xref: /qemu/linux-user/signal.c (revision 8b7b9c5c)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "gdbstub/user.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 
24 #include <sys/ucontext.h>
25 #include <sys/resource.h>
26 
27 #include "qemu.h"
28 #include "user-internals.h"
29 #include "strace.h"
30 #include "loader.h"
31 #include "trace.h"
32 #include "signal-common.h"
33 #include "host-signal.h"
34 #include "user/safe-syscall.h"
35 
36 static struct target_sigaction sigact_table[TARGET_NSIG];
37 
38 static void host_signal_handler(int host_signum, siginfo_t *info,
39                                 void *puc);
40 
41 /* Fallback addresses into sigtramp page. */
42 abi_ulong default_sigreturn;
43 abi_ulong default_rt_sigreturn;
44 
45 /*
46  * System includes define _NSIG as SIGRTMAX + 1,
47  * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX
48  * and the first signal is SIGHUP defined as 1
49  * Signal number 0 is reserved for use as kill(pid, 0), to test whether
50  * a process exists without sending it a signal.
51  */
52 #ifdef __SIGRTMAX
53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
54 #endif
55 static uint8_t host_to_target_signal_table[_NSIG] = {
56 #define MAKE_SIG_ENTRY(sig)     [sig] = TARGET_##sig,
57         MAKE_SIGNAL_LIST
58 #undef MAKE_SIG_ENTRY
59     /* next signals stay the same */
60 };
61 
62 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
63 
64 /* valid sig is between 1 and _NSIG - 1 */
65 int host_to_target_signal(int sig)
66 {
67     if (sig < 1 || sig >= _NSIG) {
68         return sig;
69     }
70     return host_to_target_signal_table[sig];
71 }
72 
73 /* valid sig is between 1 and TARGET_NSIG */
74 int target_to_host_signal(int sig)
75 {
76     if (sig < 1 || sig > TARGET_NSIG) {
77         return sig;
78     }
79     return target_to_host_signal_table[sig];
80 }
81 
82 static inline void target_sigaddset(target_sigset_t *set, int signum)
83 {
84     signum--;
85     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
86     set->sig[signum / TARGET_NSIG_BPW] |= mask;
87 }
88 
89 static inline int target_sigismember(const target_sigset_t *set, int signum)
90 {
91     signum--;
92     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
93     return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
94 }
95 
96 void host_to_target_sigset_internal(target_sigset_t *d,
97                                     const sigset_t *s)
98 {
99     int host_sig, target_sig;
100     target_sigemptyset(d);
101     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
102         target_sig = host_to_target_signal(host_sig);
103         if (target_sig < 1 || target_sig > TARGET_NSIG) {
104             continue;
105         }
106         if (sigismember(s, host_sig)) {
107             target_sigaddset(d, target_sig);
108         }
109     }
110 }
111 
112 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
113 {
114     target_sigset_t d1;
115     int i;
116 
117     host_to_target_sigset_internal(&d1, s);
118     for(i = 0;i < TARGET_NSIG_WORDS; i++)
119         d->sig[i] = tswapal(d1.sig[i]);
120 }
121 
122 void target_to_host_sigset_internal(sigset_t *d,
123                                     const target_sigset_t *s)
124 {
125     int host_sig, target_sig;
126     sigemptyset(d);
127     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
128         host_sig = target_to_host_signal(target_sig);
129         if (host_sig < 1 || host_sig >= _NSIG) {
130             continue;
131         }
132         if (target_sigismember(s, target_sig)) {
133             sigaddset(d, host_sig);
134         }
135     }
136 }
137 
138 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
139 {
140     target_sigset_t s1;
141     int i;
142 
143     for(i = 0;i < TARGET_NSIG_WORDS; i++)
144         s1.sig[i] = tswapal(s->sig[i]);
145     target_to_host_sigset_internal(d, &s1);
146 }
147 
148 void host_to_target_old_sigset(abi_ulong *old_sigset,
149                                const sigset_t *sigset)
150 {
151     target_sigset_t d;
152     host_to_target_sigset(&d, sigset);
153     *old_sigset = d.sig[0];
154 }
155 
156 void target_to_host_old_sigset(sigset_t *sigset,
157                                const abi_ulong *old_sigset)
158 {
159     target_sigset_t d;
160     int i;
161 
162     d.sig[0] = *old_sigset;
163     for(i = 1;i < TARGET_NSIG_WORDS; i++)
164         d.sig[i] = 0;
165     target_to_host_sigset(sigset, &d);
166 }
167 
168 int block_signals(void)
169 {
170     TaskState *ts = (TaskState *)thread_cpu->opaque;
171     sigset_t set;
172 
173     /* It's OK to block everything including SIGSEGV, because we won't
174      * run any further guest code before unblocking signals in
175      * process_pending_signals().
