xref: /qemu/linux-user/syscall.c (revision 07726f52)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include <elf.h>
29 #include <endian.h>
30 #include <grp.h>
31 #include <sys/ipc.h>
32 #include <sys/msg.h>
33 #include <sys/wait.h>
34 #include <sys/mount.h>
35 #include <sys/file.h>
36 #include <sys/fsuid.h>
37 #include <sys/personality.h>
38 #include <sys/prctl.h>
39 #include <sys/resource.h>
40 #include <sys/swap.h>
41 #include <linux/capability.h>
42 #include <sched.h>
43 #include <sys/timex.h>
44 #include <sys/socket.h>
45 #include <linux/sockios.h>
46 #include <sys/un.h>
47 #include <sys/uio.h>
48 #include <poll.h>
49 #include <sys/times.h>
50 #include <sys/shm.h>
51 #include <sys/sem.h>
52 #include <sys/statfs.h>
53 #include <utime.h>
54 #include <sys/sysinfo.h>
55 #include <sys/signalfd.h>
56 //#include <sys/user.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61 #include <linux/wireless.h>
62 #include <linux/icmp.h>
63 #include <linux/icmpv6.h>
64 #include <linux/if_tun.h>
65 #include <linux/in6.h>
66 #include <linux/errqueue.h>
67 #include <linux/random.h>
68 #ifdef CONFIG_TIMERFD
69 #include <sys/timerfd.h>
70 #endif
71 #ifdef CONFIG_EVENTFD
72 #include <sys/eventfd.h>
73 #endif
74 #ifdef CONFIG_EPOLL
75 #include <sys/epoll.h>
76 #endif
77 #ifdef CONFIG_ATTR
78 #include "qemu/xattr.h"
79 #endif
80 #ifdef CONFIG_SENDFILE
81 #include <sys/sendfile.h>
82 #endif
83 #ifdef HAVE_SYS_KCOV_H
84 #include <sys/kcov.h>
85 #endif
86 
87 #define termios host_termios
88 #define winsize host_winsize
89 #define termio host_termio
90 #define sgttyb host_sgttyb /* same as target */
91 #define tchars host_tchars /* same as target */
92 #define ltchars host_ltchars /* same as target */
93 
94 #include <linux/termios.h>
95 #include <linux/unistd.h>
96 #include <linux/cdrom.h>
97 #include <linux/hdreg.h>
98 #include <linux/soundcard.h>
99 #include <linux/kd.h>
100 #include <linux/mtio.h>
101 #include <linux/fs.h>
102 #include <linux/fd.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
105 #endif
106 #include <linux/fb.h>
107 #if defined(CONFIG_USBFS)
108 #include <linux/usbdevice_fs.h>
109 #include <linux/usb/ch9.h>
110 #endif
111 #include <linux/vt.h>
112 #include <linux/dm-ioctl.h>
113 #include <linux/reboot.h>
114 #include <linux/route.h>
115 #include <linux/filter.h>
116 #include <linux/blkpg.h>
117 #include <netpacket/packet.h>
118 #include <linux/netlink.h>
119 #include <linux/if_alg.h>
120 #include <linux/rtc.h>
121 #include <sound/asound.h>
122 #ifdef HAVE_BTRFS_H
123 #include <linux/btrfs.h>
124 #endif
125 #ifdef HAVE_DRM_H
126 #include <libdrm/drm.h>
127 #include <libdrm/i915_drm.h>
128 #endif
129 #include "linux_loop.h"
130 #include "uname.h"
131 
132 #include "qemu.h"
133 #include "user-internals.h"
134 #include "strace.h"
135 #include "signal-common.h"
136 #include "loader.h"
137 #include "user-mmap.h"
138 #include "user/safe-syscall.h"
139 #include "qemu/guest-random.h"
140 #include "qemu/selfmap.h"
141 #include "user/syscall-trace.h"
142 #include "special-errno.h"
143 #include "qapi/error.h"
144 #include "fd-trans.h"
145 #include "cpu_loop-common.h"
146 
147 #ifndef CLONE_IO
148 #define CLONE_IO                0x80000000      /* Clone io context */
149 #endif
150 
151 /* We can't directly call the host clone syscall, because this will
152  * badly confuse libc (breaking mutexes, for example). So we must
153  * divide clone flags into:
154  *  * flag combinations that look like pthread_create()
155  *  * flag combinations that look like fork()
156  *  * flags we can implement within QEMU itself
157  *  * flags we can't support and will return an error for
158  */
159 /* For thread creation, all these flags must be present; for
160  * fork, none must be present.
161  */
162 #define CLONE_THREAD_FLAGS                              \
163     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
164      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
165 
166 /* These flags are ignored:
167  * CLONE_DETACHED is now ignored by the kernel;
168  * CLONE_IO is just an optimisation hint to the I/O scheduler
169  */
170 #define CLONE_IGNORED_FLAGS                     \
171     (CLONE_DETACHED | CLONE_IO)
172 
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
176 
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS               \
179     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
181 
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
184     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
185      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
186 
187 #define CLONE_INVALID_FORK_FLAGS                                        \
188     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
189 
190 #define CLONE_INVALID_THREAD_FLAGS                                      \
191     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
192        CLONE_IGNORED_FLAGS))
193 
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195  * have almost all been allocated. We cannot support any of
196  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198  * The checks against the invalid thread masks above will catch these.
199  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
200  */
201 
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203  * once. This exercises the codepaths for restart.
204  */
205 //#define DEBUG_ERESTARTSYS
206 
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
212 
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
220 
221 #define _syscall0(type,name)		\
222 static type name (void)			\
223 {					\
224 	return syscall(__NR_##name);	\
225 }
226 
227 #define _syscall1(type,name,type1,arg1)		\
228 static type name (type1 arg1)			\
229 {						\
230 	return syscall(__NR_##name, arg1);	\
231 }
232 
233 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
234 static type name (type1 arg1,type2 arg2)		\
235 {							\
236 	return syscall(__NR_##name, arg1, arg2);	\
237 }
238 
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
240 static type name (type1 arg1,type2 arg2,type3 arg3)		\
241 {								\
242 	return syscall(__NR_##name, arg1, arg2, arg3);		\
243 }
244 
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
249 }
250 
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
252 		  type5,arg5)							\
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
254 {										\
255 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
256 }
257 
258 
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
260 		  type5,arg5,type6,arg6)					\
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
262                   type6 arg6)							\
263 {										\
264 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
265 }
266 
267 
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
283 
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
287 
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
292 
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
297 
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
300 
301 /* For the 64-bit guest on 32-bit host case we must emulate
302  * getdents using getdents64, because otherwise the host
303  * might hand us back more dirent records than we can fit
304  * into the guest buffer after structure format conversion.
305  * Otherwise we emulate getdents with getdents if the host has it.
306  */
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
310 
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
321           loff_t *, res, unsigned int, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325           siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339           const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343           const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350                              unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357           unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360           unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363     uint32_t size;
364     uint32_t sched_policy;
365     uint64_t sched_flags;
366     int32_t sched_nice;
367     uint32_t sched_priority;
368     uint64_t sched_runtime;
369     uint64_t sched_deadline;
370     uint64_t sched_period;
371     uint32_t sched_util_min;
372     uint32_t sched_util_max;
373 };
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376           unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379           unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384           const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387           struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390           const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394           void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396           struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398           struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
408 
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411           unsigned long, idx1, unsigned long, idx2)
412 #endif
413 
414 /*
415  * It is assumed that struct statx is architecture independent.
416  */
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419           unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
424 
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
427   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
428   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
429   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
430   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
431   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
432   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
433   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
434   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
435   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
436   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
437   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
439 #if defined(O_DIRECT)
440   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
441 #endif
442 #if defined(O_NOATIME)
443   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
444 #endif
445 #if defined(O_CLOEXEC)
446   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
447 #endif
448 #if defined(O_PATH)
449   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
450 #endif
451 #if defined(O_TMPFILE)
452   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
453 #endif
454   /* Don't terminate the list prematurely on 64-bit host+guest.  */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
458 };
459 
460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
461 
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
466           const struct timespec *,tsp,int,flags)
467 #else
468 static int sys_utimensat(int dirfd, const char *pathname,
469                          const struct timespec times[2], int flags)
470 {
471     errno = ENOSYS;
472     return -1;
473 }
474 #endif
475 #endif /* TARGET_NR_utimensat */
476 
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
481           const char *, new, unsigned int, flags)
482 #else
483 static int sys_renameat2(int oldfd, const char *old,
484                          int newfd, const char *new, int flags)
485 {
486     if (flags == 0) {
487         return renameat(oldfd, old, newfd, new);
488     }
489     errno = ENOSYS;
490     return -1;
491 }
492 #endif
493 #endif /* TARGET_NR_renameat2 */
494 
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
497 #else
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY  */
504 
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
508 #endif
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64 {
512     uint64_t rlim_cur;
513     uint64_t rlim_max;
514 };
515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
516           const struct host_rlimit64 *, new_limit,
517           struct host_rlimit64 *, old_limit)
518 #endif
519 
520 
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers[GUEST_TIMER_MAX];
525 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
526 
527 static inline int next_free_host_timer(void)
528 {
529     int k;
530     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
531         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
532             return k;
533         }
534     }
535     return -1;
536 }
537 
538 static inline void free_host_timer_slot(int id)
539 {
540     qatomic_store_release(g_posix_timer_allocated + id, 0);
541 }
542 #endif
543 
544 static inline int host_to_target_errno(int host_errno)
545 {
546     switch (host_errno) {
547 #define E(X)  case X: return TARGET_##X;
548 #include "errnos.c.inc"
549 #undef E
550     default:
551         return host_errno;
552     }
553 }
554 
555 static inline int target_to_host_errno(int target_errno)
556 {
557     switch (target_errno) {
558 #define E(X)  case TARGET_##X: return X;
559 #include "errnos.c.inc"
560 #undef E
561     default:
562         return target_errno;
563     }
564 }
565 
566 abi_long get_errno(abi_long ret)
567 {
568     if (ret == -1)
569         return -host_to_target_errno(errno);
570     else
571         return ret;
572 }
573 
574 const char *target_strerror(int err)
575 {
576     if (err == QEMU_ERESTARTSYS) {
577         return "To be restarted";
578     }
579     if (err == QEMU_ESIGRETURN) {
580         return "Successful exit from sigreturn";
581     }
582 
583     return strerror(target_to_host_errno(err));
584 }
585 
586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
587 {
588     int i;
589     uint8_t b;
590     if (usize <= ksize) {
591         return 1;
592     }
593     for (i = ksize; i < usize; i++) {
594         if (get_user_u8(b, addr + i)) {
595             return -TARGET_EFAULT;
596         }
597         if (b != 0) {
598             return 0;
599         }
600     }
601     return 1;
602 }
603 
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
606 { \
607     return safe_syscall(__NR_##name); \
608 }
609 
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
612 { \
613     return safe_syscall(__NR_##name, arg1); \
614 }
615 
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
618 { \
619     return safe_syscall(__NR_##name, arg1, arg2); \
620 }
621 
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
624 { \
625     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
626 }
627 
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
629     type4, arg4) \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
631 { \
632     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
633 }
634 
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636     type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
638     type5 arg5) \
639 { \
640     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
641 }
642 
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644     type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646     type5 arg5, type6 arg6) \
647 { \
648     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
649 }
650 
651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
654               int, flags, mode_t, mode)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
657               struct rusage *, rusage)
658 #endif
659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
660               int, options, struct rusage *, rusage)
661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663               char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671               struct timespec *, tsp, const sigset_t *, sigmask,
672               size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675               int, maxevents, int, timeout, const sigset_t *, sigmask,
676               size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679               const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683               const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692               unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694               unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696               socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706               const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709               int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712               struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715     defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717               const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722               void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730               int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734               long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738               unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741     defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743               size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746     defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748               size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752               int, outfd, loff_t *, poutoff, size_t, length,
753               unsigned int, flags)
754 #endif
755 
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757  * "third argument might be integer or pointer or not present" behaviour of
758  * the libc function.
759  */
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763  *  use the flock64 struct rather than unsuffixed flock
764  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
765  */
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
771 
772 static inline int host_to_target_sock_type(int host_type)
773 {
774     int target_type;
775 
776     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777     case SOCK_DGRAM:
778         target_type = TARGET_SOCK_DGRAM;
779         break;
780     case SOCK_STREAM:
781         target_type = TARGET_SOCK_STREAM;
782         break;
783     default:
784         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785         break;
786     }
787 
788 #if defined(SOCK_CLOEXEC)
789     if (host_type & SOCK_CLOEXEC) {
790         target_type |= TARGET_SOCK_CLOEXEC;
791     }
792 #endif
793 
794 #if defined(SOCK_NONBLOCK)
795     if (host_type & SOCK_NONBLOCK) {
796         target_type |= TARGET_SOCK_NONBLOCK;
797     }
798 #endif
799 
800     return target_type;
801 }
802 
803 static abi_ulong target_brk, initial_target_brk;
804 
805 void target_set_brk(abi_ulong new_brk)
806 {
807     target_brk = TARGET_PAGE_ALIGN(new_brk);
808     initial_target_brk = target_brk;
809 }
810 
811 /* do_brk() must return target values and target errnos. */
812 abi_long do_brk(abi_ulong brk_val)
813 {
814     abi_long mapped_addr;
815     abi_ulong new_brk;
816     abi_ulong old_brk;
817 
818     /* brk pointers are always untagged */
819 
820     /* do not allow to shrink below initial brk value */
821     if (brk_val < initial_target_brk) {
822         return target_brk;
823     }
824 
825     new_brk = TARGET_PAGE_ALIGN(brk_val);
826     old_brk = TARGET_PAGE_ALIGN(target_brk);
827 
828     /* new and old target_brk might be on the same page */
829     if (new_brk == old_brk) {
830         target_brk = brk_val;
831         return target_brk;
832     }
833 
834     /* Release heap if necessary */
835     if (new_brk < old_brk) {
836         target_munmap(new_brk, old_brk - new_brk);
837 
838         target_brk = brk_val;
839         return target_brk;
840     }
841 
842     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
843                               PROT_READ | PROT_WRITE,
844                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
845                               -1, 0);
846 
847     if (mapped_addr == old_brk) {
848         target_brk = brk_val;
849         return target_brk;
850     }
851 
852 #if defined(TARGET_ALPHA)
853     /* We (partially) emulate OSF/1 on Alpha, which requires we
854        return a proper errno, not an unchanged brk value.  */
855     return -TARGET_ENOMEM;
856 #endif
857     /* For everything else, return the previous break. */
858     return target_brk;
859 }
860 
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long copy_from_user_fdset(fd_set *fds,
864                                             abi_ulong target_fds_addr,
865                                             int n)
866 {
867     int i, nw, j, k;
868     abi_ulong b, *target_fds;
869 
870     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
871     if (!(target_fds = lock_user(VERIFY_READ,
872                                  target_fds_addr,
873                                  sizeof(abi_ulong) * nw,
874                                  1)))
875         return -TARGET_EFAULT;
876 
877     FD_ZERO(fds);
878     k = 0;
879     for (i = 0; i < nw; i++) {
880         /* grab the abi_ulong */
881         __get_user(b, &target_fds[i]);
882         for (j = 0; j < TARGET_ABI_BITS; j++) {
883             /* check the bit inside the abi_ulong */
884             if ((b >> j) & 1)
885                 FD_SET(k, fds);
886             k++;
887         }
888     }
889 
890     unlock_user(target_fds, target_fds_addr, 0);
891 
892     return 0;
893 }
894 
895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
896                                                  abi_ulong target_fds_addr,
897                                                  int n)
898 {
899     if (target_fds_addr) {
900         if (copy_from_user_fdset(fds, target_fds_addr, n))
901             return -TARGET_EFAULT;
902         *fds_ptr = fds;
903     } else {
904         *fds_ptr = NULL;
905     }
906     return 0;
907 }
908 
909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
910                                           const fd_set *fds,
911                                           int n)
912 {
913     int i, nw, j, k;
914     abi_long v;
915     abi_ulong *target_fds;
916 
917     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
918     if (!(target_fds = lock_user(VERIFY_WRITE,
919                                  target_fds_addr,
920                                  sizeof(abi_ulong) * nw,
921                                  0)))
922         return -TARGET_EFAULT;
923 
924     k = 0;
925     for (i = 0; i < nw; i++) {
926         v = 0;
927         for (j = 0; j < TARGET_ABI_BITS; j++) {
928             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
929             k++;
930         }
931         __put_user(v, &target_fds[i]);
932     }
933 
934     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
935 
936     return 0;
937 }
938 #endif
939 
940 #if defined(__alpha__)
941 #define HOST_HZ 1024
942 #else
943 #define HOST_HZ 100
944 #endif
945 
946 static inline abi_long host_to_target_clock_t(long ticks)
947 {
948 #if HOST_HZ == TARGET_HZ
949     return ticks;
950 #else
951     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
952 #endif
953 }
954 
955 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
956                                              const struct rusage *rusage)
957 {
958     struct target_rusage *target_rusage;
959 
960     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
961         return -TARGET_EFAULT;
962     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
963     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
964     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
965     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
966     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
967     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
968     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
969     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
970     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
971     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
972     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
973     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
974     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
975     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
976     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
977     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
978     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
979     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
980     unlock_user_struct(target_rusage, target_addr, 1);
981 
982     return 0;
983 }
984 
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
987 {
988     abi_ulong target_rlim_swap;
989     rlim_t result;
990 
991     target_rlim_swap = tswapal(target_rlim);
992     if (target_rlim_swap == TARGET_RLIM_INFINITY)
993         return RLIM_INFINITY;
994 
995     result = target_rlim_swap;
996     if (target_rlim_swap != (rlim_t)result)
997         return RLIM_INFINITY;
998 
999     return result;
1000 }
1001 #endif
1002 
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1005 {
1006     abi_ulong target_rlim_swap;
1007     abi_ulong result;
1008 
1009     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1010         target_rlim_swap = TARGET_RLIM_INFINITY;
1011     else
1012         target_rlim_swap = rlim;
1013     result = tswapal(target_rlim_swap);
1014 
1015     return result;
1016 }
1017 #endif
1018 
1019 static inline int target_to_host_resource(int code)
1020 {
1021     switch (code) {
1022     case TARGET_RLIMIT_AS:
1023         return RLIMIT_AS;
1024     case TARGET_RLIMIT_CORE:
1025         return RLIMIT_CORE;
1026     case TARGET_RLIMIT_CPU:
1027         return RLIMIT_CPU;
1028     case TARGET_RLIMIT_DATA:
1029         return RLIMIT_DATA;
1030     case TARGET_RLIMIT_FSIZE:
1031         return RLIMIT_FSIZE;
1032     case TARGET_RLIMIT_LOCKS:
1033         return RLIMIT_LOCKS;
1034     case TARGET_RLIMIT_MEMLOCK:
1035         return RLIMIT_MEMLOCK;
1036     case TARGET_RLIMIT_MSGQUEUE:
1037         return RLIMIT_MSGQUEUE;
1038     case TARGET_RLIMIT_NICE:
1039         return RLIMIT_NICE;
1040     case TARGET_RLIMIT_NOFILE:
1041         return RLIMIT_NOFILE;
1042     case TARGET_RLIMIT_NPROC:
1043         return RLIMIT_NPROC;
1044     case TARGET_RLIMIT_RSS:
1045         return RLIMIT_RSS;
1046     case TARGET_RLIMIT_RTPRIO:
1047         return RLIMIT_RTPRIO;
1048 #ifdef RLIMIT_RTTIME
1049     case TARGET_RLIMIT_RTTIME:
1050         return RLIMIT_RTTIME;
1051 #endif
1052     case TARGET_RLIMIT_SIGPENDING:
1053         return RLIMIT_SIGPENDING;
1054     case TARGET_RLIMIT_STACK:
1055         return RLIMIT_STACK;
1056     default:
1057         return code;
1058     }
1059 }
1060 
1061 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1062                                               abi_ulong target_tv_addr)
1063 {
1064     struct target_timeval *target_tv;
1065 
1066     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1067         return -TARGET_EFAULT;
1068     }
1069 
1070     __get_user(tv->tv_sec, &target_tv->tv_sec);
1071     __get_user(tv->tv_usec, &target_tv->tv_usec);
1072 
1073     unlock_user_struct(target_tv, target_tv_addr, 0);
1074 
1075     return 0;
1076 }
1077 
1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1079                                             const struct timeval *tv)
1080 {
1081     struct target_timeval *target_tv;
1082 
1083     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1084         return -TARGET_EFAULT;
1085     }
1086 
1087     __put_user(tv->tv_sec, &target_tv->tv_sec);
1088     __put_user(tv->tv_usec, &target_tv->tv_usec);
1089 
1090     unlock_user_struct(target_tv, target_tv_addr, 1);
1091 
1092     return 0;
1093 }
1094 
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1097                                                 abi_ulong target_tv_addr)
1098 {
1099     struct target__kernel_sock_timeval *target_tv;
1100 
1101     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1102         return -TARGET_EFAULT;
1103     }
1104 
1105     __get_user(tv->tv_sec, &target_tv->tv_sec);
1106     __get_user(tv->tv_usec, &target_tv->tv_usec);
1107 
1108     unlock_user_struct(target_tv, target_tv_addr, 0);
1109 
1110     return 0;
1111 }
1112 #endif
1113 
1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1115                                               const struct timeval *tv)
1116 {
1117     struct target__kernel_sock_timeval *target_tv;
1118 
1119     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120         return -TARGET_EFAULT;
1121     }
1122 
1123     __put_user(tv->tv_sec, &target_tv->tv_sec);
1124     __put_user(tv->tv_usec, &target_tv->tv_usec);
1125 
1126     unlock_user_struct(target_tv, target_tv_addr, 1);
1127 
1128     return 0;
1129 }
1130 
1131 #if defined(TARGET_NR_futex) || \
1132     defined(TARGET_NR_rt_sigtimedwait) || \
1133     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138     defined(TARGET_NR_timer_settime) || \
1139     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1141                                                abi_ulong target_addr)
1142 {
1143     struct target_timespec *target_ts;
1144 
1145     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1146         return -TARGET_EFAULT;
1147     }
1148     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1149     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1150     unlock_user_struct(target_ts, target_addr, 0);
1151     return 0;
1152 }
1153 #endif
1154 
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156     defined(TARGET_NR_timer_settime64) || \
1157     defined(TARGET_NR_mq_timedsend_time64) || \
1158     defined(TARGET_NR_mq_timedreceive_time64) || \
1159     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160     defined(TARGET_NR_clock_nanosleep_time64) || \
1161     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162     defined(TARGET_NR_utimensat) || \
1163     defined(TARGET_NR_utimensat_time64) || \
1164     defined(TARGET_NR_semtimedop_time64) || \
1165     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1167                                                  abi_ulong target_addr)
1168 {
1169     struct target__kernel_timespec *target_ts;
1170 
1171     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1172         return -TARGET_EFAULT;
1173     }
1174     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1175     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176     /* in 32bit mode, this drops the padding */
1177     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1178     unlock_user_struct(target_ts, target_addr, 0);
1179     return 0;
1180 }
1181 #endif
1182 
1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1184                                                struct timespec *host_ts)
1185 {
1186     struct target_timespec *target_ts;
1187 
1188     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1189         return -TARGET_EFAULT;
1190     }
1191     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1192     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1193     unlock_user_struct(target_ts, target_addr, 1);
1194     return 0;
1195 }
1196 
1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1198                                                  struct timespec *host_ts)
1199 {
1200     struct target__kernel_timespec *target_ts;
1201 
1202     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1203         return -TARGET_EFAULT;
1204     }
1205     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1206     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1207     unlock_user_struct(target_ts, target_addr, 1);
1208     return 0;
1209 }
1210 
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1213                                              struct timezone *tz)
1214 {
1215     struct target_timezone *target_tz;
1216 
1217     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1218         return -TARGET_EFAULT;
1219     }
1220 
1221     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1222     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1223 
1224     unlock_user_struct(target_tz, target_tz_addr, 1);
1225 
1226     return 0;
1227 }
1228 #endif
1229 
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1232                                                abi_ulong target_tz_addr)
1233 {
1234     struct target_timezone *target_tz;
1235 
1236     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1237         return -TARGET_EFAULT;
1238     }
1239 
1240     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1241     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1242 
1243     unlock_user_struct(target_tz, target_tz_addr, 0);
1244 
1245     return 0;
1246 }
1247 #endif
1248 
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1250 #include <mqueue.h>
1251 
1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1253                                               abi_ulong target_mq_attr_addr)
1254 {
1255     struct target_mq_attr *target_mq_attr;
1256 
1257     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1258                           target_mq_attr_addr, 1))
1259         return -TARGET_EFAULT;
1260 
1261     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1262     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1263     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1264     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1265 
1266     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1267 
1268     return 0;
1269 }
1270 
1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1272                                             const struct mq_attr *attr)
1273 {
1274     struct target_mq_attr *target_mq_attr;
1275 
1276     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1277                           target_mq_attr_addr, 0))
1278         return -TARGET_EFAULT;
1279 
1280     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1281     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1282     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1283     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1284 
1285     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1286 
1287     return 0;
1288 }
1289 #endif
1290 
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long do_select(int n,
1294                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1295                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1296 {
1297     fd_set rfds, wfds, efds;
1298     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1299     struct timeval tv;
1300     struct timespec ts, *ts_ptr;
1301     abi_long ret;
1302 
1303     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1304     if (ret) {
1305         return ret;
1306     }
1307     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1308     if (ret) {
1309         return ret;
1310     }
1311     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1312     if (ret) {
1313         return ret;
1314     }
1315 
1316     if (target_tv_addr) {
1317         if (copy_from_user_timeval(&tv, target_tv_addr))
1318             return -TARGET_EFAULT;
1319         ts.tv_sec = tv.tv_sec;
1320         ts.tv_nsec = tv.tv_usec * 1000;
1321         ts_ptr = &ts;
1322     } else {
1323         ts_ptr = NULL;
1324     }
1325 
1326     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1327                                   ts_ptr, NULL));
1328 
1329     if (!is_error(ret)) {
1330         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1331             return -TARGET_EFAULT;
1332         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1333             return -TARGET_EFAULT;
1334         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1335             return -TARGET_EFAULT;
1336 
1337         if (target_tv_addr) {
1338             tv.tv_sec = ts.tv_sec;
1339             tv.tv_usec = ts.tv_nsec / 1000;
1340             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1341                 return -TARGET_EFAULT;
1342             }
1343         }
1344     }
1345 
1346     return ret;
1347 }
1348 
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long do_old_select(abi_ulong arg1)
1351 {
1352     struct target_sel_arg_struct *sel;
1353     abi_ulong inp, outp, exp, tvp;
1354     long nsel;
1355 
1356     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1357         return -TARGET_EFAULT;
1358     }
1359 
1360     nsel = tswapal(sel->n);
1361     inp = tswapal(sel->inp);
1362     outp = tswapal(sel->outp);
1363     exp = tswapal(sel->exp);
1364     tvp = tswapal(sel->tvp);
1365 
1366     unlock_user_struct(sel, arg1, 0);
1367 
1368     return do_select(nsel, inp, outp, exp, tvp);
1369 }
1370 #endif
1371 #endif
1372 
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1375                             abi_long arg4, abi_long arg5, abi_long arg6,
1376                             bool time64)
1377 {
1378     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1379     fd_set rfds, wfds, efds;
1380     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1381     struct timespec ts, *ts_ptr;
1382     abi_long ret;
1383 
1384     /*
1385      * The 6th arg is actually two args smashed together,
1386      * so we cannot use the C library.
1387      */
1388     struct {
1389         sigset_t *set;
1390         size_t size;
1391     } sig, *sig_ptr;
1392 
1393     abi_ulong arg_sigset, arg_sigsize, *arg7;
1394 
1395     n = arg1;
1396     rfd_addr = arg2;
1397     wfd_addr = arg3;
1398     efd_addr = arg4;
1399     ts_addr = arg5;
1400 
1401     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1402     if (ret) {
1403         return ret;
1404     }
1405     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1406     if (ret) {
1407         return ret;
1408     }
1409     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1410     if (ret) {
1411         return ret;
1412     }
1413 
1414     /*
1415      * This takes a timespec, and not a timeval, so we cannot
1416      * use the do_select() helper ...
1417      */
1418     if (ts_addr) {
1419         if (time64) {
1420             if (target_to_host_timespec64(&ts, ts_addr)) {
1421                 return -TARGET_EFAULT;
1422             }
1423         } else {
1424             if (target_to_host_timespec(&ts, ts_addr)) {
1425                 return -TARGET_EFAULT;
1426             }
1427         }
1428             ts_ptr = &ts;
1429     } else {
1430         ts_ptr = NULL;
1431     }
1432 
1433     /* Extract the two packed args for the sigset */
1434     sig_ptr = NULL;
1435     if (arg6) {
1436         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1437         if (!arg7) {
1438             return -TARGET_EFAULT;
1439         }
1440         arg_sigset = tswapal(arg7[0]);
1441         arg_sigsize = tswapal(arg7[1]);
1442         unlock_user(arg7, arg6, 0);
1443 
1444         if (arg_sigset) {
1445             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1446             if (ret != 0) {
1447                 return ret;
1448             }
1449             sig_ptr = &sig;
1450             sig.size = SIGSET_T_SIZE;
1451         }
1452     }
1453 
1454     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1455                                   ts_ptr, sig_ptr));
1456 
1457     if (sig_ptr) {
1458         finish_sigsuspend_mask(ret);
1459     }
1460 
1461     if (!is_error(ret)) {
1462         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1463             return -TARGET_EFAULT;
1464         }
1465         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1466             return -TARGET_EFAULT;
1467         }
1468         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1469             return -TARGET_EFAULT;
1470         }
1471         if (time64) {
1472             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1473                 return -TARGET_EFAULT;
1474             }
1475         } else {
1476             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1477                 return -TARGET_EFAULT;
1478             }
1479         }
1480     }
1481     return ret;
1482 }
1483 #endif
1484 
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486     defined(TARGET_NR_ppoll_time64)
1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1488                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1489 {
1490     struct target_pollfd *target_pfd;
1491     unsigned int nfds = arg2;
1492     struct pollfd *pfd;
1493     unsigned int i;
1494     abi_long ret;
1495 
1496     pfd = NULL;
1497     target_pfd = NULL;
1498     if (nfds) {
1499         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1500             return -TARGET_EINVAL;
1501         }
1502         target_pfd = lock_user(VERIFY_WRITE, arg1,
1503                                sizeof(struct target_pollfd) * nfds, 1);
1504         if (!target_pfd) {
1505             return -TARGET_EFAULT;
1506         }
1507 
1508         pfd = alloca(sizeof(struct pollfd) * nfds);
1509         for (i = 0; i < nfds; i++) {
1510             pfd[i].fd = tswap32(target_pfd[i].fd);
1511             pfd[i].events = tswap16(target_pfd[i].events);
1512         }
1513     }
1514     if (ppoll) {
1515         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1516         sigset_t *set = NULL;
1517 
1518         if (arg3) {
1519             if (time64) {
1520                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1521                     unlock_user(target_pfd, arg1, 0);
1522                     return -TARGET_EFAULT;
1523                 }
1524             } else {
1525                 if (target_to_host_timespec(timeout_ts, arg3)) {
1526                     unlock_user(target_pfd, arg1, 0);
1527                     return -TARGET_EFAULT;
1528                 }
1529             }
1530         } else {
1531             timeout_ts = NULL;
1532         }
1533 
1534         if (arg4) {
1535             ret = process_sigsuspend_mask(&set, arg4, arg5);
1536             if (ret != 0) {
1537                 unlock_user(target_pfd, arg1, 0);
1538                 return ret;
1539             }
1540         }
1541 
1542         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1543                                    set, SIGSET_T_SIZE));
1544 
1545         if (set) {
1546             finish_sigsuspend_mask(ret);
1547         }
1548         if (!is_error(ret) && arg3) {
1549             if (time64) {
1550                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551                     return -TARGET_EFAULT;
1552                 }
1553             } else {
1554                 if (host_to_target_timespec(arg3, timeout_ts)) {
1555                     return -TARGET_EFAULT;
1556                 }
1557             }
1558         }
1559     } else {
1560           struct timespec ts, *pts;
1561 
1562           if (arg3 >= 0) {
1563               /* Convert ms to secs, ns */
1564               ts.tv_sec = arg3 / 1000;
1565               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1566               pts = &ts;
1567           } else {
1568               /* -ve poll() timeout means "infinite" */
1569               pts = NULL;
1570           }
1571           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1572     }
1573 
1574     if (!is_error(ret)) {
1575         for (i = 0; i < nfds; i++) {
1576             target_pfd[i].revents = tswap16(pfd[i].revents);
1577         }
1578     }
1579     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1580     return ret;
1581 }
1582 #endif
1583 
1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1585                         int flags, int is_pipe2)
1586 {
1587     int host_pipe[2];
1588     abi_long ret;
1589     ret = pipe2(host_pipe, flags);
1590 
1591     if (is_error(ret))
1592         return get_errno(ret);
1593 
1594     /* Several targets have special calling conventions for the original
1595        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1596     if (!is_pipe2) {
1597 #if defined(TARGET_ALPHA)
1598         cpu_env->ir[IR_A4] = host_pipe[1];
1599         return host_pipe[0];
1600 #elif defined(TARGET_MIPS)
1601         cpu_env->active_tc.gpr[3] = host_pipe[1];
1602         return host_pipe[0];
1603 #elif defined(TARGET_SH4)
1604         cpu_env->gregs[1] = host_pipe[1];
1605         return host_pipe[0];
1606 #elif defined(TARGET_SPARC)
1607         cpu_env->regwptr[1] = host_pipe[1];
1608         return host_pipe[0];
1609 #endif
1610     }
1611 
1612     if (put_user_s32(host_pipe[0], pipedes)
1613         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1614         return -TARGET_EFAULT;
1615     return get_errno(ret);
1616 }
1617 
1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1619                                               abi_ulong target_addr,
1620                                               socklen_t len)
1621 {
1622     struct target_ip_mreqn *target_smreqn;
1623 
1624     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1625     if (!target_smreqn)
1626         return -TARGET_EFAULT;
1627     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1628     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1629     if (len == sizeof(struct target_ip_mreqn))
1630         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1631     unlock_user(target_smreqn, target_addr, 0);
1632 
1633     return 0;
1634 }
1635 
1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1637                                                abi_ulong target_addr,
1638                                                socklen_t len)
1639 {
1640     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1641     sa_family_t sa_family;
1642     struct target_sockaddr *target_saddr;
1643 
1644     if (fd_trans_target_to_host_addr(fd)) {
1645         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1646     }
1647 
1648     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1649     if (!target_saddr)
1650         return -TARGET_EFAULT;
1651 
1652     sa_family = tswap16(target_saddr->sa_family);
1653 
1654     /* Oops. The caller might send a incomplete sun_path; sun_path
1655      * must be terminated by \0 (see the manual page), but
1656      * unfortunately it is quite common to specify sockaddr_un
1657      * length as "strlen(x->sun_path)" while it should be
1658      * "strlen(...) + 1". We'll fix that here if needed.
1659      * Linux kernel has a similar feature.
1660      */
1661 
1662     if (sa_family == AF_UNIX) {
1663         if (len < unix_maxlen && len > 0) {
1664             char *cp = (char*)target_saddr;
1665 
1666             if ( cp[len-1] && !cp[len] )
1667                 len++;
1668         }
1669         if (len > unix_maxlen)
1670             len = unix_maxlen;
1671     }
1672 
1673     memcpy(addr, target_saddr, len);
1674     addr->sa_family = sa_family;
1675     if (sa_family == AF_NETLINK) {
1676         struct sockaddr_nl *nladdr;
1677 
1678         nladdr = (struct sockaddr_nl *)addr;
1679         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1680         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1681     } else if (sa_family == AF_PACKET) {
1682 	struct target_sockaddr_ll *lladdr;
1683 
1684 	lladdr = (struct target_sockaddr_ll *)addr;
1685 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1686 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1687     } else if (sa_family == AF_INET6) {
1688         struct sockaddr_in6 *in6addr;
1689 
1690         in6addr = (struct sockaddr_in6 *)addr;
1691         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1692     }
1693     unlock_user(target_saddr, target_addr, 0);
1694 
1695     return 0;
1696 }
1697 
1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1699                                                struct sockaddr *addr,
1700                                                socklen_t len)
1701 {
1702     struct target_sockaddr *target_saddr;
1703 
1704     if (len == 0) {
1705         return 0;
1706     }
1707     assert(addr);
1708 
1709     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1710     if (!target_saddr)
1711         return -TARGET_EFAULT;
1712     memcpy(target_saddr, addr, len);
1713     if (len >= offsetof(struct target_sockaddr, sa_family) +
1714         sizeof(target_saddr->sa_family)) {
1715         target_saddr->sa_family = tswap16(addr->sa_family);
1716     }
1717     if (addr->sa_family == AF_NETLINK &&
1718         len >= sizeof(struct target_sockaddr_nl)) {
1719         struct target_sockaddr_nl *target_nl =
1720                (struct target_sockaddr_nl *)target_saddr;
1721         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1722         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1723     } else if (addr->sa_family == AF_PACKET) {
1724         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1725         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1726         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1727     } else if (addr->sa_family == AF_INET6 &&
1728                len >= sizeof(struct target_sockaddr_in6)) {
1729         struct target_sockaddr_in6 *target_in6 =
1730                (struct target_sockaddr_in6 *)target_saddr;
1731         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1732     }
1733     unlock_user(target_saddr, target_addr, len);
1734 
1735     return 0;
1736 }
1737 
1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1739                                            struct target_msghdr *target_msgh)
1740 {
1741     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1742     abi_long msg_controllen;
1743     abi_ulong target_cmsg_addr;
1744     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1745     socklen_t space = 0;
1746 
1747     msg_controllen = tswapal(target_msgh->msg_controllen);
1748     if (msg_controllen < sizeof (struct target_cmsghdr))
1749         goto the_end;
1750     target_cmsg_addr = tswapal(target_msgh->msg_control);
1751     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1752     target_cmsg_start = target_cmsg;
1753     if (!target_cmsg)
1754         return -TARGET_EFAULT;
1755 
1756     while (cmsg && target_cmsg) {
1757         void *data = CMSG_DATA(cmsg);
1758         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1759 
1760         int len = tswapal(target_cmsg->cmsg_len)
1761             - sizeof(struct target_cmsghdr);
1762 
1763         space += CMSG_SPACE(len);
1764         if (space > msgh->msg_controllen) {
1765             space -= CMSG_SPACE(len);
1766             /* This is a QEMU bug, since we allocated the payload
1767              * area ourselves (unlike overflow in host-to-target
1768              * conversion, which is just the guest giving us a buffer
1769              * that's too small). It can't happen for the payload types
1770              * we currently support; if it becomes an issue in future
1771              * we would need to improve our allocation strategy to
1772              * something more intelligent than "twice the size of the
1773              * target buffer we're reading from".
