xref: /qemu/linux-user/qemu.h (revision e3a6e0da)
1 #ifndef QEMU_H
2 #define QEMU_H
3 
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8 
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12 
13 #include "exec/user/abitypes.h"
14 
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 
20 /* This is the size of the host kernel's sigset_t, needed where we make
21  * direct system calls that take a sigset_t pointer and a size.
22  */
23 #define SIGSET_T_SIZE (_NSIG / 8)
24 
25 /* This struct is used to hold certain information about the image.
26  * Basically, it replicates in user space what would be certain
27  * task_struct fields in the kernel
28  */
29 struct image_info {
30         abi_ulong       load_bias;
31         abi_ulong       load_addr;
32         abi_ulong       start_code;
33         abi_ulong       end_code;
34         abi_ulong       start_data;
35         abi_ulong       end_data;
36         abi_ulong       start_brk;
37         abi_ulong       brk;
38         abi_ulong       reserve_brk;
39         abi_ulong       start_mmap;
40         abi_ulong       start_stack;
41         abi_ulong       stack_limit;
42         abi_ulong       entry;
43         abi_ulong       code_offset;
44         abi_ulong       data_offset;
45         abi_ulong       saved_auxv;
46         abi_ulong       auxv_len;
47         abi_ulong       arg_start;
48         abi_ulong       arg_end;
49         abi_ulong       arg_strings;
50         abi_ulong       env_strings;
51         abi_ulong       file_string;
52         uint32_t        elf_flags;
53         int		personality;
54         abi_ulong       alignment;
55 
56         /* The fields below are used in FDPIC mode.  */
57         abi_ulong       loadmap_addr;
58         uint16_t        nsegs;
59         void           *loadsegs;
60         abi_ulong       pt_dynamic_addr;
61         abi_ulong       interpreter_loadmap_addr;
62         abi_ulong       interpreter_pt_dynamic_addr;
63         struct image_info *other_info;
64 #ifdef TARGET_MIPS
65         int             fp_abi;
66         int             interp_fp_abi;
67 #endif
68 };
69 
70 #ifdef TARGET_I386
71 /* Information about the current linux thread */
72 struct vm86_saved_state {
73     uint32_t eax; /* return code */
74     uint32_t ebx;
75     uint32_t ecx;
76     uint32_t edx;
77     uint32_t esi;
78     uint32_t edi;
79     uint32_t ebp;
80     uint32_t esp;
81     uint32_t eflags;
82     uint32_t eip;
83     uint16_t cs, ss, ds, es, fs, gs;
84 };
85 #endif
86 
87 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
88 /* FPU emulator */
89 #include "nwfpe/fpa11.h"
90 #endif
91 
92 #define MAX_SIGQUEUE_SIZE 1024
93 
94 struct emulated_sigtable {
95     int pending; /* true if signal is pending */
96     target_siginfo_t info;
97 };
98 
99 /* NOTE: we force a big alignment so that the stack stored after is
100    aligned too */
101 typedef struct TaskState {
102     pid_t ts_tid;     /* tid (or pid) of this task */
103 #ifdef TARGET_ARM
104 # ifdef TARGET_ABI32
105     /* FPA state */
106     FPA11 fpa;
107 # endif
108     int swi_errno;
109 #endif
110 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
111     abi_ulong target_v86;
112     struct vm86_saved_state vm86_saved_regs;
113     struct target_vm86plus_struct vm86plus;
114     uint32_t v86flags;
115     uint32_t v86mask;
116 #endif
117     abi_ulong child_tidptr;
118 #ifdef TARGET_M68K
119     abi_ulong tp_value;
120 #endif
121 #if defined(TARGET_ARM) || defined(TARGET_M68K)
122     /* Extra fields for semihosted binaries.  */
123     abi_ulong heap_base;
124     abi_ulong heap_limit;
125 #endif
126     abi_ulong stack_base;
127     int used; /* non zero if used */
128     struct image_info *info;
129     struct linux_binprm *bprm;
130 
131     struct emulated_sigtable sync_signal;
132     struct emulated_sigtable sigtab[TARGET_NSIG];
133     /* This thread's signal mask, as requested by the guest program.
