     if (!s) {
2294         goto give_up;
2295     }
2296 
2297     segsz = shdr[str_idx].sh_size;
2298     s->disas_strtab = strings = g_try_malloc(segsz);
2299     if (!strings ||
2300         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2301         goto give_up;
2302     }
2303 
2304     segsz = shdr[sym_idx].sh_size;
2305     syms = g_try_malloc(segsz);
2306     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2307         goto give_up;
2308     }
2309 
2310     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2311         /* Implausibly large symbol table: give up rather than ploughing
2312          * on with the number of symbols calculation overflowing
2313          */
2314         goto give_up;
2315     }
2316     nsyms = segsz / sizeof(struct elf_sym);
2317     for (i = 0; i < nsyms; ) {
2318         bswap_sym(syms + i);
2319         /* Throw away entries which we do not need.  */
2320         if (syms[i].st_shndx == SHN_UNDEF
2321             || syms[i].st_shndx >= SHN_LORESERVE
2322             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2323             if (i < --nsyms) {
2324                 syms[i] = syms[nsyms];
2325             }
2326         } else {
2327 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2328             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2329             syms[i].st_value &= ~(target_ulong)1;
2330 #endif
2331             syms[i].st_value += load_bias;
2332             i++;
2333         }
2334     }
2335 
2336     /* No "useful" symbol.  */
2337     if (nsyms == 0) {
2338         goto give_up;
2339     }
2340 
2341     /* Attempt to free the storage associated with the local symbols
2342        that we threw away.  Whether or not this has any effect on the
2343        memory allocation depends on the malloc implementation and how
2344        many symbols we managed to discard.  */
2345     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2346     if (new_syms == NULL) {
2347         goto give_up;
2348     }
2349     syms = new_syms;
2350 
2351     qsort(syms, nsyms, sizeof(*syms), symcmp);
2352 
2353     s->disas_num_syms = nsyms;
2354 #if ELF_CLASS == ELFCLASS32
2355     s->disas_symtab.elf32 = syms;
2356 #else
2357     s->disas_symtab.elf64 = syms;
2358 #endif
2359     s->lookup_symbol = lookup_symbolxx;
2360     s->next = syminfos;
2361     syminfos = s;
2362 
2363     return;
2364 
2365 give_up:
2366     g_free(s);
2367     g_free(strings);
2368     g_free(syms);
2369 }
2370 
2371 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2372 {
2373     struct image_info interp_info;
2374     struct elfhdr elf_ex;
2375     char *elf_interpreter = NULL;
2376     char *scratch;
2377 
2378     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2379 
2380     load_elf_image(bprm->filename, bprm->fd, info,
2381                    &elf_interpreter, bprm->buf);
2382 
2383     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2384        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2385        when we load the interpreter.  */
2386     elf_ex = *(struct elfhdr *)bprm->buf;
2387 
2388     /* Do this so that we can load the interpreter, if need be.  We will
2389        change some of these later */
2390     bprm->p = setup_arg_pages(bprm, info);
2391 
2392     scratch = g_new0(char, TARGET_PAGE_SIZE);
2393     if (STACK_GROWS_DOWN) {
2394         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2395                                    bprm->p, info->stack_limit);
2396         info->file_string = bprm->p;
2397         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2398                                    bprm->p, info->stack_limit);
2399         info->env_strings = bprm->p;
2400         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2401                                    bprm->p, info->stack_limit);
2402         info->arg_strings = bprm->p;
2403     } else {
2404         info->arg_strings = bprm->p;
2405         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2406                                    bprm->p, info->stack_limit);
2407         info->env_strings = bprm->p;
2408         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2409                                    bprm->p, info->stack_limit);
2410         info->file_string = bprm->p;
2411         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2412                                    bprm->p, info->stack_limit);
2413     }
2414 
2415     g_free(scratch);
2416 
2417     if (!bprm->p) {
2418         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2419         exit(-1);
2420     }
2421 
2422     if (elf_interpreter) {
2423         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2424 
2425         /* If the program interpreter is one of these two, then assume
2426            an iBCS2 image.  Otherwise assume a native linux image.  */
2427 
2428         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2429             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2430             info->personality = PER_SVR4;
2431 
2432             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2433                and some applications "depend" upon this behavior.  Since
2434                we do not have the power to recompile these, we emulate
2435                the SVr4 behavior.  Sigh.  */
2436             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2437                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2438         }
2439     }
2440 
2441     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2442                                 info, (elf_interpreter ? &interp_info : NULL));
2443     info->start_stack = bprm->p;
2444 
2445     /* If we have an interpreter, set that as the program's entry point.
