xref: /qemu/linux-user/qemu.h (revision 2e8f72ac)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8 
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12 
13 #include "exec/user/abitypes.h"
14 
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 
20 /* This is the size of the host kernel's sigset_t, needed where we make
21  * direct system calls that take a sigset_t pointer and a size.
22  */
23 #define SIGSET_T_SIZE (_NSIG / 8)
24 
25 /* This struct is used to hold certain information about the image.
26  * Basically, it replicates in user space what would be certain
27  * task_struct fields in the kernel
28  */
29 struct image_info {
30         abi_ulong       load_bias;
31         abi_ulong       load_addr;
32         abi_ulong       start_code;
33         abi_ulong       end_code;
34         abi_ulong       start_data;
35         abi_ulong       end_data;
36         abi_ulong       start_brk;
37         abi_ulong       brk;
38         abi_ulong       reserve_brk;
39         abi_ulong       start_mmap;
40         abi_ulong       start_stack;
41         abi_ulong       stack_limit;
42         abi_ulong       entry;
43         abi_ulong       code_offset;
44         abi_ulong       data_offset;
45         abi_ulong       saved_auxv;
46         abi_ulong       auxv_len;
47         abi_ulong       arg_start;
48         abi_ulong       arg_end;
49         abi_ulong       arg_strings;
50         abi_ulong       env_strings;
51         abi_ulong       file_string;
52         uint32_t        elf_flags;
53         int		personality;
54         abi_ulong       alignment;
55 
56         /* The fields below are used in FDPIC mode.  */
57         abi_ulong       loadmap_addr;
58         uint16_t        nsegs;
59         void           *loadsegs;
60         abi_ulong       pt_dynamic_addr;
61         abi_ulong       interpreter_loadmap_addr;
62         abi_ulong       interpreter_pt_dynamic_addr;
63         struct image_info *other_info;
64 
65         /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */
66         uint32_t        note_flags;
67 
68 #ifdef TARGET_MIPS
69         int             fp_abi;
70         int             interp_fp_abi;
71 #endif
72 };
73 
74 #ifdef TARGET_I386
75 /* Information about the current linux thread */
76 struct vm86_saved_state {
77     uint32_t eax; /* return code */
78     uint32_t ebx;
79     uint32_t ecx;
80     uint32_t edx;
81     uint32_t esi;
82     uint32_t edi;
83     uint32_t ebp;
84     uint32_t esp;
85     uint32_t eflags;
86     uint32_t eip;
87     uint16_t cs, ss, ds, es, fs, gs;
88 };
89 #endif
90 
91 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
92 /* FPU emulator */
93 #include "nwfpe/fpa11.h"
94 #endif
95 
96 #define MAX_SIGQUEUE_SIZE 1024
97 
98 struct emulated_sigtable {
99     int pending; /* true if signal is pending */
100     target_siginfo_t info;
101 };
102 
103 /* NOTE: we force a big alignment so that the stack stored after is
104    aligned too */
105 typedef struct TaskState {
106     pid_t ts_tid;     /* tid (or pid) of this task */
107 #ifdef TARGET_ARM
108 # ifdef TARGET_ABI32
109     /* FPA state */
110     FPA11 fpa;
111 # endif
112 #endif
113 #if defined(TARGET_ARM) || defined(TARGET_RISCV)
114     int swi_errno;
115 #endif
116 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
117     abi_ulong target_v86;
118     struct vm86_saved_state vm86_saved_regs;
119     struct target_vm86plus_struct vm86plus;
120     uint32_t v86flags;
121     uint32_t v86mask;
122 #endif
123     abi_ulong child_tidptr;
124 #ifdef TARGET_M68K
125     abi_ulong tp_value;
126 #endif
127 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV)
128     /* Extra fields for semihosted binaries.  */
129     abi_ulong heap_base;
130     abi_ulong heap_limit;
131 #endif
132     abi_ulong stack_base;
133     int used; /* non zero if used */
134     struct image_info *info;
135     struct linux_binprm *bprm;
136 
137     struct emulated_sigtable sync_signal;
138     struct emulated_sigtable sigtab[TARGET_NSIG];
139     /* This thread's signal mask, as requested by the guest program.
