xref: /qemu/linux-user/qemu.h (revision 7a4e543d)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include <signal.h>
5 #include <string.h>
6 
7 #include "cpu.h"
8 #include "exec/cpu_ldst.h"
9 
10 #undef DEBUG_REMAP
11 #ifdef DEBUG_REMAP
12 #include <stdlib.h>
13 #endif /* DEBUG_REMAP */
14 
15 #include "exec/user/abitypes.h"
16 
17 #include "exec/user/thunk.h"
18 #include "syscall_defs.h"
19 #include "syscall.h"
20 #include "exec/gdbstub.h"
21 #include "qemu/queue.h"
22 
23 #define THREAD __thread
24 
25 /* This struct is used to hold certain information about the image.
26  * Basically, it replicates in user space what would be certain
27  * task_struct fields in the kernel
28  */
29 struct image_info {
30         abi_ulong       load_bias;
31         abi_ulong       load_addr;
32         abi_ulong       start_code;
33         abi_ulong       end_code;
34         abi_ulong       start_data;
35         abi_ulong       end_data;
36         abi_ulong       start_brk;
37         abi_ulong       brk;
38         abi_ulong       start_mmap;
39         abi_ulong       start_stack;
40         abi_ulong       stack_limit;
41         abi_ulong       entry;
42         abi_ulong       code_offset;
43         abi_ulong       data_offset;
44         abi_ulong       saved_auxv;
45         abi_ulong       auxv_len;
46         abi_ulong       arg_start;
47         abi_ulong       arg_end;
48         uint32_t        elf_flags;
49 	int		personality;
50 #ifdef CONFIG_USE_FDPIC
51         abi_ulong       loadmap_addr;
52         uint16_t        nsegs;
53         void           *loadsegs;
54         abi_ulong       pt_dynamic_addr;
55         struct image_info *other_info;
56 #endif
57 };
58 
59 #ifdef TARGET_I386
60 /* Information about the current linux thread */
61 struct vm86_saved_state {
62     uint32_t eax; /* return code */
63     uint32_t ebx;
64     uint32_t ecx;
65     uint32_t edx;
66     uint32_t esi;
67     uint32_t edi;
68     uint32_t ebp;
69     uint32_t esp;
70     uint32_t eflags;
71     uint32_t eip;
72     uint16_t cs, ss, ds, es, fs, gs;
73 };
74 #endif
75 
76 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
77 /* FPU emulator */
78 #include "nwfpe/fpa11.h"
79 #endif
80 
81 #define MAX_SIGQUEUE_SIZE 1024
82 
83 struct sigqueue {
84     struct sigqueue *next;
85     target_siginfo_t info;
86 };
87 
88 struct emulated_sigtable {
89     int pending; /* true if signal is pending */
90     struct sigqueue *first;
91     struct sigqueue info; /* in order to always have memory for the
92                              first signal, we put it here */
93 };
94 
95 /* NOTE: we force a big alignment so that the stack stored after is
96    aligned too */
97 typedef struct TaskState {
98     pid_t ts_tid;     /* tid (or pid) of this task */
99 #ifdef TARGET_ARM
100 # ifdef TARGET_ABI32
101     /* FPA state */
102     FPA11 fpa;
103 # endif
104     int swi_errno;
105 #endif
106 #ifdef TARGET_UNICORE32
107     int swi_errno;
108 #endif
109 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
110     abi_ulong target_v86;
111     struct vm86_saved_state vm86_saved_regs;
112     struct target_vm86plus_struct vm86plus;
113     uint32_t v86flags;
114     uint32_t v86mask;
115 #endif
116     abi_ulong child_tidptr;
117 #ifdef TARGET_M68K
118     int sim_syscalls;
119     abi_ulong tp_value;
120 #endif
121 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
122     /* Extra fields for semihosted binaries.  */
123     uint32_t heap_base;
124     uint32_t heap_limit;
125 #endif
126     uint32_t stack_base;
127     int used; /* non zero if used */
128     bool sigsegv_blocked; /* SIGSEGV blocked by guest */
129     struct image_info *info;
130     struct linux_binprm *bprm;
131 
132     struct emulated_sigtable sigtab[TARGET_NSIG];
133     struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
134     struct sigqueue *first_free; /* first free siginfo queue entry */
135     int signal_pending; /* non zero if a signal may be pending */
136 } __attribute__((aligned(16))) TaskState;
137 
138 extern char *exec_path;
139 void init_task_state(TaskState *ts);
140 void task_settid(TaskState *);
141 void stop_all_tasks(void);
142 extern const char *qemu_uname_release;
143 extern unsigned long mmap_min_addr;
144 
145 /* ??? See if we can avoid exposing so much of the loader internals.  */
146 
147 /* Read a good amount of data initially, to hopefully get all the
148    program headers loaded.  */
149 #define BPRM_BUF_SIZE  1024
150 
151 /*
152  * This structure is used to hold the arguments that are
153  * used when loading binaries.