2446        Copy the load_bias as well, to help PPC64 interpret the entry
2447        point as a function descriptor.  Do this after creating elf tables
2448        so that we copy the original program entry point into the AUXV.  */
2449     if (elf_interpreter) {
2450         info->load_bias = interp_info.load_bias;
2451         info->entry = interp_info.entry;
2452         free(elf_interpreter);
2453     }
2454 
2455 #ifdef USE_ELF_CORE_DUMP
2456     bprm->core_dump = &elf_core_dump;
2457 #endif
2458 
2459     return 0;
2460 }
2461 
2462 #ifdef USE_ELF_CORE_DUMP
2463 /*
2464  * Definitions to generate Intel SVR4-like core files.
2465  * These mostly have the same names as the SVR4 types with "target_elf_"
2466  * tacked on the front to prevent clashes with linux definitions,
2467  * and the typedef forms have been avoided.  This is mostly like
2468  * the SVR4 structure, but more Linuxy, with things that Linux does
2469  * not support and which gdb doesn't really use excluded.
2470  *
2471  * Fields we don't dump (their contents is zero) in linux-user qemu
2472  * are marked with XXX.
2473  *
2474  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2475  *
2476  * Porting ELF coredump for target is (quite) simple process.  First you
2477  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2478  * the target resides):
2479  *
2480  * #define USE_ELF_CORE_DUMP
2481  *
2482  * Next you define type of register set used for dumping.  ELF specification
2483  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2484  *
2485  * typedef <target_regtype> target_elf_greg_t;
2486  * #define ELF_NREG <number of registers>
2487  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2488  *
2489  * Last step is to implement target specific function that copies registers
2490  * from given cpu into just specified register set.  Prototype is:
2491  *
2492  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2493  *                                const CPUArchState *env);
2494  *
2495  * Parameters:
2496  *     regs - copy register values into here (allocated and zeroed by caller)
2497  *     env - copy registers from here
2498  *
2499  * Example for ARM target is provided in this file.
2500  */
2501 
2502 /* An ELF note in memory */
2503 struct memelfnote {
2504     const char *name;
2505     size_t     namesz;
2506     size_t     namesz_rounded;
2507     int        type;
2508     size_t     datasz;
2509     size_t     datasz_rounded;
2510     void       *data;
2511     size_t     notesz;
2512 };
2513 
2514 struct target_elf_siginfo {
2515     abi_int    si_signo; /* signal number */
2516     abi_int    si_code;  /* extra code */
2517     abi_int    si_errno; /* errno */
2518 };
2519 
2520 struct target_elf_prstatus {
2521     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2522     abi_short          pr_cursig;    /* Current signal */
2523     abi_ulong          pr_sigpend;   /* XXX */
2524     abi_ulong          pr_sighold;   /* XXX */
2525     target_pid_t       pr_pid;
2526     target_pid_t       pr_ppid;
2527     target_pid_t       pr_pgrp;
2528     target_pid_t       pr_sid;
2529     struct target_timeval pr_utime;  /* XXX User time */
2530     struct target_timeval pr_stime;  /* XXX System time */
2531     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2532     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2533     target_elf_gregset_t      pr_reg;       /* GP registers */
2534     abi_int            pr_fpvalid;   /* XXX */
2535 };
2536 
2537 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2538 
2539 struct target_elf_prpsinfo {
2540     char         pr_state;       /* numeric process state */
2541     char         pr_sname;       /* char for pr_state */
2542     char         pr_zomb;        /* zombie */
2543     char         pr_nice;        /* nice val */
2544     abi_ulong    pr_flag;        /* flags */
2545     target_uid_t pr_uid;
2546     target_gid_t pr_gid;
2547     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2548     /* Lots missing */
2549     char    pr_fname[16];           /* filename of executable */
2550     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2551 };
2552 
2553 /* Here is the structure in which status of each thread is captured. */
2554 struct elf_thread_status {
2555     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2556     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2557 #if 0
2558     elf_fpregset_t fpu;             /* NT_PRFPREG */
2559     struct task_struct *thread;
2560     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2561 #endif
2562     struct memelfnote notes[1];
2563     int num_notes;
2564 };
2565 
2566 struct elf_note_info {
2567     struct memelfnote   *notes;
2568     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2569     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2570 
2571     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2572 #if 0
2573     /*
2574      * Current version of ELF coredump doesn't support
2575      * dumping fp regs etc.
