xref: /qemu/linux-user/signal.c (revision c8a7fc51)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "gdbstub/user.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 
24 #include <sys/ucontext.h>
25 #include <sys/resource.h>
26 
27 #include "qemu.h"
28 #include "user-internals.h"
29 #include "strace.h"
30 #include "loader.h"
31 #include "trace.h"
32 #include "signal-common.h"
33 #include "host-signal.h"
34 #include "user/safe-syscall.h"
35 #include "tcg/tcg.h"
36 
37 static struct target_sigaction sigact_table[TARGET_NSIG];
38 
39 static void host_signal_handler(int host_signum, siginfo_t *info,
40                                 void *puc);
41 
42 /* Fallback addresses into sigtramp page. */
43 abi_ulong default_sigreturn;
44 abi_ulong default_rt_sigreturn;
45 
46 /*
47  * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
48  * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
49  * Signal number 0 is reserved for use as kill(pid, 0), to test whether
50  * a process exists without sending it a signal.
51  */
52 #ifdef __SIGRTMAX
53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
54 #endif
55 static uint8_t host_to_target_signal_table[_NSIG] = {
56 #define MAKE_SIG_ENTRY(sig)     [sig] = TARGET_##sig,
57         MAKE_SIGNAL_LIST
58 #undef MAKE_SIG_ENTRY
59 };
60 
61 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
62 
63 /* valid sig is between 1 and _NSIG - 1 */
64 int host_to_target_signal(int sig)
65 {
66     if (sig < 1) {
67         return sig;
68     }
69     if (sig >= _NSIG) {
70         return TARGET_NSIG + 1;
71     }
72     return host_to_target_signal_table[sig];
73 }
74 
75 /* valid sig is between 1 and TARGET_NSIG */
76 int target_to_host_signal(int sig)
77 {
78     if (sig < 1) {
79         return sig;
80     }
81     if (sig > TARGET_NSIG) {
82         return _NSIG;
83     }
84     return target_to_host_signal_table[sig];
85 }
86 
87 static inline void target_sigaddset(target_sigset_t *set, int signum)
88 {
89     signum--;
90     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
91     set->sig[signum / TARGET_NSIG_BPW] |= mask;
92 }
93 
94 static inline int target_sigismember(const target_sigset_t *set, int signum)
95 {
96     signum--;
97     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
98     return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
99 }
100 
101 void host_to_target_sigset_internal(target_sigset_t *d,
102                                     const sigset_t *s)
103 {
104     int host_sig, target_sig;
105     target_sigemptyset(d);
106     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
107         target_sig = host_to_target_signal(host_sig);
108         if (target_sig < 1 || target_sig > TARGET_NSIG) {
109             continue;
110         }
111         if (sigismember(s, host_sig)) {
112             target_sigaddset(d, target_sig);
113         }
114     }
115 }
116 
117 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
118 {
119     target_sigset_t d1;
120     int i;
121 
122     host_to_target_sigset_internal(&d1, s);
123     for(i = 0;i < TARGET_NSIG_WORDS; i++)
124         d->sig[i] = tswapal(d1.sig[i]);
125 }
126 
127 void target_to_host_sigset_internal(sigset_t *d,
128                                     const target_sigset_t *s)
129 {
130     int host_sig, target_sig;
131     sigemptyset(d);
132     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
133         host_sig = target_to_host_signal(target_sig);
134         if (host_sig < 1 || host_sig >= _NSIG) {
135             continue;
136         }
137         if (target_sigismember(s, target_sig)) {
138             sigaddset(d, host_sig);
139         }
140     }
141 }
142 
143 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
144 {
145     target_sigset_t s1;
146     int i;
147 
148     for(i = 0;i < TARGET_NSIG_WORDS; i++)
149         s1.sig[i] = tswapal(s->sig[i]);
150     target_to_host_sigset_internal(d, &s1);
151 }
152 
153 void host_to_target_old_sigset(abi_ulong *old_sigset,
154                                const sigset_t *sigset)
155 {
156     target_sigset_t d;
157     host_to_target_sigset(&d, sigset);
158     *old_sigset = d.sig[0];
159 }
160 
161 void target_to_host_old_sigset(sigset_t *sigset,
162                                const abi_ulong *old_sigset)
163 {
164     target_sigset_t d;
165     int i;
166 
167     d.sig[0] = *old_sigset;
168     for(i = 1;i < TARGET_NSIG_WORDS; i++)
169         d.sig[i] = 0;
170     target_to_host_sigset(sigset, &d);
171 }
172 
173 int block_signals(void)
174 {
175     TaskState *ts = (TaskState *)thread_cpu->opaque;
176     sigset_t set;
177 
178     /* It's OK to block everything including SIGSEGV, because we won't
179      * run any further guest code before unblocking signals in
180      * process_pending_signals().
181      */
182     sigfillset(&set);
183     sigprocmask(SIG_SETMASK, &set, 0);
184 
185     return qatomic_xchg(&ts->signal_pending, 1);
186 }
187 
188 /* Wrapper for sigprocmask function
189  * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
190  * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
191  * a signal was already pending and the syscall must be restarted, or
192  * 0 on success.
193  * If set is NULL, this is guaranteed not to fail.