154  */
155 struct linux_binprm {
156         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
157         abi_ulong p;
158 	int fd;
159         int e_uid, e_gid;
160         int argc, envc;
161         char **argv;
162         char **envp;
163         char * filename;        /* Name of binary */
164         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
165 };
166 
167 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
168 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
169                               abi_ulong stringp, int push_ptr);
170 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
171              struct target_pt_regs * regs, struct image_info *infop,
172              struct linux_binprm *);
173 
174 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
175 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
176 
177 abi_long memcpy_to_target(abi_ulong dest, const void *src,
178                           unsigned long len);
179 void target_set_brk(abi_ulong new_brk);
180 abi_long do_brk(abi_ulong new_brk);
181 void syscall_init(void);
182 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
183                     abi_long arg2, abi_long arg3, abi_long arg4,
184                     abi_long arg5, abi_long arg6, abi_long arg7,
185                     abi_long arg8);
186 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
187 extern THREAD CPUState *thread_cpu;
188 void cpu_loop(CPUArchState *env);
189 char *target_strerror(int err);
190 int get_osversion(void);
191 void init_qemu_uname_release(void);
192 void fork_start(void);
193 void fork_end(int child);
194 
195 /* Creates the initial guest address space in the host memory space using
196  * the given host start address hint and size.  The guest_start parameter
197  * specifies the start address of the guest space.  guest_base will be the
198  * difference between the host start address computed by this function and
199  * guest_start.  If fixed is specified, then the mapped address space must
200  * start at host_start.  The real start address of the mapped memory space is
201  * returned or -1 if there was an error.
202  */
203 unsigned long init_guest_space(unsigned long host_start,
204                                unsigned long host_size,
205                                unsigned long guest_start,
206                                bool fixed);
207 
208 #include "qemu/log.h"
209 
210 /* syscall.c */
211 int host_to_target_waitstatus(int status);
212 
213 /* strace.c */
214 void print_syscall(int num,
215                    abi_long arg1, abi_long arg2, abi_long arg3,
216                    abi_long arg4, abi_long arg5, abi_long arg6);
217 void print_syscall_ret(int num, abi_long arg1);
218 extern int do_strace;
219 
220 /* signal.c */
221 void process_pending_signals(CPUArchState *cpu_env);
222 void signal_init(void);
223 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
224 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
225 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
226 int target_to_host_signal(int sig);
227 int host_to_target_signal(int sig);
228 long do_sigreturn(CPUArchState *env);
229 long do_rt_sigreturn(CPUArchState *env);
230 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
231 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
232 
233 #ifdef TARGET_I386
234 /* vm86.c */
235 void save_v86_state(CPUX86State *env);
236 void handle_vm86_trap(CPUX86State *env, int trapno);
237 void handle_vm86_fault(CPUX86State *env);
238 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
239 #elif defined(TARGET_SPARC64)
240 void sparc64_set_context(CPUSPARCState *env);
241 void sparc64_get_context(CPUSPARCState *env);
242 #endif
243 
244 /* mmap.c */
245 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
246 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
247                      int flags, int fd, abi_ulong offset);
248 int target_munmap(abi_ulong start, abi_ulong len);
249 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
250                        abi_ulong new_size, unsigned long flags,
251                        abi_ulong new_addr);
252 int target_msync(abi_ulong start, abi_ulong len, int flags);
253 extern unsigned long last_brk;
254 extern abi_ulong mmap_next_start;
255 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
256 void cpu_list_lock(void);
257 void cpu_list_unlock(void);
258 void mmap_fork_start(void);
259 void mmap_fork_end(int child);
260 
261 /* main.c */
262 extern unsigned long guest_stack_size;
263 
264 /* user access */
265 
266 #define VERIFY_READ 0
267 #define VERIFY_WRITE 1 /* implies read access */
268 
269 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
270 {
271     return page_check_range((target_ulong)addr, size,
272                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
273 }
274 
275 /* NOTE __get_user and __put_user use host pointers and don't check access.
276    These are usually used to access struct data members once the struct has
277    been locked - usually with lock_user_struct.  */
278 
279 /* Tricky points:
280    - Use __builtin_choose_expr to avoid type promotion from ?:,
281    - Invalid sizes result in a compile time error stemming from
282      the fact that abort has no parameters.