140      * The actual signal mask of this thread may differ:
141      *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
142      *  + sometimes we block all signals to avoid races
143      */
144     sigset_t signal_mask;
145     /* The signal mask imposed by a guest sigsuspend syscall, if we are
146      * currently in the middle of such a syscall
147      */
148     sigset_t sigsuspend_mask;
149     /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
150     int in_sigsuspend;
151 
152     /* Nonzero if process_pending_signals() needs to do something (either
153      * handle a pending signal or unblock signals).
154      * This flag is written from a signal handler so should be accessed via
155      * the qatomic_read() and qatomic_set() functions. (It is not accessed
156      * from multiple threads.)
157      */
158     int signal_pending;
159 
160     /* This thread's sigaltstack, if it has one */
161     struct target_sigaltstack sigaltstack_used;
162 } __attribute__((aligned(16))) TaskState;
163 
164 extern char *exec_path;
165 void init_task_state(TaskState *ts);
166 void task_settid(TaskState *);
167 void stop_all_tasks(void);
168 extern const char *qemu_uname_release;
169 extern unsigned long mmap_min_addr;
170 
171 /* ??? See if we can avoid exposing so much of the loader internals.  */
172 
173 /* Read a good amount of data initially, to hopefully get all the
174    program headers loaded.  */
175 #define BPRM_BUF_SIZE  1024
176 
177 /*
178  * This structure is used to hold the arguments that are
179  * used when loading binaries.
180  */
181 struct linux_binprm {
182         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
183         abi_ulong p;
184         int fd;
185         int e_uid, e_gid;
186         int argc, envc;
187         char **argv;
188         char **envp;
189         char * filename;        /* Name of binary */
190         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
191 };
192 
193 typedef struct IOCTLEntry IOCTLEntry;
194 
195 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
196                              int fd, int cmd, abi_long arg);
197 
198 struct IOCTLEntry {
199     int target_cmd;
200     unsigned int host_cmd;
201     const char *name;
202     int access;
203     do_ioctl_fn *do_ioctl;
204     const argtype arg_type[5];
205 };
206 
207 extern IOCTLEntry ioctl_entries[];
208 
209 #define IOC_R 0x0001
210 #define IOC_W 0x0002
211 #define IOC_RW (IOC_R | IOC_W)
212 
213 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
214 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
215                               abi_ulong stringp, int push_ptr);
216 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
217              struct target_pt_regs * regs, struct image_info *infop,
218              struct linux_binprm *);
219 
220 /* Returns true if the image uses the FDPIC ABI. If this is the case,
221  * we have to provide some information (loadmap, pt_dynamic_info) such
222  * that the program can be relocated adequately. This is also useful
223  * when handling signals.
224  */
225 int info_is_fdpic(struct image_info *info);
226 
227 uint32_t get_elf_eflags(int fd);
228 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
229 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
230 
231 abi_long memcpy_to_target(abi_ulong dest, const void *src,
232                           unsigned long len);
233 void target_set_brk(abi_ulong new_brk);
234 abi_long do_brk(abi_ulong new_brk);
235 void syscall_init(void);
236 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
237                     abi_long arg2, abi_long arg3, abi_long arg4,
238                     abi_long arg5, abi_long arg6, abi_long arg7,
239                     abi_long arg8);
240 extern __thread CPUState *thread_cpu;
241 void cpu_loop(CPUArchState *env);
242 const char *target_strerror(int err);
243 int get_osversion(void);
244 void init_qemu_uname_release(void);
245 void fork_start(void);
246 void fork_end(int child);
247 
248 /**
249  * probe_guest_base:
250  * @image_name: the executable being loaded
251  * @loaddr: the lowest fixed address in the executable
252  * @hiaddr: the highest fixed address in the executable
253  *
254  * Creates the initial guest address space in the host memory space.
255  *
256  * If @loaddr == 0, then no address in the executable is fixed,
257  * i.e. it is fully relocatable.  In that case @hiaddr is the size
258  * of the executable.
259  *
260  * This function will not return if a valid value for guest_base
261  * cannot be chosen.  On return, the executable loader can expect
262  *
263  *    target_mmap(loaddr, hiaddr - loaddr, ...)
264  *
265  * to succeed.