194  */
195 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
196 {
197     TaskState *ts = (TaskState *)thread_cpu->opaque;
198 
199     if (oldset) {
200         *oldset = ts->signal_mask;
201     }
202 
203     if (set) {
204         int i;
205 
206         if (block_signals()) {
207             return -QEMU_ERESTARTSYS;
208         }
209 
210         switch (how) {
211         case SIG_BLOCK:
212             sigorset(&ts->signal_mask, &ts->signal_mask, set);
213             break;
214         case SIG_UNBLOCK:
215             for (i = 1; i <= NSIG; ++i) {
216                 if (sigismember(set, i)) {
217                     sigdelset(&ts->signal_mask, i);
218                 }
219             }
220             break;
221         case SIG_SETMASK:
222             ts->signal_mask = *set;
223             break;
224         default:
225             g_assert_not_reached();
226         }
227 
228         /* Silently ignore attempts to change blocking status of KILL or STOP */
229         sigdelset(&ts->signal_mask, SIGKILL);
230         sigdelset(&ts->signal_mask, SIGSTOP);
231     }
232     return 0;
233 }
234 
235 /* Just set the guest's signal mask to the specified value; the
236  * caller is assumed to have called block_signals() already.
237  */
238 void set_sigmask(const sigset_t *set)
239 {
240     TaskState *ts = (TaskState *)thread_cpu->opaque;
241 
242     ts->signal_mask = *set;
243 }
244 
245 /* sigaltstack management */
246 
247 int on_sig_stack(unsigned long sp)
248 {
249     TaskState *ts = (TaskState *)thread_cpu->opaque;
250 
251     return (sp - ts->sigaltstack_used.ss_sp
252             < ts->sigaltstack_used.ss_size);
253 }
254 
255 int sas_ss_flags(unsigned long sp)
256 {
257     TaskState *ts = (TaskState *)thread_cpu->opaque;
258 
259     return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
260             : on_sig_stack(sp) ? SS_ONSTACK : 0);
261 }
262 
263 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
264 {
265     /*
266      * This is the X/Open sanctioned signal stack switching.
267      */
268     TaskState *ts = (TaskState *)thread_cpu->opaque;
269 
270     if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
271         return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
272     }
273     return sp;
274 }
275 
276 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
277 {
278     TaskState *ts = (TaskState *)thread_cpu->opaque;
279 
280     __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
281     __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
282     __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
283 }
284 
285 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
286 {
287     TaskState *ts = (TaskState *)thread_cpu->opaque;
288     size_t minstacksize = TARGET_MINSIGSTKSZ;
289     target_stack_t ss;
290 
291 #if defined(TARGET_PPC64)
292     /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
293     struct image_info *image = ts->info;
294     if (get_ppc64_abi(image) > 1) {
295         minstacksize = 4096;
296     }
297 #endif
298 
299     __get_user(ss.ss_sp, &uss->ss_sp);
300     __get_user(ss.ss_size, &uss->ss_size);
301     __get_user(ss.ss_flags, &uss->ss_flags);
302 
303     if (on_sig_stack(get_sp_from_cpustate(env))) {
304         return -TARGET_EPERM;
305     }
306 
307     switch (ss.ss_flags) {
308     default:
309         return -TARGET_EINVAL;
310 
311     case TARGET_SS_DISABLE:
312         ss.ss_size = 0;
313         ss.ss_sp = 0;
314         break;
315 
316     case TARGET_SS_ONSTACK:
317     case 0:
318         if (ss.ss_size < minstacksize) {
319             return -TARGET_ENOMEM;
320         }
321         break;
322     }
323 
324     ts->sigaltstack_used.ss_sp = ss.ss_sp;
325     ts->sigaltstack_used.ss_size = ss.ss_size;
326     return 0;
327 }
328 
329 /* siginfo conversion */
330 
331 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
332                                                  const siginfo_t *info)
333 {
334     int sig = host_to_target_signal(info->si_signo);
335     int si_code = info->si_code;
336     int si_type;
337     tinfo->si_signo = sig;
338     tinfo->si_errno = 0;
339     tinfo->si_code = info->si_code;
340 
341     /* This memset serves two purposes:
342      * (1) ensure we don't leak random junk to the guest later
343      * (2) placate false positives from gcc about fields
344      *     being used uninitialized if it chooses to inline both this
345      *     function and tswap_siginfo() into host_to_target_siginfo().
346      */
347     memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
348 
349     /* This is awkward, because we have to use a combination of
350      * the si_code and si_signo to figure out which of the union's
351      * members are valid. (Within the host kernel it is always possible
352      * to tell, but the kernel carefully avoids giving userspace the
353      * high 16 bits of si_code, so we don't have the information to
354      * do this the easy way...) We therefore make our best guess,
355      * bearing in mind that a guest can spoof most of the si_codes
356      * via rt_sigqueueinfo() if it likes.
357      *
358      * Once we have made our guess, we record it in the top 16 bits of
359      * the si_code, so that tswap_siginfo() later can use it.
360      * tswap_siginfo() will strip these top bits out before writing
361      * si_code to the guest (sign-extending the lower bits).
362      */
363 
364     switch (si_code) {
365     case SI_USER:
366     case SI_TKILL:
367     case SI_KERNEL:
368         /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
369          * These are the only unspoofable si_code values.