176      */
177     sigfillset(&set);
178     sigprocmask(SIG_SETMASK, &set, 0);
179 
180     return qatomic_xchg(&ts->signal_pending, 1);
181 }
182 
183 /* Wrapper for sigprocmask function
184  * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
185  * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
186  * a signal was already pending and the syscall must be restarted, or
187  * 0 on success.
188  * If set is NULL, this is guaranteed not to fail.
189  */
190 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
191 {
192     TaskState *ts = (TaskState *)thread_cpu->opaque;
193 
194     if (oldset) {
195         *oldset = ts->signal_mask;
196     }
197 
198     if (set) {
199         int i;
200 
201         if (block_signals()) {
202             return -QEMU_ERESTARTSYS;
203         }
204 
205         switch (how) {
206         case SIG_BLOCK:
207             sigorset(&ts->signal_mask, &ts->signal_mask, set);
208             break;
209         case SIG_UNBLOCK:
210             for (i = 1; i <= NSIG; ++i) {
211                 if (sigismember(set, i)) {
212                     sigdelset(&ts->signal_mask, i);
213                 }
214             }
215             break;
216         case SIG_SETMASK:
217             ts->signal_mask = *set;
218             break;
219         default:
220             g_assert_not_reached();
221         }
222 
223         /* Silently ignore attempts to change blocking status of KILL or STOP */
224         sigdelset(&ts->signal_mask, SIGKILL);
225         sigdelset(&ts->signal_mask, SIGSTOP);
226     }
227     return 0;
228 }
229 
230 /* Just set the guest's signal mask to the specified value; the
231  * caller is assumed to have called block_signals() already.
232  */
233 void set_sigmask(const sigset_t *set)
234 {
235     TaskState *ts = (TaskState *)thread_cpu->opaque;
236 
237     ts->signal_mask = *set;
238 }
239 
240 /* sigaltstack management */
241 
242 int on_sig_stack(unsigned long sp)
243 {
244     TaskState *ts = (TaskState *)thread_cpu->opaque;
245 
246     return (sp - ts->sigaltstack_used.ss_sp
247             < ts->sigaltstack_used.ss_size);
248 }
249 
250 int sas_ss_flags(unsigned long sp)
251 {
252     TaskState *ts = (TaskState *)thread_cpu->opaque;
253 
254     return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
255             : on_sig_stack(sp) ? SS_ONSTACK : 0);
256 }
257 
258 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
259 {
260     /*
261      * This is the X/Open sanctioned signal stack switching.
262      */
263     TaskState *ts = (TaskState *)thread_cpu->opaque;
264 
265     if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
266         return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
267     }
268     return sp;
269 }
270 
271 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
272 {
273     TaskState *ts = (TaskState *)thread_cpu->opaque;
274 
275     __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
276     __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
277     __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
278 }
279 
280 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
281 {
282     TaskState *ts = (TaskState *)thread_cpu->opaque;
283     size_t minstacksize = TARGET_MINSIGSTKSZ;
284     target_stack_t ss;
285 
286 #if defined(TARGET_PPC64)
287     /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
288     struct image_info *image = ts->info;
289     if (get_ppc64_abi(image) > 1) {
290         minstacksize = 4096;
291     }
292 #endif
293 
294     __get_user(ss.ss_sp, &uss->ss_sp);
295     __get_user(ss.ss_size, &uss->ss_size);
296     __get_user(ss.ss_flags, &uss->ss_flags);
297 
298     if (on_sig_stack(get_sp_from_cpustate(env))) {
299         return -TARGET_EPERM;
300     }
301 
302     switch (ss.ss_flags) {
303     default:
304         return -TARGET_EINVAL;
305 
306     case TARGET_SS_DISABLE:
307         ss.ss_size = 0;
308         ss.ss_sp = 0;
309         break;
310 
311     case TARGET_SS_ONSTACK:
312     case 0:
313         if (ss.ss_size < minstacksize) {
314             return -TARGET_ENOMEM;
315         }
316         break;
317     }
318 
319     ts->sigaltstack_used.ss_sp = ss.ss_sp;
320     ts->sigaltstack_used.ss_size = ss.ss_size;
321     return 0;
322 }
323 
324 /* siginfo conversion */
325 
326 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
327                                                  const siginfo_t *info)
328 {
329     int sig = host_to_target_signal(info->si_signo);
330     int si_code = info->si_code;
331     int si_type;
332     tinfo->si_signo = sig;
333     tinfo->si_errno = 0;
334     tinfo->si_code = info->si_code;
335 
336     /* This memset serves two purposes:
337      * (1) ensure we don't leak random junk to the guest later
338      * (2) placate false positives from gcc about fields
339      *     being used uninitialized if it chooses to inline both this
340      *     function and tswap_siginfo() into host_to_target_siginfo().