1774              */
1775             qemu_log_mask(LOG_UNIMP,
1776                           ("Unsupported ancillary data %d/%d: "
1777                            "unhandled msg size\n"),
1778                           tswap32(target_cmsg->cmsg_level),
1779                           tswap32(target_cmsg->cmsg_type));
1780             break;
1781         }
1782 
1783         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1784             cmsg->cmsg_level = SOL_SOCKET;
1785         } else {
1786             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1787         }
1788         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1789         cmsg->cmsg_len = CMSG_LEN(len);
1790 
1791         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1792             int *fd = (int *)data;
1793             int *target_fd = (int *)target_data;
1794             int i, numfds = len / sizeof(int);
1795 
1796             for (i = 0; i < numfds; i++) {
1797                 __get_user(fd[i], target_fd + i);
1798             }
1799         } else if (cmsg->cmsg_level == SOL_SOCKET
1800                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1801             struct ucred *cred = (struct ucred *)data;
1802             struct target_ucred *target_cred =
1803                 (struct target_ucred *)target_data;
1804 
1805             __get_user(cred->pid, &target_cred->pid);
1806             __get_user(cred->uid, &target_cred->uid);
1807             __get_user(cred->gid, &target_cred->gid);
1808         } else if (cmsg->cmsg_level == SOL_ALG) {
1809             uint32_t *dst = (uint32_t *)data;
1810 
1811             memcpy(dst, target_data, len);
1812             /* fix endianness of first 32-bit word */
1813             if (len >= sizeof(uint32_t)) {
1814                 *dst = tswap32(*dst);
1815             }
1816         } else {
1817             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1818                           cmsg->cmsg_level, cmsg->cmsg_type);
1819             memcpy(data, target_data, len);
1820         }
1821 
1822         cmsg = CMSG_NXTHDR(msgh, cmsg);
1823         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1824                                          target_cmsg_start);
1825     }
1826     unlock_user(target_cmsg, target_cmsg_addr, 0);
1827  the_end:
1828     msgh->msg_controllen = space;
1829     return 0;
1830 }
1831 
1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1833                                            struct msghdr *msgh)
1834 {
1835     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1836     abi_long msg_controllen;
1837     abi_ulong target_cmsg_addr;
1838     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1839     socklen_t space = 0;
1840 
1841     msg_controllen = tswapal(target_msgh->msg_controllen);
1842     if (msg_controllen < sizeof (struct target_cmsghdr))
1843         goto the_end;
1844     target_cmsg_addr = tswapal(target_msgh->msg_control);
1845     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1846     target_cmsg_start = target_cmsg;
1847     if (!target_cmsg)
1848         return -TARGET_EFAULT;
1849 
1850     while (cmsg && target_cmsg) {
1851         void *data = CMSG_DATA(cmsg);
1852         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1853 
1854         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1855         int tgt_len, tgt_space;
1856 
1857         /* We never copy a half-header but may copy half-data;
1858          * this is Linux's behaviour in put_cmsg(). Note that
1859          * truncation here is a guest problem (which we report
1860          * to the guest via the CTRUNC bit), unlike truncation
1861          * in target_to_host_cmsg, which is a QEMU bug.
1862          */
1863         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1864             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1865             break;
1866         }
1867 
1868         if (cmsg->cmsg_level == SOL_SOCKET) {
1869             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1870         } else {
1871             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1872         }
1873         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1874 
1875         /* Payload types which need a different size of payload on
1876          * the target must adjust tgt_len here.
1877          */
1878         tgt_len = len;
1879         switch (cmsg->cmsg_level) {
1880         case SOL_SOCKET:
1881             switch (cmsg->cmsg_type) {
1882             case SO_TIMESTAMP:
1883                 tgt_len = sizeof(struct target_timeval);
1884                 break;
1885             default:
1886                 break;
1887             }
1888             break;
1889         default:
1890             break;
1891         }
1892 
1893         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1894             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1895             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1896         }
1897 
1898         /* We must now copy-and-convert len bytes of payload
1899          * into tgt_len bytes of destination space. Bear in mind
1900          * that in both source and destination we may be dealing
1901          * with a truncated value!
1902          */
1903         switch (cmsg->cmsg_level) {
1904         case SOL_SOCKET:
1905             switch (cmsg->cmsg_type) {
1906             case SCM_RIGHTS:
1907             {
1908                 int *fd = (int *)data;
1909                 int *target_fd = (int *)target_data;
1910                 int i, numfds = tgt_len / sizeof(int);
1911 
1912                 for (i = 0; i < numfds; i++) {
1913                     __put_user(fd[i], target_fd + i);
1914                 }
1915                 break;
1916             }
1917             case SO_TIMESTAMP:
1918             {
1919                 struct timeval *tv = (struct timeval *)data;
1920                 struct target_timeval *target_tv =
1921                     (struct target_timeval *)target_data;
1922 
1923                 if (len != sizeof(struct timeval) ||
1924                     tgt_len != sizeof(struct target_timeval)) {
1925                     goto unimplemented;
1926                 }
1927 
1928                 /* copy struct timeval to target */
1929                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1930                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1931                 break;
1932             }
1933             case SCM_CREDENTIALS:
1934             {
1935                 struct ucred *cred = (struct ucred *)data;
1936                 struct target_ucred *target_cred =
1937                     (struct target_ucred *)target_data;
1938 
1939                 __put_user(cred->pid, &target_cred->pid);
1940                 __put_user(cred->uid, &target_cred->uid);
1941                 __put_user(cred->gid, &target_cred->gid);
1942                 break;
1943             }
1944             default:
1945                 goto unimplemented;
1946             }
1947             break;
1948 
1949         case SOL_IP:
1950             switch (cmsg->cmsg_type) {
1951             case IP_TTL:
1952             {
1953                 uint32_t *v = (uint32_t *)data;
1954                 uint32_t *t_int = (uint32_t *)target_data;
1955 
1956                 if (len != sizeof(uint32_t) ||
1957                     tgt_len != sizeof(uint32_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(*v, t_int);
1961                 break;
1962             }
1963             case IP_RECVERR:
1964             {
1965                 struct errhdr_t {
1966                    struct sock_extended_err ee;
1967                    struct sockaddr_in offender;
1968                 };
1969                 struct errhdr_t *errh = (struct errhdr_t *)data;
1970                 struct errhdr_t *target_errh =
1971                     (struct errhdr_t *)target_data;
1972 
1973                 if (len != sizeof(struct errhdr_t) ||
1974                     tgt_len != sizeof(struct errhdr_t)) {
1975                     goto unimplemented;
1976                 }
1977                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1978                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1979                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1980                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1981                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1982                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1983                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1984                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1985                     (void *) &errh->offender, sizeof(errh->offender));
1986                 break;
1987             }
1988             default:
1989                 goto unimplemented;
1990             }
1991             break;
1992 
1993         case SOL_IPV6:
1994             switch (cmsg->cmsg_type) {
1995             case IPV6_HOPLIMIT:
1996             {
1997                 uint32_t *v = (uint32_t *)data;
1998                 uint32_t *t_int = (uint32_t *)target_data;
1999 
2000                 if (len != sizeof(uint32_t) ||
2001                     tgt_len != sizeof(uint32_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(*v, t_int);
2005                 break;
2006             }
2007             case IPV6_RECVERR:
2008             {
2009                 struct errhdr6_t {
2010                    struct sock_extended_err ee;
2011                    struct sockaddr_in6 offender;
2012                 };
2013                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2014                 struct errhdr6_t *target_errh =
2015                     (struct errhdr6_t *)target_data;
2016 
2017                 if (len != sizeof(struct errhdr6_t) ||
2018                     tgt_len != sizeof(struct errhdr6_t)) {
2019                     goto unimplemented;
2020                 }
2021                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2022                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2023                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2024                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2025                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2026                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2027                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2028                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2029                     (void *) &errh->offender, sizeof(errh->offender));
2030                 break;
2031             }
2032             default:
2033                 goto unimplemented;
2034             }
2035             break;
2036 
2037         default:
2038         unimplemented:
2039             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2040                           cmsg->cmsg_level, cmsg->cmsg_type);
2041             memcpy(target_data, data, MIN(len, tgt_len));
2042             if (tgt_len > len) {
2043                 memset(target_data + len, 0, tgt_len - len);
2044             }
2045         }
2046 
2047         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2048         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2049         if (msg_controllen < tgt_space) {
2050             tgt_space = msg_controllen;
2051         }
2052         msg_controllen -= tgt_space;
2053         space += tgt_space;
2054         cmsg = CMSG_NXTHDR(msgh, cmsg);
2055         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2056                                          target_cmsg_start);
2057     }
2058     unlock_user(target_cmsg, target_cmsg_addr, space);
2059  the_end:
2060     target_msgh->msg_controllen = tswapal(space);
2061     return 0;
2062 }
2063 
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long do_setsockopt(int sockfd, int level, int optname,
2066                               abi_ulong optval_addr, socklen_t optlen)
2067 {
2068     abi_long ret;
2069     int val;
2070     struct ip_mreqn *ip_mreq;
2071     struct ip_mreq_source *ip_mreq_source;
2072 
2073     switch(level) {
2074     case SOL_TCP:
2075     case SOL_UDP:
2076         /* TCP and UDP options all take an 'int' value.  */
2077         if (optlen < sizeof(uint32_t))
2078             return -TARGET_EINVAL;
2079 
2080         if (get_user_u32(val, optval_addr))
2081             return -TARGET_EFAULT;
2082         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2083         break;
2084     case SOL_IP:
2085         switch(optname) {
2086         case IP_TOS:
2087         case IP_TTL:
2088         case IP_HDRINCL:
2089         case IP_ROUTER_ALERT:
2090         case IP_RECVOPTS:
2091         case IP_RETOPTS:
2092         case IP_PKTINFO:
2093         case IP_MTU_DISCOVER:
2094         case IP_RECVERR:
2095         case IP_RECVTTL:
2096         case IP_RECVTOS:
2097 #ifdef IP_FREEBIND
2098         case IP_FREEBIND:
2099 #endif
2100         case IP_MULTICAST_TTL:
2101         case IP_MULTICAST_LOOP:
2102             val = 0;
2103             if (optlen >= sizeof(uint32_t)) {
2104                 if (get_user_u32(val, optval_addr))
2105                     return -TARGET_EFAULT;
2106             } else if (optlen >= 1) {
2107                 if (get_user_u8(val, optval_addr))
2108                     return -TARGET_EFAULT;
2109             }
2110             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2111             break;
2112         case IP_ADD_MEMBERSHIP:
2113         case IP_DROP_MEMBERSHIP:
2114             if (optlen < sizeof (struct target_ip_mreq) ||
2115                 optlen > sizeof (struct target_ip_mreqn))
2116                 return -TARGET_EINVAL;
2117 
2118             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2119             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2120             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2121             break;
2122 
2123         case IP_BLOCK_SOURCE:
2124         case IP_UNBLOCK_SOURCE:
2125         case IP_ADD_SOURCE_MEMBERSHIP:
2126         case IP_DROP_SOURCE_MEMBERSHIP:
2127             if (optlen != sizeof (struct target_ip_mreq_source))
2128                 return -TARGET_EINVAL;
2129 
2130             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2131             if (!ip_mreq_source) {
2132                 return -TARGET_EFAULT;
2133             }
2134             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2135             unlock_user (ip_mreq_source, optval_addr, 0);
2136             break;
2137 
2138         default:
2139             goto unimplemented;
2140         }
2141         break;
2142     case SOL_IPV6:
2143         switch (optname) {
2144         case IPV6_MTU_DISCOVER:
2145         case IPV6_MTU:
2146         case IPV6_V6ONLY:
2147         case IPV6_RECVPKTINFO:
2148         case IPV6_UNICAST_HOPS:
2149         case IPV6_MULTICAST_HOPS:
2150         case IPV6_MULTICAST_LOOP:
2151         case IPV6_RECVERR:
2152         case IPV6_RECVHOPLIMIT:
2153         case IPV6_2292HOPLIMIT:
2154         case IPV6_CHECKSUM:
2155         case IPV6_ADDRFORM:
2156         case IPV6_2292PKTINFO:
2157         case IPV6_RECVTCLASS:
2158         case IPV6_RECVRTHDR:
2159         case IPV6_2292RTHDR:
2160         case IPV6_RECVHOPOPTS:
2161         case IPV6_2292HOPOPTS:
2162         case IPV6_RECVDSTOPTS:
2163         case IPV6_2292DSTOPTS:
2164         case IPV6_TCLASS:
2165         case IPV6_ADDR_PREFERENCES:
2166 #ifdef IPV6_RECVPATHMTU
2167         case IPV6_RECVPATHMTU:
2168 #endif
2169 #ifdef IPV6_TRANSPARENT
2170         case IPV6_TRANSPARENT:
2171 #endif
2172 #ifdef IPV6_FREEBIND
2173         case IPV6_FREEBIND:
2174 #endif
2175 #ifdef IPV6_RECVORIGDSTADDR
2176         case IPV6_RECVORIGDSTADDR:
2177 #endif
2178             val = 0;
2179             if (optlen < sizeof(uint32_t)) {
2180                 return -TARGET_EINVAL;
2181             }
2182             if (get_user_u32(val, optval_addr)) {
2183                 return -TARGET_EFAULT;
2184             }
2185             ret = get_errno(setsockopt(sockfd, level, optname,
2186                                        &val, sizeof(val)));
2187             break;
2188         case IPV6_PKTINFO:
2189         {
2190             struct in6_pktinfo pki;
2191 
2192             if (optlen < sizeof(pki)) {
2193                 return -TARGET_EINVAL;
2194             }
2195 
2196             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2197                 return -TARGET_EFAULT;
2198             }
2199 
2200             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2201 
2202             ret = get_errno(setsockopt(sockfd, level, optname,
2203                                        &pki, sizeof(pki)));
2204             break;
2205         }
2206         case IPV6_ADD_MEMBERSHIP:
2207         case IPV6_DROP_MEMBERSHIP:
2208         {
2209             struct ipv6_mreq ipv6mreq;
2210 
2211             if (optlen < sizeof(ipv6mreq)) {
2212                 return -TARGET_EINVAL;
2213             }
2214 
2215             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2216                 return -TARGET_EFAULT;
2217             }
2218 
2219             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2220 
2221             ret = get_errno(setsockopt(sockfd, level, optname,
2222                                        &ipv6mreq, sizeof(ipv6mreq)));
2223             break;
2224         }
2225         default:
2226             goto unimplemented;
2227         }
2228         break;
2229     case SOL_ICMPV6:
2230         switch (optname) {
2231         case ICMPV6_FILTER:
2232         {
2233             struct icmp6_filter icmp6f;
2234 
2235             if (optlen > sizeof(icmp6f)) {
2236                 optlen = sizeof(icmp6f);
2237             }
2238 
2239             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2240                 return -TARGET_EFAULT;
2241             }
2242 
2243             for (val = 0; val < 8; val++) {
2244                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2245             }
2246 
2247             ret = get_errno(setsockopt(sockfd, level, optname,
2248                                        &icmp6f, optlen));
2249             break;
2250         }
2251         default:
2252             goto unimplemented;
2253         }
2254         break;
2255     case SOL_RAW:
2256         switch (optname) {
2257         case ICMP_FILTER:
2258         case IPV6_CHECKSUM:
2259             /* those take an u32 value */
2260             if (optlen < sizeof(uint32_t)) {
2261                 return -TARGET_EINVAL;
2262             }
2263 
2264             if (get_user_u32(val, optval_addr)) {
2265                 return -TARGET_EFAULT;
2266             }
2267             ret = get_errno(setsockopt(sockfd, level, optname,
2268                                        &val, sizeof(val)));
2269             break;
2270 
2271         default:
2272             goto unimplemented;
2273         }
2274         break;
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2276     case SOL_ALG:
2277         switch (optname) {
2278         case ALG_SET_KEY:
2279         {
2280             char *alg_key = g_malloc(optlen);
2281 
2282             if (!alg_key) {
2283                 return -TARGET_ENOMEM;
2284             }
2285             if (copy_from_user(alg_key, optval_addr, optlen)) {
2286                 g_free(alg_key);
2287                 return -TARGET_EFAULT;
2288             }
2289             ret = get_errno(setsockopt(sockfd, level, optname,
2290                                        alg_key, optlen));
2291             g_free(alg_key);
2292             break;
2293         }
2294         case ALG_SET_AEAD_AUTHSIZE:
2295         {
2296             ret = get_errno(setsockopt(sockfd, level, optname,
2297                                        NULL, optlen));
2298             break;
2299         }
2300         default:
2301             goto unimplemented;
2302         }
2303         break;
2304 #endif
2305     case TARGET_SOL_SOCKET:
2306         switch (optname) {
2307         case TARGET_SO_RCVTIMEO:
2308         {
2309                 struct timeval tv;
2310 
2311                 optname = SO_RCVTIMEO;
2312 
2313 set_timeout:
2314                 if (optlen != sizeof(struct target_timeval)) {
2315                     return -TARGET_EINVAL;
2316                 }
2317 
2318                 if (copy_from_user_timeval(&tv, optval_addr)) {
2319                     return -TARGET_EFAULT;
2320                 }
2321 
2322                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2323                                 &tv, sizeof(tv)));
2324                 return ret;
2325         }
2326         case TARGET_SO_SNDTIMEO:
2327                 optname = SO_SNDTIMEO;
2328                 goto set_timeout;
2329         case TARGET_SO_ATTACH_FILTER:
2330         {
2331                 struct target_sock_fprog *tfprog;
2332                 struct target_sock_filter *tfilter;
2333                 struct sock_fprog fprog;
2334                 struct sock_filter *filter;
2335                 int i;
2336 
2337                 if (optlen != sizeof(*tfprog)) {
2338                     return -TARGET_EINVAL;
2339                 }
2340                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2341                     return -TARGET_EFAULT;
2342                 }
2343                 if (!lock_user_struct(VERIFY_READ, tfilter,
2344                                       tswapal(tfprog->filter), 0)) {
2345                     unlock_user_struct(tfprog, optval_addr, 1);
2346                     return -TARGET_EFAULT;
2347                 }
2348 
2349                 fprog.len = tswap16(tfprog->len);
2350                 filter = g_try_new(struct sock_filter, fprog.len);
2351                 if (filter == NULL) {
2352                     unlock_user_struct(tfilter, tfprog->filter, 1);
2353                     unlock_user_struct(tfprog, optval_addr, 1);
2354                     return -TARGET_ENOMEM;
2355                 }
2356                 for (i = 0; i < fprog.len; i++) {
2357                     filter[i].code = tswap16(tfilter[i].code);
2358                     filter[i].jt = tfilter[i].jt;
2359                     filter[i].jf = tfilter[i].jf;
2360                     filter[i].k = tswap32(tfilter[i].k);
2361                 }
2362                 fprog.filter = filter;
2363 
2364                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2365                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2366                 g_free(filter);
2367 
2368                 unlock_user_struct(tfilter, tfprog->filter, 1);
2369                 unlock_user_struct(tfprog, optval_addr, 1);
2370                 return ret;
2371         }
2372 	case TARGET_SO_BINDTODEVICE:
2373 	{
2374 		char *dev_ifname, *addr_ifname;
2375 
2376 		if (optlen > IFNAMSIZ - 1) {
2377 		    optlen = IFNAMSIZ - 1;
2378 		}
2379 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2380 		if (!dev_ifname) {
2381 		    return -TARGET_EFAULT;
2382 		}
2383 		optname = SO_BINDTODEVICE;
2384 		addr_ifname = alloca(IFNAMSIZ);
2385 		memcpy(addr_ifname, dev_ifname, optlen);
2386 		addr_ifname[optlen] = 0;
2387 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2388                                            addr_ifname, optlen));
2389 		unlock_user (dev_ifname, optval_addr, 0);
2390 		return ret;
2391 	}
2392         case TARGET_SO_LINGER:
2393         {
2394                 struct linger lg;
2395                 struct target_linger *tlg;
2396 
2397                 if (optlen != sizeof(struct target_linger)) {
2398                     return -TARGET_EINVAL;
2399                 }
2400                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2401                     return -TARGET_EFAULT;
2402                 }
2403                 __get_user(lg.l_onoff, &tlg->l_onoff);
2404                 __get_user(lg.l_linger, &tlg->l_linger);
2405                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2406                                 &lg, sizeof(lg)));
2407                 unlock_user_struct(tlg, optval_addr, 0);
2408                 return ret;
2409         }
2410             /* Options with 'int' argument.  */
2411         case TARGET_SO_DEBUG:
2412 		optname = SO_DEBUG;
2413 		break;
2414         case TARGET_SO_REUSEADDR:
2415 		optname = SO_REUSEADDR;
2416 		break;
2417 #ifdef SO_REUSEPORT
2418         case TARGET_SO_REUSEPORT:
2419                 optname = SO_REUSEPORT;
2420                 break;
2421 #endif
2422         case TARGET_SO_TYPE:
2423 		optname = SO_TYPE;
2424 		break;
2425         case TARGET_SO_ERROR:
2426 		optname = SO_ERROR;
2427 		break;
2428         case TARGET_SO_DONTROUTE:
2429 		optname = SO_DONTROUTE;
2430 		break;
2431         case TARGET_SO_BROADCAST:
2432 		optname = SO_BROADCAST;
2433 		break;
2434         case TARGET_SO_SNDBUF:
2435 		optname = SO_SNDBUF;
2436 		break;
2437         case TARGET_SO_SNDBUFFORCE:
2438                 optname = SO_SNDBUFFORCE;
2439                 break;
2440         case TARGET_SO_RCVBUF:
2441 		optname = SO_RCVBUF;
2442 		break;
2443         case TARGET_SO_RCVBUFFORCE:
2444                 optname = SO_RCVBUFFORCE;
2445                 break;
2446         case TARGET_SO_KEEPALIVE:
2447 		optname = SO_KEEPALIVE;
2448 		break;
2449         case TARGET_SO_OOBINLINE:
2450 		optname = SO_OOBINLINE;
2451 		break;
2452         case TARGET_SO_NO_CHECK:
2453 		optname = SO_NO_CHECK;
2454 		break;
2455         case TARGET_SO_PRIORITY:
2456 		optname = SO_PRIORITY;
2457 		break;
2458 #ifdef SO_BSDCOMPAT
2459         case TARGET_SO_BSDCOMPAT:
2460 		optname = SO_BSDCOMPAT;
2461 		break;
2462 #endif
2463         case TARGET_SO_PASSCRED:
2464 		optname = SO_PASSCRED;
2465 		break;
2466         case TARGET_SO_PASSSEC:
2467                 optname = SO_PASSSEC;
2468                 break;
2469         case TARGET_SO_TIMESTAMP:
2470 		optname = SO_TIMESTAMP;
2471 		break;
2472         case TARGET_SO_RCVLOWAT:
2473 		optname = SO_RCVLOWAT;
2474 		break;
2475         default:
2476             goto unimplemented;
2477         }
2478 	if (optlen < sizeof(uint32_t))
2479             return -TARGET_EINVAL;
2480 
2481 	if (get_user_u32(val, optval_addr))
2482             return -TARGET_EFAULT;
2483 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2484         break;
2485 #ifdef SOL_NETLINK
2486     case SOL_NETLINK:
2487         switch (optname) {
2488         case NETLINK_PKTINFO:
2489         case NETLINK_ADD_MEMBERSHIP:
2490         case NETLINK_DROP_MEMBERSHIP:
2491         case NETLINK_BROADCAST_ERROR:
2492         case NETLINK_NO_ENOBUFS:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494         case NETLINK_LISTEN_ALL_NSID:
2495         case NETLINK_CAP_ACK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498         case NETLINK_EXT_ACK:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501         case NETLINK_GET_STRICT_CHK:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2503             break;
2504         default:
2505             goto unimplemented;
2506         }
2507         val = 0;
2508         if (optlen < sizeof(uint32_t)) {
2509             return -TARGET_EINVAL;
2510         }
2511         if (get_user_u32(val, optval_addr)) {
2512             return -TARGET_EFAULT;
2513         }
2514         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2515                                    sizeof(val)));
2516         break;
2517 #endif /* SOL_NETLINK */
2518     default:
2519     unimplemented:
2520         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2521                       level, optname);
2522         ret = -TARGET_ENOPROTOOPT;
2523     }
2524     return ret;
2525 }
2526 
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long do_getsockopt(int sockfd, int level, int optname,
2529                               abi_ulong optval_addr, abi_ulong optlen)
2530 {
2531     abi_long ret;
2532     int len, val;
2533     socklen_t lv;
2534 
2535     switch(level) {
2536     case TARGET_SOL_SOCKET:
2537         level = SOL_SOCKET;
2538         switch (optname) {
2539         /* These don't just return a single integer */
2540         case TARGET_SO_PEERNAME:
2541             goto unimplemented;
2542         case TARGET_SO_RCVTIMEO: {
2543             struct timeval tv;
2544             socklen_t tvlen;
2545 
2546             optname = SO_RCVTIMEO;
2547 
2548 get_timeout:
2549             if (get_user_u32(len, optlen)) {
2550                 return -TARGET_EFAULT;
2551             }
2552             if (len < 0) {
2553                 return -TARGET_EINVAL;
2554             }
2555 
2556             tvlen = sizeof(tv);
2557             ret = get_errno(getsockopt(sockfd, level, optname,
2558                                        &tv, &tvlen));
2559             if (ret < 0) {
2560                 return ret;
2561             }
2562             if (len > sizeof(struct target_timeval)) {
2563                 len = sizeof(struct target_timeval);
2564             }
2565             if (copy_to_user_timeval(optval_addr, &tv)) {
2566                 return -TARGET_EFAULT;
2567             }
2568             if (put_user_u32(len, optlen)) {
2569                 return -TARGET_EFAULT;
2570             }
2571             break;
2572         }
2573         case TARGET_SO_SNDTIMEO:
2574             optname = SO_SNDTIMEO;
2575             goto get_timeout;
2576         case TARGET_SO_PEERCRED: {
2577             struct ucred cr;
2578             socklen_t crlen;
2579             struct target_ucred *tcr;
2580 
2581             if (get_user_u32(len, optlen)) {
2582                 return -TARGET_EFAULT;
2583             }
2584             if (len < 0) {
2585                 return -TARGET_EINVAL;
2586             }
2587 
2588             crlen = sizeof(cr);
2589             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2590                                        &cr, &crlen));
2591             if (ret < 0) {
2592                 return ret;
2593             }
2594             if (len > crlen) {
2595                 len = crlen;
2596             }
2597             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2598                 return -TARGET_EFAULT;
2599             }
2600             __put_user(cr.pid, &tcr->pid);
2601             __put_user(cr.uid, &tcr->uid);
2602             __put_user(cr.gid, &tcr->gid);
2603             unlock_user_struct(tcr, optval_addr, 1);
2604             if (put_user_u32(len, optlen)) {
2605                 return -TARGET_EFAULT;
2606             }
2607             break;
2608         }
2609         case TARGET_SO_PEERSEC: {
2610             char *name;
2611 
2612             if (get_user_u32(len, optlen)) {
2613                 return -TARGET_EFAULT;
2614             }
2615             if (len < 0) {
2616                 return -TARGET_EINVAL;
2617             }
2618             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2619             if (!name) {
2620                 return -TARGET_EFAULT;
2621             }
2622             lv = len;
2623             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2624                                        name, &lv));
2625             if (put_user_u32(lv, optlen)) {
2626                 ret = -TARGET_EFAULT;
2627             }
2628             unlock_user(name, optval_addr, lv);
2629             break;
2630         }
2631         case TARGET_SO_LINGER:
2632         {
2633             struct linger lg;
2634             socklen_t lglen;
2635             struct target_linger *tlg;
2636 
2637             if (get_user_u32(len, optlen)) {
2638                 return -TARGET_EFAULT;
2639             }
2640             if (len < 0) {
2641                 return -TARGET_EINVAL;
2642             }
2643 
2644             lglen = sizeof(lg);
2645             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2646                                        &lg, &lglen));
2647             if (ret < 0) {
2648                 return ret;
2649             }
2650             if (len > lglen) {
2651                 len = lglen;
2652             }
2653             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             __put_user(lg.l_onoff, &tlg->l_onoff);
2657             __put_user(lg.l_linger, &tlg->l_linger);
2658             unlock_user_struct(tlg, optval_addr, 1);
2659             if (put_user_u32(len, optlen)) {
2660                 return -TARGET_EFAULT;
2661             }
2662             break;
2663         }
2664         /* Options with 'int' argument.  */
2665         case TARGET_SO_DEBUG:
2666             optname = SO_DEBUG;
2667             goto int_case;
2668         case TARGET_SO_REUSEADDR:
2669             optname = SO_REUSEADDR;
2670             goto int_case;
2671 #ifdef SO_REUSEPORT
2672         case TARGET_SO_REUSEPORT:
2673             optname = SO_REUSEPORT;
2674             goto int_case;
2675 #endif
2676         case TARGET_SO_TYPE:
2677             optname = SO_TYPE;
2678             goto int_case;
2679         case TARGET_SO_ERROR:
2680             optname = SO_ERROR;
2681             goto int_case;
2682         case TARGET_SO_DONTROUTE:
2683             optname = SO_DONTROUTE;
2684             goto int_case;
2685         case TARGET_SO_BROADCAST:
2686             optname = SO_BROADCAST;
2687             goto int_case;
2688         case TARGET_SO_SNDBUF:
2689             optname = SO_SNDBUF;
2690             goto int_case;
2691         case TARGET_SO_RCVBUF:
2692             optname = SO_RCVBUF;
2693             goto int_case;
2694         case TARGET_SO_KEEPALIVE:
2695             optname = SO_KEEPALIVE;
2696             goto int_case;
2697         case TARGET_SO_OOBINLINE:
2698             optname = SO_OOBINLINE;
2699             goto int_case;
2700         case TARGET_SO_NO_CHECK:
2701             optname = SO_NO_CHECK;
2702             goto int_case;
2703         case TARGET_SO_PRIORITY:
2704             optname = SO_PRIORITY;
2705             goto int_case;
2706 #ifdef SO_BSDCOMPAT
2707         case TARGET_SO_BSDCOMPAT:
2708             optname = SO_BSDCOMPAT;
2709             goto int_case;
2710 #endif
2711         case TARGET_SO_PASSCRED:
2712             optname = SO_PASSCRED;
2713             goto int_case;
2714         case TARGET_SO_TIMESTAMP:
2715             optname = SO_TIMESTAMP;
2716             goto int_case;
2717         case TARGET_SO_RCVLOWAT:
2718             optname = SO_RCVLOWAT;
2719             goto int_case;
2720         case TARGET_SO_ACCEPTCONN:
2721             optname = SO_ACCEPTCONN;
2722             goto int_case;
2723         case TARGET_SO_PROTOCOL:
2724             optname = SO_PROTOCOL;
2725             goto int_case;
2726         case TARGET_SO_DOMAIN:
2727             optname = SO_DOMAIN;
2728             goto int_case;
2729         default:
2730             goto int_case;
2731         }
2732         break;
2733     case SOL_TCP:
2734     case SOL_UDP:
2735         /* TCP and UDP options all take an 'int' value.  */
2736     int_case:
2737         if (get_user_u32(len, optlen))
2738             return -TARGET_EFAULT;
2739         if (len < 0)
2740             return -TARGET_EINVAL;
2741         lv = sizeof(lv);
2742         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2743         if (ret < 0)
2744             return ret;
2745         switch (optname) {
2746         case SO_TYPE:
2747             val = host_to_target_sock_type(val);
2748             break;
2749         case SO_ERROR:
2750             val = host_to_target_errno(val);
2751             break;
2752         }
2753         if (len > lv)
2754             len = lv;
2755         if (len == 4) {
2756             if (put_user_u32(val, optval_addr))
2757                 return -TARGET_EFAULT;
2758         } else {
2759             if (put_user_u8(val, optval_addr))
2760                 return -TARGET_EFAULT;
2761         }
2762         if (put_user_u32(len, optlen))
2763             return -TARGET_EFAULT;
2764         break;
2765     case SOL_IP:
2766         switch(optname) {
2767         case IP_TOS:
2768         case IP_TTL:
2769         case IP_HDRINCL:
2770         case IP_ROUTER_ALERT:
2771         case IP_RECVOPTS:
2772         case IP_RETOPTS:
2773         case IP_PKTINFO:
2774         case IP_MTU_DISCOVER:
2775         case IP_RECVERR:
2776         case IP_RECVTOS:
2777 #ifdef IP_FREEBIND
2778         case IP_FREEBIND:
2779 #endif
2780         case IP_MULTICAST_TTL:
2781         case IP_MULTICAST_LOOP:
2782             if (get_user_u32(len, optlen))
2783                 return -TARGET_EFAULT;
2784             if (len < 0)
2785                 return -TARGET_EINVAL;
2786             lv = sizeof(lv);
2787             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2788             if (ret < 0)
2789                 return ret;
2790             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2791                 len = 1;
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u8(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             } else {
2796                 if (len > sizeof(int))
2797                     len = sizeof(int);
2798                 if (put_user_u32(len, optlen)
2799                     || put_user_u32(val, optval_addr))
2800                     return -TARGET_EFAULT;
2801             }
2802             break;
2803         default:
2804             ret = -TARGET_ENOPROTOOPT;
2805             break;
2806         }
2807         break;
2808     case SOL_IPV6:
2809         switch (optname) {
2810         case IPV6_MTU_DISCOVER:
2811         case IPV6_MTU:
2812         case IPV6_V6ONLY:
2813         case IPV6_RECVPKTINFO:
2814         case IPV6_UNICAST_HOPS:
2815         case IPV6_MULTICAST_HOPS:
2816         case IPV6_MULTICAST_LOOP:
2817         case IPV6_RECVERR:
2818         case IPV6_RECVHOPLIMIT:
2819         case IPV6_2292HOPLIMIT:
2820         case IPV6_CHECKSUM:
2821         case IPV6_ADDRFORM:
2822         case IPV6_2292PKTINFO:
2823         case IPV6_RECVTCLASS:
2824         case IPV6_RECVRTHDR:
2825         case IPV6_2292RTHDR:
2826         case IPV6_RECVHOPOPTS:
2827         case IPV6_2292HOPOPTS:
2828         case IPV6_RECVDSTOPTS:
2829         case IPV6_2292DSTOPTS:
2830         case IPV6_TCLASS:
2831         case IPV6_ADDR_PREFERENCES:
2832 #ifdef IPV6_RECVPATHMTU
2833         case IPV6_RECVPATHMTU:
2834 #endif
2835 #ifdef IPV6_TRANSPARENT
2836         case IPV6_TRANSPARENT:
2837 #endif
2838 #ifdef IPV6_FREEBIND
2839         case IPV6_FREEBIND:
2840 #endif
2841 #ifdef IPV6_RECVORIGDSTADDR
2842         case IPV6_RECVORIGDSTADDR:
2843 #endif
2844             if (get_user_u32(len, optlen))
2845                 return -TARGET_EFAULT;
2846             if (len < 0)
2847                 return -TARGET_EINVAL;
2848             lv = sizeof(lv);
2849             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2850             if (ret < 0)
2851                 return ret;
2852             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2853                 len = 1;
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u8(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             } else {
2858                 if (len > sizeof(int))
2859                     len = sizeof(int);
2860                 if (put_user_u32(len, optlen)
2861                     || put_user_u32(val, optval_addr))
2862                     return -TARGET_EFAULT;
2863             }
2864             break;
2865         default:
2866             ret = -TARGET_ENOPROTOOPT;
2867             break;
2868         }
2869         break;
2870 #ifdef SOL_NETLINK
2871     case SOL_NETLINK:
2872         switch (optname) {
2873         case NETLINK_PKTINFO:
2874         case NETLINK_BROADCAST_ERROR:
2875         case NETLINK_NO_ENOBUFS:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877         case NETLINK_LISTEN_ALL_NSID:
2878         case NETLINK_CAP_ACK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881         case NETLINK_EXT_ACK:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884         case NETLINK_GET_STRICT_CHK:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886             if (get_user_u32(len, optlen)) {
2887                 return -TARGET_EFAULT;
2888             }
2889             if (len != sizeof(val)) {
2890                 return -TARGET_EINVAL;
2891             }
2892             lv = len;
2893             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2894             if (ret < 0) {
2895                 return ret;
2896             }
2897             if (put_user_u32(lv, optlen)
2898                 || put_user_u32(val, optval_addr)) {
2899                 return -TARGET_EFAULT;
2900             }
2901             break;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903         case NETLINK_LIST_MEMBERSHIPS:
2904         {
2905             uint32_t *results;
2906             int i;
2907             if (get_user_u32(len, optlen)) {
2908                 return -TARGET_EFAULT;
2909             }
2910             if (len < 0) {
2911                 return -TARGET_EINVAL;
2912             }
2913             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2914             if (!results && len > 0) {
2915                 return -TARGET_EFAULT;
2916             }
2917             lv = len;
2918             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2919             if (ret < 0) {
2920                 unlock_user(results, optval_addr, 0);
2921                 return ret;
2922             }
2923             /* swap host endianness to target endianness. */
2924             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2925                 results[i] = tswap32(results[i]);
2926             }
2927             if (put_user_u32(lv, optlen)) {
2928                 return -TARGET_EFAULT;
2929             }
2930             unlock_user(results, optval_addr, 0);
2931             break;
2932         }
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2934         default:
2935             goto unimplemented;
2936         }
2937         break;
2938 #endif /* SOL_NETLINK */
2939     default:
2940     unimplemented:
2941         qemu_log_mask(LOG_UNIMP,
2942                       "getsockopt level=%d optname=%d not yet supported\n",
2943                       level, optname);
2944         ret = -TARGET_EOPNOTSUPP;
2945         break;
2946     }
2947     return ret;
2948 }
2949 
2950 /* Convert target low/high pair representing file offset into the host
2951  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952  * as the kernel doesn't handle them either.
