xref: /qemu/linux-user/elfload.c (revision cc37d98b)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "qemu/error-report.h"
22 #include "target_signal.h"
23 #include "accel/tcg/debuginfo.h"
24 
25 #ifdef _ARCH_PPC64
26 #undef ARCH_DLINFO
27 #undef ELF_PLATFORM
28 #undef ELF_HWCAP
29 #undef ELF_HWCAP2
30 #undef ELF_CLASS
31 #undef ELF_DATA
32 #undef ELF_ARCH
33 #endif
34 
35 #define ELF_OSABI   ELFOSABI_SYSV
36 
37 /* from personality.h */
38 
39 /*
40  * Flags for bug emulation.
41  *
42  * These occupy the top three bytes.
43  */
44 enum {
45     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
46     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
47                                            descriptors (signal handling) */
48     MMAP_PAGE_ZERO =    0x0100000,
49     ADDR_COMPAT_LAYOUT = 0x0200000,
50     READ_IMPLIES_EXEC = 0x0400000,
51     ADDR_LIMIT_32BIT =  0x0800000,
52     SHORT_INODE =       0x1000000,
53     WHOLE_SECONDS =     0x2000000,
54     STICKY_TIMEOUTS =   0x4000000,
55     ADDR_LIMIT_3GB =    0x8000000,
56 };
57 
58 /*
59  * Personality types.
60  *
61  * These go in the low byte.  Avoid using the top bit, it will
62  * conflict with error returns.
63  */
64 enum {
65     PER_LINUX =         0x0000,
66     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
67     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
68     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
69     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
71     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
72     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
73     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
74     PER_BSD =           0x0006,
75     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
76     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
77     PER_LINUX32 =       0x0008,
78     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
79     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
80     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
81     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
82     PER_RISCOS =        0x000c,
83     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
84     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
85     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
86     PER_HPUX =          0x0010,
87     PER_MASK =          0x00ff,
88 };
89 
90 /*
91  * Return the base personality without flags.
92  */
93 #define personality(pers)       (pers & PER_MASK)
94 
95 int info_is_fdpic(struct image_info *info)
96 {
97     return info->personality == PER_LINUX_FDPIC;
98 }
99 
100 /* this flag is uneffective under linux too, should be deleted */
101 #ifndef MAP_DENYWRITE
102 #define MAP_DENYWRITE 0
103 #endif
104 
105 /* should probably go in elf.h */
106 #ifndef ELIBBAD
107 #define ELIBBAD 80
108 #endif
109 
110 #if TARGET_BIG_ENDIAN
111 #define ELF_DATA        ELFDATA2MSB
112 #else
113 #define ELF_DATA        ELFDATA2LSB
114 #endif
115 
116 #ifdef TARGET_ABI_MIPSN32
117 typedef abi_ullong      target_elf_greg_t;
118 #define tswapreg(ptr)   tswap64(ptr)
119 #else
120 typedef abi_ulong       target_elf_greg_t;
121 #define tswapreg(ptr)   tswapal(ptr)
122 #endif
123 
124 #ifdef USE_UID16
125 typedef abi_ushort      target_uid_t;
126 typedef abi_ushort      target_gid_t;
127 #else
128 typedef abi_uint        target_uid_t;
129 typedef abi_uint        target_gid_t;
130 #endif
131 typedef abi_int         target_pid_t;
132 
133 #ifdef TARGET_I386
134 
135 #define ELF_HWCAP get_elf_hwcap()
136 
137 static uint32_t get_elf_hwcap(void)
138 {
139     X86CPU *cpu = X86_CPU(thread_cpu);
140 
141     return cpu->env.features[FEAT_1_EDX];
142 }
143 
144 #ifdef TARGET_X86_64
145 #define ELF_START_MMAP 0x2aaaaab000ULL
146 
147 #define ELF_CLASS      ELFCLASS64
148 #define ELF_ARCH       EM_X86_64
149 
150 #define ELF_PLATFORM   "x86_64"
151 
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154     regs->rax = 0;
155     regs->rsp = infop->start_stack;
156     regs->rip = infop->entry;
157 }
158 
159 #define ELF_NREG    27
160 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
161 
162 /*
163  * Note that ELF_NREG should be 29 as there should be place for
164  * TRAPNO and ERR "registers" as well but linux doesn't dump
165  * those.
166  *
167  * See linux kernel: arch/x86/include/asm/elf.h
168  */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171     (*regs)[0] = tswapreg(env->regs[15]);
172     (*regs)[1] = tswapreg(env->regs[14]);
173     (*regs)[2] = tswapreg(env->regs[13]);
174     (*regs)[3] = tswapreg(env->regs[12]);
175     (*regs)[4] = tswapreg(env->regs[R_EBP]);
176     (*regs)[5] = tswapreg(env->regs[R_EBX]);
177     (*regs)[6] = tswapreg(env->regs[11]);
178     (*regs)[7] = tswapreg(env->regs[10]);
179     (*regs)[8] = tswapreg(env->regs[9]);
180     (*regs)[9] = tswapreg(env->regs[8]);
181     (*regs)[10] = tswapreg(env->regs[R_EAX]);
182     (*regs)[11] = tswapreg(env->regs[R_ECX]);
183     (*regs)[12] = tswapreg(env->regs[R_EDX]);
184     (*regs)[13] = tswapreg(env->regs[R_ESI]);
185     (*regs)[14] = tswapreg(env->regs[R_EDI]);
186     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
187     (*regs)[16] = tswapreg(env->eip);
188     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
189     (*regs)[18] = tswapreg(env->eflags);
190     (*regs)[19] = tswapreg(env->regs[R_ESP]);
191     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
192     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
193     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
194     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
195     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
196     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
197     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
198 }
199 
200 #if ULONG_MAX > UINT32_MAX
201 #define INIT_GUEST_COMMPAGE
202 static bool init_guest_commpage(void)
203 {
204     /*
205      * The vsyscall page is at a high negative address aka kernel space,
206      * which means that we cannot actually allocate it with target_mmap.
207      * We still should be able to use page_set_flags, unless the user
208      * has specified -R reserved_va, which would trigger an assert().
209      */
210     if (reserved_va != 0 &&
211         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE >= reserved_va) {
212         error_report("Cannot allocate vsyscall page");
213         exit(EXIT_FAILURE);
214     }
215     page_set_flags(TARGET_VSYSCALL_PAGE,
216                    TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE,
217                    PAGE_EXEC | PAGE_VALID);
218     return true;
219 }
220 #endif
221 #else
222 
223 #define ELF_START_MMAP 0x80000000
224 
225 /*
226  * This is used to ensure we don't load something for the wrong architecture.
227  */
228 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
229 
230 /*
231  * These are used to set parameters in the core dumps.
232  */
233 #define ELF_CLASS       ELFCLASS32
234 #define ELF_ARCH        EM_386
235 
236 #define ELF_PLATFORM get_elf_platform()
237 #define EXSTACK_DEFAULT true
238 
239 static const char *get_elf_platform(void)
240 {
241     static char elf_platform[] = "i386";
242     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
243     if (family > 6) {
244         family = 6;
245     }
246     if (family >= 3) {
247         elf_platform[1] = '0' + family;
248     }
249     return elf_platform;
250 }
251 
252 static inline void init_thread(struct target_pt_regs *regs,
253                                struct image_info *infop)
254 {
255     regs->esp = infop->start_stack;
256     regs->eip = infop->entry;
257 
258     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
259        starts %edx contains a pointer to a function which might be
260        registered using `atexit'.  This provides a mean for the
261        dynamic linker to call DT_FINI functions for shared libraries
262        that have been loaded before the code runs.
263 
264        A value of 0 tells we have no such handler.  */
265     regs->edx = 0;
266 }
267 
268 #define ELF_NREG    17
269 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
270 
271 /*
272  * Note that ELF_NREG should be 19 as there should be place for
273  * TRAPNO and ERR "registers" as well but linux doesn't dump
274  * those.
275  *
276  * See linux kernel: arch/x86/include/asm/elf.h
277  */
278 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
279 {
280     (*regs)[0] = tswapreg(env->regs[R_EBX]);
281     (*regs)[1] = tswapreg(env->regs[R_ECX]);
282     (*regs)[2] = tswapreg(env->regs[R_EDX]);
283     (*regs)[3] = tswapreg(env->regs[R_ESI]);
284     (*regs)[4] = tswapreg(env->regs[R_EDI]);
285     (*regs)[5] = tswapreg(env->regs[R_EBP]);
286     (*regs)[6] = tswapreg(env->regs[R_EAX]);
287     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
288     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
289     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
290     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
291     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
292     (*regs)[12] = tswapreg(env->eip);
293     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
294     (*regs)[14] = tswapreg(env->eflags);
295     (*regs)[15] = tswapreg(env->regs[R_ESP]);
296     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
297 }
298 #endif
299 
300 #define USE_ELF_CORE_DUMP
301 #define ELF_EXEC_PAGESIZE       4096
302 
303 #endif
304 
305 #ifdef TARGET_ARM
306 
307 #ifndef TARGET_AARCH64
308 /* 32 bit ARM definitions */
309 
310 #define ELF_START_MMAP 0x80000000
311 
312 #define ELF_ARCH        EM_ARM
313 #define ELF_CLASS       ELFCLASS32
314 #define EXSTACK_DEFAULT true
315 
316 static inline void init_thread(struct target_pt_regs *regs,
317                                struct image_info *infop)
318 {
319     abi_long stack = infop->start_stack;
320     memset(regs, 0, sizeof(*regs));
321 
322     regs->uregs[16] = ARM_CPU_MODE_USR;
323     if (infop->entry & 1) {
324         regs->uregs[16] |= CPSR_T;
325     }
326     regs->uregs[15] = infop->entry & 0xfffffffe;
327     regs->uregs[13] = infop->start_stack;
328     /* FIXME - what to for failure of get_user()? */
329     get_user_ual(regs->uregs[2], stack + 8); /* envp */
330     get_user_ual(regs->uregs[1], stack + 4); /* envp */
331     /* XXX: it seems that r0 is zeroed after ! */
332     regs->uregs[0] = 0;
333     /* For uClinux PIC binaries.  */
334     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
335     regs->uregs[10] = infop->start_data;
336 
337     /* Support ARM FDPIC.  */
338     if (info_is_fdpic(infop)) {
339         /* As described in the ABI document, r7 points to the loadmap info
340          * prepared by the kernel. If an interpreter is needed, r8 points
341          * to the interpreter loadmap and r9 points to the interpreter
342          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
343          * r9 points to the main program PT_DYNAMIC info.
344          */
345         regs->uregs[7] = infop->loadmap_addr;
346         if (infop->interpreter_loadmap_addr) {
347             /* Executable is dynamically loaded.  */
348             regs->uregs[8] = infop->interpreter_loadmap_addr;
349             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
350         } else {
351             regs->uregs[8] = 0;
352             regs->uregs[9] = infop->pt_dynamic_addr;
353         }
354     }
355 }
356 
357 #define ELF_NREG    18
358 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
359 
360 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
361 {
362     (*regs)[0] = tswapreg(env->regs[0]);
363     (*regs)[1] = tswapreg(env->regs[1]);
364     (*regs)[2] = tswapreg(env->regs[2]);
365     (*regs)[3] = tswapreg(env->regs[3]);
366     (*regs)[4] = tswapreg(env->regs[4]);
367     (*regs)[5] = tswapreg(env->regs[5]);
368     (*regs)[6] = tswapreg(env->regs[6]);
369     (*regs)[7] = tswapreg(env->regs[7]);
370     (*regs)[8] = tswapreg(env->regs[8]);
371     (*regs)[9] = tswapreg(env->regs[9]);
372     (*regs)[10] = tswapreg(env->regs[10]);
373     (*regs)[11] = tswapreg(env->regs[11]);
374     (*regs)[12] = tswapreg(env->regs[12]);
375     (*regs)[13] = tswapreg(env->regs[13]);
376     (*regs)[14] = tswapreg(env->regs[14]);
377     (*regs)[15] = tswapreg(env->regs[15]);
378 
379     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
380     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
381 }
382 
383 #define USE_ELF_CORE_DUMP
384 #define ELF_EXEC_PAGESIZE       4096
385 
386 enum
387 {
388     ARM_HWCAP_ARM_SWP       = 1 << 0,
389     ARM_HWCAP_ARM_HALF      = 1 << 1,
390     ARM_HWCAP_ARM_THUMB     = 1 << 2,
391     ARM_HWCAP_ARM_26BIT     = 1 << 3,
392     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
393     ARM_HWCAP_ARM_FPA       = 1 << 5,
394     ARM_HWCAP_ARM_VFP       = 1 << 6,
395     ARM_HWCAP_ARM_EDSP      = 1 << 7,
396     ARM_HWCAP_ARM_JAVA      = 1 << 8,
397     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
398     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
399     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
400     ARM_HWCAP_ARM_NEON      = 1 << 12,
401     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
402     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
403     ARM_HWCAP_ARM_TLS       = 1 << 15,
404     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
405     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
406     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
407     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
408     ARM_HWCAP_ARM_LPAE      = 1 << 20,
409     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
410 };
411 
412 enum {
413     ARM_HWCAP2_ARM_AES      = 1 << 0,
414     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
415     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
416     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
417     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
418 };
419 
420 /* The commpage only exists for 32 bit kernels */
421 
422 #define HI_COMMPAGE (intptr_t)0xffff0f00u
423 
424 static bool init_guest_commpage(void)
425 {
426     abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
427     void *want = g2h_untagged(commpage);
428     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
429                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
430 
431     if (addr == MAP_FAILED) {
432         perror("Allocating guest commpage");
433         exit(EXIT_FAILURE);
434     }
435     if (addr != want) {
436         return false;
437     }
438 
439     /* Set kernel helper versions; rest of page is 0.  */
440     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
441 
442     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
443         perror("Protecting guest commpage");
444         exit(EXIT_FAILURE);
445     }
446 
447     page_set_flags(commpage, commpage + qemu_host_page_size,
448                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
449     return true;
450 }
451 
452 #define ELF_HWCAP get_elf_hwcap()
453 #define ELF_HWCAP2 get_elf_hwcap2()
454 
455 static uint32_t get_elf_hwcap(void)
456 {
457     ARMCPU *cpu = ARM_CPU(thread_cpu);
458     uint32_t hwcaps = 0;
459 
460     hwcaps |= ARM_HWCAP_ARM_SWP;
461     hwcaps |= ARM_HWCAP_ARM_HALF;
462     hwcaps |= ARM_HWCAP_ARM_THUMB;
463     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
464 
465     /* probe for the extra features */
466 #define GET_FEATURE(feat, hwcap) \
467     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
468 
469 #define GET_FEATURE_ID(feat, hwcap) \
470     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
471 
472     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
473     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
474     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
475     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
476     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
477     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
478     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
479     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
480     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
481     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
482 
483     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
484         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
485         hwcaps |= ARM_HWCAP_ARM_VFPv3;
486         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
487             hwcaps |= ARM_HWCAP_ARM_VFPD32;
488         } else {
489             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
490         }
491     }
492     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
493 
494     return hwcaps;
495 }
496 
497 static uint32_t get_elf_hwcap2(void)
498 {
499     ARMCPU *cpu = ARM_CPU(thread_cpu);
500     uint32_t hwcaps = 0;
501 
502     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
503     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
504     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
505     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
506     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
507     return hwcaps;
508 }
509 
510 #undef GET_FEATURE
511 #undef GET_FEATURE_ID
512 
513 #define ELF_PLATFORM get_elf_platform()
514 
515 static const char *get_elf_platform(void)
516 {
517     CPUARMState *env = thread_cpu->env_ptr;
518 
519 #if TARGET_BIG_ENDIAN
520 # define END  "b"
521 #else
522 # define END  "l"
523 #endif
524 
525     if (arm_feature(env, ARM_FEATURE_V8)) {
526         return "v8" END;
527     } else if (arm_feature(env, ARM_FEATURE_V7)) {
528         if (arm_feature(env, ARM_FEATURE_M)) {
529             return "v7m" END;
530         } else {
531             return "v7" END;
532         }
533     } else if (arm_feature(env, ARM_FEATURE_V6)) {
534         return "v6" END;
535     } else if (arm_feature(env, ARM_FEATURE_V5)) {
536         return "v5" END;
537     } else {
538         return "v4" END;
539     }
540 
541 #undef END
542 }
543 
544 #else
545 /* 64 bit ARM definitions */
546 #define ELF_START_MMAP 0x80000000
547 
548 #define ELF_ARCH        EM_AARCH64
549 #define ELF_CLASS       ELFCLASS64
550 #if TARGET_BIG_ENDIAN
551 # define ELF_PLATFORM    "aarch64_be"
552 #else
553 # define ELF_PLATFORM    "aarch64"
554 #endif
555 
556 static inline void init_thread(struct target_pt_regs *regs,
557                                struct image_info *infop)
558 {
559     abi_long stack = infop->start_stack;
560     memset(regs, 0, sizeof(*regs));
561 
562     regs->pc = infop->entry & ~0x3ULL;
563     regs->sp = stack;
564 }
565 
566 #define ELF_NREG    34
567 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
568 
569 static void elf_core_copy_regs(target_elf_gregset_t *regs,
570                                const CPUARMState *env)
571 {
572     int i;
573 
574     for (i = 0; i < 32; i++) {
575         (*regs)[i] = tswapreg(env->xregs[i]);
576     }
577     (*regs)[32] = tswapreg(env->pc);
578     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
579 }
580 
581 #define USE_ELF_CORE_DUMP
582 #define ELF_EXEC_PAGESIZE       4096
583 
584 enum {
585     ARM_HWCAP_A64_FP            = 1 << 0,
586     ARM_HWCAP_A64_ASIMD         = 1 << 1,
587     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
588     ARM_HWCAP_A64_AES           = 1 << 3,
589     ARM_HWCAP_A64_PMULL         = 1 << 4,
590     ARM_HWCAP_A64_SHA1          = 1 << 5,
591     ARM_HWCAP_A64_SHA2          = 1 << 6,
592     ARM_HWCAP_A64_CRC32         = 1 << 7,
593     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
594     ARM_HWCAP_A64_FPHP          = 1 << 9,
595     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
596     ARM_HWCAP_A64_CPUID         = 1 << 11,
597     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
598     ARM_HWCAP_A64_JSCVT         = 1 << 13,
599     ARM_HWCAP_A64_FCMA          = 1 << 14,
600     ARM_HWCAP_A64_LRCPC         = 1 << 15,
601     ARM_HWCAP_A64_DCPOP         = 1 << 16,
