xref: /qemu/linux-user/elfload.c (revision ca941c40)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "target_signal.h"
22 
23 #ifdef _ARCH_PPC64
24 #undef ARCH_DLINFO
25 #undef ELF_PLATFORM
26 #undef ELF_HWCAP
27 #undef ELF_HWCAP2
28 #undef ELF_CLASS
29 #undef ELF_DATA
30 #undef ELF_ARCH
31 #endif
32 
33 #define ELF_OSABI   ELFOSABI_SYSV
34 
35 /* from personality.h */
36 
37 /*
38  * Flags for bug emulation.
39  *
40  * These occupy the top three bytes.
41  */
42 enum {
43     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
44     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
45                                            descriptors (signal handling) */
46     MMAP_PAGE_ZERO =    0x0100000,
47     ADDR_COMPAT_LAYOUT = 0x0200000,
48     READ_IMPLIES_EXEC = 0x0400000,
49     ADDR_LIMIT_32BIT =  0x0800000,
50     SHORT_INODE =       0x1000000,
51     WHOLE_SECONDS =     0x2000000,
52     STICKY_TIMEOUTS =   0x4000000,
53     ADDR_LIMIT_3GB =    0x8000000,
54 };
55 
56 /*
57  * Personality types.
58  *
59  * These go in the low byte.  Avoid using the top bit, it will
60  * conflict with error returns.
61  */
62 enum {
63     PER_LINUX =         0x0000,
64     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
65     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
66     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
67     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
68     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
69     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
70     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
72     PER_BSD =           0x0006,
73     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
74     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
75     PER_LINUX32 =       0x0008,
76     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
77     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
78     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
79     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
80     PER_RISCOS =        0x000c,
81     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
82     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
83     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
84     PER_HPUX =          0x0010,
85     PER_MASK =          0x00ff,
86 };
87 
88 /*
89  * Return the base personality without flags.
90  */
91 #define personality(pers)       (pers & PER_MASK)
92 
93 int info_is_fdpic(struct image_info *info)
94 {
95     return info->personality == PER_LINUX_FDPIC;
96 }
97 
98 /* this flag is uneffective under linux too, should be deleted */
99 #ifndef MAP_DENYWRITE
100 #define MAP_DENYWRITE 0
101 #endif
102 
103 /* should probably go in elf.h */
104 #ifndef ELIBBAD
105 #define ELIBBAD 80
106 #endif
107 
108 #if TARGET_BIG_ENDIAN
109 #define ELF_DATA        ELFDATA2MSB
110 #else
111 #define ELF_DATA        ELFDATA2LSB
112 #endif
113 
114 #ifdef TARGET_ABI_MIPSN32
115 typedef abi_ullong      target_elf_greg_t;
116 #define tswapreg(ptr)   tswap64(ptr)
117 #else
118 typedef abi_ulong       target_elf_greg_t;
119 #define tswapreg(ptr)   tswapal(ptr)
120 #endif
121 
122 #ifdef USE_UID16
123 typedef abi_ushort      target_uid_t;
124 typedef abi_ushort      target_gid_t;
125 #else
126 typedef abi_uint        target_uid_t;
127 typedef abi_uint        target_gid_t;
128 #endif
129 typedef abi_int         target_pid_t;
130 
131 #ifdef TARGET_I386
132 
133 #define ELF_PLATFORM get_elf_platform()
134 
135 static const char *get_elf_platform(void)
136 {
137     static char elf_platform[] = "i386";
138     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
139     if (family > 6)
140         family = 6;
141     if (family >= 3)
142         elf_platform[1] = '0' + family;
143     return elf_platform;
144 }
145 
146 #define ELF_HWCAP get_elf_hwcap()
147 
148 static uint32_t get_elf_hwcap(void)
149 {
150     X86CPU *cpu = X86_CPU(thread_cpu);
151 
152     return cpu->env.features[FEAT_1_EDX];
153 }
154 
155 #ifdef TARGET_X86_64
156 #define ELF_START_MMAP 0x2aaaaab000ULL
157 
158 #define ELF_CLASS      ELFCLASS64
159 #define ELF_ARCH       EM_X86_64
160 
161 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
162 {
163     regs->rax = 0;
164     regs->rsp = infop->start_stack;
165     regs->rip = infop->entry;
166 }
167 
168 #define ELF_NREG    27
169 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
170 
171 /*
172  * Note that ELF_NREG should be 29 as there should be place for
173  * TRAPNO and ERR "registers" as well but linux doesn't dump
174  * those.
175  *
176  * See linux kernel: arch/x86/include/asm/elf.h
177  */
178 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
179 {
180     (*regs)[0] = tswapreg(env->regs[15]);
181     (*regs)[1] = tswapreg(env->regs[14]);
182     (*regs)[2] = tswapreg(env->regs[13]);
183     (*regs)[3] = tswapreg(env->regs[12]);
184     (*regs)[4] = tswapreg(env->regs[R_EBP]);
185     (*regs)[5] = tswapreg(env->regs[R_EBX]);
186     (*regs)[6] = tswapreg(env->regs[11]);
187     (*regs)[7] = tswapreg(env->regs[10]);
188     (*regs)[8] = tswapreg(env->regs[9]);
189     (*regs)[9] = tswapreg(env->regs[8]);
190     (*regs)[10] = tswapreg(env->regs[R_EAX]);
191     (*regs)[11] = tswapreg(env->regs[R_ECX]);
192     (*regs)[12] = tswapreg(env->regs[R_EDX]);
193     (*regs)[13] = tswapreg(env->regs[R_ESI]);
194     (*regs)[14] = tswapreg(env->regs[R_EDI]);
195     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
196     (*regs)[16] = tswapreg(env->eip);
197     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
198     (*regs)[18] = tswapreg(env->eflags);
199     (*regs)[19] = tswapreg(env->regs[R_ESP]);
200     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
201     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
202     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
203     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
204     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
205     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
206     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
207 }
208 
209 #else
210 
211 #define ELF_START_MMAP 0x80000000
212 
213 /*
214  * This is used to ensure we don't load something for the wrong architecture.
215  */
216 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
217 
218 /*
219  * These are used to set parameters in the core dumps.
220  */
221 #define ELF_CLASS       ELFCLASS32
222 #define ELF_ARCH        EM_386
223 
224 static inline void init_thread(struct target_pt_regs *regs,
225                                struct image_info *infop)
226 {
227     regs->esp = infop->start_stack;
228     regs->eip = infop->entry;
229 
230     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
231        starts %edx contains a pointer to a function which might be
232        registered using `atexit'.  This provides a mean for the
233        dynamic linker to call DT_FINI functions for shared libraries
234        that have been loaded before the code runs.
235 
236        A value of 0 tells we have no such handler.  */
237     regs->edx = 0;
238 }
239 
240 #define ELF_NREG    17
241 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
242 
243 /*
244  * Note that ELF_NREG should be 19 as there should be place for
245  * TRAPNO and ERR "registers" as well but linux doesn't dump
246  * those.
247  *
248  * See linux kernel: arch/x86/include/asm/elf.h
249  */
250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
251 {
252     (*regs)[0] = tswapreg(env->regs[R_EBX]);
253     (*regs)[1] = tswapreg(env->regs[R_ECX]);
254     (*regs)[2] = tswapreg(env->regs[R_EDX]);
255     (*regs)[3] = tswapreg(env->regs[R_ESI]);
256     (*regs)[4] = tswapreg(env->regs[R_EDI]);
257     (*regs)[5] = tswapreg(env->regs[R_EBP]);
258     (*regs)[6] = tswapreg(env->regs[R_EAX]);
259     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
260     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
261     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
262     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
263     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
264     (*regs)[12] = tswapreg(env->eip);
265     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
266     (*regs)[14] = tswapreg(env->eflags);
267     (*regs)[15] = tswapreg(env->regs[R_ESP]);
268     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
269 }
270 #endif
271 
272 #define USE_ELF_CORE_DUMP
273 #define ELF_EXEC_PAGESIZE       4096
274 
275 #endif
276 
277 #ifdef TARGET_ARM
278 
279 #ifndef TARGET_AARCH64
280 /* 32 bit ARM definitions */
281 
282 #define ELF_START_MMAP 0x80000000
283 
284 #define ELF_ARCH        EM_ARM
285 #define ELF_CLASS       ELFCLASS32
286 
287 static inline void init_thread(struct target_pt_regs *regs,
288                                struct image_info *infop)
289 {
290     abi_long stack = infop->start_stack;
291     memset(regs, 0, sizeof(*regs));
292 
293     regs->uregs[16] = ARM_CPU_MODE_USR;
294     if (infop->entry & 1) {
295         regs->uregs[16] |= CPSR_T;
296     }
297     regs->uregs[15] = infop->entry & 0xfffffffe;
298     regs->uregs[13] = infop->start_stack;
299     /* FIXME - what to for failure of get_user()? */
300     get_user_ual(regs->uregs[2], stack + 8); /* envp */
301     get_user_ual(regs->uregs[1], stack + 4); /* envp */
302     /* XXX: it seems that r0 is zeroed after ! */
303     regs->uregs[0] = 0;
304     /* For uClinux PIC binaries.  */
305     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
306     regs->uregs[10] = infop->start_data;
307 
308     /* Support ARM FDPIC.  */
309     if (info_is_fdpic(infop)) {
310         /* As described in the ABI document, r7 points to the loadmap info
311          * prepared by the kernel. If an interpreter is needed, r8 points
312          * to the interpreter loadmap and r9 points to the interpreter
313          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
314          * r9 points to the main program PT_DYNAMIC info.
315          */
316         regs->uregs[7] = infop->loadmap_addr;
317         if (infop->interpreter_loadmap_addr) {
318             /* Executable is dynamically loaded.  */
319             regs->uregs[8] = infop->interpreter_loadmap_addr;
320             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
321         } else {
322             regs->uregs[8] = 0;
323             regs->uregs[9] = infop->pt_dynamic_addr;
324         }
325     }
326 }
327 
328 #define ELF_NREG    18
329 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
330 
331 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
332 {
333     (*regs)[0] = tswapreg(env->regs[0]);
334     (*regs)[1] = tswapreg(env->regs[1]);
335     (*regs)[2] = tswapreg(env->regs[2]);
336     (*regs)[3] = tswapreg(env->regs[3]);
337     (*regs)[4] = tswapreg(env->regs[4]);
338     (*regs)[5] = tswapreg(env->regs[5]);
339     (*regs)[6] = tswapreg(env->regs[6]);
340     (*regs)[7] = tswapreg(env->regs[7]);
341     (*regs)[8] = tswapreg(env->regs[8]);
342     (*regs)[9] = tswapreg(env->regs[9]);
343     (*regs)[10] = tswapreg(env->regs[10]);
344     (*regs)[11] = tswapreg(env->regs[11]);
345     (*regs)[12] = tswapreg(env->regs[12]);
346     (*regs)[13] = tswapreg(env->regs[13]);
347     (*regs)[14] = tswapreg(env->regs[14]);
348     (*regs)[15] = tswapreg(env->regs[15]);
349 
350     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
351     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
352 }
353 
354 #define USE_ELF_CORE_DUMP
355 #define ELF_EXEC_PAGESIZE       4096
356 
357 enum
358 {
359     ARM_HWCAP_ARM_SWP       = 1 << 0,
360     ARM_HWCAP_ARM_HALF      = 1 << 1,
361     ARM_HWCAP_ARM_THUMB     = 1 << 2,
362     ARM_HWCAP_ARM_26BIT     = 1 << 3,
363     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
364     ARM_HWCAP_ARM_FPA       = 1 << 5,
365     ARM_HWCAP_ARM_VFP       = 1 << 6,
366     ARM_HWCAP_ARM_EDSP      = 1 << 7,
367     ARM_HWCAP_ARM_JAVA      = 1 << 8,
368     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
369     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
370     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
371     ARM_HWCAP_ARM_NEON      = 1 << 12,
372     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
373     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
374     ARM_HWCAP_ARM_TLS       = 1 << 15,
375     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
376     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
377     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
378     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
379     ARM_HWCAP_ARM_LPAE      = 1 << 20,
380     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
381 };
382 
383 enum {
384     ARM_HWCAP2_ARM_AES      = 1 << 0,
385     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
386     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
387     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
388     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
389 };
390 
391 /* The commpage only exists for 32 bit kernels */
392 
393 #define HI_COMMPAGE (intptr_t)0xffff0f00u
394 
395 static bool init_guest_commpage(void)
396 {
397     void *want = g2h_untagged(HI_COMMPAGE & -qemu_host_page_size);
398     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
399                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
400 
401     if (addr == MAP_FAILED) {
402         perror("Allocating guest commpage");
403         exit(EXIT_FAILURE);
404     }
405     if (addr != want) {
406         return false;
407     }
408 
409     /* Set kernel helper versions; rest of page is 0.  */
410     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
411 
412     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
413         perror("Protecting guest commpage");
414         exit(EXIT_FAILURE);
415     }
416     return true;
417 }
418 
419 #define ELF_HWCAP get_elf_hwcap()
420 #define ELF_HWCAP2 get_elf_hwcap2()
421 
422 static uint32_t get_elf_hwcap(void)
423 {
424     ARMCPU *cpu = ARM_CPU(thread_cpu);
425     uint32_t hwcaps = 0;
426 
427     hwcaps |= ARM_HWCAP_ARM_SWP;
428     hwcaps |= ARM_HWCAP_ARM_HALF;
429     hwcaps |= ARM_HWCAP_ARM_THUMB;
430     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
431 
432     /* probe for the extra features */
433 #define GET_FEATURE(feat, hwcap) \
434     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
435 
436 #define GET_FEATURE_ID(feat, hwcap) \
437     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
438 
439     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
440     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
441     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
442     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
443     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
444     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
446     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
447     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
448     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
449 
450     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
451         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
452         hwcaps |= ARM_HWCAP_ARM_VFPv3;
453         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
454             hwcaps |= ARM_HWCAP_ARM_VFPD32;
455         } else {
456             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
457         }
458     }
459     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
460 
461     return hwcaps;
462 }
463 
464 static uint32_t get_elf_hwcap2(void)
465 {
466     ARMCPU *cpu = ARM_CPU(thread_cpu);
467     uint32_t hwcaps = 0;
468 
469     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
470     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
471     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
472     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
473     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
474     return hwcaps;
475 }
476 
477 #undef GET_FEATURE
478 #undef GET_FEATURE_ID
479 
480 #define ELF_PLATFORM get_elf_platform()
481 
482 static const char *get_elf_platform(void)
483 {
484     CPUARMState *env = thread_cpu->env_ptr;
485 
486 #if TARGET_BIG_ENDIAN
487 # define END  "b"
488 #else
489 # define END  "l"
490 #endif
491 
492     if (arm_feature(env, ARM_FEATURE_V8)) {
493         return "v8" END;
494     } else if (arm_feature(env, ARM_FEATURE_V7)) {
495         if (arm_feature(env, ARM_FEATURE_M)) {
496             return "v7m" END;
497         } else {
498             return "v7" END;
499         }
500     } else if (arm_feature(env, ARM_FEATURE_V6)) {
501         return "v6" END;
502     } else if (arm_feature(env, ARM_FEATURE_V5)) {
503         return "v5" END;
504     } else {
505         return "v4" END;
506     }
507 
508 #undef END
509 }
510 
511 #else
512 /* 64 bit ARM definitions */
513 #define ELF_START_MMAP 0x80000000
514 
515 #define ELF_ARCH        EM_AARCH64
516 #define ELF_CLASS       ELFCLASS64
517 #if TARGET_BIG_ENDIAN
518 # define ELF_PLATFORM    "aarch64_be"
519 #else
520 # define ELF_PLATFORM    "aarch64"
521 #endif
522 
523 static inline void init_thread(struct target_pt_regs *regs,
524                                struct image_info *infop)
525 {
526     abi_long stack = infop->start_stack;
527     memset(regs, 0, sizeof(*regs));
528 
529     regs->pc = infop->entry & ~0x3ULL;
530     regs->sp = stack;
531 }
532 
533 #define ELF_NREG    34
534 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
535 
536 static void elf_core_copy_regs(target_elf_gregset_t *regs,
537                                const CPUARMState *env)
538 {
539     int i;
540 
541     for (i = 0; i < 32; i++) {
542         (*regs)[i] = tswapreg(env->xregs[i]);
543     }
544     (*regs)[32] = tswapreg(env->pc);
545     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
546 }
547 
548 #define USE_ELF_CORE_DUMP
549 #define ELF_EXEC_PAGESIZE       4096
550 
551 enum {
552     ARM_HWCAP_A64_FP            = 1 << 0,
553     ARM_HWCAP_A64_ASIMD         = 1 << 1,
554     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
555     ARM_HWCAP_A64_AES           = 1 << 3,
556     ARM_HWCAP_A64_PMULL         = 1 << 4,
557     ARM_HWCAP_A64_SHA1          = 1 << 5,
558     ARM_HWCAP_A64_SHA2          = 1 << 6,
559     ARM_HWCAP_A64_CRC32         = 1 << 7,
560     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
561     ARM_HWCAP_A64_FPHP          = 1 << 9,