370          */
371         tinfo->_sifields._kill._pid = info->si_pid;
372         tinfo->_sifields._kill._uid = info->si_uid;
373         si_type = QEMU_SI_KILL;
374         break;
375     default:
376         /* Everything else is spoofable. Make best guess based on signal */
377         switch (sig) {
378         case TARGET_SIGCHLD:
379             tinfo->_sifields._sigchld._pid = info->si_pid;
380             tinfo->_sifields._sigchld._uid = info->si_uid;
381             if (si_code == CLD_EXITED)
382                 tinfo->_sifields._sigchld._status = info->si_status;
383             else
384                 tinfo->_sifields._sigchld._status
385                     = host_to_target_signal(info->si_status & 0x7f)
386                         | (info->si_status & ~0x7f);
387             tinfo->_sifields._sigchld._utime = info->si_utime;
388             tinfo->_sifields._sigchld._stime = info->si_stime;
389             si_type = QEMU_SI_CHLD;
390             break;
391         case TARGET_SIGIO:
392             tinfo->_sifields._sigpoll._band = info->si_band;
393             tinfo->_sifields._sigpoll._fd = info->si_fd;
394             si_type = QEMU_SI_POLL;
395             break;
396         default:
397             /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
398             tinfo->_sifields._rt._pid = info->si_pid;
399             tinfo->_sifields._rt._uid = info->si_uid;
400             /* XXX: potential problem if 64 bit */
401             tinfo->_sifields._rt._sigval.sival_ptr
402                 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
403             si_type = QEMU_SI_RT;
404             break;
405         }
406         break;
407     }
408 
409     tinfo->si_code = deposit32(si_code, 16, 16, si_type);
410 }
411 
412 void tswap_siginfo(target_siginfo_t *tinfo,
413                    const target_siginfo_t *info)
414 {
415     int si_type = extract32(info->si_code, 16, 16);
416     int si_code = sextract32(info->si_code, 0, 16);
417 
418     __put_user(info->si_signo, &tinfo->si_signo);
419     __put_user(info->si_errno, &tinfo->si_errno);
420     __put_user(si_code, &tinfo->si_code);
421 
422     /* We can use our internal marker of which fields in the structure
423      * are valid, rather than duplicating the guesswork of
424      * host_to_target_siginfo_noswap() here.
425      */
426     switch (si_type) {
427     case QEMU_SI_KILL:
428         __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
429         __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
430         break;
431     case QEMU_SI_TIMER:
432         __put_user(info->_sifields._timer._timer1,
433                    &tinfo->_sifields._timer._timer1);
434         __put_user(info->_sifields._timer._timer2,
435                    &tinfo->_sifields._timer._timer2);
436         break;
437     case QEMU_SI_POLL:
438         __put_user(info->_sifields._sigpoll._band,
439                    &tinfo->_sifields._sigpoll._band);
440         __put_user(info->_sifields._sigpoll._fd,
441                    &tinfo->_sifields._sigpoll._fd);
442         break;
443     case QEMU_SI_FAULT:
444         __put_user(info->_sifields._sigfault._addr,
445                    &tinfo->_sifields._sigfault._addr);
446         break;
447     case QEMU_SI_CHLD:
448         __put_user(info->_sifields._sigchld._pid,
449                    &tinfo->_sifields._sigchld._pid);
450         __put_user(info->_sifields._sigchld._uid,
451                    &tinfo->_sifields._sigchld._uid);
452         __put_user(info->_sifields._sigchld._status,
453                    &tinfo->_sifields._sigchld._status);
454         __put_user(info->_sifields._sigchld._utime,
455                    &tinfo->_sifields._sigchld._utime);
456         __put_user(info->_sifields._sigchld._stime,
457                    &tinfo->_sifields._sigchld._stime);
458         break;
459     case QEMU_SI_RT:
460         __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
461         __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
462         __put_user(info->_sifields._rt._sigval.sival_ptr,
463                    &tinfo->_sifields._rt._sigval.sival_ptr);
464         break;
465     default:
466         g_assert_not_reached();
467     }
468 }
469 
470 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
471 {
472     target_siginfo_t tgt_tmp;
473     host_to_target_siginfo_noswap(&tgt_tmp, info);
474     tswap_siginfo(tinfo, &tgt_tmp);
475 }
476 
477 /* XXX: we support only POSIX RT signals are used. */
478 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
479 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
480 {
481     /* This conversion is used only for the rt_sigqueueinfo syscall,
482      * and so we know that the _rt fields are the valid ones.
483      */
484     abi_ulong sival_ptr;
485 
486     __get_user(info->si_signo, &tinfo->si_signo);
487     __get_user(info->si_errno, &tinfo->si_errno);
488     __get_user(info->si_code, &tinfo->si_code);
489     __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
490     __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
491     __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
492     info->si_value.sival_ptr = (void *)(long)sival_ptr;
493 }
494 
495 /* returns 1 if given signal should dump core if not handled */
496 static int core_dump_signal(int sig)
497 {
498     switch (sig) {
499     case TARGET_SIGABRT:
500     case TARGET_SIGFPE:
501     case TARGET_SIGILL:
502     case TARGET_SIGQUIT:
503     case TARGET_SIGSEGV:
504     case TARGET_SIGTRAP:
505     case TARGET_SIGBUS:
506         return (1);
507     default:
508         return (0);
509     }
510 }
511 
512 static void signal_table_init(void)
513 {
514     int hsig, tsig, count;
515 
516     /*
517      * Signals are supported starting from TARGET_SIGRTMIN and going up
518      * until we run out of host realtime signals.  Glibc uses the lower 2
519      * RT signals and (hopefully) nobody uses the upper ones.
520      * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
521      * To fix this properly we would need to do manual signal delivery
522      * multiplexed over a single host signal.