341      */
342     memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
343 
344     /* This is awkward, because we have to use a combination of
345      * the si_code and si_signo to figure out which of the union's
346      * members are valid. (Within the host kernel it is always possible
347      * to tell, but the kernel carefully avoids giving userspace the
348      * high 16 bits of si_code, so we don't have the information to
349      * do this the easy way...) We therefore make our best guess,
350      * bearing in mind that a guest can spoof most of the si_codes
351      * via rt_sigqueueinfo() if it likes.
352      *
353      * Once we have made our guess, we record it in the top 16 bits of
354      * the si_code, so that tswap_siginfo() later can use it.
355      * tswap_siginfo() will strip these top bits out before writing
356      * si_code to the guest (sign-extending the lower bits).
357      */
358 
359     switch (si_code) {
360     case SI_USER:
361     case SI_TKILL:
362     case SI_KERNEL:
363         /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
364          * These are the only unspoofable si_code values.
365          */
366         tinfo->_sifields._kill._pid = info->si_pid;
367         tinfo->_sifields._kill._uid = info->si_uid;
368         si_type = QEMU_SI_KILL;
369         break;
370     default:
371         /* Everything else is spoofable. Make best guess based on signal */
372         switch (sig) {
373         case TARGET_SIGCHLD:
374             tinfo->_sifields._sigchld._pid = info->si_pid;
375             tinfo->_sifields._sigchld._uid = info->si_uid;
376             if (si_code == CLD_EXITED)
377                 tinfo->_sifields._sigchld._status = info->si_status;
378             else
379                 tinfo->_sifields._sigchld._status
380                     = host_to_target_signal(info->si_status & 0x7f)
381                         | (info->si_status & ~0x7f);
382             tinfo->_sifields._sigchld._utime = info->si_utime;
383             tinfo->_sifields._sigchld._stime = info->si_stime;
384             si_type = QEMU_SI_CHLD;
385             break;
386         case TARGET_SIGIO:
387             tinfo->_sifields._sigpoll._band = info->si_band;
388             tinfo->_sifields._sigpoll._fd = info->si_fd;
389             si_type = QEMU_SI_POLL;
390             break;
391         default:
392             /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
393             tinfo->_sifields._rt._pid = info->si_pid;
394             tinfo->_sifields._rt._uid = info->si_uid;
395             /* XXX: potential problem if 64 bit */
396             tinfo->_sifields._rt._sigval.sival_ptr
397                 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
398             si_type = QEMU_SI_RT;
399             break;
400         }
401         break;
402     }
403 
404     tinfo->si_code = deposit32(si_code, 16, 16, si_type);
405 }
406 
407 void tswap_siginfo(target_siginfo_t *tinfo,
408                    const target_siginfo_t *info)
409 {
410     int si_type = extract32(info->si_code, 16, 16);
411     int si_code = sextract32(info->si_code, 0, 16);
412 
413     __put_user(info->si_signo, &tinfo->si_signo);
414     __put_user(info->si_errno, &tinfo->si_errno);
415     __put_user(si_code, &tinfo->si_code);
416 
417     /* We can use our internal marker of which fields in the structure
418      * are valid, rather than duplicating the guesswork of
419      * host_to_target_siginfo_noswap() here.
420      */
421     switch (si_type) {
422     case QEMU_SI_KILL:
423         __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
424         __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
425         break;
426     case QEMU_SI_TIMER:
427         __put_user(info->_sifields._timer._timer1,
428                    &tinfo->_sifields._timer._timer1);
429         __put_user(info->_sifields._timer._timer2,
430                    &tinfo->_sifields._timer._timer2);
431         break;
432     case QEMU_SI_POLL:
433         __put_user(info->_sifields._sigpoll._band,
434                    &tinfo->_sifields._sigpoll._band);
435         __put_user(info->_sifields._sigpoll._fd,
436                    &tinfo->_sifields._sigpoll._fd);
437         break;
438     case QEMU_SI_FAULT:
439         __put_user(info->_sifields._sigfault._addr,
440                    &tinfo->_sifields._sigfault._addr);
441         break;
442     case QEMU_SI_CHLD:
443         __put_user(info->_sifields._sigchld._pid,
444                    &tinfo->_sifields._sigchld._pid);
445         __put_user(info->_sifields._sigchld._uid,
446                    &tinfo->_sifields._sigchld._uid);
447         __put_user(info->_sifields._sigchld._status,
448                    &tinfo->_sifields._sigchld._status);
449         __put_user(info->_sifields._sigchld._utime,
450                    &tinfo->_sifields._sigchld._utime);
451         __put_user(info->_sifields._sigchld._stime,
452                    &tinfo->_sifields._sigchld._stime);
453         break;
454     case QEMU_SI_RT:
455         __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
456         __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
457         __put_user(info->_sifields._rt._sigval.sival_ptr,
458                    &tinfo->_sifields._rt._sigval.sival_ptr);
459         break;
460     default:
461         g_assert_not_reached();
462     }
463 }
464 
465 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
466 {
467     target_siginfo_t tgt_tmp;
468     host_to_target_siginfo_noswap(&tgt_tmp, info);
469     tswap_siginfo(tinfo, &tgt_tmp);
470 }
471 
472 /* XXX: we support only POSIX RT signals are used. */
473 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
474 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
475 {
476     /* This conversion is used only for the rt_sigqueueinfo syscall,
477      * and so we know that the _rt fields are the valid ones.