602     ARM_HWCAP_A64_SHA3          = 1 << 17,
603     ARM_HWCAP_A64_SM3           = 1 << 18,
604     ARM_HWCAP_A64_SM4           = 1 << 19,
605     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
606     ARM_HWCAP_A64_SHA512        = 1 << 21,
607     ARM_HWCAP_A64_SVE           = 1 << 22,
608     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
609     ARM_HWCAP_A64_DIT           = 1 << 24,
610     ARM_HWCAP_A64_USCAT         = 1 << 25,
611     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
612     ARM_HWCAP_A64_FLAGM         = 1 << 27,
613     ARM_HWCAP_A64_SSBS          = 1 << 28,
614     ARM_HWCAP_A64_SB            = 1 << 29,
615     ARM_HWCAP_A64_PACA          = 1 << 30,
616     ARM_HWCAP_A64_PACG          = 1UL << 31,
617 
618     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
619     ARM_HWCAP2_A64_SVE2         = 1 << 1,
620     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
621     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
622     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
623     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
624     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
625     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
626     ARM_HWCAP2_A64_FRINT        = 1 << 8,
627     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
628     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
629     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
630     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
631     ARM_HWCAP2_A64_I8MM         = 1 << 13,
632     ARM_HWCAP2_A64_BF16         = 1 << 14,
633     ARM_HWCAP2_A64_DGH          = 1 << 15,
634     ARM_HWCAP2_A64_RNG          = 1 << 16,
635     ARM_HWCAP2_A64_BTI          = 1 << 17,
636     ARM_HWCAP2_A64_MTE          = 1 << 18,
637     ARM_HWCAP2_A64_ECV          = 1 << 19,
638     ARM_HWCAP2_A64_AFP          = 1 << 20,
639     ARM_HWCAP2_A64_RPRES        = 1 << 21,
640     ARM_HWCAP2_A64_MTE3         = 1 << 22,
641     ARM_HWCAP2_A64_SME          = 1 << 23,
642     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
643     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
644     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
645     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
646     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
647     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
648     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
649 };
650 
651 #define ELF_HWCAP   get_elf_hwcap()
652 #define ELF_HWCAP2  get_elf_hwcap2()
653 
654 #define GET_FEATURE_ID(feat, hwcap) \
655     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
656 
657 static uint32_t get_elf_hwcap(void)
658 {
659     ARMCPU *cpu = ARM_CPU(thread_cpu);
660     uint32_t hwcaps = 0;
661 
662     hwcaps |= ARM_HWCAP_A64_FP;
663     hwcaps |= ARM_HWCAP_A64_ASIMD;
664     hwcaps |= ARM_HWCAP_A64_CPUID;
665 
666     /* probe for the extra features */
667 
668     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
669     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
670     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
671     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
672     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
673     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
674     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
675     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
676     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
677     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
678     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
679     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
680     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
681     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
682     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
683     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
684     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
685     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
686     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
687     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
688     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
689     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
690     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
691 
692     return hwcaps;
693 }
694 
695 static uint32_t get_elf_hwcap2(void)
696 {
697     ARMCPU *cpu = ARM_CPU(thread_cpu);
698     uint32_t hwcaps = 0;
699 
700     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
701     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
702     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
703     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
704     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
705     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
706     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
707     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
708     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
709     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
710     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
711     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
712     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
713     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
714     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
715     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
716     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
717     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
718     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
719                               ARM_HWCAP2_A64_SME_F32F32 |
720                               ARM_HWCAP2_A64_SME_B16F32 |
721                               ARM_HWCAP2_A64_SME_F16F32 |
722                               ARM_HWCAP2_A64_SME_I8I32));
723     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
724     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
725     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
726 
727     return hwcaps;
728 }
729 
730 #undef GET_FEATURE_ID
731 
732 #endif /* not TARGET_AARCH64 */
733 #endif /* TARGET_ARM */
734 
735 #ifdef TARGET_SPARC
736 #ifdef TARGET_SPARC64
737 
738 #define ELF_START_MMAP 0x80000000
739 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
740                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
741 #ifndef TARGET_ABI32
742 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
743 #else
744 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
745 #endif
746 
747 #define ELF_CLASS   ELFCLASS64
748 #define ELF_ARCH    EM_SPARCV9
749 #else
750 #define ELF_START_MMAP 0x80000000
751 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
752                     | HWCAP_SPARC_MULDIV)
753 #define ELF_CLASS   ELFCLASS32
754 #define ELF_ARCH    EM_SPARC
755 #endif /* TARGET_SPARC64 */
756 
757 static inline void init_thread(struct target_pt_regs *regs,
758                                struct image_info *infop)
759 {
760     /* Note that target_cpu_copy_regs does not read psr/tstate. */
761     regs->pc = infop->entry;
762     regs->npc = regs->pc + 4;
763     regs->y = 0;
764     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
765                         - TARGET_STACK_BIAS);
766 }
767 #endif /* TARGET_SPARC */
768 
769 #ifdef TARGET_PPC
770 
771 #define ELF_MACHINE    PPC_ELF_MACHINE
772 #define ELF_START_MMAP 0x80000000
773 
774 #if defined(TARGET_PPC64)
775 
776 #define elf_check_arch(x) ( (x) == EM_PPC64 )
777 
778 #define ELF_CLASS       ELFCLASS64
779 
780 #else
781 
782 #define ELF_CLASS       ELFCLASS32
783 #define EXSTACK_DEFAULT true
784 
785 #endif
786 
787 #define ELF_ARCH        EM_PPC
788 
789 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
790    See arch/powerpc/include/asm/cputable.h.  */
791 enum {
792     QEMU_PPC_FEATURE_32 = 0x80000000,
793     QEMU_PPC_FEATURE_64 = 0x40000000,
794     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
795     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
796     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
797     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
798     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
799     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
800     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
801     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
802     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
803     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
804     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
805     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
806     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
807     QEMU_PPC_FEATURE_CELL = 0x00010000,
808     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
809     QEMU_PPC_FEATURE_SMT = 0x00004000,
810     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
811     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
812     QEMU_PPC_FEATURE_PA6T = 0x00000800,
813     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
814     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
815     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
816     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
817     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
818 
819     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
820     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
821 
822     /* Feature definitions in AT_HWCAP2.  */
823     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
824     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
825     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
826     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
827     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
828     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
829     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
830     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
831     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
832     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
833     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
834     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
835     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
836     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
837     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
838 };
839 
840 #define ELF_HWCAP get_elf_hwcap()
841 
842 static uint32_t get_elf_hwcap(void)
843 {
844     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
845     uint32_t features = 0;
846 
847     /* We don't have to be terribly complete here; the high points are
848        Altivec/FP/SPE support.  Anything else is just a bonus.  */
849 #define GET_FEATURE(flag, feature)                                      \
850     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
851 #define GET_FEATURE2(flags, feature) \
852     do { \
853         if ((cpu->env.insns_flags2 & flags) == flags) { \
854             features |= feature; \
855         } \
856     } while (0)
857     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
858     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
859     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
860     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
861     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
862     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
863     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
864     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
865     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
866     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
867     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
868                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
869                   QEMU_PPC_FEATURE_ARCH_2_06);
870 #undef GET_FEATURE
871 #undef GET_FEATURE2
872 
873     return features;
874 }
875 
876 #define ELF_HWCAP2 get_elf_hwcap2()
877 
878 static uint32_t get_elf_hwcap2(void)
879 {
880     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
881     uint32_t features = 0;
882 
883 #define GET_FEATURE(flag, feature)                                      \
884     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
885 #define GET_FEATURE2(flag, feature)                                      \
886     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
887 
888     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
889     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
890     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
891                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
892                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
893     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
894                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
895     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
896                  QEMU_PPC_FEATURE2_MMA);
897 
898 #undef GET_FEATURE
899 #undef GET_FEATURE2
900 
901     return features;
902 }
903 
904 /*
905  * The requirements here are:
906  * - keep the final alignment of sp (sp & 0xf)
907  * - make sure the 32-bit value at the first 16 byte aligned position of
908  *   AUXV is greater than 16 for glibc compatibility.
909  *   AT_IGNOREPPC is used for that.
910  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
911  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
912  */
913 #define DLINFO_ARCH_ITEMS       5
914 #define ARCH_DLINFO                                     \
915     do {                                                \
916         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
917         /*                                              \
918          * Handle glibc compatibility: these magic entries must \
919          * be at the lowest addresses in the final auxv.        \
920          */                                             \
921         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
922         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
923         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
924         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
925         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
926     } while (0)
927 
928 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
929 {
930     _regs->gpr[1] = infop->start_stack;
931 #if defined(TARGET_PPC64)
932     if (get_ppc64_abi(infop) < 2) {
933         uint64_t val;
934         get_user_u64(val, infop->entry + 8);
935         _regs->gpr[2] = val + infop->load_bias;
936         get_user_u64(val, infop->entry);
937         infop->entry = val + infop->load_bias;
938     } else {
939         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
940     }
941 #endif
942     _regs->nip = infop->entry;
943 }
944 
945 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
946 #define ELF_NREG 48
947 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
948 
949 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
950 {
951     int i;
952     target_ulong ccr = 0;
953 
954     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
955         (*regs)[i] = tswapreg(env->gpr[i]);
956     }
957 
958     (*regs)[32] = tswapreg(env->nip);
959     (*regs)[33] = tswapreg(env->msr);
960     (*regs)[35] = tswapreg(env->ctr);
961     (*regs)[36] = tswapreg(env->lr);
962     (*regs)[37] = tswapreg(cpu_read_xer(env));
963 
964     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
965         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
966     }
967     (*regs)[38] = tswapreg(ccr);
968 }
969 
970 #define USE_ELF_CORE_DUMP
971 #define ELF_EXEC_PAGESIZE       4096
972 
973 #endif
974 
975 #ifdef TARGET_LOONGARCH64
976 
977 #define ELF_START_MMAP 0x80000000
978 
979 #define ELF_CLASS   ELFCLASS64
980 #define ELF_ARCH    EM_LOONGARCH
981 #define EXSTACK_DEFAULT true
982 
983 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
984 
985 static inline void init_thread(struct target_pt_regs *regs,
986                                struct image_info *infop)
987 {
988     /*Set crmd PG,DA = 1,0 */
989     regs->csr.crmd = 2 << 3;
990     regs->csr.era = infop->entry;
991     regs->regs[3] = infop->start_stack;
992 }
993 
994 /* See linux kernel: arch/loongarch/include/asm/elf.h */
995 #define ELF_NREG 45
996 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
997 
998 enum {
999     TARGET_EF_R0 = 0,
1000     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1001     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1002 };
1003 
1004 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1005                                const CPULoongArchState *env)
1006 {
1007     int i;
1008 
1009     (*regs)[TARGET_EF_R0] = 0;
1010 
1011     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1012         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1013     }
1014 
1015     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1016     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1017 }
1018 
1019 #define USE_ELF_CORE_DUMP
1020 #define ELF_EXEC_PAGESIZE        4096
1021 
1022 #define ELF_HWCAP get_elf_hwcap()
1023 
1024 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1025 enum {
1026     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1027     HWCAP_LOONGARCH_LAM      = (1 << 1),
1028     HWCAP_LOONGARCH_UAL      = (1 << 2),
1029     HWCAP_LOONGARCH_FPU      = (1 << 3),
1030     HWCAP_LOONGARCH_LSX      = (1 << 4),
1031     HWCAP_LOONGARCH_LASX     = (1 << 5),
1032     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1033     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1034     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1035     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1036     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1037     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1038     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1039 };
1040 
1041 static uint32_t get_elf_hwcap(void)
1042 {
1043     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1044     uint32_t hwcaps = 0;
1045 
1046     hwcaps |= HWCAP_LOONGARCH_CRC32;
1047 
1048     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1049         hwcaps |= HWCAP_LOONGARCH_UAL;
1050     }
1051 
1052     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1053         hwcaps |= HWCAP_LOONGARCH_FPU;
1054     }
1055 
1056     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1057         hwcaps |= HWCAP_LOONGARCH_LAM;
1058     }
1059 
1060     return hwcaps;
1061 }
1062 
1063 #define ELF_PLATFORM "loongarch"
1064 
1065 #endif /* TARGET_LOONGARCH64 */
1066 
1067 #ifdef TARGET_MIPS
1068 
1069 #define ELF_START_MMAP 0x80000000
1070 
1071 #ifdef TARGET_MIPS64
1072 #define ELF_CLASS   ELFCLASS64
1073 #else
1074 #define ELF_CLASS   ELFCLASS32
1075 #endif
1076 #define ELF_ARCH    EM_MIPS
1077 #define EXSTACK_DEFAULT true
1078 
1079 #ifdef TARGET_ABI_MIPSN32
1080 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1081 #else
1082 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1083 #endif
1084 
1085 #define ELF_BASE_PLATFORM get_elf_base_platform()
1086 
1087 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1088     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1089     { return _base_platform; } } while (0)
1090 
1091 static const char *get_elf_base_platform(void)
1092 {
1093     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1094 
1095     /* 64 bit ISAs goes first */
1096     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1097     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1098     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1099     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1100     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1101     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1102     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1103 
1104     /* 32 bit ISAs */