266  */
267 void probe_guest_base(const char *image_name,
268                       abi_ulong loaddr, abi_ulong hiaddr);
269 
270 #include "qemu/log.h"
271 
272 /* safe_syscall.S */
273 
274 /**
275  * safe_syscall:
276  * @int number: number of system call to make
277  * ...: arguments to the system call
278  *
279  * Call a system call if guest signal not pending.
280  * This has the same API as the libc syscall() function, except that it
281  * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
282  *
283  * Returns: the system call result, or -1 with an error code in errno
284  * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
285  * with any of the host errno values.)
286  */
287 
288 /* A guide to using safe_syscall() to handle interactions between guest
289  * syscalls and guest signals:
290  *
291  * Guest syscalls come in two flavours:
292  *
293  * (1) Non-interruptible syscalls
294  *
295  * These are guest syscalls that never get interrupted by signals and
296  * so never return EINTR. They can be implemented straightforwardly in
297  * QEMU: just make sure that if the implementation code has to make any
298  * blocking calls that those calls are retried if they return EINTR.
299  * It's also OK to implement these with safe_syscall, though it will be
300  * a little less efficient if a signal is delivered at the 'wrong' moment.
301  *
302  * Some non-interruptible syscalls need to be handled using block_signals()
303  * to block signals for the duration of the syscall. This mainly applies
304  * to code which needs to modify the data structures used by the
305  * host_signal_handler() function and the functions it calls, including
306  * all syscalls which change the thread's signal mask.
307  *
308  * (2) Interruptible syscalls
309  *
310  * These are guest syscalls that can be interrupted by signals and
311  * for which we need to either return EINTR or arrange for the guest
312  * syscall to be restarted. This category includes both syscalls which
313  * always restart (and in the kernel return -ERESTARTNOINTR), ones
314  * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
315  * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
316  * if the handler was registered with SA_RESTART (kernel returns
317  * -ERESTARTSYS). System calls which are only interruptible in some
318  * situations (like 'open') also need to be handled this way.
319  *
320  * Here it is important that the host syscall is made
321  * via this safe_syscall() function, and *not* via the host libc.
322  * If the host libc is used then the implementation will appear to work
323  * most of the time, but there will be a race condition where a
324  * signal could arrive just before we make the host syscall inside libc,
325  * and then then guest syscall will not correctly be interrupted.
326  * Instead the implementation of the guest syscall can use the safe_syscall
327  * function but otherwise just return the result or errno in the usual
328  * way; the main loop code will take care of restarting the syscall
329  * if appropriate.
330  *
331  * (If the implementation needs to make multiple host syscalls this is
332  * OK; any which might really block must be via safe_syscall(); for those
333  * which are only technically blocking (ie which we know in practice won't
334  * stay in the host kernel indefinitely) it's OK to use libc if necessary.
335  * You must be able to cope with backing out correctly if some safe_syscall
336  * you make in the implementation returns either -TARGET_ERESTARTSYS or
337  * EINTR though.)
338  *
339  * block_signals() cannot be used for interruptible syscalls.
340  *
341  *
342  * How and why the safe_syscall implementation works:
343  *
344  * The basic setup is that we make the host syscall via a known
345  * section of host native assembly. If a signal occurs, our signal
346  * handler checks the interrupted host PC against the addresse of that
347  * known section. If the PC is before or at the address of the syscall
348  * instruction then we change the PC to point at a "return
349  * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
350  * (causing the safe_syscall() call to immediately return that value).
351  * Then in the main.c loop if we see this magic return value we adjust
352  * the guest PC to wind it back to before the system call, and invoke
353  * the guest signal handler as usual.
354  *
355  * This winding-back will happen in two cases:
356  * (1) signal came in just before we took the host syscall (a race);
357  *   in this case we'll take the guest signal and have another go
358  *   at the syscall afterwards, and this is indistinguishable for the
359  *   guest from the timing having been different such that the guest
360  *   signal really did win the race
361  * (2) signal came in while the host syscall was blocking, and the
362  *   host kernel decided the syscall should be restarted;
363  *   in this case we want to restart the guest syscall also, and so
364  *   rewinding is the right thing. (Note that "restart" semantics mean
365  *   "first call the signal handler, then reattempt the syscall".)