2576      */
2577     elf_fpregset_t *fpu;
2578     elf_fpxregset_t *xfpu;
2579     int thread_status_size;
2580 #endif
2581     int notes_size;
2582     int numnote;
2583 };
2584 
2585 struct vm_area_struct {
2586     target_ulong   vma_start;  /* start vaddr of memory region */
2587     target_ulong   vma_end;    /* end vaddr of memory region */
2588     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2589     QTAILQ_ENTRY(vm_area_struct) vma_link;
2590 };
2591 
2592 struct mm_struct {
2593     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2594     int mm_count;           /* number of mappings */
2595 };
2596 
2597 static struct mm_struct *vma_init(void);
2598 static void vma_delete(struct mm_struct *);
2599 static int vma_add_mapping(struct mm_struct *, target_ulong,
2600                            target_ulong, abi_ulong);
2601 static int vma_get_mapping_count(const struct mm_struct *);
2602 static struct vm_area_struct *vma_first(const struct mm_struct *);
2603 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2604 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2605 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2606                       unsigned long flags);
2607 
2608 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2609 static void fill_note(struct memelfnote *, const char *, int,
2610                       unsigned int, void *);
2611 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2612 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2613 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2614 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2615 static size_t note_size(const struct memelfnote *);
2616 static void free_note_info(struct elf_note_info *);
2617 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2618 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2619 static int core_dump_filename(const TaskState *, char *, size_t);
2620 
2621 static int dump_write(int, const void *, size_t);
2622 static int write_note(struct memelfnote *, int);
2623 static int write_note_info(struct elf_note_info *, int);
2624 
2625 #ifdef BSWAP_NEEDED
2626 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2627 {
2628     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2629     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2630     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2631     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2632     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2633     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2634     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2635     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2636     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2637     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2638     /* cpu times are not filled, so we skip them */
2639     /* regs should be in correct format already */
2640     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2641 }
2642 
2643 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2644 {
2645     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2646     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2647     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2648     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2649     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2650     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2651     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2652 }
2653 
2654 static void bswap_note(struct elf_note *en)
2655 {
2656     bswap32s(&en->n_namesz);
2657     bswap32s(&en->n_descsz);
2658     bswap32s(&en->n_type);
2659 }
2660 #else
2661 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2662 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2663 static inline void bswap_note(struct elf_note *en) { }
2664 #endif /* BSWAP_NEEDED */
2665 
2666 /*
2667  * Minimal support for linux memory regions.  These are needed
2668  * when we are finding out what memory exactly belongs to
2669  * emulated process.  No locks needed here, as long as
2670  * thread that received the signal is stopped.