1105     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1106     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1107     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1108     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1109     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1110 
1111     /* Fallback */
1112     return "mips";
1113 }
1114 #undef MATCH_PLATFORM_INSN
1115 
1116 static inline void init_thread(struct target_pt_regs *regs,
1117                                struct image_info *infop)
1118 {
1119     regs->cp0_status = 2 << CP0St_KSU;
1120     regs->cp0_epc = infop->entry;
1121     regs->regs[29] = infop->start_stack;
1122 }
1123 
1124 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1125 #define ELF_NREG 45
1126 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1127 
1128 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1129 enum {
1130 #ifdef TARGET_MIPS64
1131     TARGET_EF_R0 = 0,
1132 #else
1133     TARGET_EF_R0 = 6,
1134 #endif
1135     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1136     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1137     TARGET_EF_LO = TARGET_EF_R0 + 32,
1138     TARGET_EF_HI = TARGET_EF_R0 + 33,
1139     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1140     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1141     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1142     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1143 };
1144 
1145 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1146 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1147 {
1148     int i;
1149 
1150     for (i = 0; i < TARGET_EF_R0; i++) {
1151         (*regs)[i] = 0;
1152     }
1153     (*regs)[TARGET_EF_R0] = 0;
1154 
1155     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1156         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1157     }
1158 
1159     (*regs)[TARGET_EF_R26] = 0;
1160     (*regs)[TARGET_EF_R27] = 0;
1161     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1162     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1163     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1164     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1165     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1166     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1167 }
1168 
1169 #define USE_ELF_CORE_DUMP
1170 #define ELF_EXEC_PAGESIZE        4096
1171 
1172 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1173 enum {
1174     HWCAP_MIPS_R6           = (1 << 0),
1175     HWCAP_MIPS_MSA          = (1 << 1),
1176     HWCAP_MIPS_CRC32        = (1 << 2),
1177     HWCAP_MIPS_MIPS16       = (1 << 3),
1178     HWCAP_MIPS_MDMX         = (1 << 4),
1179     HWCAP_MIPS_MIPS3D       = (1 << 5),
1180     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1181     HWCAP_MIPS_DSP          = (1 << 7),
1182     HWCAP_MIPS_DSP2         = (1 << 8),
1183     HWCAP_MIPS_DSP3         = (1 << 9),
1184     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1185     HWCAP_LOONGSON_MMI      = (1 << 11),
1186     HWCAP_LOONGSON_EXT      = (1 << 12),
1187     HWCAP_LOONGSON_EXT2     = (1 << 13),
1188     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1189 };
1190 
1191 #define ELF_HWCAP get_elf_hwcap()
1192 
1193 #define GET_FEATURE_INSN(_flag, _hwcap) \
1194     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1195 
1196 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1197     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1198 
1199 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1200     do { \
1201         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1202             hwcaps |= _hwcap; \
1203         } \
1204     } while (0)
1205 
1206 static uint32_t get_elf_hwcap(void)
1207 {
1208     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1209     uint32_t hwcaps = 0;
1210 
1211     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1212                         2, HWCAP_MIPS_R6);
1213     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1214     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1215     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1216 
1217     return hwcaps;
1218 }
1219 
1220 #undef GET_FEATURE_REG_EQU
1221 #undef GET_FEATURE_REG_SET
1222 #undef GET_FEATURE_INSN
1223 
1224 #endif /* TARGET_MIPS */
1225 
1226 #ifdef TARGET_MICROBLAZE
1227 
1228 #define ELF_START_MMAP 0x80000000
1229 
1230 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1231 
1232 #define ELF_CLASS   ELFCLASS32
1233 #define ELF_ARCH    EM_MICROBLAZE
1234 
1235 static inline void init_thread(struct target_pt_regs *regs,
1236                                struct image_info *infop)
1237 {
1238     regs->pc = infop->entry;
1239     regs->r1 = infop->start_stack;
1240 
1241 }
1242 
1243 #define ELF_EXEC_PAGESIZE        4096
1244 
1245 #define USE_ELF_CORE_DUMP
1246 #define ELF_NREG 38
1247 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1248 
1249 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1251 {
1252     int i, pos = 0;
1253 
1254     for (i = 0; i < 32; i++) {
1255         (*regs)[pos++] = tswapreg(env->regs[i]);
1256     }
1257 
1258     (*regs)[pos++] = tswapreg(env->pc);
1259     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1260     (*regs)[pos++] = 0;
1261     (*regs)[pos++] = tswapreg(env->ear);
1262     (*regs)[pos++] = 0;
1263     (*regs)[pos++] = tswapreg(env->esr);
1264 }
1265 
1266 #endif /* TARGET_MICROBLAZE */
1267 
1268 #ifdef TARGET_NIOS2
1269 
1270 #define ELF_START_MMAP 0x80000000
1271 
1272 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1273 
1274 #define ELF_CLASS   ELFCLASS32
1275 #define ELF_ARCH    EM_ALTERA_NIOS2
1276 
1277 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1278 {
1279     regs->ea = infop->entry;
1280     regs->sp = infop->start_stack;
1281 }
1282 
1283 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1284 
1285 static bool init_guest_commpage(void)
1286 {
1287     static const uint8_t kuser_page[4 + 2 * 64] = {
1288         /* __kuser_helper_version */
1289         [0x00] = 0x02, 0x00, 0x00, 0x00,
1290 
1291         /* __kuser_cmpxchg */
1292         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1293                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1294 
1295         /* __kuser_sigtramp */
1296         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1297                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1298     };
1299 
1300     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1301     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1302                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1303 
1304     if (addr == MAP_FAILED) {
1305         perror("Allocating guest commpage");
1306         exit(EXIT_FAILURE);
1307     }
1308     if (addr != want) {
1309         return false;
1310     }
1311 
1312     memcpy(addr, kuser_page, sizeof(kuser_page));
1313 
1314     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1315         perror("Protecting guest commpage");
1316         exit(EXIT_FAILURE);
1317     }
1318 
1319     page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1320                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1321     return true;
1322 }
1323 
1324 #define ELF_EXEC_PAGESIZE        4096
1325 
1326 #define USE_ELF_CORE_DUMP
1327 #define ELF_NREG 49
1328 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1329 
1330 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1331 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1332                                const CPUNios2State *env)
1333 {
1334     int i;
1335 
1336     (*regs)[0] = -1;
1337     for (i = 1; i < 8; i++)    /* r0-r7 */
1338         (*regs)[i] = tswapreg(env->regs[i + 7]);
1339 
1340     for (i = 8; i < 16; i++)   /* r8-r15 */
1341         (*regs)[i] = tswapreg(env->regs[i - 8]);
1342 
1343     for (i = 16; i < 24; i++)  /* r16-r23 */
1344         (*regs)[i] = tswapreg(env->regs[i + 7]);
1345     (*regs)[24] = -1;    /* R_ET */
1346     (*regs)[25] = -1;    /* R_BT */
1347     (*regs)[26] = tswapreg(env->regs[R_GP]);
1348     (*regs)[27] = tswapreg(env->regs[R_SP]);
1349     (*regs)[28] = tswapreg(env->regs[R_FP]);
1350     (*regs)[29] = tswapreg(env->regs[R_EA]);
1351     (*regs)[30] = -1;    /* R_SSTATUS */
1352     (*regs)[31] = tswapreg(env->regs[R_RA]);
1353 
1354     (*regs)[32] = tswapreg(env->pc);
1355 
1356     (*regs)[33] = -1; /* R_STATUS */
1357     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1358 
1359     for (i = 35; i < 49; i++)    /* ... */
1360         (*regs)[i] = -1;
1361 }
1362 
1363 #endif /* TARGET_NIOS2 */
1364 
1365 #ifdef TARGET_OPENRISC
1366 
1367 #define ELF_START_MMAP 0x08000000
1368 
1369 #define ELF_ARCH EM_OPENRISC
1370 #define ELF_CLASS ELFCLASS32
1371 #define ELF_DATA  ELFDATA2MSB
1372 
1373 static inline void init_thread(struct target_pt_regs *regs,
1374                                struct image_info *infop)
1375 {
1376     regs->pc = infop->entry;
1377     regs->gpr[1] = infop->start_stack;
1378 }
1379 
1380 #define USE_ELF_CORE_DUMP
1381 #define ELF_EXEC_PAGESIZE 8192
1382 
1383 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1384 #define ELF_NREG 34 /* gprs and pc, sr */
1385 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1386 
1387 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1388                                const CPUOpenRISCState *env)
1389 {
1390     int i;
1391 
1392     for (i = 0; i < 32; i++) {
1393         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1394     }
1395     (*regs)[32] = tswapreg(env->pc);
1396     (*regs)[33] = tswapreg(cpu_get_sr(env));
1397 }
1398 #define ELF_HWCAP 0
1399 #define ELF_PLATFORM NULL
1400 
1401 #endif /* TARGET_OPENRISC */
1402 
1403 #ifdef TARGET_SH4
1404 
1405 #define ELF_START_MMAP 0x80000000
1406 
1407 #define ELF_CLASS ELFCLASS32
1408 #define ELF_ARCH  EM_SH
1409 
1410 static inline void init_thread(struct target_pt_regs *regs,
1411                                struct image_info *infop)
1412 {
1413     /* Check other registers XXXXX */
1414     regs->pc = infop->entry;
1415     regs->regs[15] = infop->start_stack;
1416 }
1417 
1418 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1419 #define ELF_NREG 23
1420 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1421 
1422 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1423 enum {
1424     TARGET_REG_PC = 16,
1425     TARGET_REG_PR = 17,
1426     TARGET_REG_SR = 18,
1427     TARGET_REG_GBR = 19,
1428     TARGET_REG_MACH = 20,
1429     TARGET_REG_MACL = 21,
1430     TARGET_REG_SYSCALL = 22
1431 };
1432 
1433 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1434                                       const CPUSH4State *env)
1435 {
1436     int i;
1437 
1438     for (i = 0; i < 16; i++) {
1439         (*regs)[i] = tswapreg(env->gregs[i]);
1440     }
1441 
1442     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1443     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1444     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1445     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1446     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1447     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1448     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1449 }
1450 
1451 #define USE_ELF_CORE_DUMP
1452 #define ELF_EXEC_PAGESIZE        4096
1453 
1454 enum {
1455     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1456     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1457     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1458     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1459     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1460     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1461     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1462     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1463     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1464     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1465 };
1466 
1467 #define ELF_HWCAP get_elf_hwcap()
1468 
1469 static uint32_t get_elf_hwcap(void)
1470 {
1471     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1472     uint32_t hwcap = 0;
1473 
1474     hwcap |= SH_CPU_HAS_FPU;
1475 
1476     if (cpu->env.features & SH_FEATURE_SH4A) {
1477         hwcap |= SH_CPU_HAS_LLSC;
1478     }
1479 
1480     return hwcap;
1481 }
1482 
1483 #endif
1484 
1485 #ifdef TARGET_CRIS
1486 
1487 #define ELF_START_MMAP 0x80000000
1488 
1489 #define ELF_CLASS ELFCLASS32
1490 #define ELF_ARCH  EM_CRIS
1491 
1492 static inline void init_thread(struct target_pt_regs *regs,
1493                                struct image_info *infop)
1494 {
1495     regs->erp = infop->entry;
1496 }
1497 
1498 #define ELF_EXEC_PAGESIZE        8192
1499 
1500 #endif
1501 
1502 #ifdef TARGET_M68K
1503 
1504 #define ELF_START_MMAP 0x80000000
1505 
1506 #define ELF_CLASS       ELFCLASS32
1507 #define ELF_ARCH        EM_68K
1508 
1509 /* ??? Does this need to do anything?
1510    #define ELF_PLAT_INIT(_r) */
1511 
1512 static inline void init_thread(struct target_pt_regs *regs,
1513                                struct image_info *infop)
1514 {
1515     regs->usp = infop->start_stack;
1516     regs->sr = 0;
1517     regs->pc = infop->entry;
1518 }
1519 
1520 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1521 #define ELF_NREG 20
1522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1523 
1524 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1525 {
1526     (*regs)[0] = tswapreg(env->dregs[1]);
1527     (*regs)[1] = tswapreg(env->dregs[2]);
1528     (*regs)[2] = tswapreg(env->dregs[3]);
1529     (*regs)[3] = tswapreg(env->dregs[4]);
1530     (*regs)[4] = tswapreg(env->dregs[5]);
1531     (*regs)[5] = tswapreg(env->dregs[6]);
1532     (*regs)[6] = tswapreg(env->dregs[7]);
1533     (*regs)[7] = tswapreg(env->aregs[0]);
1534     (*regs)[8] = tswapreg(env->aregs[1]);
1535     (*regs)[9] = tswapreg(env->aregs[2]);
1536     (*regs)[10] = tswapreg(env->aregs[3]);
1537     (*regs)[11] = tswapreg(env->aregs[4]);
1538     (*regs)[12] = tswapreg(env->aregs[5]);
1539     (*regs)[13] = tswapreg(env->aregs[6]);
1540     (*regs)[14] = tswapreg(env->dregs[0]);
1541     (*regs)[15] = tswapreg(env->aregs[7]);
1542     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1543     (*regs)[17] = tswapreg(env->sr);
1544     (*regs)[18] = tswapreg(env->pc);
1545     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1546 }
1547 
1548 #define USE_ELF_CORE_DUMP
1549 #define ELF_EXEC_PAGESIZE       8192
1550 
1551 #endif
1552 
1553 #ifdef TARGET_ALPHA
1554 
1555 #define ELF_START_MMAP (0x30000000000ULL)
1556 
1557 #define ELF_CLASS      ELFCLASS64
1558 #define ELF_ARCH       EM_ALPHA
1559 
1560 static inline void init_thread(struct target_pt_regs *regs,
1561                                struct image_info *infop)
1562 {
1563     regs->pc = infop->entry;
1564     regs->ps = 8;
1565     regs->usp = infop->start_stack;
1566 }
1567 
1568 #define ELF_EXEC_PAGESIZE        8192
1569 
1570 #endif /* TARGET_ALPHA */
1571 
1572 #ifdef TARGET_S390X
1573 
1574 #define ELF_START_MMAP (0x20000000000ULL)
1575 
1576 #define ELF_CLASS	ELFCLASS64
1577 #define ELF_DATA	ELFDATA2MSB
1578 #define ELF_ARCH	EM_S390
1579 
1580 #include "elf.h"
1581 
1582 #define ELF_HWCAP get_elf_hwcap()
1583 
1584 #define GET_FEATURE(_feat, _hwcap) \
1585     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1586 
1587 static uint32_t get_elf_hwcap(void)
1588 {
1589     /*
1590      * Let's assume we always have esan3 and zarch.
1591      * 31-bit processes can use 64-bit registers (high gprs).
1592      */
1593     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1594 
1595     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1596     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1597     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1598     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1599     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1600         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1601         hwcap |= HWCAP_S390_ETF3EH;
1602     }
1603     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1604     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1605 
1606     return hwcap;
1607 }
1608 
1609 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1610 {
1611     regs->psw.addr = infop->entry;
1612     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1613     regs->gprs[15] = infop->start_stack;
1614 }
1615 
1616 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1617 #define ELF_NREG 27
1618 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1619 
1620 enum {
1621     TARGET_REG_PSWM = 0,
1622     TARGET_REG_PSWA = 1,
1623     TARGET_REG_GPRS = 2,
1624     TARGET_REG_ARS = 18,
1625     TARGET_REG_ORIG_R2 = 26,
1626 };
1627 
1628 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1629                                const CPUS390XState *env)
1630 {
1631     int i;
1632     uint32_t *aregs;
1633 
1634     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1635     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1636     for (i = 0; i < 16; i++) {
1637         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1638     }
1639     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1640     for (i = 0; i < 16; i++) {
1641         aregs[i] = tswap32(env->aregs[i]);
1642     }
1643     (*regs)[TARGET_REG_ORIG_R2] = 0;
1644 }
1645 
1646 #define USE_ELF_CORE_DUMP
1647 #define ELF_EXEC_PAGESIZE 4096
1648 
1649 #endif /* TARGET_S390X */
1650 
1651 #ifdef TARGET_RISCV
1652 
1653 #define ELF_START_MMAP 0x80000000
1654 #define ELF_ARCH  EM_RISCV
1655 
1656 #ifdef TARGET_RISCV32
1657 #define ELF_CLASS ELFCLASS32
1658 #else
1659 #define ELF_CLASS ELFCLASS64
1660 #endif
1661 
1662 #define ELF_HWCAP get_elf_hwcap()
1663 
1664 static uint32_t get_elf_hwcap(void)
1665 {
1666 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1667     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1668     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1669                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1670 
1671     return cpu->env.misa_ext & mask;
1672 #undef MISA_BIT
1673 }
1674 
1675 static inline void init_thread(struct target_pt_regs *regs,
1676                                struct image_info *infop)
1677 {
1678     regs->sepc = infop->entry;
1679     regs->sp = infop->start_stack;
1680 }
1681 
1682 #define ELF_EXEC_PAGESIZE 4096
1683 
1684 #endif /* TARGET_RISCV */
1685 
1686 #ifdef TARGET_HPPA
1687 
1688 #define ELF_START_MMAP  0x80000000
1689 #define ELF_CLASS       ELFCLASS32
1690 #define ELF_ARCH        EM_PARISC
1691 #define ELF_PLATFORM    "PARISC"
1692 #define STACK_GROWS_DOWN 0
1693 #define STACK_ALIGNMENT  64
1694 
1695 static inline void init_thread(struct target_pt_regs *regs,
1696                                struct image_info *infop)
1697 {
1698     regs->iaoq[0] = infop->entry;
1699     regs->iaoq[1] = infop->entry + 4;
1700     regs->gr[23] = 0;
1701     regs->gr[24] = infop->argv;
1702     regs->gr[25] = infop->argc;
1703     /* The top-of-stack contains a linkage buffer.  */
1704     regs->gr[30] = infop->start_stack + 64;
1705     regs->gr[31] = infop->entry;
1706 }
1707 
1708 #define LO_COMMPAGE  0
1709 
1710 static bool init_guest_commpage(void)
1711 {
1712     void *want = g2h_untagged(LO_COMMPAGE);
1713     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1714                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1715 
1716     if (addr == MAP_FAILED) {
1717         perror("Allocating guest commpage");
1718         exit(EXIT_FAILURE);
1719     }
1720     if (addr != want) {
1721         return false;
1722     }
1723 
1724     /*
1725      * On Linux, page zero is normally marked execute only + gateway.
1726      * Normal read or write is supposed to fail (thus PROT_NONE above),
1727      * but specific offsets have kernel code mapped to raise permissions
1728      * and implement syscalls.  Here, simply mark the page executable.
1729      * Special case the entry points during translation (see do_page_zero).
