xref: /qemu/linux-user/qemu.h (revision c5840b90)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8 
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12 
13 #include "exec/user/abitypes.h"
14 
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
20 
21 /* This is the size of the host kernel's sigset_t, needed where we make
22  * direct system calls that take a sigset_t pointer and a size.
23  */
24 #define SIGSET_T_SIZE (_NSIG / 8)
25 
26 /* This struct is used to hold certain information about the image.
27  * Basically, it replicates in user space what would be certain
28  * task_struct fields in the kernel
29  */
30 struct image_info {
31         abi_ulong       load_bias;
32         abi_ulong       load_addr;
33         abi_ulong       start_code;
34         abi_ulong       end_code;
35         abi_ulong       start_data;
36         abi_ulong       end_data;
37         abi_ulong       start_brk;
38         abi_ulong       brk;
39         abi_ulong       start_mmap;
40         abi_ulong       start_stack;
41         abi_ulong       stack_limit;
42         abi_ulong       entry;
43         abi_ulong       code_offset;
44         abi_ulong       data_offset;
45         abi_ulong       saved_auxv;
46         abi_ulong       auxv_len;
47         abi_ulong       arg_start;
48         abi_ulong       arg_end;
49         abi_ulong       arg_strings;
50         abi_ulong       env_strings;
51         abi_ulong       file_string;
52         uint32_t        elf_flags;
53 	int		personality;
54         abi_ulong       alignment;
55 
56         /* The fields below are used in FDPIC mode.  */
57         abi_ulong       loadmap_addr;
58         uint16_t        nsegs;
59         void           *loadsegs;
60         abi_ulong       pt_dynamic_addr;
61         abi_ulong       interpreter_loadmap_addr;
62         abi_ulong       interpreter_pt_dynamic_addr;
63         struct image_info *other_info;
64 };
65 
66 #ifdef TARGET_I386
67 /* Information about the current linux thread */
68 struct vm86_saved_state {
69     uint32_t eax; /* return code */
70     uint32_t ebx;
71     uint32_t ecx;
72     uint32_t edx;
73     uint32_t esi;
74     uint32_t edi;
75     uint32_t ebp;
76     uint32_t esp;
77     uint32_t eflags;
78     uint32_t eip;
79     uint16_t cs, ss, ds, es, fs, gs;
80 };
81 #endif
82 
83 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
84 /* FPU emulator */
85 #include "nwfpe/fpa11.h"
86 #endif
87 
88 #define MAX_SIGQUEUE_SIZE 1024
89 
90 struct emulated_sigtable {
91     int pending; /* true if signal is pending */
92     target_siginfo_t info;
93 };
94 
95 /* NOTE: we force a big alignment so that the stack stored after is
96    aligned too */
97 typedef struct TaskState {
98     pid_t ts_tid;     /* tid (or pid) of this task */
99 #ifdef TARGET_ARM
100 # ifdef TARGET_ABI32
101     /* FPA state */
102     FPA11 fpa;
103 # endif
104     int swi_errno;
105 #endif
106 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
107     abi_ulong target_v86;
108     struct vm86_saved_state vm86_saved_regs;
109     struct target_vm86plus_struct vm86plus;
110     uint32_t v86flags;
111     uint32_t v86mask;
112 #endif
113     abi_ulong child_tidptr;
114 #ifdef TARGET_M68K
115     int sim_syscalls;
116     abi_ulong tp_value;
117 #endif
118 #if defined(TARGET_ARM) || defined(TARGET_M68K)
119     /* Extra fields for semihosted binaries.  */
120     abi_ulong heap_base;
121     abi_ulong heap_limit;
122 #endif
123     abi_ulong stack_base;
124     int used; /* non zero if used */
125     struct image_info *info;
126     struct linux_binprm *bprm;
127 
128     struct emulated_sigtable sync_signal;
129     struct emulated_sigtable sigtab[TARGET_NSIG];
130     /* This thread's signal mask, as requested by the guest program.
131      * The actual signal mask of this thread may differ:
132      *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
133      *  + sometimes we block all signals to avoid races
134      */
135     sigset_t signal_mask;
136     /* The signal mask imposed by a guest sigsuspend syscall, if we are
137      * currently in the middle of such a syscall
138      */
139     sigset_t sigsuspend_mask;
140     /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
141     int in_sigsuspend;
142 
143     /* Nonzero if process_pending_signals() needs to do something (either
144      * handle a pending signal or unblock signals).