2671  */
2672 
2673 static struct mm_struct *vma_init(void)
2674 {
2675     struct mm_struct *mm;
2676 
2677     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2678         return (NULL);
2679 
2680     mm->mm_count = 0;
2681     QTAILQ_INIT(&mm->mm_mmap);
2682 
2683     return (mm);
2684 }
2685 
2686 static void vma_delete(struct mm_struct *mm)
2687 {
2688     struct vm_area_struct *vma;
2689 
2690     while ((vma = vma_first(mm)) != NULL) {
2691         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2692         g_free(vma);
2693     }
2694     g_free(mm);
2695 }
2696 
2697 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2698                            target_ulong end, abi_ulong flags)
2699 {
2700     struct vm_area_struct *vma;
2701 
2702     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2703         return (-1);
2704 
2705     vma->vma_start = start;
2706     vma->vma_end = end;
2707     vma->vma_flags = flags;
2708 
2709     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2710     mm->mm_count++;
2711 
2712     return (0);
2713 }
2714 
2715 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2716 {
2717     return (QTAILQ_FIRST(&mm->mm_mmap));
2718 }
2719 
2720 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2721 {
2722     return (QTAILQ_NEXT(vma, vma_link));
2723 }
2724 
2725 static int vma_get_mapping_count(const struct mm_struct *mm)
2726 {
2727     return (mm->mm_count);
2728 }
2729 
2730 /*
2731  * Calculate file (dump) size of given memory region.
2732  */
2733 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2734 {
2735     /* if we cannot even read the first page, skip it */
2736     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2737         return (0);
2738 
2739     /*
2740      * Usually we don't dump executable pages as they contain
2741      * non-writable code that debugger can read directly from
2742      * target library etc.  However, thread stacks are marked
2743      * also executable so we read in first page of given region
2744      * and check whether it contains elf header.  If there is
2745      * no elf header, we dump it.
2746      */
2747     if (vma->vma_flags & PROT_EXEC) {
2748         char page[TARGET_PAGE_SIZE];
2749 
2750         copy_from_user(page, vma->vma_start, sizeof (page));
2751         if ((page[EI_MAG0] == ELFMAG0) &&
2752             (page[EI_MAG1] == ELFMAG1) &&
2753             (page[EI_MAG2] == ELFMAG2) &&
2754             (page[EI_MAG3] == ELFMAG3)) {
2755             /*
2756              * Mappings are possibly from ELF binary.  Don't dump
2757              * them.
2758              */
2759             return (0);
2760         }
2761     }
2762 
2763     return (vma->vma_end - vma->vma_start);
2764 }
2765 
2766 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2767                       unsigned long flags)
2768 {
2769     struct mm_struct *mm = (struct mm_struct *)priv;
2770 
2771     vma_add_mapping(mm, start, end, flags);
2772     return (0);
2773 }
2774 
2775 static void fill_note(struct memelfnote *note, const char *name, int type,
2776                       unsigned int sz, void *data)
2777 {
2778     unsigned int namesz;
2779 
2780     namesz = strlen(name) + 1;
2781     note->name = name;
2782     note->namesz = namesz;
2783     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2784     note->type = type;
2785     note->datasz = sz;
2786     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2787 
2788     note->data = data;
2789 
2790     /*
2791      * We calculate rounded up note size here as specified by
2792      * ELF document.