523      * Attempts for configure "missing" signals via sigaction will be
524      * silently ignored.
525      *
526      * Remap the target SIGABRT, so that we can distinguish host abort
527      * from guest abort.  When the guest registers a signal handler or
528      * calls raise(SIGABRT), the host will raise SIG_RTn.  If the guest
529      * arrives at dump_core_and_abort(), we will map back to host SIGABRT
530      * so that the parent (native or emulated) sees the correct signal.
531      * Finally, also map host to guest SIGABRT so that the emulated
532      * parent sees the correct mapping from wait status.
533      */
534 
535     hsig = SIGRTMIN;
536     host_to_target_signal_table[SIGABRT] = 0;
537     host_to_target_signal_table[hsig++] = TARGET_SIGABRT;
538 
539     for (; hsig <= SIGRTMAX; hsig++) {
540         tsig = hsig - SIGRTMIN + TARGET_SIGRTMIN;
541         if (tsig <= TARGET_NSIG) {
542             host_to_target_signal_table[hsig] = tsig;
543         }
544     }
545 
546     /* Invert the mapping that has already been assigned. */
547     for (hsig = 1; hsig < _NSIG; hsig++) {
548         tsig = host_to_target_signal_table[hsig];
549         if (tsig) {
550             assert(target_to_host_signal_table[tsig] == 0);
551             target_to_host_signal_table[tsig] = hsig;
552         }
553     }
554 
555     host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
556 
557     /* Map everything else out-of-bounds. */
558     for (hsig = 1; hsig < _NSIG; hsig++) {
559         if (host_to_target_signal_table[hsig] == 0) {
560             host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
561         }
562     }
563     for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
564         if (target_to_host_signal_table[tsig] == 0) {
565             target_to_host_signal_table[tsig] = _NSIG;
566             count++;
567         }
568     }
569 
570     trace_signal_table_init(count);
571 }
572 
573 void signal_init(void)
574 {
575     TaskState *ts = (TaskState *)thread_cpu->opaque;
576     struct sigaction act, oact;
577 
578     /* initialize signal conversion tables */
579     signal_table_init();
580 
581     /* Set the signal mask from the host mask. */
582     sigprocmask(0, 0, &ts->signal_mask);
583 
584     sigfillset(&act.sa_mask);
585     act.sa_flags = SA_SIGINFO;
586     act.sa_sigaction = host_signal_handler;
587 
588     /*
589      * A parent process may configure ignored signals, but all other
590      * signals are default.  For any target signals that have no host
591      * mapping, set to ignore.  For all core_dump_signal, install our
592      * host signal handler so that we may invoke dump_core_and_abort.
593      * This includes SIGSEGV and SIGBUS, which are also need our signal
594      * handler for paging and exceptions.
595      */
596     for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
597         int hsig = target_to_host_signal(tsig);
598         abi_ptr thand = TARGET_SIG_IGN;
599 
600         if (hsig >= _NSIG) {
601             continue;
602         }
603 
604         /* As we force remap SIGABRT, cannot probe and install in one step. */
605         if (tsig == TARGET_SIGABRT) {
606             sigaction(SIGABRT, NULL, &oact);
607             sigaction(hsig, &act, NULL);
608         } else {
609             struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
610             sigaction(hsig, iact, &oact);
611         }
612 
613         if (oact.sa_sigaction != (void *)SIG_IGN) {
614             thand = TARGET_SIG_DFL;
615         }
616         sigact_table[tsig - 1]._sa_handler = thand;
617     }
618 }
619 
620 /* Force a synchronously taken signal. The kernel force_sig() function
621  * also forces the signal to "not blocked, not ignored", but for QEMU
622  * that work is done in process_pending_signals().
623  */
624 void force_sig(int sig)
625 {
626     CPUState *cpu = thread_cpu;
627     CPUArchState *env = cpu_env(cpu);
628     target_siginfo_t info = {};
629 
630     info.si_signo = sig;
631     info.si_errno = 0;
632     info.si_code = TARGET_SI_KERNEL;
633     info._sifields._kill._pid = 0;
634     info._sifields._kill._uid = 0;
635     queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
636 }
637 
638 /*
639  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
640  * 'force' part is handled in process_pending_signals().
641  */
642 void force_sig_fault(int sig, int code, abi_ulong addr)
643 {
644     CPUState *cpu = thread_cpu;
645     CPUArchState *env = cpu_env(cpu);
646     target_siginfo_t info = {};
647 
648     info.si_signo = sig;
649     info.si_errno = 0;
650     info.si_code = code;
651     info._sifields._sigfault._addr = addr;
652     queue_signal(env, sig, QEMU_SI_FAULT, &info);
653 }
654 
655 /* Force a SIGSEGV if we couldn't write to memory trying to set
656  * up the signal frame. oldsig is the signal we were trying to handle
657  * at the point of failure.
658  */
659 #if !defined(TARGET_RISCV)
660 void force_sigsegv(int oldsig)
661 {
662     if (oldsig == SIGSEGV) {
663         /* Make sure we don't try to deliver the signal again; this will
664          * end up with handle_pending_signal() calling dump_core_and_abort().