562     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
563     ARM_HWCAP_A64_CPUID         = 1 << 11,
564     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
565     ARM_HWCAP_A64_JSCVT         = 1 << 13,
566     ARM_HWCAP_A64_FCMA          = 1 << 14,
567     ARM_HWCAP_A64_LRCPC         = 1 << 15,
568     ARM_HWCAP_A64_DCPOP         = 1 << 16,
569     ARM_HWCAP_A64_SHA3          = 1 << 17,
570     ARM_HWCAP_A64_SM3           = 1 << 18,
571     ARM_HWCAP_A64_SM4           = 1 << 19,
572     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
573     ARM_HWCAP_A64_SHA512        = 1 << 21,
574     ARM_HWCAP_A64_SVE           = 1 << 22,
575     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
576     ARM_HWCAP_A64_DIT           = 1 << 24,
577     ARM_HWCAP_A64_USCAT         = 1 << 25,
578     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
579     ARM_HWCAP_A64_FLAGM         = 1 << 27,
580     ARM_HWCAP_A64_SSBS          = 1 << 28,
581     ARM_HWCAP_A64_SB            = 1 << 29,
582     ARM_HWCAP_A64_PACA          = 1 << 30,
583     ARM_HWCAP_A64_PACG          = 1UL << 31,
584 
585     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
586     ARM_HWCAP2_A64_SVE2         = 1 << 1,
587     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
588     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
589     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
590     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
591     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
592     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
593     ARM_HWCAP2_A64_FRINT        = 1 << 8,
594     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
595     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
596     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
597     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
598     ARM_HWCAP2_A64_I8MM         = 1 << 13,
599     ARM_HWCAP2_A64_BF16         = 1 << 14,
600     ARM_HWCAP2_A64_DGH          = 1 << 15,
601     ARM_HWCAP2_A64_RNG          = 1 << 16,
602     ARM_HWCAP2_A64_BTI          = 1 << 17,
603     ARM_HWCAP2_A64_MTE          = 1 << 18,
604 };
605 
606 #define ELF_HWCAP   get_elf_hwcap()
607 #define ELF_HWCAP2  get_elf_hwcap2()
608 
609 #define GET_FEATURE_ID(feat, hwcap) \
610     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
611 
612 static uint32_t get_elf_hwcap(void)
613 {
614     ARMCPU *cpu = ARM_CPU(thread_cpu);
615     uint32_t hwcaps = 0;
616 
617     hwcaps |= ARM_HWCAP_A64_FP;
618     hwcaps |= ARM_HWCAP_A64_ASIMD;
619     hwcaps |= ARM_HWCAP_A64_CPUID;
620 
621     /* probe for the extra features */
622 
623     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
624     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
625     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
626     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
627     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
628     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
629     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
630     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
631     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
632     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
633     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
634     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
635     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
636     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
637     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
638     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
639     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
640     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
641     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
642     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
643     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
644     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
645     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
646 
647     return hwcaps;
648 }
649 
650 static uint32_t get_elf_hwcap2(void)
651 {
652     ARMCPU *cpu = ARM_CPU(thread_cpu);
653     uint32_t hwcaps = 0;
654 
655     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
656     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
657     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
658     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
659     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
660     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
661     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
662     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
663     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
664     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
665     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
666     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
667     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
668     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
669     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
670     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
671     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
672     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
673 
674     return hwcaps;
675 }
676 
677 #undef GET_FEATURE_ID
678 
679 #endif /* not TARGET_AARCH64 */
680 #endif /* TARGET_ARM */
681 
682 #ifdef TARGET_SPARC
683 #ifdef TARGET_SPARC64
684 
685 #define ELF_START_MMAP 0x80000000
686 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
687                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
688 #ifndef TARGET_ABI32
689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
690 #else
691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
692 #endif
693 
694 #define ELF_CLASS   ELFCLASS64
695 #define ELF_ARCH    EM_SPARCV9
696 #else
697 #define ELF_START_MMAP 0x80000000
698 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
699                     | HWCAP_SPARC_MULDIV)
700 #define ELF_CLASS   ELFCLASS32
701 #define ELF_ARCH    EM_SPARC
702 #endif /* TARGET_SPARC64 */
703 
704 static inline void init_thread(struct target_pt_regs *regs,
705                                struct image_info *infop)
706 {
707     /* Note that target_cpu_copy_regs does not read psr/tstate. */
708     regs->pc = infop->entry;
709     regs->npc = regs->pc + 4;
710     regs->y = 0;
711     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
712                         - TARGET_STACK_BIAS);
713 }
714 #endif /* TARGET_SPARC */
715 
716 #ifdef TARGET_PPC
717 
718 #define ELF_MACHINE    PPC_ELF_MACHINE
719 #define ELF_START_MMAP 0x80000000
720 
721 #if defined(TARGET_PPC64)
722 
723 #define elf_check_arch(x) ( (x) == EM_PPC64 )
724 
725 #define ELF_CLASS       ELFCLASS64
726 
727 #else
728 
729 #define ELF_CLASS       ELFCLASS32
730 
731 #endif
732 
733 #define ELF_ARCH        EM_PPC
734 
735 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
736    See arch/powerpc/include/asm/cputable.h.  */
737 enum {
738     QEMU_PPC_FEATURE_32 = 0x80000000,
739     QEMU_PPC_FEATURE_64 = 0x40000000,
740     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
741     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
742     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
743     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
744     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
745     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
746     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
747     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
748     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
749     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
750     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
751     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
752     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
753     QEMU_PPC_FEATURE_CELL = 0x00010000,
754     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
755     QEMU_PPC_FEATURE_SMT = 0x00004000,
756     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
757     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
758     QEMU_PPC_FEATURE_PA6T = 0x00000800,
759     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
760     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
761     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
762     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
763     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
764 
765     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
766     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
767 
768     /* Feature definitions in AT_HWCAP2.  */
769     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
770     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
771     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
772     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
773     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
774     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
775     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
776     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
777     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
778     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
779     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
780     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
781     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
782     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
783     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
784 };
785 
786 #define ELF_HWCAP get_elf_hwcap()
787 
788 static uint32_t get_elf_hwcap(void)
789 {
790     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
791     uint32_t features = 0;
792 
793     /* We don't have to be terribly complete here; the high points are
794        Altivec/FP/SPE support.  Anything else is just a bonus.  */
795 #define GET_FEATURE(flag, feature)                                      \
796     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
797 #define GET_FEATURE2(flags, feature) \
798     do { \
799         if ((cpu->env.insns_flags2 & flags) == flags) { \
800             features |= feature; \
801         } \
802     } while (0)
803     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
804     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
805     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
806     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
807     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
808     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
809     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
810     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
811     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
812     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
813     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
814                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
815                   QEMU_PPC_FEATURE_ARCH_2_06);
816 #undef GET_FEATURE
817 #undef GET_FEATURE2
818 
819     return features;
820 }
821 
822 #define ELF_HWCAP2 get_elf_hwcap2()
823 
824 static uint32_t get_elf_hwcap2(void)
825 {
826     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
827     uint32_t features = 0;
828 
829 #define GET_FEATURE(flag, feature)                                      \
830     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
831 #define GET_FEATURE2(flag, feature)                                      \
832     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
833 
834     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
835     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
836     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
837                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
838                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
839     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
840                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
841     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
842                  QEMU_PPC_FEATURE2_MMA);
843 
844 #undef GET_FEATURE
845 #undef GET_FEATURE2
846 
847     return features;
848 }
849 
850 /*
851  * The requirements here are:
852  * - keep the final alignment of sp (sp & 0xf)
853  * - make sure the 32-bit value at the first 16 byte aligned position of
854  *   AUXV is greater than 16 for glibc compatibility.
855  *   AT_IGNOREPPC is used for that.
856  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
857  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
858  */
859 #define DLINFO_ARCH_ITEMS       5
860 #define ARCH_DLINFO                                     \
861     do {                                                \
862         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
863         /*                                              \
864          * Handle glibc compatibility: these magic entries must \
865          * be at the lowest addresses in the final auxv.        \
866          */                                             \
867         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
868         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
869         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
870         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
871         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
872     } while (0)
873 
874 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
875 {
876     _regs->gpr[1] = infop->start_stack;
877 #if defined(TARGET_PPC64)
878     if (get_ppc64_abi(infop) < 2) {
879         uint64_t val;
880         get_user_u64(val, infop->entry + 8);
881         _regs->gpr[2] = val + infop->load_bias;
882         get_user_u64(val, infop->entry);
883         infop->entry = val + infop->load_bias;
884     } else {
885         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
886     }
887 #endif
888     _regs->nip = infop->entry;
889 }
890 
891 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
892 #define ELF_NREG 48
893 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
894 
895 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
896 {
897     int i;
898     target_ulong ccr = 0;
899 
900     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
901         (*regs)[i] = tswapreg(env->gpr[i]);
902     }
903 
904     (*regs)[32] = tswapreg(env->nip);
905     (*regs)[33] = tswapreg(env->msr);
906     (*regs)[35] = tswapreg(env->ctr);
907     (*regs)[36] = tswapreg(env->lr);
908     (*regs)[37] = tswapreg(cpu_read_xer(env));
909 
910     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
911         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
912     }
913     (*regs)[38] = tswapreg(ccr);
914 }
915 
916 #define USE_ELF_CORE_DUMP
917 #define ELF_EXEC_PAGESIZE       4096
918 
919 #endif
920 
921 #ifdef TARGET_MIPS
922 
923 #define ELF_START_MMAP 0x80000000
924 
925 #ifdef TARGET_MIPS64
926 #define ELF_CLASS   ELFCLASS64
927 #else
928 #define ELF_CLASS   ELFCLASS32
929 #endif
930 #define ELF_ARCH    EM_MIPS
931 
932 #ifdef TARGET_ABI_MIPSN32
933 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
934 #else
935 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
936 #endif
937 
938 static inline void init_thread(struct target_pt_regs *regs,
939                                struct image_info *infop)
940 {
941     regs->cp0_status = 2 << CP0St_KSU;
942     regs->cp0_epc = infop->entry;
943     regs->regs[29] = infop->start_stack;
944 }
945 
946 /* See linux kernel: arch/mips/include/asm/elf.h.  */
947 #define ELF_NREG 45
948 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
949 
950 /* See linux kernel: arch/mips/include/asm/reg.h.  */
951 enum {
952 #ifdef TARGET_MIPS64
953     TARGET_EF_R0 = 0,
954 #else
955     TARGET_EF_R0 = 6,
956 #endif
957     TARGET_EF_R26 = TARGET_EF_R0 + 26,
958     TARGET_EF_R27 = TARGET_EF_R0 + 27,
959     TARGET_EF_LO = TARGET_EF_R0 + 32,
960     TARGET_EF_HI = TARGET_EF_R0 + 33,
961     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
962     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
963     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
964     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
965 };
966 
967 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
968 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
969 {
970     int i;
971 
972     for (i = 0; i < TARGET_EF_R0; i++) {
973         (*regs)[i] = 0;
974     }
975     (*regs)[TARGET_EF_R0] = 0;
976 
977     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
978         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
979     }
980 
981     (*regs)[TARGET_EF_R26] = 0;
982     (*regs)[TARGET_EF_R27] = 0;
983     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
984     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
985     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
986     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
987     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
988     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
989 }
990 
991 #define USE_ELF_CORE_DUMP
992 #define ELF_EXEC_PAGESIZE        4096
993 
994 /* See arch/mips/include/uapi/asm/hwcap.h.  */
995 enum {
996     HWCAP_MIPS_R6           = (1 << 0),
997     HWCAP_MIPS_MSA          = (1 << 1),
998     HWCAP_MIPS_CRC32        = (1 << 2),
999     HWCAP_MIPS_MIPS16       = (1 << 3),
1000     HWCAP_MIPS_MDMX         = (1 << 4),
1001     HWCAP_MIPS_MIPS3D       = (1 << 5),
1002     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1003     HWCAP_MIPS_DSP          = (1 << 7),
1004     HWCAP_MIPS_DSP2         = (1 << 8),
1005     HWCAP_MIPS_DSP3         = (1 << 9),
1006     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1007     HWCAP_LOONGSON_MMI      = (1 << 11),
1008     HWCAP_LOONGSON_EXT      = (1 << 12),
1009     HWCAP_LOONGSON_EXT2     = (1 << 13),
1010     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1011 };
1012 
1013 #define ELF_HWCAP get_elf_hwcap()
1014 
1015 #define GET_FEATURE_INSN(_flag, _hwcap) \
1016     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1017 
1018 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1019     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1020 
1021 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1022     do { \