1730      */
1731     page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1732                    PAGE_EXEC | PAGE_VALID);
1733     return true;
1734 }
1735 
1736 #endif /* TARGET_HPPA */
1737 
1738 #ifdef TARGET_XTENSA
1739 
1740 #define ELF_START_MMAP 0x20000000
1741 
1742 #define ELF_CLASS       ELFCLASS32
1743 #define ELF_ARCH        EM_XTENSA
1744 
1745 static inline void init_thread(struct target_pt_regs *regs,
1746                                struct image_info *infop)
1747 {
1748     regs->windowbase = 0;
1749     regs->windowstart = 1;
1750     regs->areg[1] = infop->start_stack;
1751     regs->pc = infop->entry;
1752     if (info_is_fdpic(infop)) {
1753         regs->areg[4] = infop->loadmap_addr;
1754         regs->areg[5] = infop->interpreter_loadmap_addr;
1755         if (infop->interpreter_loadmap_addr) {
1756             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1757         } else {
1758             regs->areg[6] = infop->pt_dynamic_addr;
1759         }
1760     }
1761 }
1762 
1763 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1764 #define ELF_NREG 128
1765 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1766 
1767 enum {
1768     TARGET_REG_PC,
1769     TARGET_REG_PS,
1770     TARGET_REG_LBEG,
1771     TARGET_REG_LEND,
1772     TARGET_REG_LCOUNT,
1773     TARGET_REG_SAR,
1774     TARGET_REG_WINDOWSTART,
1775     TARGET_REG_WINDOWBASE,
1776     TARGET_REG_THREADPTR,
1777     TARGET_REG_AR0 = 64,
1778 };
1779 
1780 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1781                                const CPUXtensaState *env)
1782 {
1783     unsigned i;
1784 
1785     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1786     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1787     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1788     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1789     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1790     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1791     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1792     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1793     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1794     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1795     for (i = 0; i < env->config->nareg; ++i) {
1796         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1797     }
1798 }
1799 
1800 #define USE_ELF_CORE_DUMP
1801 #define ELF_EXEC_PAGESIZE       4096
1802 
1803 #endif /* TARGET_XTENSA */
1804 
1805 #ifdef TARGET_HEXAGON
1806 
1807 #define ELF_START_MMAP 0x20000000
1808 
1809 #define ELF_CLASS       ELFCLASS32
1810 #define ELF_ARCH        EM_HEXAGON
1811 
1812 static inline void init_thread(struct target_pt_regs *regs,
1813                                struct image_info *infop)
1814 {
1815     regs->sepc = infop->entry;
1816     regs->sp = infop->start_stack;
1817 }
1818 
1819 #endif /* TARGET_HEXAGON */
1820 
1821 #ifndef ELF_BASE_PLATFORM
1822 #define ELF_BASE_PLATFORM (NULL)
1823 #endif
1824 
1825 #ifndef ELF_PLATFORM
1826 #define ELF_PLATFORM (NULL)
1827 #endif
1828 
1829 #ifndef ELF_MACHINE
1830 #define ELF_MACHINE ELF_ARCH
1831 #endif
1832 
1833 #ifndef elf_check_arch
1834 #define elf_check_arch(x) ((x) == ELF_ARCH)
1835 #endif
1836 
1837 #ifndef elf_check_abi
1838 #define elf_check_abi(x) (1)
1839 #endif
1840 
1841 #ifndef ELF_HWCAP
1842 #define ELF_HWCAP 0
1843 #endif
1844 
1845 #ifndef STACK_GROWS_DOWN
1846 #define STACK_GROWS_DOWN 1
1847 #endif
1848 
1849 #ifndef STACK_ALIGNMENT
1850 #define STACK_ALIGNMENT 16
1851 #endif
1852 
1853 #ifdef TARGET_ABI32
1854 #undef ELF_CLASS
1855 #define ELF_CLASS ELFCLASS32
1856 #undef bswaptls
1857 #define bswaptls(ptr) bswap32s(ptr)
1858 #endif
1859 
1860 #ifndef EXSTACK_DEFAULT
1861 #define EXSTACK_DEFAULT false
1862 #endif
1863 
1864 #include "elf.h"
1865 
1866 /* We must delay the following stanzas until after "elf.h". */
1867 #if defined(TARGET_AARCH64)
1868 
1869 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1870                                     const uint32_t *data,
1871                                     struct image_info *info,
1872                                     Error **errp)
1873 {
1874     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1875         if (pr_datasz != sizeof(uint32_t)) {
1876             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1877             return false;
1878         }
1879         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1880         info->note_flags = *data;
1881     }
1882     return true;
1883 }
1884 #define ARCH_USE_GNU_PROPERTY 1
1885 
1886 #else
1887 
1888 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1889                                     const uint32_t *data,
1890                                     struct image_info *info,
1891                                     Error **errp)
1892 {
1893     g_assert_not_reached();
1894 }
1895 #define ARCH_USE_GNU_PROPERTY 0
1896 
1897 #endif
1898 
1899 struct exec
1900 {
1901     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1902     unsigned int a_text;   /* length of text, in bytes */
1903     unsigned int a_data;   /* length of data, in bytes */
1904     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1905     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1906     unsigned int a_entry;  /* start address */
1907     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1908     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1909 };
1910 
1911 
1912 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1913 #define OMAGIC 0407
1914 #define NMAGIC 0410
1915 #define ZMAGIC 0413
1916 #define QMAGIC 0314
1917 
1918 /* Necessary parameters */
1919 #define TARGET_ELF_EXEC_PAGESIZE \
1920         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1921          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1922 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1923 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1924                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1925 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1926 
1927 #define DLINFO_ITEMS 16
1928 
1929 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1930 {
1931     memcpy(to, from, n);
1932 }
1933 
1934 #ifdef BSWAP_NEEDED
1935 static void bswap_ehdr(struct elfhdr *ehdr)
1936 {
1937     bswap16s(&ehdr->e_type);            /* Object file type */
1938     bswap16s(&ehdr->e_machine);         /* Architecture */
1939     bswap32s(&ehdr->e_version);         /* Object file version */
1940     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1941     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1942     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1943     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1944     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1945     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1946     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1947     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1948     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1949     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1950 }
1951 
1952 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1953 {
1954     int i;
1955     for (i = 0; i < phnum; ++i, ++phdr) {
1956         bswap32s(&phdr->p_type);        /* Segment type */
1957         bswap32s(&phdr->p_flags);       /* Segment flags */
1958         bswaptls(&phdr->p_offset);      /* Segment file offset */
1959         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1960         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1961         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1962         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1963         bswaptls(&phdr->p_align);       /* Segment alignment */
1964     }
1965 }
1966 
1967 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1968 {
1969     int i;
1970     for (i = 0; i < shnum; ++i, ++shdr) {
1971         bswap32s(&shdr->sh_name);
1972         bswap32s(&shdr->sh_type);
1973         bswaptls(&shdr->sh_flags);
1974         bswaptls(&shdr->sh_addr);
1975         bswaptls(&shdr->sh_offset);
1976         bswaptls(&shdr->sh_size);
1977         bswap32s(&shdr->sh_link);
1978         bswap32s(&shdr->sh_info);
1979         bswaptls(&shdr->sh_addralign);
1980         bswaptls(&shdr->sh_entsize);
1981     }
1982 }
1983 
1984 static void bswap_sym(struct elf_sym *sym)
1985 {
1986     bswap32s(&sym->st_name);
1987     bswaptls(&sym->st_value);
1988     bswaptls(&sym->st_size);
1989     bswap16s(&sym->st_shndx);
1990 }
1991 
1992 #ifdef TARGET_MIPS
1993 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1994 {
1995     bswap16s(&abiflags->version);
1996     bswap32s(&abiflags->ases);
1997     bswap32s(&abiflags->isa_ext);
1998     bswap32s(&abiflags->flags1);
1999     bswap32s(&abiflags->flags2);
2000 }
2001 #endif
2002 #else
2003 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2004 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2005 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2006 static inline void bswap_sym(struct elf_sym *sym) { }
2007 #ifdef TARGET_MIPS
2008 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2009 #endif
2010 #endif
2011 
2012 #ifdef USE_ELF_CORE_DUMP
2013 static int elf_core_dump(int, const CPUArchState *);
2014 #endif /* USE_ELF_CORE_DUMP */
2015 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2016 
2017 /* Verify the portions of EHDR within E_IDENT for the target.
2018    This can be performed before bswapping the entire header.  */
2019 static bool elf_check_ident(struct elfhdr *ehdr)
2020 {
2021     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2022             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2023             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2024             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2025             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2026             && ehdr->e_ident[EI_DATA] == ELF_DATA
2027             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2028 }
2029 
2030 /* Verify the portions of EHDR outside of E_IDENT for the target.
2031    This has to wait until after bswapping the header.  */
2032 static bool elf_check_ehdr(struct elfhdr *ehdr)
2033 {
2034     return (elf_check_arch(ehdr->e_machine)
2035             && elf_check_abi(ehdr->e_flags)
2036             && ehdr->e_ehsize == sizeof(struct elfhdr)
2037             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2038             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2039 }
2040 
2041 /*
2042  * 'copy_elf_strings()' copies argument/envelope strings from user
2043  * memory to free pages in kernel mem. These are in a format ready
2044  * to be put directly into the top of new user memory.
2045  *
2046  */
2047 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2048                                   abi_ulong p, abi_ulong stack_limit)
2049 {
2050     char *tmp;
2051     int len, i;
2052     abi_ulong top = p;
2053 
2054     if (!p) {
2055         return 0;       /* bullet-proofing */
2056     }
2057 
2058     if (STACK_GROWS_DOWN) {
2059         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2060         for (i = argc - 1; i >= 0; --i) {
2061             tmp = argv[i];
2062             if (!tmp) {
2063                 fprintf(stderr, "VFS: argc is wrong");
2064                 exit(-1);
2065             }
2066             len = strlen(tmp) + 1;
2067             tmp += len;
2068 
2069             if (len > (p - stack_limit)) {
2070                 return 0;
2071             }
2072             while (len) {
2073                 int bytes_to_copy = (len > offset) ? offset : len;
2074                 tmp -= bytes_to_copy;
2075                 p -= bytes_to_copy;
2076                 offset -= bytes_to_copy;
2077                 len -= bytes_to_copy;
2078 
2079                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2080 
2081                 if (offset == 0) {
2082                     memcpy_to_target(p, scratch, top - p);
2083                     top = p;
2084                     offset = TARGET_PAGE_SIZE;
2085                 }
2086             }
2087         }
2088         if (p != top) {
2089             memcpy_to_target(p, scratch + offset, top - p);
2090         }
2091     } else {
2092         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2093         for (i = 0; i < argc; ++i) {
2094             tmp = argv[i];
2095             if (!tmp) {
2096                 fprintf(stderr, "VFS: argc is wrong");
2097                 exit(-1);
2098             }
2099             len = strlen(tmp) + 1;
2100             if (len > (stack_limit - p)) {
2101                 return 0;
2102             }
2103             while (len) {
2104                 int bytes_to_copy = (len > remaining) ? remaining : len;
2105 
2106                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2107 
2108                 tmp += bytes_to_copy;
2109                 remaining -= bytes_to_copy;
2110                 p += bytes_to_copy;
2111                 len -= bytes_to_copy;
2112 
2113                 if (remaining == 0) {
2114                     memcpy_to_target(top, scratch, p - top);
2115                     top = p;
2116                     remaining = TARGET_PAGE_SIZE;
2117                 }
2118             }
2119         }
2120         if (p != top) {
2121             memcpy_to_target(top, scratch, p - top);
2122         }
2123     }
2124 
2125     return p;
2126 }
2127 
2128 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2129  * argument/environment space. Newer kernels (>2.6.33) allow more,
2130  * dependent on stack size, but guarantee at least 32 pages for
2131  * backwards compatibility.
2132  */
2133 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2134 
2135 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2136                                  struct image_info *info)
2137 {
2138     abi_ulong size, error, guard;
2139     int prot;
2140 
2141     size = guest_stack_size;
2142     if (size < STACK_LOWER_LIMIT) {
2143         size = STACK_LOWER_LIMIT;
2144     }
2145 
2146     if (STACK_GROWS_DOWN) {
2147         guard = TARGET_PAGE_SIZE;
2148         if (guard < qemu_real_host_page_size()) {
2149             guard = qemu_real_host_page_size();
2150         }
2151     } else {
2152         /* no guard page for hppa target where stack grows upwards. */
2153         guard = 0;
2154     }
2155 
2156     prot = PROT_READ | PROT_WRITE;
2157     if (info->exec_stack) {
2158         prot |= PROT_EXEC;
2159     }
2160     error = target_mmap(0, size + guard, prot,
2161                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2162     if (error == -1) {
2163         perror("mmap stack");
2164         exit(-1);
2165     }
2166 
2167     /* We reserve one extra page at the top of the stack as guard.  */
2168     if (STACK_GROWS_DOWN) {
2169         target_mprotect(error, guard, PROT_NONE);
2170         info->stack_limit = error + guard;
2171         return info->stack_limit + size - sizeof(void *);
2172     } else {
2173         info->stack_limit = error + size;
2174         return error;
2175     }
2176 }
2177 
2178 /* Map and zero the bss.  We need to explicitly zero any fractional pages
2179    after the data section (i.e. bss).  */
2180 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2181 {
2182     uintptr_t host_start, host_map_start, host_end;
2183 
2184     last_bss = TARGET_PAGE_ALIGN(last_bss);
2185 
2186     /* ??? There is confusion between qemu_real_host_page_size and
2187        qemu_host_page_size here and elsewhere in target_mmap, which
2188        may lead to the end of the data section mapping from the file
2189        not being mapped.  At least there was an explicit test and
2190        comment for that here, suggesting that "the file size must
2191        be known".  The comment probably pre-dates the introduction
2192        of the fstat system call in target_mmap which does in fact
2193        find out the size.  What isn't clear is if the workaround
2194        here is still actually needed.  For now, continue with it,
2195        but merge it with the "normal" mmap that would allocate the bss.  */
2196 
2197     host_start = (uintptr_t) g2h_untagged(elf_bss);
2198     host_end = (uintptr_t) g2h_untagged(last_bss);
2199     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2200 
2201     if (host_map_start < host_end) {
2202         void *p = mmap((void *)host_map_start, host_end - host_map_start,
2203                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2204         if (p == MAP_FAILED) {
2205             perror("cannot mmap brk");
2206             exit(-1);
2207         }
2208     }
2209 
2210     /* Ensure that the bss page(s) are valid */
2211     if ((page_get_flags(last_bss-1) & prot) != prot) {
2212         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
2213     }
2214 
2215     if (host_start < host_map_start) {
2216         memset((void *)host_start, 0, host_map_start - host_start);
2217     }
2218 }
2219 
2220 #if defined(TARGET_ARM)
2221 static int elf_is_fdpic(struct elfhdr *exec)
2222 {
2223     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2224 }
2225 #elif defined(TARGET_XTENSA)
2226 static int elf_is_fdpic(struct elfhdr *exec)
2227 {
2228     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2229 }
2230 #else
2231 /* Default implementation, always false.  */
2232 static int elf_is_fdpic(struct elfhdr *exec)
2233 {
2234     return 0;
2235 }
2236 #endif
2237 
2238 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2239 {
2240     uint16_t n;
2241     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2242 
2243     /* elf32_fdpic_loadseg */
2244     n = info->nsegs;
2245     while (n--) {
2246         sp -= 12;
2247         put_user_u32(loadsegs[n].addr, sp+0);
2248         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2249         put_user_u32(loadsegs[n].p_memsz, sp+8);
2250     }
2251 
2252     /* elf32_fdpic_loadmap */
2253     sp -= 4;
2254     put_user_u16(0, sp+0); /* version */
2255     put_user_u16(info->nsegs, sp+2); /* nsegs */
2256 
2257     info->personality = PER_LINUX_FDPIC;
2258     info->loadmap_addr = sp;
2259 
2260     return sp;
2261 }
2262 
2263 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2264                                    struct elfhdr *exec,
2265                                    struct image_info *info,
2266                                    struct image_info *interp_info)
2267 {
2268     abi_ulong sp;
2269     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2270     int size;
2271     int i;
2272     abi_ulong u_rand_bytes;
2273     uint8_t k_rand_bytes[16];
2274     abi_ulong u_platform, u_base_platform;
2275     const char *k_platform, *k_base_platform;
2276     const int n = sizeof(elf_addr_t);
2277 
2278     sp = p;
2279 
2280     /* Needs to be before we load the env/argc/... */
2281     if (elf_is_fdpic(exec)) {
2282         /* Need 4 byte alignment for these structs */
2283         sp &= ~3;
2284         sp = loader_build_fdpic_loadmap(info, sp);
2285         info->other_info = interp_info;
2286         if (interp_info) {
2287             interp_info->other_info = info;
2288             sp = loader_build_fdpic_loadmap(interp_info, sp);
2289             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2290             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2291         } else {
2292             info->interpreter_loadmap_addr = 0;
2293             info->interpreter_pt_dynamic_addr = 0;
2294         }
2295     }
2296 
2297     u_base_platform = 0;
2298     k_base_platform = ELF_BASE_PLATFORM;
2299     if (k_base_platform) {
2300         size_t len = strlen(k_base_platform) + 1;
2301         if (STACK_GROWS_DOWN) {
2302             sp -= (len + n - 1) & ~(n - 1);
2303             u_base_platform = sp;
2304             /* FIXME - check return value of memcpy_to_target() for failure */
2305             memcpy_to_target(sp, k_base_platform, len);
2306         } else {
2307             memcpy_to_target(sp, k_base_platform, len);
2308             u_base_platform = sp;
2309             sp += len + 1;
2310         }
2311     }
2312 
2313     u_platform = 0;
2314     k_platform = ELF_PLATFORM;
2315     if (k_platform) {
2316         size_t len = strlen(k_platform) + 1;
2317         if (STACK_GROWS_DOWN) {
2318             sp -= (len + n - 1) & ~(n - 1);
2319             u_platform = sp;
2320             /* FIXME - check return value of memcpy_to_target() for failure */
2321             memcpy_to_target(sp, k_platform, len);
2322         } else {
2323             memcpy_to_target(sp, k_platform, len);
2324             u_platform = sp;
2325             sp += len + 1;
2326         }
2327     }
2328 
2329     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2330      * the argv and envp pointers.