665          */
666         sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
667     }
668     force_sig(TARGET_SIGSEGV);
669 }
670 #endif
671 
672 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
673                            MMUAccessType access_type, bool maperr, uintptr_t ra)
674 {
675     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
676 
677     if (tcg_ops->record_sigsegv) {
678         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
679     }
680 
681     force_sig_fault(TARGET_SIGSEGV,
682                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
683                     addr);
684     cpu->exception_index = EXCP_INTERRUPT;
685     cpu_loop_exit_restore(cpu, ra);
686 }
687 
688 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
689                           MMUAccessType access_type, uintptr_t ra)
690 {
691     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
692 
693     if (tcg_ops->record_sigbus) {
694         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
695     }
696 
697     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
698     cpu->exception_index = EXCP_INTERRUPT;
699     cpu_loop_exit_restore(cpu, ra);
700 }
701 
702 /* abort execution with signal */
703 static G_NORETURN
704 void die_with_signal(int host_sig)
705 {
706     struct sigaction act = {
707         .sa_handler = SIG_DFL,
708     };
709 
710     /*
711      * The proper exit code for dying from an uncaught signal is -<signal>.
712      * The kernel doesn't allow exit() or _exit() to pass a negative value.
713      * To get the proper exit code we need to actually die from an uncaught
714      * signal.  Here the default signal handler is installed, we send
715      * the signal and we wait for it to arrive.
716      */
717     sigfillset(&act.sa_mask);
718     sigaction(host_sig, &act, NULL);
719 
720     kill(getpid(), host_sig);
721 
722     /* Make sure the signal isn't masked (reusing the mask inside of act). */
723     sigdelset(&act.sa_mask, host_sig);
724     sigsuspend(&act.sa_mask);
725 
726     /* unreachable */
727     _exit(EXIT_FAILURE);
728 }
729 
730 static G_NORETURN
731 void dump_core_and_abort(CPUArchState *env, int target_sig)
732 {
733     CPUState *cpu = env_cpu(env);
734     TaskState *ts = (TaskState *)cpu->opaque;
735     int host_sig, core_dumped = 0;
736 
737     /* On exit, undo the remapping of SIGABRT. */
738     if (target_sig == TARGET_SIGABRT) {
739         host_sig = SIGABRT;
740     } else {
741         host_sig = target_to_host_signal(target_sig);
742     }
743     trace_user_dump_core_and_abort(env, target_sig, host_sig);
744     gdb_signalled(env, target_sig);
745 
746     /* dump core if supported by target binary format */
747     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
748         stop_all_tasks();
749         core_dumped =
750             ((*ts->bprm->core_dump)(target_sig, env) == 0);
751     }
752     if (core_dumped) {
753         /* we already dumped the core of target process, we don't want
754          * a coredump of qemu itself */
755         struct rlimit nodump;
756         getrlimit(RLIMIT_CORE, &nodump);
757         nodump.rlim_cur=0;
758         setrlimit(RLIMIT_CORE, &nodump);
759         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
760             target_sig, strsignal(host_sig), "core dumped" );
761     }
762 
763     preexit_cleanup(env, 128 + target_sig);
764     die_with_signal(host_sig);
765 }
766 
767 /* queue a signal so that it will be send to the virtual CPU as soon
768    as possible */
769 void queue_signal(CPUArchState *env, int sig, int si_type,
770                   target_siginfo_t *info)
771 {
772     CPUState *cpu = env_cpu(env);
773     TaskState *ts = cpu->opaque;
774 
775     trace_user_queue_signal(env, sig);
776 
777     info->si_code = deposit32(info->si_code, 16, 16, si_type);
778 
779     ts->sync_signal.info = *info;
780     ts->sync_signal.pending = sig;
781     /* signal that a new signal is pending */
782     qatomic_set(&ts->signal_pending, 1);
783 }
784 
785 
786 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
787 static inline void rewind_if_in_safe_syscall(void *puc)
788 {
789     host_sigcontext *uc = (host_sigcontext *)puc;
790     uintptr_t pcreg = host_signal_pc(uc);
791 
792     if (pcreg > (uintptr_t)safe_syscall_start
793         && pcreg < (uintptr_t)safe_syscall_end) {
794         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
795     }
796 }
797 
798 static G_NORETURN
799 void die_from_signal(siginfo_t *info)
800 {
801     char sigbuf[4], codebuf[12];
802     const char *sig, *code = NULL;
803 
804     switch (info->si_signo) {
805     case SIGSEGV:
806         sig = "SEGV";
807         switch (info->si_code) {
808         case SEGV_MAPERR:
809             code = "MAPERR";
810             break;
811         case SEGV_ACCERR:
812             code = "ACCERR";
813             break;
814         }
815         break;
816     case SIGBUS:
817         sig = "BUS";
818         switch (info->si_code) {
819         case BUS_ADRALN:
820             code = "ADRALN";
821             break;
822         case BUS_ADRERR:
823             code = "ADRERR";
824             break;
825         }
826         break;
827     case SIGILL:
828         sig = "ILL";
829         switch (info->si_code) {
830         case ILL_ILLOPC:
831             code = "ILLOPC";
832             break;
833         case ILL_ILLOPN:
834             code = "ILLOPN";
835             break;
836         case ILL_ILLADR:
837             code = "ILLADR";
838             break;
839         case ILL_PRVOPC:
840             code = "PRVOPC";
841             break;
842         case ILL_PRVREG:
843             code = "PRVREG";
844             break;
845         case ILL_COPROC:
846             code = "COPROC";
847             break;
848         }
849         break;
850     case SIGFPE:
851         sig = "FPE";
852         switch (info->si_code) {
853         case FPE_INTDIV:
854             code = "INTDIV";
855             break;
856         case FPE_INTOVF:
857             code = "INTOVF";
858             break;
859         }
860         break;
861     case SIGTRAP:
862         sig = "TRAP";
863         break;
864     default:
865         snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
866         sig = sigbuf;
867         break;
868     }
869     if (code == NULL) {
870         snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
871         code = codebuf;
872     }
873 
874     error_report("QEMU internal SIG%s {code=%s, addr=%p}",
875                  sig, code, info->si_addr);
876     die_with_signal(info->si_signo);
877 }
878 
879 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
880                                  host_sigcontext *uc)
881 {
882     uintptr_t host_addr = (uintptr_t)info->si_addr;
883     /*
884      * Convert forcefully to guest address space: addresses outside
885      * reserved_va are still valid to report via SEGV_MAPERR.