1023         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1024             hwcaps |= _hwcap; \
1025         } \
1026     } while (0)
1027 
1028 static uint32_t get_elf_hwcap(void)
1029 {
1030     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1031     uint32_t hwcaps = 0;
1032 
1033     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1034                         2, HWCAP_MIPS_R6);
1035     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1036     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1037     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1038 
1039     return hwcaps;
1040 }
1041 
1042 #undef GET_FEATURE_REG_EQU
1043 #undef GET_FEATURE_REG_SET
1044 #undef GET_FEATURE_INSN
1045 
1046 #endif /* TARGET_MIPS */
1047 
1048 #ifdef TARGET_MICROBLAZE
1049 
1050 #define ELF_START_MMAP 0x80000000
1051 
1052 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1053 
1054 #define ELF_CLASS   ELFCLASS32
1055 #define ELF_ARCH    EM_MICROBLAZE
1056 
1057 static inline void init_thread(struct target_pt_regs *regs,
1058                                struct image_info *infop)
1059 {
1060     regs->pc = infop->entry;
1061     regs->r1 = infop->start_stack;
1062 
1063 }
1064 
1065 #define ELF_EXEC_PAGESIZE        4096
1066 
1067 #define USE_ELF_CORE_DUMP
1068 #define ELF_NREG 38
1069 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1070 
1071 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1072 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1073 {
1074     int i, pos = 0;
1075 
1076     for (i = 0; i < 32; i++) {
1077         (*regs)[pos++] = tswapreg(env->regs[i]);
1078     }
1079 
1080     (*regs)[pos++] = tswapreg(env->pc);
1081     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1082     (*regs)[pos++] = 0;
1083     (*regs)[pos++] = tswapreg(env->ear);
1084     (*regs)[pos++] = 0;
1085     (*regs)[pos++] = tswapreg(env->esr);
1086 }
1087 
1088 #endif /* TARGET_MICROBLAZE */
1089 
1090 #ifdef TARGET_NIOS2
1091 
1092 #define ELF_START_MMAP 0x80000000
1093 
1094 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1095 
1096 #define ELF_CLASS   ELFCLASS32
1097 #define ELF_ARCH    EM_ALTERA_NIOS2
1098 
1099 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1100 {
1101     regs->ea = infop->entry;
1102     regs->sp = infop->start_stack;
1103 }
1104 
1105 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1106 
1107 static bool init_guest_commpage(void)
1108 {
1109     static const uint8_t kuser_page[4 + 2 * 64] = {
1110         /* __kuser_helper_version */
1111         [0x00] = 0x02, 0x00, 0x00, 0x00,
1112 
1113         /* __kuser_cmpxchg */
1114         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1115                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1116 
1117         /* __kuser_sigtramp */
1118         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1119                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1120     };
1121 
1122     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1123     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1124                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1125 
1126     if (addr == MAP_FAILED) {
1127         perror("Allocating guest commpage");
1128         exit(EXIT_FAILURE);
1129     }
1130     if (addr != want) {
1131         return false;
1132     }
1133 
1134     memcpy(addr, kuser_page, sizeof(kuser_page));
1135 
1136     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1137         perror("Protecting guest commpage");
1138         exit(EXIT_FAILURE);
1139     }
1140 
1141     page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1142                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1143     return true;
1144 }
1145 
1146 #define ELF_EXEC_PAGESIZE        4096
1147 
1148 #define USE_ELF_CORE_DUMP
1149 #define ELF_NREG 49
1150 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1151 
1152 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1153 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1154                                const CPUNios2State *env)
1155 {
1156     int i;
1157 
1158     (*regs)[0] = -1;
1159     for (i = 1; i < 8; i++)    /* r0-r7 */
1160         (*regs)[i] = tswapreg(env->regs[i + 7]);
1161 
1162     for (i = 8; i < 16; i++)   /* r8-r15 */
1163         (*regs)[i] = tswapreg(env->regs[i - 8]);
1164 
1165     for (i = 16; i < 24; i++)  /* r16-r23 */
1166         (*regs)[i] = tswapreg(env->regs[i + 7]);
1167     (*regs)[24] = -1;    /* R_ET */
1168     (*regs)[25] = -1;    /* R_BT */
1169     (*regs)[26] = tswapreg(env->regs[R_GP]);
1170     (*regs)[27] = tswapreg(env->regs[R_SP]);
1171     (*regs)[28] = tswapreg(env->regs[R_FP]);
1172     (*regs)[29] = tswapreg(env->regs[R_EA]);
1173     (*regs)[30] = -1;    /* R_SSTATUS */
1174     (*regs)[31] = tswapreg(env->regs[R_RA]);
1175 
1176     (*regs)[32] = tswapreg(env->pc);
1177 
1178     (*regs)[33] = -1; /* R_STATUS */
1179     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1180 
1181     for (i = 35; i < 49; i++)    /* ... */
1182         (*regs)[i] = -1;
1183 }
1184 
1185 #endif /* TARGET_NIOS2 */
1186 
1187 #ifdef TARGET_OPENRISC
1188 
1189 #define ELF_START_MMAP 0x08000000
1190 
1191 #define ELF_ARCH EM_OPENRISC
1192 #define ELF_CLASS ELFCLASS32
1193 #define ELF_DATA  ELFDATA2MSB
1194 
1195 static inline void init_thread(struct target_pt_regs *regs,
1196                                struct image_info *infop)
1197 {
1198     regs->pc = infop->entry;
1199     regs->gpr[1] = infop->start_stack;
1200 }
1201 
1202 #define USE_ELF_CORE_DUMP
1203 #define ELF_EXEC_PAGESIZE 8192
1204 
1205 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1206 #define ELF_NREG 34 /* gprs and pc, sr */
1207 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1208 
1209 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1210                                const CPUOpenRISCState *env)
1211 {
1212     int i;
1213 
1214     for (i = 0; i < 32; i++) {
1215         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1216     }
1217     (*regs)[32] = tswapreg(env->pc);
1218     (*regs)[33] = tswapreg(cpu_get_sr(env));
1219 }
1220 #define ELF_HWCAP 0
1221 #define ELF_PLATFORM NULL
1222 
1223 #endif /* TARGET_OPENRISC */
1224 
1225 #ifdef TARGET_SH4
1226 
1227 #define ELF_START_MMAP 0x80000000
1228 
1229 #define ELF_CLASS ELFCLASS32
1230 #define ELF_ARCH  EM_SH
1231 
1232 static inline void init_thread(struct target_pt_regs *regs,
1233                                struct image_info *infop)
1234 {
1235     /* Check other registers XXXXX */
1236     regs->pc = infop->entry;
1237     regs->regs[15] = infop->start_stack;
1238 }
1239 
1240 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1241 #define ELF_NREG 23
1242 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1243 
1244 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1245 enum {
1246     TARGET_REG_PC = 16,
1247     TARGET_REG_PR = 17,
1248     TARGET_REG_SR = 18,
1249     TARGET_REG_GBR = 19,
1250     TARGET_REG_MACH = 20,
1251     TARGET_REG_MACL = 21,
1252     TARGET_REG_SYSCALL = 22
1253 };
1254 
1255 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1256                                       const CPUSH4State *env)
1257 {
1258     int i;
1259 
1260     for (i = 0; i < 16; i++) {
1261         (*regs)[i] = tswapreg(env->gregs[i]);
1262     }
1263 
1264     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1265     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1266     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1267     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1268     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1269     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1270     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1271 }
1272 
1273 #define USE_ELF_CORE_DUMP
1274 #define ELF_EXEC_PAGESIZE        4096
1275 
1276 enum {
1277     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1278     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1279     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1280     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1281     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1282     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1283     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1284     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1285     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1286     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1287 };
1288 
1289 #define ELF_HWCAP get_elf_hwcap()
1290 
1291 static uint32_t get_elf_hwcap(void)
1292 {
1293     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1294     uint32_t hwcap = 0;
1295 
1296     hwcap |= SH_CPU_HAS_FPU;
1297 
1298     if (cpu->env.features & SH_FEATURE_SH4A) {
1299         hwcap |= SH_CPU_HAS_LLSC;
1300     }
1301 
1302     return hwcap;
1303 }
1304 
1305 #endif
1306 
1307 #ifdef TARGET_CRIS
1308 
1309 #define ELF_START_MMAP 0x80000000
1310 
1311 #define ELF_CLASS ELFCLASS32
1312 #define ELF_ARCH  EM_CRIS
1313 
1314 static inline void init_thread(struct target_pt_regs *regs,
1315                                struct image_info *infop)
1316 {
1317     regs->erp = infop->entry;
1318 }
1319 
1320 #define ELF_EXEC_PAGESIZE        8192
1321 
1322 #endif
1323 
1324 #ifdef TARGET_M68K
1325 
1326 #define ELF_START_MMAP 0x80000000
1327 
1328 #define ELF_CLASS       ELFCLASS32
1329 #define ELF_ARCH        EM_68K
1330 
1331 /* ??? Does this need to do anything?
1332    #define ELF_PLAT_INIT(_r) */
1333 
1334 static inline void init_thread(struct target_pt_regs *regs,
1335                                struct image_info *infop)
1336 {
1337     regs->usp = infop->start_stack;
1338     regs->sr = 0;
1339     regs->pc = infop->entry;
1340 }
1341 
1342 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1343 #define ELF_NREG 20
1344 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1345 
1346 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1347 {
1348     (*regs)[0] = tswapreg(env->dregs[1]);
1349     (*regs)[1] = tswapreg(env->dregs[2]);
1350     (*regs)[2] = tswapreg(env->dregs[3]);
1351     (*regs)[3] = tswapreg(env->dregs[4]);
1352     (*regs)[4] = tswapreg(env->dregs[5]);
1353     (*regs)[5] = tswapreg(env->dregs[6]);
1354     (*regs)[6] = tswapreg(env->dregs[7]);
1355     (*regs)[7] = tswapreg(env->aregs[0]);
1356     (*regs)[8] = tswapreg(env->aregs[1]);
1357     (*regs)[9] = tswapreg(env->aregs[2]);
1358     (*regs)[10] = tswapreg(env->aregs[3]);
1359     (*regs)[11] = tswapreg(env->aregs[4]);
1360     (*regs)[12] = tswapreg(env->aregs[5]);
1361     (*regs)[13] = tswapreg(env->aregs[6]);
1362     (*regs)[14] = tswapreg(env->dregs[0]);
1363     (*regs)[15] = tswapreg(env->aregs[7]);
1364     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1365     (*regs)[17] = tswapreg(env->sr);
1366     (*regs)[18] = tswapreg(env->pc);
1367     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1368 }
1369 
1370 #define USE_ELF_CORE_DUMP
1371 #define ELF_EXEC_PAGESIZE       8192
1372 
1373 #endif
1374 
1375 #ifdef TARGET_ALPHA
1376 
1377 #define ELF_START_MMAP (0x30000000000ULL)
1378 
1379 #define ELF_CLASS      ELFCLASS64
1380 #define ELF_ARCH       EM_ALPHA
1381 
1382 static inline void init_thread(struct target_pt_regs *regs,
1383                                struct image_info *infop)
1384 {
1385     regs->pc = infop->entry;
1386     regs->ps = 8;
1387     regs->usp = infop->start_stack;
1388 }
1389 
1390 #define ELF_EXEC_PAGESIZE        8192
1391 
1392 #endif /* TARGET_ALPHA */
1393 
1394 #ifdef TARGET_S390X
1395 
1396 #define ELF_START_MMAP (0x20000000000ULL)
1397 
1398 #define ELF_CLASS	ELFCLASS64
1399 #define ELF_DATA	ELFDATA2MSB
1400 #define ELF_ARCH	EM_S390
1401 
1402 #include "elf.h"
1403 
1404 #define ELF_HWCAP get_elf_hwcap()
1405 
1406 #define GET_FEATURE(_feat, _hwcap) \
1407     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1408 
1409 static uint32_t get_elf_hwcap(void)
1410 {
1411     /*
1412      * Let's assume we always have esan3 and zarch.
1413      * 31-bit processes can use 64-bit registers (high gprs).
1414      */
1415     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1416 
1417     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1418     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1419     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1420     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1421     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1422         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1423         hwcap |= HWCAP_S390_ETF3EH;
1424     }
1425     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1426     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1427 
1428     return hwcap;
1429 }
1430 
1431 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1432 {
1433     regs->psw.addr = infop->entry;
1434     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1435     regs->gprs[15] = infop->start_stack;
1436 }
1437 
1438 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1439 #define ELF_NREG 27
1440 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1441 
1442 enum {
1443     TARGET_REG_PSWM = 0,
1444     TARGET_REG_PSWA = 1,
1445     TARGET_REG_GPRS = 2,
1446     TARGET_REG_ARS = 18,
1447     TARGET_REG_ORIG_R2 = 26,
1448 };
1449 
1450 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1451                                const CPUS390XState *env)
1452 {
1453     int i;
1454     uint32_t *aregs;
1455 
1456     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1457     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1458     for (i = 0; i < 16; i++) {
1459         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1460     }
1461     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1462     for (i = 0; i < 16; i++) {
1463         aregs[i] = tswap32(env->aregs[i]);
1464     }
1465     (*regs)[TARGET_REG_ORIG_R2] = 0;
1466 }
1467 
1468 #define USE_ELF_CORE_DUMP
1469 #define ELF_EXEC_PAGESIZE 4096
1470 
1471 #endif /* TARGET_S390X */
1472 
1473 #ifdef TARGET_RISCV
1474 
1475 #define ELF_START_MMAP 0x80000000
1476 #define ELF_ARCH  EM_RISCV
1477 
1478 #ifdef TARGET_RISCV32
1479 #define ELF_CLASS ELFCLASS32
1480 #else
1481 #define ELF_CLASS ELFCLASS64
1482 #endif
1483 
1484 #define ELF_HWCAP get_elf_hwcap()
1485 
1486 static uint32_t get_elf_hwcap(void)
1487 {
1488 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1489     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1490     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1491                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1492 
1493     return cpu->env.misa_ext & mask;
1494 #undef MISA_BIT
1495 }
1496 
1497 static inline void init_thread(struct target_pt_regs *regs,
1498                                struct image_info *infop)
1499 {
1500     regs->sepc = infop->entry;
1501     regs->sp = infop->start_stack;
1502 }
1503 
1504 #define ELF_EXEC_PAGESIZE 4096
1505 
1506 #endif /* TARGET_RISCV */
1507 
1508 #ifdef TARGET_HPPA
1509 
1510 #define ELF_START_MMAP  0x80000000
1511 #define ELF_CLASS       ELFCLASS32
1512 #define ELF_ARCH        EM_PARISC
1513 #define ELF_PLATFORM    "PARISC"
1514 #define STACK_GROWS_DOWN 0
1515 #define STACK_ALIGNMENT  64
1516 
1517 static inline void init_thread(struct target_pt_regs *regs,
1518                                struct image_info *infop)
1519 {
1520     regs->iaoq[0] = infop->entry;
1521     regs->iaoq[1] = infop->entry + 4;
1522     regs->gr[23] = 0;
1523     regs->gr[24] = infop->argv;
1524     regs->gr[25] = infop->argc;
1525     /* The top-of-stack contains a linkage buffer.  */
1526     regs->gr[30] = infop->start_stack + 64;
1527     regs->gr[31] = infop->entry;
1528 }
1529 
1530 #endif /* TARGET_HPPA */
1531 
1532 #ifdef TARGET_XTENSA
1533 
1534 #define ELF_START_MMAP 0x20000000
1535 
1536 #define ELF_CLASS       ELFCLASS32
1537 #define ELF_ARCH        EM_XTENSA
1538 
1539 static inline void init_thread(struct target_pt_regs *regs,
1540                                struct image_info *infop)
1541 {
1542     regs->windowbase = 0;
1543     regs->windowstart = 1;
1544     regs->areg[1] = infop->start_stack;
1545     regs->pc = infop->entry;
1546 }
1547 
1548 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1549 #define ELF_NREG 128
1550 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1551 
1552 enum {
1553     TARGET_REG_PC,
1554     TARGET_REG_PS,
1555     TARGET_REG_LBEG,
1556     TARGET_REG_LEND,
1557     TARGET_REG_LCOUNT,
1558     TARGET_REG_SAR,
1559     TARGET_REG_WINDOWSTART,
1560     TARGET_REG_WINDOWBASE,
1561     TARGET_REG_THREADPTR,
1562     TARGET_REG_AR0 = 64,
1563 };
1564 
1565 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1566                                const CPUXtensaState *env)
1567 {
1568     unsigned i;
1569 
1570     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1571     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1572     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1573     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1574     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1575     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1576     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1577     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1578     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1579     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1580     for (i = 0; i < env->config->nareg; ++i) {
1581         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1582     }
1583 }
1584 
1585 #define USE_ELF_CORE_DUMP
1586 #define ELF_EXEC_PAGESIZE       4096
1587 
1588 #endif /* TARGET_XTENSA */
1589 
1590 #ifdef TARGET_HEXAGON
1591 
1592 #define ELF_START_MMAP 0x20000000
1593 
1594 #define ELF_CLASS       ELFCLASS32
1595 #define ELF_ARCH        EM_HEXAGON
1596 
1597 static inline void init_thread(struct target_pt_regs *regs,
1598                                struct image_info *infop)
1599 {
1600     regs->sepc = infop->entry;
1601     regs->sp = infop->start_stack;
1602 }
1603 
1604 #endif /* TARGET_HEXAGON */
1605 
1606 #ifndef ELF_PLATFORM
1607 #define ELF_PLATFORM (NULL)
1608 #endif
1609 
1610 #ifndef ELF_MACHINE
1611 #define ELF_MACHINE ELF_ARCH
1612 #endif
1613 
1614 #ifndef elf_check_arch
1615 #define elf_check_arch(x) ((x) == ELF_ARCH)
1616 #endif
1617 
1618 #ifndef elf_check_abi
1619 #define elf_check_abi(x) (1)
1620 #endif
1621 
1622 #ifndef ELF_HWCAP