2793      */
2794     note->notesz = sizeof (struct elf_note) +
2795         note->namesz_rounded + note->datasz_rounded;
2796 }
2797 
2798 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2799                             uint32_t flags)
2800 {
2801     (void) memset(elf, 0, sizeof(*elf));
2802 
2803     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2804     elf->e_ident[EI_CLASS] = ELF_CLASS;
2805     elf->e_ident[EI_DATA] = ELF_DATA;
2806     elf->e_ident[EI_VERSION] = EV_CURRENT;
2807     elf->e_ident[EI_OSABI] = ELF_OSABI;
2808 
2809     elf->e_type = ET_CORE;
2810     elf->e_machine = machine;
2811     elf->e_version = EV_CURRENT;
2812     elf->e_phoff = sizeof(struct elfhdr);
2813     elf->e_flags = flags;
2814     elf->e_ehsize = sizeof(struct elfhdr);
2815     elf->e_phentsize = sizeof(struct elf_phdr);
2816     elf->e_phnum = segs;
2817 
2818     bswap_ehdr(elf);
2819 }
2820 
2821 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2822 {
2823     phdr->p_type = PT_NOTE;
2824     phdr->p_offset = offset;
2825     phdr->p_vaddr = 0;
2826     phdr->p_paddr = 0;
2827     phdr->p_filesz = sz;
2828     phdr->p_memsz = 0;
2829     phdr->p_flags = 0;
2830     phdr->p_align = 0;
2831 
2832     bswap_phdr(phdr, 1);
2833 }
2834 
2835 static size_t note_size(const struct memelfnote *note)
2836 {
2837     return (note->notesz);
2838 }
2839 
2840 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2841                           const TaskState *ts, int signr)
2842 {
2843     (void) memset(prstatus, 0, sizeof (*prstatus));
2844     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2845     prstatus->pr_pid = ts->ts_tid;
2846     prstatus->pr_ppid = getppid();
2847     prstatus->pr_pgrp = getpgrp();
2848     prstatus->pr_sid = getsid(0);
2849 
2850     bswap_prstatus(prstatus);
2851 }
2852 
2853 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2854 {
2855     char *base_filename;
2856     unsigned int i, len;
2857 
2858     (void) memset(psinfo, 0, sizeof (*psinfo));
2859 
2860     len = ts->info->arg_end - ts->info->arg_start;
2861     if (len >= ELF_PRARGSZ)
2862         len = ELF_PRARGSZ - 1;
2863     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2864         return -EFAULT;
2865     for (i = 0; i < len; i++)
2866         if (psinfo->pr_psargs[i] == 0)
2867             psinfo->pr_psargs[i] = ' ';
2868     psinfo->pr_psargs[len] = 0;
2869 
2870     psinfo->pr_pid = getpid();
2871     psinfo->pr_ppid = getppid();
2872     psinfo->pr_pgrp = getpgrp();
2873     psinfo->pr_sid = getsid(0);
2874     psinfo->pr_uid = getuid();
2875     psinfo->pr_gid = getgid();
2876 
2877     base_filename = g_path_get_basename(ts->bprm->filename);
2878     /*
2879      * Using strncpy here is fine: at max-length,
2880      * this field is not NUL-terminated.
2881      */
2882     (void) strncpy(psinfo->pr_fname, base_filename,
2883                    sizeof(psinfo->pr_fname));
2884 
2885     g_free(base_filename);
2886     bswap_psinfo(psinfo);
2887     return (0);
2888 }
2889 
2890 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2891 {
2892     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2893     elf_addr_t orig_auxv = auxv;
2894     void *ptr;
2895     int len = ts->info->auxv_len;
2896 
2897     /*
2898      * Auxiliary vector is stored in target process stack.  It contains
2899      * {type, value} pairs that we need to dump into note.  This is not
2900      * strictly necessary but we do it here for sake of completeness.
2901      */
2902 
2903     /* read in whole auxv vector and copy it to memelfnote */
2904     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2905     if (ptr != NULL) {
2906         fill_note(note, "CORE", NT_AUXV, len, ptr);
2907         unlock_user(ptr, auxv, len);
2908     }
2909 }
2910 
2911 /*
2912  * Constructs name of coredump file.  We have following convention
2913  * for the name:
2914  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2915  *
2916  * Returns 0 in case of success, -1 otherwise (errno is set).