478      */
479     abi_ulong sival_ptr;
480 
481     __get_user(info->si_signo, &tinfo->si_signo);
482     __get_user(info->si_errno, &tinfo->si_errno);
483     __get_user(info->si_code, &tinfo->si_code);
484     __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
485     __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
486     __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
487     info->si_value.sival_ptr = (void *)(long)sival_ptr;
488 }
489 
490 static int fatal_signal (int sig)
491 {
492     switch (sig) {
493     case TARGET_SIGCHLD:
494     case TARGET_SIGURG:
495     case TARGET_SIGWINCH:
496         /* Ignored by default.  */
497         return 0;
498     case TARGET_SIGCONT:
499     case TARGET_SIGSTOP:
500     case TARGET_SIGTSTP:
501     case TARGET_SIGTTIN:
502     case TARGET_SIGTTOU:
503         /* Job control signals.  */
504         return 0;
505     default:
506         return 1;
507     }
508 }
509 
510 /* returns 1 if given signal should dump core if not handled */
511 static int core_dump_signal(int sig)
512 {
513     switch (sig) {
514     case TARGET_SIGABRT:
515     case TARGET_SIGFPE:
516     case TARGET_SIGILL:
517     case TARGET_SIGQUIT:
518     case TARGET_SIGSEGV:
519     case TARGET_SIGTRAP:
520     case TARGET_SIGBUS:
521         return (1);
522     default:
523         return (0);
524     }
525 }
526 
527 static void signal_table_init(void)
528 {
529     int host_sig, target_sig, count;
530 
531     /*
532      * Signals are supported starting from TARGET_SIGRTMIN and going up
533      * until we run out of host realtime signals.
534      * glibc at least uses only the lower 2 rt signals and probably
535      * nobody's using the upper ones.
536      * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32)
537      * To fix this properly we need to do manual signal delivery multiplexed
538      * over a single host signal.
539      * Attempts for configure "missing" signals via sigaction will be
540      * silently ignored.
541      */
542     for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) {
543         target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN;
544         if (target_sig <= TARGET_NSIG) {
545             host_to_target_signal_table[host_sig] = target_sig;
546         }
547     }
548 
549     /* generate signal conversion tables */
550     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
551         target_to_host_signal_table[target_sig] = _NSIG; /* poison */
552     }
553     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
554         if (host_to_target_signal_table[host_sig] == 0) {
555             host_to_target_signal_table[host_sig] = host_sig;
556         }
557         target_sig = host_to_target_signal_table[host_sig];
558         if (target_sig <= TARGET_NSIG) {
559             target_to_host_signal_table[target_sig] = host_sig;
560         }
561     }
562 
563     if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) {
564         for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) {
565             if (target_to_host_signal_table[target_sig] == _NSIG) {
566                 count++;
567             }
568         }
569         trace_signal_table_init(count);
570     }
571 }
572 
573 void signal_init(void)
574 {
575     TaskState *ts = (TaskState *)thread_cpu->opaque;
576     struct sigaction act;
577     struct sigaction oact;
578     int i;
579     int host_sig;
580 
581     /* initialize signal conversion tables */
582     signal_table_init();
583 
584     /* Set the signal mask from the host mask. */
585     sigprocmask(0, 0, &ts->signal_mask);
586 
587     sigfillset(&act.sa_mask);
588     act.sa_flags = SA_SIGINFO;
589     act.sa_sigaction = host_signal_handler;
590     for(i = 1; i <= TARGET_NSIG; i++) {
591         host_sig = target_to_host_signal(i);
592         sigaction(host_sig, NULL, &oact);
593         if (oact.sa_sigaction == (void *)SIG_IGN) {
594             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
595         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
596             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
597         }
598         /* If there's already a handler installed then something has
599            gone horribly wrong, so don't even try to handle that case.  */
600         /* Install some handlers for our own use.  We need at least
601            SIGSEGV and SIGBUS, to detect exceptions.  We can not just
602            trap all signals because it affects syscall interrupt
603            behavior.  But do trap all default-fatal signals.  */
604         if (fatal_signal (i))
605             sigaction(host_sig, &act, NULL);
606     }
607 }
608 
609 /* Force a synchronously taken signal. The kernel force_sig() function
610  * also forces the signal to "not blocked, not ignored", but for QEMU
611  * that work is done in process_pending_signals().