1623 #define ELF_HWCAP 0
1624 #endif
1625 
1626 #ifndef STACK_GROWS_DOWN
1627 #define STACK_GROWS_DOWN 1
1628 #endif
1629 
1630 #ifndef STACK_ALIGNMENT
1631 #define STACK_ALIGNMENT 16
1632 #endif
1633 
1634 #ifdef TARGET_ABI32
1635 #undef ELF_CLASS
1636 #define ELF_CLASS ELFCLASS32
1637 #undef bswaptls
1638 #define bswaptls(ptr) bswap32s(ptr)
1639 #endif
1640 
1641 #include "elf.h"
1642 
1643 /* We must delay the following stanzas until after "elf.h". */
1644 #if defined(TARGET_AARCH64)
1645 
1646 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1647                                     const uint32_t *data,
1648                                     struct image_info *info,
1649                                     Error **errp)
1650 {
1651     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1652         if (pr_datasz != sizeof(uint32_t)) {
1653             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1654             return false;
1655         }
1656         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1657         info->note_flags = *data;
1658     }
1659     return true;
1660 }
1661 #define ARCH_USE_GNU_PROPERTY 1
1662 
1663 #else
1664 
1665 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1666                                     const uint32_t *data,
1667                                     struct image_info *info,
1668                                     Error **errp)
1669 {
1670     g_assert_not_reached();
1671 }
1672 #define ARCH_USE_GNU_PROPERTY 0
1673 
1674 #endif
1675 
1676 struct exec
1677 {
1678     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1679     unsigned int a_text;   /* length of text, in bytes */
1680     unsigned int a_data;   /* length of data, in bytes */
1681     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1682     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1683     unsigned int a_entry;  /* start address */
1684     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1685     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1686 };
1687 
1688 
1689 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1690 #define OMAGIC 0407
1691 #define NMAGIC 0410
1692 #define ZMAGIC 0413
1693 #define QMAGIC 0314
1694 
1695 /* Necessary parameters */
1696 #define TARGET_ELF_EXEC_PAGESIZE \
1697         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1698          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1699 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1700 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1701                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1702 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1703 
1704 #define DLINFO_ITEMS 16
1705 
1706 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1707 {
1708     memcpy(to, from, n);
1709 }
1710 
1711 #ifdef BSWAP_NEEDED
1712 static void bswap_ehdr(struct elfhdr *ehdr)
1713 {
1714     bswap16s(&ehdr->e_type);            /* Object file type */
1715     bswap16s(&ehdr->e_machine);         /* Architecture */
1716     bswap32s(&ehdr->e_version);         /* Object file version */
1717     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1718     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1719     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1720     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1721     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1722     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1723     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1724     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1725     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1726     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1727 }
1728 
1729 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1730 {
1731     int i;
1732     for (i = 0; i < phnum; ++i, ++phdr) {
1733         bswap32s(&phdr->p_type);        /* Segment type */
1734         bswap32s(&phdr->p_flags);       /* Segment flags */
1735         bswaptls(&phdr->p_offset);      /* Segment file offset */
1736         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1737         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1738         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1739         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1740         bswaptls(&phdr->p_align);       /* Segment alignment */
1741     }
1742 }
1743 
1744 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1745 {
1746     int i;
1747     for (i = 0; i < shnum; ++i, ++shdr) {
1748         bswap32s(&shdr->sh_name);
1749         bswap32s(&shdr->sh_type);
1750         bswaptls(&shdr->sh_flags);
1751         bswaptls(&shdr->sh_addr);
1752         bswaptls(&shdr->sh_offset);
1753         bswaptls(&shdr->sh_size);
1754         bswap32s(&shdr->sh_link);
1755         bswap32s(&shdr->sh_info);
1756         bswaptls(&shdr->sh_addralign);
1757         bswaptls(&shdr->sh_entsize);
1758     }
1759 }
1760 
1761 static void bswap_sym(struct elf_sym *sym)
1762 {
1763     bswap32s(&sym->st_name);
1764     bswaptls(&sym->st_value);
1765     bswaptls(&sym->st_size);
1766     bswap16s(&sym->st_shndx);
1767 }
1768 
1769 #ifdef TARGET_MIPS
1770 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1771 {
1772     bswap16s(&abiflags->version);
1773     bswap32s(&abiflags->ases);
1774     bswap32s(&abiflags->isa_ext);
1775     bswap32s(&abiflags->flags1);
1776     bswap32s(&abiflags->flags2);
1777 }
1778 #endif
1779 #else
1780 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1781 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1782 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1783 static inline void bswap_sym(struct elf_sym *sym) { }
1784 #ifdef TARGET_MIPS
1785 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1786 #endif
1787 #endif
1788 
1789 #ifdef USE_ELF_CORE_DUMP
1790 static int elf_core_dump(int, const CPUArchState *);
1791 #endif /* USE_ELF_CORE_DUMP */
1792 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1793 
1794 /* Verify the portions of EHDR within E_IDENT for the target.
1795    This can be performed before bswapping the entire header.  */
1796 static bool elf_check_ident(struct elfhdr *ehdr)
1797 {
1798     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1799             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1800             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1801             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1802             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1803             && ehdr->e_ident[EI_DATA] == ELF_DATA
1804             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1805 }
1806 
1807 /* Verify the portions of EHDR outside of E_IDENT for the target.
1808    This has to wait until after bswapping the header.  */
1809 static bool elf_check_ehdr(struct elfhdr *ehdr)
1810 {
1811     return (elf_check_arch(ehdr->e_machine)
1812             && elf_check_abi(ehdr->e_flags)
1813             && ehdr->e_ehsize == sizeof(struct elfhdr)
1814             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1815             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1816 }
1817 
1818 /*
1819  * 'copy_elf_strings()' copies argument/envelope strings from user
1820  * memory to free pages in kernel mem. These are in a format ready
1821  * to be put directly into the top of new user memory.
1822  *
1823  */
1824 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1825                                   abi_ulong p, abi_ulong stack_limit)
1826 {
1827     char *tmp;
1828     int len, i;
1829     abi_ulong top = p;
1830 
1831     if (!p) {
1832         return 0;       /* bullet-proofing */
1833     }
1834 
1835     if (STACK_GROWS_DOWN) {
1836         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1837         for (i = argc - 1; i >= 0; --i) {
1838             tmp = argv[i];
1839             if (!tmp) {
1840                 fprintf(stderr, "VFS: argc is wrong");
1841                 exit(-1);
1842             }
1843             len = strlen(tmp) + 1;
1844             tmp += len;
1845 
1846             if (len > (p - stack_limit)) {
1847                 return 0;
1848             }
1849             while (len) {
1850                 int bytes_to_copy = (len > offset) ? offset : len;
1851                 tmp -= bytes_to_copy;
1852                 p -= bytes_to_copy;
1853                 offset -= bytes_to_copy;
1854                 len -= bytes_to_copy;
1855 
1856                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1857 
1858                 if (offset == 0) {
1859                     memcpy_to_target(p, scratch, top - p);
1860                     top = p;
1861                     offset = TARGET_PAGE_SIZE;
1862                 }
1863             }
1864         }
1865         if (p != top) {
1866             memcpy_to_target(p, scratch + offset, top - p);
1867         }
1868     } else {
1869         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1870         for (i = 0; i < argc; ++i) {
1871             tmp = argv[i];
1872             if (!tmp) {
1873                 fprintf(stderr, "VFS: argc is wrong");
1874                 exit(-1);
1875             }
1876             len = strlen(tmp) + 1;
1877             if (len > (stack_limit - p)) {
1878                 return 0;
1879             }
1880             while (len) {
1881                 int bytes_to_copy = (len > remaining) ? remaining : len;
1882 
1883                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1884 
1885                 tmp += bytes_to_copy;
1886                 remaining -= bytes_to_copy;
1887                 p += bytes_to_copy;
1888                 len -= bytes_to_copy;
1889 
1890                 if (remaining == 0) {
1891                     memcpy_to_target(top, scratch, p - top);
1892                     top = p;
1893                     remaining = TARGET_PAGE_SIZE;
1894                 }
1895             }
1896         }
1897         if (p != top) {
1898             memcpy_to_target(top, scratch, p - top);
1899         }
1900     }
1901 
1902     return p;
1903 }
1904 
1905 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1906  * argument/environment space. Newer kernels (>2.6.33) allow more,
1907  * dependent on stack size, but guarantee at least 32 pages for
1908  * backwards compatibility.
1909  */
1910 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1911 
1912 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1913                                  struct image_info *info)
1914 {
1915     abi_ulong size, error, guard;
1916 
1917     size = guest_stack_size;
1918     if (size < STACK_LOWER_LIMIT) {
1919         size = STACK_LOWER_LIMIT;
1920     }
1921     guard = TARGET_PAGE_SIZE;
1922     if (guard < qemu_real_host_page_size()) {
1923         guard = qemu_real_host_page_size();
1924     }
1925 
1926     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1927                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1928     if (error == -1) {
1929         perror("mmap stack");
1930         exit(-1);
1931     }
1932 
1933     /* We reserve one extra page at the top of the stack as guard.  */
1934     if (STACK_GROWS_DOWN) {
1935         target_mprotect(error, guard, PROT_NONE);
1936         info->stack_limit = error + guard;
1937         return info->stack_limit + size - sizeof(void *);
1938     } else {
1939         target_mprotect(error + size, guard, PROT_NONE);
1940         info->stack_limit = error + size;
1941         return error;
1942     }
1943 }
1944 
1945 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1946    after the data section (i.e. bss).  */
1947 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1948 {
1949     uintptr_t host_start, host_map_start, host_end;
1950 
1951     last_bss = TARGET_PAGE_ALIGN(last_bss);
1952 
1953     /* ??? There is confusion between qemu_real_host_page_size and
1954        qemu_host_page_size here and elsewhere in target_mmap, which
1955        may lead to the end of the data section mapping from the file
1956        not being mapped.  At least there was an explicit test and
1957        comment for that here, suggesting that "the file size must
1958        be known".  The comment probably pre-dates the introduction
1959        of the fstat system call in target_mmap which does in fact
1960        find out the size.  What isn't clear is if the workaround
1961        here is still actually needed.  For now, continue with it,
1962        but merge it with the "normal" mmap that would allocate the bss.  */
1963 
1964     host_start = (uintptr_t) g2h_untagged(elf_bss);
1965     host_end = (uintptr_t) g2h_untagged(last_bss);
1966     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1967 
1968     if (host_map_start < host_end) {
1969         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1970                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1971         if (p == MAP_FAILED) {
1972             perror("cannot mmap brk");
1973             exit(-1);
1974         }
1975     }
1976 
1977     /* Ensure that the bss page(s) are valid */
1978     if ((page_get_flags(last_bss-1) & prot) != prot) {
1979         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1980     }
1981 
1982     if (host_start < host_map_start) {
1983         memset((void *)host_start, 0, host_map_start - host_start);
1984     }
1985 }
1986 
1987 #ifdef TARGET_ARM
1988 static int elf_is_fdpic(struct elfhdr *exec)
1989 {
1990     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1991 }
1992 #else
1993 /* Default implementation, always false.  */
1994 static int elf_is_fdpic(struct elfhdr *exec)
1995 {
1996     return 0;
1997 }
1998 #endif
1999 
2000 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2001 {
2002     uint16_t n;
2003     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2004 
2005     /* elf32_fdpic_loadseg */
2006     n = info->nsegs;
2007     while (n--) {
2008         sp -= 12;
2009         put_user_u32(loadsegs[n].addr, sp+0);
2010         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2011         put_user_u32(loadsegs[n].p_memsz, sp+8);
2012     }
2013 
2014     /* elf32_fdpic_loadmap */
2015     sp -= 4;
2016     put_user_u16(0, sp+0); /* version */
2017     put_user_u16(info->nsegs, sp+2); /* nsegs */
2018 
2019     info->personality = PER_LINUX_FDPIC;
2020     info->loadmap_addr = sp;
2021 
2022     return sp;
2023 }
2024 
2025 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2026                                    struct elfhdr *exec,
2027                                    struct image_info *info,
2028                                    struct image_info *interp_info)
2029 {
2030     abi_ulong sp;
2031     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2032     int size;
2033     int i;
2034     abi_ulong u_rand_bytes;
2035     uint8_t k_rand_bytes[16];
2036     abi_ulong u_platform;
2037     const char *k_platform;
2038     const int n = sizeof(elf_addr_t);
2039 
2040     sp = p;
2041 
2042     /* Needs to be before we load the env/argc/... */
2043     if (elf_is_fdpic(exec)) {
2044         /* Need 4 byte alignment for these structs */
2045         sp &= ~3;
2046         sp = loader_build_fdpic_loadmap(info, sp);
2047         info->other_info = interp_info;
2048         if (interp_info) {
2049             interp_info->other_info = info;
2050             sp = loader_build_fdpic_loadmap(interp_info, sp);
2051             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2052             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2053         } else {
2054             info->interpreter_loadmap_addr = 0;
2055             info->interpreter_pt_dynamic_addr = 0;
2056         }
2057     }
2058 
2059     u_platform = 0;
2060     k_platform = ELF_PLATFORM;
2061     if (k_platform) {
2062         size_t len = strlen(k_platform) + 1;
2063         if (STACK_GROWS_DOWN) {
2064             sp -= (len + n - 1) & ~(n - 1);
2065             u_platform = sp;
2066             /* FIXME - check return value of memcpy_to_target() for failure */
2067             memcpy_to_target(sp, k_platform, len);
2068         } else {
2069             memcpy_to_target(sp, k_platform, len);
2070             u_platform = sp;
2071             sp += len + 1;
2072         }
2073     }
2074 
2075     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2076      * the argv and envp pointers.
2077      */
2078     if (STACK_GROWS_DOWN) {
2079         sp = QEMU_ALIGN_DOWN(sp, 16);
2080     } else {
2081         sp = QEMU_ALIGN_UP(sp, 16);
2082     }
2083 
2084     /*
2085      * Generate 16 random bytes for userspace PRNG seeding.
2086      */
2087     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2088     if (STACK_GROWS_DOWN) {
2089         sp -= 16;
2090         u_rand_bytes = sp;
2091         /* FIXME - check return value of memcpy_to_target() for failure */
2092         memcpy_to_target(sp, k_rand_bytes, 16);
2093     } else {
2094         memcpy_to_target(sp, k_rand_bytes, 16);
2095         u_rand_bytes = sp;
2096         sp += 16;
2097     }
2098 
2099     size = (DLINFO_ITEMS + 1) * 2;
2100     if (k_platform)
2101         size += 2;
2102 #ifdef DLINFO_ARCH_ITEMS
2103     size += DLINFO_ARCH_ITEMS * 2;
2104 #endif
2105 #ifdef ELF_HWCAP2
2106     size += 2;
2107 #endif
2108     info->auxv_len = size * n;
2109 
2110     size += envc + argc + 2;
2111     size += 1;  /* argc itself */
2112     size *= n;
2113 
2114     /* Allocate space and finalize stack alignment for entry now.  */
2115     if (STACK_GROWS_DOWN) {
2116         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2117         sp = u_argc;
2118     } else {
2119         u_argc = sp;
2120         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2121     }
2122 
2123     u_argv = u_argc + n;
2124     u_envp = u_argv + (argc + 1) * n;
2125     u_auxv = u_envp + (envc + 1) * n;
2126     info->saved_auxv = u_auxv;
2127     info->argc = argc;
2128     info->envc = envc;
2129     info->argv = u_argv;
2130     info->envp = u_envp;
2131 
2132     /* This is correct because Linux defines
2133      * elf_addr_t as Elf32_Off / Elf64_Off
2134      */
2135 #define NEW_AUX_ENT(id, val) do {               \
2136         put_user_ual(id, u_auxv);  u_auxv += n; \
2137         put_user_ual(val, u_auxv); u_auxv += n; \
2138     } while(0)
2139 
2140 #ifdef ARCH_DLINFO
2141     /*
2142      * ARCH_DLINFO must come first so platform specific code can enforce
2143      * special alignment requirements on the AUXV if necessary (eg. PPC).