145      * This flag is written from a signal handler so should be accessed via
146      * the atomic_read() and atomic_write() functions. (It is not accessed
147      * from multiple threads.)
148      */
149     int signal_pending;
150 
151 } __attribute__((aligned(16))) TaskState;
152 
153 extern char *exec_path;
154 void init_task_state(TaskState *ts);
155 void task_settid(TaskState *);
156 void stop_all_tasks(void);
157 extern const char *qemu_uname_release;
158 extern unsigned long mmap_min_addr;
159 
160 /* ??? See if we can avoid exposing so much of the loader internals.  */
161 
162 /* Read a good amount of data initially, to hopefully get all the
163    program headers loaded.  */
164 #define BPRM_BUF_SIZE  1024
165 
166 /*
167  * This structure is used to hold the arguments that are
168  * used when loading binaries.
169  */
170 struct linux_binprm {
171         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
172         abi_ulong p;
173 	int fd;
174         int e_uid, e_gid;
175         int argc, envc;
176         char **argv;
177         char **envp;
178         char * filename;        /* Name of binary */
179         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
180 };
181 
182 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
183 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
184                               abi_ulong stringp, int push_ptr);
185 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
186              struct target_pt_regs * regs, struct image_info *infop,
187              struct linux_binprm *);
188 
189 /* Returns true if the image uses the FDPIC ABI. If this is the case,
190  * we have to provide some information (loadmap, pt_dynamic_info) such
191  * that the program can be relocated adequately. This is also useful
192  * when handling signals.
193  */
194 int info_is_fdpic(struct image_info *info);
195 
196 uint32_t get_elf_eflags(int fd);
197 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
198 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
199 
200 abi_long memcpy_to_target(abi_ulong dest, const void *src,
201                           unsigned long len);
202 void target_set_brk(abi_ulong new_brk);
203 abi_long do_brk(abi_ulong new_brk);
204 void syscall_init(void);
205 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
206                     abi_long arg2, abi_long arg3, abi_long arg4,
207                     abi_long arg5, abi_long arg6, abi_long arg7,
208                     abi_long arg8);
209 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
210 extern __thread CPUState *thread_cpu;
211 void cpu_loop(CPUArchState *env);
212 const char *target_strerror(int err);
213 int get_osversion(void);
214 void init_qemu_uname_release(void);
215 void fork_start(void);
216 void fork_end(int child);
217 
218 /* Creates the initial guest address space in the host memory space using
219  * the given host start address hint and size.  The guest_start parameter
220  * specifies the start address of the guest space.  guest_base will be the
221  * difference between the host start address computed by this function and
222  * guest_start.  If fixed is specified, then the mapped address space must
223  * start at host_start.  The real start address of the mapped memory space is
224  * returned or -1 if there was an error.
225  */
226 unsigned long init_guest_space(unsigned long host_start,
227                                unsigned long host_size,
228                                unsigned long guest_start,
229                                bool fixed);
230 
231 #include "qemu/log.h"
232 
233 /* safe_syscall.S */
234 
235 /**
236  * safe_syscall:
237  * @int number: number of system call to make
238  * ...: arguments to the system call
239  *
240  * Call a system call if guest signal not pending.
241  * This has the same API as the libc syscall() function, except that it
242  * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
243  *
244  * Returns: the system call result, or -1 with an error code in errno
245  * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
246  * with any of the host errno values.)
247  */
248 
249 /* A guide to using safe_syscall() to handle interactions between guest
250  * syscalls and guest signals:
251  *
252  * Guest syscalls come in two flavours:
253  *
254  * (1) Non-interruptible syscalls
255  *
256  * These are guest syscalls that never get interrupted by signals and
257  * so never return EINTR. They can be implemented straightforwardly in
258  * QEMU: just make sure that if the implementation code has to make any
259  * blocking calls that those calls are retried if they return EINTR.
260  * It's also OK to implement these with safe_syscall, though it will be
261  * a little less efficient if a signal is delivered at the 'wrong' moment.