134      * The actual signal mask of this thread may differ:
135      *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
136      *  + sometimes we block all signals to avoid races
137      */
138     sigset_t signal_mask;
139     /* The signal mask imposed by a guest sigsuspend syscall, if we are
140      * currently in the middle of such a syscall
141      */
142     sigset_t sigsuspend_mask;
143     /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
144     int in_sigsuspend;
145 
146     /* Nonzero if process_pending_signals() needs to do something (either
147      * handle a pending signal or unblock signals).
148      * This flag is written from a signal handler so should be accessed via
149      * the atomic_read() and atomic_set() functions. (It is not accessed
150      * from multiple threads.)
151      */
152     int signal_pending;
153 
154     /* This thread's sigaltstack, if it has one */
155     struct target_sigaltstack sigaltstack_used;
156 } __attribute__((aligned(16))) TaskState;
157 
158 extern char *exec_path;
159 void init_task_state(TaskState *ts);
160 void task_settid(TaskState *);
161 void stop_all_tasks(void);
162 extern const char *qemu_uname_release;
163 extern unsigned long mmap_min_addr;
164 
165 /* ??? See if we can avoid exposing so much of the loader internals.  */
166 
167 /* Read a good amount of data initially, to hopefully get all the
168    program headers loaded.  */
169 #define BPRM_BUF_SIZE  1024
170 
171 /*
172  * This structure is used to hold the arguments that are
173  * used when loading binaries.
174  */
175 struct linux_binprm {
176         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
177         abi_ulong p;
178         int fd;
179         int e_uid, e_gid;
180         int argc, envc;
181         char **argv;
182         char **envp;
183         char * filename;        /* Name of binary */
184         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
185 };
186 
187 typedef struct IOCTLEntry IOCTLEntry;
188 
189 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
190                              int fd, int cmd, abi_long arg);
191 
192 struct IOCTLEntry {
193     int target_cmd;
194     unsigned int host_cmd;
195     const char *name;
196     int access;
197     do_ioctl_fn *do_ioctl;
198     const argtype arg_type[5];
199 };
200 
201 extern IOCTLEntry ioctl_entries[];
202 
203 #define IOC_R 0x0001
204 #define IOC_W 0x0002
205 #define IOC_RW (IOC_R | IOC_W)
206 
207 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
208 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
209                               abi_ulong stringp, int push_ptr);
210 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
211              struct target_pt_regs * regs, struct image_info *infop,
212              struct linux_binprm *);
213 
214 /* Returns true if the image uses the FDPIC ABI. If this is the case,
215  * we have to provide some information (loadmap, pt_dynamic_info) such
216  * that the program can be relocated adequately. This is also useful
217  * when handling signals.
218  */
219 int info_is_fdpic(struct image_info *info);
220 
221 uint32_t get_elf_eflags(int fd);
222 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
223 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
224 
225 abi_long memcpy_to_target(abi_ulong dest, const void *src,
226                           unsigned long len);
227 void target_set_brk(abi_ulong new_brk);
228 abi_long do_brk(abi_ulong new_brk);
229 void syscall_init(void);
230 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
231                     abi_long arg2, abi_long arg3, abi_long arg4,
232                     abi_long arg5, abi_long arg6, abi_long arg7,
233                     abi_long arg8);
234 extern __thread CPUState *thread_cpu;
235 void cpu_loop(CPUArchState *env);
236 const char *target_strerror(int err);
237 int get_osversion(void);
238 void init_qemu_uname_release(void);
239 void fork_start(void);
240 void fork_end(int child);
241 
242 /**
243  * probe_guest_base:
244  * @image_name: the executable being loaded
245  * @loaddr: the lowest fixed address in the executable
246  * @hiaddr: the highest fixed address in the executable
247  *
248  * Creates the initial guest address space in the host memory space.
249  *
250  * If @loaddr == 0, then no address in the executable is fixed,
251  * i.e. it is fully relocatable.  In that case @hiaddr is the size
252  * of the executable.
253  *
254  * This function will not return if a valid value for guest_base
255  * cannot be chosen.  On return, the executable loader can expect
256  *
257  *    target_mmap(loaddr, hiaddr - loaddr, ...)
258  *
259  * to succeed.