2144      */
2145     ARCH_DLINFO;
2146 #endif
2147     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2148      * on info->auxv_len will trigger.
2149      */
2150     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2151     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2152     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2153     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2154         /* Target doesn't support host page size alignment */
2155         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2156     } else {
2157         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2158                                                qemu_host_page_size)));
2159     }
2160     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2161     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2162     NEW_AUX_ENT(AT_ENTRY, info->entry);
2163     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2164     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2165     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2166     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2167     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2168     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2169     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2170     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2171     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2172 
2173 #ifdef ELF_HWCAP2
2174     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2175 #endif
2176 
2177     if (u_platform) {
2178         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2179     }
2180     NEW_AUX_ENT (AT_NULL, 0);
2181 #undef NEW_AUX_ENT
2182 
2183     /* Check that our initial calculation of the auxv length matches how much
2184      * we actually put into it.
2185      */
2186     assert(info->auxv_len == u_auxv - info->saved_auxv);
2187 
2188     put_user_ual(argc, u_argc);
2189 
2190     p = info->arg_strings;
2191     for (i = 0; i < argc; ++i) {
2192         put_user_ual(p, u_argv);
2193         u_argv += n;
2194         p += target_strlen(p) + 1;
2195     }
2196     put_user_ual(0, u_argv);
2197 
2198     p = info->env_strings;
2199     for (i = 0; i < envc; ++i) {
2200         put_user_ual(p, u_envp);
2201         u_envp += n;
2202         p += target_strlen(p) + 1;
2203     }
2204     put_user_ual(0, u_envp);
2205 
2206     return sp;
2207 }
2208 
2209 #if defined(HI_COMMPAGE)
2210 #define LO_COMMPAGE 0
2211 #elif defined(LO_COMMPAGE)
2212 #define HI_COMMPAGE 0
2213 #else
2214 #define HI_COMMPAGE 0
2215 #define LO_COMMPAGE 0
2216 #define init_guest_commpage() true
2217 #endif
2218 
2219 static void pgb_fail_in_use(const char *image_name)
2220 {
2221     error_report("%s: requires virtual address space that is in use "
2222                  "(omit the -B option or choose a different value)",
2223                  image_name);
2224     exit(EXIT_FAILURE);
2225 }
2226 
2227 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2228                                 abi_ulong guest_hiaddr, long align)
2229 {
2230     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2231     void *addr, *test;
2232 
2233     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2234         fprintf(stderr, "Requested guest base %p does not satisfy "
2235                 "host minimum alignment (0x%lx)\n",
2236                 (void *)guest_base, align);
2237         exit(EXIT_FAILURE);
2238     }
2239 
2240     /* Sanity check the guest binary. */
2241     if (reserved_va) {
2242         if (guest_hiaddr > reserved_va) {
2243             error_report("%s: requires more than reserved virtual "
2244                          "address space (0x%" PRIx64 " > 0x%lx)",
2245                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2246             exit(EXIT_FAILURE);
2247         }
2248     } else {
2249 #if HOST_LONG_BITS < TARGET_ABI_BITS
2250         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2251             error_report("%s: requires more virtual address space "
2252                          "than the host can provide (0x%" PRIx64 ")",
2253                          image_name, (uint64_t)guest_hiaddr - guest_base);
2254             exit(EXIT_FAILURE);
2255         }
2256 #endif
2257     }
2258 
2259     /*
2260      * Expand the allocation to the entire reserved_va.
2261      * Exclude the mmap_min_addr hole.
2262      */
2263     if (reserved_va) {
2264         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2265                         : mmap_min_addr - guest_base);
2266         guest_hiaddr = reserved_va;
2267     }
2268 
2269     /* Reserve the address space for the binary, or reserved_va. */
2270     test = g2h_untagged(guest_loaddr);
2271     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2272     if (test != addr) {
2273         pgb_fail_in_use(image_name);
2274     }
2275     qemu_log_mask(CPU_LOG_PAGE,
2276                   "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n",
2277                   __func__, addr, guest_hiaddr - guest_loaddr);
2278 }
2279 
2280 /**
2281  * pgd_find_hole_fallback: potential mmap address
2282  * @guest_size: size of available space
2283  * @brk: location of break
2284  * @align: memory alignment
2285  *
2286  * This is a fallback method for finding a hole in the host address
2287  * space if we don't have the benefit of being able to access
2288  * /proc/self/map. It can potentially take a very long time as we can
2289  * only dumbly iterate up the host address space seeing if the
2290  * allocation would work.
2291  */
2292 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2293                                         long align, uintptr_t offset)
2294 {
2295     uintptr_t base;
2296 
2297     /* Start (aligned) at the bottom and work our way up */
2298     base = ROUND_UP(mmap_min_addr, align);
2299 
2300     while (true) {
2301         uintptr_t align_start, end;
2302         align_start = ROUND_UP(base, align);
2303         end = align_start + guest_size + offset;
2304 
2305         /* if brk is anywhere in the range give ourselves some room to grow. */
2306         if (align_start <= brk && brk < end) {
2307             base = brk + (16 * MiB);
2308             continue;
2309         } else if (align_start + guest_size < align_start) {
2310             /* we have run out of space */
2311             return -1;
2312         } else {
2313             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2314                 MAP_FIXED_NOREPLACE;
2315             void * mmap_start = mmap((void *) align_start, guest_size,
2316                                      PROT_NONE, flags, -1, 0);
2317             if (mmap_start != MAP_FAILED) {
2318                 munmap(mmap_start, guest_size);
2319                 if (mmap_start == (void *) align_start) {
2320                     qemu_log_mask(CPU_LOG_PAGE,
2321                                   "%s: base @ %p for %" PRIdPTR" bytes\n",
2322                                   __func__, mmap_start + offset, guest_size);
2323                     return (uintptr_t) mmap_start + offset;
2324                 }
2325             }
2326             base += qemu_host_page_size;
2327         }
2328     }
2329 }
2330 
2331 /* Return value for guest_base, or -1 if no hole found. */
2332 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2333                                long align, uintptr_t offset)
2334 {
2335     GSList *maps, *iter;
2336     uintptr_t this_start, this_end, next_start, brk;
2337     intptr_t ret = -1;
2338 
2339     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2340 
2341     maps = read_self_maps();
2342 
2343     /* Read brk after we've read the maps, which will malloc. */
2344     brk = (uintptr_t)sbrk(0);
2345 
2346     if (!maps) {
2347         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2348     }
2349 
2350     /* The first hole is before the first map entry. */
2351     this_start = mmap_min_addr;
2352 
2353     for (iter = maps; iter;
2354          this_start = next_start, iter = g_slist_next(iter)) {
2355         uintptr_t align_start, hole_size;
2356 
2357         this_end = ((MapInfo *)iter->data)->start;
2358         next_start = ((MapInfo *)iter->data)->end;
2359         align_start = ROUND_UP(this_start + offset, align);
2360 
2361         /* Skip holes that are too small. */
2362         if (align_start >= this_end) {
2363             continue;
2364         }
2365         hole_size = this_end - align_start;
2366         if (hole_size < guest_size) {
2367             continue;
2368         }
2369 
2370         /* If this hole contains brk, give ourselves some room to grow. */
2371         if (this_start <= brk && brk < this_end) {
2372             hole_size -= guest_size;
2373             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2374                 align_start += 1 * GiB;
2375             } else if (hole_size >= 16 * MiB) {
2376                 align_start += 16 * MiB;
2377             } else {
2378                 align_start = (this_end - guest_size) & -align;
2379                 if (align_start < this_start) {
2380                     continue;
2381                 }
2382             }
2383         }
2384 
2385         /* Record the lowest successful match. */
2386         if (ret < 0) {
2387             ret = align_start;
2388         }
2389         /* If this hole contains the identity map, select it. */
2390         if (align_start <= guest_loaddr &&
2391             guest_loaddr + guest_size <= this_end) {
2392             ret = 0;
2393         }
2394         /* If this hole ends above the identity map, stop looking. */
2395         if (this_end >= guest_loaddr) {
2396             break;
2397         }
2398     }
2399     free_self_maps(maps);
2400 
2401     if (ret != -1) {
2402         qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2403                       " for %" PRIuPTR " bytes\n",
2404                       __func__, ret, guest_size);
2405     }
2406 
2407     return ret;
2408 }
2409 
2410 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2411                        abi_ulong orig_hiaddr, long align)
2412 {
2413     uintptr_t loaddr = orig_loaddr;
2414     uintptr_t hiaddr = orig_hiaddr;
2415     uintptr_t offset = 0;
2416     uintptr_t addr;
2417 
2418     if (hiaddr != orig_hiaddr) {
2419         error_report("%s: requires virtual address space that the "
2420                      "host cannot provide (0x%" PRIx64 ")",
2421                      image_name, (uint64_t)orig_hiaddr);
2422         exit(EXIT_FAILURE);
2423     }
2424 
2425     loaddr &= -align;
2426     if (HI_COMMPAGE) {
2427         /*
2428          * Extend the allocation to include the commpage.
2429          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2430          * need to ensure there is space bellow the guest_base so we
2431          * can map the commpage in the place needed when the address
2432          * arithmetic wraps around.
2433          */
2434         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2435             hiaddr = (uintptr_t) 4 << 30;
2436         } else {
2437             offset = -(HI_COMMPAGE & -align);
2438         }
2439     } else if (LO_COMMPAGE != 0) {
2440         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2441     }
2442 
2443     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2444     if (addr == -1) {
2445         /*
2446          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2447          * that can satisfy both.  But as the normal arm32 link base address
2448          * is ~32k, and we extend down to include the commpage, making the
2449          * overhead only ~96k, this is unlikely.
2450          */
2451         error_report("%s: Unable to allocate %#zx bytes of "
2452                      "virtual address space", image_name,
2453                      (size_t)(hiaddr - loaddr));
2454         exit(EXIT_FAILURE);
2455     }
2456 
2457     guest_base = addr;
2458 
2459     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2460                   __func__, addr, hiaddr - loaddr);
2461 }
2462 
2463 static void pgb_dynamic(const char *image_name, long align)
2464 {
2465     /*
2466      * The executable is dynamic and does not require a fixed address.
2467      * All we need is a commpage that satisfies align.
2468      * If we do not need a commpage, leave guest_base == 0.
2469      */
2470     if (HI_COMMPAGE) {
2471         uintptr_t addr, commpage;
2472 
2473         /* 64-bit hosts should have used reserved_va. */
2474         assert(sizeof(uintptr_t) == 4);
2475 
2476         /*
2477          * By putting the commpage at the first hole, that puts guest_base
2478          * just above that, and maximises the positive guest addresses.
2479          */
2480         commpage = HI_COMMPAGE & -align;
2481         addr = pgb_find_hole(commpage, -commpage, align, 0);
2482         assert(addr != -1);
2483         guest_base = addr;
2484     }
2485 }
2486 
2487 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2488                             abi_ulong guest_hiaddr, long align)
2489 {
2490     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2491     void *addr, *test;
2492 
2493     if (guest_hiaddr > reserved_va) {
2494         error_report("%s: requires more than reserved virtual "
2495                      "address space (0x%" PRIx64 " > 0x%lx)",
2496                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2497         exit(EXIT_FAILURE);
2498     }
2499 
2500     /* Widen the "image" to the entire reserved address space. */
2501     pgb_static(image_name, 0, reserved_va, align);
2502 
2503     /* osdep.h defines this as 0 if it's missing */
2504     flags |= MAP_FIXED_NOREPLACE;
2505 
2506     /* Reserve the memory on the host. */
2507     assert(guest_base != 0);
2508     test = g2h_untagged(0);
2509     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2510     if (addr == MAP_FAILED || addr != test) {
2511         error_report("Unable to reserve 0x%lx bytes of virtual address "
2512                      "space at %p (%s) for use as guest address space (check your "
2513                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2514                      "using -R option)", reserved_va, test, strerror(errno));
2515         exit(EXIT_FAILURE);
2516     }
2517 
2518     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2519                   __func__, addr, reserved_va);
2520 }
2521 
2522 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2523                       abi_ulong guest_hiaddr)
2524 {
2525     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2526     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2527 
2528     if (have_guest_base) {
2529         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2530     } else if (reserved_va) {
2531         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2532     } else if (guest_loaddr) {
2533         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2534     } else {
2535         pgb_dynamic(image_name, align);
2536     }
2537 
2538     /* Reserve and initialize the commpage. */
2539     if (!init_guest_commpage()) {
2540         /*
2541          * With have_guest_base, the user has selected the address and
2542          * we are trying to work with that.  Otherwise, we have selected
2543          * free space and init_guest_commpage must succeeded.
2544          */
2545         assert(have_guest_base);
2546         pgb_fail_in_use(image_name);
2547     }
2548 
2549     assert(QEMU_IS_ALIGNED(guest_base, align));
2550     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2551                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2552 }
2553 
2554 enum {
2555     /* The string "GNU\0" as a magic number. */
2556     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2557     NOTE_DATA_SZ = 1 * KiB,
2558     NOTE_NAME_SZ = 4,
2559     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2560 };
2561 
2562 /*
2563  * Process a single gnu_property entry.
2564  * Return false for error.
2565  */
2566 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2567                                struct image_info *info, bool have_prev_type,
2568                                uint32_t *prev_type, Error **errp)
2569 {
2570     uint32_t pr_type, pr_datasz, step;
2571 
2572     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2573         goto error_data;
2574     }
2575     datasz -= *off;
2576     data += *off / sizeof(uint32_t);
2577 
2578     if (datasz < 2 * sizeof(uint32_t)) {
2579         goto error_data;
2580     }
2581     pr_type = data[0];
2582     pr_datasz = data[1];
2583     data += 2;
2584     datasz -= 2 * sizeof(uint32_t);
2585     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2586     if (step > datasz) {
2587         goto error_data;
2588     }
2589 
2590     /* Properties are supposed to be unique and sorted on pr_type. */
2591     if (have_prev_type && pr_type <= *prev_type) {
2592         if (pr_type == *prev_type) {
2593             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2594         } else {
2595             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2596         }
2597         return false;
2598     }
2599     *prev_type = pr_type;
2600 
2601     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2602         return false;
2603     }
2604 
2605     *off += 2 * sizeof(uint32_t) + step;
2606     return true;
2607 
2608  error_data:
2609     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2610     return false;
2611 }
2612 
2613 /* Process NT_GNU_PROPERTY_TYPE_0. */
2614 static bool parse_elf_properties(int image_fd,
2615                                  struct image_info *info,
2616                                  const struct elf_phdr *phdr,
2617                                  char bprm_buf[BPRM_BUF_SIZE],
2618                                  Error **errp)
2619 {
2620     union {
2621         struct elf_note nhdr;
2622         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2623     } note;
2624 
2625     int n, off, datasz;
2626     bool have_prev_type;
2627     uint32_t prev_type;
2628 
2629     /* Unless the arch requires properties, ignore them. */
2630     if (!ARCH_USE_GNU_PROPERTY) {
2631         return true;
2632     }
2633 
2634     /* If the properties are crazy large, that's too bad. */
2635     n = phdr->p_filesz;
2636     if (n > sizeof(note)) {
2637         error_setg(errp, "PT_GNU_PROPERTY too large");
2638         return false;
2639     }
2640     if (n < sizeof(note.nhdr)) {
2641         error_setg(errp, "PT_GNU_PROPERTY too small");
2642         return false;
2643     }
2644 
2645     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2646         memcpy(&note, bprm_buf + phdr->p_offset, n);
2647     } else {
2648         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2649         if (len != n) {
2650             error_setg_errno(errp, errno, "Error reading file header");
2651             return false;
2652         }
2653     }
2654 
2655     /*
2656      * The contents of a valid PT_GNU_PROPERTY is a sequence
2657      * of uint32_t -- swap them all now.