2953  */
2954 static void target_to_host_low_high(abi_ulong tlow,
2955                                     abi_ulong thigh,
2956                                     unsigned long *hlow,
2957                                     unsigned long *hhigh)
2958 {
2959     uint64_t off = tlow |
2960         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2961         TARGET_LONG_BITS / 2;
2962 
2963     *hlow = off;
2964     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2965 }
2966 
2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2968                                 abi_ulong count, int copy)
2969 {
2970     struct target_iovec *target_vec;
2971     struct iovec *vec;
2972     abi_ulong total_len, max_len;
2973     int i;
2974     int err = 0;
2975     bool bad_address = false;
2976 
2977     if (count == 0) {
2978         errno = 0;
2979         return NULL;
2980     }
2981     if (count > IOV_MAX) {
2982         errno = EINVAL;
2983         return NULL;
2984     }
2985 
2986     vec = g_try_new0(struct iovec, count);
2987     if (vec == NULL) {
2988         errno = ENOMEM;
2989         return NULL;
2990     }
2991 
2992     target_vec = lock_user(VERIFY_READ, target_addr,
2993                            count * sizeof(struct target_iovec), 1);
2994     if (target_vec == NULL) {
2995         err = EFAULT;
2996         goto fail2;
2997     }
2998 
2999     /* ??? If host page size > target page size, this will result in a
3000        value larger than what we can actually support.  */
3001     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3002     total_len = 0;
3003 
3004     for (i = 0; i < count; i++) {
3005         abi_ulong base = tswapal(target_vec[i].iov_base);
3006         abi_long len = tswapal(target_vec[i].iov_len);
3007 
3008         if (len < 0) {
3009             err = EINVAL;
3010             goto fail;
3011         } else if (len == 0) {
3012             /* Zero length pointer is ignored.  */
3013             vec[i].iov_base = 0;
3014         } else {
3015             vec[i].iov_base = lock_user(type, base, len, copy);
3016             /* If the first buffer pointer is bad, this is a fault.  But
3017              * subsequent bad buffers will result in a partial write; this
3018              * is realized by filling the vector with null pointers and
3019              * zero lengths. */
3020             if (!vec[i].iov_base) {
3021                 if (i == 0) {
3022                     err = EFAULT;
3023                     goto fail;
3024                 } else {
3025                     bad_address = true;
3026                 }
3027             }
3028             if (bad_address) {
3029                 len = 0;
3030             }
3031             if (len > max_len - total_len) {
3032                 len = max_len - total_len;
3033             }
3034         }
3035         vec[i].iov_len = len;
3036         total_len += len;
3037     }
3038 
3039     unlock_user(target_vec, target_addr, 0);
3040     return vec;
3041 
3042  fail:
3043     while (--i >= 0) {
3044         if (tswapal(target_vec[i].iov_len) > 0) {
3045             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3046         }
3047     }
3048     unlock_user(target_vec, target_addr, 0);
3049  fail2:
3050     g_free(vec);
3051     errno = err;
3052     return NULL;
3053 }
3054 
3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3056                          abi_ulong count, int copy)
3057 {
3058     struct target_iovec *target_vec;
3059     int i;
3060 
3061     target_vec = lock_user(VERIFY_READ, target_addr,
3062                            count * sizeof(struct target_iovec), 1);
3063     if (target_vec) {
3064         for (i = 0; i < count; i++) {
3065             abi_ulong base = tswapal(target_vec[i].iov_base);
3066             abi_long len = tswapal(target_vec[i].iov_len);
3067             if (len < 0) {
3068                 break;
3069             }
3070             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3071         }
3072         unlock_user(target_vec, target_addr, 0);
3073     }
3074 
3075     g_free(vec);
3076 }
3077 
3078 static inline int target_to_host_sock_type(int *type)
3079 {
3080     int host_type = 0;
3081     int target_type = *type;
3082 
3083     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3084     case TARGET_SOCK_DGRAM:
3085         host_type = SOCK_DGRAM;
3086         break;
3087     case TARGET_SOCK_STREAM:
3088         host_type = SOCK_STREAM;
3089         break;
3090     default:
3091         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3092         break;
3093     }
3094     if (target_type & TARGET_SOCK_CLOEXEC) {
3095 #if defined(SOCK_CLOEXEC)
3096         host_type |= SOCK_CLOEXEC;
3097 #else
3098         return -TARGET_EINVAL;
3099 #endif
3100     }
3101     if (target_type & TARGET_SOCK_NONBLOCK) {
3102 #if defined(SOCK_NONBLOCK)
3103         host_type |= SOCK_NONBLOCK;
3104 #elif !defined(O_NONBLOCK)
3105         return -TARGET_EINVAL;
3106 #endif
3107     }
3108     *type = host_type;
3109     return 0;
3110 }
3111 
3112 /* Try to emulate socket type flags after socket creation.  */
3113 static int sock_flags_fixup(int fd, int target_type)
3114 {
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116     if (target_type & TARGET_SOCK_NONBLOCK) {
3117         int flags = fcntl(fd, F_GETFL);
3118         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3119             close(fd);
3120             return -TARGET_EINVAL;
3121         }
3122     }
3123 #endif
3124     return fd;
3125 }
3126 
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long do_socket(int domain, int type, int protocol)
3129 {
3130     int target_type = type;
3131     int ret;
3132 
3133     ret = target_to_host_sock_type(&type);
3134     if (ret) {
3135         return ret;
3136     }
3137 
3138     if (domain == PF_NETLINK && !(
3139 #ifdef CONFIG_RTNETLINK
3140          protocol == NETLINK_ROUTE ||
3141 #endif
3142          protocol == NETLINK_KOBJECT_UEVENT ||
3143          protocol == NETLINK_AUDIT)) {
3144         return -TARGET_EPROTONOSUPPORT;
3145     }
3146 
3147     if (domain == AF_PACKET ||
3148         (domain == AF_INET && type == SOCK_PACKET)) {
3149         protocol = tswap16(protocol);
3150     }
3151 
3152     ret = get_errno(socket(domain, type, protocol));
3153     if (ret >= 0) {
3154         ret = sock_flags_fixup(ret, target_type);
3155         if (type == SOCK_PACKET) {
3156             /* Manage an obsolete case :
3157              * if socket type is SOCK_PACKET, bind by name
3158              */
3159             fd_trans_register(ret, &target_packet_trans);
3160         } else if (domain == PF_NETLINK) {
3161             switch (protocol) {
3162 #ifdef CONFIG_RTNETLINK
3163             case NETLINK_ROUTE:
3164                 fd_trans_register(ret, &target_netlink_route_trans);
3165                 break;
3166 #endif
3167             case NETLINK_KOBJECT_UEVENT:
3168                 /* nothing to do: messages are strings */
3169                 break;
3170             case NETLINK_AUDIT:
3171                 fd_trans_register(ret, &target_netlink_audit_trans);
3172                 break;
3173             default:
3174                 g_assert_not_reached();
3175             }
3176         }
3177     }
3178     return ret;
3179 }
3180 
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3183                         socklen_t addrlen)
3184 {
3185     void *addr;
3186     abi_long ret;
3187 
3188     if ((int)addrlen < 0) {
3189         return -TARGET_EINVAL;
3190     }
3191 
3192     addr = alloca(addrlen+1);
3193 
3194     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3195     if (ret)
3196         return ret;
3197 
3198     return get_errno(bind(sockfd, addr, addrlen));
3199 }
3200 
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3203                            socklen_t addrlen)
3204 {
3205     void *addr;
3206     abi_long ret;
3207 
3208     if ((int)addrlen < 0) {
3209         return -TARGET_EINVAL;
3210     }
3211 
3212     addr = alloca(addrlen+1);
3213 
3214     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215     if (ret)
3216         return ret;
3217 
3218     return get_errno(safe_connect(sockfd, addr, addrlen));
3219 }
3220 
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3223                                       int flags, int send)
3224 {
3225     abi_long ret, len;
3226     struct msghdr msg;
3227     abi_ulong count;
3228     struct iovec *vec;
3229     abi_ulong target_vec;
3230 
3231     if (msgp->msg_name) {
3232         msg.msg_namelen = tswap32(msgp->msg_namelen);
3233         msg.msg_name = alloca(msg.msg_namelen+1);
3234         ret = target_to_host_sockaddr(fd, msg.msg_name,
3235                                       tswapal(msgp->msg_name),
3236                                       msg.msg_namelen);
3237         if (ret == -TARGET_EFAULT) {
3238             /* For connected sockets msg_name and msg_namelen must
3239              * be ignored, so returning EFAULT immediately is wrong.
3240              * Instead, pass a bad msg_name to the host kernel, and
3241              * let it decide whether to return EFAULT or not.
3242              */
3243             msg.msg_name = (void *)-1;
3244         } else if (ret) {
3245             goto out2;
3246         }
3247     } else {
3248         msg.msg_name = NULL;
3249         msg.msg_namelen = 0;
3250     }
3251     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3252     msg.msg_control = alloca(msg.msg_controllen);
3253     memset(msg.msg_control, 0, msg.msg_controllen);
3254 
3255     msg.msg_flags = tswap32(msgp->msg_flags);
3256 
3257     count = tswapal(msgp->msg_iovlen);
3258     target_vec = tswapal(msgp->msg_iov);
3259 
3260     if (count > IOV_MAX) {
3261         /* sendrcvmsg returns a different errno for this condition than
3262          * readv/writev, so we must catch it here before lock_iovec() does.
3263          */
3264         ret = -TARGET_EMSGSIZE;
3265         goto out2;
3266     }
3267 
3268     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3269                      target_vec, count, send);
3270     if (vec == NULL) {
3271         ret = -host_to_target_errno(errno);
3272         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3273         if (!send || ret) {
3274             goto out2;
3275         }
3276     }
3277     msg.msg_iovlen = count;
3278     msg.msg_iov = vec;
3279 
3280     if (send) {
3281         if (fd_trans_target_to_host_data(fd)) {
3282             void *host_msg;
3283 
3284             host_msg = g_malloc(msg.msg_iov->iov_len);
3285             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3286             ret = fd_trans_target_to_host_data(fd)(host_msg,
3287                                                    msg.msg_iov->iov_len);
3288             if (ret >= 0) {
3289                 msg.msg_iov->iov_base = host_msg;
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292             g_free(host_msg);
3293         } else {
3294             ret = target_to_host_cmsg(&msg, msgp);
3295             if (ret == 0) {
3296                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3297             }
3298         }
3299     } else {
3300         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3301         if (!is_error(ret)) {
3302             len = ret;
3303             if (fd_trans_host_to_target_data(fd)) {
3304                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3305                                                MIN(msg.msg_iov->iov_len, len));
3306             }
3307             if (!is_error(ret)) {
3308                 ret = host_to_target_cmsg(msgp, &msg);
3309             }
3310             if (!is_error(ret)) {
3311                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3312                 msgp->msg_flags = tswap32(msg.msg_flags);
3313                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3314                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3315                                     msg.msg_name, msg.msg_namelen);
3316                     if (ret) {
3317                         goto out;
3318                     }
3319                 }
3320 
3321                 ret = len;
3322             }
3323         }
3324     }
3325 
3326 out:
3327     if (vec) {
3328         unlock_iovec(vec, target_vec, count, !send);
3329     }
3330 out2:
3331     return ret;
3332 }
3333 
3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3335                                int flags, int send)
3336 {
3337     abi_long ret;
3338     struct target_msghdr *msgp;
3339 
3340     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3341                           msgp,
3342                           target_msg,
3343                           send ? 1 : 0)) {
3344         return -TARGET_EFAULT;
3345     }
3346     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3347     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3348     return ret;
3349 }
3350 
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352  * so it might not have this *mmsg-specific flag either.
3353  */
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3356 #endif
3357 
3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3359                                 unsigned int vlen, unsigned int flags,
3360                                 int send)
3361 {
3362     struct target_mmsghdr *mmsgp;
3363     abi_long ret = 0;
3364     int i;
3365 
3366     if (vlen > UIO_MAXIOV) {
3367         vlen = UIO_MAXIOV;
3368     }
3369 
3370     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3371     if (!mmsgp) {
3372         return -TARGET_EFAULT;
3373     }
3374 
3375     for (i = 0; i < vlen; i++) {
3376         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3377         if (is_error(ret)) {
3378             break;
3379         }
3380         mmsgp[i].msg_len = tswap32(ret);
3381         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382         if (flags & MSG_WAITFORONE) {
3383             flags |= MSG_DONTWAIT;
3384         }
3385     }
3386 
3387     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3388 
3389     /* Return number of datagrams sent if we sent any at all;
3390      * otherwise return the error.
3391      */
3392     if (i) {
3393         return i;
3394     }
3395     return ret;
3396 }
3397 
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long do_accept4(int fd, abi_ulong target_addr,
3400                            abi_ulong target_addrlen_addr, int flags)
3401 {
3402     socklen_t addrlen, ret_addrlen;
3403     void *addr;
3404     abi_long ret;
3405     int host_flags;
3406 
3407     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3408         return -TARGET_EINVAL;
3409     }
3410 
3411     host_flags = 0;
3412     if (flags & TARGET_SOCK_NONBLOCK) {
3413         host_flags |= SOCK_NONBLOCK;
3414     }
3415     if (flags & TARGET_SOCK_CLOEXEC) {
3416         host_flags |= SOCK_CLOEXEC;
3417     }
3418 
3419     if (target_addr == 0) {
3420         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3421     }
3422 
3423     /* linux returns EFAULT if addrlen pointer is invalid */
3424     if (get_user_u32(addrlen, target_addrlen_addr))
3425         return -TARGET_EFAULT;
3426 
3427     if ((int)addrlen < 0) {
3428         return -TARGET_EINVAL;
3429     }
3430 
3431     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3432         return -TARGET_EFAULT;
3433     }
3434 
3435     addr = alloca(addrlen);
3436 
3437     ret_addrlen = addrlen;
3438     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3439     if (!is_error(ret)) {
3440         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3441         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3442             ret = -TARGET_EFAULT;
3443         }
3444     }
3445     return ret;
3446 }
3447 
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3450                                abi_ulong target_addrlen_addr)
3451 {
3452     socklen_t addrlen, ret_addrlen;
3453     void *addr;
3454     abi_long ret;
3455 
3456     if (get_user_u32(addrlen, target_addrlen_addr))
3457         return -TARGET_EFAULT;
3458 
3459     if ((int)addrlen < 0) {
3460         return -TARGET_EINVAL;
3461     }
3462 
3463     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3464         return -TARGET_EFAULT;
3465     }
3466 
3467     addr = alloca(addrlen);
3468 
3469     ret_addrlen = addrlen;
3470     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3471     if (!is_error(ret)) {
3472         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3473         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3474             ret = -TARGET_EFAULT;
3475         }
3476     }
3477     return ret;
3478 }
3479 
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3482                                abi_ulong target_addrlen_addr)
3483 {
3484     socklen_t addrlen, ret_addrlen;
3485     void *addr;
3486     abi_long ret;
3487 
3488     if (get_user_u32(addrlen, target_addrlen_addr))
3489         return -TARGET_EFAULT;
3490 
3491     if ((int)addrlen < 0) {
3492         return -TARGET_EINVAL;
3493     }
3494 
3495     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3496         return -TARGET_EFAULT;
3497     }
3498 
3499     addr = alloca(addrlen);
3500 
3501     ret_addrlen = addrlen;
3502     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3503     if (!is_error(ret)) {
3504         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3505         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3506             ret = -TARGET_EFAULT;
3507         }
3508     }
3509     return ret;
3510 }
3511 
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long do_socketpair(int domain, int type, int protocol,
3514                               abi_ulong target_tab_addr)
3515 {
3516     int tab[2];
3517     abi_long ret;
3518 
3519     target_to_host_sock_type(&type);
3520 
3521     ret = get_errno(socketpair(domain, type, protocol, tab));
3522     if (!is_error(ret)) {
3523         if (put_user_s32(tab[0], target_tab_addr)
3524             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3525             ret = -TARGET_EFAULT;
3526     }
3527     return ret;
3528 }
3529 
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3532                           abi_ulong target_addr, socklen_t addrlen)
3533 {
3534     void *addr;
3535     void *host_msg;
3536     void *copy_msg = NULL;
3537     abi_long ret;
3538 
3539     if ((int)addrlen < 0) {
3540         return -TARGET_EINVAL;
3541     }
3542 
3543     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3544     if (!host_msg)
3545         return -TARGET_EFAULT;
3546     if (fd_trans_target_to_host_data(fd)) {
3547         copy_msg = host_msg;
3548         host_msg = g_malloc(len);
3549         memcpy(host_msg, copy_msg, len);
3550         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3551         if (ret < 0) {
3552             goto fail;
3553         }
3554     }
3555     if (target_addr) {
3556         addr = alloca(addrlen+1);
3557         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3558         if (ret) {
3559             goto fail;
3560         }
3561         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3562     } else {
3563         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3564     }
3565 fail:
3566     if (copy_msg) {
3567         g_free(host_msg);
3568         host_msg = copy_msg;
3569     }
3570     unlock_user(host_msg, msg, 0);
3571     return ret;
3572 }
3573 
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3576                             abi_ulong target_addr,
3577                             abi_ulong target_addrlen)
3578 {
3579     socklen_t addrlen, ret_addrlen;
3580     void *addr;
3581     void *host_msg;
3582     abi_long ret;
3583 
3584     if (!msg) {
3585         host_msg = NULL;
3586     } else {
3587         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3588         if (!host_msg) {
3589             return -TARGET_EFAULT;
3590         }
3591     }
3592     if (target_addr) {
3593         if (get_user_u32(addrlen, target_addrlen)) {
3594             ret = -TARGET_EFAULT;
3595             goto fail;
3596         }
3597         if ((int)addrlen < 0) {
3598             ret = -TARGET_EINVAL;
3599             goto fail;
3600         }
3601         addr = alloca(addrlen);
3602         ret_addrlen = addrlen;
3603         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3604                                       addr, &ret_addrlen));
3605     } else {
3606         addr = NULL; /* To keep compiler quiet.  */
3607         addrlen = 0; /* To keep compiler quiet.  */
3608         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3609     }
3610     if (!is_error(ret)) {
3611         if (fd_trans_host_to_target_data(fd)) {
3612             abi_long trans;
3613             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3614             if (is_error(trans)) {
3615                 ret = trans;
3616                 goto fail;
3617             }
3618         }
3619         if (target_addr) {
3620             host_to_target_sockaddr(target_addr, addr,
3621                                     MIN(addrlen, ret_addrlen));
3622             if (put_user_u32(ret_addrlen, target_addrlen)) {
3623                 ret = -TARGET_EFAULT;
3624                 goto fail;
3625             }
3626         }
3627         unlock_user(host_msg, msg, len);
3628     } else {
3629 fail:
3630         unlock_user(host_msg, msg, 0);
3631     }
3632     return ret;
3633 }
3634 
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long do_socketcall(int num, abi_ulong vptr)
3638 {
3639     static const unsigned nargs[] = { /* number of arguments per operation */
3640         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3641         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3642         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3643         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3644         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3645         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3646         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3647         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3648         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3649         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3650         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3651         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3652         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3653         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3654         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3655         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3656         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3657         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3658         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3659         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3660     };
3661     abi_long a[6]; /* max 6 args */
3662     unsigned i;
3663 
3664     /* check the range of the first argument num */
3665     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3667         return -TARGET_EINVAL;
3668     }
3669     /* ensure we have space for args */
3670     if (nargs[num] > ARRAY_SIZE(a)) {
3671         return -TARGET_EINVAL;
3672     }
3673     /* collect the arguments in a[] according to nargs[] */
3674     for (i = 0; i < nargs[num]; ++i) {
3675         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3676             return -TARGET_EFAULT;
3677         }
3678     }
3679     /* now when we have the args, invoke the appropriate underlying function */
3680     switch (num) {
3681     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3682         return do_socket(a[0], a[1], a[2]);
3683     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3684         return do_bind(a[0], a[1], a[2]);
3685     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3686         return do_connect(a[0], a[1], a[2]);
3687     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3688         return get_errno(listen(a[0], a[1]));
3689     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3690         return do_accept4(a[0], a[1], a[2], 0);
3691     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3692         return do_getsockname(a[0], a[1], a[2]);
3693     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3694         return do_getpeername(a[0], a[1], a[2]);
3695     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3696         return do_socketpair(a[0], a[1], a[2], a[3]);
3697     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3698         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3699     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3700         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3701     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3702         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3703     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3704         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3705     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3706         return get_errno(shutdown(a[0], a[1]));
3707     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3708         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3709     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3710         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3711     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3712         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3713     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3714         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3715     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3716         return do_accept4(a[0], a[1], a[2], a[3]);
3717     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3718         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3719     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3720         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3721     default:
3722         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3723         return -TARGET_EINVAL;
3724     }
3725 }
3726 #endif
3727 
3728 #ifndef TARGET_SEMID64_DS
3729 /* asm-generic version of this struct */
3730 struct target_semid64_ds
3731 {
3732   struct target_ipc_perm sem_perm;
3733   abi_ulong sem_otime;
3734 #if TARGET_ABI_BITS == 32
3735   abi_ulong __unused1;
3736 #endif
3737   abi_ulong sem_ctime;
3738 #if TARGET_ABI_BITS == 32
3739   abi_ulong __unused2;
3740 #endif
3741   abi_ulong sem_nsems;
3742   abi_ulong __unused3;
3743   abi_ulong __unused4;
3744 };
3745 #endif
3746 
3747 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3748                                                abi_ulong target_addr)
3749 {
3750     struct target_ipc_perm *target_ip;
3751     struct target_semid64_ds *target_sd;
3752 
3753     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3754         return -TARGET_EFAULT;
3755     target_ip = &(target_sd->sem_perm);
3756     host_ip->__key = tswap32(target_ip->__key);
3757     host_ip->uid = tswap32(target_ip->uid);
3758     host_ip->gid = tswap32(target_ip->gid);
3759     host_ip->cuid = tswap32(target_ip->cuid);
3760     host_ip->cgid = tswap32(target_ip->cgid);
3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3762     host_ip->mode = tswap32(target_ip->mode);
3763 #else
3764     host_ip->mode = tswap16(target_ip->mode);
3765 #endif
3766 #if defined(TARGET_PPC)
3767     host_ip->__seq = tswap32(target_ip->__seq);
3768 #else
3769     host_ip->__seq = tswap16(target_ip->__seq);
3770 #endif
3771     unlock_user_struct(target_sd, target_addr, 0);
3772     return 0;
3773 }
3774 
3775 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3776                                                struct ipc_perm *host_ip)
3777 {
3778     struct target_ipc_perm *target_ip;
3779     struct target_semid64_ds *target_sd;
3780 
3781     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3782         return -TARGET_EFAULT;
3783     target_ip = &(target_sd->sem_perm);
3784     target_ip->__key = tswap32(host_ip->__key);
3785     target_ip->uid = tswap32(host_ip->uid);
3786     target_ip->gid = tswap32(host_ip->gid);
3787     target_ip->cuid = tswap32(host_ip->cuid);
3788     target_ip->cgid = tswap32(host_ip->cgid);
3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3790     target_ip->mode = tswap32(host_ip->mode);
3791 #else
3792     target_ip->mode = tswap16(host_ip->mode);
3793 #endif
3794 #if defined(TARGET_PPC)
3795     target_ip->__seq = tswap32(host_ip->__seq);
3796 #else
3797     target_ip->__seq = tswap16(host_ip->__seq);
3798 #endif
3799     unlock_user_struct(target_sd, target_addr, 1);
3800     return 0;
3801 }
3802 
3803 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3804                                                abi_ulong target_addr)
3805 {
3806     struct target_semid64_ds *target_sd;
3807 
3808     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3809         return -TARGET_EFAULT;
3810     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3811         return -TARGET_EFAULT;
3812     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3813     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3814     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3815     unlock_user_struct(target_sd, target_addr, 0);
3816     return 0;
3817 }
3818 
3819 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3820                                                struct semid_ds *host_sd)
3821 {
3822     struct target_semid64_ds *target_sd;
3823 
3824     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3825         return -TARGET_EFAULT;
3826     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3827         return -TARGET_EFAULT;
3828     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3829     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3830     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3831     unlock_user_struct(target_sd, target_addr, 1);
3832     return 0;
3833 }
3834 
3835 struct target_seminfo {
3836     int semmap;
3837     int semmni;
3838     int semmns;
3839     int semmnu;
3840     int semmsl;
3841     int semopm;
3842     int semume;
3843     int semusz;
3844     int semvmx;
3845     int semaem;
3846 };
3847 
3848 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3849                                               struct seminfo *host_seminfo)
3850 {
3851     struct target_seminfo *target_seminfo;
3852     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3853         return -TARGET_EFAULT;
3854     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3855     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3856     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3857     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3858     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3859     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3860     __put_user(host_seminfo->semume, &target_seminfo->semume);
3861     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3862     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3863     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3864     unlock_user_struct(target_seminfo, target_addr, 1);
3865     return 0;
3866 }
3867 
3868 union semun {
3869 	int val;
3870 	struct semid_ds *buf;
3871 	unsigned short *array;
3872 	struct seminfo *__buf;
3873 };
3874 
3875 union target_semun {
3876 	int val;
3877 	abi_ulong buf;
3878 	abi_ulong array;
3879 	abi_ulong __buf;
3880 };
3881 
3882 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3883                                                abi_ulong target_addr)
3884 {
3885     int nsems;
3886     unsigned short *array;
3887     union semun semun;
3888     struct semid_ds semid_ds;
3889     int i, ret;
3890 
3891     semun.buf = &semid_ds;
3892 
3893     ret = semctl(semid, 0, IPC_STAT, semun);
3894     if (ret == -1)
3895         return get_errno(ret);
3896 
3897     nsems = semid_ds.sem_nsems;
3898 
3899     *host_array = g_try_new(unsigned short, nsems);
3900     if (!*host_array) {
3901         return -TARGET_ENOMEM;
3902     }
3903     array = lock_user(VERIFY_READ, target_addr,
3904                       nsems*sizeof(unsigned short), 1);
3905     if (!array) {
3906         g_free(*host_array);
3907         return -TARGET_EFAULT;
3908     }
3909 
3910     for(i=0; i<nsems; i++) {
3911         __get_user((*host_array)[i], &array[i]);
3912     }
3913     unlock_user(array, target_addr, 0);
3914 
3915     return 0;
3916 }
3917 
3918 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3919                                                unsigned short **host_array)
3920 {
3921     int nsems;
3922     unsigned short *array;
3923     union semun semun;
3924     struct semid_ds semid_ds;
3925     int i, ret;
3926 
3927     semun.buf = &semid_ds;
3928 
3929     ret = semctl(semid, 0, IPC_STAT, semun);
3930     if (ret == -1)
3931         return get_errno(ret);
3932 
3933     nsems = semid_ds.sem_nsems;
3934 
3935     array = lock_user(VERIFY_WRITE, target_addr,
3936                       nsems*sizeof(unsigned short), 0);
3937     if (!array)
3938         return -TARGET_EFAULT;
3939 
3940     for(i=0; i<nsems; i++) {
3941         __put_user((*host_array)[i], &array[i]);
3942     }
3943     g_free(*host_array);
3944     unlock_user(array, target_addr, 1);
3945 
3946     return 0;
3947 }
3948 
3949 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3950                                  abi_ulong target_arg)
3951 {
3952     union target_semun target_su = { .buf = target_arg };
3953     union semun arg;
3954     struct semid_ds dsarg;
3955     unsigned short *array = NULL;
3956     struct seminfo seminfo;
3957     abi_long ret = -TARGET_EINVAL;
3958     abi_long err;
3959     cmd &= 0xff;
3960 
3961     switch( cmd ) {
3962 	case GETVAL:
3963 	case SETVAL:
3964             /* In 64 bit cross-endian situations, we will erroneously pick up
3965              * the wrong half of the union for the "val" element.  To rectify
3966              * this, the entire 8-byte structure is byteswapped, followed by
3967 	     * a swap of the 4 byte val field. In other cases, the data is
3968 	     * already in proper host byte order. */
3969 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3970 		target_su.buf = tswapal(target_su.buf);
3971 		arg.val = tswap32(target_su.val);
3972 	    } else {
3973 		arg.val = target_su.val;
3974 	    }
3975             ret = get_errno(semctl(semid, semnum, cmd, arg));
3976             break;
3977 	case GETALL:
3978 	case SETALL:
3979             err = target_to_host_semarray(semid, &array, target_su.array);
3980             if (err)
3981                 return err;
3982             arg.array = array;
3983             ret = get_errno(semctl(semid, semnum, cmd, arg));
3984             err = host_to_target_semarray(semid, target_su.array, &array);
3985             if (err)
3986                 return err;
3987             break;
3988 	case IPC_STAT:
3989 	case IPC_SET:
3990 	case SEM_STAT:
3991             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3992             if (err)
3993                 return err;
3994             arg.buf = &dsarg;
3995             ret = get_errno(semctl(semid, semnum, cmd, arg));
3996             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3997             if (err)
3998                 return err;
3999             break;
4000 	case IPC_INFO:
4001 	case SEM_INFO:
4002             arg.__buf = &seminfo;
4003             ret = get_errno(semctl(semid, semnum, cmd, arg));
4004             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4005             if (err)
4006                 return err;
4007             break;
4008 	case IPC_RMID:
4009 	case GETPID:
4010 	case GETNCNT:
4011 	case GETZCNT:
4012             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4013             break;
4014     }
4015 
4016     return ret;
4017 }
4018 
4019 struct target_sembuf {
4020     unsigned short sem_num;
4021     short sem_op;
4022     short sem_flg;
4023 };
4024 
4025 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4026                                              abi_ulong target_addr,
4027                                              unsigned nsops)
4028 {
4029     struct target_sembuf *target_sembuf;
4030     int i;
4031 
4032     target_sembuf = lock_user(VERIFY_READ, target_addr,
4033                               nsops*sizeof(struct target_sembuf), 1);
4034     if (!target_sembuf)
4035         return -TARGET_EFAULT;
4036 
4037     for(i=0; i<nsops; i++) {
4038         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4039         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4040         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4041     }
4042 
4043     unlock_user(target_sembuf, target_addr, 0);
4044 
4045     return 0;
4046 }
4047 
4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4049     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4050 
4051 /*
4052  * This macro is required to handle the s390 variants, which passes the
4053  * arguments in a different order than default.
4054  */
4055 #ifdef __s390x__
4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4057   (__nsops), (__timeout), (__sops)
4058 #else
4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4060   (__nsops), 0, (__sops), (__timeout)
4061 #endif
4062 
4063 static inline abi_long do_semtimedop(int semid,
4064                                      abi_long ptr,
4065                                      unsigned nsops,
4066                                      abi_long timeout, bool time64)
4067 {
4068     struct sembuf *sops;
4069     struct timespec ts, *pts = NULL;
4070     abi_long ret;
4071 
4072     if (timeout) {
4073         pts = &ts;
4074         if (time64) {
4075             if (target_to_host_timespec64(pts, timeout)) {
4076                 return -TARGET_EFAULT;
4077             }
4078         } else {
4079             if (target_to_host_timespec(pts, timeout)) {
4080                 return -TARGET_EFAULT;
4081             }
4082         }
4083     }
4084 
4085     if (nsops > TARGET_SEMOPM) {
4086         return -TARGET_E2BIG;
4087     }
4088 
4089     sops = g_new(struct sembuf, nsops);
4090 
4091     if (target_to_host_sembuf(sops, ptr, nsops)) {
4092         g_free(sops);
4093         return -TARGET_EFAULT;
4094     }
4095 
4096     ret = -TARGET_ENOSYS;
4097 #ifdef __NR_semtimedop
4098     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4099 #endif
4100 #ifdef __NR_ipc
4101     if (ret == -TARGET_ENOSYS) {
4102         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4103                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4104     }
4105 #endif
4106     g_free(sops);
4107     return ret;
4108 }
4109 #endif
4110 
4111 struct target_msqid_ds
4112 {
4113     struct target_ipc_perm msg_perm;
4114     abi_ulong msg_stime;
4115 #if TARGET_ABI_BITS == 32
4116     abi_ulong __unused1;
4117 #endif
4118     abi_ulong msg_rtime;
4119 #if TARGET_ABI_BITS == 32
4120     abi_ulong __unused2;
4121 #endif
4122     abi_ulong msg_ctime;
4123 #if TARGET_ABI_BITS == 32
4124     abi_ulong __unused3;
4125 #endif
4126     abi_ulong __msg_cbytes;
4127     abi_ulong msg_qnum;
4128     abi_ulong msg_qbytes;
4129     abi_ulong msg_lspid;
4130     abi_ulong msg_lrpid;
4131     abi_ulong __unused4;
4132     abi_ulong __unused5;
4133 };
4134 
4135 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4136                                                abi_ulong target_addr)
4137 {
4138     struct target_msqid_ds *target_md;
4139 
4140     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4141         return -TARGET_EFAULT;
4142     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4143         return -TARGET_EFAULT;
4144     host_md->msg_stime = tswapal(target_md->msg_stime);
4145     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4146     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4147     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4148     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4149     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4150     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4151     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4152     unlock_user_struct(target_md, target_addr, 0);
4153     return 0;
4154 }
4155 
4156 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4157                                                struct msqid_ds *host_md)
4158 {
4159     struct target_msqid_ds *target_md;
4160 
4161     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4162         return -TARGET_EFAULT;
4163     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4164         return -TARGET_EFAULT;
4165     target_md->msg_stime = tswapal(host_md->msg_stime);
4166     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4167     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4168     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4169     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4170     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4171     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4172     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4173     unlock_user_struct(target_md, target_addr, 1);
4174     return 0;
4175 }
4176 
4177 struct target_msginfo {
4178     int msgpool;
4179     int msgmap;
4180     int msgmax;
4181     int msgmnb;
4182     int msgmni;
4183     int msgssz;
4184     int msgtql;
4185     unsigned short int msgseg;
4186 };
4187 
4188 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4189                                               struct msginfo *host_msginfo)
4190 {
4191     struct target_msginfo *target_msginfo;
4192     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4193         return -TARGET_EFAULT;
4194     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4195     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4196     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4197     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4198     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4199     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4200     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4201     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4202     unlock_user_struct(target_msginfo, target_addr, 1);
4203     return 0;
4204 }
4205 
4206 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4207 {
4208     struct msqid_ds dsarg;
4209     struct msginfo msginfo;
4210     abi_long ret = -TARGET_EINVAL;
4211 
4212     cmd &= 0xff;
4213 
4214     switch (cmd) {
4215     case IPC_STAT:
4216     case IPC_SET:
4217     case MSG_STAT:
4218         if (target_to_host_msqid_ds(&dsarg,ptr))
4219             return -TARGET_EFAULT;
4220         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4221         if (host_to_target_msqid_ds(ptr,&dsarg))
4222             return -TARGET_EFAULT;
4223         break;
4224     case IPC_RMID:
4225         ret = get_errno(msgctl(msgid, cmd, NULL));
4226         break;
4227     case IPC_INFO:
4228     case MSG_INFO:
4229         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4230         if (host_to_target_msginfo(ptr, &msginfo))
4231             return -TARGET_EFAULT;
4232         break;
4233     }
4234 
4235     return ret;
4236 }
4237 
4238 struct target_msgbuf {
4239     abi_long mtype;
4240     char	mtext[1];
4241 };
4242 
4243 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4244                                  ssize_t msgsz, int msgflg)
4245 {
4246     struct target_msgbuf *target_mb;
4247     struct msgbuf *host_mb;
4248     abi_long ret = 0;
4249 
4250     if (msgsz < 0) {
4251         return -TARGET_EINVAL;
4252     }
4253 
4254     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4255         return -TARGET_EFAULT;
4256     host_mb = g_try_malloc(msgsz + sizeof(long));
4257     if (!host_mb) {
4258         unlock_user_struct(target_mb, msgp, 0);
4259         return -TARGET_ENOMEM;
4260     }
4261     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4262     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4263     ret = -TARGET_ENOSYS;
4264 #ifdef __NR_msgsnd
4265     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4266 #endif
4267 #ifdef __NR_ipc
4268     if (ret == -TARGET_ENOSYS) {
4269 #ifdef __s390x__
4270         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4271                                  host_mb));
4272 #else
4273         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4274                                  host_mb, 0));
4275 #endif
4276     }
4277 #endif
4278     g_free(host_mb);
4279     unlock_user_struct(target_mb, msgp, 0);
4280 
4281     return ret;
4282 }
4283 
4284 #ifdef __NR_ipc
4285 #if defined(__sparc__)
4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4288 #elif defined(__s390x__)
4289 /* The s390 sys_ipc variant has only five parameters.  */
4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4291     ((long int[]){(long int)__msgp, __msgtyp})
4292 #else
4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4294     ((long int[]){(long int)__msgp, __msgtyp}), 0
4295 #endif
4296 #endif
4297 
4298 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4299                                  ssize_t msgsz, abi_long msgtyp,
4300                                  int msgflg)
4301 {
4302     struct target_msgbuf *target_mb;
4303     char *target_mtext;
4304     struct msgbuf *host_mb;
4305     abi_long ret = 0;
4306 
4307     if (msgsz < 0) {
4308         return -TARGET_EINVAL;
4309     }
4310 
4311     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4312         return -TARGET_EFAULT;
4313 
4314     host_mb = g_try_malloc(msgsz + sizeof(long));
4315     if (!host_mb) {
4316         ret = -TARGET_ENOMEM;
4317         goto end;
4318     }
4319     ret = -TARGET_ENOSYS;
4320 #ifdef __NR_msgrcv
4321     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4322 #endif
4323 #ifdef __NR_ipc
4324     if (ret == -TARGET_ENOSYS) {
4325         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4326                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4327     }
4328 #endif
4329 
4330     if (ret > 0) {
4331         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4332         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4333         if (!target_mtext) {
4334             ret = -TARGET_EFAULT;
4335             goto end;
4336         }
4337         memcpy(target_mb->mtext, host_mb->mtext, ret);
4338         unlock_user(target_mtext, target_mtext_addr, ret);
4339     }
4340 
4341     target_mb->mtype = tswapal(host_mb->mtype);
4342 
4343 end:
4344     if (target_mb)
4345         unlock_user_struct(target_mb, msgp, 1);
4346     g_free(host_mb);
4347     return ret;
4348 }
4349 
4350 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4351                                                abi_ulong target_addr)
4352 {
4353     struct target_shmid_ds *target_sd;
4354 
4355     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4356         return -TARGET_EFAULT;
4357     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4358         return -TARGET_EFAULT;
4359     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4360     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4361     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4362     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4363     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4364     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4365     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4366     unlock_user_struct(target_sd, target_addr, 0);
4367     return 0;
4368 }
4369 
4370 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4371                                                struct shmid_ds *host_sd)
4372 {
4373     struct target_shmid_ds *target_sd;
4374 
4375     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4376         return -TARGET_EFAULT;
4377     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4378         return -TARGET_EFAULT;
4379     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4380     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4381     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4382     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4383     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4384     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4385     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4386     unlock_user_struct(target_sd, target_addr, 1);
4387     return 0;
4388 }
4389 
4390 struct  target_shminfo {
4391     abi_ulong shmmax;
4392     abi_ulong shmmin;
4393     abi_ulong shmmni;
4394     abi_ulong shmseg;
4395     abi_ulong shmall;
4396 };
4397 
4398 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4399                                               struct shminfo *host_shminfo)
4400 {
4401     struct target_shminfo *target_shminfo;
4402     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4403         return -TARGET_EFAULT;
4404     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4405     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4406     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4407     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4408     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4409     unlock_user_struct(target_shminfo, target_addr, 1);
4410     return 0;
4411 }
4412 
4413 struct target_shm_info {
4414     int used_ids;
4415     abi_ulong shm_tot;
4416     abi_ulong shm_rss;
4417     abi_ulong shm_swp;
4418     abi_ulong swap_attempts;
4419     abi_ulong swap_successes;
4420 };
4421 
4422 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4423                                                struct shm_info *host_shm_info)
4424 {
4425     struct target_shm_info *target_shm_info;
4426     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4427         return -TARGET_EFAULT;
4428     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4429     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4430     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4431     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4432     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4433     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4434     unlock_user_struct(target_shm_info, target_addr, 1);
4435     return 0;
4436 }
4437 
4438 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4439 {
4440     struct shmid_ds dsarg;
4441     struct shminfo shminfo;
4442     struct shm_info shm_info;
4443     abi_long ret = -TARGET_EINVAL;
4444 
4445     cmd &= 0xff;
4446 
4447     switch(cmd) {
4448     case IPC_STAT:
4449     case IPC_SET:
4450     case SHM_STAT:
4451         if (target_to_host_shmid_ds(&dsarg, buf))
4452             return -TARGET_EFAULT;
4453         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4454         if (host_to_target_shmid_ds(buf, &dsarg))
4455             return -TARGET_EFAULT;
4456         break;
4457     case IPC_INFO:
4458         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4459         if (host_to_target_shminfo(buf, &shminfo))
4460             return -TARGET_EFAULT;
4461         break;
4462     case SHM_INFO:
4463         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4464         if (host_to_target_shm_info(buf, &shm_info))
4465             return -TARGET_EFAULT;
4466         break;
4467     case IPC_RMID:
4468     case SHM_LOCK:
4469     case SHM_UNLOCK:
4470         ret = get_errno(shmctl(shmid, cmd, NULL));
4471         break;
4472     }
4473 
4474     return ret;
4475 }
4476 
4477 #ifdef TARGET_NR_ipc
4478 /* ??? This only works with linear mappings.  */
4479 /* do_ipc() must return target values and target errnos. */
4480 static abi_long do_ipc(CPUArchState *cpu_env,
4481                        unsigned int call, abi_long first,
4482                        abi_long second, abi_long third,
4483                        abi_long ptr, abi_long fifth)
4484 {
4485     int version;
4486     abi_long ret = 0;
4487 
4488     version = call >> 16;
4489     call &= 0xffff;
4490 
4491     switch (call) {
4492     case IPCOP_semop:
4493         ret = do_semtimedop(first, ptr, second, 0, false);
4494         break;
4495     case IPCOP_semtimedop:
4496     /*
4497      * The s390 sys_ipc variant has only five parameters instead of six
4498      * (as for default variant) and the only difference is the handling of
4499      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4500      * to a struct timespec where the generic variant uses fifth parameter.