262  *
263  * Some non-interruptible syscalls need to be handled using block_signals()
264  * to block signals for the duration of the syscall. This mainly applies
265  * to code which needs to modify the data structures used by the
266  * host_signal_handler() function and the functions it calls, including
267  * all syscalls which change the thread's signal mask.
268  *
269  * (2) Interruptible syscalls
270  *
271  * These are guest syscalls that can be interrupted by signals and
272  * for which we need to either return EINTR or arrange for the guest
273  * syscall to be restarted. This category includes both syscalls which
274  * always restart (and in the kernel return -ERESTARTNOINTR), ones
275  * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
276  * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
277  * if the handler was registered with SA_RESTART (kernel returns
278  * -ERESTARTSYS). System calls which are only interruptible in some
279  * situations (like 'open') also need to be handled this way.
280  *
281  * Here it is important that the host syscall is made
282  * via this safe_syscall() function, and *not* via the host libc.
283  * If the host libc is used then the implementation will appear to work
284  * most of the time, but there will be a race condition where a
285  * signal could arrive just before we make the host syscall inside libc,
286  * and then then guest syscall will not correctly be interrupted.
287  * Instead the implementation of the guest syscall can use the safe_syscall
288  * function but otherwise just return the result or errno in the usual
289  * way; the main loop code will take care of restarting the syscall
290  * if appropriate.
291  *
292  * (If the implementation needs to make multiple host syscalls this is
293  * OK; any which might really block must be via safe_syscall(); for those
294  * which are only technically blocking (ie which we know in practice won't
295  * stay in the host kernel indefinitely) it's OK to use libc if necessary.
296  * You must be able to cope with backing out correctly if some safe_syscall
297  * you make in the implementation returns either -TARGET_ERESTARTSYS or
298  * EINTR though.)
299  *
300  * block_signals() cannot be used for interruptible syscalls.
301  *
302  *
303  * How and why the safe_syscall implementation works:
304  *
305  * The basic setup is that we make the host syscall via a known
306  * section of host native assembly. If a signal occurs, our signal
307  * handler checks the interrupted host PC against the addresse of that
308  * known section. If the PC is before or at the address of the syscall
309  * instruction then we change the PC to point at a "return
310  * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
311  * (causing the safe_syscall() call to immediately return that value).
312  * Then in the main.c loop if we see this magic return value we adjust
313  * the guest PC to wind it back to before the system call, and invoke
314  * the guest signal handler as usual.
315  *
316  * This winding-back will happen in two cases:
317  * (1) signal came in just before we took the host syscall (a race);
318  *   in this case we'll take the guest signal and have another go
319  *   at the syscall afterwards, and this is indistinguishable for the
320  *   guest from the timing having been different such that the guest
321  *   signal really did win the race
322  * (2) signal came in while the host syscall was blocking, and the
323  *   host kernel decided the syscall should be restarted;
324  *   in this case we want to restart the guest syscall also, and so
325  *   rewinding is the right thing. (Note that "restart" semantics mean
326  *   "first call the signal handler, then reattempt the syscall".)
327  * The other situation to consider is when a signal came in while the
328  * host syscall was blocking, and the host kernel decided that the syscall
329  * should not be restarted; in this case QEMU's host signal handler will
330  * be invoked with the PC pointing just after the syscall instruction,
331  * with registers indicating an EINTR return; the special code in the
332  * handler will not kick in, and we will return EINTR to the guest as
333  * we should.
334  *
335  * Notice that we can leave the host kernel to make the decision for
336  * us about whether to do a restart of the syscall or not; we do not
337  * need to check SA_RESTART flags in QEMU or distinguish the various
338  * kinds of restartability.
339  */
340 #ifdef HAVE_SAFE_SYSCALL
341 /* The core part of this function is implemented in assembly */
342 extern long safe_syscall_base(int *pending, long number, ...);
343 
344 #define safe_syscall(...)                                               \
345     ({                                                                  \
346         long ret_;                                                      \
347         int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
348         ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
349         if (is_error(ret_)) {                                           \
350             errno = -ret_;                                              \
351             ret_ = -1;                                                  \
352         }                                                               \
353         ret_;                                                           \
354     })
355 
356 #else
357 
358 /* Fallback for architectures which don't yet provide a safe-syscall assembly
359  * fragment; note that this is racy!