2658      */
2659 #ifdef BSWAP_NEEDED
2660     for (int i = 0; i < n / 4; i++) {
2661         bswap32s(note.data + i);
2662     }
2663 #endif
2664 
2665     /*
2666      * Note that nhdr is 3 words, and that the "name" described by namesz
2667      * immediately follows nhdr and is thus at the 4th word.  Further, all
2668      * of the inputs to the kernel's round_up are multiples of 4.
2669      */
2670     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2671         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2672         note.data[3] != GNU0_MAGIC) {
2673         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2674         return false;
2675     }
2676     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2677 
2678     datasz = note.nhdr.n_descsz + off;
2679     if (datasz > n) {
2680         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2681         return false;
2682     }
2683 
2684     have_prev_type = false;
2685     prev_type = 0;
2686     while (1) {
2687         if (off == datasz) {
2688             return true;  /* end, exit ok */
2689         }
2690         if (!parse_elf_property(note.data, &off, datasz, info,
2691                                 have_prev_type, &prev_type, errp)) {
2692             return false;
2693         }
2694         have_prev_type = true;
2695     }
2696 }
2697 
2698 /* Load an ELF image into the address space.
2699 
2700    IMAGE_NAME is the filename of the image, to use in error messages.
2701    IMAGE_FD is the open file descriptor for the image.
2702 
2703    BPRM_BUF is a copy of the beginning of the file; this of course
2704    contains the elf file header at offset 0.  It is assumed that this
2705    buffer is sufficiently aligned to present no problems to the host
2706    in accessing data at aligned offsets within the buffer.
2707 
2708    On return: INFO values will be filled in, as necessary or available.  */
2709 
2710 static void load_elf_image(const char *image_name, int image_fd,
2711                            struct image_info *info, char **pinterp_name,
2712                            char bprm_buf[BPRM_BUF_SIZE])
2713 {
2714     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2715     struct elf_phdr *phdr;
2716     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2717     int i, retval, prot_exec;
2718     Error *err = NULL;
2719 
2720     /* First of all, some simple consistency checks */
2721     if (!elf_check_ident(ehdr)) {
2722         error_setg(&err, "Invalid ELF image for this architecture");
2723         goto exit_errmsg;
2724     }
2725     bswap_ehdr(ehdr);
2726     if (!elf_check_ehdr(ehdr)) {
2727         error_setg(&err, "Invalid ELF image for this architecture");
2728         goto exit_errmsg;
2729     }
2730 
2731     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2732     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2733         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2734     } else {
2735         phdr = (struct elf_phdr *) alloca(i);
2736         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2737         if (retval != i) {
2738             goto exit_read;
2739         }
2740     }
2741     bswap_phdr(phdr, ehdr->e_phnum);
2742 
2743     info->nsegs = 0;
2744     info->pt_dynamic_addr = 0;
2745 
2746     mmap_lock();
2747 
2748     /*
2749      * Find the maximum size of the image and allocate an appropriate
2750      * amount of memory to handle that.  Locate the interpreter, if any.
2751      */
2752     loaddr = -1, hiaddr = 0;
2753     info->alignment = 0;
2754     for (i = 0; i < ehdr->e_phnum; ++i) {
2755         struct elf_phdr *eppnt = phdr + i;
2756         if (eppnt->p_type == PT_LOAD) {
2757             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2758             if (a < loaddr) {
2759                 loaddr = a;
2760             }
2761             a = eppnt->p_vaddr + eppnt->p_memsz;
2762             if (a > hiaddr) {
2763                 hiaddr = a;
2764             }
2765             ++info->nsegs;
2766             info->alignment |= eppnt->p_align;
2767         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2768             g_autofree char *interp_name = NULL;
2769 
2770             if (*pinterp_name) {
2771                 error_setg(&err, "Multiple PT_INTERP entries");
2772                 goto exit_errmsg;
2773             }
2774 
2775             interp_name = g_malloc(eppnt->p_filesz);
2776 
2777             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2778                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2779                        eppnt->p_filesz);
2780             } else {
2781                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2782                                eppnt->p_offset);
2783                 if (retval != eppnt->p_filesz) {
2784                     goto exit_read;
2785                 }
2786             }
2787             if (interp_name[eppnt->p_filesz - 1] != 0) {
2788                 error_setg(&err, "Invalid PT_INTERP entry");
2789                 goto exit_errmsg;
2790             }
2791             *pinterp_name = g_steal_pointer(&interp_name);
2792         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2793             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2794                 goto exit_errmsg;
2795             }
2796         }
2797     }
2798 
2799     if (pinterp_name != NULL) {
2800         /*
2801          * This is the main executable.
2802          *
2803          * Reserve extra space for brk.
2804          * We hold on to this space while placing the interpreter
2805          * and the stack, lest they be placed immediately after
2806          * the data segment and block allocation from the brk.
2807          *
2808          * 16MB is chosen as "large enough" without being so large as
2809          * to allow the result to not fit with a 32-bit guest on a
2810          * 32-bit host. However some 64 bit guests (e.g. s390x)
2811          * attempt to place their heap further ahead and currently
2812          * nothing stops them smashing into QEMUs address space.
2813          */
2814 #if TARGET_LONG_BITS == 64
2815         info->reserve_brk = 32 * MiB;
2816 #else
2817         info->reserve_brk = 16 * MiB;
2818 #endif
2819         hiaddr += info->reserve_brk;
2820 
2821         if (ehdr->e_type == ET_EXEC) {
2822             /*
2823              * Make sure that the low address does not conflict with
2824              * MMAP_MIN_ADDR or the QEMU application itself.
2825              */
2826             probe_guest_base(image_name, loaddr, hiaddr);
2827         } else {
2828             /*
2829              * The binary is dynamic, but we still need to
2830              * select guest_base.  In this case we pass a size.
2831              */
2832             probe_guest_base(image_name, 0, hiaddr - loaddr);
2833         }
2834     }
2835 
2836     /*
2837      * Reserve address space for all of this.
2838      *
2839      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2840      * exactly the address range that is required.
2841      *
2842      * Otherwise this is ET_DYN, and we are searching for a location
2843      * that can hold the memory space required.  If the image is
2844      * pre-linked, LOADDR will be non-zero, and the kernel should
2845      * honor that address if it happens to be free.
2846      *
2847      * In both cases, we will overwrite pages in this range with mappings
2848      * from the executable.
2849      */
2850     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2851                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2852                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2853                             -1, 0);
2854     if (load_addr == -1) {
2855         goto exit_mmap;
2856     }
2857     load_bias = load_addr - loaddr;
2858 
2859     if (elf_is_fdpic(ehdr)) {
2860         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2861             g_malloc(sizeof(*loadsegs) * info->nsegs);
2862 
2863         for (i = 0; i < ehdr->e_phnum; ++i) {
2864             switch (phdr[i].p_type) {
2865             case PT_DYNAMIC:
2866                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2867                 break;
2868             case PT_LOAD:
2869                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2870                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2871                 loadsegs->p_memsz = phdr[i].p_memsz;
2872                 ++loadsegs;
2873                 break;
2874             }
2875         }
2876     }
2877 
2878     info->load_bias = load_bias;
2879     info->code_offset = load_bias;
2880     info->data_offset = load_bias;
2881     info->load_addr = load_addr;
2882     info->entry = ehdr->e_entry + load_bias;
2883     info->start_code = -1;
2884     info->end_code = 0;
2885     info->start_data = -1;
2886     info->end_data = 0;
2887     info->brk = 0;
2888     info->elf_flags = ehdr->e_flags;
2889 
2890     prot_exec = PROT_EXEC;
2891 #ifdef TARGET_AARCH64
2892     /*
2893      * If the BTI feature is present, this indicates that the executable
2894      * pages of the startup binary should be mapped with PROT_BTI, so that
2895      * branch targets are enforced.
2896      *
2897      * The startup binary is either the interpreter or the static executable.
2898      * The interpreter is responsible for all pages of a dynamic executable.
2899      *
2900      * Elf notes are backward compatible to older cpus.
2901      * Do not enable BTI unless it is supported.
2902      */
2903     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2904         && (pinterp_name == NULL || *pinterp_name == 0)
2905         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2906         prot_exec |= TARGET_PROT_BTI;
2907     }
2908 #endif
2909 
2910     for (i = 0; i < ehdr->e_phnum; i++) {
2911         struct elf_phdr *eppnt = phdr + i;
2912         if (eppnt->p_type == PT_LOAD) {
2913             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2914             int elf_prot = 0;
2915 
2916             if (eppnt->p_flags & PF_R) {
2917                 elf_prot |= PROT_READ;
2918             }
2919             if (eppnt->p_flags & PF_W) {
2920                 elf_prot |= PROT_WRITE;
2921             }
2922             if (eppnt->p_flags & PF_X) {
2923                 elf_prot |= prot_exec;
2924             }
2925 
2926             vaddr = load_bias + eppnt->p_vaddr;
2927             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2928             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2929 
2930             vaddr_ef = vaddr + eppnt->p_filesz;
2931             vaddr_em = vaddr + eppnt->p_memsz;
2932 
2933             /*
2934              * Some segments may be completely empty, with a non-zero p_memsz
2935              * but no backing file segment.
2936              */
2937             if (eppnt->p_filesz != 0) {
2938                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2939                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2940                                     MAP_PRIVATE | MAP_FIXED,
2941                                     image_fd, eppnt->p_offset - vaddr_po);
2942 
2943                 if (error == -1) {
2944                     goto exit_mmap;
2945                 }
2946 
2947                 /*
2948                  * If the load segment requests extra zeros (e.g. bss), map it.
2949                  */
2950                 if (eppnt->p_filesz < eppnt->p_memsz) {
2951                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2952                 }
2953             } else if (eppnt->p_memsz != 0) {
2954                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2955                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2956                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2957                                     -1, 0);
2958 
2959                 if (error == -1) {
2960                     goto exit_mmap;
2961                 }
2962             }
2963 
2964             /* Find the full program boundaries.  */
2965             if (elf_prot & PROT_EXEC) {
2966                 if (vaddr < info->start_code) {
2967                     info->start_code = vaddr;
2968                 }
2969                 if (vaddr_ef > info->end_code) {
2970                     info->end_code = vaddr_ef;
2971                 }
2972             }
2973             if (elf_prot & PROT_WRITE) {
2974                 if (vaddr < info->start_data) {
2975                     info->start_data = vaddr;
2976                 }
2977                 if (vaddr_ef > info->end_data) {
2978                     info->end_data = vaddr_ef;
2979                 }
2980             }
2981             if (vaddr_em > info->brk) {
2982                 info->brk = vaddr_em;
2983             }
2984 #ifdef TARGET_MIPS
2985         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2986             Mips_elf_abiflags_v0 abiflags;
2987             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2988                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2989                 goto exit_errmsg;
2990             }
2991             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2992                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2993                        sizeof(Mips_elf_abiflags_v0));
2994             } else {
2995                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2996                                eppnt->p_offset);
2997                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2998                     goto exit_read;
2999                 }
3000             }
3001             bswap_mips_abiflags(&abiflags);
3002             info->fp_abi = abiflags.fp_abi;
3003 #endif
3004         }
3005     }
3006 
3007     if (info->end_data == 0) {
3008         info->start_data = info->end_code;
3009         info->end_data = info->end_code;
3010     }
3011 
3012     if (qemu_log_enabled()) {
3013         load_symbols(ehdr, image_fd, load_bias);
3014     }
3015 
3016     mmap_unlock();
3017 
3018     close(image_fd);
3019     return;
3020 
3021  exit_read:
3022     if (retval >= 0) {
3023         error_setg(&err, "Incomplete read of file header");
3024     } else {
3025         error_setg_errno(&err, errno, "Error reading file header");
3026     }
3027     goto exit_errmsg;
3028  exit_mmap:
3029     error_setg_errno(&err, errno, "Error mapping file");
3030     goto exit_errmsg;
3031  exit_errmsg:
3032     error_reportf_err(err, "%s: ", image_name);
3033     exit(-1);
3034 }
3035 
3036 static void load_elf_interp(const char *filename, struct image_info *info,
3037                             char bprm_buf[BPRM_BUF_SIZE])
3038 {
3039     int fd, retval;
3040     Error *err = NULL;
3041 
3042     fd = open(path(filename), O_RDONLY);
3043     if (fd < 0) {
3044         error_setg_file_open(&err, errno, filename);
3045         error_report_err(err);
3046         exit(-1);
3047     }
3048 
3049     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3050     if (retval < 0) {
3051         error_setg_errno(&err, errno, "Error reading file header");
3052         error_reportf_err(err, "%s: ", filename);
3053         exit(-1);
3054     }
3055 
3056     if (retval < BPRM_BUF_SIZE) {
3057         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3058     }
3059 
3060     load_elf_image(filename, fd, info, NULL, bprm_buf);
3061 }
3062 
3063 static int symfind(const void *s0, const void *s1)
3064 {
3065     target_ulong addr = *(target_ulong *)s0;
3066     struct elf_sym *sym = (struct elf_sym *)s1;
3067     int result = 0;
3068     if (addr < sym->st_value) {
3069         result = -1;
3070     } else if (addr >= sym->st_value + sym->st_size) {
3071         result = 1;
3072     }
3073     return result;
3074 }
3075 
3076 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3077 {
3078 #if ELF_CLASS == ELFCLASS32
3079     struct elf_sym *syms = s->disas_symtab.elf32;
3080 #else
3081     struct elf_sym *syms = s->disas_symtab.elf64;
3082 #endif
3083 
3084     // binary search
3085     struct elf_sym *sym;
3086 
3087     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3088     if (sym != NULL) {
3089         return s->disas_strtab + sym->st_name;
3090     }
3091 
3092     return "";
3093 }
3094 
3095 /* FIXME: This should use elf_ops.h  */
3096 static int symcmp(const void *s0, const void *s1)
3097 {
3098     struct elf_sym *sym0 = (struct elf_sym *)s0;
3099     struct elf_sym *sym1 = (struct elf_sym *)s1;
3100     return (sym0->st_value < sym1->st_value)
3101         ? -1
3102         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3103 }
3104 
3105 /* Best attempt to load symbols from this ELF object. */
3106 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3107 {
3108     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3109     uint64_t segsz;
3110     struct elf_shdr *shdr;
3111     char *strings = NULL;
3112     struct syminfo *s = NULL;
3113     struct elf_sym *new_syms, *syms = NULL;
3114 
3115     shnum = hdr->e_shnum;
3116     i = shnum * sizeof(struct elf_shdr);
3117     shdr = (struct elf_shdr *)alloca(i);
3118     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3119         return;
3120     }
3121 
3122     bswap_shdr(shdr, shnum);
3123     for (i = 0; i < shnum; ++i) {
3124         if (shdr[i].sh_type == SHT_SYMTAB) {
3125             sym_idx = i;
3126             str_idx = shdr[i].sh_link;
3127             goto found;
3128         }
3129     }
3130 
3131     /* There will be no symbol table if the file was stripped.  */
3132     return;
3133 
3134  found:
3135     /* Now know where the strtab and symtab are.  Snarf them.  */
3136     s = g_try_new(struct syminfo, 1);
3137     if (!s) {
3138         goto give_up;
3139     }
3140 
3141     segsz = shdr[str_idx].sh_size;
3142     s->disas_strtab = strings = g_try_malloc(segsz);
3143     if (!strings ||
3144         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3145         goto give_up;
3146     }
3147 
3148     segsz = shdr[sym_idx].sh_size;
3149     syms = g_try_malloc(segsz);
3150     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3151         goto give_up;
3152     }
3153 
3154     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3155         /* Implausibly large symbol table: give up rather than ploughing
3156          * on with the number of symbols calculation overflowing
3157          */
3158         goto give_up;
3159     }
3160     nsyms = segsz / sizeof(struct elf_sym);
3161     for (i = 0; i < nsyms; ) {
3162         bswap_sym(syms + i);
3163         /* Throw away entries which we do not need.  */
3164         if (syms[i].st_shndx == SHN_UNDEF
3165             || syms[i].st_shndx >= SHN_LORESERVE
3166             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3167             if (i < --nsyms) {
3168                 syms[i] = syms[nsyms];
3169             }
3170         } else {
3171 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3172             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3173             syms[i].st_value &= ~(target_ulong)1;
3174 #endif