2917  */
2918 static int core_dump_filename(const TaskState *ts, char *buf,
2919                               size_t bufsize)
2920 {
2921     char timestamp[64];
2922     char *base_filename = NULL;
2923     struct timeval tv;
2924     struct tm tm;
2925 
2926     assert(bufsize >= PATH_MAX);
2927 
2928     if (gettimeofday(&tv, NULL) < 0) {
2929         (void) fprintf(stderr, "unable to get current timestamp: %s",
2930                        strerror(errno));
2931         return (-1);
2932     }
2933 
2934     base_filename = g_path_get_basename(ts->bprm->filename);
2935     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2936                     localtime_r(&tv.tv_sec, &tm));
2937     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2938                     base_filename, timestamp, (int)getpid());
2939     g_free(base_filename);
2940 
2941     return (0);
2942 }
2943 
2944 static int dump_write(int fd, const void *ptr, size_t size)
2945 {
2946     const char *bufp = (const char *)ptr;
2947     ssize_t bytes_written, bytes_left;
2948     struct rlimit dumpsize;
2949     off_t pos;
2950 
2951     bytes_written = 0;
2952     getrlimit(RLIMIT_CORE, &dumpsize);
2953     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2954         if (errno == ESPIPE) { /* not a seekable stream */
2955             bytes_left = size;
2956         } else {
2957             return pos;
2958         }
2959     } else {
2960         if (dumpsize.rlim_cur <= pos) {
2961             return -1;
2962         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2963             bytes_left = size;
2964         } else {
2965             size_t limit_left=dumpsize.rlim_cur - pos;
2966             bytes_left = limit_left >= size ? size : limit_left ;
2967         }
2968     }
2969 
2970     /*
2971      * In normal conditions, single write(2) should do but
2972      * in case of socket etc. this mechanism is more portable.
2973      */
2974     do {
2975         bytes_written = write(fd, bufp, bytes_left);
2976         if (bytes_written < 0) {
2977             if (errno == EINTR)
2978                 continue;
2979             return (-1);
2980         } else if (bytes_written == 0) { /* eof */
2981             return (-1);
2982         }
2983         bufp += bytes_written;
2984         bytes_left -= bytes_written;
2985     } while (bytes_left > 0);
2986 
2987     return (0);
2988 }
2989 
2990 static int write_note(struct memelfnote *men, int fd)
2991 {
2992     struct elf_note en;
2993 
2994     en.n_namesz = men->namesz;
2995     en.n_type = men->type;
2996     en.n_descsz = men->datasz;
2997 
2998     bswap_note(&en);
2999 
3000     if (dump_write(fd, &en, sizeof(en)) != 0)
3001         return (-1);
3002     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3003         return (-1);
3004     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3005         return (-1);
3006 
3007     return (0);
3008 }
3009 
3010 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3011 {
3012     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3013     TaskState *ts = (TaskState *)cpu->opaque;
3014     struct elf_thread_status *ets;
3015 
3016     ets = g_malloc0(sizeof (*ets));
3017     ets->num_notes = 1; /* only prstatus is dumped */
3018     fill_prstatus(&ets->prstatus, ts, 0);
3019     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3020     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3021               &ets->prstatus);
3022 
3023     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3024 
3025     info->notes_size += note_size(&ets->notes[0]);
3026 }
3027 
3028 static void init_note_info(struct elf_note_info *info)
3029 {
3030     /* Initialize the elf_note_info structure so that it is at
3031      * least safe to call free_note_info() on it. Must be
3032      * called before calling fill_note_info().
3033      */
3034     memset(info, 0, sizeof (*info));
3035     QTAILQ_INIT(&info->thread_list);
3036 }
3037 
3038 static int fill_note_info(struct elf_note_info *info,
3039                           long signr, const CPUArchState *env)
3040 {
3041 #define NUMNOTES 3
3042     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3043     TaskState *ts = (TaskState *)cpu->opaque;
3044     int i;
3045 
3046     info->notes = g_new0(struct memelfnote, NUMNOTES);
3047     if (info->notes == NULL)
3048         return (-ENOMEM);
3049     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3050     if (info->prstatus == NULL)
3051         return (-ENOMEM);
3052     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3053     if (info->prstatus == NULL)
3054         return (-ENOMEM);
3055 
3056     /*
3057      * First fill in status (and registers) of current thread
3058      * including process info & aux vector.