4501      */
4502 #if defined(TARGET_S390X)
4503         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4504 #else
4505         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4506 #endif
4507         break;
4508 
4509     case IPCOP_semget:
4510         ret = get_errno(semget(first, second, third));
4511         break;
4512 
4513     case IPCOP_semctl: {
4514         /* The semun argument to semctl is passed by value, so dereference the
4515          * ptr argument. */
4516         abi_ulong atptr;
4517         get_user_ual(atptr, ptr);
4518         ret = do_semctl(first, second, third, atptr);
4519         break;
4520     }
4521 
4522     case IPCOP_msgget:
4523         ret = get_errno(msgget(first, second));
4524         break;
4525 
4526     case IPCOP_msgsnd:
4527         ret = do_msgsnd(first, ptr, second, third);
4528         break;
4529 
4530     case IPCOP_msgctl:
4531         ret = do_msgctl(first, second, ptr);
4532         break;
4533 
4534     case IPCOP_msgrcv:
4535         switch (version) {
4536         case 0:
4537             {
4538                 struct target_ipc_kludge {
4539                     abi_long msgp;
4540                     abi_long msgtyp;
4541                 } *tmp;
4542 
4543                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4544                     ret = -TARGET_EFAULT;
4545                     break;
4546                 }
4547 
4548                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4549 
4550                 unlock_user_struct(tmp, ptr, 0);
4551                 break;
4552             }
4553         default:
4554             ret = do_msgrcv(first, ptr, second, fifth, third);
4555         }
4556         break;
4557 
4558     case IPCOP_shmat:
4559         switch (version) {
4560         default:
4561         {
4562             abi_ulong raddr;
4563             raddr = target_shmat(cpu_env, first, ptr, second);
4564             if (is_error(raddr))
4565                 return get_errno(raddr);
4566             if (put_user_ual(raddr, third))
4567                 return -TARGET_EFAULT;
4568             break;
4569         }
4570         case 1:
4571             ret = -TARGET_EINVAL;
4572             break;
4573         }
4574 	break;
4575     case IPCOP_shmdt:
4576         ret = target_shmdt(ptr);
4577 	break;
4578 
4579     case IPCOP_shmget:
4580 	/* IPC_* flag values are the same on all linux platforms */
4581 	ret = get_errno(shmget(first, second, third));
4582 	break;
4583 
4584 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4585     case IPCOP_shmctl:
4586         ret = do_shmctl(first, second, ptr);
4587         break;
4588     default:
4589         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4590                       call, version);
4591 	ret = -TARGET_ENOSYS;
4592 	break;
4593     }
4594     return ret;
4595 }
4596 #endif
4597 
4598 /* kernel structure types definitions */
4599 
4600 #define STRUCT(name, ...) STRUCT_ ## name,
4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4602 enum {
4603 #include "syscall_types.h"
4604 STRUCT_MAX
4605 };
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608 
4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4610 #define STRUCT_SPECIAL(name)
4611 #include "syscall_types.h"
4612 #undef STRUCT
4613 #undef STRUCT_SPECIAL
4614 
4615 #define MAX_STRUCT_SIZE 4096
4616 
4617 #ifdef CONFIG_FIEMAP
4618 /* So fiemap access checks don't overflow on 32 bit systems.
4619  * This is very slightly smaller than the limit imposed by
4620  * the underlying kernel.
4621  */
4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4623                             / sizeof(struct fiemap_extent))
4624 
4625 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4626                                        int fd, int cmd, abi_long arg)
4627 {
4628     /* The parameter for this ioctl is a struct fiemap followed
4629      * by an array of struct fiemap_extent whose size is set
4630      * in fiemap->fm_extent_count. The array is filled in by the
4631      * ioctl.
4632      */
4633     int target_size_in, target_size_out;
4634     struct fiemap *fm;
4635     const argtype *arg_type = ie->arg_type;
4636     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4637     void *argptr, *p;
4638     abi_long ret;
4639     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4640     uint32_t outbufsz;
4641     int free_fm = 0;
4642 
4643     assert(arg_type[0] == TYPE_PTR);
4644     assert(ie->access == IOC_RW);
4645     arg_type++;
4646     target_size_in = thunk_type_size(arg_type, 0);
4647     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4648     if (!argptr) {
4649         return -TARGET_EFAULT;
4650     }
4651     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4652     unlock_user(argptr, arg, 0);
4653     fm = (struct fiemap *)buf_temp;
4654     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4655         return -TARGET_EINVAL;
4656     }
4657 
4658     outbufsz = sizeof (*fm) +
4659         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4660 
4661     if (outbufsz > MAX_STRUCT_SIZE) {
4662         /* We can't fit all the extents into the fixed size buffer.
4663          * Allocate one that is large enough and use it instead.
4664          */
4665         fm = g_try_malloc(outbufsz);
4666         if (!fm) {
4667             return -TARGET_ENOMEM;
4668         }
4669         memcpy(fm, buf_temp, sizeof(struct fiemap));
4670         free_fm = 1;
4671     }
4672     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4673     if (!is_error(ret)) {
4674         target_size_out = target_size_in;
4675         /* An extent_count of 0 means we were only counting the extents
4676          * so there are no structs to copy
4677          */
4678         if (fm->fm_extent_count != 0) {
4679             target_size_out += fm->fm_mapped_extents * extent_size;
4680         }
4681         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4682         if (!argptr) {
4683             ret = -TARGET_EFAULT;
4684         } else {
4685             /* Convert the struct fiemap */
4686             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4687             if (fm->fm_extent_count != 0) {
4688                 p = argptr + target_size_in;
4689                 /* ...and then all the struct fiemap_extents */
4690                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4691                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4692                                   THUNK_TARGET);
4693                     p += extent_size;
4694                 }
4695             }
4696             unlock_user(argptr, arg, target_size_out);
4697         }
4698     }
4699     if (free_fm) {
4700         g_free(fm);
4701     }
4702     return ret;
4703 }
4704 #endif
4705 
4706 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4707                                 int fd, int cmd, abi_long arg)
4708 {
4709     const argtype *arg_type = ie->arg_type;
4710     int target_size;
4711     void *argptr;
4712     int ret;
4713     struct ifconf *host_ifconf;
4714     uint32_t outbufsz;
4715     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4716     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4717     int target_ifreq_size;
4718     int nb_ifreq;
4719     int free_buf = 0;
4720     int i;
4721     int target_ifc_len;
4722     abi_long target_ifc_buf;
4723     int host_ifc_len;
4724     char *host_ifc_buf;
4725 
4726     assert(arg_type[0] == TYPE_PTR);
4727     assert(ie->access == IOC_RW);
4728 
4729     arg_type++;
4730     target_size = thunk_type_size(arg_type, 0);
4731 
4732     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4733     if (!argptr)
4734         return -TARGET_EFAULT;
4735     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4736     unlock_user(argptr, arg, 0);
4737 
4738     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4739     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4740     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4741 
4742     if (target_ifc_buf != 0) {
4743         target_ifc_len = host_ifconf->ifc_len;
4744         nb_ifreq = target_ifc_len / target_ifreq_size;
4745         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4746 
4747         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4748         if (outbufsz > MAX_STRUCT_SIZE) {
4749             /*
4750              * We can't fit all the extents into the fixed size buffer.
4751              * Allocate one that is large enough and use it instead.
4752              */
4753             host_ifconf = g_try_malloc(outbufsz);
4754             if (!host_ifconf) {
4755                 return -TARGET_ENOMEM;
4756             }
4757             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4758             free_buf = 1;
4759         }
4760         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4761 
4762         host_ifconf->ifc_len = host_ifc_len;
4763     } else {
4764       host_ifc_buf = NULL;
4765     }
4766     host_ifconf->ifc_buf = host_ifc_buf;
4767 
4768     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4769     if (!is_error(ret)) {
4770 	/* convert host ifc_len to target ifc_len */
4771 
4772         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4773         target_ifc_len = nb_ifreq * target_ifreq_size;
4774         host_ifconf->ifc_len = target_ifc_len;
4775 
4776 	/* restore target ifc_buf */
4777 
4778         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4779 
4780 	/* copy struct ifconf to target user */
4781 
4782         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4783         if (!argptr)
4784             return -TARGET_EFAULT;
4785         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4786         unlock_user(argptr, arg, target_size);
4787 
4788         if (target_ifc_buf != 0) {
4789             /* copy ifreq[] to target user */
4790             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4791             for (i = 0; i < nb_ifreq ; i++) {
4792                 thunk_convert(argptr + i * target_ifreq_size,
4793                               host_ifc_buf + i * sizeof(struct ifreq),
4794                               ifreq_arg_type, THUNK_TARGET);
4795             }
4796             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4797         }
4798     }
4799 
4800     if (free_buf) {
4801         g_free(host_ifconf);
4802     }
4803 
4804     return ret;
4805 }
4806 
4807 #if defined(CONFIG_USBFS)
4808 #if HOST_LONG_BITS > 64
4809 #error USBDEVFS thunks do not support >64 bit hosts yet.
4810 #endif
4811 struct live_urb {
4812     uint64_t target_urb_adr;
4813     uint64_t target_buf_adr;
4814     char *target_buf_ptr;
4815     struct usbdevfs_urb host_urb;
4816 };
4817 
4818 static GHashTable *usbdevfs_urb_hashtable(void)
4819 {
4820     static GHashTable *urb_hashtable;
4821 
4822     if (!urb_hashtable) {
4823         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4824     }
4825     return urb_hashtable;
4826 }
4827 
4828 static void urb_hashtable_insert(struct live_urb *urb)
4829 {
4830     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831     g_hash_table_insert(urb_hashtable, urb, urb);
4832 }
4833 
4834 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4835 {
4836     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4838 }
4839 
4840 static void urb_hashtable_remove(struct live_urb *urb)
4841 {
4842     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4843     g_hash_table_remove(urb_hashtable, urb);
4844 }
4845 
4846 static abi_long
4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4848                           int fd, int cmd, abi_long arg)
4849 {
4850     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4851     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4852     struct live_urb *lurb;
4853     void *argptr;
4854     uint64_t hurb;
4855     int target_size;
4856     uintptr_t target_urb_adr;
4857     abi_long ret;
4858 
4859     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4860 
4861     memset(buf_temp, 0, sizeof(uint64_t));
4862     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4863     if (is_error(ret)) {
4864         return ret;
4865     }
4866 
4867     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4868     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4869     if (!lurb->target_urb_adr) {
4870         return -TARGET_EFAULT;
4871     }
4872     urb_hashtable_remove(lurb);
4873     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4874         lurb->host_urb.buffer_length);
4875     lurb->target_buf_ptr = NULL;
4876 
4877     /* restore the guest buffer pointer */
4878     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4879 
4880     /* update the guest urb struct */
4881     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4882     if (!argptr) {
4883         g_free(lurb);
4884         return -TARGET_EFAULT;
4885     }
4886     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4887     unlock_user(argptr, lurb->target_urb_adr, target_size);
4888 
4889     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4890     /* write back the urb handle */
4891     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4892     if (!argptr) {
4893         g_free(lurb);
4894         return -TARGET_EFAULT;
4895     }
4896 
4897     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4898     target_urb_adr = lurb->target_urb_adr;
4899     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4900     unlock_user(argptr, arg, target_size);
4901 
4902     g_free(lurb);
4903     return ret;
4904 }
4905 
4906 static abi_long
4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4908                              uint8_t *buf_temp __attribute__((unused)),
4909                              int fd, int cmd, abi_long arg)
4910 {
4911     struct live_urb *lurb;
4912 
4913     /* map target address back to host URB with metadata. */
4914     lurb = urb_hashtable_lookup(arg);
4915     if (!lurb) {
4916         return -TARGET_EFAULT;
4917     }
4918     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4919 }
4920 
4921 static abi_long
4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4923                             int fd, int cmd, abi_long arg)
4924 {
4925     const argtype *arg_type = ie->arg_type;
4926     int target_size;
4927     abi_long ret;
4928     void *argptr;
4929     int rw_dir;
4930     struct live_urb *lurb;
4931 
4932     /*
4933      * each submitted URB needs to map to a unique ID for the
4934      * kernel, and that unique ID needs to be a pointer to
4935      * host memory.  hence, we need to malloc for each URB.
4936      * isochronous transfers have a variable length struct.
4937      */
4938     arg_type++;
4939     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4940 
4941     /* construct host copy of urb and metadata */
4942     lurb = g_try_new0(struct live_urb, 1);
4943     if (!lurb) {
4944         return -TARGET_ENOMEM;
4945     }
4946 
4947     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4948     if (!argptr) {
4949         g_free(lurb);
4950         return -TARGET_EFAULT;
4951     }
4952     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4953     unlock_user(argptr, arg, 0);
4954 
4955     lurb->target_urb_adr = arg;
4956     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4957 
4958     /* buffer space used depends on endpoint type so lock the entire buffer */
4959     /* control type urbs should check the buffer contents for true direction */
4960     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4961     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4962         lurb->host_urb.buffer_length, 1);
4963     if (lurb->target_buf_ptr == NULL) {
4964         g_free(lurb);
4965         return -TARGET_EFAULT;
4966     }
4967 
4968     /* update buffer pointer in host copy */
4969     lurb->host_urb.buffer = lurb->target_buf_ptr;
4970 
4971     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4972     if (is_error(ret)) {
4973         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4974         g_free(lurb);
4975     } else {
4976         urb_hashtable_insert(lurb);
4977     }
4978 
4979     return ret;
4980 }
4981 #endif /* CONFIG_USBFS */
4982 
4983 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4984                             int cmd, abi_long arg)
4985 {
4986     void *argptr;
4987     struct dm_ioctl *host_dm;
4988     abi_long guest_data;
4989     uint32_t guest_data_size;
4990     int target_size;
4991     const argtype *arg_type = ie->arg_type;
4992     abi_long ret;
4993     void *big_buf = NULL;
4994     char *host_data;
4995 
4996     arg_type++;
4997     target_size = thunk_type_size(arg_type, 0);
4998     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4999     if (!argptr) {
5000         ret = -TARGET_EFAULT;
5001         goto out;
5002     }
5003     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5004     unlock_user(argptr, arg, 0);
5005 
5006     /* buf_temp is too small, so fetch things into a bigger buffer */
5007     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5008     memcpy(big_buf, buf_temp, target_size);
5009     buf_temp = big_buf;
5010     host_dm = big_buf;
5011 
5012     guest_data = arg + host_dm->data_start;
5013     if ((guest_data - arg) < 0) {
5014         ret = -TARGET_EINVAL;
5015         goto out;
5016     }
5017     guest_data_size = host_dm->data_size - host_dm->data_start;
5018     host_data = (char*)host_dm + host_dm->data_start;
5019 
5020     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5021     if (!argptr) {
5022         ret = -TARGET_EFAULT;
5023         goto out;
5024     }
5025 
5026     switch (ie->host_cmd) {
5027     case DM_REMOVE_ALL:
5028     case DM_LIST_DEVICES:
5029     case DM_DEV_CREATE:
5030     case DM_DEV_REMOVE:
5031     case DM_DEV_SUSPEND:
5032     case DM_DEV_STATUS:
5033     case DM_DEV_WAIT:
5034     case DM_TABLE_STATUS:
5035     case DM_TABLE_CLEAR:
5036     case DM_TABLE_DEPS:
5037     case DM_LIST_VERSIONS:
5038         /* no input data */
5039         break;
5040     case DM_DEV_RENAME:
5041     case DM_DEV_SET_GEOMETRY:
5042         /* data contains only strings */
5043         memcpy(host_data, argptr, guest_data_size);
5044         break;
5045     case DM_TARGET_MSG:
5046         memcpy(host_data, argptr, guest_data_size);
5047         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5048         break;
5049     case DM_TABLE_LOAD:
5050     {
5051         void *gspec = argptr;
5052         void *cur_data = host_data;
5053         const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5054         int spec_size = thunk_type_size(dm_arg_type, 0);
5055         int i;
5056 
5057         for (i = 0; i < host_dm->target_count; i++) {
5058             struct dm_target_spec *spec = cur_data;
5059             uint32_t next;
5060             int slen;
5061 
5062             thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5063             slen = strlen((char*)gspec + spec_size) + 1;
5064             next = spec->next;
5065             spec->next = sizeof(*spec) + slen;
5066             strcpy((char*)&spec[1], gspec + spec_size);
5067             gspec += next;
5068             cur_data += spec->next;
5069         }
5070         break;
5071     }
5072     default:
5073         ret = -TARGET_EINVAL;
5074         unlock_user(argptr, guest_data, 0);
5075         goto out;
5076     }
5077     unlock_user(argptr, guest_data, 0);
5078 
5079     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5080     if (!is_error(ret)) {
5081         guest_data = arg + host_dm->data_start;
5082         guest_data_size = host_dm->data_size - host_dm->data_start;
5083         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5084         switch (ie->host_cmd) {
5085         case DM_REMOVE_ALL:
5086         case DM_DEV_CREATE:
5087         case DM_DEV_REMOVE:
5088         case DM_DEV_RENAME:
5089         case DM_DEV_SUSPEND:
5090         case DM_DEV_STATUS:
5091         case DM_TABLE_LOAD:
5092         case DM_TABLE_CLEAR:
5093         case DM_TARGET_MSG:
5094         case DM_DEV_SET_GEOMETRY:
5095             /* no return data */
5096             break;
5097         case DM_LIST_DEVICES:
5098         {
5099             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5100             uint32_t remaining_data = guest_data_size;
5101             void *cur_data = argptr;
5102             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5103             int nl_size = 12; /* can't use thunk_size due to alignment */
5104 
5105             while (1) {
5106                 uint32_t next = nl->next;
5107                 if (next) {
5108                     nl->next = nl_size + (strlen(nl->name) + 1);
5109                 }
5110                 if (remaining_data < nl->next) {
5111                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5112                     break;
5113                 }
5114                 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5115                 strcpy(cur_data + nl_size, nl->name);
5116                 cur_data += nl->next;
5117                 remaining_data -= nl->next;
5118                 if (!next) {
5119                     break;
5120                 }
5121                 nl = (void*)nl + next;
5122             }
5123             break;
5124         }
5125         case DM_DEV_WAIT:
5126         case DM_TABLE_STATUS:
5127         {
5128             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5129             void *cur_data = argptr;
5130             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5131             int spec_size = thunk_type_size(dm_arg_type, 0);
5132             int i;
5133 
5134             for (i = 0; i < host_dm->target_count; i++) {
5135                 uint32_t next = spec->next;
5136                 int slen = strlen((char*)&spec[1]) + 1;
5137                 spec->next = (cur_data - argptr) + spec_size + slen;
5138                 if (guest_data_size < spec->next) {
5139                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5140                     break;
5141                 }
5142                 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5143                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5144                 cur_data = argptr + spec->next;
5145                 spec = (void*)host_dm + host_dm->data_start + next;
5146             }
5147             break;
5148         }
5149         case DM_TABLE_DEPS:
5150         {
5151             void *hdata = (void*)host_dm + host_dm->data_start;
5152             int count = *(uint32_t*)hdata;
5153             uint64_t *hdev = hdata + 8;
5154             uint64_t *gdev = argptr + 8;
5155             int i;
5156 
5157             *(uint32_t*)argptr = tswap32(count);
5158             for (i = 0; i < count; i++) {
5159                 *gdev = tswap64(*hdev);
5160                 gdev++;
5161                 hdev++;
5162             }
5163             break;
5164         }
5165         case DM_LIST_VERSIONS:
5166         {
5167             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5168             uint32_t remaining_data = guest_data_size;
5169             void *cur_data = argptr;
5170             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5171             int vers_size = thunk_type_size(dm_arg_type, 0);
5172 
5173             while (1) {
5174                 uint32_t next = vers->next;
5175                 if (next) {
5176                     vers->next = vers_size + (strlen(vers->name) + 1);
5177                 }
5178                 if (remaining_data < vers->next) {
5179                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5180                     break;
5181                 }
5182                 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5183                 strcpy(cur_data + vers_size, vers->name);
5184                 cur_data += vers->next;
5185                 remaining_data -= vers->next;
5186                 if (!next) {
5187                     break;
5188                 }
5189                 vers = (void*)vers + next;
5190             }
5191             break;
5192         }
5193         default:
5194             unlock_user(argptr, guest_data, 0);
5195             ret = -TARGET_EINVAL;
5196             goto out;
5197         }
5198         unlock_user(argptr, guest_data, guest_data_size);
5199 
5200         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5201         if (!argptr) {
5202             ret = -TARGET_EFAULT;
5203             goto out;
5204         }
5205         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5206         unlock_user(argptr, arg, target_size);
5207     }
5208 out:
5209     g_free(big_buf);
5210     return ret;
5211 }
5212 
5213 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5214                                int cmd, abi_long arg)
5215 {
5216     void *argptr;
5217     int target_size;
5218     const argtype *arg_type = ie->arg_type;
5219     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5220     abi_long ret;
5221 
5222     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5223     struct blkpg_partition host_part;
5224 
5225     /* Read and convert blkpg */
5226     arg_type++;
5227     target_size = thunk_type_size(arg_type, 0);
5228     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5229     if (!argptr) {
5230         ret = -TARGET_EFAULT;
5231         goto out;
5232     }
5233     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5234     unlock_user(argptr, arg, 0);
5235 
5236     switch (host_blkpg->op) {
5237     case BLKPG_ADD_PARTITION:
5238     case BLKPG_DEL_PARTITION:
5239         /* payload is struct blkpg_partition */
5240         break;
5241     default:
5242         /* Unknown opcode */
5243         ret = -TARGET_EINVAL;
5244         goto out;
5245     }
5246 
5247     /* Read and convert blkpg->data */
5248     arg = (abi_long)(uintptr_t)host_blkpg->data;
5249     target_size = thunk_type_size(part_arg_type, 0);
5250     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5251     if (!argptr) {
5252         ret = -TARGET_EFAULT;
5253         goto out;
5254     }
5255     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5256     unlock_user(argptr, arg, 0);
5257 
5258     /* Swizzle the data pointer to our local copy and call! */
5259     host_blkpg->data = &host_part;
5260     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5261 
5262 out:
5263     return ret;
5264 }
5265 
5266 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5267                                 int fd, int cmd, abi_long arg)
5268 {
5269     const argtype *arg_type = ie->arg_type;
5270     const StructEntry *se;
5271     const argtype *field_types;
5272     const int *dst_offsets, *src_offsets;
5273     int target_size;
5274     void *argptr;
5275     abi_ulong *target_rt_dev_ptr = NULL;
5276     unsigned long *host_rt_dev_ptr = NULL;
5277     abi_long ret;
5278     int i;
5279 
5280     assert(ie->access == IOC_W);
5281     assert(*arg_type == TYPE_PTR);
5282     arg_type++;
5283     assert(*arg_type == TYPE_STRUCT);
5284     target_size = thunk_type_size(arg_type, 0);
5285     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5286     if (!argptr) {
5287         return -TARGET_EFAULT;
5288     }
5289     arg_type++;
5290     assert(*arg_type == (int)STRUCT_rtentry);
5291     se = struct_entries + *arg_type++;
5292     assert(se->convert[0] == NULL);
5293     /* convert struct here to be able to catch rt_dev string */
5294     field_types = se->field_types;
5295     dst_offsets = se->field_offsets[THUNK_HOST];
5296     src_offsets = se->field_offsets[THUNK_TARGET];
5297     for (i = 0; i < se->nb_fields; i++) {
5298         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5299             assert(*field_types == TYPE_PTRVOID);
5300             target_rt_dev_ptr = argptr + src_offsets[i];
5301             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5302             if (*target_rt_dev_ptr != 0) {
5303                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5304                                                   tswapal(*target_rt_dev_ptr));
5305                 if (!*host_rt_dev_ptr) {
5306                     unlock_user(argptr, arg, 0);
5307                     return -TARGET_EFAULT;
5308                 }
5309             } else {
5310                 *host_rt_dev_ptr = 0;
5311             }
5312             field_types++;
5313             continue;
5314         }
5315         field_types = thunk_convert(buf_temp + dst_offsets[i],
5316                                     argptr + src_offsets[i],
5317                                     field_types, THUNK_HOST);
5318     }
5319     unlock_user(argptr, arg, 0);
5320 
5321     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5322 
5323     assert(host_rt_dev_ptr != NULL);
5324     assert(target_rt_dev_ptr != NULL);
5325     if (*host_rt_dev_ptr != 0) {
5326         unlock_user((void *)*host_rt_dev_ptr,
5327                     *target_rt_dev_ptr, 0);
5328     }
5329     return ret;
5330 }
5331 
5332 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5333                                      int fd, int cmd, abi_long arg)
5334 {
5335     int sig = target_to_host_signal(arg);
5336     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5337 }
5338 
5339 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5340                                     int fd, int cmd, abi_long arg)
5341 {
5342     struct timeval tv;
5343     abi_long ret;
5344 
5345     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5346     if (is_error(ret)) {
5347         return ret;
5348     }
5349 
5350     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5351         if (copy_to_user_timeval(arg, &tv)) {
5352             return -TARGET_EFAULT;
5353         }
5354     } else {
5355         if (copy_to_user_timeval64(arg, &tv)) {
5356             return -TARGET_EFAULT;
5357         }
5358     }
5359 
5360     return ret;
5361 }
5362 
5363 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5364                                       int fd, int cmd, abi_long arg)
5365 {
5366     struct timespec ts;
5367     abi_long ret;
5368 
5369     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5370     if (is_error(ret)) {
5371         return ret;
5372     }
5373 
5374     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5375         if (host_to_target_timespec(arg, &ts)) {
5376             return -TARGET_EFAULT;
5377         }
5378     } else{
5379         if (host_to_target_timespec64(arg, &ts)) {
5380             return -TARGET_EFAULT;
5381         }
5382     }
5383 
5384     return ret;
5385 }
5386 
5387 #ifdef TIOCGPTPEER
5388 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5389                                      int fd, int cmd, abi_long arg)
5390 {
5391     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5392     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5393 }
5394 #endif
5395 
5396 #ifdef HAVE_DRM_H
5397 
5398 static void unlock_drm_version(struct drm_version *host_ver,
5399                                struct target_drm_version *target_ver,
5400                                bool copy)
5401 {
5402     unlock_user(host_ver->name, target_ver->name,
5403                                 copy ? host_ver->name_len : 0);
5404     unlock_user(host_ver->date, target_ver->date,
5405                                 copy ? host_ver->date_len : 0);
5406     unlock_user(host_ver->desc, target_ver->desc,
5407                                 copy ? host_ver->desc_len : 0);
5408 }
5409 
5410 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5411                                           struct target_drm_version *target_ver)
5412 {
5413     memset(host_ver, 0, sizeof(*host_ver));
5414 
5415     __get_user(host_ver->name_len, &target_ver->name_len);
5416     if (host_ver->name_len) {
5417         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5418                                    target_ver->name_len, 0);
5419         if (!host_ver->name) {
5420             return -EFAULT;
5421         }
5422     }
5423 
5424     __get_user(host_ver->date_len, &target_ver->date_len);
5425     if (host_ver->date_len) {
5426         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5427                                    target_ver->date_len, 0);
5428         if (!host_ver->date) {
5429             goto err;
5430         }
5431     }
5432 
5433     __get_user(host_ver->desc_len, &target_ver->desc_len);
5434     if (host_ver->desc_len) {
5435         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5436                                    target_ver->desc_len, 0);
5437         if (!host_ver->desc) {
5438             goto err;
5439         }
5440     }
5441 
5442     return 0;
5443 err:
5444     unlock_drm_version(host_ver, target_ver, false);
5445     return -EFAULT;
5446 }
5447 
5448 static inline void host_to_target_drmversion(
5449                                           struct target_drm_version *target_ver,
5450                                           struct drm_version *host_ver)
5451 {
5452     __put_user(host_ver->version_major, &target_ver->version_major);
5453     __put_user(host_ver->version_minor, &target_ver->version_minor);
5454     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5455     __put_user(host_ver->name_len, &target_ver->name_len);
5456     __put_user(host_ver->date_len, &target_ver->date_len);
5457     __put_user(host_ver->desc_len, &target_ver->desc_len);
5458     unlock_drm_version(host_ver, target_ver, true);
5459 }
5460 
5461 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5462                              int fd, int cmd, abi_long arg)
5463 {
5464     struct drm_version *ver;
5465     struct target_drm_version *target_ver;
5466     abi_long ret;
5467 
5468     switch (ie->host_cmd) {
5469     case DRM_IOCTL_VERSION:
5470         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5471             return -TARGET_EFAULT;
5472         }
5473         ver = (struct drm_version *)buf_temp;
5474         ret = target_to_host_drmversion(ver, target_ver);
5475         if (!is_error(ret)) {
5476             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5477             if (is_error(ret)) {
5478                 unlock_drm_version(ver, target_ver, false);
5479             } else {
5480                 host_to_target_drmversion(target_ver, ver);
5481             }
5482         }
5483         unlock_user_struct(target_ver, arg, 0);
5484         return ret;
5485     }
5486     return -TARGET_ENOSYS;
5487 }
5488 
5489 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5490                                            struct drm_i915_getparam *gparam,
5491                                            int fd, abi_long arg)
5492 {
5493     abi_long ret;
5494     int value;
5495     struct target_drm_i915_getparam *target_gparam;
5496 
5497     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5498         return -TARGET_EFAULT;
5499     }
5500 
5501     __get_user(gparam->param, &target_gparam->param);
5502     gparam->value = &value;
5503     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5504     put_user_s32(value, target_gparam->value);
5505 
5506     unlock_user_struct(target_gparam, arg, 0);
5507     return ret;
5508 }
5509 
5510 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5511                                   int fd, int cmd, abi_long arg)
5512 {
5513     switch (ie->host_cmd) {
5514     case DRM_IOCTL_I915_GETPARAM:
5515         return do_ioctl_drm_i915_getparam(ie,
5516                                           (struct drm_i915_getparam *)buf_temp,
5517                                           fd, arg);
5518     default:
5519         return -TARGET_ENOSYS;
5520     }
5521 }
5522 
5523 #endif
5524 
5525 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5526                                         int fd, int cmd, abi_long arg)
5527 {
5528     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5529     struct tun_filter *target_filter;
5530     char *target_addr;
5531 
5532     assert(ie->access == IOC_W);
5533 
5534     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5535     if (!target_filter) {
5536         return -TARGET_EFAULT;
5537     }
5538     filter->flags = tswap16(target_filter->flags);
5539     filter->count = tswap16(target_filter->count);
5540     unlock_user(target_filter, arg, 0);
5541 
5542     if (filter->count) {
5543         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5544             MAX_STRUCT_SIZE) {
5545             return -TARGET_EFAULT;
5546         }
5547 
5548         target_addr = lock_user(VERIFY_READ,
5549                                 arg + offsetof(struct tun_filter, addr),
5550                                 filter->count * ETH_ALEN, 1);
5551         if (!target_addr) {
5552             return -TARGET_EFAULT;
5553         }
5554         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5555         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5556     }
5557 
5558     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5559 }
5560 
5561 IOCTLEntry ioctl_entries[] = {
5562 #define IOCTL(cmd, access, ...) \
5563     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5565     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5566 #define IOCTL_IGNORE(cmd) \
5567     { TARGET_ ## cmd, 0, #cmd },
5568 #include "ioctls.h"
5569     { 0, 0, },
5570 };
5571 
5572 /* ??? Implement proper locking for ioctls.  */
5573 /* do_ioctl() Must return target values and target errnos. */
5574 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5575 {
5576     const IOCTLEntry *ie;
5577     const argtype *arg_type;
5578     abi_long ret;
5579     uint8_t buf_temp[MAX_STRUCT_SIZE];
5580     int target_size;
5581     void *argptr;
5582 
5583     ie = ioctl_entries;
5584     for(;;) {
5585         if (ie->target_cmd == 0) {
5586             qemu_log_mask(
5587                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5588             return -TARGET_ENOTTY;
5589         }
5590         if (ie->target_cmd == cmd)
5591             break;
5592         ie++;
5593     }
5594     arg_type = ie->arg_type;
5595     if (ie->do_ioctl) {
5596         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5597     } else if (!ie->host_cmd) {
5598         /* Some architectures define BSD ioctls in their headers
5599            that are not implemented in Linux.  */
5600         return -TARGET_ENOTTY;
5601     }
5602 
5603     switch(arg_type[0]) {
5604     case TYPE_NULL:
5605         /* no argument */
5606         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5607         break;
5608     case TYPE_PTRVOID:
5609     case TYPE_INT:
5610     case TYPE_LONG:
5611     case TYPE_ULONG:
5612         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5613         break;
5614     case TYPE_PTR:
5615         arg_type++;
5616         target_size = thunk_type_size(arg_type, 0);
5617         switch(ie->access) {
5618         case IOC_R:
5619             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5620             if (!is_error(ret)) {
5621                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5622                 if (!argptr)
5623                     return -TARGET_EFAULT;
5624                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5625                 unlock_user(argptr, arg, target_size);
5626             }
5627             break;
5628         case IOC_W:
5629             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5630             if (!argptr)
5631                 return -TARGET_EFAULT;
5632             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5633             unlock_user(argptr, arg, 0);
5634             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5635             break;
5636         default:
5637         case IOC_RW:
5638             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5639             if (!argptr)
5640                 return -TARGET_EFAULT;
5641             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5642             unlock_user(argptr, arg, 0);
5643             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5644             if (!is_error(ret)) {
5645                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5646                 if (!argptr)
5647                     return -TARGET_EFAULT;
5648                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5649                 unlock_user(argptr, arg, target_size);
5650             }
5651             break;
5652         }
5653         break;
5654     default:
5655         qemu_log_mask(LOG_UNIMP,
5656                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5657                       (long)cmd, arg_type[0]);
5658         ret = -TARGET_ENOTTY;
5659         break;
5660     }
5661     return ret;
5662 }
5663 
5664 static const bitmask_transtbl iflag_tbl[] = {
5665         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5666         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5667         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5668         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5669         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5670         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5671         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5672         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5673         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5674         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5675         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5676         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5677         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5678         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5679         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5680 };
5681 
5682 static const bitmask_transtbl oflag_tbl[] = {
5683 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5684 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5685 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5686 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5687 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5688 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5689 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5690 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5691 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5692 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5693 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5694 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5695 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5696 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5697 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5698 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5699 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5700 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5701 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5702 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5703 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5704 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5705 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5706 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5707 };
5708 
5709 static const bitmask_transtbl cflag_tbl[] = {
5710 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5711 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5712 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5713 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5714 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5715 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5716 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5717 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5718 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5719 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5720 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5721 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5722 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5723 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5724 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5725 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5726 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5727 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5728 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5729 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5730 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5731 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5732 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5733 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5734 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5735 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5736 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5737 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5738 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5739 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5740 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5741 };
5742 
5743 static const bitmask_transtbl lflag_tbl[] = {
5744   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5745   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5746   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5747   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5748   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5749   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5750   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5751   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5752   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5753   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5754   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5755   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5756   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5757   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5758   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5759   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5760 };
5761 
5762 static void target_to_host_termios (void *dst, const void *src)
5763 {
5764     struct host_termios *host = dst;
5765     const struct target_termios *target = src;
5766 
5767     host->c_iflag =
5768         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5769     host->c_oflag =
5770         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5771     host->c_cflag =
5772         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5773     host->c_lflag =
5774         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5775     host->c_line = target->c_line;
5776 
5777     memset(host->c_cc, 0, sizeof(host->c_cc));
5778     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5779     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5780     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5781     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5782     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5783     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5784     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5785     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5786     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5787     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5788     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5789     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5790     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5791     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5792     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5793     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5794     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5795 }
5796 
5797 static void host_to_target_termios (void *dst, const void *src)
5798 {
5799     struct target_termios *target = dst;
5800     const struct host_termios *host = src;
5801 
5802     target->c_iflag =
5803         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5804     target->c_oflag =
5805         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5806     target->c_cflag =
5807         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5808     target->c_lflag =
5809         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5810     target->c_line = host->c_line;
5811 
5812     memset(target->c_cc, 0, sizeof(target->c_cc));
5813     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5814     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5815     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5816     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5817     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5818     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5819     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5820     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5821     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5822     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5823     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5824     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5825     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5826     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5827     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5828     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5829     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5830 }
5831 
5832 static const StructEntry struct_termios_def = {
5833     .convert = { host_to_target_termios, target_to_host_termios },
5834     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5835     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5836     .print = print_termios,
5837 };
5838 
5839 /* If the host does not provide these bits, they may be safely discarded. */
5840 #ifndef MAP_SYNC
5841 #define MAP_SYNC 0
5842 #endif
5843 #ifndef MAP_UNINITIALIZED
5844 #define MAP_UNINITIALIZED 0
5845 #endif
5846 
5847 static const bitmask_transtbl mmap_flags_tbl[] = {
5848     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5849     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5850       MAP_ANONYMOUS, MAP_ANONYMOUS },
5851     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5852       MAP_GROWSDOWN, MAP_GROWSDOWN },
5853     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5854       MAP_DENYWRITE, MAP_DENYWRITE },
5855     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5856       MAP_EXECUTABLE, MAP_EXECUTABLE },
5857     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5858     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5859       MAP_NORESERVE, MAP_NORESERVE },
5860     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5861     /* MAP_STACK had been ignored by the kernel for quite some time.
5862        Recognize it for the target insofar as we do not want to pass
5863        it through to the host.  */
5864     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5865     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5866     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5867     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5868       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5869     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5870       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5871 };
5872 
5873 /*
5874  * Arrange for legacy / undefined architecture specific flags to be
5875  * ignored by mmap handling code.