2331      */
2332     if (STACK_GROWS_DOWN) {
2333         sp = QEMU_ALIGN_DOWN(sp, 16);
2334     } else {
2335         sp = QEMU_ALIGN_UP(sp, 16);
2336     }
2337 
2338     /*
2339      * Generate 16 random bytes for userspace PRNG seeding.
2340      */
2341     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2342     if (STACK_GROWS_DOWN) {
2343         sp -= 16;
2344         u_rand_bytes = sp;
2345         /* FIXME - check return value of memcpy_to_target() for failure */
2346         memcpy_to_target(sp, k_rand_bytes, 16);
2347     } else {
2348         memcpy_to_target(sp, k_rand_bytes, 16);
2349         u_rand_bytes = sp;
2350         sp += 16;
2351     }
2352 
2353     size = (DLINFO_ITEMS + 1) * 2;
2354     if (k_base_platform)
2355         size += 2;
2356     if (k_platform)
2357         size += 2;
2358 #ifdef DLINFO_ARCH_ITEMS
2359     size += DLINFO_ARCH_ITEMS * 2;
2360 #endif
2361 #ifdef ELF_HWCAP2
2362     size += 2;
2363 #endif
2364     info->auxv_len = size * n;
2365 
2366     size += envc + argc + 2;
2367     size += 1;  /* argc itself */
2368     size *= n;
2369 
2370     /* Allocate space and finalize stack alignment for entry now.  */
2371     if (STACK_GROWS_DOWN) {
2372         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2373         sp = u_argc;
2374     } else {
2375         u_argc = sp;
2376         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2377     }
2378 
2379     u_argv = u_argc + n;
2380     u_envp = u_argv + (argc + 1) * n;
2381     u_auxv = u_envp + (envc + 1) * n;
2382     info->saved_auxv = u_auxv;
2383     info->argc = argc;
2384     info->envc = envc;
2385     info->argv = u_argv;
2386     info->envp = u_envp;
2387 
2388     /* This is correct because Linux defines
2389      * elf_addr_t as Elf32_Off / Elf64_Off
2390      */
2391 #define NEW_AUX_ENT(id, val) do {               \
2392         put_user_ual(id, u_auxv);  u_auxv += n; \
2393         put_user_ual(val, u_auxv); u_auxv += n; \
2394     } while(0)
2395 
2396 #ifdef ARCH_DLINFO
2397     /*
2398      * ARCH_DLINFO must come first so platform specific code can enforce
2399      * special alignment requirements on the AUXV if necessary (eg. PPC).
2400      */
2401     ARCH_DLINFO;
2402 #endif
2403     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2404      * on info->auxv_len will trigger.
2405      */
2406     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2407     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2408     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2409     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2410         /* Target doesn't support host page size alignment */
2411         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2412     } else {
2413         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2414                                                qemu_host_page_size)));
2415     }
2416     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2417     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2418     NEW_AUX_ENT(AT_ENTRY, info->entry);
2419     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2420     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2421     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2422     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2423     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2424     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2425     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2426     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2427     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2428 
2429 #ifdef ELF_HWCAP2
2430     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2431 #endif
2432 
2433     if (u_base_platform) {
2434         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2435     }
2436     if (u_platform) {
2437         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2438     }
2439     NEW_AUX_ENT (AT_NULL, 0);
2440 #undef NEW_AUX_ENT
2441 
2442     /* Check that our initial calculation of the auxv length matches how much
2443      * we actually put into it.
2444      */
2445     assert(info->auxv_len == u_auxv - info->saved_auxv);
2446 
2447     put_user_ual(argc, u_argc);
2448 
2449     p = info->arg_strings;
2450     for (i = 0; i < argc; ++i) {
2451         put_user_ual(p, u_argv);
2452         u_argv += n;
2453         p += target_strlen(p) + 1;
2454     }
2455     put_user_ual(0, u_argv);
2456 
2457     p = info->env_strings;
2458     for (i = 0; i < envc; ++i) {
2459         put_user_ual(p, u_envp);
2460         u_envp += n;
2461         p += target_strlen(p) + 1;
2462     }
2463     put_user_ual(0, u_envp);
2464 
2465     return sp;
2466 }
2467 
2468 #if defined(HI_COMMPAGE)
2469 #define LO_COMMPAGE -1
2470 #elif defined(LO_COMMPAGE)
2471 #define HI_COMMPAGE 0
2472 #else
2473 #define HI_COMMPAGE 0
2474 #define LO_COMMPAGE -1
2475 #ifndef INIT_GUEST_COMMPAGE
2476 #define init_guest_commpage() true
2477 #endif
2478 #endif
2479 
2480 static void pgb_fail_in_use(const char *image_name)
2481 {
2482     error_report("%s: requires virtual address space that is in use "
2483                  "(omit the -B option or choose a different value)",
2484                  image_name);
2485     exit(EXIT_FAILURE);
2486 }
2487 
2488 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2489                                 abi_ulong guest_hiaddr, long align)
2490 {
2491     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2492     void *addr, *test;
2493 
2494     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2495         fprintf(stderr, "Requested guest base %p does not satisfy "
2496                 "host minimum alignment (0x%lx)\n",
2497                 (void *)guest_base, align);
2498         exit(EXIT_FAILURE);
2499     }
2500 
2501     /* Sanity check the guest binary. */
2502     if (reserved_va) {
2503         if (guest_hiaddr > reserved_va) {
2504             error_report("%s: requires more than reserved virtual "
2505                          "address space (0x%" PRIx64 " > 0x%lx)",
2506                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2507             exit(EXIT_FAILURE);
2508         }
2509     } else {
2510 #if HOST_LONG_BITS < TARGET_ABI_BITS
2511         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2512             error_report("%s: requires more virtual address space "
2513                          "than the host can provide (0x%" PRIx64 ")",
2514                          image_name, (uint64_t)guest_hiaddr - guest_base);
2515             exit(EXIT_FAILURE);
2516         }
2517 #endif
2518     }
2519 
2520     /*
2521      * Expand the allocation to the entire reserved_va.
2522      * Exclude the mmap_min_addr hole.
2523      */
2524     if (reserved_va) {
2525         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2526                         : mmap_min_addr - guest_base);
2527         guest_hiaddr = reserved_va;
2528     }
2529 
2530     /* Reserve the address space for the binary, or reserved_va. */
2531     test = g2h_untagged(guest_loaddr);
2532     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2533     if (test != addr) {
2534         pgb_fail_in_use(image_name);
2535     }
2536     qemu_log_mask(CPU_LOG_PAGE,
2537                   "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n",
2538                   __func__, addr, guest_hiaddr - guest_loaddr);
2539 }
2540 
2541 /**
2542  * pgd_find_hole_fallback: potential mmap address
2543  * @guest_size: size of available space
2544  * @brk: location of break
2545  * @align: memory alignment
2546  *
2547  * This is a fallback method for finding a hole in the host address
2548  * space if we don't have the benefit of being able to access
2549  * /proc/self/map. It can potentially take a very long time as we can
2550  * only dumbly iterate up the host address space seeing if the
2551  * allocation would work.
2552  */
2553 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2554                                         long align, uintptr_t offset)
2555 {
2556     uintptr_t base;
2557 
2558     /* Start (aligned) at the bottom and work our way up */
2559     base = ROUND_UP(mmap_min_addr, align);
2560 
2561     while (true) {
2562         uintptr_t align_start, end;
2563         align_start = ROUND_UP(base, align);
2564         end = align_start + guest_size + offset;
2565 
2566         /* if brk is anywhere in the range give ourselves some room to grow. */
2567         if (align_start <= brk && brk < end) {
2568             base = brk + (16 * MiB);
2569             continue;
2570         } else if (align_start + guest_size < align_start) {
2571             /* we have run out of space */
2572             return -1;
2573         } else {
2574             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2575                 MAP_FIXED_NOREPLACE;
2576             void * mmap_start = mmap((void *) align_start, guest_size,
2577                                      PROT_NONE, flags, -1, 0);
2578             if (mmap_start != MAP_FAILED) {
2579                 munmap(mmap_start, guest_size);
2580                 if (mmap_start == (void *) align_start) {
2581                     qemu_log_mask(CPU_LOG_PAGE,
2582                                   "%s: base @ %p for %" PRIdPTR" bytes\n",
2583                                   __func__, mmap_start + offset, guest_size);
2584                     return (uintptr_t) mmap_start + offset;
2585                 }
2586             }
2587             base += qemu_host_page_size;
2588         }
2589     }
2590 }
2591 
2592 /* Return value for guest_base, or -1 if no hole found. */
2593 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2594                                long align, uintptr_t offset)
2595 {
2596     GSList *maps, *iter;
2597     uintptr_t this_start, this_end, next_start, brk;
2598     intptr_t ret = -1;
2599 
2600     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2601 
2602     maps = read_self_maps();
2603 
2604     /* Read brk after we've read the maps, which will malloc. */
2605     brk = (uintptr_t)sbrk(0);
2606 
2607     if (!maps) {
2608         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2609     }
2610 
2611     /* The first hole is before the first map entry. */
2612     this_start = mmap_min_addr;
2613 
2614     for (iter = maps; iter;
2615          this_start = next_start, iter = g_slist_next(iter)) {
2616         uintptr_t align_start, hole_size;
2617 
2618         this_end = ((MapInfo *)iter->data)->start;
2619         next_start = ((MapInfo *)iter->data)->end;
2620         align_start = ROUND_UP(this_start + offset, align);
2621 
2622         /* Skip holes that are too small. */
2623         if (align_start >= this_end) {
2624             continue;
2625         }
2626         hole_size = this_end - align_start;
2627         if (hole_size < guest_size) {
2628             continue;
2629         }
2630 
2631         /* If this hole contains brk, give ourselves some room to grow. */
2632         if (this_start <= brk && brk < this_end) {
2633             hole_size -= guest_size;
2634             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2635                 align_start += 1 * GiB;
2636             } else if (hole_size >= 16 * MiB) {
2637                 align_start += 16 * MiB;
2638             } else {
2639                 align_start = (this_end - guest_size) & -align;
2640                 if (align_start < this_start) {
2641                     continue;
2642                 }
2643             }
2644         }
2645 
2646         /* Record the lowest successful match. */
2647         if (ret < 0) {
2648             ret = align_start;
2649         }
2650         /* If this hole contains the identity map, select it. */
2651         if (align_start <= guest_loaddr &&
2652             guest_loaddr + guest_size <= this_end) {
2653             ret = 0;
2654         }
2655         /* If this hole ends above the identity map, stop looking. */
2656         if (this_end >= guest_loaddr) {
2657             break;
2658         }
2659     }
2660     free_self_maps(maps);
2661 
2662     if (ret != -1) {
2663         qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2664                       " for %" PRIuPTR " bytes\n",
2665                       __func__, ret, guest_size);
2666     }
2667 
2668     return ret;
2669 }
2670 
2671 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2672                        abi_ulong orig_hiaddr, long align)
2673 {
2674     uintptr_t loaddr = orig_loaddr;
2675     uintptr_t hiaddr = orig_hiaddr;
2676     uintptr_t offset = 0;
2677     uintptr_t addr;
2678 
2679     if (hiaddr != orig_hiaddr) {
2680         error_report("%s: requires virtual address space that the "
2681                      "host cannot provide (0x%" PRIx64 ")",
2682                      image_name, (uint64_t)orig_hiaddr);
2683         exit(EXIT_FAILURE);
2684     }
2685 
2686     loaddr &= -align;
2687     if (HI_COMMPAGE) {
2688         /*
2689          * Extend the allocation to include the commpage.
2690          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2691          * need to ensure there is space bellow the guest_base so we
2692          * can map the commpage in the place needed when the address
2693          * arithmetic wraps around.
2694          */
2695         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2696             hiaddr = (uintptr_t) 4 << 30;
2697         } else {
2698             offset = -(HI_COMMPAGE & -align);
2699         }
2700     } else if (LO_COMMPAGE != -1) {
2701         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2702     }
2703 
2704     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2705     if (addr == -1) {
2706         /*
2707          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2708          * that can satisfy both.  But as the normal arm32 link base address
2709          * is ~32k, and we extend down to include the commpage, making the
2710          * overhead only ~96k, this is unlikely.
2711          */
2712         error_report("%s: Unable to allocate %#zx bytes of "
2713                      "virtual address space", image_name,
2714                      (size_t)(hiaddr - loaddr));
2715         exit(EXIT_FAILURE);
2716     }
2717 
2718     guest_base = addr;
2719 
2720     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2721                   __func__, addr, hiaddr - loaddr);
2722 }
2723 
2724 static void pgb_dynamic(const char *image_name, long align)
2725 {
2726     /*
2727      * The executable is dynamic and does not require a fixed address.
2728      * All we need is a commpage that satisfies align.
2729      * If we do not need a commpage, leave guest_base == 0.
2730      */
2731     if (HI_COMMPAGE) {
2732         uintptr_t addr, commpage;
2733 
2734         /* 64-bit hosts should have used reserved_va. */
2735         assert(sizeof(uintptr_t) == 4);
2736 
2737         /*
2738          * By putting the commpage at the first hole, that puts guest_base
2739          * just above that, and maximises the positive guest addresses.
2740          */
2741         commpage = HI_COMMPAGE & -align;
2742         addr = pgb_find_hole(commpage, -commpage, align, 0);
2743         assert(addr != -1);
2744         guest_base = addr;
2745     }
2746 }
2747 
2748 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2749                             abi_ulong guest_hiaddr, long align)
2750 {
2751     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2752     void *addr, *test;
2753 
2754     if (guest_hiaddr > reserved_va) {
2755         error_report("%s: requires more than reserved virtual "
2756                      "address space (0x%" PRIx64 " > 0x%lx)",
2757                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2758         exit(EXIT_FAILURE);
2759     }
2760 
2761     /* Widen the "image" to the entire reserved address space. */
2762     pgb_static(image_name, 0, reserved_va, align);
2763 
2764     /* osdep.h defines this as 0 if it's missing */
2765     flags |= MAP_FIXED_NOREPLACE;
2766 
2767     /* Reserve the memory on the host. */
2768     assert(guest_base != 0);
2769     test = g2h_untagged(0);
2770     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2771     if (addr == MAP_FAILED || addr != test) {
2772         error_report("Unable to reserve 0x%lx bytes of virtual address "
2773                      "space at %p (%s) for use as guest address space (check your "
2774                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2775                      "using -R option)", reserved_va, test, strerror(errno));
2776         exit(EXIT_FAILURE);
2777     }
2778 
2779     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2780                   __func__, addr, reserved_va);
2781 }
2782 
2783 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2784                       abi_ulong guest_hiaddr)
2785 {
2786     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2787     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2788 
2789     if (have_guest_base) {
2790         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2791     } else if (reserved_va) {
2792         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2793     } else if (guest_loaddr) {
2794         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2795     } else {
2796         pgb_dynamic(image_name, align);
2797     }
2798 
2799     /* Reserve and initialize the commpage. */
2800     if (!init_guest_commpage()) {
2801         /*
2802          * With have_guest_base, the user has selected the address and
2803          * we are trying to work with that.  Otherwise, we have selected
2804          * free space and init_guest_commpage must succeeded.