3175             syms[i].st_value += load_bias;
3176             i++;
3177         }
3178     }
3179 
3180     /* No "useful" symbol.  */
3181     if (nsyms == 0) {
3182         goto give_up;
3183     }
3184 
3185     /* Attempt to free the storage associated with the local symbols
3186        that we threw away.  Whether or not this has any effect on the
3187        memory allocation depends on the malloc implementation and how
3188        many symbols we managed to discard.  */
3189     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3190     if (new_syms == NULL) {
3191         goto give_up;
3192     }
3193     syms = new_syms;
3194 
3195     qsort(syms, nsyms, sizeof(*syms), symcmp);
3196 
3197     s->disas_num_syms = nsyms;
3198 #if ELF_CLASS == ELFCLASS32
3199     s->disas_symtab.elf32 = syms;
3200 #else
3201     s->disas_symtab.elf64 = syms;
3202 #endif
3203     s->lookup_symbol = lookup_symbolxx;
3204     s->next = syminfos;
3205     syminfos = s;
3206 
3207     return;
3208 
3209 give_up:
3210     g_free(s);
3211     g_free(strings);
3212     g_free(syms);
3213 }
3214 
3215 uint32_t get_elf_eflags(int fd)
3216 {
3217     struct elfhdr ehdr;
3218     off_t offset;
3219     int ret;
3220 
3221     /* Read ELF header */
3222     offset = lseek(fd, 0, SEEK_SET);
3223     if (offset == (off_t) -1) {
3224         return 0;
3225     }
3226     ret = read(fd, &ehdr, sizeof(ehdr));
3227     if (ret < sizeof(ehdr)) {
3228         return 0;
3229     }
3230     offset = lseek(fd, offset, SEEK_SET);
3231     if (offset == (off_t) -1) {
3232         return 0;
3233     }
3234 
3235     /* Check ELF signature */
3236     if (!elf_check_ident(&ehdr)) {
3237         return 0;
3238     }
3239 
3240     /* check header */
3241     bswap_ehdr(&ehdr);
3242     if (!elf_check_ehdr(&ehdr)) {
3243         return 0;
3244     }
3245 
3246     /* return architecture id */
3247     return ehdr.e_flags;
3248 }
3249 
3250 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3251 {
3252     struct image_info interp_info;
3253     struct elfhdr elf_ex;
3254     char *elf_interpreter = NULL;
3255     char *scratch;
3256 
3257     memset(&interp_info, 0, sizeof(interp_info));
3258 #ifdef TARGET_MIPS
3259     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3260 #endif
3261 
3262     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3263 
3264     load_elf_image(bprm->filename, bprm->fd, info,
3265                    &elf_interpreter, bprm->buf);
3266 
3267     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3268        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3269        when we load the interpreter.  */
3270     elf_ex = *(struct elfhdr *)bprm->buf;
3271 
3272     /* Do this so that we can load the interpreter, if need be.  We will
3273        change some of these later */
3274     bprm->p = setup_arg_pages(bprm, info);
3275 
3276     scratch = g_new0(char, TARGET_PAGE_SIZE);
3277     if (STACK_GROWS_DOWN) {
3278         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3279                                    bprm->p, info->stack_limit);
3280         info->file_string = bprm->p;
3281         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3282                                    bprm->p, info->stack_limit);
3283         info->env_strings = bprm->p;
3284         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3285                                    bprm->p, info->stack_limit);
3286         info->arg_strings = bprm->p;
3287     } else {
3288         info->arg_strings = bprm->p;
3289         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3290                                    bprm->p, info->stack_limit);
3291         info->env_strings = bprm->p;
3292         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3293                                    bprm->p, info->stack_limit);
3294         info->file_string = bprm->p;
3295         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3296                                    bprm->p, info->stack_limit);
3297     }
3298 
3299     g_free(scratch);
3300 
3301     if (!bprm->p) {
3302         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3303         exit(-1);
3304     }
3305 
3306     if (elf_interpreter) {
3307         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3308 
3309         /* If the program interpreter is one of these two, then assume
3310            an iBCS2 image.  Otherwise assume a native linux image.  */
3311 
3312         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3313             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3314             info->personality = PER_SVR4;
3315 
3316             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3317                and some applications "depend" upon this behavior.  Since
3318                we do not have the power to recompile these, we emulate
3319                the SVr4 behavior.  Sigh.  */
3320             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3321                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3322         }
3323 #ifdef TARGET_MIPS
3324         info->interp_fp_abi = interp_info.fp_abi;
3325 #endif
3326     }
3327 
3328     /*
3329      * TODO: load a vdso, which would also contain the signal trampolines.
3330      * Otherwise, allocate a private page to hold them.
3331      */
3332     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3333         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3334                                           PROT_READ | PROT_WRITE,
3335                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3336         if (tramp_page == -1) {
3337             return -errno;
3338         }
3339 
3340         setup_sigtramp(tramp_page);
3341         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3342     }
3343 
3344     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3345                                 info, (elf_interpreter ? &interp_info : NULL));
3346     info->start_stack = bprm->p;
3347 
3348     /* If we have an interpreter, set that as the program's entry point.
3349        Copy the load_bias as well, to help PPC64 interpret the entry
3350        point as a function descriptor.  Do this after creating elf tables
3351        so that we copy the original program entry point into the AUXV.  */
3352     if (elf_interpreter) {
3353         info->load_bias = interp_info.load_bias;
3354         info->entry = interp_info.entry;
3355         g_free(elf_interpreter);
3356     }
3357 
3358 #ifdef USE_ELF_CORE_DUMP
3359     bprm->core_dump = &elf_core_dump;
3360 #endif
3361 
3362     /*
3363      * If we reserved extra space for brk, release it now.
3364      * The implementation of do_brk in syscalls.c expects to be able
3365      * to mmap pages in this space.
3366      */
3367     if (info->reserve_brk) {
3368         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3369         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3370         target_munmap(start_brk, end_brk - start_brk);
3371     }
3372 
3373     return 0;
3374 }
3375 
3376 #ifdef USE_ELF_CORE_DUMP
3377 /*
3378  * Definitions to generate Intel SVR4-like core files.
3379  * These mostly have the same names as the SVR4 types with "target_elf_"
3380  * tacked on the front to prevent clashes with linux definitions,
3381  * and the typedef forms have been avoided.  This is mostly like
3382  * the SVR4 structure, but more Linuxy, with things that Linux does
3383  * not support and which gdb doesn't really use excluded.
3384  *
3385  * Fields we don't dump (their contents is zero) in linux-user qemu
3386  * are marked with XXX.
3387  *
3388  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3389  *
3390  * Porting ELF coredump for target is (quite) simple process.  First you
3391  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3392  * the target resides):
3393  *
3394  * #define USE_ELF_CORE_DUMP
3395  *
3396  * Next you define type of register set used for dumping.  ELF specification
3397  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3398  *
3399  * typedef <target_regtype> target_elf_greg_t;
3400  * #define ELF_NREG <number of registers>
3401  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3402  *
3403  * Last step is to implement target specific function that copies registers
3404  * from given cpu into just specified register set.  Prototype is:
3405  *
3406  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3407  *                                const CPUArchState *env);
3408  *
3409  * Parameters:
3410  *     regs - copy register values into here (allocated and zeroed by caller)
3411  *     env - copy registers from here
3412  *
3413  * Example for ARM target is provided in this file.
3414  */
3415 
3416 /* An ELF note in memory */
3417 struct memelfnote {
3418     const char *name;
3419     size_t     namesz;
3420     size_t     namesz_rounded;
3421     int        type;
3422     size_t     datasz;
3423     size_t     datasz_rounded;
3424     void       *data;
3425     size_t     notesz;
3426 };
3427 
3428 struct target_elf_siginfo {
3429     abi_int    si_signo; /* signal number */
3430     abi_int    si_code;  /* extra code */
3431     abi_int    si_errno; /* errno */
3432 };
3433 
3434 struct target_elf_prstatus {
3435     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3436     abi_short          pr_cursig;    /* Current signal */
3437     abi_ulong          pr_sigpend;   /* XXX */
3438     abi_ulong          pr_sighold;   /* XXX */
3439     target_pid_t       pr_pid;
3440     target_pid_t       pr_ppid;
3441     target_pid_t       pr_pgrp;
3442     target_pid_t       pr_sid;
3443     struct target_timeval pr_utime;  /* XXX User time */
3444     struct target_timeval pr_stime;  /* XXX System time */
3445     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3446     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3447     target_elf_gregset_t      pr_reg;       /* GP registers */
3448     abi_int            pr_fpvalid;   /* XXX */
3449 };
3450 
3451 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3452 
3453 struct target_elf_prpsinfo {
3454     char         pr_state;       /* numeric process state */
3455     char         pr_sname;       /* char for pr_state */
3456     char         pr_zomb;        /* zombie */
3457     char         pr_nice;        /* nice val */
3458     abi_ulong    pr_flag;        /* flags */
3459     target_uid_t pr_uid;
3460     target_gid_t pr_gid;
3461     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3462     /* Lots missing */
3463     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3464     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3465 };
3466 
3467 /* Here is the structure in which status of each thread is captured. */
3468 struct elf_thread_status {
3469     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3470     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3471 #if 0
3472     elf_fpregset_t fpu;             /* NT_PRFPREG */
3473     struct task_struct *thread;
3474     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3475 #endif
3476     struct memelfnote notes[1];
3477     int num_notes;
3478 };
3479 
3480 struct elf_note_info {
3481     struct memelfnote   *notes;
3482     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3483     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3484 
3485     QTAILQ_HEAD(, elf_thread_status) thread_list;
3486 #if 0
3487     /*
3488      * Current version of ELF coredump doesn't support
3489      * dumping fp regs etc.
3490      */
3491     elf_fpregset_t *fpu;
3492     elf_fpxregset_t *xfpu;
3493     int thread_status_size;
3494 #endif
3495     int notes_size;
3496     int numnote;
3497 };
3498 
3499 struct vm_area_struct {
3500     target_ulong   vma_start;  /* start vaddr of memory region */
3501     target_ulong   vma_end;    /* end vaddr of memory region */
3502     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3503     QTAILQ_ENTRY(vm_area_struct) vma_link;
3504 };
3505 
3506 struct mm_struct {
3507     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3508     int mm_count;           /* number of mappings */
3509 };
3510 
3511 static struct mm_struct *vma_init(void);
3512 static void vma_delete(struct mm_struct *);
3513 static int vma_add_mapping(struct mm_struct *, target_ulong,
3514                            target_ulong, abi_ulong);
3515 static int vma_get_mapping_count(const struct mm_struct *);
3516 static struct vm_area_struct *vma_first(const struct mm_struct *);
3517 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3518 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3519 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3520                       unsigned long flags);
3521 
3522 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3523 static void fill_note(struct memelfnote *, const char *, int,
3524                       unsigned int, void *);
3525 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3526 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3527 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3528 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3529 static size_t note_size(const struct memelfnote *);
3530 static void free_note_info(struct elf_note_info *);
3531 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3532 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3533 
3534 static int dump_write(int, const void *, size_t);
3535 static int write_note(struct memelfnote *, int);
3536 static int write_note_info(struct elf_note_info *, int);
3537 
3538 #ifdef BSWAP_NEEDED
3539 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3540 {
3541     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3542     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3543     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3544     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3545     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3546     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3547     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3548     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3549     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3550     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3551     /* cpu times are not filled, so we skip them */
3552     /* regs should be in correct format already */
3553     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3554 }
3555 
3556 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3557 {
3558     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3559     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3560     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3561     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3562     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3563     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3564     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3565 }
3566 
3567 static void bswap_note(struct elf_note *en)
3568 {
3569     bswap32s(&en->n_namesz);
3570     bswap32s(&en->n_descsz);
3571     bswap32s(&en->n_type);
3572 }
3573 #else
3574 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3575 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3576 static inline void bswap_note(struct elf_note *en) { }
3577 #endif /* BSWAP_NEEDED */
3578 
3579 /*
3580  * Minimal support for linux memory regions.  These are needed
3581  * when we are finding out what memory exactly belongs to
3582  * emulated process.  No locks needed here, as long as
3583  * thread that received the signal is stopped.
3584  */
3585 
3586 static struct mm_struct *vma_init(void)
3587 {
3588     struct mm_struct *mm;
3589 
3590     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3591         return (NULL);
3592 
3593     mm->mm_count = 0;
3594     QTAILQ_INIT(&mm->mm_mmap);
3595 
3596     return (mm);
3597 }
3598 
3599 static void vma_delete(struct mm_struct *mm)
3600 {
3601     struct vm_area_struct *vma;
3602 
3603     while ((vma = vma_first(mm)) != NULL) {
3604         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3605         g_free(vma);
3606     }
3607     g_free(mm);
3608 }
3609 
3610 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3611                            target_ulong end, abi_ulong flags)
3612 {
3613     struct vm_area_struct *vma;
3614 
3615     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3616         return (-1);
3617 
3618     vma->vma_start = start;
3619     vma->vma_end = end;
3620     vma->vma_flags = flags;
3621 
3622     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3623     mm->mm_count++;
3624 
3625     return (0);
3626 }
3627 
3628 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3629 {
3630     return (QTAILQ_FIRST(&mm->mm_mmap));
3631 }
3632 
3633 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3634 {
3635     return (QTAILQ_NEXT(vma, vma_link));
3636 }
3637 
3638 static int vma_get_mapping_count(const struct mm_struct *mm)
3639 {
3640     return (mm->mm_count);
3641 }
3642 
3643 /*
3644  * Calculate file (dump) size of given memory region.
3645  */
3646 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3647 {
3648     /* if we cannot even read the first page, skip it */
3649     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3650         return (0);
3651 
3652     /*
3653      * Usually we don't dump executable pages as they contain
3654      * non-writable code that debugger can read directly from
3655      * target library etc.  However, thread stacks are marked
3656      * also executable so we read in first page of given region
3657      * and check whether it contains elf header.  If there is
3658      * no elf header, we dump it.
3659      */
3660     if (vma->vma_flags & PROT_EXEC) {
3661         char page[TARGET_PAGE_SIZE];
3662 
3663         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3664             return 0;
3665         }
3666         if ((page[EI_MAG0] == ELFMAG0) &&
3667             (page[EI_MAG1] == ELFMAG1) &&
3668             (page[EI_MAG2] == ELFMAG2) &&
3669             (page[EI_MAG3] == ELFMAG3)) {
3670             /*
3671              * Mappings are possibly from ELF binary.  Don't dump
3672              * them.
3673              */
3674             return (0);
3675         }
3676     }
3677 
3678     return (vma->vma_end - vma->vma_start);
3679 }
3680 
3681 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3682                       unsigned long flags)
3683 {
3684     struct mm_struct *mm = (struct mm_struct *)priv;
3685 
3686     vma_add_mapping(mm, start, end, flags);
3687     return (0);
3688 }
3689 
3690 static void fill_note(struct memelfnote *note, const char *name, int type,
3691                       unsigned int sz, void *data)
3692 {
3693     unsigned int namesz;
3694 
3695     namesz = strlen(name) + 1;
3696     note->name = name;
3697     note->namesz = namesz;
3698     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3699     note->type = type;
3700     note->datasz = sz;
3701     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3702 
3703     note->data = data;
3704 
3705     /*
3706      * We calculate rounded up note size here as specified by
3707      * ELF document.