5876  */
5877 #ifndef TARGET_MAP_32BIT
5878 #define TARGET_MAP_32BIT 0
5879 #endif
5880 #ifndef TARGET_MAP_HUGE_2MB
5881 #define TARGET_MAP_HUGE_2MB 0
5882 #endif
5883 #ifndef TARGET_MAP_HUGE_1GB
5884 #define TARGET_MAP_HUGE_1GB 0
5885 #endif
5886 
5887 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5888                         int target_flags, int fd, off_t offset)
5889 {
5890     /*
5891      * The historical set of flags that all mmap types implicitly support.
5892      */
5893     enum {
5894         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5895                                | TARGET_MAP_PRIVATE
5896                                | TARGET_MAP_FIXED
5897                                | TARGET_MAP_ANONYMOUS
5898                                | TARGET_MAP_DENYWRITE
5899                                | TARGET_MAP_EXECUTABLE
5900                                | TARGET_MAP_UNINITIALIZED
5901                                | TARGET_MAP_GROWSDOWN
5902                                | TARGET_MAP_LOCKED
5903                                | TARGET_MAP_NORESERVE
5904                                | TARGET_MAP_POPULATE
5905                                | TARGET_MAP_NONBLOCK
5906                                | TARGET_MAP_STACK
5907                                | TARGET_MAP_HUGETLB
5908                                | TARGET_MAP_32BIT
5909                                | TARGET_MAP_HUGE_2MB
5910                                | TARGET_MAP_HUGE_1GB
5911     };
5912     int host_flags;
5913 
5914     switch (target_flags & TARGET_MAP_TYPE) {
5915     case TARGET_MAP_PRIVATE:
5916         host_flags = MAP_PRIVATE;
5917         break;
5918     case TARGET_MAP_SHARED:
5919         host_flags = MAP_SHARED;
5920         break;
5921     case TARGET_MAP_SHARED_VALIDATE:
5922         /*
5923          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5924          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5925          */
5926         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5927             return -TARGET_EOPNOTSUPP;
5928         }
5929         host_flags = MAP_SHARED_VALIDATE;
5930         if (target_flags & TARGET_MAP_SYNC) {
5931             host_flags |= MAP_SYNC;
5932         }
5933         break;
5934     default:
5935         return -TARGET_EINVAL;
5936     }
5937     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5938 
5939     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5940 }
5941 
5942 /*
5943  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5944  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5945  */
5946 #if defined(TARGET_I386)
5947 
5948 /* NOTE: there is really one LDT for all the threads */
5949 static uint8_t *ldt_table;
5950 
5951 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5952 {
5953     int size;
5954     void *p;
5955 
5956     if (!ldt_table)
5957         return 0;
5958     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5959     if (size > bytecount)
5960         size = bytecount;
5961     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5962     if (!p)
5963         return -TARGET_EFAULT;
5964     /* ??? Should this by byteswapped?  */
5965     memcpy(p, ldt_table, size);
5966     unlock_user(p, ptr, size);
5967     return size;
5968 }
5969 
5970 /* XXX: add locking support */
5971 static abi_long write_ldt(CPUX86State *env,
5972                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5973 {
5974     struct target_modify_ldt_ldt_s ldt_info;
5975     struct target_modify_ldt_ldt_s *target_ldt_info;
5976     int seg_32bit, contents, read_exec_only, limit_in_pages;
5977     int seg_not_present, useable, lm;
5978     uint32_t *lp, entry_1, entry_2;
5979 
5980     if (bytecount != sizeof(ldt_info))
5981         return -TARGET_EINVAL;
5982     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5983         return -TARGET_EFAULT;
5984     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5985     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5986     ldt_info.limit = tswap32(target_ldt_info->limit);
5987     ldt_info.flags = tswap32(target_ldt_info->flags);
5988     unlock_user_struct(target_ldt_info, ptr, 0);
5989 
5990     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5991         return -TARGET_EINVAL;
5992     seg_32bit = ldt_info.flags & 1;
5993     contents = (ldt_info.flags >> 1) & 3;
5994     read_exec_only = (ldt_info.flags >> 3) & 1;
5995     limit_in_pages = (ldt_info.flags >> 4) & 1;
5996     seg_not_present = (ldt_info.flags >> 5) & 1;
5997     useable = (ldt_info.flags >> 6) & 1;
5998 #ifdef TARGET_ABI32
5999     lm = 0;
6000 #else
6001     lm = (ldt_info.flags >> 7) & 1;
6002 #endif
6003     if (contents == 3) {
6004         if (oldmode)
6005             return -TARGET_EINVAL;
6006         if (seg_not_present == 0)
6007             return -TARGET_EINVAL;
6008     }
6009     /* allocate the LDT */
6010     if (!ldt_table) {
6011         env->ldt.base = target_mmap(0,
6012                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6013                                     PROT_READ|PROT_WRITE,
6014                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6015         if (env->ldt.base == -1)
6016             return -TARGET_ENOMEM;
6017         memset(g2h_untagged(env->ldt.base), 0,
6018                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6019         env->ldt.limit = 0xffff;
6020         ldt_table = g2h_untagged(env->ldt.base);
6021     }
6022 
6023     /* NOTE: same code as Linux kernel */
6024     /* Allow LDTs to be cleared by the user. */
6025     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6026         if (oldmode ||
6027             (contents == 0		&&
6028              read_exec_only == 1	&&
6029              seg_32bit == 0		&&
6030              limit_in_pages == 0	&&
6031              seg_not_present == 1	&&
6032              useable == 0 )) {
6033             entry_1 = 0;
6034             entry_2 = 0;
6035             goto install;
6036         }
6037     }
6038 
6039     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6040         (ldt_info.limit & 0x0ffff);
6041     entry_2 = (ldt_info.base_addr & 0xff000000) |
6042         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6043         (ldt_info.limit & 0xf0000) |
6044         ((read_exec_only ^ 1) << 9) |
6045         (contents << 10) |
6046         ((seg_not_present ^ 1) << 15) |
6047         (seg_32bit << 22) |
6048         (limit_in_pages << 23) |
6049         (lm << 21) |
6050         0x7000;
6051     if (!oldmode)
6052         entry_2 |= (useable << 20);
6053 
6054     /* Install the new entry ...  */
6055 install:
6056     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6057     lp[0] = tswap32(entry_1);
6058     lp[1] = tswap32(entry_2);
6059     return 0;
6060 }
6061 
6062 /* specific and weird i386 syscalls */
6063 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6064                               unsigned long bytecount)
6065 {
6066     abi_long ret;
6067 
6068     switch (func) {
6069     case 0:
6070         ret = read_ldt(ptr, bytecount);
6071         break;
6072     case 1:
6073         ret = write_ldt(env, ptr, bytecount, 1);
6074         break;
6075     case 0x11:
6076         ret = write_ldt(env, ptr, bytecount, 0);
6077         break;
6078     default:
6079         ret = -TARGET_ENOSYS;
6080         break;
6081     }
6082     return ret;
6083 }
6084 
6085 #if defined(TARGET_ABI32)
6086 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6087 {
6088     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6089     struct target_modify_ldt_ldt_s ldt_info;
6090     struct target_modify_ldt_ldt_s *target_ldt_info;
6091     int seg_32bit, contents, read_exec_only, limit_in_pages;
6092     int seg_not_present, useable, lm;
6093     uint32_t *lp, entry_1, entry_2;
6094     int i;
6095 
6096     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6097     if (!target_ldt_info)
6098         return -TARGET_EFAULT;
6099     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6100     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6101     ldt_info.limit = tswap32(target_ldt_info->limit);
6102     ldt_info.flags = tswap32(target_ldt_info->flags);
6103     if (ldt_info.entry_number == -1) {
6104         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6105             if (gdt_table[i] == 0) {
6106                 ldt_info.entry_number = i;
6107                 target_ldt_info->entry_number = tswap32(i);
6108                 break;
6109             }
6110         }
6111     }
6112     unlock_user_struct(target_ldt_info, ptr, 1);
6113 
6114     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6115         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6116            return -TARGET_EINVAL;
6117     seg_32bit = ldt_info.flags & 1;
6118     contents = (ldt_info.flags >> 1) & 3;
6119     read_exec_only = (ldt_info.flags >> 3) & 1;
6120     limit_in_pages = (ldt_info.flags >> 4) & 1;
6121     seg_not_present = (ldt_info.flags >> 5) & 1;
6122     useable = (ldt_info.flags >> 6) & 1;
6123 #ifdef TARGET_ABI32
6124     lm = 0;
6125 #else
6126     lm = (ldt_info.flags >> 7) & 1;
6127 #endif
6128 
6129     if (contents == 3) {
6130         if (seg_not_present == 0)
6131             return -TARGET_EINVAL;
6132     }
6133 
6134     /* NOTE: same code as Linux kernel */
6135     /* Allow LDTs to be cleared by the user. */
6136     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6137         if ((contents == 0             &&
6138              read_exec_only == 1       &&
6139              seg_32bit == 0            &&
6140              limit_in_pages == 0       &&
6141              seg_not_present == 1      &&
6142              useable == 0 )) {
6143             entry_1 = 0;
6144             entry_2 = 0;
6145             goto install;
6146         }
6147     }
6148 
6149     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6150         (ldt_info.limit & 0x0ffff);
6151     entry_2 = (ldt_info.base_addr & 0xff000000) |
6152         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6153         (ldt_info.limit & 0xf0000) |
6154         ((read_exec_only ^ 1) << 9) |
6155         (contents << 10) |
6156         ((seg_not_present ^ 1) << 15) |
6157         (seg_32bit << 22) |
6158         (limit_in_pages << 23) |
6159         (useable << 20) |
6160         (lm << 21) |
6161         0x7000;
6162 
6163     /* Install the new entry ...  */
6164 install:
6165     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6166     lp[0] = tswap32(entry_1);
6167     lp[1] = tswap32(entry_2);
6168     return 0;
6169 }
6170 
6171 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6172 {
6173     struct target_modify_ldt_ldt_s *target_ldt_info;
6174     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6175     uint32_t base_addr, limit, flags;
6176     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6177     int seg_not_present, useable, lm;
6178     uint32_t *lp, entry_1, entry_2;
6179 
6180     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6181     if (!target_ldt_info)
6182         return -TARGET_EFAULT;
6183     idx = tswap32(target_ldt_info->entry_number);
6184     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6185         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6186         unlock_user_struct(target_ldt_info, ptr, 1);
6187         return -TARGET_EINVAL;
6188     }
6189     lp = (uint32_t *)(gdt_table + idx);
6190     entry_1 = tswap32(lp[0]);
6191     entry_2 = tswap32(lp[1]);
6192 
6193     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6194     contents = (entry_2 >> 10) & 3;
6195     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6196     seg_32bit = (entry_2 >> 22) & 1;
6197     limit_in_pages = (entry_2 >> 23) & 1;
6198     useable = (entry_2 >> 20) & 1;
6199 #ifdef TARGET_ABI32
6200     lm = 0;
6201 #else
6202     lm = (entry_2 >> 21) & 1;
6203 #endif
6204     flags = (seg_32bit << 0) | (contents << 1) |
6205         (read_exec_only << 3) | (limit_in_pages << 4) |
6206         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6207     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6208     base_addr = (entry_1 >> 16) |
6209         (entry_2 & 0xff000000) |
6210         ((entry_2 & 0xff) << 16);
6211     target_ldt_info->base_addr = tswapal(base_addr);
6212     target_ldt_info->limit = tswap32(limit);
6213     target_ldt_info->flags = tswap32(flags);
6214     unlock_user_struct(target_ldt_info, ptr, 1);
6215     return 0;
6216 }
6217 
6218 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6219 {
6220     return -TARGET_ENOSYS;
6221 }
6222 #else
6223 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6224 {
6225     abi_long ret = 0;
6226     abi_ulong val;
6227     int idx;
6228 
6229     switch(code) {
6230     case TARGET_ARCH_SET_GS:
6231     case TARGET_ARCH_SET_FS:
6232         if (code == TARGET_ARCH_SET_GS)
6233             idx = R_GS;
6234         else
6235             idx = R_FS;
6236         cpu_x86_load_seg(env, idx, 0);
6237         env->segs[idx].base = addr;
6238         break;
6239     case TARGET_ARCH_GET_GS:
6240     case TARGET_ARCH_GET_FS:
6241         if (code == TARGET_ARCH_GET_GS)
6242             idx = R_GS;
6243         else
6244             idx = R_FS;
6245         val = env->segs[idx].base;
6246         if (put_user(val, addr, abi_ulong))
6247             ret = -TARGET_EFAULT;
6248         break;
6249     default:
6250         ret = -TARGET_EINVAL;
6251         break;
6252     }
6253     return ret;
6254 }
6255 #endif /* defined(TARGET_ABI32 */
6256 #endif /* defined(TARGET_I386) */
6257 
6258 /*
6259  * These constants are generic.  Supply any that are missing from the host.
6260  */
6261 #ifndef PR_SET_NAME
6262 # define PR_SET_NAME    15
6263 # define PR_GET_NAME    16
6264 #endif
6265 #ifndef PR_SET_FP_MODE
6266 # define PR_SET_FP_MODE 45
6267 # define PR_GET_FP_MODE 46
6268 # define PR_FP_MODE_FR   (1 << 0)
6269 # define PR_FP_MODE_FRE  (1 << 1)
6270 #endif
6271 #ifndef PR_SVE_SET_VL
6272 # define PR_SVE_SET_VL  50
6273 # define PR_SVE_GET_VL  51
6274 # define PR_SVE_VL_LEN_MASK  0xffff
6275 # define PR_SVE_VL_INHERIT   (1 << 17)
6276 #endif
6277 #ifndef PR_PAC_RESET_KEYS
6278 # define PR_PAC_RESET_KEYS  54
6279 # define PR_PAC_APIAKEY   (1 << 0)
6280 # define PR_PAC_APIBKEY   (1 << 1)
6281 # define PR_PAC_APDAKEY   (1 << 2)
6282 # define PR_PAC_APDBKEY   (1 << 3)
6283 # define PR_PAC_APGAKEY   (1 << 4)
6284 #endif
6285 #ifndef PR_SET_TAGGED_ADDR_CTRL
6286 # define PR_SET_TAGGED_ADDR_CTRL 55
6287 # define PR_GET_TAGGED_ADDR_CTRL 56
6288 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6289 #endif
6290 #ifndef PR_MTE_TCF_SHIFT
6291 # define PR_MTE_TCF_SHIFT       1
6292 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6293 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6294 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6295 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6296 # define PR_MTE_TAG_SHIFT       3
6297 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6298 #endif
6299 #ifndef PR_SET_IO_FLUSHER
6300 # define PR_SET_IO_FLUSHER 57
6301 # define PR_GET_IO_FLUSHER 58
6302 #endif
6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6304 # define PR_SET_SYSCALL_USER_DISPATCH 59
6305 #endif
6306 #ifndef PR_SME_SET_VL
6307 # define PR_SME_SET_VL  63
6308 # define PR_SME_GET_VL  64
6309 # define PR_SME_VL_LEN_MASK  0xffff
6310 # define PR_SME_VL_INHERIT   (1 << 17)
6311 #endif
6312 
6313 #include "target_prctl.h"
6314 
6315 static abi_long do_prctl_inval0(CPUArchState *env)
6316 {
6317     return -TARGET_EINVAL;
6318 }
6319 
6320 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6321 {
6322     return -TARGET_EINVAL;
6323 }
6324 
6325 #ifndef do_prctl_get_fp_mode
6326 #define do_prctl_get_fp_mode do_prctl_inval0
6327 #endif
6328 #ifndef do_prctl_set_fp_mode
6329 #define do_prctl_set_fp_mode do_prctl_inval1
6330 #endif
6331 #ifndef do_prctl_sve_get_vl
6332 #define do_prctl_sve_get_vl do_prctl_inval0
6333 #endif
6334 #ifndef do_prctl_sve_set_vl
6335 #define do_prctl_sve_set_vl do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_reset_keys
6338 #define do_prctl_reset_keys do_prctl_inval1
6339 #endif
6340 #ifndef do_prctl_set_tagged_addr_ctrl
6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6342 #endif
6343 #ifndef do_prctl_get_tagged_addr_ctrl
6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6345 #endif
6346 #ifndef do_prctl_get_unalign
6347 #define do_prctl_get_unalign do_prctl_inval1
6348 #endif
6349 #ifndef do_prctl_set_unalign
6350 #define do_prctl_set_unalign do_prctl_inval1
6351 #endif
6352 #ifndef do_prctl_sme_get_vl
6353 #define do_prctl_sme_get_vl do_prctl_inval0
6354 #endif
6355 #ifndef do_prctl_sme_set_vl
6356 #define do_prctl_sme_set_vl do_prctl_inval1
6357 #endif
6358 
6359 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6360                          abi_long arg3, abi_long arg4, abi_long arg5)
6361 {
6362     abi_long ret;
6363 
6364     switch (option) {
6365     case PR_GET_PDEATHSIG:
6366         {
6367             int deathsig;
6368             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6369                                   arg3, arg4, arg5));
6370             if (!is_error(ret) &&
6371                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6372                 return -TARGET_EFAULT;
6373             }
6374             return ret;
6375         }
6376     case PR_SET_PDEATHSIG:
6377         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6378                                arg3, arg4, arg5));
6379     case PR_GET_NAME:
6380         {
6381             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6382             if (!name) {
6383                 return -TARGET_EFAULT;
6384             }
6385             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6386                                   arg3, arg4, arg5));
6387             unlock_user(name, arg2, 16);
6388             return ret;
6389         }
6390     case PR_SET_NAME:
6391         {
6392             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6393             if (!name) {
6394                 return -TARGET_EFAULT;
6395             }
6396             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6397                                   arg3, arg4, arg5));
6398             unlock_user(name, arg2, 0);
6399             return ret;
6400         }
6401     case PR_GET_FP_MODE:
6402         return do_prctl_get_fp_mode(env);
6403     case PR_SET_FP_MODE:
6404         return do_prctl_set_fp_mode(env, arg2);
6405     case PR_SVE_GET_VL:
6406         return do_prctl_sve_get_vl(env);
6407     case PR_SVE_SET_VL:
6408         return do_prctl_sve_set_vl(env, arg2);
6409     case PR_SME_GET_VL:
6410         return do_prctl_sme_get_vl(env);
6411     case PR_SME_SET_VL:
6412         return do_prctl_sme_set_vl(env, arg2);
6413     case PR_PAC_RESET_KEYS:
6414         if (arg3 || arg4 || arg5) {
6415             return -TARGET_EINVAL;
6416         }
6417         return do_prctl_reset_keys(env, arg2);
6418     case PR_SET_TAGGED_ADDR_CTRL:
6419         if (arg3 || arg4 || arg5) {
6420             return -TARGET_EINVAL;
6421         }
6422         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6423     case PR_GET_TAGGED_ADDR_CTRL:
6424         if (arg2 || arg3 || arg4 || arg5) {
6425             return -TARGET_EINVAL;
6426         }
6427         return do_prctl_get_tagged_addr_ctrl(env);
6428 
6429     case PR_GET_UNALIGN:
6430         return do_prctl_get_unalign(env, arg2);
6431     case PR_SET_UNALIGN:
6432         return do_prctl_set_unalign(env, arg2);
6433 
6434     case PR_CAP_AMBIENT:
6435     case PR_CAPBSET_READ:
6436     case PR_CAPBSET_DROP:
6437     case PR_GET_DUMPABLE:
6438     case PR_SET_DUMPABLE:
6439     case PR_GET_KEEPCAPS:
6440     case PR_SET_KEEPCAPS:
6441     case PR_GET_SECUREBITS:
6442     case PR_SET_SECUREBITS:
6443     case PR_GET_TIMING:
6444     case PR_SET_TIMING:
6445     case PR_GET_TIMERSLACK:
6446     case PR_SET_TIMERSLACK:
6447     case PR_MCE_KILL:
6448     case PR_MCE_KILL_GET:
6449     case PR_GET_NO_NEW_PRIVS:
6450     case PR_SET_NO_NEW_PRIVS:
6451     case PR_GET_IO_FLUSHER:
6452     case PR_SET_IO_FLUSHER:
6453     case PR_SET_CHILD_SUBREAPER:
6454         /* Some prctl options have no pointer arguments and we can pass on. */
6455         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6456 
6457     case PR_GET_CHILD_SUBREAPER:
6458         {
6459             int val;
6460             ret = get_errno(prctl(PR_GET_CHILD_SUBREAPER, &val,
6461                                   arg3, arg4, arg5));
6462             if (!is_error(ret) && put_user_s32(val, arg2)) {
6463                 return -TARGET_EFAULT;
6464             }
6465             return ret;
6466         }
6467 
6468     case PR_GET_SPECULATION_CTRL:
6469     case PR_SET_SPECULATION_CTRL:
6470     case PR_GET_TID_ADDRESS:
6471         /* TODO */
6472         return -TARGET_EINVAL;
6473 
6474     case PR_GET_FPEXC:
6475     case PR_SET_FPEXC:
6476         /* Was used for SPE on PowerPC. */
6477         return -TARGET_EINVAL;
6478 
6479     case PR_GET_ENDIAN:
6480     case PR_SET_ENDIAN:
6481     case PR_GET_FPEMU:
6482     case PR_SET_FPEMU:
6483     case PR_SET_MM:
6484     case PR_GET_SECCOMP:
6485     case PR_SET_SECCOMP:
6486     case PR_SET_SYSCALL_USER_DISPATCH:
6487     case PR_GET_THP_DISABLE:
6488     case PR_SET_THP_DISABLE:
6489     case PR_GET_TSC:
6490     case PR_SET_TSC:
6491         /* Disable to prevent the target disabling stuff we need. */
6492         return -TARGET_EINVAL;
6493 
6494     default:
6495         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6496                       option);
6497         return -TARGET_EINVAL;
6498     }
6499 }
6500 
6501 #define NEW_STACK_SIZE 0x40000
6502 
6503 
6504 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6505 typedef struct {
6506     CPUArchState *env;
6507     pthread_mutex_t mutex;
6508     pthread_cond_t cond;
6509     pthread_t thread;
6510     uint32_t tid;
6511     abi_ulong child_tidptr;
6512     abi_ulong parent_tidptr;
6513     sigset_t sigmask;
6514 } new_thread_info;
6515 
6516 static void *clone_func(void *arg)
6517 {
6518     new_thread_info *info = arg;
6519     CPUArchState *env;
6520     CPUState *cpu;
6521     TaskState *ts;
6522 
6523     rcu_register_thread();
6524     tcg_register_thread();
6525     env = info->env;
6526     cpu = env_cpu(env);
6527     thread_cpu = cpu;
6528     ts = get_task_state(cpu);
6529     info->tid = sys_gettid();
6530     task_settid(ts);
6531     if (info->child_tidptr)
6532         put_user_u32(info->tid, info->child_tidptr);
6533     if (info->parent_tidptr)
6534         put_user_u32(info->tid, info->parent_tidptr);
6535     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6536     /* Enable signals.  */
6537     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6538     /* Signal to the parent that we're ready.  */
6539     pthread_mutex_lock(&info->mutex);
6540     pthread_cond_broadcast(&info->cond);
6541     pthread_mutex_unlock(&info->mutex);
6542     /* Wait until the parent has finished initializing the tls state.  */
6543     pthread_mutex_lock(&clone_lock);
6544     pthread_mutex_unlock(&clone_lock);
6545     cpu_loop(env);
6546     /* never exits */
6547     return NULL;
6548 }
6549 
6550 /* do_fork() Must return host values and target errnos (unlike most
6551    do_*() functions). */
6552 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6553                    abi_ulong parent_tidptr, target_ulong newtls,
6554                    abi_ulong child_tidptr)
6555 {
6556     CPUState *cpu = env_cpu(env);
6557     int ret;
6558     TaskState *ts;
6559     CPUState *new_cpu;
6560     CPUArchState *new_env;
6561     sigset_t sigmask;
6562 
6563     flags &= ~CLONE_IGNORED_FLAGS;
6564 
6565     /* Emulate vfork() with fork() */
6566     if (flags & CLONE_VFORK)
6567         flags &= ~(CLONE_VFORK | CLONE_VM);
6568 
6569     if (flags & CLONE_VM) {
6570         TaskState *parent_ts = get_task_state(cpu);
6571         new_thread_info info;
6572         pthread_attr_t attr;
6573 
6574         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6575             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6576             return -TARGET_EINVAL;
6577         }
6578 
6579         ts = g_new0(TaskState, 1);
6580         init_task_state(ts);
6581 
6582         /* Grab a mutex so that thread setup appears atomic.  */
6583         pthread_mutex_lock(&clone_lock);
6584 
6585         /*
6586          * If this is our first additional thread, we need to ensure we
6587          * generate code for parallel execution and flush old translations.
6588          * Do this now so that the copy gets CF_PARALLEL too.
6589          */
6590         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6591             cpu->tcg_cflags |= CF_PARALLEL;
6592             tb_flush(cpu);
6593         }
6594 
6595         /* we create a new CPU instance. */
6596         new_env = cpu_copy(env);
6597         /* Init regs that differ from the parent.  */
6598         cpu_clone_regs_child(new_env, newsp, flags);
6599         cpu_clone_regs_parent(env, flags);
6600         new_cpu = env_cpu(new_env);
6601         new_cpu->opaque = ts;
6602         ts->bprm = parent_ts->bprm;
6603         ts->info = parent_ts->info;
6604         ts->signal_mask = parent_ts->signal_mask;
6605 
6606         if (flags & CLONE_CHILD_CLEARTID) {
6607             ts->child_tidptr = child_tidptr;
6608         }
6609 
6610         if (flags & CLONE_SETTLS) {
6611             cpu_set_tls (new_env, newtls);
6612         }
6613 
6614         memset(&info, 0, sizeof(info));
6615         pthread_mutex_init(&info.mutex, NULL);
6616         pthread_mutex_lock(&info.mutex);
6617         pthread_cond_init(&info.cond, NULL);
6618         info.env = new_env;
6619         if (flags & CLONE_CHILD_SETTID) {
6620             info.child_tidptr = child_tidptr;
6621         }
6622         if (flags & CLONE_PARENT_SETTID) {
6623             info.parent_tidptr = parent_tidptr;
6624         }
6625 
6626         ret = pthread_attr_init(&attr);
6627         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6628         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6629         /* It is not safe to deliver signals until the child has finished
6630            initializing, so temporarily block all signals.  */
6631         sigfillset(&sigmask);
6632         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6633         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6634 
6635         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6636         /* TODO: Free new CPU state if thread creation failed.  */
6637 
6638         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6639         pthread_attr_destroy(&attr);
6640         if (ret == 0) {
6641             /* Wait for the child to initialize.  */
6642             pthread_cond_wait(&info.cond, &info.mutex);
6643             ret = info.tid;
6644         } else {
6645             ret = -1;
6646         }
6647         pthread_mutex_unlock(&info.mutex);
6648         pthread_cond_destroy(&info.cond);
6649         pthread_mutex_destroy(&info.mutex);
6650         pthread_mutex_unlock(&clone_lock);
6651     } else {
6652         /* if no CLONE_VM, we consider it is a fork */
6653         if (flags & CLONE_INVALID_FORK_FLAGS) {
6654             return -TARGET_EINVAL;
6655         }
6656 
6657         /* We can't support custom termination signals */
6658         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6659             return -TARGET_EINVAL;
6660         }
6661 
6662 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6663         if (flags & CLONE_PIDFD) {
6664             return -TARGET_EINVAL;
6665         }
6666 #endif
6667 
6668         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6669         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6670             return -TARGET_EINVAL;
6671         }
6672 
6673         if (block_signals()) {
6674             return -QEMU_ERESTARTSYS;
6675         }
6676 
6677         fork_start();
6678         ret = fork();
6679         if (ret == 0) {
6680             /* Child Process.  */
6681             cpu_clone_regs_child(env, newsp, flags);
6682             fork_end(ret);
6683             /* There is a race condition here.  The parent process could
6684                theoretically read the TID in the child process before the child
6685                tid is set.  This would require using either ptrace
6686                (not implemented) or having *_tidptr to point at a shared memory
6687                mapping.  We can't repeat the spinlock hack used above because
6688                the child process gets its own copy of the lock.  */
6689             if (flags & CLONE_CHILD_SETTID)
6690                 put_user_u32(sys_gettid(), child_tidptr);
6691             if (flags & CLONE_PARENT_SETTID)
6692                 put_user_u32(sys_gettid(), parent_tidptr);
6693             ts = get_task_state(cpu);
6694             if (flags & CLONE_SETTLS)
6695                 cpu_set_tls (env, newtls);
6696             if (flags & CLONE_CHILD_CLEARTID)
6697                 ts->child_tidptr = child_tidptr;
6698         } else {
6699             cpu_clone_regs_parent(env, flags);
6700             if (flags & CLONE_PIDFD) {
6701                 int pid_fd = 0;
6702 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6703                 int pid_child = ret;
6704                 pid_fd = pidfd_open(pid_child, 0);
6705                 if (pid_fd >= 0) {
6706                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6707                                                | FD_CLOEXEC);
6708                 } else {
6709                         pid_fd = 0;
6710                 }
6711 #endif
6712                 put_user_u32(pid_fd, parent_tidptr);
6713             }
6714             fork_end(ret);
6715         }
6716         g_assert(!cpu_in_exclusive_context(cpu));
6717     }
6718     return ret;
6719 }
6720 
6721 /* warning : doesn't handle linux specific flags... */
6722 static int target_to_host_fcntl_cmd(int cmd)
6723 {
6724     int ret;
6725 
6726     switch(cmd) {
6727     case TARGET_F_DUPFD:
6728     case TARGET_F_GETFD:
6729     case TARGET_F_SETFD:
6730     case TARGET_F_GETFL:
6731     case TARGET_F_SETFL:
6732     case TARGET_F_OFD_GETLK:
6733     case TARGET_F_OFD_SETLK:
6734     case TARGET_F_OFD_SETLKW:
6735         ret = cmd;
6736         break;
6737     case TARGET_F_GETLK:
6738         ret = F_GETLK64;
6739         break;
6740     case TARGET_F_SETLK:
6741         ret = F_SETLK64;
6742         break;
6743     case TARGET_F_SETLKW:
6744         ret = F_SETLKW64;
6745         break;
6746     case TARGET_F_GETOWN:
6747         ret = F_GETOWN;
6748         break;
6749     case TARGET_F_SETOWN:
6750         ret = F_SETOWN;
6751         break;
6752     case TARGET_F_GETSIG:
6753         ret = F_GETSIG;
6754         break;
6755     case TARGET_F_SETSIG:
6756         ret = F_SETSIG;
6757         break;
6758 #if TARGET_ABI_BITS == 32
6759     case TARGET_F_GETLK64:
6760         ret = F_GETLK64;
6761         break;
6762     case TARGET_F_SETLK64:
6763         ret = F_SETLK64;
6764         break;
6765     case TARGET_F_SETLKW64:
6766         ret = F_SETLKW64;
6767         break;
6768 #endif
6769     case TARGET_F_SETLEASE:
6770         ret = F_SETLEASE;
6771         break;
6772     case TARGET_F_GETLEASE:
6773         ret = F_GETLEASE;
6774         break;
6775 #ifdef F_DUPFD_CLOEXEC
6776     case TARGET_F_DUPFD_CLOEXEC:
6777         ret = F_DUPFD_CLOEXEC;
6778         break;
6779 #endif
6780     case TARGET_F_NOTIFY:
6781         ret = F_NOTIFY;
6782         break;
6783 #ifdef F_GETOWN_EX
6784     case TARGET_F_GETOWN_EX:
6785         ret = F_GETOWN_EX;
6786         break;
6787 #endif
6788 #ifdef F_SETOWN_EX
6789     case TARGET_F_SETOWN_EX:
6790         ret = F_SETOWN_EX;
6791         break;
6792 #endif
6793 #ifdef F_SETPIPE_SZ
6794     case TARGET_F_SETPIPE_SZ:
6795         ret = F_SETPIPE_SZ;
6796         break;
6797     case TARGET_F_GETPIPE_SZ:
6798         ret = F_GETPIPE_SZ;
6799         break;
6800 #endif
6801 #ifdef F_ADD_SEALS
6802     case TARGET_F_ADD_SEALS:
6803         ret = F_ADD_SEALS;
6804         break;
6805     case TARGET_F_GET_SEALS:
6806         ret = F_GET_SEALS;
6807         break;
6808 #endif
6809     default:
6810         ret = -TARGET_EINVAL;
6811         break;
6812     }
6813 
6814 #if defined(__powerpc64__)
6815     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6816      * is not supported by kernel. The glibc fcntl call actually adjusts
6817      * them to 5, 6 and 7 before making the syscall(). Since we make the
6818      * syscall directly, adjust to what is supported by the kernel.
6819      */
6820     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6821         ret -= F_GETLK64 - 5;
6822     }
6823 #endif
6824 
6825     return ret;
6826 }
6827 
6828 #define FLOCK_TRANSTBL \
6829     switch (type) { \
6830     TRANSTBL_CONVERT(F_RDLCK); \
6831     TRANSTBL_CONVERT(F_WRLCK); \
6832     TRANSTBL_CONVERT(F_UNLCK); \
6833     }
6834 
6835 static int target_to_host_flock(int type)
6836 {
6837 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6838     FLOCK_TRANSTBL
6839 #undef  TRANSTBL_CONVERT
6840     return -TARGET_EINVAL;
6841 }
6842 
6843 static int host_to_target_flock(int type)
6844 {
6845 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6846     FLOCK_TRANSTBL
6847 #undef  TRANSTBL_CONVERT
6848     /* if we don't know how to convert the value coming
6849      * from the host we copy to the target field as-is
6850      */
6851     return type;
6852 }
6853 
6854 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6855                                             abi_ulong target_flock_addr)
6856 {
6857     struct target_flock *target_fl;
6858     int l_type;
6859 
6860     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6861         return -TARGET_EFAULT;
6862     }
6863 
6864     __get_user(l_type, &target_fl->l_type);
6865     l_type = target_to_host_flock(l_type);
6866     if (l_type < 0) {
6867         return l_type;
6868     }
6869     fl->l_type = l_type;
6870     __get_user(fl->l_whence, &target_fl->l_whence);
6871     __get_user(fl->l_start, &target_fl->l_start);
6872     __get_user(fl->l_len, &target_fl->l_len);
6873     __get_user(fl->l_pid, &target_fl->l_pid);
6874     unlock_user_struct(target_fl, target_flock_addr, 0);
6875     return 0;
6876 }
6877 
6878 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6879                                           const struct flock64 *fl)
6880 {
6881     struct target_flock *target_fl;
6882     short l_type;
6883 
6884     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6885         return -TARGET_EFAULT;
6886     }
6887 
6888     l_type = host_to_target_flock(fl->l_type);
6889     __put_user(l_type, &target_fl->l_type);
6890     __put_user(fl->l_whence, &target_fl->l_whence);
6891     __put_user(fl->l_start, &target_fl->l_start);
6892     __put_user(fl->l_len, &target_fl->l_len);
6893     __put_user(fl->l_pid, &target_fl->l_pid);
6894     unlock_user_struct(target_fl, target_flock_addr, 1);
6895     return 0;
6896 }
6897 
6898 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6899 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6900 
6901 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6902 struct target_oabi_flock64 {
6903     abi_short l_type;
6904     abi_short l_whence;
6905     abi_llong l_start;
6906     abi_llong l_len;
6907     abi_int   l_pid;
6908 } QEMU_PACKED;
6909 
6910 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6911                                                    abi_ulong target_flock_addr)
6912 {
6913     struct target_oabi_flock64 *target_fl;
6914     int l_type;
6915 
6916     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6917         return -TARGET_EFAULT;
6918     }
6919 
6920     __get_user(l_type, &target_fl->l_type);
6921     l_type = target_to_host_flock(l_type);
6922     if (l_type < 0) {
6923         return l_type;
6924     }
6925     fl->l_type = l_type;
6926     __get_user(fl->l_whence, &target_fl->l_whence);
6927     __get_user(fl->l_start, &target_fl->l_start);
6928     __get_user(fl->l_len, &target_fl->l_len);
6929     __get_user(fl->l_pid, &target_fl->l_pid);
6930     unlock_user_struct(target_fl, target_flock_addr, 0);
6931     return 0;
6932 }
6933 
6934 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6935                                                  const struct flock64 *fl)
6936 {
6937     struct target_oabi_flock64 *target_fl;
6938     short l_type;
6939 
6940     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6941         return -TARGET_EFAULT;
6942     }
6943 
6944     l_type = host_to_target_flock(fl->l_type);
6945     __put_user(l_type, &target_fl->l_type);
6946     __put_user(fl->l_whence, &target_fl->l_whence);
6947     __put_user(fl->l_start, &target_fl->l_start);
6948     __put_user(fl->l_len, &target_fl->l_len);
6949     __put_user(fl->l_pid, &target_fl->l_pid);
6950     unlock_user_struct(target_fl, target_flock_addr, 1);
6951     return 0;
6952 }
6953 #endif
6954 
6955 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6956                                               abi_ulong target_flock_addr)
6957 {
6958     struct target_flock64 *target_fl;
6959     int l_type;
6960 
6961     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6962         return -TARGET_EFAULT;
6963     }
6964 
6965     __get_user(l_type, &target_fl->l_type);
6966     l_type = target_to_host_flock(l_type);
6967     if (l_type < 0) {
6968         return l_type;
6969     }
6970     fl->l_type = l_type;
6971     __get_user(fl->l_whence, &target_fl->l_whence);
6972     __get_user(fl->l_start, &target_fl->l_start);
6973     __get_user(fl->l_len, &target_fl->l_len);
6974     __get_user(fl->l_pid, &target_fl->l_pid);
6975     unlock_user_struct(target_fl, target_flock_addr, 0);
6976     return 0;
6977 }
6978 
6979 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6980                                             const struct flock64 *fl)
6981 {
6982     struct target_flock64 *target_fl;
6983     short l_type;
6984 
6985     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6986         return -TARGET_EFAULT;
6987     }
6988 
6989     l_type = host_to_target_flock(fl->l_type);
6990     __put_user(l_type, &target_fl->l_type);
6991     __put_user(fl->l_whence, &target_fl->l_whence);
6992     __put_user(fl->l_start, &target_fl->l_start);
6993     __put_user(fl->l_len, &target_fl->l_len);
6994     __put_user(fl->l_pid, &target_fl->l_pid);
6995     unlock_user_struct(target_fl, target_flock_addr, 1);
6996     return 0;
6997 }
6998 
6999 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
7000 {
7001     struct flock64 fl64;
7002 #ifdef F_GETOWN_EX
7003     struct f_owner_ex fox;
7004     struct target_f_owner_ex *target_fox;
7005 #endif
7006     abi_long ret;
7007     int host_cmd = target_to_host_fcntl_cmd(cmd);
7008 
7009     if (host_cmd == -TARGET_EINVAL)
7010 	    return host_cmd;
7011 
7012     switch(cmd) {
7013     case TARGET_F_GETLK:
7014         ret = copy_from_user_flock(&fl64, arg);
7015         if (ret) {
7016             return ret;
7017         }
7018         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7019         if (ret == 0) {
7020             ret = copy_to_user_flock(arg, &fl64);
7021         }
7022         break;
7023 
7024     case TARGET_F_SETLK:
7025     case TARGET_F_SETLKW:
7026         ret = copy_from_user_flock(&fl64, arg);
7027         if (ret) {
7028             return ret;
7029         }
7030         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7031         break;
7032 
7033     case TARGET_F_GETLK64:
7034     case TARGET_F_OFD_GETLK:
7035         ret = copy_from_user_flock64(&fl64, arg);
7036         if (ret) {
7037             return ret;
7038         }
7039         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7040         if (ret == 0) {
7041             ret = copy_to_user_flock64(arg, &fl64);
7042         }
7043         break;
7044     case TARGET_F_SETLK64:
7045     case TARGET_F_SETLKW64:
7046     case TARGET_F_OFD_SETLK:
7047     case TARGET_F_OFD_SETLKW:
7048         ret = copy_from_user_flock64(&fl64, arg);
7049         if (ret) {
7050             return ret;
7051         }
7052         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7053         break;
7054 
7055     case TARGET_F_GETFL:
7056         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7057         if (ret >= 0) {
7058             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7059             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7060             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7061                 ret |= TARGET_O_LARGEFILE;
7062             }
7063         }
7064         break;
7065 
7066     case TARGET_F_SETFL:
7067         ret = get_errno(safe_fcntl(fd, host_cmd,
7068                                    target_to_host_bitmask(arg,
7069                                                           fcntl_flags_tbl)));
7070         break;
7071 
7072 #ifdef F_GETOWN_EX
7073     case TARGET_F_GETOWN_EX:
7074         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7075         if (ret >= 0) {
7076             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7077                 return -TARGET_EFAULT;
7078             target_fox->type = tswap32(fox.type);
7079             target_fox->pid = tswap32(fox.pid);
7080             unlock_user_struct(target_fox, arg, 1);
7081         }
7082         break;
7083 #endif
7084 
7085 #ifdef F_SETOWN_EX
7086     case TARGET_F_SETOWN_EX:
7087         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7088             return -TARGET_EFAULT;
7089         fox.type = tswap32(target_fox->type);
7090         fox.pid = tswap32(target_fox->pid);
7091         unlock_user_struct(target_fox, arg, 0);
7092         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7093         break;
7094 #endif
7095 
7096     case TARGET_F_SETSIG:
7097         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7098         break;
7099 
7100     case TARGET_F_GETSIG:
7101         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7102         break;
7103 
7104     case TARGET_F_SETOWN:
7105     case TARGET_F_GETOWN:
7106     case TARGET_F_SETLEASE:
7107     case TARGET_F_GETLEASE:
7108     case TARGET_F_SETPIPE_SZ:
7109     case TARGET_F_GETPIPE_SZ:
7110     case TARGET_F_ADD_SEALS:
7111     case TARGET_F_GET_SEALS:
7112         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7113         break;
7114 
7115     default:
7116         ret = get_errno(safe_fcntl(fd, cmd, arg));
7117         break;
7118     }
7119     return ret;
7120 }
7121 
7122 #ifdef USE_UID16
7123 
7124 static inline int high2lowuid(int uid)
7125 {
7126     if (uid > 65535)
7127         return 65534;
7128     else
7129         return uid;
7130 }
7131 
7132 static inline int high2lowgid(int gid)
7133 {
7134     if (gid > 65535)
7135         return 65534;
7136     else
7137         return gid;
7138 }
7139 
7140 static inline int low2highuid(int uid)
7141 {
7142     if ((int16_t)uid == -1)
7143         return -1;
7144     else
7145         return uid;
7146 }
7147 
7148 static inline int low2highgid(int gid)
7149 {
7150     if ((int16_t)gid == -1)
7151         return -1;
7152     else
7153         return gid;
7154 }
7155 static inline int tswapid(int id)
7156 {
7157     return tswap16(id);
7158 }
7159 
7160 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7161 
7162 #else /* !USE_UID16 */
7163 static inline int high2lowuid(int uid)
7164 {
7165     return uid;
7166 }
7167 static inline int high2lowgid(int gid)
7168 {
7169     return gid;
7170 }
7171 static inline int low2highuid(int uid)
7172 {
7173     return uid;
7174 }
7175 static inline int low2highgid(int gid)
7176 {
7177     return gid;
7178 }
7179 static inline int tswapid(int id)
7180 {
7181     return tswap32(id);
7182 }
7183 
7184 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7185 
7186 #endif /* USE_UID16 */
7187 
7188 /* We must do direct syscalls for setting UID/GID, because we want to
7189  * implement the Linux system call semantics of "change only for this thread",
7190  * not the libc/POSIX semantics of "change for all threads in process".