2805          */
2806         assert(have_guest_base);
2807         pgb_fail_in_use(image_name);
2808     }
2809 
2810     assert(QEMU_IS_ALIGNED(guest_base, align));
2811     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2812                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2813 }
2814 
2815 enum {
2816     /* The string "GNU\0" as a magic number. */
2817     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2818     NOTE_DATA_SZ = 1 * KiB,
2819     NOTE_NAME_SZ = 4,
2820     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2821 };
2822 
2823 /*
2824  * Process a single gnu_property entry.
2825  * Return false for error.
2826  */
2827 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2828                                struct image_info *info, bool have_prev_type,
2829                                uint32_t *prev_type, Error **errp)
2830 {
2831     uint32_t pr_type, pr_datasz, step;
2832 
2833     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2834         goto error_data;
2835     }
2836     datasz -= *off;
2837     data += *off / sizeof(uint32_t);
2838 
2839     if (datasz < 2 * sizeof(uint32_t)) {
2840         goto error_data;
2841     }
2842     pr_type = data[0];
2843     pr_datasz = data[1];
2844     data += 2;
2845     datasz -= 2 * sizeof(uint32_t);
2846     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2847     if (step > datasz) {
2848         goto error_data;
2849     }
2850 
2851     /* Properties are supposed to be unique and sorted on pr_type. */
2852     if (have_prev_type && pr_type <= *prev_type) {
2853         if (pr_type == *prev_type) {
2854             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2855         } else {
2856             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2857         }
2858         return false;
2859     }
2860     *prev_type = pr_type;
2861 
2862     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2863         return false;
2864     }
2865 
2866     *off += 2 * sizeof(uint32_t) + step;
2867     return true;
2868 
2869  error_data:
2870     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2871     return false;
2872 }
2873 
2874 /* Process NT_GNU_PROPERTY_TYPE_0. */
2875 static bool parse_elf_properties(int image_fd,
2876                                  struct image_info *info,
2877                                  const struct elf_phdr *phdr,
2878                                  char bprm_buf[BPRM_BUF_SIZE],
2879                                  Error **errp)
2880 {
2881     union {
2882         struct elf_note nhdr;
2883         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2884     } note;
2885 
2886     int n, off, datasz;
2887     bool have_prev_type;
2888     uint32_t prev_type;
2889 
2890     /* Unless the arch requires properties, ignore them. */
2891     if (!ARCH_USE_GNU_PROPERTY) {
2892         return true;
2893     }
2894 
2895     /* If the properties are crazy large, that's too bad. */
2896     n = phdr->p_filesz;
2897     if (n > sizeof(note)) {
2898         error_setg(errp, "PT_GNU_PROPERTY too large");
2899         return false;
2900     }
2901     if (n < sizeof(note.nhdr)) {
2902         error_setg(errp, "PT_GNU_PROPERTY too small");
2903         return false;
2904     }
2905 
2906     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2907         memcpy(&note, bprm_buf + phdr->p_offset, n);
2908     } else {
2909         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2910         if (len != n) {
2911             error_setg_errno(errp, errno, "Error reading file header");
2912             return false;
2913         }
2914     }
2915 
2916     /*
2917      * The contents of a valid PT_GNU_PROPERTY is a sequence
2918      * of uint32_t -- swap them all now.
2919      */
2920 #ifdef BSWAP_NEEDED
2921     for (int i = 0; i < n / 4; i++) {
2922         bswap32s(note.data + i);
2923     }
2924 #endif
2925 
2926     /*
2927      * Note that nhdr is 3 words, and that the "name" described by namesz
2928      * immediately follows nhdr and is thus at the 4th word.  Further, all
2929      * of the inputs to the kernel's round_up are multiples of 4.
2930      */
2931     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2932         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2933         note.data[3] != GNU0_MAGIC) {
2934         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2935         return false;
2936     }
2937     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2938 
2939     datasz = note.nhdr.n_descsz + off;
2940     if (datasz > n) {
2941         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2942         return false;
2943     }
2944 
2945     have_prev_type = false;
2946     prev_type = 0;
2947     while (1) {
2948         if (off == datasz) {
2949             return true;  /* end, exit ok */
2950         }
2951         if (!parse_elf_property(note.data, &off, datasz, info,
2952                                 have_prev_type, &prev_type, errp)) {
2953             return false;
2954         }
2955         have_prev_type = true;
2956     }
2957 }
2958 
2959 /* Load an ELF image into the address space.
2960 
2961    IMAGE_NAME is the filename of the image, to use in error messages.
2962    IMAGE_FD is the open file descriptor for the image.
2963 
2964    BPRM_BUF is a copy of the beginning of the file; this of course
2965    contains the elf file header at offset 0.  It is assumed that this
2966    buffer is sufficiently aligned to present no problems to the host
2967    in accessing data at aligned offsets within the buffer.
2968 
2969    On return: INFO values will be filled in, as necessary or available.  */
2970 
2971 static void load_elf_image(const char *image_name, int image_fd,
2972                            struct image_info *info, char **pinterp_name,
2973                            char bprm_buf[BPRM_BUF_SIZE])
2974 {
2975     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2976     struct elf_phdr *phdr;
2977     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2978     int i, retval, prot_exec;
2979     Error *err = NULL;
2980 
2981     /* First of all, some simple consistency checks */
2982     if (!elf_check_ident(ehdr)) {
2983         error_setg(&err, "Invalid ELF image for this architecture");
2984         goto exit_errmsg;
2985     }
2986     bswap_ehdr(ehdr);
2987     if (!elf_check_ehdr(ehdr)) {
2988         error_setg(&err, "Invalid ELF image for this architecture");
2989         goto exit_errmsg;
2990     }
2991 
2992     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2993     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2994         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2995     } else {
2996         phdr = (struct elf_phdr *) alloca(i);
2997         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2998         if (retval != i) {
2999             goto exit_read;
3000         }
3001     }
3002     bswap_phdr(phdr, ehdr->e_phnum);
3003 
3004     info->nsegs = 0;
3005     info->pt_dynamic_addr = 0;
3006 
3007     mmap_lock();
3008 
3009     /*
3010      * Find the maximum size of the image and allocate an appropriate
3011      * amount of memory to handle that.  Locate the interpreter, if any.
3012      */
3013     loaddr = -1, hiaddr = 0;
3014     info->alignment = 0;
3015     info->exec_stack = EXSTACK_DEFAULT;
3016     for (i = 0; i < ehdr->e_phnum; ++i) {
3017         struct elf_phdr *eppnt = phdr + i;
3018         if (eppnt->p_type == PT_LOAD) {
3019             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3020             if (a < loaddr) {
3021                 loaddr = a;
3022             }
3023             a = eppnt->p_vaddr + eppnt->p_memsz;
3024             if (a > hiaddr) {
3025                 hiaddr = a;
3026             }
3027             ++info->nsegs;
3028             info->alignment |= eppnt->p_align;
3029         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3030             g_autofree char *interp_name = NULL;
3031 
3032             if (*pinterp_name) {
3033                 error_setg(&err, "Multiple PT_INTERP entries");
3034                 goto exit_errmsg;
3035             }
3036 
3037             interp_name = g_malloc(eppnt->p_filesz);
3038 
3039             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3040                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3041                        eppnt->p_filesz);
3042             } else {
3043                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3044                                eppnt->p_offset);
3045                 if (retval != eppnt->p_filesz) {
3046                     goto exit_read;
3047                 }
3048             }
3049             if (interp_name[eppnt->p_filesz - 1] != 0) {
3050                 error_setg(&err, "Invalid PT_INTERP entry");
3051                 goto exit_errmsg;
3052             }
3053             *pinterp_name = g_steal_pointer(&interp_name);
3054         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3055             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3056                 goto exit_errmsg;
3057             }
3058         } else if (eppnt->p_type == PT_GNU_STACK) {
3059             info->exec_stack = eppnt->p_flags & PF_X;
3060         }
3061     }
3062 
3063     if (pinterp_name != NULL) {
3064         /*
3065          * This is the main executable.
3066          *
3067          * Reserve extra space for brk.
3068          * We hold on to this space while placing the interpreter
3069          * and the stack, lest they be placed immediately after
3070          * the data segment and block allocation from the brk.
3071          *
3072          * 16MB is chosen as "large enough" without being so large as
3073          * to allow the result to not fit with a 32-bit guest on a
3074          * 32-bit host. However some 64 bit guests (e.g. s390x)
3075          * attempt to place their heap further ahead and currently
3076          * nothing stops them smashing into QEMUs address space.
3077          */
3078 #if TARGET_LONG_BITS == 64
3079         info->reserve_brk = 32 * MiB;
3080 #else
3081         info->reserve_brk = 16 * MiB;
3082 #endif
3083         hiaddr += info->reserve_brk;
3084 
3085         if (ehdr->e_type == ET_EXEC) {
3086             /*
3087              * Make sure that the low address does not conflict with
3088              * MMAP_MIN_ADDR or the QEMU application itself.
3089              */
3090             probe_guest_base(image_name, loaddr, hiaddr);
3091         } else {
3092             /*
3093              * The binary is dynamic, but we still need to
3094              * select guest_base.  In this case we pass a size.
3095              */
3096             probe_guest_base(image_name, 0, hiaddr - loaddr);
3097         }
3098     }
3099 
3100     /*
3101      * Reserve address space for all of this.
3102      *
3103      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3104      * exactly the address range that is required.
3105      *
3106      * Otherwise this is ET_DYN, and we are searching for a location
3107      * that can hold the memory space required.  If the image is
3108      * pre-linked, LOADDR will be non-zero, and the kernel should
3109      * honor that address if it happens to be free.
3110      *
3111      * In both cases, we will overwrite pages in this range with mappings
3112      * from the executable.
3113      */
3114     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
3115                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3116                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3117                             -1, 0);
3118     if (load_addr == -1) {
3119         goto exit_mmap;
3120     }
3121     load_bias = load_addr - loaddr;
3122 
3123     if (elf_is_fdpic(ehdr)) {
3124         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3125             g_malloc(sizeof(*loadsegs) * info->nsegs);
3126 
3127         for (i = 0; i < ehdr->e_phnum; ++i) {
3128             switch (phdr[i].p_type) {
3129             case PT_DYNAMIC:
3130                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3131                 break;
3132             case PT_LOAD:
3133                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3134                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3135                 loadsegs->p_memsz = phdr[i].p_memsz;
3136                 ++loadsegs;
3137                 break;
3138             }
3139         }
3140     }
3141 
3142     info->load_bias = load_bias;
3143     info->code_offset = load_bias;
3144     info->data_offset = load_bias;
3145     info->load_addr = load_addr;
3146     info->entry = ehdr->e_entry + load_bias;
3147     info->start_code = -1;
3148     info->end_code = 0;
3149     info->start_data = -1;
3150     info->end_data = 0;
3151     info->brk = 0;
3152     info->elf_flags = ehdr->e_flags;
3153 
3154     prot_exec = PROT_EXEC;
3155 #ifdef TARGET_AARCH64
3156     /*
3157      * If the BTI feature is present, this indicates that the executable
3158      * pages of the startup binary should be mapped with PROT_BTI, so that
3159      * branch targets are enforced.
3160      *
3161      * The startup binary is either the interpreter or the static executable.
3162      * The interpreter is responsible for all pages of a dynamic executable.
3163      *
3164      * Elf notes are backward compatible to older cpus.
3165      * Do not enable BTI unless it is supported.
3166      */
3167     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3168         && (pinterp_name == NULL || *pinterp_name == 0)
3169         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3170         prot_exec |= TARGET_PROT_BTI;
3171     }
3172 #endif
3173 
3174     for (i = 0; i < ehdr->e_phnum; i++) {
3175         struct elf_phdr *eppnt = phdr + i;
3176         if (eppnt->p_type == PT_LOAD) {
3177             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3178             int elf_prot = 0;
3179 
3180             if (eppnt->p_flags & PF_R) {
3181                 elf_prot |= PROT_READ;
3182             }
3183             if (eppnt->p_flags & PF_W) {
3184                 elf_prot |= PROT_WRITE;
3185             }
3186             if (eppnt->p_flags & PF_X) {
3187                 elf_prot |= prot_exec;
3188             }
3189 
3190             vaddr = load_bias + eppnt->p_vaddr;
3191             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3192             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3193 
3194             vaddr_ef = vaddr + eppnt->p_filesz;
3195             vaddr_em = vaddr + eppnt->p_memsz;
3196 
3197             /*
3198              * Some segments may be completely empty, with a non-zero p_memsz
3199              * but no backing file segment.
3200              */
3201             if (eppnt->p_filesz != 0) {
3202                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3203                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3204                                     MAP_PRIVATE | MAP_FIXED,
3205                                     image_fd, eppnt->p_offset - vaddr_po);
3206 
3207                 if (error == -1) {
3208                     goto exit_mmap;
3209                 }
3210 
3211                 /*
3212                  * If the load segment requests extra zeros (e.g. bss), map it.