612  */
613 void force_sig(int sig)
614 {
615     CPUState *cpu = thread_cpu;
616     CPUArchState *env = cpu_env(cpu);
617     target_siginfo_t info = {};
618 
619     info.si_signo = sig;
620     info.si_errno = 0;
621     info.si_code = TARGET_SI_KERNEL;
622     info._sifields._kill._pid = 0;
623     info._sifields._kill._uid = 0;
624     queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
625 }
626 
627 /*
628  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
629  * 'force' part is handled in process_pending_signals().
630  */
631 void force_sig_fault(int sig, int code, abi_ulong addr)
632 {
633     CPUState *cpu = thread_cpu;
634     CPUArchState *env = cpu_env(cpu);
635     target_siginfo_t info = {};
636 
637     info.si_signo = sig;
638     info.si_errno = 0;
639     info.si_code = code;
640     info._sifields._sigfault._addr = addr;
641     queue_signal(env, sig, QEMU_SI_FAULT, &info);
642 }
643 
644 /* Force a SIGSEGV if we couldn't write to memory trying to set
645  * up the signal frame. oldsig is the signal we were trying to handle
646  * at the point of failure.
647  */
648 #if !defined(TARGET_RISCV)
649 void force_sigsegv(int oldsig)
650 {
651     if (oldsig == SIGSEGV) {
652         /* Make sure we don't try to deliver the signal again; this will
653          * end up with handle_pending_signal() calling dump_core_and_abort().
654          */
655         sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
656     }
657     force_sig(TARGET_SIGSEGV);
658 }
659 #endif
660 
661 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
662                            MMUAccessType access_type, bool maperr, uintptr_t ra)
663 {
664     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
665 
666     if (tcg_ops->record_sigsegv) {
667         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
668     }
669 
670     force_sig_fault(TARGET_SIGSEGV,
671                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
672                     addr);
673     cpu->exception_index = EXCP_INTERRUPT;
674     cpu_loop_exit_restore(cpu, ra);
675 }
676 
677 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
678                           MMUAccessType access_type, uintptr_t ra)
679 {
680     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
681 
682     if (tcg_ops->record_sigbus) {
683         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
684     }
685 
686     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
687     cpu->exception_index = EXCP_INTERRUPT;
688     cpu_loop_exit_restore(cpu, ra);
689 }
690 
691 /* abort execution with signal */
692 static G_NORETURN
693 void dump_core_and_abort(CPUArchState *env, int target_sig)
694 {
695     CPUState *cpu = env_cpu(env);
696     TaskState *ts = (TaskState *)cpu->opaque;
697     int host_sig, core_dumped = 0;
698     struct sigaction act;
699 
700     host_sig = target_to_host_signal(target_sig);
701     trace_user_dump_core_and_abort(env, target_sig, host_sig);
702     gdb_signalled(env, target_sig);
703 
704     /* dump core if supported by target binary format */
705     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
706         stop_all_tasks();
707         core_dumped =
708             ((*ts->bprm->core_dump)(target_sig, env) == 0);
709     }
710     if (core_dumped) {
711         /* we already dumped the core of target process, we don't want
712          * a coredump of qemu itself */
713         struct rlimit nodump;
714         getrlimit(RLIMIT_CORE, &nodump);
715         nodump.rlim_cur=0;
716         setrlimit(RLIMIT_CORE, &nodump);
717         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
718             target_sig, strsignal(host_sig), "core dumped" );
719     }
720 
721     preexit_cleanup(env, 128 + target_sig);
722 
723     /* The proper exit code for dying from an uncaught signal is
724      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
725      * a negative value.  To get the proper exit code we need to
726      * actually die from an uncaught signal.  Here the default signal
727      * handler is installed, we send ourself a signal and we wait for
728      * it to arrive. */
729     sigfillset(&act.sa_mask);
730     act.sa_handler = SIG_DFL;
731     act.sa_flags = 0;
732     sigaction(host_sig, &act, NULL);
733 
734     /* For some reason raise(host_sig) doesn't send the signal when
735      * statically linked on x86-64. */
736     kill(getpid(), host_sig);
737 
738     /* Make sure the signal isn't masked (just reuse the mask inside
739     of act) */
740     sigdelset(&act.sa_mask, host_sig);
741     sigsuspend(&act.sa_mask);
742 
743     /* unreachable */
744     abort();
745 }
746 
747 /* queue a signal so that it will be send to the virtual CPU as soon
748    as possible */
749 void queue_signal(CPUArchState *env, int sig, int si_type,
750                   target_siginfo_t *info)
751 {
752     CPUState *cpu = env_cpu(env);
753     TaskState *ts = cpu->opaque;
754 
755     trace_user_queue_signal(env, sig);
756 
757     info->si_code = deposit32(info->si_code, 16, 16, si_type);
758 
759     ts->sync_signal.info = *info;
760     ts->sync_signal.pending = sig;
761     /* signal that a new signal is pending */
762     qatomic_set(&ts->signal_pending, 1);
763 }
764 
765 
766 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
767 static inline void rewind_if_in_safe_syscall(void *puc)
768 {
769     host_sigcontext *uc = (host_sigcontext *)puc;
770     uintptr_t pcreg = host_signal_pc(uc);
771 
772     if (pcreg > (uintptr_t)safe_syscall_start
773         && pcreg < (uintptr_t)safe_syscall_end) {
774         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
775     }
776 }
777 
778 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
779 {
780     CPUState *cpu = thread_cpu;
781     CPUArchState *env = cpu_env(cpu);
782     TaskState *ts = cpu->opaque;
783     target_siginfo_t tinfo;
784     host_sigcontext *uc = puc;
785     struct emulated_sigtable *k;
786     int guest_sig;
787     uintptr_t pc = 0;
788     bool sync_sig = false;
789     void *sigmask = host_signal_mask(uc);
790 
791     /*
792      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
793      * handling wrt signal blocking and unwinding.