7191  * (See http://ewontfix.com/17/ for more details.)
7192  * We use the 32-bit version of the syscalls if present; if it is not
7193  * then either the host architecture supports 32-bit UIDs natively with
7194  * the standard syscall, or the 16-bit UID is the best we can do.
7195  */
7196 #ifdef __NR_setuid32
7197 #define __NR_sys_setuid __NR_setuid32
7198 #else
7199 #define __NR_sys_setuid __NR_setuid
7200 #endif
7201 #ifdef __NR_setgid32
7202 #define __NR_sys_setgid __NR_setgid32
7203 #else
7204 #define __NR_sys_setgid __NR_setgid
7205 #endif
7206 #ifdef __NR_setresuid32
7207 #define __NR_sys_setresuid __NR_setresuid32
7208 #else
7209 #define __NR_sys_setresuid __NR_setresuid
7210 #endif
7211 #ifdef __NR_setresgid32
7212 #define __NR_sys_setresgid __NR_setresgid32
7213 #else
7214 #define __NR_sys_setresgid __NR_setresgid
7215 #endif
7216 
7217 _syscall1(int, sys_setuid, uid_t, uid)
7218 _syscall1(int, sys_setgid, gid_t, gid)
7219 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7220 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7221 
7222 void syscall_init(void)
7223 {
7224     IOCTLEntry *ie;
7225     const argtype *arg_type;
7226     int size;
7227 
7228     thunk_init(STRUCT_MAX);
7229 
7230 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7231 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7232 #include "syscall_types.h"
7233 #undef STRUCT
7234 #undef STRUCT_SPECIAL
7235 
7236     /* we patch the ioctl size if necessary. We rely on the fact that
7237        no ioctl has all the bits at '1' in the size field */
7238     ie = ioctl_entries;
7239     while (ie->target_cmd != 0) {
7240         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7241             TARGET_IOC_SIZEMASK) {
7242             arg_type = ie->arg_type;
7243             if (arg_type[0] != TYPE_PTR) {
7244                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7245                         ie->target_cmd);
7246                 exit(1);
7247             }
7248             arg_type++;
7249             size = thunk_type_size(arg_type, 0);
7250             ie->target_cmd = (ie->target_cmd &
7251                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7252                 (size << TARGET_IOC_SIZESHIFT);
7253         }
7254 
7255         /* automatic consistency check if same arch */
7256 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7257     (defined(__x86_64__) && defined(TARGET_X86_64))
7258         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7259             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7260                     ie->name, ie->target_cmd, ie->host_cmd);
7261         }
7262 #endif
7263         ie++;
7264     }
7265 }
7266 
7267 #ifdef TARGET_NR_truncate64
7268 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7269                                          abi_long arg2,
7270                                          abi_long arg3,
7271                                          abi_long arg4)
7272 {
7273     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7274         arg2 = arg3;
7275         arg3 = arg4;
7276     }
7277     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7278 }
7279 #endif
7280 
7281 #ifdef TARGET_NR_ftruncate64
7282 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7283                                           abi_long arg2,
7284                                           abi_long arg3,
7285                                           abi_long arg4)
7286 {
7287     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7288         arg2 = arg3;
7289         arg3 = arg4;
7290     }
7291     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7292 }
7293 #endif
7294 
7295 #if defined(TARGET_NR_timer_settime) || \
7296     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7297 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7298                                                  abi_ulong target_addr)
7299 {
7300     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7301                                 offsetof(struct target_itimerspec,
7302                                          it_interval)) ||
7303         target_to_host_timespec(&host_its->it_value, target_addr +
7304                                 offsetof(struct target_itimerspec,
7305                                          it_value))) {
7306         return -TARGET_EFAULT;
7307     }
7308 
7309     return 0;
7310 }
7311 #endif
7312 
7313 #if defined(TARGET_NR_timer_settime64) || \
7314     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7315 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7316                                                    abi_ulong target_addr)
7317 {
7318     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7319                                   offsetof(struct target__kernel_itimerspec,
7320                                            it_interval)) ||
7321         target_to_host_timespec64(&host_its->it_value, target_addr +
7322                                   offsetof(struct target__kernel_itimerspec,
7323                                            it_value))) {
7324         return -TARGET_EFAULT;
7325     }
7326 
7327     return 0;
7328 }
7329 #endif
7330 
7331 #if ((defined(TARGET_NR_timerfd_gettime) || \
7332       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7333       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7334 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7335                                                  struct itimerspec *host_its)
7336 {
7337     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7338                                                        it_interval),
7339                                 &host_its->it_interval) ||
7340         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7341                                                        it_value),
7342                                 &host_its->it_value)) {
7343         return -TARGET_EFAULT;
7344     }
7345     return 0;
7346 }
7347 #endif
7348 
7349 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7350       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7351       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7352 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7353                                                    struct itimerspec *host_its)
7354 {
7355     if (host_to_target_timespec64(target_addr +
7356                                   offsetof(struct target__kernel_itimerspec,
7357                                            it_interval),
7358                                   &host_its->it_interval) ||
7359         host_to_target_timespec64(target_addr +
7360                                   offsetof(struct target__kernel_itimerspec,
7361                                            it_value),
7362                                   &host_its->it_value)) {
7363         return -TARGET_EFAULT;
7364     }
7365     return 0;
7366 }
7367 #endif
7368 
7369 #if defined(TARGET_NR_adjtimex) || \
7370     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7371 static inline abi_long target_to_host_timex(struct timex *host_tx,
7372                                             abi_long target_addr)
7373 {
7374     struct target_timex *target_tx;
7375 
7376     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7377         return -TARGET_EFAULT;
7378     }
7379 
7380     __get_user(host_tx->modes, &target_tx->modes);
7381     __get_user(host_tx->offset, &target_tx->offset);
7382     __get_user(host_tx->freq, &target_tx->freq);
7383     __get_user(host_tx->maxerror, &target_tx->maxerror);
7384     __get_user(host_tx->esterror, &target_tx->esterror);
7385     __get_user(host_tx->status, &target_tx->status);
7386     __get_user(host_tx->constant, &target_tx->constant);
7387     __get_user(host_tx->precision, &target_tx->precision);
7388     __get_user(host_tx->tolerance, &target_tx->tolerance);
7389     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7390     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7391     __get_user(host_tx->tick, &target_tx->tick);
7392     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7393     __get_user(host_tx->jitter, &target_tx->jitter);
7394     __get_user(host_tx->shift, &target_tx->shift);
7395     __get_user(host_tx->stabil, &target_tx->stabil);
7396     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7397     __get_user(host_tx->calcnt, &target_tx->calcnt);
7398     __get_user(host_tx->errcnt, &target_tx->errcnt);
7399     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7400     __get_user(host_tx->tai, &target_tx->tai);
7401 
7402     unlock_user_struct(target_tx, target_addr, 0);
7403     return 0;
7404 }
7405 
7406 static inline abi_long host_to_target_timex(abi_long target_addr,
7407                                             struct timex *host_tx)
7408 {
7409     struct target_timex *target_tx;
7410 
7411     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7412         return -TARGET_EFAULT;
7413     }
7414 
7415     __put_user(host_tx->modes, &target_tx->modes);
7416     __put_user(host_tx->offset, &target_tx->offset);
7417     __put_user(host_tx->freq, &target_tx->freq);
7418     __put_user(host_tx->maxerror, &target_tx->maxerror);
7419     __put_user(host_tx->esterror, &target_tx->esterror);
7420     __put_user(host_tx->status, &target_tx->status);
7421     __put_user(host_tx->constant, &target_tx->constant);
7422     __put_user(host_tx->precision, &target_tx->precision);
7423     __put_user(host_tx->tolerance, &target_tx->tolerance);
7424     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7425     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7426     __put_user(host_tx->tick, &target_tx->tick);
7427     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7428     __put_user(host_tx->jitter, &target_tx->jitter);
7429     __put_user(host_tx->shift, &target_tx->shift);
7430     __put_user(host_tx->stabil, &target_tx->stabil);
7431     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7432     __put_user(host_tx->calcnt, &target_tx->calcnt);
7433     __put_user(host_tx->errcnt, &target_tx->errcnt);
7434     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7435     __put_user(host_tx->tai, &target_tx->tai);
7436 
7437     unlock_user_struct(target_tx, target_addr, 1);
7438     return 0;
7439 }
7440 #endif
7441 
7442 
7443 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7444 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7445                                               abi_long target_addr)
7446 {
7447     struct target__kernel_timex *target_tx;
7448 
7449     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7450                                  offsetof(struct target__kernel_timex,
7451                                           time))) {
7452         return -TARGET_EFAULT;
7453     }
7454 
7455     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7456         return -TARGET_EFAULT;
7457     }
7458 
7459     __get_user(host_tx->modes, &target_tx->modes);
7460     __get_user(host_tx->offset, &target_tx->offset);
7461     __get_user(host_tx->freq, &target_tx->freq);
7462     __get_user(host_tx->maxerror, &target_tx->maxerror);
7463     __get_user(host_tx->esterror, &target_tx->esterror);
7464     __get_user(host_tx->status, &target_tx->status);
7465     __get_user(host_tx->constant, &target_tx->constant);
7466     __get_user(host_tx->precision, &target_tx->precision);
7467     __get_user(host_tx->tolerance, &target_tx->tolerance);
7468     __get_user(host_tx->tick, &target_tx->tick);
7469     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7470     __get_user(host_tx->jitter, &target_tx->jitter);
7471     __get_user(host_tx->shift, &target_tx->shift);
7472     __get_user(host_tx->stabil, &target_tx->stabil);
7473     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7474     __get_user(host_tx->calcnt, &target_tx->calcnt);
7475     __get_user(host_tx->errcnt, &target_tx->errcnt);
7476     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7477     __get_user(host_tx->tai, &target_tx->tai);
7478 
7479     unlock_user_struct(target_tx, target_addr, 0);
7480     return 0;
7481 }
7482 
7483 static inline abi_long host_to_target_timex64(abi_long target_addr,
7484                                               struct timex *host_tx)
7485 {
7486     struct target__kernel_timex *target_tx;
7487 
7488    if (copy_to_user_timeval64(target_addr +
7489                               offsetof(struct target__kernel_timex, time),
7490                               &host_tx->time)) {
7491         return -TARGET_EFAULT;
7492     }
7493 
7494     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7495         return -TARGET_EFAULT;
7496     }
7497 
7498     __put_user(host_tx->modes, &target_tx->modes);
7499     __put_user(host_tx->offset, &target_tx->offset);
7500     __put_user(host_tx->freq, &target_tx->freq);
7501     __put_user(host_tx->maxerror, &target_tx->maxerror);
7502     __put_user(host_tx->esterror, &target_tx->esterror);
7503     __put_user(host_tx->status, &target_tx->status);
7504     __put_user(host_tx->constant, &target_tx->constant);
7505     __put_user(host_tx->precision, &target_tx->precision);
7506     __put_user(host_tx->tolerance, &target_tx->tolerance);
7507     __put_user(host_tx->tick, &target_tx->tick);
7508     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7509     __put_user(host_tx->jitter, &target_tx->jitter);
7510     __put_user(host_tx->shift, &target_tx->shift);
7511     __put_user(host_tx->stabil, &target_tx->stabil);
7512     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7513     __put_user(host_tx->calcnt, &target_tx->calcnt);
7514     __put_user(host_tx->errcnt, &target_tx->errcnt);
7515     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7516     __put_user(host_tx->tai, &target_tx->tai);
7517 
7518     unlock_user_struct(target_tx, target_addr, 1);
7519     return 0;
7520 }
7521 #endif
7522 
7523 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7524 #define sigev_notify_thread_id _sigev_un._tid
7525 #endif
7526 
7527 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7528                                                abi_ulong target_addr)
7529 {
7530     struct target_sigevent *target_sevp;
7531 
7532     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7533         return -TARGET_EFAULT;
7534     }
7535 
7536     /* This union is awkward on 64 bit systems because it has a 32 bit
7537      * integer and a pointer in it; we follow the conversion approach
7538      * used for handling sigval types in signal.c so the guest should get
7539      * the correct value back even if we did a 64 bit byteswap and it's
7540      * using the 32 bit integer.
7541      */
7542     host_sevp->sigev_value.sival_ptr =
7543         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7544     host_sevp->sigev_signo =
7545         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7546     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7547     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7548 
7549     unlock_user_struct(target_sevp, target_addr, 1);
7550     return 0;
7551 }
7552 
7553 #if defined(TARGET_NR_mlockall)
7554 static inline int target_to_host_mlockall_arg(int arg)
7555 {
7556     int result = 0;
7557 
7558     if (arg & TARGET_MCL_CURRENT) {
7559         result |= MCL_CURRENT;
7560     }
7561     if (arg & TARGET_MCL_FUTURE) {
7562         result |= MCL_FUTURE;
7563     }
7564 #ifdef MCL_ONFAULT
7565     if (arg & TARGET_MCL_ONFAULT) {
7566         result |= MCL_ONFAULT;
7567     }
7568 #endif
7569 
7570     return result;
7571 }
7572 #endif
7573 
7574 static inline int target_to_host_msync_arg(abi_long arg)
7575 {
7576     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7577            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7578            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7579            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7580 }
7581 
7582 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7583      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7584      defined(TARGET_NR_newfstatat))
7585 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7586                                              abi_ulong target_addr,
7587                                              struct stat *host_st)
7588 {
7589 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7590     if (cpu_env->eabi) {
7591         struct target_eabi_stat64 *target_st;
7592 
7593         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7594             return -TARGET_EFAULT;
7595         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7596         __put_user(host_st->st_dev, &target_st->st_dev);
7597         __put_user(host_st->st_ino, &target_st->st_ino);
7598 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7599         __put_user(host_st->st_ino, &target_st->__st_ino);
7600 #endif
7601         __put_user(host_st->st_mode, &target_st->st_mode);
7602         __put_user(host_st->st_nlink, &target_st->st_nlink);
7603         __put_user(host_st->st_uid, &target_st->st_uid);
7604         __put_user(host_st->st_gid, &target_st->st_gid);
7605         __put_user(host_st->st_rdev, &target_st->st_rdev);
7606         __put_user(host_st->st_size, &target_st->st_size);
7607         __put_user(host_st->st_blksize, &target_st->st_blksize);
7608         __put_user(host_st->st_blocks, &target_st->st_blocks);
7609         __put_user(host_st->st_atime, &target_st->target_st_atime);
7610         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7611         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7612 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7613         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7614         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7615         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7616 #endif
7617         unlock_user_struct(target_st, target_addr, 1);
7618     } else
7619 #endif
7620     {
7621 #if defined(TARGET_HAS_STRUCT_STAT64)
7622         struct target_stat64 *target_st;
7623 #else
7624         struct target_stat *target_st;
7625 #endif
7626 
7627         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7628             return -TARGET_EFAULT;
7629         memset(target_st, 0, sizeof(*target_st));
7630         __put_user(host_st->st_dev, &target_st->st_dev);
7631         __put_user(host_st->st_ino, &target_st->st_ino);
7632 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7633         __put_user(host_st->st_ino, &target_st->__st_ino);
7634 #endif
7635         __put_user(host_st->st_mode, &target_st->st_mode);
7636         __put_user(host_st->st_nlink, &target_st->st_nlink);
7637         __put_user(host_st->st_uid, &target_st->st_uid);
7638         __put_user(host_st->st_gid, &target_st->st_gid);
7639         __put_user(host_st->st_rdev, &target_st->st_rdev);
7640         /* XXX: better use of kernel struct */
7641         __put_user(host_st->st_size, &target_st->st_size);
7642         __put_user(host_st->st_blksize, &target_st->st_blksize);
7643         __put_user(host_st->st_blocks, &target_st->st_blocks);
7644         __put_user(host_st->st_atime, &target_st->target_st_atime);
7645         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7646         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7647 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7648         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7649         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7650         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7651 #endif
7652         unlock_user_struct(target_st, target_addr, 1);
7653     }
7654 
7655     return 0;
7656 }
7657 #endif
7658 
7659 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7660 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7661                                             abi_ulong target_addr)
7662 {
7663     struct target_statx *target_stx;
7664 
7665     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7666         return -TARGET_EFAULT;
7667     }
7668     memset(target_stx, 0, sizeof(*target_stx));
7669 
7670     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7671     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7672     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7673     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7674     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7675     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7676     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7677     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7678     __put_user(host_stx->stx_size, &target_stx->stx_size);
7679     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7680     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7681     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7682     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7683     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7684     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7685     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7686     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7687     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7688     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7689     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7690     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7691     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7692     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7693 
7694     unlock_user_struct(target_stx, target_addr, 1);
7695 
7696     return 0;
7697 }
7698 #endif
7699 
7700 static int do_sys_futex(int *uaddr, int op, int val,
7701                          const struct timespec *timeout, int *uaddr2,
7702                          int val3)
7703 {
7704 #if HOST_LONG_BITS == 64
7705 #if defined(__NR_futex)
7706     /* always a 64-bit time_t, it doesn't define _time64 version  */
7707     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7708 
7709 #endif
7710 #else /* HOST_LONG_BITS == 64 */
7711 #if defined(__NR_futex_time64)
7712     if (sizeof(timeout->tv_sec) == 8) {
7713         /* _time64 function on 32bit arch */
7714         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7715     }
7716 #endif
7717 #if defined(__NR_futex)
7718     /* old function on 32bit arch */
7719     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7720 #endif
7721 #endif /* HOST_LONG_BITS == 64 */
7722     g_assert_not_reached();
7723 }
7724 
7725 static int do_safe_futex(int *uaddr, int op, int val,
7726                          const struct timespec *timeout, int *uaddr2,
7727                          int val3)
7728 {
7729 #if HOST_LONG_BITS == 64
7730 #if defined(__NR_futex)
7731     /* always a 64-bit time_t, it doesn't define _time64 version  */
7732     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7733 #endif
7734 #else /* HOST_LONG_BITS == 64 */
7735 #if defined(__NR_futex_time64)
7736     if (sizeof(timeout->tv_sec) == 8) {
7737         /* _time64 function on 32bit arch */
7738         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7739                                            val3));
7740     }
7741 #endif
7742 #if defined(__NR_futex)
7743     /* old function on 32bit arch */
7744     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7745 #endif
7746 #endif /* HOST_LONG_BITS == 64 */
7747     return -TARGET_ENOSYS;
7748 }
7749 
7750 /* ??? Using host futex calls even when target atomic operations
7751    are not really atomic probably breaks things.  However implementing
7752    futexes locally would make futexes shared between multiple processes
7753    tricky.  However they're probably useless because guest atomic
7754    operations won't work either.  */
7755 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7756 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7757                     int op, int val, target_ulong timeout,
7758                     target_ulong uaddr2, int val3)
7759 {
7760     struct timespec ts, *pts = NULL;
7761     void *haddr2 = NULL;
7762     int base_op;
7763 
7764     /* We assume FUTEX_* constants are the same on both host and target. */
7765 #ifdef FUTEX_CMD_MASK
7766     base_op = op & FUTEX_CMD_MASK;
7767 #else
7768     base_op = op;
7769 #endif
7770     switch (base_op) {
7771     case FUTEX_WAIT:
7772     case FUTEX_WAIT_BITSET:
7773         val = tswap32(val);
7774         break;
7775     case FUTEX_WAIT_REQUEUE_PI:
7776         val = tswap32(val);
7777         haddr2 = g2h(cpu, uaddr2);
7778         break;
7779     case FUTEX_LOCK_PI:
7780     case FUTEX_LOCK_PI2:
7781         break;
7782     case FUTEX_WAKE:
7783     case FUTEX_WAKE_BITSET:
7784     case FUTEX_TRYLOCK_PI:
7785     case FUTEX_UNLOCK_PI:
7786         timeout = 0;
7787         break;
7788     case FUTEX_FD:
7789         val = target_to_host_signal(val);
7790         timeout = 0;
7791         break;
7792     case FUTEX_CMP_REQUEUE:
7793     case FUTEX_CMP_REQUEUE_PI:
7794         val3 = tswap32(val3);
7795         /* fall through */
7796     case FUTEX_REQUEUE:
7797     case FUTEX_WAKE_OP:
7798         /*
7799          * For these, the 4th argument is not TIMEOUT, but VAL2.
7800          * But the prototype of do_safe_futex takes a pointer, so
7801          * insert casts to satisfy the compiler.  We do not need
7802          * to tswap VAL2 since it's not compared to guest memory.
7803           */
7804         pts = (struct timespec *)(uintptr_t)timeout;
7805         timeout = 0;
7806         haddr2 = g2h(cpu, uaddr2);
7807         break;
7808     default:
7809         return -TARGET_ENOSYS;
7810     }
7811     if (timeout) {
7812         pts = &ts;
7813         if (time64
7814             ? target_to_host_timespec64(pts, timeout)
7815             : target_to_host_timespec(pts, timeout)) {
7816             return -TARGET_EFAULT;
7817         }
7818     }
7819     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7820 }
7821 #endif
7822 
7823 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7824 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7825                                      abi_long handle, abi_long mount_id,
7826                                      abi_long flags)
7827 {
7828     struct file_handle *target_fh;
7829     struct file_handle *fh;
7830     int mid = 0;
7831     abi_long ret;
7832     char *name;
7833     unsigned int size, total_size;
7834 
7835     if (get_user_s32(size, handle)) {
7836         return -TARGET_EFAULT;
7837     }
7838 
7839     name = lock_user_string(pathname);
7840     if (!name) {
7841         return -TARGET_EFAULT;
7842     }
7843 
7844     total_size = sizeof(struct file_handle) + size;
7845     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7846     if (!target_fh) {
7847         unlock_user(name, pathname, 0);
7848         return -TARGET_EFAULT;
7849     }
7850 
7851     fh = g_malloc0(total_size);
7852     fh->handle_bytes = size;
7853 
7854     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7855     unlock_user(name, pathname, 0);
7856 
7857     /* man name_to_handle_at(2):
7858      * Other than the use of the handle_bytes field, the caller should treat
7859      * the file_handle structure as an opaque data type
7860      */
7861 
7862     memcpy(target_fh, fh, total_size);
7863     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7864     target_fh->handle_type = tswap32(fh->handle_type);
7865     g_free(fh);
7866     unlock_user(target_fh, handle, total_size);
7867 
7868     if (put_user_s32(mid, mount_id)) {
7869         return -TARGET_EFAULT;
7870     }
7871 
7872     return ret;
7873 
7874 }
7875 #endif
7876 
7877 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7878 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7879                                      abi_long flags)
7880 {
7881     struct file_handle *target_fh;
7882     struct file_handle *fh;
7883     unsigned int size, total_size;
7884     abi_long ret;
7885 
7886     if (get_user_s32(size, handle)) {
7887         return -TARGET_EFAULT;
7888     }
7889 
7890     total_size = sizeof(struct file_handle) + size;
7891     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7892     if (!target_fh) {
7893         return -TARGET_EFAULT;
7894     }
7895 
7896     fh = g_memdup(target_fh, total_size);
7897     fh->handle_bytes = size;
7898     fh->handle_type = tswap32(target_fh->handle_type);
7899 
7900     ret = get_errno(open_by_handle_at(mount_fd, fh,
7901                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7902 
7903     g_free(fh);
7904 
7905     unlock_user(target_fh, handle, total_size);
7906 
7907     return ret;
7908 }
7909 #endif
7910 
7911 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7912 
7913 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7914 {
7915     int host_flags;
7916     target_sigset_t *target_mask;
7917     sigset_t host_mask;
7918     abi_long ret;
7919 
7920     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7921         return -TARGET_EINVAL;
7922     }
7923     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7924         return -TARGET_EFAULT;
7925     }
7926 
7927     target_to_host_sigset(&host_mask, target_mask);
7928 
7929     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7930 
7931     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7932     if (ret >= 0) {
7933         fd_trans_register(ret, &target_signalfd_trans);
7934     }
7935 
7936     unlock_user_struct(target_mask, mask, 0);
7937 
7938     return ret;
7939 }
7940 #endif
7941 
7942 /* Map host to target signal numbers for the wait family of syscalls.
7943    Assume all other status bits are the same.  */
7944 int host_to_target_waitstatus(int status)
7945 {
7946     if (WIFSIGNALED(status)) {
7947         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7948     }
7949     if (WIFSTOPPED(status)) {
7950         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7951                | (status & 0xff);
7952     }
7953     return status;
7954 }
7955 
7956 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7957 {
7958     CPUState *cpu = env_cpu(cpu_env);
7959     struct linux_binprm *bprm = get_task_state(cpu)->bprm;
7960     int i;
7961 
7962     for (i = 0; i < bprm->argc; i++) {
7963         size_t len = strlen(bprm->argv[i]) + 1;
7964 
7965         if (write(fd, bprm->argv[i], len) != len) {
7966             return -1;
7967         }
7968     }
7969 
7970     return 0;
7971 }
7972 
7973 struct open_self_maps_data {
7974     TaskState *ts;
7975     IntervalTreeRoot *host_maps;
7976     int fd;
7977     bool smaps;
7978 };
7979 
7980 /*
7981  * Subroutine to output one line of /proc/self/maps,
7982  * or one region of /proc/self/smaps.
7983  */
7984 
7985 #ifdef TARGET_HPPA
7986 # define test_stack(S, E, L)  (E == L)
7987 #else
7988 # define test_stack(S, E, L)  (S == L)
7989 #endif
7990 
7991 static void open_self_maps_4(const struct open_self_maps_data *d,
7992                              const MapInfo *mi, abi_ptr start,
7993                              abi_ptr end, unsigned flags)
7994 {
7995     const struct image_info *info = d->ts->info;
7996     const char *path = mi->path;
7997     uint64_t offset;
7998     int fd = d->fd;
7999     int count;
8000 
8001     if (test_stack(start, end, info->stack_limit)) {
8002         path = "[stack]";
8003     } else if (start == info->brk) {
8004         path = "[heap]";
8005     } else if (start == info->vdso) {
8006         path = "[vdso]";
8007 #ifdef TARGET_X86_64
8008     } else if (start == TARGET_VSYSCALL_PAGE) {
8009         path = "[vsyscall]";
8010 #endif
8011     }
8012 
8013     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8014     offset = mi->offset;
8015     if (mi->dev) {
8016         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8017         offset += hstart - mi->itree.start;
8018     }
8019 
8020     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8021                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8022                     start, end,
8023                     (flags & PAGE_READ) ? 'r' : '-',
8024                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8025                     (flags & PAGE_EXEC) ? 'x' : '-',
8026                     mi->is_priv ? 'p' : 's',
8027                     offset, major(mi->dev), minor(mi->dev),
8028                     (uint64_t)mi->inode);
8029     if (path) {
8030         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8031     } else {
8032         dprintf(fd, "\n");
8033     }
8034 
8035     if (d->smaps) {
8036         unsigned long size = end - start;
8037         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8038         unsigned long size_kb = size >> 10;
8039 
8040         dprintf(fd, "Size:                  %lu kB\n"
8041                 "KernelPageSize:        %lu kB\n"
8042                 "MMUPageSize:           %lu kB\n"
8043                 "Rss:                   0 kB\n"
8044                 "Pss:                   0 kB\n"
8045                 "Pss_Dirty:             0 kB\n"
8046                 "Shared_Clean:          0 kB\n"
8047                 "Shared_Dirty:          0 kB\n"
8048                 "Private_Clean:         0 kB\n"
8049                 "Private_Dirty:         0 kB\n"
8050                 "Referenced:            0 kB\n"
8051                 "Anonymous:             %lu kB\n"
8052                 "LazyFree:              0 kB\n"
8053                 "AnonHugePages:         0 kB\n"
8054                 "ShmemPmdMapped:        0 kB\n"
8055                 "FilePmdMapped:         0 kB\n"
8056                 "Shared_Hugetlb:        0 kB\n"
8057                 "Private_Hugetlb:       0 kB\n"
8058                 "Swap:                  0 kB\n"
8059                 "SwapPss:               0 kB\n"
8060                 "Locked:                0 kB\n"
8061                 "THPeligible:    0\n"
8062                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8063                 size_kb, page_size_kb, page_size_kb,
8064                 (flags & PAGE_ANON ? size_kb : 0),
8065                 (flags & PAGE_READ) ? " rd" : "",
8066                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8067                 (flags & PAGE_EXEC) ? " ex" : "",
8068                 mi->is_priv ? "" : " sh",
8069                 (flags & PAGE_READ) ? " mr" : "",
8070                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8071                 (flags & PAGE_EXEC) ? " me" : "",
8072                 mi->is_priv ? "" : " ms");
8073     }
8074 }
8075 
8076 /*
8077  * Callback for walk_memory_regions, when read_self_maps() fails.
8078  * Proceed without the benefit of host /proc/self/maps cross-check.
8079  */
8080 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8081                             target_ulong guest_end, unsigned long flags)
8082 {
8083     static const MapInfo mi = { .is_priv = true };
8084 
8085     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8086     return 0;
8087 }
8088 
8089 /*
8090  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8091  */
8092 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8093                             target_ulong guest_end, unsigned long flags)
8094 {
8095     const struct open_self_maps_data *d = opaque;
8096     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8097     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8098 
8099 #ifdef TARGET_X86_64
8100     /*
8101      * Because of the extremely high position of the page within the guest
8102      * virtual address space, this is not backed by host memory at all.
8103      * Therefore the loop below would fail.  This is the only instance
8104      * of not having host backing memory.
8105      */
8106     if (guest_start == TARGET_VSYSCALL_PAGE) {
8107         return open_self_maps_3(opaque, guest_start, guest_end, flags);
8108     }
8109 #endif
8110 
8111     while (1) {
8112         IntervalTreeNode *n =
8113             interval_tree_iter_first(d->host_maps, host_start, host_start);
8114         MapInfo *mi = container_of(n, MapInfo, itree);
8115         uintptr_t this_hlast = MIN(host_last, n->last);
8116         target_ulong this_gend = h2g(this_hlast) + 1;
8117 
8118         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8119 
8120         if (this_hlast == host_last) {
8121             return 0;
8122         }
8123         host_start = this_hlast + 1;
8124         guest_start = h2g(host_start);
8125     }
8126 }
8127 
8128 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8129 {
8130     struct open_self_maps_data d = {
8131         .ts = env_cpu(env)->opaque,
8132         .host_maps = read_self_maps(),
8133         .fd = fd,
8134         .smaps = smaps
8135     };
8136 
8137     if (d.host_maps) {
8138         walk_memory_regions(&d, open_self_maps_2);
8139         free_self_maps(d.host_maps);
8140     } else {
8141         walk_memory_regions(&d, open_self_maps_3);
8142     }
8143     return 0;
8144 }
8145 
8146 static int open_self_maps(CPUArchState *cpu_env, int fd)
8147 {
8148     return open_self_maps_1(cpu_env, fd, false);
8149 }
8150 
8151 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8152 {
8153     return open_self_maps_1(cpu_env, fd, true);
8154 }
8155 
8156 static int open_self_stat(CPUArchState *cpu_env, int fd)
8157 {
8158     CPUState *cpu = env_cpu(cpu_env);
8159     TaskState *ts = get_task_state(cpu);
8160     g_autoptr(GString) buf = g_string_new(NULL);
8161     int i;
8162 
8163     for (i = 0; i < 44; i++) {
8164         if (i == 0) {
8165             /* pid */
8166             g_string_printf(buf, FMT_pid " ", getpid());
8167         } else if (i == 1) {
8168             /* app name */
8169             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8170             bin = bin ? bin + 1 : ts->bprm->argv[0];
8171             g_string_printf(buf, "(%.15s) ", bin);
8172         } else if (i == 2) {
8173             /* task state */
8174             g_string_assign(buf, "R "); /* we are running right now */
8175         } else if (i == 3) {
8176             /* ppid */
8177             g_string_printf(buf, FMT_pid " ", getppid());
8178         } else if (i == 21) {
8179             /* starttime */
8180             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8181         } else if (i == 27) {
8182             /* stack bottom */
8183             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8184         } else {
8185             /* for the rest, there is MasterCard */
8186             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8187         }
8188 
8189         if (write(fd, buf->str, buf->len) != buf->len) {
8190             return -1;
8191         }
8192     }
8193 
8194     return 0;
8195 }
8196 
8197 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8198 {
8199     CPUState *cpu = env_cpu(cpu_env);
8200     TaskState *ts = get_task_state(cpu);
8201     abi_ulong auxv = ts->info->saved_auxv;
8202     abi_ulong len = ts->info->auxv_len;
8203     char *ptr;
8204 
8205     /*
8206      * Auxiliary vector is stored in target process stack.