3213                  */
3214                 if (eppnt->p_filesz < eppnt->p_memsz) {
3215                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
3216                 }
3217             } else if (eppnt->p_memsz != 0) {
3218                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3219                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3220                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3221                                     -1, 0);
3222 
3223                 if (error == -1) {
3224                     goto exit_mmap;
3225                 }
3226             }
3227 
3228             /* Find the full program boundaries.  */
3229             if (elf_prot & PROT_EXEC) {
3230                 if (vaddr < info->start_code) {
3231                     info->start_code = vaddr;
3232                 }
3233                 if (vaddr_ef > info->end_code) {
3234                     info->end_code = vaddr_ef;
3235                 }
3236             }
3237             if (elf_prot & PROT_WRITE) {
3238                 if (vaddr < info->start_data) {
3239                     info->start_data = vaddr;
3240                 }
3241                 if (vaddr_ef > info->end_data) {
3242                     info->end_data = vaddr_ef;
3243                 }
3244             }
3245             if (vaddr_em > info->brk) {
3246                 info->brk = vaddr_em;
3247             }
3248 #ifdef TARGET_MIPS
3249         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3250             Mips_elf_abiflags_v0 abiflags;
3251             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3252                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3253                 goto exit_errmsg;
3254             }
3255             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3256                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3257                        sizeof(Mips_elf_abiflags_v0));
3258             } else {
3259                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3260                                eppnt->p_offset);
3261                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3262                     goto exit_read;
3263                 }
3264             }
3265             bswap_mips_abiflags(&abiflags);
3266             info->fp_abi = abiflags.fp_abi;
3267 #endif
3268         }
3269     }
3270 
3271     if (info->end_data == 0) {
3272         info->start_data = info->end_code;
3273         info->end_data = info->end_code;
3274     }
3275 
3276     if (qemu_log_enabled()) {
3277         load_symbols(ehdr, image_fd, load_bias);
3278     }
3279 
3280     debuginfo_report_elf(image_name, image_fd, load_bias);
3281 
3282     mmap_unlock();
3283 
3284     close(image_fd);
3285     return;
3286 
3287  exit_read:
3288     if (retval >= 0) {
3289         error_setg(&err, "Incomplete read of file header");
3290     } else {
3291         error_setg_errno(&err, errno, "Error reading file header");
3292     }
3293     goto exit_errmsg;
3294  exit_mmap:
3295     error_setg_errno(&err, errno, "Error mapping file");
3296     goto exit_errmsg;
3297  exit_errmsg:
3298     error_reportf_err(err, "%s: ", image_name);
3299     exit(-1);
3300 }
3301 
3302 static void load_elf_interp(const char *filename, struct image_info *info,
3303                             char bprm_buf[BPRM_BUF_SIZE])
3304 {
3305     int fd, retval;
3306     Error *err = NULL;
3307 
3308     fd = open(path(filename), O_RDONLY);
3309     if (fd < 0) {
3310         error_setg_file_open(&err, errno, filename);
3311         error_report_err(err);
3312         exit(-1);
3313     }
3314 
3315     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3316     if (retval < 0) {
3317         error_setg_errno(&err, errno, "Error reading file header");
3318         error_reportf_err(err, "%s: ", filename);
3319         exit(-1);
3320     }
3321 
3322     if (retval < BPRM_BUF_SIZE) {
3323         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3324     }
3325 
3326     load_elf_image(filename, fd, info, NULL, bprm_buf);
3327 }
3328 
3329 static int symfind(const void *s0, const void *s1)
3330 {
3331     target_ulong addr = *(target_ulong *)s0;
3332     struct elf_sym *sym = (struct elf_sym *)s1;
3333     int result = 0;
3334     if (addr < sym->st_value) {
3335         result = -1;
3336     } else if (addr >= sym->st_value + sym->st_size) {
3337         result = 1;
3338     }
3339     return result;
3340 }
3341 
3342 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3343 {
3344 #if ELF_CLASS == ELFCLASS32
3345     struct elf_sym *syms = s->disas_symtab.elf32;
3346 #else
3347     struct elf_sym *syms = s->disas_symtab.elf64;
3348 #endif
3349 
3350     // binary search
3351     struct elf_sym *sym;
3352 
3353     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3354     if (sym != NULL) {
3355         return s->disas_strtab + sym->st_name;
3356     }
3357 
3358     return "";
3359 }
3360 
3361 /* FIXME: This should use elf_ops.h  */
3362 static int symcmp(const void *s0, const void *s1)
3363 {
3364     struct elf_sym *sym0 = (struct elf_sym *)s0;
3365     struct elf_sym *sym1 = (struct elf_sym *)s1;
3366     return (sym0->st_value < sym1->st_value)
3367         ? -1
3368         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3369 }
3370 
3371 /* Best attempt to load symbols from this ELF object. */
3372 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3373 {
3374     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3375     uint64_t segsz;
3376     struct elf_shdr *shdr;
3377     char *strings = NULL;
3378     struct syminfo *s = NULL;
3379     struct elf_sym *new_syms, *syms = NULL;
3380 
3381     shnum = hdr->e_shnum;
3382     i = shnum * sizeof(struct elf_shdr);
3383     shdr = (struct elf_shdr *)alloca(i);
3384     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3385         return;
3386     }
3387 
3388     bswap_shdr(shdr, shnum);
3389     for (i = 0; i < shnum; ++i) {
3390         if (shdr[i].sh_type == SHT_SYMTAB) {
3391             sym_idx = i;
3392             str_idx = shdr[i].sh_link;
3393             goto found;
3394         }
3395     }
3396 
3397     /* There will be no symbol table if the file was stripped.  */
3398     return;
3399 
3400  found:
3401     /* Now know where the strtab and symtab are.  Snarf them.  */
3402     s = g_try_new(struct syminfo, 1);
3403     if (!s) {
3404         goto give_up;
3405     }
3406 
3407     segsz = shdr[str_idx].sh_size;
3408     s->disas_strtab = strings = g_try_malloc(segsz);
3409     if (!strings ||
3410         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3411         goto give_up;
3412     }
3413 
3414     segsz = shdr[sym_idx].sh_size;
3415     syms = g_try_malloc(segsz);
3416     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3417         goto give_up;
3418     }
3419 
3420     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3421         /* Implausibly large symbol table: give up rather than ploughing
3422          * on with the number of symbols calculation overflowing
3423          */
3424         goto give_up;
3425     }
3426     nsyms = segsz / sizeof(struct elf_sym);
3427     for (i = 0; i < nsyms; ) {
3428         bswap_sym(syms + i);
3429         /* Throw away entries which we do not need.  */
3430         if (syms[i].st_shndx == SHN_UNDEF
3431             || syms[i].st_shndx >= SHN_LORESERVE
3432             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3433             if (i < --nsyms) {
3434                 syms[i] = syms[nsyms];
3435             }
3436         } else {
3437 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3438             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3439             syms[i].st_value &= ~(target_ulong)1;
3440 #endif
3441             syms[i].st_value += load_bias;
3442             i++;
3443         }
3444     }
3445 
3446     /* No "useful" symbol.  */
3447     if (nsyms == 0) {
3448         goto give_up;
3449     }
3450 
3451     /* Attempt to free the storage associated with the local symbols
3452        that we threw away.  Whether or not this has any effect on the
3453        memory allocation depends on the malloc implementation and how
3454        many symbols we managed to discard.  */
3455     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3456     if (new_syms == NULL) {
3457         goto give_up;
3458     }
3459     syms = new_syms;
3460 
3461     qsort(syms, nsyms, sizeof(*syms), symcmp);
3462 
3463     s->disas_num_syms = nsyms;
3464 #if ELF_CLASS == ELFCLASS32
3465     s->disas_symtab.elf32 = syms;
3466 #else
3467     s->disas_symtab.elf64 = syms;
3468 #endif
3469     s->lookup_symbol = lookup_symbolxx;
3470     s->next = syminfos;
3471     syminfos = s;
3472 
3473     return;
3474 
3475 give_up:
3476     g_free(s);
3477     g_free(strings);
3478     g_free(syms);
3479 }
3480 
3481 uint32_t get_elf_eflags(int fd)
3482 {
3483     struct elfhdr ehdr;
3484     off_t offset;
3485     int ret;
3486 
3487     /* Read ELF header */
3488     offset = lseek(fd, 0, SEEK_SET);
3489     if (offset == (off_t) -1) {
3490         return 0;
3491     }
3492     ret = read(fd, &ehdr, sizeof(ehdr));
3493     if (ret < sizeof(ehdr)) {
3494         return 0;
3495     }
3496     offset = lseek(fd, offset, SEEK_SET);
3497     if (offset == (off_t) -1) {
3498         return 0;
3499     }
3500 
3501     /* Check ELF signature */
3502     if (!elf_check_ident(&ehdr)) {
3503         return 0;
3504     }
3505 
3506     /* check header */
3507     bswap_ehdr(&ehdr);
3508     if (!elf_check_ehdr(&ehdr)) {
3509         return 0;
3510     }
3511 
3512     /* return architecture id */
3513     return ehdr.e_flags;
3514 }
3515 
3516 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3517 {
3518     struct image_info interp_info;
3519     struct elfhdr elf_ex;
3520     char *elf_interpreter = NULL;
3521     char *scratch;
3522 
3523     memset(&interp_info, 0, sizeof(interp_info));
3524 #ifdef TARGET_MIPS
3525     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3526 #endif
3527 
3528     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3529 
3530     load_elf_image(bprm->filename, bprm->fd, info,
3531                    &elf_interpreter, bprm->buf);
3532 
3533     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3534        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3535        when we load the interpreter.  */
3536     elf_ex = *(struct elfhdr *)bprm->buf;
3537 
3538     /* Do this so that we can load the interpreter, if need be.  We will
3539        change some of these later */
3540     bprm->p = setup_arg_pages(bprm, info);
3541 
3542     scratch = g_new0(char, TARGET_PAGE_SIZE);
3543     if (STACK_GROWS_DOWN) {
3544         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3545                                    bprm->p, info->stack_limit);
3546         info->file_string = bprm->p;
3547         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3548                                    bprm->p, info->stack_limit);
3549         info->env_strings = bprm->p;
3550         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3551                                    bprm->p, info->stack_limit);
3552         info->arg_strings = bprm->p;
3553     } else {
3554         info->arg_strings = bprm->p;
3555         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3556                                    bprm->p, info->stack_limit);
3557         info->env_strings = bprm->p;
3558         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3559                                    bprm->p, info->stack_limit);
3560         info->file_string = bprm->p;
3561         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3562                                    bprm->p, info->stack_limit);
3563     }
3564 
3565     g_free(scratch);
3566 
3567     if (!bprm->p) {
3568         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3569         exit(-1);
3570     }
3571 
3572     if (elf_interpreter) {
3573         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3574 
3575         /* If the program interpreter is one of these two, then assume
3576            an iBCS2 image.  Otherwise assume a native linux image.  */
3577 
3578         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3579             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3580             info->personality = PER_SVR4;
3581 
3582             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3583                and some applications "depend" upon this behavior.  Since
3584                we do not have the power to recompile these, we emulate
3585                the SVr4 behavior.  Sigh.  */
3586             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3587                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3588         }
3589 #ifdef TARGET_MIPS
3590         info->interp_fp_abi = interp_info.fp_abi;
3591 #endif
3592     }
3593 
3594     /*
3595      * TODO: load a vdso, which would also contain the signal trampolines.
3596      * Otherwise, allocate a private page to hold them.
3597      */
3598     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3599         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3600                                           PROT_READ | PROT_WRITE,
3601                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3602         if (tramp_page == -1) {
3603             return -errno;
3604         }
3605 
3606         setup_sigtramp(tramp_page);
3607         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3608     }
3609 
3610     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3611                                 info, (elf_interpreter ? &interp_info : NULL));
3612     info->start_stack = bprm->p;
3613 
3614     /* If we have an interpreter, set that as the program's entry point.
3615        Copy the load_bias as well, to help PPC64 interpret the entry
3616        point as a function descriptor.  Do this after creating elf tables
3617        so that we copy the original program entry point into the AUXV.  */
3618     if (elf_interpreter) {
3619         info->load_bias = interp_info.load_bias;
3620         info->entry = interp_info.entry;
3621         g_free(elf_interpreter);
3622     }
3623 
3624 #ifdef USE_ELF_CORE_DUMP
3625     bprm->core_dump = &elf_core_dump;
3626 #endif
3627 
3628     /*
3629      * If we reserved extra space for brk, release it now.
3630      * The implementation of do_brk in syscalls.c expects to be able
3631      * to mmap pages in this space.
3632      */
3633     if (info->reserve_brk) {
3634         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3635         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3636         target_munmap(start_brk, end_brk - start_brk);
3637     }
3638 
3639     return 0;
3640 }
3641 
3642 #ifdef USE_ELF_CORE_DUMP
3643 /*
3644  * Definitions to generate Intel SVR4-like core files.
3645  * These mostly have the same names as the SVR4 types with "target_elf_"
3646  * tacked on the front to prevent clashes with linux definitions,
3647  * and the typedef forms have been avoided.  This is mostly like
3648  * the SVR4 structure, but more Linuxy, with things that Linux does
3649  * not support and which gdb doesn't really use excluded.
3650  *
3651  * Fields we don't dump (their contents is zero) in linux-user qemu
3652  * are marked with XXX.
3653  *
3654  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3655  *
3656  * Porting ELF coredump for target is (quite) simple process.  First you
3657  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3658  * the target resides):
3659  *
3660  * #define USE_ELF_CORE_DUMP
3661  *
3662  * Next you define type of register set used for dumping.  ELF specification
3663  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3664  *
3665  * typedef <target_regtype> target_elf_greg_t;
3666  * #define ELF_NREG <number of registers>
3667  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3668  *
3669  * Last step is to implement target specific function that copies registers
3670  * from given cpu into just specified register set.  Prototype is:
3671  *
3672  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3673  *                                const CPUArchState *env);
3674  *
3675  * Parameters:
3676  *     regs - copy register values into here (allocated and zeroed by caller)
3677  *     env - copy registers from here
3678  *
3679  * Example for ARM target is provided in this file.
3680  */
3681 
3682 /* An ELF note in memory */
3683 struct memelfnote {
3684     const char *name;
3685     size_t     namesz;
3686     size_t     namesz_rounded;
3687     int        type;
3688     size_t     datasz;
3689     size_t     datasz_rounded;
3690     void       *data;
3691     size_t     notesz;
3692 };
3693 
3694 struct target_elf_siginfo {
3695     abi_int    si_signo; /* signal number */
3696     abi_int    si_code;  /* extra code */
3697     abi_int    si_errno; /* errno */
3698 };
3699 
3700 struct target_elf_prstatus {
3701     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3702     abi_short          pr_cursig;    /* Current signal */
3703     abi_ulong          pr_sigpend;   /* XXX */
3704     abi_ulong          pr_sighold;   /* XXX */
3705     target_pid_t       pr_pid;
3706     target_pid_t       pr_ppid;
3707     target_pid_t       pr_pgrp;
3708     target_pid_t       pr_sid;
3709     struct target_timeval pr_utime;  /* XXX User time */
3710     struct target_timeval pr_stime;  /* XXX System time */
3711     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3712     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3713     target_elf_gregset_t      pr_reg;       /* GP registers */
3714     abi_int            pr_fpvalid;   /* XXX */
3715 };
3716 
3717 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3718 
3719 struct target_elf_prpsinfo {
3720     char         pr_state;       /* numeric process state */
3721     char         pr_sname;       /* char for pr_state */
3722     char         pr_zomb;        /* zombie */
3723     char         pr_nice;        /* nice val */
3724     abi_ulong    pr_flag;        /* flags */
3725     target_uid_t pr_uid;
3726     target_gid_t pr_gid;
3727     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3728     /* Lots missing */
3729     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3730     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3731 };
3732 
3733 /* Here is the structure in which status of each thread is captured. */
3734 struct elf_thread_status {
3735     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3736     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3737 #if 0
3738     elf_fpregset_t fpu;             /* NT_PRFPREG */
3739     struct task_struct *thread;
3740     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3741 #endif
3742     struct memelfnote notes[1];
3743     int num_notes;
3744 };
3745 
3746 struct elf_note_info {
3747     struct memelfnote   *notes;
3748     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3749     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3750 
3751     QTAILQ_HEAD(, elf_thread_status) thread_list;
3752 #if 0
3753     /*
3754      * Current version of ELF coredump doesn't support
3755      * dumping fp regs etc.
3756      */
3757     elf_fpregset_t *fpu;
3758     elf_fpxregset_t *xfpu;
3759     int thread_status_size;
3760 #endif
3761     int notes_size;
3762     int numnote;
3763 };
3764 
3765 struct vm_area_struct {
3766     target_ulong   vma_start;  /* start vaddr of memory region */
3767     target_ulong   vma_end;    /* end vaddr of memory region */
3768     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3769     QTAILQ_ENTRY(vm_area_struct) vma_link;
3770 };
3771 
3772 struct mm_struct {
3773     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3774     int mm_count;           /* number of mappings */
3775 };
3776 
3777 static struct mm_struct *vma_init(void);
3778 static void vma_delete(struct mm_struct *);
3779 static int vma_add_mapping(struct mm_struct *, target_ulong,
3780                            target_ulong, abi_ulong);
3781 static int vma_get_mapping_count(const struct mm_struct *);
3782 static struct vm_area_struct *vma_first(const struct mm_struct *);
3783 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3784 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3785 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3786                       unsigned long flags);
3787 
3788 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3789 static void fill_note(struct memelfnote *, const char *, int,
3790                       unsigned int, void *);
3791 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3792 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3793 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3794 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3795 static size_t note_size(const struct memelfnote *);
3796 static void free_note_info(struct elf_note_info *);
3797 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3798 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3799 
3800 static int dump_write(int, const void *, size_t);
3801 static int write_note(struct memelfnote *, int);
3802 static int write_note_info(struct elf_note_info *, int);
3803 
3804 #ifdef BSWAP_NEEDED
3805 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3806 {
3807     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3808     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3809     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3810     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3811     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3812     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3813     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3814     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3815     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3816     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3817     /* cpu times are not filled, so we skip them */
3818     /* regs should be in correct format already */
3819     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3820 }
3821 
3822 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3823 {
3824     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3825     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3826     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3827     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3828     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3829     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3830     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3831 }
3832 
3833 static void bswap_note(struct elf_note *en)
3834 {
3835     bswap32s(&en->n_namesz);
3836     bswap32s(&en->n_descsz);
3837     bswap32s(&en->n_type);
3838 }
3839 #else
3840 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3841 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3842 static inline void bswap_note(struct elf_note *en) { }
3843 #endif /* BSWAP_NEEDED */
3844 
3845 /*
3846  * Minimal support for linux memory regions.  These are needed
3847  * when we are finding out what memory exactly belongs to
3848  * emulated process.  No locks needed here, as long as
3849  * thread that received the signal is stopped.
3850  */
3851 
3852 static struct mm_struct *vma_init(void)
3853 {
3854     struct mm_struct *mm;
3855 
3856     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3857         return (NULL);
3858 
3859     mm->mm_count = 0;
3860     QTAILQ_INIT(&mm->mm_mmap);
3861 
3862     return (mm);
3863 }
3864 
3865 static void vma_delete(struct mm_struct *mm)
3866 {
3867     struct vm_area_struct *vma;
3868 
3869     while ((vma = vma_first(mm)) != NULL) {
3870         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3871         g_free(vma);
3872     }
3873     g_free(mm);
3874 }
3875 
3876 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3877                            target_ulong end, abi_ulong flags)
3878 {
3879     struct vm_area_struct *vma;
3880 
3881     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3882         return (-1);
3883 
3884     vma->vma_start = start;
3885     vma->vma_end = end;
3886     vma->vma_flags = flags;
3887 
3888     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3889     mm->mm_count++;
3890 
3891     return (0);
3892 }
3893 
3894 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3895 {
3896     return (QTAILQ_FIRST(&mm->mm_mmap));
3897 }
3898 
3899 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3900 {
3901     return (QTAILQ_NEXT(vma, vma_link));
3902 }
3903 
3904 static int vma_get_mapping_count(const struct mm_struct *mm)
3905 {
3906     return (mm->mm_count);
3907 }
3908 
3909 /*
3910  * Calculate file (dump) size of given memory region.
3911  */
3912 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3913 {
3914     /* if we cannot even read the first page, skip it */
3915     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3916         return (0);
3917 
3918     /*
3919      * Usually we don't dump executable pages as they contain
3920      * non-writable code that debugger can read directly from
3921      * target library etc.  However, thread stacks are marked
3922      * also executable so we read in first page of given region
3923      * and check whether it contains elf header.  If there is
3924      * no elf header, we dump it.