794      */
795     if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
796         MMUAccessType access_type;
797         uintptr_t host_addr;
798         abi_ptr guest_addr;
799         bool is_write;
800 
801         host_addr = (uintptr_t)info->si_addr;
802 
803         /*
804          * Convert forcefully to guest address space: addresses outside
805          * reserved_va are still valid to report via SEGV_MAPERR.
806          */
807         guest_addr = h2g_nocheck(host_addr);
808 
809         pc = host_signal_pc(uc);
810         is_write = host_signal_write(info, uc);
811         access_type = adjust_signal_pc(&pc, is_write);
812 
813         if (host_sig == SIGSEGV) {
814             bool maperr = true;
815 
816             if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
817                 /* If this was a write to a TB protected page, restart. */
818                 if (is_write &&
819                     handle_sigsegv_accerr_write(cpu, sigmask, pc, guest_addr)) {
820                     return;
821                 }
822 
823                 /*
824                  * With reserved_va, the whole address space is PROT_NONE,
825                  * which means that we may get ACCERR when we want MAPERR.
826                  */
827                 if (page_get_flags(guest_addr) & PAGE_VALID) {
828                     maperr = false;
829                 } else {
830                     info->si_code = SEGV_MAPERR;
831                 }
832             }
833 
834             sigprocmask(SIG_SETMASK, sigmask, NULL);
835             cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
836         } else {
837             sigprocmask(SIG_SETMASK, sigmask, NULL);
838             if (info->si_code == BUS_ADRALN) {
839                 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
840             }
841         }
842 
843         sync_sig = true;
844     }
845 
846     /* get target signal number */
847     guest_sig = host_to_target_signal(host_sig);
848     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
849         return;
850     }
851     trace_user_host_signal(env, host_sig, guest_sig);
852 
853     host_to_target_siginfo_noswap(&tinfo, info);
854     k = &ts->sigtab[guest_sig - 1];
855     k->info = tinfo;
856     k->pending = guest_sig;
857     ts->signal_pending = 1;
858 
859     /*
860      * For synchronous signals, unwind the cpu state to the faulting
861      * insn and then exit back to the main loop so that the signal
862      * is delivered immediately.
863      */
864     if (sync_sig) {
865         cpu->exception_index = EXCP_INTERRUPT;
866         cpu_loop_exit_restore(cpu, pc);
867     }
868 
869     rewind_if_in_safe_syscall(puc);
870 
871     /*
872      * Block host signals until target signal handler entered. We
873      * can't block SIGSEGV or SIGBUS while we're executing guest
874      * code in case the guest code provokes one in the window between
875      * now and it getting out to the main loop. Signals will be
876      * unblocked again in process_pending_signals().
877      *
878      * WARNING: we cannot use sigfillset() here because the sigmask
879      * field is a kernel sigset_t, which is much smaller than the
880      * libc sigset_t which sigfillset() operates on. Using sigfillset()
881      * would write 0xff bytes off the end of the structure and trash
882      * data on the struct.