3059      */
3060     fill_prstatus(info->prstatus, ts, signr);
3061     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3062     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3063               sizeof (*info->prstatus), info->prstatus);
3064     fill_psinfo(info->psinfo, ts);
3065     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3066               sizeof (*info->psinfo), info->psinfo);
3067     fill_auxv_note(&info->notes[2], ts);
3068     info->numnote = 3;
3069 
3070     info->notes_size = 0;
3071     for (i = 0; i < info->numnote; i++)
3072         info->notes_size += note_size(&info->notes[i]);
3073 
3074     /* read and fill status of all threads */
3075     cpu_list_lock();
3076     CPU_FOREACH(cpu) {
3077         if (cpu == thread_cpu) {
3078             continue;
3079         }
3080         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3081     }
3082     cpu_list_unlock();
3083 
3084     return (0);
3085 }
3086 
3087 static void free_note_info(struct elf_note_info *info)
3088 {
3089     struct elf_thread_status *ets;
3090 
3091     while (!QTAILQ_EMPTY(&info->thread_list)) {
3092         ets = QTAILQ_FIRST(&info->thread_list);
3093         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3094         g_free(ets);
3095     }
3096 
3097     g_free(info->prstatus);
3098     g_free(info->psinfo);
3099     g_free(info->notes);
3100 }
3101 
3102 static int write_note_info(struct elf_note_info *info, int fd)
3103 {
3104     struct elf_thread_status *ets;
3105     int i, error = 0;
3106 
3107     /* write prstatus, psinfo and auxv for current thread */
3108     for (i = 0; i < info->numnote; i++)
3109         if ((error = write_note(&info->notes[i], fd)) != 0)
3110             return (error);
3111 
3112     /* write prstatus for each thread */
3113     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3114         if ((error = write_note(&ets->notes[0], fd)) != 0)
3115             return (error);
3116     }
3117 
3118     return (0);
3119 }
3120 
3121 /*
3122  * Write out ELF coredump.
3123  *
3124  * See documentation of ELF object file format in:
3125  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3126  *
3127  * Coredump format in linux is following:
3128  *
3129  * 0   +----------------------+         \
3130  *     | ELF header           | ET_CORE  |
3131  *     +----------------------+          |
3132  *     | ELF program headers  |          |--- headers
3133  *     | - NOTE section       |          |
3134  *     | - PT_LOAD sections   |          |
3135  *     +----------------------+         /
3136  *     | NOTEs:               |
3137  *     | - NT_PRSTATUS        |
3138  *     | - NT_PRSINFO         |
3139  *     | - NT_AUXV            |
3140  *     +----------------------+ <-- aligned to target page
3141  *     | Process memory dump  |
3142  *     :                      :
3143  *     .                      .
3144  *     :                      :
3145  *     |                      |
3146  *     +----------------------+
3147  *
3148  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3149  * NT_PRSINFO  -> struct elf_prpsinfo
3150  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3151  *
3152  * Format follows System V format as close as possible.  Current
3153  * version limitations are as follows:
3154  *     - no floating point registers are dumped
3155  *
3156  * Function returns 0 in case of success, negative errno otherwise.
3157  *
3158  * TODO: make this work also during runtime: it should be
3159  * possible to force coredump from running process and then
3160  * continue processing.  For example qemu could set up SIGUSR2
3161  * handler (provided that target process haven't registered
3162  * handler for that) that does the dump when signal is received.