3708      */
3709     note->notesz = sizeof (struct elf_note) +
3710         note->namesz_rounded + note->datasz_rounded;
3711 }
3712 
3713 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3714                             uint32_t flags)
3715 {
3716     (void) memset(elf, 0, sizeof(*elf));
3717 
3718     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3719     elf->e_ident[EI_CLASS] = ELF_CLASS;
3720     elf->e_ident[EI_DATA] = ELF_DATA;
3721     elf->e_ident[EI_VERSION] = EV_CURRENT;
3722     elf->e_ident[EI_OSABI] = ELF_OSABI;
3723 
3724     elf->e_type = ET_CORE;
3725     elf->e_machine = machine;
3726     elf->e_version = EV_CURRENT;
3727     elf->e_phoff = sizeof(struct elfhdr);
3728     elf->e_flags = flags;
3729     elf->e_ehsize = sizeof(struct elfhdr);
3730     elf->e_phentsize = sizeof(struct elf_phdr);
3731     elf->e_phnum = segs;
3732 
3733     bswap_ehdr(elf);
3734 }
3735 
3736 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3737 {
3738     phdr->p_type = PT_NOTE;
3739     phdr->p_offset = offset;
3740     phdr->p_vaddr = 0;
3741     phdr->p_paddr = 0;
3742     phdr->p_filesz = sz;
3743     phdr->p_memsz = 0;
3744     phdr->p_flags = 0;
3745     phdr->p_align = 0;
3746 
3747     bswap_phdr(phdr, 1);
3748 }
3749 
3750 static size_t note_size(const struct memelfnote *note)
3751 {
3752     return (note->notesz);
3753 }
3754 
3755 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3756                           const TaskState *ts, int signr)
3757 {
3758     (void) memset(prstatus, 0, sizeof (*prstatus));
3759     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3760     prstatus->pr_pid = ts->ts_tid;
3761     prstatus->pr_ppid = getppid();
3762     prstatus->pr_pgrp = getpgrp();
3763     prstatus->pr_sid = getsid(0);
3764 
3765     bswap_prstatus(prstatus);
3766 }
3767 
3768 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3769 {
3770     char *base_filename;
3771     unsigned int i, len;
3772 
3773     (void) memset(psinfo, 0, sizeof (*psinfo));
3774 
3775     len = ts->info->env_strings - ts->info->arg_strings;
3776     if (len >= ELF_PRARGSZ)
3777         len = ELF_PRARGSZ - 1;
3778     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3779         return -EFAULT;
3780     }
3781     for (i = 0; i < len; i++)
3782         if (psinfo->pr_psargs[i] == 0)
3783             psinfo->pr_psargs[i] = ' ';
3784     psinfo->pr_psargs[len] = 0;
3785 
3786     psinfo->pr_pid = getpid();
3787     psinfo->pr_ppid = getppid();
3788     psinfo->pr_pgrp = getpgrp();
3789     psinfo->pr_sid = getsid(0);
3790     psinfo->pr_uid = getuid();
3791     psinfo->pr_gid = getgid();
3792 
3793     base_filename = g_path_get_basename(ts->bprm->filename);
3794     /*
3795      * Using strncpy here is fine: at max-length,
3796      * this field is not NUL-terminated.
3797      */
3798     (void) strncpy(psinfo->pr_fname, base_filename,
3799                    sizeof(psinfo->pr_fname));
3800 
3801     g_free(base_filename);
3802     bswap_psinfo(psinfo);
3803     return (0);
3804 }
3805 
3806 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3807 {
3808     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3809     elf_addr_t orig_auxv = auxv;
3810     void *ptr;
3811     int len = ts->info->auxv_len;
3812 
3813     /*
3814      * Auxiliary vector is stored in target process stack.  It contains
3815      * {type, value} pairs that we need to dump into note.  This is not
3816      * strictly necessary but we do it here for sake of completeness.
3817      */
3818 
3819     /* read in whole auxv vector and copy it to memelfnote */
3820     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3821     if (ptr != NULL) {
3822         fill_note(note, "CORE", NT_AUXV, len, ptr);
3823         unlock_user(ptr, auxv, len);
3824     }
3825 }
3826 
3827 /*
3828  * Constructs name of coredump file.  We have following convention
3829  * for the name:
3830  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3831  *
3832  * Returns the filename
3833  */
3834 static char *core_dump_filename(const TaskState *ts)
3835 {
3836     g_autoptr(GDateTime) now = g_date_time_new_now_local();
3837     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3838     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3839 
3840     return g_strdup_printf("qemu_%s_%s_%d.core",
3841                            base_filename, nowstr, (int)getpid());
3842 }
3843 
3844 static int dump_write(int fd, const void *ptr, size_t size)
3845 {
3846     const char *bufp = (const char *)ptr;
3847     ssize_t bytes_written, bytes_left;
3848     struct rlimit dumpsize;
3849     off_t pos;
3850 
3851     bytes_written = 0;
3852     getrlimit(RLIMIT_CORE, &dumpsize);
3853     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3854         if (errno == ESPIPE) { /* not a seekable stream */
3855             bytes_left = size;
3856         } else {
3857             return pos;
3858         }
3859     } else {
3860         if (dumpsize.rlim_cur <= pos) {
3861             return -1;
3862         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3863             bytes_left = size;
3864         } else {
3865             size_t limit_left=dumpsize.rlim_cur - pos;
3866             bytes_left = limit_left >= size ? size : limit_left ;
3867         }
3868     }
3869 
3870     /*
3871      * In normal conditions, single write(2) should do but
3872      * in case of socket etc. this mechanism is more portable.
3873      */
3874     do {
3875         bytes_written = write(fd, bufp, bytes_left);
3876         if (bytes_written < 0) {
3877             if (errno == EINTR)
3878                 continue;
3879             return (-1);
3880         } else if (bytes_written == 0) { /* eof */
3881             return (-1);
3882         }
3883         bufp += bytes_written;
3884         bytes_left -= bytes_written;
3885     } while (bytes_left > 0);
3886 
3887     return (0);
3888 }
3889 
3890 static int write_note(struct memelfnote *men, int fd)
3891 {
3892     struct elf_note en;
3893 
3894     en.n_namesz = men->namesz;
3895     en.n_type = men->type;
3896     en.n_descsz = men->datasz;
3897 
3898     bswap_note(&en);
3899 
3900     if (dump_write(fd, &en, sizeof(en)) != 0)
3901         return (-1);
3902     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3903         return (-1);
3904     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3905         return (-1);
3906 
3907     return (0);
3908 }
3909 
3910 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3911 {
3912     CPUState *cpu = env_cpu((CPUArchState *)env);
3913     TaskState *ts = (TaskState *)cpu->opaque;
3914     struct elf_thread_status *ets;
3915 
3916     ets = g_malloc0(sizeof (*ets));
3917     ets->num_notes = 1; /* only prstatus is dumped */
3918     fill_prstatus(&ets->prstatus, ts, 0);
3919     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3920     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3921               &ets->prstatus);
3922 
3923     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3924 
3925     info->notes_size += note_size(&ets->notes[0]);
3926 }
3927 
3928 static void init_note_info(struct elf_note_info *info)
3929 {
3930     /* Initialize the elf_note_info structure so that it is at
3931      * least safe to call free_note_info() on it. Must be
3932      * called before calling fill_note_info().
3933      */
3934     memset(info, 0, sizeof (*info));
3935     QTAILQ_INIT(&info->thread_list);
3936 }
3937 
3938 static int fill_note_info(struct elf_note_info *info,
3939                           long signr, const CPUArchState *env)
3940 {
3941 #define NUMNOTES 3
3942     CPUState *cpu = env_cpu((CPUArchState *)env);
3943     TaskState *ts = (TaskState *)cpu->opaque;
3944     int i;
3945 
3946     info->notes = g_new0(struct memelfnote, NUMNOTES);
3947     if (info->notes == NULL)
3948         return (-ENOMEM);
3949     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3950     if (info->prstatus == NULL)
3951         return (-ENOMEM);
3952     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3953     if (info->prstatus == NULL)
3954         return (-ENOMEM);
3955 
3956     /*
3957      * First fill in status (and registers) of current thread
3958      * including process info & aux vector.
3959      */
3960     fill_prstatus(info->prstatus, ts, signr);
3961     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3962     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3963               sizeof (*info->prstatus), info->prstatus);
3964     fill_psinfo(info->psinfo, ts);
3965     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3966               sizeof (*info->psinfo), info->psinfo);
3967     fill_auxv_note(&info->notes[2], ts);
3968     info->numnote = 3;
3969 
3970     info->notes_size = 0;
3971     for (i = 0; i < info->numnote; i++)
3972         info->notes_size += note_size(&info->notes[i]);
3973 
3974     /* read and fill status of all threads */
3975     cpu_list_lock();
3976     CPU_FOREACH(cpu) {
3977         if (cpu == thread_cpu) {
3978             continue;
3979         }
3980         fill_thread_info(info, cpu->env_ptr);
3981     }
3982     cpu_list_unlock();
3983 
3984     return (0);
3985 }
3986 
3987 static void free_note_info(struct elf_note_info *info)
3988 {
3989     struct elf_thread_status *ets;
3990 
3991     while (!QTAILQ_EMPTY(&info->thread_list)) {
3992         ets = QTAILQ_FIRST(&info->thread_list);
3993         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3994         g_free(ets);
3995     }
3996 
3997     g_free(info->prstatus);
3998     g_free(info->psinfo);
3999     g_free(info->notes);
4000 }
4001 
4002 static int write_note_info(struct elf_note_info *info, int fd)
4003 {
4004     struct elf_thread_status *ets;
4005     int i, error = 0;
4006 
4007     /* write prstatus, psinfo and auxv for current thread */
4008     for (i = 0; i < info->numnote; i++)
4009         if ((error = write_note(&info->notes[i], fd)) != 0)
4010             return (error);
4011 
4012     /* write prstatus for each thread */
4013     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4014         if ((error = write_note(&ets->notes[0], fd)) != 0)
4015             return (error);
4016     }
4017 
4018     return (0);
4019 }
4020 
4021 /*
4022  * Write out ELF coredump.
4023  *
4024  * See documentation of ELF object file format in:
4025  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4026  *
4027  * Coredump format in linux is following:
4028  *
4029  * 0   +----------------------+         \
4030  *     | ELF header           | ET_CORE  |
4031  *     +----------------------+          |
4032  *     | ELF program headers  |          |--- headers
4033  *     | - NOTE section       |          |
4034  *     | - PT_LOAD sections   |          |
4035  *     +----------------------+         /
4036  *     | NOTEs:               |
4037  *     | - NT_PRSTATUS        |
4038  *     | - NT_PRSINFO         |
4039  *     | - NT_AUXV            |
4040  *     +----------------------+ <-- aligned to target page
4041  *     | Process memory dump  |
4042  *     :                      :
4043  *     .                      .
4044  *     :                      :
4045  *     |                      |
4046  *     +----------------------+
4047  *
4048  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4049  * NT_PRSINFO  -> struct elf_prpsinfo
4050  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4051  *
4052  * Format follows System V format as close as possible.  Current
4053  * version limitations are as follows:
4054  *     - no floating point registers are dumped
4055  *
4056  * Function returns 0 in case of success, negative errno otherwise.
4057  *
4058  * TODO: make this work also during runtime: it should be
4059  * possible to force coredump from running process and then
4060  * continue processing.  For example qemu could set up SIGUSR2
4061  * handler (provided that target process haven't registered
4062  * handler for that) that does the dump when signal is received.
4063  */
4064 static int elf_core_dump(int signr, const CPUArchState *env)
4065 {
4066     const CPUState *cpu = env_cpu((CPUArchState *)env);
4067     const TaskState *ts = (const TaskState *)cpu->opaque;
4068     struct vm_area_struct *vma = NULL;
4069     g_autofree char *corefile = NULL;
4070     struct elf_note_info info;
4071     struct elfhdr elf;
4072     struct elf_phdr phdr;
4073     struct rlimit dumpsize;
4074     struct mm_struct *mm = NULL;
4075     off_t offset = 0, data_offset = 0;
4076     int segs = 0;
4077     int fd = -1;
4078 
4079     init_note_info(&info);
4080 
4081     errno = 0;
4082     getrlimit(RLIMIT_CORE, &dumpsize);
4083     if (dumpsize.rlim_cur == 0)
4084         return 0;
4085 
4086     corefile = core_dump_filename(ts);
4087 
4088     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4089                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4090         return (-errno);
4091 
4092     /*
4093      * Walk through target process memory mappings and
4094      * set up structure containing this information.  After
4095      * this point vma_xxx functions can be used.
4096      */
4097     if ((mm = vma_init()) == NULL)
4098         goto out;
4099 
4100     walk_memory_regions(mm, vma_walker);
4101     segs = vma_get_mapping_count(mm);
4102 
4103     /*
4104      * Construct valid coredump ELF header.  We also
4105      * add one more segment for notes.
4106      */
4107     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4108     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4109         goto out;
4110 
4111     /* fill in the in-memory version of notes */
4112     if (fill_note_info(&info, signr, env) < 0)
4113         goto out;
4114 
4115     offset += sizeof (elf);                             /* elf header */
4116     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4117 
4118     /* write out notes program header */
4119     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4120 
4121     offset += info.notes_size;
4122     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4123         goto out;
4124 
4125     /*
4126      * ELF specification wants data to start at page boundary so
4127      * we align it here.
4128      */
4129     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4130 
4131     /*
4132      * Write program headers for memory regions mapped in
4133      * the target process.
4134      */
4135     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4136         (void) memset(&phdr, 0, sizeof (phdr));
4137 
4138         phdr.p_type = PT_LOAD;
4139         phdr.p_offset = offset;
4140         phdr.p_vaddr = vma->vma_start;
4141         phdr.p_paddr = 0;
4142         phdr.p_filesz = vma_dump_size(vma);
4143         offset += phdr.p_filesz;
4144         phdr.p_memsz = vma->vma_end - vma->vma_start;
4145         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4146         if (vma->vma_flags & PROT_WRITE)
4147             phdr.p_flags |= PF_W;
4148         if (vma->vma_flags & PROT_EXEC)
4149             phdr.p_flags |= PF_X;
4150         phdr.p_align = ELF_EXEC_PAGESIZE;
4151 
4152         bswap_phdr(&phdr, 1);
4153         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4154             goto out;
4155         }
4156     }
4157 
4158     /*
4159      * Next we write notes just after program headers.  No
4160      * alignment needed here.
4161      */
4162     if (write_note_info(&info, fd) < 0)
4163         goto out;
4164 
4165     /* align data to page boundary */
4166     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4167         goto out;
4168 
4169     /*
4170      * Finally we can dump process memory into corefile as well.
4171      */
4172     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4173         abi_ulong addr;
4174         abi_ulong end;
4175 
4176         end = vma->vma_start + vma_dump_size(vma);
4177 
4178         for (addr = vma->vma_start; addr < end;
4179              addr += TARGET_PAGE_SIZE) {
4180             char page[TARGET_PAGE_SIZE];
4181             int error;
4182 
4183             /*
4184              *  Read in page from target process memory and
4185              *  write it to coredump file.
4186              */
4187             error = copy_from_user(page, addr, sizeof (page));
4188             if (error != 0) {
4189                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4190                                addr);
4191                 errno = -error;
4192                 goto out;
4193             }
4194             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4195                 goto out;
4196         }
4197     }
4198 
4199  out:
4200     free_note_info(&info);
4201     if (mm != NULL)
4202         vma_delete(mm);
4203     (void) close(fd);
4204 
4205     if (errno != 0)
4206         return (-errno);
4207     return (0);
4208 }
4209 #endif /* USE_ELF_CORE_DUMP */
4210 
4211 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4212 {
4213     init_thread(regs, infop);
4214 }
4215