260  */
261 void probe_guest_base(const char *image_name,
262                       abi_ulong loaddr, abi_ulong hiaddr);
263 
264 #include "qemu/log.h"
265 
266 /* safe_syscall.S */
267 
268 /**
269  * safe_syscall:
270  * @int number: number of system call to make
271  * ...: arguments to the system call
272  *
273  * Call a system call if guest signal not pending.
274  * This has the same API as the libc syscall() function, except that it
275  * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
276  *
277  * Returns: the system call result, or -1 with an error code in errno
278  * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
279  * with any of the host errno values.)
280  */
281 
282 /* A guide to using safe_syscall() to handle interactions between guest
283  * syscalls and guest signals:
284  *
285  * Guest syscalls come in two flavours:
286  *
287  * (1) Non-interruptible syscalls
288  *
289  * These are guest syscalls that never get interrupted by signals and
290  * so never return EINTR. They can be implemented straightforwardly in
291  * QEMU: just make sure that if the implementation code has to make any
292  * blocking calls that those calls are retried if they return EINTR.
293  * It's also OK to implement these with safe_syscall, though it will be
294  * a little less efficient if a signal is delivered at the 'wrong' moment.
295  *
296  * Some non-interruptible syscalls need to be handled using block_signals()
297  * to block signals for the duration of the syscall. This mainly applies
298  * to code which needs to modify the data structures used by the
299  * host_signal_handler() function and the functions it calls, including
300  * all syscalls which change the thread's signal mask.
301  *
302  * (2) Interruptible syscalls
303  *
304  * These are guest syscalls that can be interrupted by signals and
305  * for which we need to either return EINTR or arrange for the guest
306  * syscall to be restarted. This category includes both syscalls which
307  * always restart (and in the kernel return -ERESTARTNOINTR), ones
308  * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
309  * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
310  * if the handler was registered with SA_RESTART (kernel returns
311  * -ERESTARTSYS). System calls which are only interruptible in some
312  * situations (like 'open') also need to be handled this way.
313  *
314  * Here it is important that the host syscall is made
315  * via this safe_syscall() function, and *not* via the host libc.
316  * If the host libc is used then the implementation will appear to work
317  * most of the time, but there will be a race condition where a
318  * signal could arrive just before we make the host syscall inside libc,
319  * and then then guest syscall will not correctly be interrupted.
320  * Instead the implementation of the guest syscall can use the safe_syscall
321  * function but otherwise just return the result or errno in the usual
322  * way; the main loop code will take care of restarting the syscall
323  * if appropriate.
324  *
325  * (If the implementation needs to make multiple host syscalls this is
326  * OK; any which might really block must be via safe_syscall(); for those
327  * which are only technically blocking (ie which we know in practice won't
328  * stay in the host kernel indefinitely) it's OK to use libc if necessary.
329  * You must be able to cope with backing out correctly if some safe_syscall
330  * you make in the implementation returns either -TARGET_ERESTARTSYS or
331  * EINTR though.)
332  *
333  * block_signals() cannot be used for interruptible syscalls.
334  *
335  *
336  * How and why the safe_syscall implementation works:
337  *
338  * The basic setup is that we make the host syscall via a known
339  * section of host native assembly. If a signal occurs, our signal
340  * handler checks the interrupted host PC against the addresse of that
341  * known section. If the PC is before or at the address of the syscall
342  * instruction then we change the PC to point at a "return
343  * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
344  * (causing the safe_syscall() call to immediately return that value).
345  * Then in the main.c loop if we see this magic return value we adjust
346  * the guest PC to wind it back to before the system call, and invoke
347  * the guest signal handler as usual.
348  *
349  * This winding-back will happen in two cases:
350  * (1) signal came in just before we took the host syscall (a race);
351  *   in this case we'll take the guest signal and have another go
352  *   at the syscall afterwards, and this is indistinguishable for the
353  *   guest from the timing having been different such that the guest
354  *   signal really did win the race
355  * (2) signal came in while the host syscall was blocking, and the
356  *   host kernel decided the syscall should be restarted;
357  *   in this case we want to restart the guest syscall also, and so
358  *   rewinding is the right thing. (Note that "restart" semantics mean
359  *   "first call the signal handler, then reattempt the syscall".)