883      */
884     memset(sigmask, 0xff, SIGSET_T_SIZE);
885     sigdelset(sigmask, SIGSEGV);
886     sigdelset(sigmask, SIGBUS);
887 
888     /* interrupt the virtual CPU as soon as possible */
889     cpu_exit(thread_cpu);
890 }
891 
892 /* do_sigaltstack() returns target values and errnos. */
893 /* compare linux/kernel/signal.c:do_sigaltstack() */
894 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
895                         CPUArchState *env)
896 {
897     target_stack_t oss, *uoss = NULL;
898     abi_long ret = -TARGET_EFAULT;
899 
900     if (uoss_addr) {
901         /* Verify writability now, but do not alter user memory yet. */
902         if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
903             goto out;
904         }
905         target_save_altstack(&oss, env);
906     }
907 
908     if (uss_addr) {
909         target_stack_t *uss;
910 
911         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
912             goto out;
913         }
914         ret = target_restore_altstack(uss, env);
915         if (ret) {
916             goto out;
917         }
918     }
919 
920     if (uoss_addr) {
921         memcpy(uoss, &oss, sizeof(oss));
922         unlock_user_struct(uoss, uoss_addr, 1);
923         uoss = NULL;
924     }
925     ret = 0;
926 
927  out:
928     if (uoss) {
929         unlock_user_struct(uoss, uoss_addr, 0);
930     }
931     return ret;
932 }
933 
934 /* do_sigaction() return target values and host errnos */
935 int do_sigaction(int sig, const struct target_sigaction *act,
936                  struct target_sigaction *oact, abi_ulong ka_restorer)
937 {
938     struct target_sigaction *k;
939     struct sigaction act1;
940     int host_sig;
941     int ret = 0;
942 
943     trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
944 
945     if (sig < 1 || sig > TARGET_NSIG) {
946         return -TARGET_EINVAL;
947     }
948 
949     if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
950         return -TARGET_EINVAL;
951     }
952 
953     if (block_signals()) {
954         return -QEMU_ERESTARTSYS;
955     }
956 
957     k = &sigact_table[sig - 1];
958     if (oact) {
959         __put_user(k->_sa_handler, &oact->_sa_handler);
960         __put_user(k->sa_flags, &oact->sa_flags);
961 #ifdef TARGET_ARCH_HAS_SA_RESTORER
962         __put_user(k->sa_restorer, &oact->sa_restorer);
963 #endif
964         /* Not swapped.  */
965         oact->sa_mask = k->sa_mask;
966     }
967     if (act) {
968         __get_user(k->_sa_handler, &act->_sa_handler);
969         __get_user(k->sa_flags, &act->sa_flags);
970 #ifdef TARGET_ARCH_HAS_SA_RESTORER
971         __get_user(k->sa_restorer, &act->sa_restorer);
972 #endif
973 #ifdef TARGET_ARCH_HAS_KA_RESTORER
974         k->ka_restorer = ka_restorer;
975 #endif
976         /* To be swapped in target_to_host_sigset.  */
977         k->sa_mask = act->sa_mask;
978 
979         /* we update the host linux signal state */
980         host_sig = target_to_host_signal(sig);
981         trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
982         if (host_sig > SIGRTMAX) {
983             /* we don't have enough host signals to map all target signals */
984             qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
985                           sig);
986             /*
987              * we don't return an error here because some programs try to
988              * register an handler for all possible rt signals even if they
989              * don't need it.
990              * An error here can abort them whereas there can be no problem
991              * to not have the signal available later.
992              * This is the case for golang,
993              *   See https://github.com/golang/go/issues/33746
994              * So we silently ignore the error.
995              */
996             return 0;
997         }
998         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
999             sigfillset(&act1.sa_mask);
1000             act1.sa_flags = SA_SIGINFO;
1001             if (k->sa_flags & TARGET_SA_RESTART)
1002                 act1.sa_flags |= SA_RESTART;
1003             /* NOTE: it is important to update the host kernel signal
1004                ignore state to avoid getting unexpected interrupted
1005                syscalls */
1006             if (k->_sa_handler == TARGET_SIG_IGN) {
1007                 act1.sa_sigaction = (void *)SIG_IGN;
1008             } else if (k->_sa_handler == TARGET_SIG_DFL) {
1009                 if (fatal_signal (sig))
1010                     act1.sa_sigaction = host_signal_handler;
1011                 else
1012                     act1.sa_sigaction = (void *)SIG_DFL;
1013             } else {
1014                 act1.sa_sigaction = host_signal_handler;
1015             }
1016             ret = sigaction(host_sig, &act1, NULL);
1017         }
1018     }
1019     return ret;
1020 }
1021 
1022 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1023                                   struct emulated_sigtable *k)
1024 {
1025     CPUState *cpu = env_cpu(cpu_env);
1026     abi_ulong handler;
1027     sigset_t set;
1028     target_sigset_t target_old_set;
1029     struct target_sigaction *sa;
1030     TaskState *ts = cpu->opaque;
1031 
1032     trace_user_handle_signal(cpu_env, sig);
1033     /* dequeue signal */
1034     k->pending = 0;
1035 
1036     sig = gdb_handlesig(cpu, sig);
1037     if (!sig) {
1038         sa = NULL;
1039         handler = TARGET_SIG_IGN;
1040     } else {
1041         sa = &sigact_table[sig - 1];
1042         handler = sa->_sa_handler;
1043     }
1044 
1045     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1046         print_taken_signal(sig, &k->info);
1047     }
1048 
1049     if (handler == TARGET_SIG_DFL) {
1050         /* default handler : ignore some signal. The other are job control or fatal */
1051         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1052             kill(getpid(),SIGSTOP);
1053         } else if (sig != TARGET_SIGCHLD &&
1054                    sig != TARGET_SIGURG &&
1055                    sig != TARGET_SIGWINCH &&
1056                    sig != TARGET_SIGCONT) {
1057             dump_core_and_abort(cpu_env, sig);
1058         }
1059     } else if (handler == TARGET_SIG_IGN) {
1060         /* ignore sig */
1061     } else if (handler == TARGET_SIG_ERR) {
1062         dump_core_and_abort(cpu_env, sig);
1063     } else {
1064         /* compute the blocked signals during the handler execution */
1065         sigset_t *blocked_set;
1066 
1067         target_to_host_sigset(&set, &sa->sa_mask);
1068         /* SA_NODEFER indicates that the current signal should not be
1069            blocked during the handler */
1070         if (!(sa->sa_flags & TARGET_SA_NODEFER))
1071             sigaddset(&set, target_to_host_signal(sig));
1072 
1073         /* save the previous blocked signal state to restore it at the
1074            end of the signal execution (see do_sigreturn) */
1075         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1076 
1077         /* block signals in the handler */
1078         blocked_set = ts->in_sigsuspend ?