366  * The other situation to consider is when a signal came in while the
367  * host syscall was blocking, and the host kernel decided that the syscall
368  * should not be restarted; in this case QEMU's host signal handler will
369  * be invoked with the PC pointing just after the syscall instruction,
370  * with registers indicating an EINTR return; the special code in the
371  * handler will not kick in, and we will return EINTR to the guest as
372  * we should.
373  *
374  * Notice that we can leave the host kernel to make the decision for
375  * us about whether to do a restart of the syscall or not; we do not
376  * need to check SA_RESTART flags in QEMU or distinguish the various
377  * kinds of restartability.
378  */
379 #ifdef HAVE_SAFE_SYSCALL
380 /* The core part of this function is implemented in assembly */
381 extern long safe_syscall_base(int *pending, long number, ...);
382 
383 #define safe_syscall(...)                                               \
384     ({                                                                  \
385         long ret_;                                                      \
386         int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
387         ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
388         if (is_error(ret_)) {                                           \
389             errno = -ret_;                                              \
390             ret_ = -1;                                                  \
391         }                                                               \
392         ret_;                                                           \
393     })
394 
395 #else
396 
397 /* Fallback for architectures which don't yet provide a safe-syscall assembly
398  * fragment; note that this is racy!
399  * This should go away when all host architectures have been updated.
400  */
401 #define safe_syscall syscall
402 
403 #endif
404 
405 /* syscall.c */
406 int host_to_target_waitstatus(int status);
407 
408 /* strace.c */
409 void print_syscall(void *cpu_env, int num,
410                    abi_long arg1, abi_long arg2, abi_long arg3,
411                    abi_long arg4, abi_long arg5, abi_long arg6);
412 void print_syscall_ret(void *cpu_env, int num, abi_long ret,
413                        abi_long arg1, abi_long arg2, abi_long arg3,
414                        abi_long arg4, abi_long arg5, abi_long arg6);
415 /**
416  * print_taken_signal:
417  * @target_signum: target signal being taken
418  * @tinfo: target_siginfo_t which will be passed to the guest for the signal
419  *
420  * Print strace output indicating that this signal is being taken by the guest,
421  * in a format similar to:
422  * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
423  */
424 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
425 
426 /* signal.c */
427 void process_pending_signals(CPUArchState *cpu_env);
428 void signal_init(void);
429 int queue_signal(CPUArchState *env, int sig, int si_type,
430                  target_siginfo_t *info);
431 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
432 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
433 int target_to_host_signal(int sig);
434 int host_to_target_signal(int sig);
435 long do_sigreturn(CPUArchState *env);
436 long do_rt_sigreturn(CPUArchState *env);
437 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
438 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
439 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
440                         abi_ulong unew_ctx, abi_long ctx_size);
441 /**
442  * block_signals: block all signals while handling this guest syscall
443  *
444  * Block all signals, and arrange that the signal mask is returned to
445  * its correct value for the guest before we resume execution of guest code.
446  * If this function returns non-zero, then the caller should immediately
447  * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
448  * signal and restart execution of the syscall.
449  * If block_signals() returns zero, then the caller can continue with
450  * emulation of the system call knowing that no signals can be taken
451  * (and therefore that no race conditions will result).
452  * This should only be called once, because if it is called a second time
453  * it will always return non-zero. (Think of it like a mutex that can't
454  * be recursively locked.)
455  * Signals will be unblocked again by process_pending_signals().
456  *
457  * Return value: non-zero if there was a pending signal, zero if not.