886      */
887     bool is_valid = h2g_valid(host_addr);
888     abi_ptr guest_addr = h2g_nocheck(host_addr);
889     uintptr_t pc = host_signal_pc(uc);
890     bool is_write = host_signal_write(info, uc);
891     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
892     bool maperr;
893 
894     /* If this was a write to a TB protected page, restart. */
895     if (is_write
896         && is_valid
897         && info->si_code == SEGV_ACCERR
898         && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
899                                        pc, guest_addr)) {
900         return;
901     }
902 
903     /*
904      * If the access was not on behalf of the guest, within the executable
905      * mapping of the generated code buffer, then it is a host bug.
906      */
907     if (access_type != MMU_INST_FETCH
908         && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
909         die_from_signal(info);
910     }
911 
912     maperr = true;
913     if (is_valid && info->si_code == SEGV_ACCERR) {
914         /*
915          * With reserved_va, the whole address space is PROT_NONE,
916          * which means that we may get ACCERR when we want MAPERR.
917          */
918         if (page_get_flags(guest_addr) & PAGE_VALID) {
919             maperr = false;
920         } else {
921             info->si_code = SEGV_MAPERR;
922         }
923     }
924 
925     sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
926     cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
927 }
928 
929 static void host_sigbus_handler(CPUState *cpu, siginfo_t *info,
930                                 host_sigcontext *uc)
931 {
932     uintptr_t pc = host_signal_pc(uc);
933     bool is_write = host_signal_write(info, uc);
934     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
935 
936     /*
937      * If the access was not on behalf of the guest, within the executable
938      * mapping of the generated code buffer, then it is a host bug.
939      */
940     if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
941         die_from_signal(info);
942     }
943 
944     if (info->si_code == BUS_ADRALN) {
945         uintptr_t host_addr = (uintptr_t)info->si_addr;
946         abi_ptr guest_addr = h2g_nocheck(host_addr);
947 
948         sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
949         cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
950     }
951 }
952 
953 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
954 {
955     CPUState *cpu = thread_cpu;
956     CPUArchState *env = cpu_env(cpu);
957     TaskState *ts = cpu->opaque;
958     target_siginfo_t tinfo;
959     host_sigcontext *uc = puc;
960     struct emulated_sigtable *k;
961     int guest_sig;
962     uintptr_t pc = 0;
963     bool sync_sig = false;
964     void *sigmask;
965 
966     /*
967      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
968      * handling wrt signal blocking and unwinding.  Non-spoofed SIGILL,
969      * SIGFPE, SIGTRAP are always host bugs.
970      */
971     if (info->si_code > 0) {
972         switch (host_sig) {
973         case SIGSEGV:
974             /* Only returns on handle_sigsegv_accerr_write success. */
975             host_sigsegv_handler(cpu, info, uc);
976             return;
977         case SIGBUS:
978             host_sigbus_handler(cpu, info, uc);
979             sync_sig = true;
980             break;
981         case SIGILL:
982         case SIGFPE:
983         case SIGTRAP:
984             die_from_signal(info);
985         }
986     }
987 
988     /* get target signal number */
989     guest_sig = host_to_target_signal(host_sig);
990     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
991         return;
992     }
993     trace_user_host_signal(env, host_sig, guest_sig);
994 
995     host_to_target_siginfo_noswap(&tinfo, info);
996     k = &ts->sigtab[guest_sig - 1];
997     k->info = tinfo;
998     k->pending = guest_sig;
999     ts->signal_pending = 1;
1000 
1001     /*
1002      * For synchronous signals, unwind the cpu state to the faulting
1003      * insn and then exit back to the main loop so that the signal
1004      * is delivered immediately.
1005      */
1006     if (sync_sig) {
1007         cpu->exception_index = EXCP_INTERRUPT;
1008         cpu_loop_exit_restore(cpu, pc);
1009     }
1010 
1011     rewind_if_in_safe_syscall(puc);
1012 
1013     /*
1014      * Block host signals until target signal handler entered. We
1015      * can't block SIGSEGV or SIGBUS while we're executing guest
1016      * code in case the guest code provokes one in the window between
1017      * now and it getting out to the main loop. Signals will be
1018      * unblocked again in process_pending_signals().
1019      *
1020      * WARNING: we cannot use sigfillset() here because the sigmask
1021      * field is a kernel sigset_t, which is much smaller than the
1022      * libc sigset_t which sigfillset() operates on. Using sigfillset()
1023      * would write 0xff bytes off the end of the structure and trash
1024      * data on the struct.