360  * The other situation to consider is when a signal came in while the
361  * host syscall was blocking, and the host kernel decided that the syscall
362  * should not be restarted; in this case QEMU's host signal handler will
363  * be invoked with the PC pointing just after the syscall instruction,
364  * with registers indicating an EINTR return; the special code in the
365  * handler will not kick in, and we will return EINTR to the guest as
366  * we should.
367  *
368  * Notice that we can leave the host kernel to make the decision for
369  * us about whether to do a restart of the syscall or not; we do not
370  * need to check SA_RESTART flags in QEMU or distinguish the various
371  * kinds of restartability.
372  */
373 #ifdef HAVE_SAFE_SYSCALL
374 /* The core part of this function is implemented in assembly */
375 extern long safe_syscall_base(int *pending, long number, ...);
376 
377 #define safe_syscall(...)                                               \
378     ({                                                                  \
379         long ret_;                                                      \
380         int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
381         ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
382         if (is_error(ret_)) {                                           \
383             errno = -ret_;                                              \
384             ret_ = -1;                                                  \
385         }                                                               \
386         ret_;                                                           \
387     })
388 
389 #else
390 
391 /* Fallback for architectures which don't yet provide a safe-syscall assembly
392  * fragment; note that this is racy!
393  * This should go away when all host architectures have been updated.
394  */
395 #define safe_syscall syscall
396 
397 #endif
398 
399 /* syscall.c */
400 int host_to_target_waitstatus(int status);
401 
402 /* strace.c */
403 void print_syscall(void *cpu_env, int num,
404                    abi_long arg1, abi_long arg2, abi_long arg3,
405                    abi_long arg4, abi_long arg5, abi_long arg6);
406 void print_syscall_ret(void *cpu_env, int num, abi_long ret,
407                        abi_long arg1, abi_long arg2, abi_long arg3,
408                        abi_long arg4, abi_long arg5, abi_long arg6);
409 /**
410  * print_taken_signal:
411  * @target_signum: target signal being taken
412  * @tinfo: target_siginfo_t which will be passed to the guest for the signal
413  *
414  * Print strace output indicating that this signal is being taken by the guest,
415  * in a format similar to:
416  * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
417  */
418 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
419 
420 /* signal.c */
421 void process_pending_signals(CPUArchState *cpu_env);
422 void signal_init(void);
423 int queue_signal(CPUArchState *env, int sig, int si_type,
424                  target_siginfo_t *info);
425 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
426 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
427 int target_to_host_signal(int sig);
428 int host_to_target_signal(int sig);
429 long do_sigreturn(CPUArchState *env);
430 long do_rt_sigreturn(CPUArchState *env);
431 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
432 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
433 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
434                         abi_ulong unew_ctx, abi_long ctx_size);
435 /**
436  * block_signals: block all signals while handling this guest syscall
437  *
438  * Block all signals, and arrange that the signal mask is returned to
439  * its correct value for the guest before we resume execution of guest code.
440  * If this function returns non-zero, then the caller should immediately
441  * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
442  * signal and restart execution of the syscall.
443  * If block_signals() returns zero, then the caller can continue with
444  * emulation of the system call knowing that no signals can be taken
445  * (and therefore that no race conditions will result).
446  * This should only be called once, because if it is called a second time
447  * it will always return non-zero. (Think of it like a mutex that can't
448  * be recursively locked.)
449  * Signals will be unblocked again by process_pending_signals().
450  *
451  * Return value: non-zero if there was a pending signal, zero if not.