3163  */
3164 static int elf_core_dump(int signr, const CPUArchState *env)
3165 {
3166     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3167     const TaskState *ts = (const TaskState *)cpu->opaque;
3168     struct vm_area_struct *vma = NULL;
3169     char corefile[PATH_MAX];
3170     struct elf_note_info info;
3171     struct elfhdr elf;
3172     struct elf_phdr phdr;
3173     struct rlimit dumpsize;
3174     struct mm_struct *mm = NULL;
3175     off_t offset = 0, data_offset = 0;
3176     int segs = 0;
3177     int fd = -1;
3178 
3179     init_note_info(&info);
3180 
3181     errno = 0;
3182     getrlimit(RLIMIT_CORE, &dumpsize);
3183     if (dumpsize.rlim_cur == 0)
3184         return 0;
3185 
3186     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3187         return (-errno);
3188 
3189     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3190                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3191         return (-errno);
3192 
3193     /*
3194      * Walk through target process memory mappings and
3195      * set up structure containing this information.  After
3196      * this point vma_xxx functions can be used.
3197      */
3198     if ((mm = vma_init()) == NULL)
3199         goto out;
3200 
3201     walk_memory_regions(mm, vma_walker);
3202     segs = vma_get_mapping_count(mm);
3203 
3204     /*
3205      * Construct valid coredump ELF header.  We also
3206      * add one more segment for notes.
3207      */
3208     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3209     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3210         goto out;
3211 
3212     /* fill in the in-memory version of notes */
3213     if (fill_note_info(&info, signr, env) < 0)
3214         goto out;
3215 
3216     offset += sizeof (elf);                             /* elf header */
3217     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3218 
3219     /* write out notes program header */
3220     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3221 
3222     offset += info.notes_size;
3223     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3224         goto out;
3225 
3226     /*
3227      * ELF specification wants data to start at page boundary so
3228      * we align it here.
3229      */
3230     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3231 
3232     /*
3233      * Write program headers for memory regions mapped in
3234      * the target process.
3235      */
3236     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3237         (void) memset(&phdr, 0, sizeof (phdr));
3238 
3239         phdr.p_type = PT_LOAD;
3240         phdr.p_offset = offset;
3241         phdr.p_vaddr = vma->vma_start;
3242         phdr.p_paddr = 0;
3243         phdr.p_filesz = vma_dump_size(vma);
3244         offset += phdr.p_filesz;
3245         phdr.p_memsz = vma->vma_end - vma->vma_start;
3246         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3247         if (vma->vma_flags & PROT_WRITE)
3248             phdr.p_flags |= PF_W;
3249         if (vma->vma_flags & PROT_EXEC)
3250             phdr.p_flags |= PF_X;
3251         phdr.p_align = ELF_EXEC_PAGESIZE;
3252 
3253         bswap_phdr(&phdr, 1);
3254         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3255             goto out;
3256         }
3257     }
3258 
3259     /*
3260      * Next we write notes just after program headers.  No
3261      * alignment needed here.
3262      */
3263     if (write_note_info(&info, fd) < 0)
3264         goto out;
3265 
3266     /* align data to page boundary */
3267     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3268         goto out;
3269 
3270     /*
3271      * Finally we can dump process memory into corefile as well.
3272      */
3273     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3274         abi_ulong addr;
3275         abi_ulong end;
3276 
3277         end = vma->vma_start + vma_dump_size(vma);
3278 
3279         for (addr = vma->vma_start; addr < end;
3280              addr += TARGET_PAGE_SIZE) {
3281             char page[TARGET_PAGE_SIZE];
3282             int error;
3283 
3284             /*
3285              *  Read in page from target process memory and
3286              *  write it to coredump file.
3287              */
3288             error = copy_from_user(page, addr, sizeof (page));
3289             if (error != 0) {
3290                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3291                                addr);
3292                 errno = -error;
3293                 goto out;
3294             }
3295             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3296                 goto out;
3297         }
3298     }
3299 
3300  out:
3301     free_note_info(&info);
3302     if (mm != NULL)
3303         vma_delete(mm);
3304     (void) close(fd);
3305 
3306     if (errno != 0)
3307         return (-errno);
3308     return (0);
3309 }
3310 #endif /* USE_ELF_CORE_DUMP */
3311 
3312 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3313 {
3314     init_thread(regs, infop);
3315 }
3316