8207      * read in whole auxv vector and copy it to file
8208      */
8209     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8210     if (ptr != NULL) {
8211         while (len > 0) {
8212             ssize_t r;
8213             r = write(fd, ptr, len);
8214             if (r <= 0) {
8215                 break;
8216             }
8217             len -= r;
8218             ptr += r;
8219         }
8220         lseek(fd, 0, SEEK_SET);
8221         unlock_user(ptr, auxv, len);
8222     }
8223 
8224     return 0;
8225 }
8226 
8227 static int is_proc_myself(const char *filename, const char *entry)
8228 {
8229     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8230         filename += strlen("/proc/");
8231         if (!strncmp(filename, "self/", strlen("self/"))) {
8232             filename += strlen("self/");
8233         } else if (*filename >= '1' && *filename <= '9') {
8234             char myself[80];
8235             snprintf(myself, sizeof(myself), "%d/", getpid());
8236             if (!strncmp(filename, myself, strlen(myself))) {
8237                 filename += strlen(myself);
8238             } else {
8239                 return 0;
8240             }
8241         } else {
8242             return 0;
8243         }
8244         if (!strcmp(filename, entry)) {
8245             return 1;
8246         }
8247     }
8248     return 0;
8249 }
8250 
8251 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8252                       const char *fmt, int code)
8253 {
8254     if (logfile) {
8255         CPUState *cs = env_cpu(env);
8256 
8257         fprintf(logfile, fmt, code);
8258         fprintf(logfile, "Failing executable: %s\n", exec_path);
8259         cpu_dump_state(cs, logfile, 0);
8260         open_self_maps(env, fileno(logfile));
8261     }
8262 }
8263 
8264 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8265 {
8266     /* dump to console */
8267     excp_dump_file(stderr, env, fmt, code);
8268 
8269     /* dump to log file */
8270     if (qemu_log_separate()) {
8271         FILE *logfile = qemu_log_trylock();
8272 
8273         excp_dump_file(logfile, env, fmt, code);
8274         qemu_log_unlock(logfile);
8275     }
8276 }
8277 
8278 #include "target_proc.h"
8279 
8280 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8281     defined(HAVE_ARCH_PROC_CPUINFO) || \
8282     defined(HAVE_ARCH_PROC_HARDWARE)
8283 static int is_proc(const char *filename, const char *entry)
8284 {
8285     return strcmp(filename, entry) == 0;
8286 }
8287 #endif
8288 
8289 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8290 static int open_net_route(CPUArchState *cpu_env, int fd)
8291 {
8292     FILE *fp;
8293     char *line = NULL;
8294     size_t len = 0;
8295     ssize_t read;
8296 
8297     fp = fopen("/proc/net/route", "r");
8298     if (fp == NULL) {
8299         return -1;
8300     }
8301 
8302     /* read header */
8303 
8304     read = getline(&line, &len, fp);
8305     dprintf(fd, "%s", line);
8306 
8307     /* read routes */
8308 
8309     while ((read = getline(&line, &len, fp)) != -1) {
8310         char iface[16];
8311         uint32_t dest, gw, mask;
8312         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8313         int fields;
8314 
8315         fields = sscanf(line,
8316                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8317                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8318                         &mask, &mtu, &window, &irtt);
8319         if (fields != 11) {
8320             continue;
8321         }
8322         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8323                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8324                 metric, tswap32(mask), mtu, window, irtt);
8325     }
8326 
8327     free(line);
8328     fclose(fp);
8329 
8330     return 0;
8331 }
8332 #endif
8333 
8334 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8335                     int flags, mode_t mode, bool safe)
8336 {
8337     g_autofree char *proc_name = NULL;
8338     const char *pathname;
8339     struct fake_open {
8340         const char *filename;
8341         int (*fill)(CPUArchState *cpu_env, int fd);
8342         int (*cmp)(const char *s1, const char *s2);
8343     };
8344     const struct fake_open *fake_open;
8345     static const struct fake_open fakes[] = {
8346         { "maps", open_self_maps, is_proc_myself },
8347         { "smaps", open_self_smaps, is_proc_myself },
8348         { "stat", open_self_stat, is_proc_myself },
8349         { "auxv", open_self_auxv, is_proc_myself },
8350         { "cmdline", open_self_cmdline, is_proc_myself },
8351 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8352         { "/proc/net/route", open_net_route, is_proc },
8353 #endif
8354 #if defined(HAVE_ARCH_PROC_CPUINFO)
8355         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8356 #endif
8357 #if defined(HAVE_ARCH_PROC_HARDWARE)
8358         { "/proc/hardware", open_hardware, is_proc },
8359 #endif
8360         { NULL, NULL, NULL }
8361     };
8362 
8363     /* if this is a file from /proc/ filesystem, expand full name */
8364     proc_name = realpath(fname, NULL);
8365     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8366         pathname = proc_name;
8367     } else {
8368         pathname = fname;
8369     }
8370 
8371     if (is_proc_myself(pathname, "exe")) {
8372         if (safe) {
8373             return safe_openat(dirfd, exec_path, flags, mode);
8374         } else {
8375             return openat(dirfd, exec_path, flags, mode);
8376         }
8377     }
8378 
8379     for (fake_open = fakes; fake_open->filename; fake_open++) {
8380         if (fake_open->cmp(pathname, fake_open->filename)) {
8381             break;
8382         }
8383     }
8384 
8385     if (fake_open->filename) {
8386         const char *tmpdir;
8387         char filename[PATH_MAX];
8388         int fd, r;
8389 
8390         fd = memfd_create("qemu-open", 0);
8391         if (fd < 0) {
8392             if (errno != ENOSYS) {
8393                 return fd;
8394             }
8395             /* create temporary file to map stat to */
8396             tmpdir = getenv("TMPDIR");
8397             if (!tmpdir)
8398                 tmpdir = "/tmp";
8399             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8400             fd = mkstemp(filename);
8401             if (fd < 0) {
8402                 return fd;
8403             }
8404             unlink(filename);
8405         }
8406 
8407         if ((r = fake_open->fill(cpu_env, fd))) {
8408             int e = errno;
8409             close(fd);
8410             errno = e;
8411             return r;
8412         }
8413         lseek(fd, 0, SEEK_SET);
8414 
8415         return fd;
8416     }
8417 
8418     if (safe) {
8419         return safe_openat(dirfd, path(pathname), flags, mode);
8420     } else {
8421         return openat(dirfd, path(pathname), flags, mode);
8422     }
8423 }
8424 
8425 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8426 {
8427     ssize_t ret;
8428 
8429     if (!pathname || !buf) {
8430         errno = EFAULT;
8431         return -1;
8432     }
8433 
8434     if (!bufsiz) {
8435         /* Short circuit this for the magic exe check. */
8436         errno = EINVAL;
8437         return -1;
8438     }
8439 
8440     if (is_proc_myself((const char *)pathname, "exe")) {
8441         /*
8442          * Don't worry about sign mismatch as earlier mapping
8443          * logic would have thrown a bad address error.
8444          */
8445         ret = MIN(strlen(exec_path), bufsiz);
8446         /* We cannot NUL terminate the string. */
8447         memcpy(buf, exec_path, ret);
8448     } else {
8449         ret = readlink(path(pathname), buf, bufsiz);
8450     }
8451 
8452     return ret;
8453 }
8454 
8455 static int do_execv(CPUArchState *cpu_env, int dirfd,
8456                     abi_long pathname, abi_long guest_argp,
8457                     abi_long guest_envp, int flags, bool is_execveat)
8458 {
8459     int ret;
8460     char **argp, **envp;
8461     int argc, envc;
8462     abi_ulong gp;
8463     abi_ulong addr;
8464     char **q;
8465     void *p;
8466 
8467     argc = 0;
8468 
8469     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8470         if (get_user_ual(addr, gp)) {
8471             return -TARGET_EFAULT;
8472         }
8473         if (!addr) {
8474             break;
8475         }
8476         argc++;
8477     }
8478     envc = 0;
8479     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8480         if (get_user_ual(addr, gp)) {
8481             return -TARGET_EFAULT;
8482         }
8483         if (!addr) {
8484             break;
8485         }
8486         envc++;
8487     }
8488 
8489     argp = g_new0(char *, argc + 1);
8490     envp = g_new0(char *, envc + 1);
8491 
8492     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8493         if (get_user_ual(addr, gp)) {
8494             goto execve_efault;
8495         }
8496         if (!addr) {
8497             break;
8498         }
8499         *q = lock_user_string(addr);
8500         if (!*q) {
8501             goto execve_efault;
8502         }
8503     }
8504     *q = NULL;
8505 
8506     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8507         if (get_user_ual(addr, gp)) {
8508             goto execve_efault;
8509         }
8510         if (!addr) {
8511             break;
8512         }
8513         *q = lock_user_string(addr);
8514         if (!*q) {
8515             goto execve_efault;
8516         }
8517     }
8518     *q = NULL;
8519 
8520     /*
8521      * Although execve() is not an interruptible syscall it is
8522      * a special case where we must use the safe_syscall wrapper:
8523      * if we allow a signal to happen before we make the host
8524      * syscall then we will 'lose' it, because at the point of
8525      * execve the process leaves QEMU's control. So we use the
8526      * safe syscall wrapper to ensure that we either take the
8527      * signal as a guest signal, or else it does not happen
8528      * before the execve completes and makes it the other
8529      * program's problem.
8530      */
8531     p = lock_user_string(pathname);
8532     if (!p) {
8533         goto execve_efault;
8534     }
8535 
8536     const char *exe = p;
8537     if (is_proc_myself(p, "exe")) {
8538         exe = exec_path;
8539     }
8540     ret = is_execveat
8541         ? safe_execveat(dirfd, exe, argp, envp, flags)
8542         : safe_execve(exe, argp, envp);
8543     ret = get_errno(ret);
8544 
8545     unlock_user(p, pathname, 0);
8546 
8547     goto execve_end;
8548 
8549 execve_efault:
8550     ret = -TARGET_EFAULT;
8551 
8552 execve_end:
8553     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8554         if (get_user_ual(addr, gp) || !addr) {
8555             break;
8556         }
8557         unlock_user(*q, addr, 0);
8558     }
8559     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8560         if (get_user_ual(addr, gp) || !addr) {
8561             break;
8562         }
8563         unlock_user(*q, addr, 0);
8564     }
8565 
8566     g_free(argp);
8567     g_free(envp);
8568     return ret;
8569 }
8570 
8571 #define TIMER_MAGIC 0x0caf0000
8572 #define TIMER_MAGIC_MASK 0xffff0000
8573 
8574 /* Convert QEMU provided timer ID back to internal 16bit index format */
8575 static target_timer_t get_timer_id(abi_long arg)
8576 {
8577     target_timer_t timerid = arg;
8578 
8579     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8580         return -TARGET_EINVAL;
8581     }
8582 
8583     timerid &= 0xffff;
8584 
8585     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8586         return -TARGET_EINVAL;
8587     }
8588 
8589     return timerid;
8590 }
8591 
8592 static int target_to_host_cpu_mask(unsigned long *host_mask,
8593                                    size_t host_size,
8594                                    abi_ulong target_addr,
8595                                    size_t target_size)
8596 {
8597     unsigned target_bits = sizeof(abi_ulong) * 8;
8598     unsigned host_bits = sizeof(*host_mask) * 8;
8599     abi_ulong *target_mask;
8600     unsigned i, j;
8601 
8602     assert(host_size >= target_size);
8603 
8604     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8605     if (!target_mask) {
8606         return -TARGET_EFAULT;
8607     }
8608     memset(host_mask, 0, host_size);
8609 
8610     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8611         unsigned bit = i * target_bits;
8612         abi_ulong val;
8613 
8614         __get_user(val, &target_mask[i]);
8615         for (j = 0; j < target_bits; j++, bit++) {
8616             if (val & (1UL << j)) {
8617                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8618             }
8619         }
8620     }
8621 
8622     unlock_user(target_mask, target_addr, 0);
8623     return 0;
8624 }
8625 
8626 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8627                                    size_t host_size,
8628                                    abi_ulong target_addr,
8629                                    size_t target_size)
8630 {
8631     unsigned target_bits = sizeof(abi_ulong) * 8;
8632     unsigned host_bits = sizeof(*host_mask) * 8;
8633     abi_ulong *target_mask;
8634     unsigned i, j;
8635 
8636     assert(host_size >= target_size);
8637 
8638     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8639     if (!target_mask) {
8640         return -TARGET_EFAULT;
8641     }
8642 
8643     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8644         unsigned bit = i * target_bits;
8645         abi_ulong val = 0;
8646 
8647         for (j = 0; j < target_bits; j++, bit++) {
8648             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8649                 val |= 1UL << j;
8650             }
8651         }
8652         __put_user(val, &target_mask[i]);
8653     }
8654 
8655     unlock_user(target_mask, target_addr, target_size);
8656     return 0;
8657 }
8658 
8659 #ifdef TARGET_NR_getdents
8660 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8661 {
8662     g_autofree void *hdirp = NULL;
8663     void *tdirp;
8664     int hlen, hoff, toff;
8665     int hreclen, treclen;
8666     off64_t prev_diroff = 0;
8667 
8668     hdirp = g_try_malloc(count);
8669     if (!hdirp) {
8670         return -TARGET_ENOMEM;
8671     }
8672 
8673 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8674     hlen = sys_getdents(dirfd, hdirp, count);
8675 #else
8676     hlen = sys_getdents64(dirfd, hdirp, count);
8677 #endif
8678 
8679     hlen = get_errno(hlen);
8680     if (is_error(hlen)) {
8681         return hlen;
8682     }
8683 
8684     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8685     if (!tdirp) {
8686         return -TARGET_EFAULT;
8687     }
8688 
8689     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8690 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8691         struct linux_dirent *hde = hdirp + hoff;
8692 #else
8693         struct linux_dirent64 *hde = hdirp + hoff;
8694 #endif
8695         struct target_dirent *tde = tdirp + toff;
8696         int namelen;
8697         uint8_t type;
8698 
8699         namelen = strlen(hde->d_name);
8700         hreclen = hde->d_reclen;
8701         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8702         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8703 
8704         if (toff + treclen > count) {
8705             /*
8706              * If the host struct is smaller than the target struct, or
8707              * requires less alignment and thus packs into less space,
8708              * then the host can return more entries than we can pass
8709              * on to the guest.
8710              */
8711             if (toff == 0) {
8712                 toff = -TARGET_EINVAL; /* result buffer is too small */
8713                 break;
8714             }
8715             /*
8716              * Return what we have, resetting the file pointer to the
8717              * location of the first record not returned.
8718              */
8719             lseek64(dirfd, prev_diroff, SEEK_SET);
8720             break;
8721         }
8722 
8723         prev_diroff = hde->d_off;
8724         tde->d_ino = tswapal(hde->d_ino);
8725         tde->d_off = tswapal(hde->d_off);
8726         tde->d_reclen = tswap16(treclen);
8727         memcpy(tde->d_name, hde->d_name, namelen + 1);
8728 
8729         /*
8730          * The getdents type is in what was formerly a padding byte at the
8731          * end of the structure.
8732          */
8733 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8734         type = *((uint8_t *)hde + hreclen - 1);
8735 #else
8736         type = hde->d_type;
8737 #endif
8738         *((uint8_t *)tde + treclen - 1) = type;
8739     }
8740 
8741     unlock_user(tdirp, arg2, toff);
8742     return toff;
8743 }
8744 #endif /* TARGET_NR_getdents */
8745 
8746 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8747 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8748 {
8749     g_autofree void *hdirp = NULL;
8750     void *tdirp;
8751     int hlen, hoff, toff;
8752     int hreclen, treclen;
8753     off64_t prev_diroff = 0;
8754 
8755     hdirp = g_try_malloc(count);
8756     if (!hdirp) {
8757         return -TARGET_ENOMEM;
8758     }
8759 
8760     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8761     if (is_error(hlen)) {
8762         return hlen;
8763     }
8764 
8765     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8766     if (!tdirp) {
8767         return -TARGET_EFAULT;
8768     }
8769 
8770     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8771         struct linux_dirent64 *hde = hdirp + hoff;
8772         struct target_dirent64 *tde = tdirp + toff;
8773         int namelen;
8774 
8775         namelen = strlen(hde->d_name) + 1;
8776         hreclen = hde->d_reclen;
8777         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8778         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8779 
8780         if (toff + treclen > count) {
8781             /*
8782              * If the host struct is smaller than the target struct, or
8783              * requires less alignment and thus packs into less space,
8784              * then the host can return more entries than we can pass
8785              * on to the guest.
8786              */
8787             if (toff == 0) {
8788                 toff = -TARGET_EINVAL; /* result buffer is too small */
8789                 break;
8790             }
8791             /*
8792              * Return what we have, resetting the file pointer to the
8793              * location of the first record not returned.
8794              */
8795             lseek64(dirfd, prev_diroff, SEEK_SET);
8796             break;
8797         }
8798 
8799         prev_diroff = hde->d_off;
8800         tde->d_ino = tswap64(hde->d_ino);
8801         tde->d_off = tswap64(hde->d_off);
8802         tde->d_reclen = tswap16(treclen);
8803         tde->d_type = hde->d_type;
8804         memcpy(tde->d_name, hde->d_name, namelen);
8805     }
8806 
8807     unlock_user(tdirp, arg2, toff);
8808     return toff;
8809 }
8810 #endif /* TARGET_NR_getdents64 */
8811 
8812 #if defined(TARGET_NR_riscv_hwprobe)
8813 
8814 #define RISCV_HWPROBE_KEY_MVENDORID     0
8815 #define RISCV_HWPROBE_KEY_MARCHID       1
8816 #define RISCV_HWPROBE_KEY_MIMPID        2
8817 
8818 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8819 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8820 
8821 #define RISCV_HWPROBE_KEY_IMA_EXT_0         4
8822 #define     RISCV_HWPROBE_IMA_FD            (1 << 0)
8823 #define     RISCV_HWPROBE_IMA_C             (1 << 1)
8824 #define     RISCV_HWPROBE_IMA_V             (1 << 2)
8825 #define     RISCV_HWPROBE_EXT_ZBA           (1 << 3)
8826 #define     RISCV_HWPROBE_EXT_ZBB           (1 << 4)
8827 #define     RISCV_HWPROBE_EXT_ZBS           (1 << 5)
8828 #define     RISCV_HWPROBE_EXT_ZICBOZ        (1 << 6)
8829 #define     RISCV_HWPROBE_EXT_ZBC           (1 << 7)
8830 #define     RISCV_HWPROBE_EXT_ZBKB          (1 << 8)
8831 #define     RISCV_HWPROBE_EXT_ZBKC          (1 << 9)
8832 #define     RISCV_HWPROBE_EXT_ZBKX          (1 << 10)
8833 #define     RISCV_HWPROBE_EXT_ZKND          (1 << 11)
8834 #define     RISCV_HWPROBE_EXT_ZKNE          (1 << 12)
8835 #define     RISCV_HWPROBE_EXT_ZKNH          (1 << 13)
8836 #define     RISCV_HWPROBE_EXT_ZKSED         (1 << 14)
8837 #define     RISCV_HWPROBE_EXT_ZKSH          (1 << 15)
8838 #define     RISCV_HWPROBE_EXT_ZKT           (1 << 16)
8839 #define     RISCV_HWPROBE_EXT_ZVBB          (1 << 17)
8840 #define     RISCV_HWPROBE_EXT_ZVBC          (1 << 18)
8841 #define     RISCV_HWPROBE_EXT_ZVKB          (1 << 19)
8842 #define     RISCV_HWPROBE_EXT_ZVKG          (1 << 20)
8843 #define     RISCV_HWPROBE_EXT_ZVKNED        (1 << 21)
8844 #define     RISCV_HWPROBE_EXT_ZVKNHA        (1 << 22)
8845 #define     RISCV_HWPROBE_EXT_ZVKNHB        (1 << 23)
8846 #define     RISCV_HWPROBE_EXT_ZVKSED        (1 << 24)
8847 #define     RISCV_HWPROBE_EXT_ZVKSH         (1 << 25)
8848 #define     RISCV_HWPROBE_EXT_ZVKT          (1 << 26)
8849 #define     RISCV_HWPROBE_EXT_ZFH           (1 << 27)
8850 #define     RISCV_HWPROBE_EXT_ZFHMIN        (1 << 28)
8851 #define     RISCV_HWPROBE_EXT_ZIHINTNTL     (1 << 29)
8852 #define     RISCV_HWPROBE_EXT_ZVFH          (1 << 30)
8853 #define     RISCV_HWPROBE_EXT_ZVFHMIN       (1 << 31)
8854 #define     RISCV_HWPROBE_EXT_ZFA           (1ULL << 32)
8855 #define     RISCV_HWPROBE_EXT_ZTSO          (1ULL << 33)
8856 #define     RISCV_HWPROBE_EXT_ZACAS         (1ULL << 34)
8857 #define     RISCV_HWPROBE_EXT_ZICOND        (1ULL << 35)
8858 
8859 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8860 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8861 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8862 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8863 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8864 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8865 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8866 
8867 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8868 
8869 struct riscv_hwprobe {
8870     abi_llong  key;
8871     abi_ullong value;
8872 };
8873 
8874 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8875                                     struct riscv_hwprobe *pair,
8876                                     size_t pair_count)
8877 {
8878     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8879 
8880     for (; pair_count > 0; pair_count--, pair++) {
8881         abi_llong key;
8882         abi_ullong value;
8883         __put_user(0, &pair->value);
8884         __get_user(key, &pair->key);
8885         switch (key) {
8886         case RISCV_HWPROBE_KEY_MVENDORID:
8887             __put_user(cfg->mvendorid, &pair->value);
8888             break;
8889         case RISCV_HWPROBE_KEY_MARCHID:
8890             __put_user(cfg->marchid, &pair->value);
8891             break;
8892         case RISCV_HWPROBE_KEY_MIMPID:
8893             __put_user(cfg->mimpid, &pair->value);
8894             break;
8895         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8896             value = riscv_has_ext(env, RVI) &&
8897                     riscv_has_ext(env, RVM) &&
8898                     riscv_has_ext(env, RVA) ?
8899                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8900             __put_user(value, &pair->value);
8901             break;
8902         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8903             value = riscv_has_ext(env, RVF) &&
8904                     riscv_has_ext(env, RVD) ?
8905                     RISCV_HWPROBE_IMA_FD : 0;
8906             value |= riscv_has_ext(env, RVC) ?
8907                      RISCV_HWPROBE_IMA_C : 0;
8908             value |= riscv_has_ext(env, RVV) ?
8909                      RISCV_HWPROBE_IMA_V : 0;
8910             value |= cfg->ext_zba ?
8911                      RISCV_HWPROBE_EXT_ZBA : 0;
8912             value |= cfg->ext_zbb ?
8913                      RISCV_HWPROBE_EXT_ZBB : 0;
8914             value |= cfg->ext_zbs ?
8915                      RISCV_HWPROBE_EXT_ZBS : 0;
8916             value |= cfg->ext_zicboz ?
8917                      RISCV_HWPROBE_EXT_ZICBOZ : 0;
8918             value |= cfg->ext_zbc ?
8919                      RISCV_HWPROBE_EXT_ZBC : 0;
8920             value |= cfg->ext_zbkb ?
8921                      RISCV_HWPROBE_EXT_ZBKB : 0;
8922             value |= cfg->ext_zbkc ?
8923                      RISCV_HWPROBE_EXT_ZBKC : 0;
8924             value |= cfg->ext_zbkx ?
8925                      RISCV_HWPROBE_EXT_ZBKX : 0;
8926             value |= cfg->ext_zknd ?
8927                      RISCV_HWPROBE_EXT_ZKND : 0;
8928             value |= cfg->ext_zkne ?
8929                      RISCV_HWPROBE_EXT_ZKNE : 0;
8930             value |= cfg->ext_zknh ?
8931                      RISCV_HWPROBE_EXT_ZKNH : 0;
8932             value |= cfg->ext_zksed ?
8933                      RISCV_HWPROBE_EXT_ZKSED : 0;
8934             value |= cfg->ext_zksh ?
8935                      RISCV_HWPROBE_EXT_ZKSH : 0;
8936             value |= cfg->ext_zkt ?
8937                      RISCV_HWPROBE_EXT_ZKT : 0;
8938             value |= cfg->ext_zvbb ?
8939                      RISCV_HWPROBE_EXT_ZVBB : 0;
8940             value |= cfg->ext_zvbc ?
8941                      RISCV_HWPROBE_EXT_ZVBC : 0;
8942             value |= cfg->ext_zvkb ?
8943                      RISCV_HWPROBE_EXT_ZVKB : 0;
8944             value |= cfg->ext_zvkg ?
8945                      RISCV_HWPROBE_EXT_ZVKG : 0;
8946             value |= cfg->ext_zvkned ?
8947                      RISCV_HWPROBE_EXT_ZVKNED : 0;
8948             value |= cfg->ext_zvknha ?
8949                      RISCV_HWPROBE_EXT_ZVKNHA : 0;
8950             value |= cfg->ext_zvknhb ?
8951                      RISCV_HWPROBE_EXT_ZVKNHB : 0;
8952             value |= cfg->ext_zvksed ?
8953                      RISCV_HWPROBE_EXT_ZVKSED : 0;
8954             value |= cfg->ext_zvksh ?
8955                      RISCV_HWPROBE_EXT_ZVKSH : 0;
8956             value |= cfg->ext_zvkt ?
8957                      RISCV_HWPROBE_EXT_ZVKT : 0;
8958             value |= cfg->ext_zfh ?
8959                      RISCV_HWPROBE_EXT_ZFH : 0;
8960             value |= cfg->ext_zfhmin ?
8961                      RISCV_HWPROBE_EXT_ZFHMIN : 0;
8962             value |= cfg->ext_zihintntl ?
8963                      RISCV_HWPROBE_EXT_ZIHINTNTL : 0;
8964             value |= cfg->ext_zvfh ?
8965                      RISCV_HWPROBE_EXT_ZVFH : 0;
8966             value |= cfg->ext_zvfhmin ?
8967                      RISCV_HWPROBE_EXT_ZVFHMIN : 0;
8968             value |= cfg->ext_zfa ?
8969                      RISCV_HWPROBE_EXT_ZFA : 0;
8970             value |= cfg->ext_ztso ?
8971                      RISCV_HWPROBE_EXT_ZTSO : 0;
8972             value |= cfg->ext_zacas ?
8973                      RISCV_HWPROBE_EXT_ZACAS : 0;
8974             value |= cfg->ext_zicond ?
8975                      RISCV_HWPROBE_EXT_ZICOND : 0;
8976             __put_user(value, &pair->value);
8977             break;
8978         case RISCV_HWPROBE_KEY_CPUPERF_0:
8979             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8980             break;
8981         case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8982             value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8983             __put_user(value, &pair->value);
8984             break;
8985         default:
8986             __put_user(-1, &pair->key);
8987             break;
8988         }
8989     }
8990 }
8991 
8992 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8993 {
8994     int ret, i, tmp;
8995     size_t host_mask_size, target_mask_size;
8996     unsigned long *host_mask;
8997 
8998     /*
8999      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
9000      * arg3 contains the cpu count.
9001      */
9002     tmp = (8 * sizeof(abi_ulong));
9003     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
9004     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
9005                      ~(sizeof(*host_mask) - 1);
9006 
9007     host_mask = alloca(host_mask_size);
9008 
9009     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9010                                   arg4, target_mask_size);
9011     if (ret != 0) {
9012         return ret;
9013     }
9014 
9015     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9016         if (host_mask[i] != 0) {
9017             return 0;
9018         }
9019     }
9020     return -TARGET_EINVAL;
9021 }
9022 
9023 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9024                                  abi_long arg2, abi_long arg3,
9025                                  abi_long arg4, abi_long arg5)
9026 {
9027     int ret;
9028     struct riscv_hwprobe *host_pairs;
9029 
9030     /* flags must be 0 */
9031     if (arg5 != 0) {
9032         return -TARGET_EINVAL;
9033     }
9034 
9035     /* check cpu_set */
9036     if (arg3 != 0) {
9037         ret = cpu_set_valid(arg3, arg4);
9038         if (ret != 0) {
9039             return ret;
9040         }
9041     } else if (arg4 != 0) {
9042         return -TARGET_EINVAL;
9043     }
9044 
9045     /* no pairs */
9046     if (arg2 == 0) {
9047         return 0;
9048     }
9049 
9050     host_pairs = lock_user(VERIFY_WRITE, arg1,
9051                            sizeof(*host_pairs) * (size_t)arg2, 0);
9052     if (host_pairs == NULL) {
9053         return -TARGET_EFAULT;
9054     }
9055     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9056     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9057     return 0;
9058 }
9059 #endif /* TARGET_NR_riscv_hwprobe */
9060 
9061 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9062 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9063 #endif
9064 
9065 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9066 #define __NR_sys_open_tree __NR_open_tree
9067 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9068           unsigned int, __flags)
9069 #endif
9070 
9071 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9072 #define __NR_sys_move_mount __NR_move_mount
9073 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9074            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9075 #endif
9076 
9077 /* This is an internal helper for do_syscall so that it is easier
9078  * to have a single return point, so that actions, such as logging
9079  * of syscall results, can be performed.
9080  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9081  */
9082 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9083                             abi_long arg2, abi_long arg3, abi_long arg4,
9084                             abi_long arg5, abi_long arg6, abi_long arg7,
9085                             abi_long arg8)
9086 {
9087     CPUState *cpu = env_cpu(cpu_env);
9088     abi_long ret;
9089 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9090     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9091     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9092     || defined(TARGET_NR_statx)
9093     struct stat st;
9094 #endif
9095 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9096     || defined(TARGET_NR_fstatfs)
9097     struct statfs stfs;
9098 #endif
9099     void *p;
9100 
9101     switch(num) {
9102     case TARGET_NR_exit:
9103         /* In old applications this may be used to implement _exit(2).
9104            However in threaded applications it is used for thread termination,
9105            and _exit_group is used for application termination.
9106            Do thread termination if we have more then one thread.  */
9107 
9108         if (block_signals()) {
9109             return -QEMU_ERESTARTSYS;
9110         }
9111 
9112         pthread_mutex_lock(&clone_lock);
9113 
9114         if (CPU_NEXT(first_cpu)) {
9115             TaskState *ts = get_task_state(cpu);
9116 
9117             if (ts->child_tidptr) {
9118                 put_user_u32(0, ts->child_tidptr);
9119                 do_sys_futex(g2h(cpu, ts->child_tidptr),
9120                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9121             }
9122 
9123             object_unparent(OBJECT(cpu));
9124             object_unref(OBJECT(cpu));
9125             /*
9126              * At this point the CPU should be unrealized and removed
9127              * from cpu lists. We can clean-up the rest of the thread
9128              * data without the lock held.
9129              */
9130 
9131             pthread_mutex_unlock(&clone_lock);
9132 
9133             thread_cpu = NULL;
9134             g_free(ts);
9135             rcu_unregister_thread();
9136             pthread_exit(NULL);
9137         }
9138 
9139         pthread_mutex_unlock(&clone_lock);
9140         preexit_cleanup(cpu_env, arg1);
9141         _exit(arg1);
9142         return 0; /* avoid warning */
9143     case TARGET_NR_read:
9144         if (arg2 == 0 && arg3 == 0) {
9145             return get_errno(safe_read(arg1, 0, 0));
9146         } else {
9147             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9148                 return -TARGET_EFAULT;
9149             ret = get_errno(safe_read(arg1, p, arg3));
9150             if (ret >= 0 &&
9151                 fd_trans_host_to_target_data(arg1)) {
9152                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9153             }
9154             unlock_user(p, arg2, ret);
9155         }
9156         return ret;
9157     case TARGET_NR_write:
9158         if (arg2 == 0 && arg3 == 0) {
9159             return get_errno(safe_write(arg1, 0, 0));
9160         }
9161         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9162             return -TARGET_EFAULT;
9163         if (fd_trans_target_to_host_data(arg1)) {
9164             void *copy = g_malloc(arg3);
9165             memcpy(copy, p, arg3);
9166             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9167             if (ret >= 0) {
9168                 ret = get_errno(safe_write(arg1, copy, ret));
9169             }
9170             g_free(copy);
9171         } else {
9172             ret = get_errno(safe_write(arg1, p, arg3));
9173         }
9174         unlock_user(p, arg2, 0);
9175         return ret;
9176 
9177 #ifdef TARGET_NR_open
9178     case TARGET_NR_open:
9179         if (!(p = lock_user_string(arg1)))
9180             return -TARGET_EFAULT;
9181         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9182                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9183                                   arg3, true));
9184         fd_trans_unregister(ret);
9185         unlock_user(p, arg1, 0);
9186         return ret;
9187 #endif
9188     case TARGET_NR_openat:
9189         if (!(p = lock_user_string(arg2)))
9190             return -TARGET_EFAULT;
9191         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9192                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9193                                   arg4, true));
9194         fd_trans_unregister(ret);
9195         unlock_user(p, arg2, 0);
9196         return ret;
9197 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9198     case TARGET_NR_name_to_handle_at:
9199         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9200         return ret;
9201 #endif
9202 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9203     case TARGET_NR_open_by_handle_at:
9204         ret = do_open_by_handle_at(arg1, arg2, arg3);
9205         fd_trans_unregister(ret);
9206         return ret;
9207 #endif
9208 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9209     case TARGET_NR_pidfd_open:
9210         return get_errno(pidfd_open(arg1, arg2));
9211 #endif
9212 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9213     case TARGET_NR_pidfd_send_signal:
9214         {
9215             siginfo_t uinfo, *puinfo;
9216 
9217             if (arg3) {
9218                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9219                 if (!p) {
9220                     return -TARGET_EFAULT;
9221                  }
9222                  target_to_host_siginfo(&uinfo, p);
9223                  unlock_user(p, arg3, 0);
9224                  puinfo = &uinfo;
9225             } else {
9226                  puinfo = NULL;
9227             }
9228             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9229                                               puinfo, arg4));
9230         }
9231         return ret;
9232 #endif
9233 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9234     case TARGET_NR_pidfd_getfd:
9235         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9236 #endif
9237     case TARGET_NR_close:
9238         fd_trans_unregister(arg1);
9239         return get_errno(close(arg1));
9240 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9241     case TARGET_NR_close_range:
9242         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9243         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9244             abi_long fd, maxfd;
9245             maxfd = MIN(arg2, target_fd_max);
9246             for (fd = arg1; fd < maxfd; fd++) {
9247                 fd_trans_unregister(fd);
9248             }
9249         }
9250         return ret;
9251 #endif
9252 
9253     case TARGET_NR_brk:
9254         return do_brk(arg1);
9255 #ifdef TARGET_NR_fork
9256     case TARGET_NR_fork:
9257         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9258 #endif
9259 #ifdef TARGET_NR_waitpid
9260     case TARGET_NR_waitpid:
9261         {
9262             int status;
9263             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9264             if (!is_error(ret) && arg2 && ret
9265                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9266                 return -TARGET_EFAULT;
9267         }
9268         return ret;
9269 #endif
9270 #ifdef TARGET_NR_waitid
9271     case TARGET_NR_waitid:
9272         {
9273             siginfo_t info;
9274             info.si_pid = 0;
9275             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
9276             if (!is_error(ret) && arg3 && info.si_pid != 0) {
9277                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
9278                     return -TARGET_EFAULT;
9279                 host_to_target_siginfo(p, &info);
9280                 unlock_user(p, arg3, sizeof(target_siginfo_t));
9281             }
9282         }
9283         return ret;
9284 #endif
9285 #ifdef TARGET_NR_creat /* not on alpha */
9286     case TARGET_NR_creat:
9287         if (!(p = lock_user_string(arg1)))
9288             return -TARGET_EFAULT;
9289         ret = get_errno(creat(p, arg2));
9290         fd_trans_unregister(ret);
9291         unlock_user(p, arg1, 0);
9292         return ret;
9293 #endif
9294 #ifdef TARGET_NR_link
9295     case TARGET_NR_link:
9296         {
9297             void * p2;
9298             p = lock_user_string(arg1);
9299             p2 = lock_user_string(arg2);
9300             if (!p || !p2)
9301                 ret = -TARGET_EFAULT;
9302             else
9303                 ret = get_errno(link(p, p2));
9304             unlock_user(p2, arg2, 0);
9305             unlock_user(p, arg1, 0);
9306         }
9307         return ret;
9308 #endif
9309 #if defined(TARGET_NR_linkat)
9310     case TARGET_NR_linkat:
9311         {
9312             void * p2 = NULL;
9313             if (!arg2 || !arg4)
9314                 return -TARGET_EFAULT;
9315             p  = lock_user_string(arg2);
9316             p2 = lock_user_string(arg4);
9317             if (!p || !p2)
9318                 ret = -TARGET_EFAULT;
9319             else
9320                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9321             unlock_user(p, arg2, 0);
9322             unlock_user(p2, arg4, 0);
9323         }
9324         return ret;
9325 #endif
9326 #ifdef TARGET_NR_unlink
9327     case TARGET_NR_unlink:
9328         if (!(p = lock_user_string(arg1)))
9329             return -TARGET_EFAULT;
9330         ret = get_errno(unlink(p));
9331         unlock_user(p, arg1, 0);
9332         return ret;
9333 #endif
9334 #if defined(TARGET_NR_unlinkat)
9335     case TARGET_NR_unlinkat:
9336         if (!(p = lock_user_string(arg2)))
9337             return -TARGET_EFAULT;
9338         ret = get_errno(unlinkat(arg1, p, arg3));
9339         unlock_user(p, arg2, 0);
9340         return ret;
9341 #endif
9342     case TARGET_NR_execveat:
9343         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9344     case TARGET_NR_execve:
9345         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9346     case TARGET_NR_chdir:
9347         if (!(p = lock_user_string(arg1)))
9348             return -TARGET_EFAULT;
9349         ret = get_errno(chdir(p));
9350         unlock_user(p, arg1, 0);
9351         return ret;
9352 #ifdef TARGET_NR_time
9353     case TARGET_NR_time:
9354         {
9355             time_t host_time;
9356             ret = get_errno(time(&host_time));
9357             if (!is_error(ret)
9358                 && arg1
9359                 && put_user_sal(host_time, arg1))
9360                 return -TARGET_EFAULT;
9361         }
9362         return ret;
9363 #endif
9364 #ifdef TARGET_NR_mknod
9365     case TARGET_NR_mknod:
9366         if (!(p = lock_user_string(arg1)))
9367             return -TARGET_EFAULT;
9368         ret = get_errno(mknod(p, arg2, arg3));
9369         unlock_user(p, arg1, 0);
9370         return ret;
9371 #endif
9372 #if defined(TARGET_NR_mknodat)
9373     case TARGET_NR_mknodat:
9374         if (!(p = lock_user_string(arg2)))
9375             return -TARGET_EFAULT;
9376         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9377         unlock_user(p, arg2, 0);
9378         return ret;
9379 #endif
9380 #ifdef TARGET_NR_chmod
9381     case TARGET_NR_chmod:
9382         if (!(p = lock_user_string(arg1)))
9383             return -TARGET_EFAULT;
9384         ret = get_errno(chmod(p, arg2));
9385         unlock_user(p, arg1, 0);
9386         return ret;
9387 #endif
9388 #ifdef TARGET_NR_lseek
9389     case TARGET_NR_lseek:
9390         return get_errno(lseek(arg1, arg2, arg3));
9391 #endif
9392 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9393     /* Alpha specific */
9394     case TARGET_NR_getxpid:
9395         cpu_env->ir[IR_A4] = getppid();
9396         return get_errno(getpid());
9397 #endif
9398 #ifdef TARGET_NR_getpid
9399     case TARGET_NR_getpid:
9400         return get_errno(getpid());
9401 #endif
9402     case TARGET_NR_mount:
9403         {
9404             /* need to look at the data field */
9405             void *p2, *p3;
9406 
9407             if (arg1) {
9408                 p = lock_user_string(arg1);
9409                 if (!p) {
9410                     return -TARGET_EFAULT;
9411                 }
9412             } else {
9413                 p = NULL;
9414             }
9415 
9416             p2 = lock_user_string(arg2);
9417             if (!p2) {
9418                 if (arg1) {
9419                     unlock_user(p, arg1, 0);
9420                 }
9421                 return -TARGET_EFAULT;
9422             }
9423 
9424             if (arg3) {
9425                 p3 = lock_user_string(arg3);
9426                 if (!p3) {
9427                     if (arg1) {
9428                         unlock_user(p, arg1, 0);
9429                     }
9430                     unlock_user(p2, arg2, 0);
9431                     return -TARGET_EFAULT;
9432                 }
9433             } else {
9434                 p3 = NULL;
9435             }
9436 
9437             /* FIXME - arg5 should be locked, but it isn't clear how to
9438              * do that since it's not guaranteed to be a NULL-terminated
9439              * string.