458  */
459 int block_signals(void); /* Returns non zero if signal pending */
460 
461 #ifdef TARGET_I386
462 /* vm86.c */
463 void save_v86_state(CPUX86State *env);
464 void handle_vm86_trap(CPUX86State *env, int trapno);
465 void handle_vm86_fault(CPUX86State *env);
466 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
467 #elif defined(TARGET_SPARC64)
468 void sparc64_set_context(CPUSPARCState *env);
469 void sparc64_get_context(CPUSPARCState *env);
470 #endif
471 
472 /* mmap.c */
473 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
474 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
475                      int flags, int fd, abi_ulong offset);
476 int target_munmap(abi_ulong start, abi_ulong len);
477 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
478                        abi_ulong new_size, unsigned long flags,
479                        abi_ulong new_addr);
480 extern unsigned long last_brk;
481 extern abi_ulong mmap_next_start;
482 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
483 void mmap_fork_start(void);
484 void mmap_fork_end(int child);
485 
486 /* main.c */
487 extern unsigned long guest_stack_size;
488 
489 /* user access */
490 
491 #define VERIFY_READ 0
492 #define VERIFY_WRITE 1 /* implies read access */
493 
494 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
495 {
496     return guest_addr_valid(addr) &&
497            (size == 0 || guest_addr_valid(addr + size - 1)) &&
498            page_check_range((target_ulong)addr, size,
499                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
500 }
501 
502 /* NOTE __get_user and __put_user use host pointers and don't check access.
503    These are usually used to access struct data members once the struct has
504    been locked - usually with lock_user_struct.  */
505 
506 /*
507  * Tricky points:
508  * - Use __builtin_choose_expr to avoid type promotion from ?:,
509  * - Invalid sizes result in a compile time error stemming from
510  *   the fact that abort has no parameters.
511  * - It's easier to use the endian-specific unaligned load/store
512  *   functions than host-endian unaligned load/store plus tswapN.
513  * - The pragmas are necessary only to silence a clang false-positive
514  *   warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
515  * - gcc has bugs in its _Pragma() support in some versions, eg
516  *   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
517  *   include the warning-suppression pragmas for clang
518  */
519 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
520 #define PRAGMA_DISABLE_PACKED_WARNING                                   \
521     _Pragma("GCC diagnostic push");                                     \
522     _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
523 
524 #define PRAGMA_REENABLE_PACKED_WARNING          \
525     _Pragma("GCC diagnostic pop")
526 
527 #else
528 #define PRAGMA_DISABLE_PACKED_WARNING
529 #define PRAGMA_REENABLE_PACKED_WARNING
530 #endif
531 
532 #define __put_user_e(x, hptr, e)                                            \
533     do {                                                                    \
534         PRAGMA_DISABLE_PACKED_WARNING;                                      \
535         (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                 \
536         __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,            \
537         __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,            \
538         __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))  \
539             ((hptr), (x)), (void)0);                                        \
540         PRAGMA_REENABLE_PACKED_WARNING;                                     \
541     } while (0)
542 
543 #define __get_user_e(x, hptr, e)                                            \
544     do {                                                                    \
545         PRAGMA_DISABLE_PACKED_WARNING;                                      \
546         ((x) = (typeof(*hptr))(                                             \
547         __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                 \
548         __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,           \
549         __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,            \
550         __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))  \
551             (hptr)), (void)0);                                              \
552         PRAGMA_REENABLE_PACKED_WARNING;                                     \
553     } while (0)
554 
555 
556 #ifdef TARGET_WORDS_BIGENDIAN
557 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
558 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
559 #else
560 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
561 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
562 #endif
563 
564 /* put_user()/get_user() take a guest address and check access */
565 /* These are usually used to access an atomic data type, such as an int,
566  * that has been passed by address.  These internally perform locking
567  * and unlocking on the data type.
568  */
569 #define put_user(x, gaddr, target_type)					\
570 ({									\
571     abi_ulong __gaddr = (gaddr);					\
572     target_type *__hptr;						\
573     abi_long __ret = 0;							\
574     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
575         __put_user((x), __hptr);				\
576         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
577     } else								\
578         __ret = -TARGET_EFAULT;						\
579     __ret;								\
580 })
581 
582 #define get_user(x, gaddr, target_type)					\
583 ({									\
584     abi_ulong __gaddr = (gaddr);					\
585     target_type *__hptr;						\
586     abi_long __ret = 0;							\
587     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
588         __get_user((x), __hptr);				\
589         unlock_user(__hptr, __gaddr, 0);				\
590     } else {								\
591         /* avoid warning */						\
592         (x) = 0;							\
593         __ret = -TARGET_EFAULT;						\
594     }									\
595     __ret;								\
596 })
597 
598 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
599 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
600 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
601 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
602 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
603 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
604 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
605 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
606 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
607 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
608 
609 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
610 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
611 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
612 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
613 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
614 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
615 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
616 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
617 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
618 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
619 
620 /* copy_from_user() and copy_to_user() are usually used to copy data
621  * buffers between the target and host.  These internally perform
622  * locking/unlocking of the memory.