3925      */
3926     if (vma->vma_flags & PROT_EXEC) {
3927         char page[TARGET_PAGE_SIZE];
3928 
3929         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3930             return 0;
3931         }
3932         if ((page[EI_MAG0] == ELFMAG0) &&
3933             (page[EI_MAG1] == ELFMAG1) &&
3934             (page[EI_MAG2] == ELFMAG2) &&
3935             (page[EI_MAG3] == ELFMAG3)) {
3936             /*
3937              * Mappings are possibly from ELF binary.  Don't dump
3938              * them.
3939              */
3940             return (0);
3941         }
3942     }
3943 
3944     return (vma->vma_end - vma->vma_start);
3945 }
3946 
3947 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3948                       unsigned long flags)
3949 {
3950     struct mm_struct *mm = (struct mm_struct *)priv;
3951 
3952     vma_add_mapping(mm, start, end, flags);
3953     return (0);
3954 }
3955 
3956 static void fill_note(struct memelfnote *note, const char *name, int type,
3957                       unsigned int sz, void *data)
3958 {
3959     unsigned int namesz;
3960 
3961     namesz = strlen(name) + 1;
3962     note->name = name;
3963     note->namesz = namesz;
3964     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3965     note->type = type;
3966     note->datasz = sz;
3967     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3968 
3969     note->data = data;
3970 
3971     /*
3972      * We calculate rounded up note size here as specified by
3973      * ELF document.
3974      */
3975     note->notesz = sizeof (struct elf_note) +
3976         note->namesz_rounded + note->datasz_rounded;
3977 }
3978 
3979 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3980                             uint32_t flags)
3981 {
3982     (void) memset(elf, 0, sizeof(*elf));
3983 
3984     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3985     elf->e_ident[EI_CLASS] = ELF_CLASS;
3986     elf->e_ident[EI_DATA] = ELF_DATA;
3987     elf->e_ident[EI_VERSION] = EV_CURRENT;
3988     elf->e_ident[EI_OSABI] = ELF_OSABI;
3989 
3990     elf->e_type = ET_CORE;
3991     elf->e_machine = machine;
3992     elf->e_version = EV_CURRENT;
3993     elf->e_phoff = sizeof(struct elfhdr);
3994     elf->e_flags = flags;
3995     elf->e_ehsize = sizeof(struct elfhdr);
3996     elf->e_phentsize = sizeof(struct elf_phdr);
3997     elf->e_phnum = segs;
3998 
3999     bswap_ehdr(elf);
4000 }
4001 
4002 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4003 {
4004     phdr->p_type = PT_NOTE;
4005     phdr->p_offset = offset;
4006     phdr->p_vaddr = 0;
4007     phdr->p_paddr = 0;
4008     phdr->p_filesz = sz;
4009     phdr->p_memsz = 0;
4010     phdr->p_flags = 0;
4011     phdr->p_align = 0;
4012 
4013     bswap_phdr(phdr, 1);
4014 }
4015 
4016 static size_t note_size(const struct memelfnote *note)
4017 {
4018     return (note->notesz);
4019 }
4020 
4021 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4022                           const TaskState *ts, int signr)
4023 {
4024     (void) memset(prstatus, 0, sizeof (*prstatus));
4025     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4026     prstatus->pr_pid = ts->ts_tid;
4027     prstatus->pr_ppid = getppid();
4028     prstatus->pr_pgrp = getpgrp();
4029     prstatus->pr_sid = getsid(0);
4030 
4031     bswap_prstatus(prstatus);
4032 }
4033 
4034 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4035 {
4036     char *base_filename;
4037     unsigned int i, len;
4038 
4039     (void) memset(psinfo, 0, sizeof (*psinfo));
4040 
4041     len = ts->info->env_strings - ts->info->arg_strings;
4042     if (len >= ELF_PRARGSZ)
4043         len = ELF_PRARGSZ - 1;
4044     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4045         return -EFAULT;
4046     }
4047     for (i = 0; i < len; i++)
4048         if (psinfo->pr_psargs[i] == 0)
4049             psinfo->pr_psargs[i] = ' ';
4050     psinfo->pr_psargs[len] = 0;
4051 
4052     psinfo->pr_pid = getpid();
4053     psinfo->pr_ppid = getppid();
4054     psinfo->pr_pgrp = getpgrp();
4055     psinfo->pr_sid = getsid(0);
4056     psinfo->pr_uid = getuid();
4057     psinfo->pr_gid = getgid();
4058 
4059     base_filename = g_path_get_basename(ts->bprm->filename);
4060     /*
4061      * Using strncpy here is fine: at max-length,
4062      * this field is not NUL-terminated.
4063      */
4064     (void) strncpy(psinfo->pr_fname, base_filename,
4065                    sizeof(psinfo->pr_fname));
4066 
4067     g_free(base_filename);
4068     bswap_psinfo(psinfo);
4069     return (0);
4070 }
4071 
4072 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4073 {
4074     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4075     elf_addr_t orig_auxv = auxv;
4076     void *ptr;
4077     int len = ts->info->auxv_len;
4078 
4079     /*
4080      * Auxiliary vector is stored in target process stack.  It contains
4081      * {type, value} pairs that we need to dump into note.  This is not
4082      * strictly necessary but we do it here for sake of completeness.
4083      */
4084 
4085     /* read in whole auxv vector and copy it to memelfnote */
4086     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4087     if (ptr != NULL) {
4088         fill_note(note, "CORE", NT_AUXV, len, ptr);
4089         unlock_user(ptr, auxv, len);
4090     }
4091 }
4092 
4093 /*
4094  * Constructs name of coredump file.  We have following convention
4095  * for the name:
4096  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4097  *
4098  * Returns the filename
4099  */
4100 static char *core_dump_filename(const TaskState *ts)
4101 {
4102     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4103     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4104     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4105 
4106     return g_strdup_printf("qemu_%s_%s_%d.core",
4107                            base_filename, nowstr, (int)getpid());
4108 }
4109 
4110 static int dump_write(int fd, const void *ptr, size_t size)
4111 {
4112     const char *bufp = (const char *)ptr;
4113     ssize_t bytes_written, bytes_left;
4114     struct rlimit dumpsize;
4115     off_t pos;
4116 
4117     bytes_written = 0;
4118     getrlimit(RLIMIT_CORE, &dumpsize);
4119     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4120         if (errno == ESPIPE) { /* not a seekable stream */
4121             bytes_left = size;
4122         } else {
4123             return pos;
4124         }
4125     } else {
4126         if (dumpsize.rlim_cur <= pos) {
4127             return -1;
4128         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4129             bytes_left = size;
4130         } else {
4131             size_t limit_left=dumpsize.rlim_cur - pos;
4132             bytes_left = limit_left >= size ? size : limit_left ;
4133         }
4134     }
4135 
4136     /*
4137      * In normal conditions, single write(2) should do but
4138      * in case of socket etc. this mechanism is more portable.
4139      */
4140     do {
4141         bytes_written = write(fd, bufp, bytes_left);
4142         if (bytes_written < 0) {
4143             if (errno == EINTR)
4144                 continue;
4145             return (-1);
4146         } else if (bytes_written == 0) { /* eof */
4147             return (-1);
4148         }
4149         bufp += bytes_written;
4150         bytes_left -= bytes_written;
4151     } while (bytes_left > 0);
4152 
4153     return (0);
4154 }
4155 
4156 static int write_note(struct memelfnote *men, int fd)
4157 {
4158     struct elf_note en;
4159 
4160     en.n_namesz = men->namesz;
4161     en.n_type = men->type;
4162     en.n_descsz = men->datasz;
4163 
4164     bswap_note(&en);
4165 
4166     if (dump_write(fd, &en, sizeof(en)) != 0)
4167         return (-1);
4168     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4169         return (-1);
4170     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4171         return (-1);
4172 
4173     return (0);
4174 }
4175 
4176 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4177 {
4178     CPUState *cpu = env_cpu((CPUArchState *)env);
4179     TaskState *ts = (TaskState *)cpu->opaque;
4180     struct elf_thread_status *ets;
4181 
4182     ets = g_malloc0(sizeof (*ets));
4183     ets->num_notes = 1; /* only prstatus is dumped */
4184     fill_prstatus(&ets->prstatus, ts, 0);
4185     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4186     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4187               &ets->prstatus);
4188 
4189     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4190 
4191     info->notes_size += note_size(&ets->notes[0]);
4192 }
4193 
4194 static void init_note_info(struct elf_note_info *info)
4195 {
4196     /* Initialize the elf_note_info structure so that it is at
4197      * least safe to call free_note_info() on it. Must be
4198      * called before calling fill_note_info().
4199      */
4200     memset(info, 0, sizeof (*info));
4201     QTAILQ_INIT(&info->thread_list);
4202 }
4203 
4204 static int fill_note_info(struct elf_note_info *info,
4205                           long signr, const CPUArchState *env)
4206 {
4207 #define NUMNOTES 3
4208     CPUState *cpu = env_cpu((CPUArchState *)env);
4209     TaskState *ts = (TaskState *)cpu->opaque;
4210     int i;
4211 
4212     info->notes = g_new0(struct memelfnote, NUMNOTES);
4213     if (info->notes == NULL)
4214         return (-ENOMEM);
4215     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4216     if (info->prstatus == NULL)
4217         return (-ENOMEM);
4218     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4219     if (info->prstatus == NULL)
4220         return (-ENOMEM);
4221 
4222     /*
4223      * First fill in status (and registers) of current thread
4224      * including process info & aux vector.
4225      */
4226     fill_prstatus(info->prstatus, ts, signr);
4227     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4228     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4229               sizeof (*info->prstatus), info->prstatus);
4230     fill_psinfo(info->psinfo, ts);
4231     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4232               sizeof (*info->psinfo), info->psinfo);
4233     fill_auxv_note(&info->notes[2], ts);
4234     info->numnote = 3;
4235 
4236     info->notes_size = 0;
4237     for (i = 0; i < info->numnote; i++)
4238         info->notes_size += note_size(&info->notes[i]);
4239 
4240     /* read and fill status of all threads */
4241     cpu_list_lock();
4242     CPU_FOREACH(cpu) {
4243         if (cpu == thread_cpu) {
4244             continue;
4245         }
4246         fill_thread_info(info, cpu->env_ptr);
4247     }
4248     cpu_list_unlock();
4249 
4250     return (0);
4251 }
4252 
4253 static void free_note_info(struct elf_note_info *info)
4254 {
4255     struct elf_thread_status *ets;
4256 
4257     while (!QTAILQ_EMPTY(&info->thread_list)) {
4258         ets = QTAILQ_FIRST(&info->thread_list);
4259         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4260         g_free(ets);
4261     }
4262 
4263     g_free(info->prstatus);
4264     g_free(info->psinfo);
4265     g_free(info->notes);
4266 }
4267 
4268 static int write_note_info(struct elf_note_info *info, int fd)
4269 {
4270     struct elf_thread_status *ets;
4271     int i, error = 0;
4272 
4273     /* write prstatus, psinfo and auxv for current thread */
4274     for (i = 0; i < info->numnote; i++)
4275         if ((error = write_note(&info->notes[i], fd)) != 0)
4276             return (error);
4277 
4278     /* write prstatus for each thread */
4279     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4280         if ((error = write_note(&ets->notes[0], fd)) != 0)
4281             return (error);
4282     }
4283 
4284     return (0);
4285 }
4286 
4287 /*
4288  * Write out ELF coredump.
4289  *
4290  * See documentation of ELF object file format in:
4291  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4292  *
4293  * Coredump format in linux is following:
4294  *
4295  * 0   +----------------------+         \
4296  *     | ELF header           | ET_CORE  |
4297  *     +----------------------+          |
4298  *     | ELF program headers  |          |--- headers
4299  *     | - NOTE section       |          |
4300  *     | - PT_LOAD sections   |          |
4301  *     +----------------------+         /
4302  *     | NOTEs:               |
4303  *     | - NT_PRSTATUS        |
4304  *     | - NT_PRSINFO         |
4305  *     | - NT_AUXV            |
4306  *     +----------------------+ <-- aligned to target page
4307  *     | Process memory dump  |
4308  *     :                      :
4309  *     .                      .
4310  *     :                      :
4311  *     |                      |
4312  *     +----------------------+
4313  *
4314  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4315  * NT_PRSINFO  -> struct elf_prpsinfo
4316  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4317  *
4318  * Format follows System V format as close as possible.  Current
4319  * version limitations are as follows:
4320  *     - no floating point registers are dumped
4321  *
4322  * Function returns 0 in case of success, negative errno otherwise.
4323  *
4324  * TODO: make this work also during runtime: it should be
4325  * possible to force coredump from running process and then
4326  * continue processing.  For example qemu could set up SIGUSR2
4327  * handler (provided that target process haven't registered
4328  * handler for that) that does the dump when signal is received.
4329  */
4330 static int elf_core_dump(int signr, const CPUArchState *env)
4331 {
4332     const CPUState *cpu = env_cpu((CPUArchState *)env);
4333     const TaskState *ts = (const TaskState *)cpu->opaque;
4334     struct vm_area_struct *vma = NULL;
4335     g_autofree char *corefile = NULL;
4336     struct elf_note_info info;
4337     struct elfhdr elf;
4338     struct elf_phdr phdr;
4339     struct rlimit dumpsize;
4340     struct mm_struct *mm = NULL;
4341     off_t offset = 0, data_offset = 0;
4342     int segs = 0;
4343     int fd = -1;
4344 
4345     init_note_info(&info);
4346 
4347     errno = 0;
4348     getrlimit(RLIMIT_CORE, &dumpsize);
4349     if (dumpsize.rlim_cur == 0)
4350         return 0;
4351 
4352     corefile = core_dump_filename(ts);
4353 
4354     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4355                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4356         return (-errno);
4357 
4358     /*
4359      * Walk through target process memory mappings and
4360      * set up structure containing this information.  After
4361      * this point vma_xxx functions can be used.
4362      */
4363     if ((mm = vma_init()) == NULL)
4364         goto out;
4365 
4366     walk_memory_regions(mm, vma_walker);
4367     segs = vma_get_mapping_count(mm);
4368 
4369     /*
4370      * Construct valid coredump ELF header.  We also
4371      * add one more segment for notes.
4372      */
4373     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4374     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4375         goto out;
4376 
4377     /* fill in the in-memory version of notes */
4378     if (fill_note_info(&info, signr, env) < 0)
4379         goto out;
4380 
4381     offset += sizeof (elf);                             /* elf header */
4382     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4383 
4384     /* write out notes program header */
4385     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4386 
4387     offset += info.notes_size;
4388     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4389         goto out;
4390 
4391     /*
4392      * ELF specification wants data to start at page boundary so
4393      * we align it here.
4394      */
4395     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4396 
4397     /*
4398      * Write program headers for memory regions mapped in
4399      * the target process.
4400      */
4401     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4402         (void) memset(&phdr, 0, sizeof (phdr));
4403 
4404         phdr.p_type = PT_LOAD;
4405         phdr.p_offset = offset;
4406         phdr.p_vaddr = vma->vma_start;
4407         phdr.p_paddr = 0;
4408         phdr.p_filesz = vma_dump_size(vma);
4409         offset += phdr.p_filesz;
4410         phdr.p_memsz = vma->vma_end - vma->vma_start;
4411         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4412         if (vma->vma_flags & PROT_WRITE)
4413             phdr.p_flags |= PF_W;
4414         if (vma->vma_flags & PROT_EXEC)
4415             phdr.p_flags |= PF_X;
4416         phdr.p_align = ELF_EXEC_PAGESIZE;
4417 
4418         bswap_phdr(&phdr, 1);
4419         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4420             goto out;
4421         }
4422     }
4423 
4424     /*
4425      * Next we write notes just after program headers.  No
4426      * alignment needed here.
4427      */
4428     if (write_note_info(&info, fd) < 0)
4429         goto out;
4430 
4431     /* align data to page boundary */
4432     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4433         goto out;
4434 
4435     /*
4436      * Finally we can dump process memory into corefile as well.
4437      */
4438     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4439         abi_ulong addr;
4440         abi_ulong end;
4441 
4442         end = vma->vma_start + vma_dump_size(vma);
4443 
4444         for (addr = vma->vma_start; addr < end;
4445              addr += TARGET_PAGE_SIZE) {
4446             char page[TARGET_PAGE_SIZE];
4447             int error;
4448 
4449             /*
4450              *  Read in page from target process memory and
4451              *  write it to coredump file.
4452              */
4453             error = copy_from_user(page, addr, sizeof (page));
4454             if (error != 0) {
4455                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4456                                addr);
4457                 errno = -error;
4458                 goto out;
4459             }
4460             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4461                 goto out;
4462         }
4463     }
4464 
4465  out:
4466     free_note_info(&info);
4467     if (mm != NULL)
4468         vma_delete(mm);
4469     (void) close(fd);
4470 
4471     if (errno != 0)
4472         return (-errno);
4473     return (0);
4474 }
4475 #endif /* USE_ELF_CORE_DUMP */
4476 
4477 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4478 {
4479     init_thread(regs, infop);
4480 }
4481