452  */
453 int block_signals(void); /* Returns non zero if signal pending */
454 
455 #ifdef TARGET_I386
456 /* vm86.c */
457 void save_v86_state(CPUX86State *env);
458 void handle_vm86_trap(CPUX86State *env, int trapno);
459 void handle_vm86_fault(CPUX86State *env);
460 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
461 #elif defined(TARGET_SPARC64)
462 void sparc64_set_context(CPUSPARCState *env);
463 void sparc64_get_context(CPUSPARCState *env);
464 #endif
465 
466 /* mmap.c */
467 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
468 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
469                      int flags, int fd, abi_ulong offset);
470 int target_munmap(abi_ulong start, abi_ulong len);
471 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
472                        abi_ulong new_size, unsigned long flags,
473                        abi_ulong new_addr);
474 extern unsigned long last_brk;
475 extern abi_ulong mmap_next_start;
476 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
477 void mmap_fork_start(void);
478 void mmap_fork_end(int child);
479 
480 /* main.c */
481 extern unsigned long guest_stack_size;
482 
483 /* user access */
484 
485 #define VERIFY_READ 0
486 #define VERIFY_WRITE 1 /* implies read access */
487 
488 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
489 {
490     return guest_addr_valid(addr) &&
491            (size == 0 || guest_addr_valid(addr + size - 1)) &&
492            page_check_range((target_ulong)addr, size,
493                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
494 }
495 
496 /* NOTE __get_user and __put_user use host pointers and don't check access.
497    These are usually used to access struct data members once the struct has
498    been locked - usually with lock_user_struct.  */
499 
500 /*
501  * Tricky points:
502  * - Use __builtin_choose_expr to avoid type promotion from ?:,
503  * - Invalid sizes result in a compile time error stemming from
504  *   the fact that abort has no parameters.
505  * - It's easier to use the endian-specific unaligned load/store
506  *   functions than host-endian unaligned load/store plus tswapN.
507  * - The pragmas are necessary only to silence a clang false-positive
508  *   warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
509  * - gcc has bugs in its _Pragma() support in some versions, eg
510  *   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
511  *   include the warning-suppression pragmas for clang
512  */
513 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
514 #define PRAGMA_DISABLE_PACKED_WARNING                                   \
515     _Pragma("GCC diagnostic push");                                     \
516     _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
517 
518 #define PRAGMA_REENABLE_PACKED_WARNING          \
519     _Pragma("GCC diagnostic pop")
520 
521 #else
522 #define PRAGMA_DISABLE_PACKED_WARNING
523 #define PRAGMA_REENABLE_PACKED_WARNING
524 #endif
525 
526 #define __put_user_e(x, hptr, e)                                            \
527     do {                                                                    \
528         PRAGMA_DISABLE_PACKED_WARNING;                                      \
529         (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                 \
530         __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,            \
531         __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,            \
532         __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))  \
533             ((hptr), (x)), (void)0);                                        \
534         PRAGMA_REENABLE_PACKED_WARNING;                                     \
535     } while (0)
536 
537 #define __get_user_e(x, hptr, e)                                            \
538     do {                                                                    \
539         PRAGMA_DISABLE_PACKED_WARNING;                                      \
540         ((x) = (typeof(*hptr))(                                             \
541         __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                 \
542         __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,           \
543         __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,            \
544         __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))  \
545             (hptr)), (void)0);                                              \
546         PRAGMA_REENABLE_PACKED_WARNING;                                     \
547     } while (0)
548 
549 
550 #ifdef TARGET_WORDS_BIGENDIAN
551 # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
552 # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
553 #else
554 # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
555 # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
556 #endif
557 
558 /* put_user()/get_user() take a guest address and check access */
559 /* These are usually used to access an atomic data type, such as an int,
560  * that has been passed by address.  These internally perform locking
561  * and unlocking on the data type.
562  */
563 #define put_user(x, gaddr, target_type)					\
564 ({									\
565     abi_ulong __gaddr = (gaddr);					\
566     target_type *__hptr;						\
567     abi_long __ret = 0;							\
568     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
569         __put_user((x), __hptr);				\
570         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
571     } else								\
572         __ret = -TARGET_EFAULT;						\
573     __ret;								\
574 })
575 
576 #define get_user(x, gaddr, target_type)					\
577 ({									\
578     abi_ulong __gaddr = (gaddr);					\
579     target_type *__hptr;						\
580     abi_long __ret = 0;							\
581     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
582         __get_user((x), __hptr);				\
583         unlock_user(__hptr, __gaddr, 0);				\
584     } else {								\
585         /* avoid warning */						\
586         (x) = 0;							\
587         __ret = -TARGET_EFAULT;						\
588     }									\
589     __ret;								\
590 })
591 
592 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
593 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
594 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
595 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
596 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
597 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
598 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
599 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
600 #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
601 #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
602 
603 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
604 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
605 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
606 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
607 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
608 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
609 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
610 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
611 #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
612 #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
613 
614 /* copy_from_user() and copy_to_user() are usually used to copy data
615  * buffers between the target and host.  These internally perform
616  * locking/unlocking of the memory.