1025      */
1026     sigmask = host_signal_mask(uc);
1027     memset(sigmask, 0xff, SIGSET_T_SIZE);
1028     sigdelset(sigmask, SIGSEGV);
1029     sigdelset(sigmask, SIGBUS);
1030 
1031     /* interrupt the virtual CPU as soon as possible */
1032     cpu_exit(thread_cpu);
1033 }
1034 
1035 /* do_sigaltstack() returns target values and errnos. */
1036 /* compare linux/kernel/signal.c:do_sigaltstack() */
1037 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
1038                         CPUArchState *env)
1039 {
1040     target_stack_t oss, *uoss = NULL;
1041     abi_long ret = -TARGET_EFAULT;
1042 
1043     if (uoss_addr) {
1044         /* Verify writability now, but do not alter user memory yet. */
1045         if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
1046             goto out;
1047         }
1048         target_save_altstack(&oss, env);
1049     }
1050 
1051     if (uss_addr) {
1052         target_stack_t *uss;
1053 
1054         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
1055             goto out;
1056         }
1057         ret = target_restore_altstack(uss, env);
1058         if (ret) {
1059             goto out;
1060         }
1061     }
1062 
1063     if (uoss_addr) {
1064         memcpy(uoss, &oss, sizeof(oss));
1065         unlock_user_struct(uoss, uoss_addr, 1);
1066         uoss = NULL;
1067     }
1068     ret = 0;
1069 
1070  out:
1071     if (uoss) {
1072         unlock_user_struct(uoss, uoss_addr, 0);
1073     }
1074     return ret;
1075 }
1076 
1077 /* do_sigaction() return target values and host errnos */
1078 int do_sigaction(int sig, const struct target_sigaction *act,
1079                  struct target_sigaction *oact, abi_ulong ka_restorer)
1080 {
1081     struct target_sigaction *k;
1082     int host_sig;
1083     int ret = 0;
1084 
1085     trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
1086 
1087     if (sig < 1 || sig > TARGET_NSIG) {
1088         return -TARGET_EINVAL;
1089     }
1090 
1091     if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
1092         return -TARGET_EINVAL;
1093     }
1094 
1095     if (block_signals()) {
1096         return -QEMU_ERESTARTSYS;
1097     }
1098 
1099     k = &sigact_table[sig - 1];
1100     if (oact) {
1101         __put_user(k->_sa_handler, &oact->_sa_handler);
1102         __put_user(k->sa_flags, &oact->sa_flags);
1103 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1104         __put_user(k->sa_restorer, &oact->sa_restorer);
1105 #endif
1106         /* Not swapped.  */
1107         oact->sa_mask = k->sa_mask;
1108     }
1109     if (act) {
1110         __get_user(k->_sa_handler, &act->_sa_handler);
1111         __get_user(k->sa_flags, &act->sa_flags);
1112 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1113         __get_user(k->sa_restorer, &act->sa_restorer);
1114 #endif
1115 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1116         k->ka_restorer = ka_restorer;
1117 #endif
1118         /* To be swapped in target_to_host_sigset.  */
1119         k->sa_mask = act->sa_mask;
1120 
1121         /* we update the host linux signal state */
1122         host_sig = target_to_host_signal(sig);
1123         trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1124         if (host_sig > SIGRTMAX) {
1125             /* we don't have enough host signals to map all target signals */
1126             qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1127                           sig);
1128             /*
1129              * we don't return an error here because some programs try to
1130              * register an handler for all possible rt signals even if they
1131              * don't need it.
1132              * An error here can abort them whereas there can be no problem
1133              * to not have the signal available later.
1134              * This is the case for golang,
1135              *   See https://github.com/golang/go/issues/33746
1136              * So we silently ignore the error.
1137              */
1138             return 0;
1139         }
1140         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1141             struct sigaction act1;
1142 
1143             sigfillset(&act1.sa_mask);
1144             act1.sa_flags = SA_SIGINFO;
1145             if (k->_sa_handler == TARGET_SIG_IGN) {
1146                 /*
1147                  * It is important to update the host kernel signal ignore
1148                  * state to avoid getting unexpected interrupted syscalls.