360  * This should go away when all host architectures have been updated.
361  */
362 #define safe_syscall syscall
363 
364 #endif
365 
366 /* syscall.c */
367 int host_to_target_waitstatus(int status);
368 
369 /* strace.c */
370 void print_syscall(int num,
371                    abi_long arg1, abi_long arg2, abi_long arg3,
372                    abi_long arg4, abi_long arg5, abi_long arg6);
373 void print_syscall_ret(int num, abi_long arg1);
374 /**
375  * print_taken_signal:
376  * @target_signum: target signal being taken
377  * @tinfo: target_siginfo_t which will be passed to the guest for the signal
378  *
379  * Print strace output indicating that this signal is being taken by the guest,
380  * in a format similar to:
381  * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
382  */
383 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
384 extern int do_strace;
385 
386 /* signal.c */
387 void process_pending_signals(CPUArchState *cpu_env);
388 void signal_init(void);
389 int queue_signal(CPUArchState *env, int sig, int si_type,
390                  target_siginfo_t *info);
391 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
392 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
393 int target_to_host_signal(int sig);
394 int host_to_target_signal(int sig);
395 long do_sigreturn(CPUArchState *env);
396 long do_rt_sigreturn(CPUArchState *env);
397 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
398 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
399 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
400                         abi_ulong unew_ctx, abi_long ctx_size);
401 /**
402  * block_signals: block all signals while handling this guest syscall
403  *
404  * Block all signals, and arrange that the signal mask is returned to
405  * its correct value for the guest before we resume execution of guest code.
406  * If this function returns non-zero, then the caller should immediately
407  * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
408  * signal and restart execution of the syscall.
409  * If block_signals() returns zero, then the caller can continue with
410  * emulation of the system call knowing that no signals can be taken
411  * (and therefore that no race conditions will result).
412  * This should only be called once, because if it is called a second time
413  * it will always return non-zero. (Think of it like a mutex that can't
414  * be recursively locked.)
415  * Signals will be unblocked again by process_pending_signals().
416  *
417  * Return value: non-zero if there was a pending signal, zero if not.
418  */
419 int block_signals(void); /* Returns non zero if signal pending */
420 
421 #ifdef TARGET_I386
422 /* vm86.c */
423 void save_v86_state(CPUX86State *env);
424 void handle_vm86_trap(CPUX86State *env, int trapno);
425 void handle_vm86_fault(CPUX86State *env);
426 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
427 #elif defined(TARGET_SPARC64)
428 void sparc64_set_context(CPUSPARCState *env);
429 void sparc64_get_context(CPUSPARCState *env);
430 #endif
431 
432 /* mmap.c */
433 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
434 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
435                      int flags, int fd, abi_ulong offset);
436 int target_munmap(abi_ulong start, abi_ulong len);
437 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
438                        abi_ulong new_size, unsigned long flags,
439                        abi_ulong new_addr);
440 extern unsigned long last_brk;
441 extern abi_ulong mmap_next_start;
442 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
443 void mmap_fork_start(void);
444 void mmap_fork_end(int child);
445 
446 /* main.c */
447 extern unsigned long guest_stack_size;
448 
449 /* user access */
450 
451 #define VERIFY_READ 0
452 #define VERIFY_WRITE 1 /* implies read access */
453 
454 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
455 {
456     return page_check_range((target_ulong)addr, size,
457                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
458 }
459 
460 /* NOTE __get_user and __put_user use host pointers and don't check access.
461    These are usually used to access struct data members once the struct has
462    been locked - usually with lock_user_struct.  */
463 
464 /* Tricky points:
465    - Use __builtin_choose_expr to avoid type promotion from ?:,
466    - Invalid sizes result in a compile time error stemming from
467      the fact that abort has no parameters.
468    - It's easier to use the endian-specific unaligned load/store
469      functions than host-endian unaligned load/store plus tswapN.  */
470 
471 #define __put_user_e(x, hptr, e)                                        \
472   (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
473    __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
474    __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
475    __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
476      ((hptr), (x)), (void)0)
477 
478 #define __get_user_e(x, hptr, e)                                        \
479   ((x) = (typeof(*hptr))(                                               \
480    __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
481    __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
482    __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
483    __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
484      (hptr)), (void)0)
485 
486 #ifdef TARGET_WORDS_BIGENDIAN
487 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
488 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
489 #else
490 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
491 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
492 #endif
493 
494 /* put_user()/get_user() take a guest address and check access */
495 /* These are usually used to access an atomic data type, such as an int,
496  * that has been passed by address.  These internally perform locking
497  * and unlocking on the data type.