623  */
624 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
625 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
626 
627 /* Functions for accessing guest memory.  The tget and tput functions
628    read/write single values, byteswapping as necessary.  The lock_user function
629    gets a pointer to a contiguous area of guest memory, but does not perform
630    any byteswapping.  lock_user may return either a pointer to the guest
631    memory, or a temporary buffer.  */
632 
633 /* Lock an area of guest memory into the host.  If copy is true then the
634    host area will have the same contents as the guest.  */
635 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
636 {
637     if (!access_ok(type, guest_addr, len))
638         return NULL;
639 #ifdef DEBUG_REMAP
640     {
641         void *addr;
642         addr = g_malloc(len);
643         if (copy)
644             memcpy(addr, g2h(guest_addr), len);
645         else
646             memset(addr, 0, len);
647         return addr;
648     }
649 #else
650     return g2h(guest_addr);
651 #endif
652 }
653 
654 /* Unlock an area of guest memory.  The first LEN bytes must be
655    flushed back to guest memory. host_ptr = NULL is explicitly
656    allowed and does nothing. */
657 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
658                                long len)
659 {
660 
661 #ifdef DEBUG_REMAP
662     if (!host_ptr)
663         return;
664     if (host_ptr == g2h(guest_addr))
665         return;
666     if (len > 0)
667         memcpy(g2h(guest_addr), host_ptr, len);
668     g_free(host_ptr);
669 #endif
670 }
671 
672 /* Return the length of a string in target memory or -TARGET_EFAULT if
673    access error. */
674 abi_long target_strlen(abi_ulong gaddr);
675 
676 /* Like lock_user but for null terminated strings.  */
677 static inline void *lock_user_string(abi_ulong guest_addr)
678 {
679     abi_long len;
680     len = target_strlen(guest_addr);
681     if (len < 0)
682         return NULL;
683     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
684 }
685 
686 /* Helper macros for locking/unlocking a target struct.  */
687 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
688     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
689 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
690     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
691 
692 #include <pthread.h>
693 
694 static inline int is_error(abi_long ret)
695 {
696     return (abi_ulong)ret >= (abi_ulong)(-4096);
697 }
698 
699 #if TARGET_ABI_BITS == 32
700 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
701 {
702 #ifdef TARGET_WORDS_BIGENDIAN
703     return ((uint64_t)word0 << 32) | word1;
704 #else
705     return ((uint64_t)word1 << 32) | word0;
706 #endif
707 }
708 #else /* TARGET_ABI_BITS == 32 */
709 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
710 {
711     return word0;
712 }
713 #endif /* TARGET_ABI_BITS != 32 */
714 
715 void print_termios(void *arg);
716 
717 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
718 #ifdef TARGET_ARM
719 static inline int regpairs_aligned(void *cpu_env, int num)
720 {
721     return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
722 }
723 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
724 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
725 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
726 /*
727  * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
728  * of registers which translates to the same as ARM/MIPS, because we start with
729  * r3 as arg1
730  */
731 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
732 #elif defined(TARGET_SH4)
733 /* SH4 doesn't align register pairs, except for p{read,write}64 */
734 static inline int regpairs_aligned(void *cpu_env, int num)
735 {
736     switch (num) {
737     case TARGET_NR_pread64:
738     case TARGET_NR_pwrite64:
739         return 1;
740 
741     default:
742         return 0;
743     }
744 }
745 #elif defined(TARGET_XTENSA)
746 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
747 #else
748 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
749 #endif
750 
751 /**
752  * preexit_cleanup: housekeeping before the guest exits
753  *
754  * env: the CPU state
755  * code: the exit code
756  */
757 void preexit_cleanup(CPUArchState *env, int code);
758 
759 /* Include target-specific struct and function definitions;
760  * they may need access to the target-independent structures
761  * above, so include them last.
762  */
763 #include "target_cpu.h"
764 #include "target_structs.h"
765 
766 #endif /* QEMU_H */
767