1149                  */
1150                 act1.sa_sigaction = (void *)SIG_IGN;
1151             } else if (k->_sa_handler == TARGET_SIG_DFL) {
1152                 if (core_dump_signal(sig)) {
1153                     act1.sa_sigaction = host_signal_handler;
1154                 } else {
1155                     act1.sa_sigaction = (void *)SIG_DFL;
1156                 }
1157             } else {
1158                 act1.sa_sigaction = host_signal_handler;
1159                 if (k->sa_flags & TARGET_SA_RESTART) {
1160                     act1.sa_flags |= SA_RESTART;
1161                 }
1162             }
1163             ret = sigaction(host_sig, &act1, NULL);
1164         }
1165     }
1166     return ret;
1167 }
1168 
1169 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1170                                   struct emulated_sigtable *k)
1171 {
1172     CPUState *cpu = env_cpu(cpu_env);
1173     abi_ulong handler;
1174     sigset_t set;
1175     target_sigset_t target_old_set;
1176     struct target_sigaction *sa;
1177     TaskState *ts = cpu->opaque;
1178 
1179     trace_user_handle_signal(cpu_env, sig);
1180     /* dequeue signal */
1181     k->pending = 0;
1182 
1183     sig = gdb_handlesig(cpu, sig);
1184     if (!sig) {
1185         sa = NULL;
1186         handler = TARGET_SIG_IGN;
1187     } else {
1188         sa = &sigact_table[sig - 1];
1189         handler = sa->_sa_handler;
1190     }
1191 
1192     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1193         print_taken_signal(sig, &k->info);
1194     }
1195 
1196     if (handler == TARGET_SIG_DFL) {
1197         /* default handler : ignore some signal. The other are job control or fatal */
1198         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1199             kill(getpid(),SIGSTOP);
1200         } else if (sig != TARGET_SIGCHLD &&
1201                    sig != TARGET_SIGURG &&
1202                    sig != TARGET_SIGWINCH &&
1203                    sig != TARGET_SIGCONT) {
1204             dump_core_and_abort(cpu_env, sig);
1205         }
1206     } else if (handler == TARGET_SIG_IGN) {
1207         /* ignore sig */
1208     } else if (handler == TARGET_SIG_ERR) {
1209         dump_core_and_abort(cpu_env, sig);
1210     } else {
1211         /* compute the blocked signals during the handler execution */
1212         sigset_t *blocked_set;
1213 
1214         target_to_host_sigset(&set, &sa->sa_mask);
1215         /* SA_NODEFER indicates that the current signal should not be
1216            blocked during the handler */
1217         if (!(sa->sa_flags & TARGET_SA_NODEFER))
1218             sigaddset(&set, target_to_host_signal(sig));
1219 
1220         /* save the previous blocked signal state to restore it at the
1221            end of the signal execution (see do_sigreturn) */
1222         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1223 
1224         /* block signals in the handler */
1225         blocked_set = ts->in_sigsuspend ?
1226             &ts->sigsuspend_mask : &ts->signal_mask;
1227         sigorset(&ts->signal_mask, blocked_set, &set);
1228         ts->in_sigsuspend = 0;
1229 
1230         /* if the CPU is in VM86 mode, we restore the 32 bit values */
1231 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1232         {
1233             CPUX86State *env = cpu_env;
1234             if (env->eflags & VM_MASK)
1235                 save_v86_state(env);
1236         }
1237 #endif
1238         /* prepare the stack frame of the virtual CPU */
1239 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1240         if (sa->sa_flags & TARGET_SA_SIGINFO) {
1241             setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1242         } else {
1243             setup_frame(sig, sa, &target_old_set, cpu_env);
1244         }
1245 #else
1246         /* These targets do not have traditional signals.  */
1247         setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1248 #endif
1249         if (sa->sa_flags & TARGET_SA_RESETHAND) {
1250             sa->_sa_handler = TARGET_SIG_DFL;
1251         }
1252     }
1253 }
1254 
1255 void process_pending_signals(CPUArchState *cpu_env)
1256 {
1257     CPUState *cpu = env_cpu(cpu_env);
1258     int sig;
1259     TaskState *ts = cpu->opaque;
1260     sigset_t set;
1261     sigset_t *blocked_set;
1262 
1263     while (qatomic_read(&ts->signal_pending)) {
1264         sigfillset(&set);
1265         sigprocmask(SIG_SETMASK, &set, 0);
1266 
1267     restart_scan:
1268         sig = ts->sync_signal.pending;
1269         if (sig) {
1270             /* Synchronous signals are forced,
1271              * see force_sig_info() and callers in Linux
1272              * Note that not all of our queue_signal() calls in QEMU correspond
1273              * to force_sig_info() calls in Linux (some are send_sig_info()).
1274              * However it seems like a kernel bug to me to allow the process
1275              * to block a synchronous signal since it could then just end up
1276              * looping round and round indefinitely.
1277              */
1278             if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1279                 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1280                 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1281                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1282             }
1283 
1284             handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1285         }
1286 
1287         for (sig = 1; sig <= TARGET_NSIG; sig++) {
1288             blocked_set = ts->in_sigsuspend ?
1289                 &ts->sigsuspend_mask : &ts->signal_mask;
1290 
1291             if (ts->sigtab[sig - 1].pending &&
1292                 (!sigismember(blocked_set,
1293                               target_to_host_signal_table[sig]))) {
1294                 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1295                 /* Restart scan from the beginning, as handle_pending_signal
1296                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1297                  */
1298                 goto restart_scan;
1299             }
1300         }
1301 
1302         /* if no signal is pending, unblock signals and recheck (the act
1303          * of unblocking might cause us to take another host signal which
1304          * will set signal_pending again).
1305          */
1306         qatomic_set(&ts->signal_pending, 0);
1307         ts->in_sigsuspend = 0;
1308         set = ts->signal_mask;
1309         sigdelset(&set, SIGSEGV);
1310         sigdelset(&set, SIGBUS);
1311         sigprocmask(SIG_SETMASK, &set, 0);
1312     }
1313     ts->in_sigsuspend = 0;
1314 }
1315 
1316 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1317                             target_ulong sigsize)
1318 {
1319     TaskState *ts = (TaskState *)thread_cpu->opaque;
1320     sigset_t *host_set = &ts->sigsuspend_mask;
1321     target_sigset_t *target_sigset;
1322 
1323     if (sigsize != sizeof(*target_sigset)) {
1324         /* Like the kernel, we enforce correct size sigsets */
1325         return -TARGET_EINVAL;
1326     }
1327 
1328     target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1329     if (!target_sigset) {
1330         return -TARGET_EFAULT;
1331     }
1332     target_to_host_sigset(host_set, target_sigset);
1333     unlock_user(target_sigset, sigset, 0);
1334 
1335     *pset = host_set;
1336     return 0;
1337 }
1338