498  */
499 #define put_user(x, gaddr, target_type)					\
500 ({									\
501     abi_ulong __gaddr = (gaddr);					\
502     target_type *__hptr;						\
503     abi_long __ret = 0;							\
504     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
505         __put_user((x), __hptr);				\
506         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
507     } else								\
508         __ret = -TARGET_EFAULT;						\
509     __ret;								\
510 })
511 
512 #define get_user(x, gaddr, target_type)					\
513 ({									\
514     abi_ulong __gaddr = (gaddr);					\
515     target_type *__hptr;						\
516     abi_long __ret = 0;							\
517     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
518         __get_user((x), __hptr);				\
519         unlock_user(__hptr, __gaddr, 0);				\
520     } else {								\
521         /* avoid warning */						\
522         (x) = 0;							\
523         __ret = -TARGET_EFAULT;						\
524     }									\
525     __ret;								\
526 })
527 
528 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
529 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
530 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
531 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
532 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
533 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
534 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
535 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
536 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
537 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
538 
539 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
540 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
541 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
542 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
543 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
544 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
545 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
546 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
547 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
548 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
549 
550 /* copy_from_user() and copy_to_user() are usually used to copy data
551  * buffers between the target and host.  These internally perform
552  * locking/unlocking of the memory.
553  */
554 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
555 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
556 
557 /* Functions for accessing guest memory.  The tget and tput functions
558    read/write single values, byteswapping as necessary.  The lock_user function
559    gets a pointer to a contiguous area of guest memory, but does not perform
560    any byteswapping.  lock_user may return either a pointer to the guest
561    memory, or a temporary buffer.  */
562 
563 /* Lock an area of guest memory into the host.  If copy is true then the
564    host area will have the same contents as the guest.  */
565 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
566 {
567     if (!access_ok(type, guest_addr, len))
568         return NULL;
569 #ifdef DEBUG_REMAP
570     {
571         void *addr;
572         addr = g_malloc(len);
573         if (copy)
574             memcpy(addr, g2h(guest_addr), len);
575         else
576             memset(addr, 0, len);
577         return addr;
578     }
579 #else
580     return g2h(guest_addr);
581 #endif
582 }
583 
584 /* Unlock an area of guest memory.  The first LEN bytes must be
585    flushed back to guest memory. host_ptr = NULL is explicitly
586    allowed and does nothing. */
587 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
588                                long len)
589 {
590 
591 #ifdef DEBUG_REMAP
592     if (!host_ptr)
593         return;
594     if (host_ptr == g2h(guest_addr))
595         return;
596     if (len > 0)
597         memcpy(g2h(guest_addr), host_ptr, len);
598     g_free(host_ptr);
599 #endif
600 }
601 
602 /* Return the length of a string in target memory or -TARGET_EFAULT if
603    access error. */
604 abi_long target_strlen(abi_ulong gaddr);
605 
606 /* Like lock_user but for null terminated strings.  */
607 static inline void *lock_user_string(abi_ulong guest_addr)
608 {
609     abi_long len;
610     len = target_strlen(guest_addr);
611     if (len < 0)
612         return NULL;
613     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
614 }
615 
616 /* Helper macros for locking/unlocking a target struct.  */
617 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
618     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
619 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
620     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
621 
622 #include <pthread.h>
623 
624 static inline int is_error(abi_long ret)
625 {
626     return (abi_ulong)ret >= (abi_ulong)(-4096);
627 }
628 
629 /**
630  * preexit_cleanup: housekeeping before the guest exits
631  *
632  * env: the CPU state
633  * code: the exit code
634  */
635 void preexit_cleanup(CPUArchState *env, int code);
636 
637 /* Include target-specific struct and function definitions;
638  * they may need access to the target-independent structures
639  * above, so include them last.
640  */
641 #include "target_cpu.h"
642 #include "target_structs.h"
643 
644 #endif /* QEMU_H */
645