617  */
618 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
619 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
620 
621 /* Functions for accessing guest memory.  The tget and tput functions
622    read/write single values, byteswapping as necessary.  The lock_user function
623    gets a pointer to a contiguous area of guest memory, but does not perform
624    any byteswapping.  lock_user may return either a pointer to the guest
625    memory, or a temporary buffer.  */
626 
627 /* Lock an area of guest memory into the host.  If copy is true then the
628    host area will have the same contents as the guest.  */
629 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
630 {
631     if (!access_ok(type, guest_addr, len))
632         return NULL;
633 #ifdef DEBUG_REMAP
634     {
635         void *addr;
636         addr = g_malloc(len);
637         if (copy)
638             memcpy(addr, g2h(guest_addr), len);
639         else
640             memset(addr, 0, len);
641         return addr;
642     }
643 #else
644     return g2h(guest_addr);
645 #endif
646 }
647 
648 /* Unlock an area of guest memory.  The first LEN bytes must be
649    flushed back to guest memory. host_ptr = NULL is explicitly
650    allowed and does nothing. */
651 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
652                                long len)
653 {
654 
655 #ifdef DEBUG_REMAP
656     if (!host_ptr)
657         return;
658     if (host_ptr == g2h(guest_addr))
659         return;
660     if (len > 0)
661         memcpy(g2h(guest_addr), host_ptr, len);
662     g_free(host_ptr);
663 #endif
664 }
665 
666 /* Return the length of a string in target memory or -TARGET_EFAULT if
667    access error. */
668 abi_long target_strlen(abi_ulong gaddr);
669 
670 /* Like lock_user but for null terminated strings.  */
671 static inline void *lock_user_string(abi_ulong guest_addr)
672 {
673     abi_long len;
674     len = target_strlen(guest_addr);
675     if (len < 0)
676         return NULL;
677     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
678 }
679 
680 /* Helper macros for locking/unlocking a target struct.  */
681 #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
682     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
683 #define unlock_user_struct(host_ptr, guest_addr, copy)		\
684     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
685 
686 #include <pthread.h>
687 
688 static inline int is_error(abi_long ret)
689 {
690     return (abi_ulong)ret >= (abi_ulong)(-4096);
691 }
692 
693 #if TARGET_ABI_BITS == 32
694 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
695 {
696 #ifdef TARGET_WORDS_BIGENDIAN
697     return ((uint64_t)word0 << 32) | word1;
698 #else
699     return ((uint64_t)word1 << 32) | word0;
700 #endif
701 }
702 #else /* TARGET_ABI_BITS == 32 */
703 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
704 {
705     return word0;
706 }
707 #endif /* TARGET_ABI_BITS != 32 */
708 
709 void print_termios(void *arg);
710 
711 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
712 #ifdef TARGET_ARM
713 static inline int regpairs_aligned(void *cpu_env, int num)
714 {
715     return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
716 }
717 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
718 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
719 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
720 /*
721  * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
722  * of registers which translates to the same as ARM/MIPS, because we start with
723  * r3 as arg1
724  */
725 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
726 #elif defined(TARGET_SH4)
727 /* SH4 doesn't align register pairs, except for p{read,write}64 */
728 static inline int regpairs_aligned(void *cpu_env, int num)
729 {
730     switch (num) {
731     case TARGET_NR_pread64:
732     case TARGET_NR_pwrite64:
733         return 1;
734 
735     default:
736         return 0;
737     }
738 }
739 #elif defined(TARGET_XTENSA)
740 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
741 #else
742 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
743 #endif
744 
745 /**
746  * preexit_cleanup: housekeeping before the guest exits
747  *
748  * env: the CPU state
749  * code: the exit code
750  */
751 void preexit_cleanup(CPUArchState *env, int code);
752 
753 /* Include target-specific struct and function definitions;
754  * they may need access to the target-independent structures
755  * above, so include them last.
756  */
757 #include "target_cpu.h"
758 #include "target_structs.h"
759 
760 #endif /* QEMU_H */
761