283    - It's easier to use the endian-specific unaligned load/store
284      functions than host-endian unaligned load/store plus tswapN.  */
285 
286 #define __put_user_e(x, hptr, e)                                        \
287   (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
288    __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
289    __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
290    __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
291      ((hptr), (x)), (void)0)
292 
293 #define __get_user_e(x, hptr, e)                                        \
294   ((x) = (typeof(*hptr))(                                               \
295    __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
296    __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
297    __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
298    __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
299      (hptr)), (void)0)
300 
301 #ifdef TARGET_WORDS_BIGENDIAN
302 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
303 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
304 #else
305 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
306 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
307 #endif
308 
309 /* put_user()/get_user() take a guest address and check access */
310 /* These are usually used to access an atomic data type, such as an int,
311  * that has been passed by address.  These internally perform locking
312  * and unlocking on the data type.
313  */
314 #define put_user(x, gaddr, target_type)					\
315 ({									\
316     abi_ulong __gaddr = (gaddr);					\
317     target_type *__hptr;						\
318     abi_long __ret = 0;							\
319     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
320         __put_user((x), __hptr);				\
321         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
322     } else								\
323         __ret = -TARGET_EFAULT;						\
324     __ret;								\
325 })
326 
327 #define get_user(x, gaddr, target_type)					\
328 ({									\
329     abi_ulong __gaddr = (gaddr);					\
330     target_type *__hptr;						\
331     abi_long __ret = 0;							\
332     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
333         __get_user((x), __hptr);				\
334         unlock_user(__hptr, __gaddr, 0);				\
335     } else {								\
336         /* avoid warning */						\
337         (x) = 0;							\
338         __ret = -TARGET_EFAULT;						\
339     }									\
340     __ret;								\
341 })
342 
343 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
344 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
345 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
346 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
347 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
348 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
349 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
350 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
351 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
352 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
353 
354 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
355 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
356 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
357 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
358 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
359 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
360 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
361 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
362 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
363 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
364 
365 /* copy_from_user() and copy_to_user() are usually used to copy data
366  * buffers between the target and host.  These internally perform
367  * locking/unlocking of the memory.
368  */
369 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
370 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
371 
372 /* Functions for accessing guest memory.  The tget and tput functions
373    read/write single values, byteswapping as necessary.  The lock_user function
374    gets a pointer to a contiguous area of guest memory, but does not perform
375    any byteswapping.  lock_user may return either a pointer to the guest
376    memory, or a temporary buffer.  */
377 
378 /* Lock an area of guest memory into the host.  If copy is true then the
379    host area will have the same contents as the guest.  */
380 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
381 {
382     if (!access_ok(type, guest_addr, len))
383         return NULL;
384 #ifdef DEBUG_REMAP
385     {
386         void *addr;
387         addr = malloc(len);
388         if (copy)
389             memcpy(addr, g2h(guest_addr), len);
390         else
391             memset(addr, 0, len);
392         return addr;
393     }
394 #else
395     return g2h(guest_addr);
396 #endif
397 }
398 
399 /* Unlock an area of guest memory.  The first LEN bytes must be
400    flushed back to guest memory. host_ptr = NULL is explicitly
401    allowed and does nothing. */
402 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
403                                long len)
404 {
405 
406 #ifdef DEBUG_REMAP
407     if (!host_ptr)
408         return;
409     if (host_ptr == g2h(guest_addr))
410         return;
411     if (len > 0)
412         memcpy(g2h(guest_addr), host_ptr, len);
413     free(host_ptr);
414 #endif
415 }
416 
417 /* Return the length of a string in target memory or -TARGET_EFAULT if
418    access error. */
419 abi_long target_strlen(abi_ulong gaddr);
420 
421 /* Like lock_user but for null terminated strings.  */
422 static inline void *lock_user_string(abi_ulong guest_addr)
423 {
424     abi_long len;
425     len = target_strlen(guest_addr);
426     if (len < 0)
427         return NULL;
428     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
429 }
430 
431 /* Helper macros for locking/unlocking a target struct.  */
432 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
433     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
434 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
435     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
436 
437 #include <pthread.h>
438 
439 /* Include target-specific struct and function definitions;
440  * they may need access to the target-independent structures
441  * above, so include them last.
442  */
443 #include "target_cpu.h"
444 #include "target_signal.h"
445 #include "target_structs.h"
446 
447 #endif /* QEMU_H */
448