1079             &ts->sigsuspend_mask : &ts->signal_mask;
1080         sigorset(&ts->signal_mask, blocked_set, &set);
1081         ts->in_sigsuspend = 0;
1082 
1083         /* if the CPU is in VM86 mode, we restore the 32 bit values */
1084 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1085         {
1086             CPUX86State *env = cpu_env;
1087             if (env->eflags & VM_MASK)
1088                 save_v86_state(env);
1089         }
1090 #endif
1091         /* prepare the stack frame of the virtual CPU */
1092 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1093         if (sa->sa_flags & TARGET_SA_SIGINFO) {
1094             setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1095         } else {
1096             setup_frame(sig, sa, &target_old_set, cpu_env);
1097         }
1098 #else
1099         /* These targets do not have traditional signals.  */
1100         setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1101 #endif
1102         if (sa->sa_flags & TARGET_SA_RESETHAND) {
1103             sa->_sa_handler = TARGET_SIG_DFL;
1104         }
1105     }
1106 }
1107 
1108 void process_pending_signals(CPUArchState *cpu_env)
1109 {
1110     CPUState *cpu = env_cpu(cpu_env);
1111     int sig;
1112     TaskState *ts = cpu->opaque;
1113     sigset_t set;
1114     sigset_t *blocked_set;
1115 
1116     while (qatomic_read(&ts->signal_pending)) {
1117         sigfillset(&set);
1118         sigprocmask(SIG_SETMASK, &set, 0);
1119 
1120     restart_scan:
1121         sig = ts->sync_signal.pending;
1122         if (sig) {
1123             /* Synchronous signals are forced,
1124              * see force_sig_info() and callers in Linux
1125              * Note that not all of our queue_signal() calls in QEMU correspond
1126              * to force_sig_info() calls in Linux (some are send_sig_info()).
1127              * However it seems like a kernel bug to me to allow the process
1128              * to block a synchronous signal since it could then just end up
1129              * looping round and round indefinitely.
1130              */
1131             if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1132                 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1133                 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1134                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1135             }
1136 
1137             handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1138         }
1139 
1140         for (sig = 1; sig <= TARGET_NSIG; sig++) {
1141             blocked_set = ts->in_sigsuspend ?
1142                 &ts->sigsuspend_mask : &ts->signal_mask;
1143 
1144             if (ts->sigtab[sig - 1].pending &&
1145                 (!sigismember(blocked_set,
1146                               target_to_host_signal_table[sig]))) {
1147                 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1148                 /* Restart scan from the beginning, as handle_pending_signal
1149                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1150                  */
1151                 goto restart_scan;
1152             }
1153         }
1154 
1155         /* if no signal is pending, unblock signals and recheck (the act
1156          * of unblocking might cause us to take another host signal which
1157          * will set signal_pending again).
1158          */
1159         qatomic_set(&ts->signal_pending, 0);
1160         ts->in_sigsuspend = 0;
1161         set = ts->signal_mask;
1162         sigdelset(&set, SIGSEGV);
1163         sigdelset(&set, SIGBUS);
1164         sigprocmask(SIG_SETMASK, &set, 0);
1165     }
1166     ts->in_sigsuspend = 0;
1167 }
1168 
1169 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1170                             target_ulong sigsize)
1171 {
1172     TaskState *ts = (TaskState *)thread_cpu->opaque;
1173     sigset_t *host_set = &ts->sigsuspend_mask;
1174     target_sigset_t *target_sigset;
1175 
1176     if (sigsize != sizeof(*target_sigset)) {
1177         /* Like the kernel, we enforce correct size sigsets */
1178         return -TARGET_EINVAL;
1179     }
1180 
1181     target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1182     if (!target_sigset) {
1183         return -TARGET_EFAULT;
1184     }
1185     target_to_host_sigset(host_set, target_sigset);
1186     unlock_user(target_sigset, sigset, 0);
1187 
1188     *pset = host_set;
1189     return 0;
1190 }
1191