9440              */
9441             if (!arg5) {
9442                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9443             } else {
9444                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9445             }
9446             ret = get_errno(ret);
9447 
9448             if (arg1) {
9449                 unlock_user(p, arg1, 0);
9450             }
9451             unlock_user(p2, arg2, 0);
9452             if (arg3) {
9453                 unlock_user(p3, arg3, 0);
9454             }
9455         }
9456         return ret;
9457 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9458 #if defined(TARGET_NR_umount)
9459     case TARGET_NR_umount:
9460 #endif
9461 #if defined(TARGET_NR_oldumount)
9462     case TARGET_NR_oldumount:
9463 #endif
9464         if (!(p = lock_user_string(arg1)))
9465             return -TARGET_EFAULT;
9466         ret = get_errno(umount(p));
9467         unlock_user(p, arg1, 0);
9468         return ret;
9469 #endif
9470 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9471     case TARGET_NR_move_mount:
9472         {
9473             void *p2, *p4;
9474 
9475             if (!arg2 || !arg4) {
9476                 return -TARGET_EFAULT;
9477             }
9478 
9479             p2 = lock_user_string(arg2);
9480             if (!p2) {
9481                 return -TARGET_EFAULT;
9482             }
9483 
9484             p4 = lock_user_string(arg4);
9485             if (!p4) {
9486                 unlock_user(p2, arg2, 0);
9487                 return -TARGET_EFAULT;
9488             }
9489             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9490 
9491             unlock_user(p2, arg2, 0);
9492             unlock_user(p4, arg4, 0);
9493 
9494             return ret;
9495         }
9496 #endif
9497 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9498     case TARGET_NR_open_tree:
9499         {
9500             void *p2;
9501             int host_flags;
9502 
9503             if (!arg2) {
9504                 return -TARGET_EFAULT;
9505             }
9506 
9507             p2 = lock_user_string(arg2);
9508             if (!p2) {
9509                 return -TARGET_EFAULT;
9510             }
9511 
9512             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9513             if (arg3 & TARGET_O_CLOEXEC) {
9514                 host_flags |= O_CLOEXEC;
9515             }
9516 
9517             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9518 
9519             unlock_user(p2, arg2, 0);
9520 
9521             return ret;
9522         }
9523 #endif
9524 #ifdef TARGET_NR_stime /* not on alpha */
9525     case TARGET_NR_stime:
9526         {
9527             struct timespec ts;
9528             ts.tv_nsec = 0;
9529             if (get_user_sal(ts.tv_sec, arg1)) {
9530                 return -TARGET_EFAULT;
9531             }
9532             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9533         }
9534 #endif
9535 #ifdef TARGET_NR_alarm /* not on alpha */
9536     case TARGET_NR_alarm:
9537         return alarm(arg1);
9538 #endif
9539 #ifdef TARGET_NR_pause /* not on alpha */
9540     case TARGET_NR_pause:
9541         if (!block_signals()) {
9542             sigsuspend(&get_task_state(cpu)->signal_mask);
9543         }
9544         return -TARGET_EINTR;
9545 #endif
9546 #ifdef TARGET_NR_utime
9547     case TARGET_NR_utime:
9548         {
9549             struct utimbuf tbuf, *host_tbuf;
9550             struct target_utimbuf *target_tbuf;
9551             if (arg2) {
9552                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9553                     return -TARGET_EFAULT;
9554                 tbuf.actime = tswapal(target_tbuf->actime);
9555                 tbuf.modtime = tswapal(target_tbuf->modtime);
9556                 unlock_user_struct(target_tbuf, arg2, 0);
9557                 host_tbuf = &tbuf;
9558             } else {
9559                 host_tbuf = NULL;
9560             }
9561             if (!(p = lock_user_string(arg1)))
9562                 return -TARGET_EFAULT;
9563             ret = get_errno(utime(p, host_tbuf));
9564             unlock_user(p, arg1, 0);
9565         }
9566         return ret;
9567 #endif
9568 #ifdef TARGET_NR_utimes
9569     case TARGET_NR_utimes:
9570         {
9571             struct timeval *tvp, tv[2];
9572             if (arg2) {
9573                 if (copy_from_user_timeval(&tv[0], arg2)
9574                     || copy_from_user_timeval(&tv[1],
9575                                               arg2 + sizeof(struct target_timeval)))
9576                     return -TARGET_EFAULT;
9577                 tvp = tv;
9578             } else {
9579                 tvp = NULL;
9580             }
9581             if (!(p = lock_user_string(arg1)))
9582                 return -TARGET_EFAULT;
9583             ret = get_errno(utimes(p, tvp));
9584             unlock_user(p, arg1, 0);
9585         }
9586         return ret;
9587 #endif
9588 #if defined(TARGET_NR_futimesat)
9589     case TARGET_NR_futimesat:
9590         {
9591             struct timeval *tvp, tv[2];
9592             if (arg3) {
9593                 if (copy_from_user_timeval(&tv[0], arg3)
9594                     || copy_from_user_timeval(&tv[1],
9595                                               arg3 + sizeof(struct target_timeval)))
9596                     return -TARGET_EFAULT;
9597                 tvp = tv;
9598             } else {
9599                 tvp = NULL;
9600             }
9601             if (!(p = lock_user_string(arg2))) {
9602                 return -TARGET_EFAULT;
9603             }
9604             ret = get_errno(futimesat(arg1, path(p), tvp));
9605             unlock_user(p, arg2, 0);
9606         }
9607         return ret;
9608 #endif
9609 #ifdef TARGET_NR_access
9610     case TARGET_NR_access:
9611         if (!(p = lock_user_string(arg1))) {
9612             return -TARGET_EFAULT;
9613         }
9614         ret = get_errno(access(path(p), arg2));
9615         unlock_user(p, arg1, 0);
9616         return ret;
9617 #endif
9618 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9619     case TARGET_NR_faccessat:
9620         if (!(p = lock_user_string(arg2))) {
9621             return -TARGET_EFAULT;
9622         }
9623         ret = get_errno(faccessat(arg1, p, arg3, 0));
9624         unlock_user(p, arg2, 0);
9625         return ret;
9626 #endif
9627 #if defined(TARGET_NR_faccessat2)
9628     case TARGET_NR_faccessat2:
9629         if (!(p = lock_user_string(arg2))) {
9630             return -TARGET_EFAULT;
9631         }
9632         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9633         unlock_user(p, arg2, 0);
9634         return ret;
9635 #endif
9636 #ifdef TARGET_NR_nice /* not on alpha */
9637     case TARGET_NR_nice:
9638         return get_errno(nice(arg1));
9639 #endif
9640     case TARGET_NR_sync:
9641         sync();
9642         return 0;
9643 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9644     case TARGET_NR_syncfs:
9645         return get_errno(syncfs(arg1));
9646 #endif
9647     case TARGET_NR_kill:
9648         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9649 #ifdef TARGET_NR_rename
9650     case TARGET_NR_rename:
9651         {
9652             void *p2;
9653             p = lock_user_string(arg1);
9654             p2 = lock_user_string(arg2);
9655             if (!p || !p2)
9656                 ret = -TARGET_EFAULT;
9657             else
9658                 ret = get_errno(rename(p, p2));
9659             unlock_user(p2, arg2, 0);
9660             unlock_user(p, arg1, 0);
9661         }
9662         return ret;
9663 #endif
9664 #if defined(TARGET_NR_renameat)
9665     case TARGET_NR_renameat:
9666         {
9667             void *p2;
9668             p  = lock_user_string(arg2);
9669             p2 = lock_user_string(arg4);
9670             if (!p || !p2)
9671                 ret = -TARGET_EFAULT;
9672             else
9673                 ret = get_errno(renameat(arg1, p, arg3, p2));
9674             unlock_user(p2, arg4, 0);
9675             unlock_user(p, arg2, 0);
9676         }
9677         return ret;
9678 #endif
9679 #if defined(TARGET_NR_renameat2)
9680     case TARGET_NR_renameat2:
9681         {
9682             void *p2;
9683             p  = lock_user_string(arg2);
9684             p2 = lock_user_string(arg4);
9685             if (!p || !p2) {
9686                 ret = -TARGET_EFAULT;
9687             } else {
9688                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9689             }
9690             unlock_user(p2, arg4, 0);
9691             unlock_user(p, arg2, 0);
9692         }
9693         return ret;
9694 #endif
9695 #ifdef TARGET_NR_mkdir
9696     case TARGET_NR_mkdir:
9697         if (!(p = lock_user_string(arg1)))
9698             return -TARGET_EFAULT;
9699         ret = get_errno(mkdir(p, arg2));
9700         unlock_user(p, arg1, 0);
9701         return ret;
9702 #endif
9703 #if defined(TARGET_NR_mkdirat)
9704     case TARGET_NR_mkdirat:
9705         if (!(p = lock_user_string(arg2)))
9706             return -TARGET_EFAULT;
9707         ret = get_errno(mkdirat(arg1, p, arg3));
9708         unlock_user(p, arg2, 0);
9709         return ret;
9710 #endif
9711 #ifdef TARGET_NR_rmdir
9712     case TARGET_NR_rmdir:
9713         if (!(p = lock_user_string(arg1)))
9714             return -TARGET_EFAULT;
9715         ret = get_errno(rmdir(p));
9716         unlock_user(p, arg1, 0);
9717         return ret;
9718 #endif
9719     case TARGET_NR_dup:
9720         ret = get_errno(dup(arg1));
9721         if (ret >= 0) {
9722             fd_trans_dup(arg1, ret);
9723         }
9724         return ret;
9725 #ifdef TARGET_NR_pipe
9726     case TARGET_NR_pipe:
9727         return do_pipe(cpu_env, arg1, 0, 0);
9728 #endif
9729 #ifdef TARGET_NR_pipe2
9730     case TARGET_NR_pipe2:
9731         return do_pipe(cpu_env, arg1,
9732                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9733 #endif
9734     case TARGET_NR_times:
9735         {
9736             struct target_tms *tmsp;
9737             struct tms tms;
9738             ret = get_errno(times(&tms));
9739             if (arg1) {
9740                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9741                 if (!tmsp)
9742                     return -TARGET_EFAULT;
9743                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9744                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9745                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9746                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9747             }
9748             if (!is_error(ret))
9749                 ret = host_to_target_clock_t(ret);
9750         }
9751         return ret;
9752     case TARGET_NR_acct:
9753         if (arg1 == 0) {
9754             ret = get_errno(acct(NULL));
9755         } else {
9756             if (!(p = lock_user_string(arg1))) {
9757                 return -TARGET_EFAULT;
9758             }
9759             ret = get_errno(acct(path(p)));
9760             unlock_user(p, arg1, 0);
9761         }
9762         return ret;
9763 #ifdef TARGET_NR_umount2
9764     case TARGET_NR_umount2:
9765         if (!(p = lock_user_string(arg1)))
9766             return -TARGET_EFAULT;
9767         ret = get_errno(umount2(p, arg2));
9768         unlock_user(p, arg1, 0);
9769         return ret;
9770 #endif
9771     case TARGET_NR_ioctl:
9772         return do_ioctl(arg1, arg2, arg3);
9773 #ifdef TARGET_NR_fcntl
9774     case TARGET_NR_fcntl:
9775         return do_fcntl(arg1, arg2, arg3);
9776 #endif
9777     case TARGET_NR_setpgid:
9778         return get_errno(setpgid(arg1, arg2));
9779     case TARGET_NR_umask:
9780         return get_errno(umask(arg1));
9781     case TARGET_NR_chroot:
9782         if (!(p = lock_user_string(arg1)))
9783             return -TARGET_EFAULT;
9784         ret = get_errno(chroot(p));
9785         unlock_user(p, arg1, 0);
9786         return ret;
9787 #ifdef TARGET_NR_dup2
9788     case TARGET_NR_dup2:
9789         ret = get_errno(dup2(arg1, arg2));
9790         if (ret >= 0) {
9791             fd_trans_dup(arg1, arg2);
9792         }
9793         return ret;
9794 #endif
9795 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9796     case TARGET_NR_dup3:
9797     {
9798         int host_flags;
9799 
9800         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9801             return -EINVAL;
9802         }
9803         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9804         ret = get_errno(dup3(arg1, arg2, host_flags));
9805         if (ret >= 0) {
9806             fd_trans_dup(arg1, arg2);
9807         }
9808         return ret;
9809     }
9810 #endif
9811 #ifdef TARGET_NR_getppid /* not on alpha */
9812     case TARGET_NR_getppid:
9813         return get_errno(getppid());
9814 #endif
9815 #ifdef TARGET_NR_getpgrp
9816     case TARGET_NR_getpgrp:
9817         return get_errno(getpgrp());
9818 #endif
9819     case TARGET_NR_setsid:
9820         return get_errno(setsid());
9821 #ifdef TARGET_NR_sigaction
9822     case TARGET_NR_sigaction:
9823         {
9824 #if defined(TARGET_MIPS)
9825 	    struct target_sigaction act, oact, *pact, *old_act;
9826 
9827 	    if (arg2) {
9828                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9829                     return -TARGET_EFAULT;
9830 		act._sa_handler = old_act->_sa_handler;
9831 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9832 		act.sa_flags = old_act->sa_flags;
9833 		unlock_user_struct(old_act, arg2, 0);
9834 		pact = &act;
9835 	    } else {
9836 		pact = NULL;
9837 	    }
9838 
9839         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9840 
9841 	    if (!is_error(ret) && arg3) {
9842                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9843                     return -TARGET_EFAULT;
9844 		old_act->_sa_handler = oact._sa_handler;
9845 		old_act->sa_flags = oact.sa_flags;
9846 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9847 		old_act->sa_mask.sig[1] = 0;
9848 		old_act->sa_mask.sig[2] = 0;
9849 		old_act->sa_mask.sig[3] = 0;
9850 		unlock_user_struct(old_act, arg3, 1);
9851 	    }
9852 #else
9853             struct target_old_sigaction *old_act;
9854             struct target_sigaction act, oact, *pact;
9855             if (arg2) {
9856                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9857                     return -TARGET_EFAULT;
9858                 act._sa_handler = old_act->_sa_handler;
9859                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9860                 act.sa_flags = old_act->sa_flags;
9861 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9862                 act.sa_restorer = old_act->sa_restorer;
9863 #endif
9864                 unlock_user_struct(old_act, arg2, 0);
9865                 pact = &act;
9866             } else {
9867                 pact = NULL;
9868             }
9869             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9870             if (!is_error(ret) && arg3) {
9871                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9872                     return -TARGET_EFAULT;
9873                 old_act->_sa_handler = oact._sa_handler;
9874                 old_act->sa_mask = oact.sa_mask.sig[0];
9875                 old_act->sa_flags = oact.sa_flags;
9876 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9877                 old_act->sa_restorer = oact.sa_restorer;
9878 #endif
9879                 unlock_user_struct(old_act, arg3, 1);
9880             }
9881 #endif
9882         }
9883         return ret;
9884 #endif
9885     case TARGET_NR_rt_sigaction:
9886         {
9887             /*
9888              * For Alpha and SPARC this is a 5 argument syscall, with
9889              * a 'restorer' parameter which must be copied into the
9890              * sa_restorer field of the sigaction struct.
9891              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9892              * and arg5 is the sigsetsize.
9893              */
9894 #if defined(TARGET_ALPHA)
9895             target_ulong sigsetsize = arg4;
9896             target_ulong restorer = arg5;
9897 #elif defined(TARGET_SPARC)
9898             target_ulong restorer = arg4;
9899             target_ulong sigsetsize = arg5;
9900 #else
9901             target_ulong sigsetsize = arg4;
9902             target_ulong restorer = 0;
9903 #endif
9904             struct target_sigaction *act = NULL;
9905             struct target_sigaction *oact = NULL;
9906 
9907             if (sigsetsize != sizeof(target_sigset_t)) {
9908                 return -TARGET_EINVAL;
9909             }
9910             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9911                 return -TARGET_EFAULT;
9912             }
9913             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9914                 ret = -TARGET_EFAULT;
9915             } else {
9916                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9917                 if (oact) {
9918                     unlock_user_struct(oact, arg3, 1);
9919                 }
9920             }
9921             if (act) {
9922                 unlock_user_struct(act, arg2, 0);
9923             }
9924         }
9925         return ret;
9926 #ifdef TARGET_NR_sgetmask /* not on alpha */
9927     case TARGET_NR_sgetmask:
9928         {
9929             sigset_t cur_set;
9930             abi_ulong target_set;
9931             ret = do_sigprocmask(0, NULL, &cur_set);
9932             if (!ret) {
9933                 host_to_target_old_sigset(&target_set, &cur_set);
9934                 ret = target_set;
9935             }
9936         }
9937         return ret;
9938 #endif
9939 #ifdef TARGET_NR_ssetmask /* not on alpha */
9940     case TARGET_NR_ssetmask:
9941         {
9942             sigset_t set, oset;
9943             abi_ulong target_set = arg1;
9944             target_to_host_old_sigset(&set, &target_set);
9945             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9946             if (!ret) {
9947                 host_to_target_old_sigset(&target_set, &oset);
9948                 ret = target_set;
9949             }
9950         }
9951         return ret;
9952 #endif
9953 #ifdef TARGET_NR_sigprocmask
9954     case TARGET_NR_sigprocmask:
9955         {
9956 #if defined(TARGET_ALPHA)
9957             sigset_t set, oldset;
9958             abi_ulong mask;
9959             int how;
9960 
9961             switch (arg1) {
9962             case TARGET_SIG_BLOCK:
9963                 how = SIG_BLOCK;
9964                 break;
9965             case TARGET_SIG_UNBLOCK:
9966                 how = SIG_UNBLOCK;
9967                 break;
9968             case TARGET_SIG_SETMASK:
9969                 how = SIG_SETMASK;
9970                 break;
9971             default:
9972                 return -TARGET_EINVAL;
9973             }
9974             mask = arg2;
9975             target_to_host_old_sigset(&set, &mask);
9976 
9977             ret = do_sigprocmask(how, &set, &oldset);
9978             if (!is_error(ret)) {
9979                 host_to_target_old_sigset(&mask, &oldset);
9980                 ret = mask;
9981                 cpu_env->ir[IR_V0] = 0; /* force no error */
9982             }
9983 #else
9984             sigset_t set, oldset, *set_ptr;
9985             int how;
9986 
9987             if (arg2) {
9988                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9989                 if (!p) {
9990                     return -TARGET_EFAULT;
9991                 }
9992                 target_to_host_old_sigset(&set, p);
9993                 unlock_user(p, arg2, 0);
9994                 set_ptr = &set;
9995                 switch (arg1) {
9996                 case TARGET_SIG_BLOCK:
9997                     how = SIG_BLOCK;
9998                     break;
9999                 case TARGET_SIG_UNBLOCK:
10000                     how = SIG_UNBLOCK;
10001                     break;
10002                 case TARGET_SIG_SETMASK:
10003                     how = SIG_SETMASK;
10004                     break;
10005                 default:
10006                     return -TARGET_EINVAL;
10007                 }
10008             } else {
10009                 how = 0;
10010                 set_ptr = NULL;
10011             }
10012             ret = do_sigprocmask(how, set_ptr, &oldset);
10013             if (!is_error(ret) && arg3) {
10014                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10015                     return -TARGET_EFAULT;
10016                 host_to_target_old_sigset(p, &oldset);
10017                 unlock_user(p, arg3, sizeof(target_sigset_t));
10018             }
10019 #endif
10020         }
10021         return ret;
10022 #endif
10023     case TARGET_NR_rt_sigprocmask:
10024         {
10025             int how = arg1;
10026             sigset_t set, oldset, *set_ptr;
10027 
10028             if (arg4 != sizeof(target_sigset_t)) {
10029                 return -TARGET_EINVAL;
10030             }
10031 
10032             if (arg2) {
10033                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10034                 if (!p) {
10035                     return -TARGET_EFAULT;
10036                 }
10037                 target_to_host_sigset(&set, p);
10038                 unlock_user(p, arg2, 0);
10039                 set_ptr = &set;
10040                 switch(how) {
10041                 case TARGET_SIG_BLOCK:
10042                     how = SIG_BLOCK;
10043                     break;
10044                 case TARGET_SIG_UNBLOCK:
10045                     how = SIG_UNBLOCK;
10046                     break;
10047                 case TARGET_SIG_SETMASK:
10048                     how = SIG_SETMASK;
10049                     break;
10050                 default:
10051                     return -TARGET_EINVAL;
10052                 }
10053             } else {
10054                 how = 0;
10055                 set_ptr = NULL;
10056             }
10057             ret = do_sigprocmask(how, set_ptr, &oldset);
10058             if (!is_error(ret) && arg3) {
10059                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10060                     return -TARGET_EFAULT;
10061                 host_to_target_sigset(p, &oldset);
10062                 unlock_user(p, arg3, sizeof(target_sigset_t));
10063             }
10064         }
10065         return ret;
10066 #ifdef TARGET_NR_sigpending
10067     case TARGET_NR_sigpending:
10068         {
10069             sigset_t set;
10070             ret = get_errno(sigpending(&set));
10071             if (!is_error(ret)) {
10072                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10073                     return -TARGET_EFAULT;
10074                 host_to_target_old_sigset(p, &set);
10075                 unlock_user(p, arg1, sizeof(target_sigset_t));
10076             }
10077         }
10078         return ret;
10079 #endif
10080     case TARGET_NR_rt_sigpending:
10081         {
10082             sigset_t set;
10083 
10084             /* Yes, this check is >, not != like most. We follow the kernel's
10085              * logic and it does it like this because it implements
10086              * NR_sigpending through the same code path, and in that case
10087              * the old_sigset_t is smaller in size.
10088              */
10089             if (arg2 > sizeof(target_sigset_t)) {
10090                 return -TARGET_EINVAL;
10091             }
10092 
10093             ret = get_errno(sigpending(&set));
10094             if (!is_error(ret)) {
10095                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10096                     return -TARGET_EFAULT;
10097                 host_to_target_sigset(p, &set);
10098                 unlock_user(p, arg1, sizeof(target_sigset_t));
10099             }
10100         }
10101         return ret;
10102 #ifdef TARGET_NR_sigsuspend
10103     case TARGET_NR_sigsuspend:
10104         {
10105             sigset_t *set;
10106 
10107 #if defined(TARGET_ALPHA)
10108             TaskState *ts = get_task_state(cpu);
10109             /* target_to_host_old_sigset will bswap back */
10110             abi_ulong mask = tswapal(arg1);
10111             set = &ts->sigsuspend_mask;
10112             target_to_host_old_sigset(set, &mask);
10113 #else
10114             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10115             if (ret != 0) {
10116                 return ret;
10117             }
10118 #endif
10119             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10120             finish_sigsuspend_mask(ret);
10121         }
10122         return ret;
10123 #endif
10124     case TARGET_NR_rt_sigsuspend:
10125         {
10126             sigset_t *set;
10127 
10128             ret = process_sigsuspend_mask(&set, arg1, arg2);
10129             if (ret != 0) {
10130                 return ret;
10131             }
10132             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10133             finish_sigsuspend_mask(ret);
10134         }
10135         return ret;
10136 #ifdef TARGET_NR_rt_sigtimedwait
10137     case TARGET_NR_rt_sigtimedwait:
10138         {
10139             sigset_t set;
10140             struct timespec uts, *puts;
10141             siginfo_t uinfo;
10142 
10143             if (arg4 != sizeof(target_sigset_t)) {
10144                 return -TARGET_EINVAL;
10145             }
10146 
10147             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10148                 return -TARGET_EFAULT;
10149             target_to_host_sigset(&set, p);
10150             unlock_user(p, arg1, 0);
10151             if (arg3) {
10152                 puts = &uts;
10153                 if (target_to_host_timespec(puts, arg3)) {
10154                     return -TARGET_EFAULT;
10155                 }
10156             } else {
10157                 puts = NULL;
10158             }
10159             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10160                                                  SIGSET_T_SIZE));
10161             if (!is_error(ret)) {
10162                 if (arg2) {
10163                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10164                                   0);
10165                     if (!p) {
10166                         return -TARGET_EFAULT;
10167                     }
10168                     host_to_target_siginfo(p, &uinfo);
10169                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10170                 }
10171                 ret = host_to_target_signal(ret);
10172             }
10173         }
10174         return ret;
10175 #endif
10176 #ifdef TARGET_NR_rt_sigtimedwait_time64
10177     case TARGET_NR_rt_sigtimedwait_time64:
10178         {
10179             sigset_t set;
10180             struct timespec uts, *puts;
10181             siginfo_t uinfo;
10182 
10183             if (arg4 != sizeof(target_sigset_t)) {
10184                 return -TARGET_EINVAL;
10185             }
10186 
10187             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10188             if (!p) {
10189                 return -TARGET_EFAULT;
10190             }
10191             target_to_host_sigset(&set, p);
10192             unlock_user(p, arg1, 0);
10193             if (arg3) {
10194                 puts = &uts;
10195                 if (target_to_host_timespec64(puts, arg3)) {
10196                     return -TARGET_EFAULT;
10197                 }
10198             } else {
10199                 puts = NULL;
10200             }
10201             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10202                                                  SIGSET_T_SIZE));
10203             if (!is_error(ret)) {
10204                 if (arg2) {
10205                     p = lock_user(VERIFY_WRITE, arg2,
10206                                   sizeof(target_siginfo_t), 0);
10207                     if (!p) {
10208                         return -TARGET_EFAULT;
10209                     }
10210                     host_to_target_siginfo(p, &uinfo);
10211                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10212                 }
10213                 ret = host_to_target_signal(ret);
10214             }
10215         }
10216         return ret;
10217 #endif
10218     case TARGET_NR_rt_sigqueueinfo:
10219         {
10220             siginfo_t uinfo;
10221 
10222             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10223             if (!p) {
10224                 return -TARGET_EFAULT;
10225             }
10226             target_to_host_siginfo(&uinfo, p);
10227             unlock_user(p, arg3, 0);
10228             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10229         }
10230         return ret;
10231     case TARGET_NR_rt_tgsigqueueinfo:
10232         {
10233             siginfo_t uinfo;
10234 
10235             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10236             if (!p) {
10237                 return -TARGET_EFAULT;
10238             }
10239             target_to_host_siginfo(&uinfo, p);
10240             unlock_user(p, arg4, 0);
10241             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10242         }
10243         return ret;
10244 #ifdef TARGET_NR_sigreturn
10245     case TARGET_NR_sigreturn:
10246         if (block_signals()) {
10247             return -QEMU_ERESTARTSYS;
10248         }
10249         return do_sigreturn(cpu_env);
10250 #endif
10251     case TARGET_NR_rt_sigreturn:
10252         if (block_signals()) {
10253             return -QEMU_ERESTARTSYS;
10254         }
10255         return do_rt_sigreturn(cpu_env);
10256     case TARGET_NR_sethostname:
10257         if (!(p = lock_user_string(arg1)))
10258             return -TARGET_EFAULT;
10259         ret = get_errno(sethostname(p, arg2));
10260         unlock_user(p, arg1, 0);
10261         return ret;
10262 #ifdef TARGET_NR_setrlimit
10263     case TARGET_NR_setrlimit:
10264         {
10265             int resource = target_to_host_resource(arg1);
10266             struct target_rlimit *target_rlim;
10267             struct rlimit rlim;
10268             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10269                 return -TARGET_EFAULT;
10270             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10271             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10272             unlock_user_struct(target_rlim, arg2, 0);
10273             /*
10274              * If we just passed through resource limit settings for memory then
10275              * they would also apply to QEMU's own allocations, and QEMU will
10276              * crash or hang or die if its allocations fail. Ideally we would
10277              * track the guest allocations in QEMU and apply the limits ourselves.
10278              * For now, just tell the guest the call succeeded but don't actually
10279              * limit anything.
10280              */
10281             if (resource != RLIMIT_AS &&
10282                 resource != RLIMIT_DATA &&
10283                 resource != RLIMIT_STACK) {
10284                 return get_errno(setrlimit(resource, &rlim));
10285             } else {
10286                 return 0;
10287             }
10288         }
10289 #endif
10290 #ifdef TARGET_NR_getrlimit
10291     case TARGET_NR_getrlimit:
10292         {
10293             int resource = target_to_host_resource(arg1);
10294             struct target_rlimit *target_rlim;
10295             struct rlimit rlim;
10296 
10297             ret = get_errno(getrlimit(resource, &rlim));
10298             if (!is_error(ret)) {
10299                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10300                     return -TARGET_EFAULT;
10301                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10302                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10303                 unlock_user_struct(target_rlim, arg2, 1);
10304             }
10305         }
10306         return ret;
10307 #endif
10308     case TARGET_NR_getrusage:
10309         {
10310             struct rusage rusage;
10311             ret = get_errno(getrusage(arg1, &rusage));
10312             if (!is_error(ret)) {
10313                 ret = host_to_target_rusage(arg2, &rusage);
10314             }
10315         }
10316         return ret;
10317 #if defined(TARGET_NR_gettimeofday)
10318     case TARGET_NR_gettimeofday:
10319         {
10320             struct timeval tv;
10321             struct timezone tz;
10322 
10323             ret = get_errno(gettimeofday(&tv, &tz));
10324             if (!is_error(ret)) {
10325                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10326                     return -TARGET_EFAULT;
10327                 }
10328                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10329                     return -TARGET_EFAULT;
10330                 }
10331             }
10332         }
10333         return ret;
10334 #endif
10335 #if defined(TARGET_NR_settimeofday)
10336     case TARGET_NR_settimeofday:
10337         {
10338             struct timeval tv, *ptv = NULL;
10339             struct timezone tz, *ptz = NULL;
10340 
10341             if (arg1) {
10342                 if (copy_from_user_timeval(&tv, arg1)) {
10343                     return -TARGET_EFAULT;
10344                 }
10345                 ptv = &tv;
10346             }
10347 
10348             if (arg2) {
10349                 if (copy_from_user_timezone(&tz, arg2)) {
10350                     return -TARGET_EFAULT;
10351                 }
10352                 ptz = &tz;
10353             }
10354 
10355             return get_errno(settimeofday(ptv, ptz));
10356         }
10357 #endif
10358 #if defined(TARGET_NR_select)
10359     case TARGET_NR_select:
10360 #if defined(TARGET_WANT_NI_OLD_SELECT)
10361         /* some architectures used to have old_select here
10362          * but now ENOSYS it.
10363          */
10364         ret = -TARGET_ENOSYS;
10365 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10366         ret = do_old_select(arg1);
10367 #else
10368         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10369 #endif
10370         return ret;
10371 #endif
10372 #ifdef TARGET_NR_pselect6
10373     case TARGET_NR_pselect6:
10374         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10375 #endif
10376 #ifdef TARGET_NR_pselect6_time64
10377     case TARGET_NR_pselect6_time64:
10378         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10379 #endif
10380 #ifdef TARGET_NR_symlink
10381     case TARGET_NR_symlink:
10382         {
10383             void *p2;
10384             p = lock_user_string(arg1);
10385             p2 = lock_user_string(arg2);
10386             if (!p || !p2)
10387                 ret = -TARGET_EFAULT;
10388             else
10389                 ret = get_errno(symlink(p, p2));
10390             unlock_user(p2, arg2, 0);
10391             unlock_user(p, arg1, 0);
10392         }
10393         return ret;
10394 #endif
10395 #if defined(TARGET_NR_symlinkat)
10396     case TARGET_NR_symlinkat:
10397         {
10398             void *p2;
10399             p  = lock_user_string(arg1);
10400             p2 = lock_user_string(arg3);
10401             if (!p || !p2)
10402                 ret = -TARGET_EFAULT;
10403             else
10404                 ret = get_errno(symlinkat(p, arg2, p2));
10405             unlock_user(p2, arg3, 0);
10406             unlock_user(p, arg1, 0);
10407         }
10408         return ret;
10409 #endif
10410 #ifdef TARGET_NR_readlink
10411     case TARGET_NR_readlink:
10412         {
10413             void *p2;
10414             p = lock_user_string(arg1);
10415             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10416             ret = get_errno(do_guest_readlink(p, p2, arg3));
10417             unlock_user(p2, arg2, ret);
10418             unlock_user(p, arg1, 0);
10419         }
10420         return ret;
10421 #endif
10422 #if defined(TARGET_NR_readlinkat)
10423     case TARGET_NR_readlinkat:
10424         {
10425             void *p2;
10426             p  = lock_user_string(arg2);
10427             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10428             if (!p || !p2) {
10429                 ret = -TARGET_EFAULT;
10430             } else if (!arg4) {
10431                 /* Short circuit this for the magic exe check. */
10432                 ret = -TARGET_EINVAL;
10433             } else if (is_proc_myself((const char *)p, "exe")) {
10434                 /*
10435                  * Don't worry about sign mismatch as earlier mapping
10436                  * logic would have thrown a bad address error.
10437                  */
10438                 ret = MIN(strlen(exec_path), arg4);
10439                 /* We cannot NUL terminate the string. */
10440                 memcpy(p2, exec_path, ret);
10441             } else {
10442                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10443             }
10444             unlock_user(p2, arg3, ret);
10445             unlock_user(p, arg2, 0);
10446         }
10447         return ret;
10448 #endif
10449 #ifdef TARGET_NR_swapon
10450     case TARGET_NR_swapon:
10451         if (!(p = lock_user_string(arg1)))
10452             return -TARGET_EFAULT;
10453         ret = get_errno(swapon(p, arg2));
10454         unlock_user(p, arg1, 0);
10455         return ret;
10456 #endif
10457     case TARGET_NR_reboot:
10458         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10459            /* arg4 must be ignored in all other cases */
10460            p = lock_user_string(arg4);
10461            if (!p) {
10462                return -TARGET_EFAULT;
10463            }
10464            ret = get_errno(reboot(arg1, arg2, arg3, p));
10465            unlock_user(p, arg4, 0);
10466         } else {
10467            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10468         }
10469         return ret;
10470 #ifdef TARGET_NR_mmap
10471     case TARGET_NR_mmap:
10472 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10473     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10474     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10475     || defined(TARGET_S390X)
10476         {
10477             abi_ulong *v;
10478             abi_ulong v1, v2, v3, v4, v5, v6;
10479             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10480                 return -TARGET_EFAULT;
10481             v1 = tswapal(v[0]);
10482             v2 = tswapal(v[1]);
10483             v3 = tswapal(v[2]);
10484             v4 = tswapal(v[3]);
10485             v5 = tswapal(v[4]);
10486             v6 = tswapal(v[5]);
10487             unlock_user(v, arg1, 0);
10488             return do_mmap(v1, v2, v3, v4, v5, v6);
10489         }
10490 #else
10491         /* mmap pointers are always untagged */
10492         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10493 #endif
10494 #endif
10495 #ifdef TARGET_NR_mmap2
10496     case TARGET_NR_mmap2:
10497 #ifndef MMAP_SHIFT
10498 #define MMAP_SHIFT 12
10499 #endif
10500         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10501                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10502 #endif
10503     case TARGET_NR_munmap:
10504         arg1 = cpu_untagged_addr(cpu, arg1);
10505         return get_errno(target_munmap(arg1, arg2));
10506     case TARGET_NR_mprotect:
10507         arg1 = cpu_untagged_addr(cpu, arg1);
10508         {
10509             TaskState *ts = get_task_state(cpu);
10510             /* Special hack to detect libc making the stack executable.  */
10511             if ((arg3 & PROT_GROWSDOWN)
10512                 && arg1 >= ts->info->stack_limit
10513                 && arg1 <= ts->info->start_stack) {
10514                 arg3 &= ~PROT_GROWSDOWN;
10515                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10516                 arg1 = ts->info->stack_limit;
10517             }
10518         }
10519         return get_errno(target_mprotect(arg1, arg2, arg3));
10520 #ifdef TARGET_NR_mremap
10521     case TARGET_NR_mremap:
10522         arg1 = cpu_untagged_addr(cpu, arg1);
10523         /* mremap new_addr (arg5) is always untagged */
10524         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10525 #endif
10526         /* ??? msync/mlock/munlock are broken for softmmu.  */
10527 #ifdef TARGET_NR_msync
10528     case TARGET_NR_msync:
10529         return get_errno(msync(g2h(cpu, arg1), arg2,
10530                                target_to_host_msync_arg(arg3)));
10531 #endif
10532 #ifdef TARGET_NR_mlock
10533     case TARGET_NR_mlock:
10534         return get_errno(mlock(g2h(cpu, arg1), arg2));
10535 #endif
10536 #ifdef TARGET_NR_munlock
10537     case TARGET_NR_munlock:
10538         return get_errno(munlock(g2h(cpu, arg1), arg2));
10539 #endif
10540 #ifdef TARGET_NR_mlockall
10541     case TARGET_NR_mlockall:
10542         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10543 #endif
10544 #ifdef TARGET_NR_munlockall
10545     case TARGET_NR_munlockall:
10546         return get_errno(munlockall());
10547 #endif
10548 #ifdef TARGET_NR_truncate
10549     case TARGET_NR_truncate:
10550         if (!(p = lock_user_string(arg1)))
10551             return -TARGET_EFAULT;
10552         ret = get_errno(truncate(p, arg2));
10553         unlock_user(p, arg1, 0);
10554         return ret;
10555 #endif
10556 #ifdef TARGET_NR_ftruncate
10557     case TARGET_NR_ftruncate:
10558         return get_errno(ftruncate(arg1, arg2));
10559 #endif
10560     case TARGET_NR_fchmod:
10561         return get_errno(fchmod(arg1, arg2));
10562 #if defined(TARGET_NR_fchmodat)
10563     case TARGET_NR_fchmodat:
10564         if (!(p = lock_user_string(arg2)))
10565             return -TARGET_EFAULT;
10566         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10567         unlock_user(p, arg2, 0);
10568         return ret;
10569 #endif
10570     case TARGET_NR_getpriority:
10571         /* Note that negative values are valid for getpriority, so we must
10572            differentiate based on errno settings.  */
10573         errno = 0;
10574         ret = getpriority(arg1, arg2);
10575         if (ret == -1 && errno != 0) {
10576             return -host_to_target_errno(errno);
10577         }
10578 #ifdef TARGET_ALPHA
10579         /* Return value is the unbiased priority.  Signal no error.  */
10580         cpu_env->ir[IR_V0] = 0;
10581 #else
10582         /* Return value is a biased priority to avoid negative numbers.  */
10583         ret = 20 - ret;
10584 #endif
10585         return ret;
10586     case TARGET_NR_setpriority:
10587         return get_errno(setpriority(arg1, arg2, arg3));
10588 #ifdef TARGET_NR_statfs
10589     case TARGET_NR_statfs:
10590         if (!(p = lock_user_string(arg1))) {
10591             return -TARGET_EFAULT;
10592         }
10593         ret = get_errno(statfs(path(p), &stfs));
10594         unlock_user(p, arg1, 0);
10595     convert_statfs:
10596         if (!is_error(ret)) {
10597             struct target_statfs *target_stfs;
10598 
10599             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10600                 return -TARGET_EFAULT;
10601             __put_user(stfs.f_type, &target_stfs->f_type);
10602             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10603             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10604             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10605             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10606             __put_user(stfs.f_files, &target_stfs->f_files);
10607             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10608             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10609             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10610             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10611             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10612 #ifdef _STATFS_F_FLAGS
10613             __put_user(stfs.f_flags, &target_stfs->f_flags);
10614 #else
10615             __put_user(0, &target_stfs->f_flags);
10616 #endif
10617             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10618             unlock_user_struct(target_stfs, arg2, 1);
10619         }
10620         return ret;
10621 #endif
10622 #ifdef TARGET_NR_fstatfs
10623     case TARGET_NR_fstatfs:
10624         ret = get_errno(fstatfs(arg1, &stfs));
10625         goto convert_statfs;
10626 #endif
10627 #ifdef TARGET_NR_statfs64
10628     case TARGET_NR_statfs64:
10629         if (!(p = lock_user_string(arg1))) {
10630             return -TARGET_EFAULT;
10631         }
10632         ret = get_errno(statfs(path(p), &stfs));
10633         unlock_user(p, arg1, 0);
10634     convert_statfs64:
10635         if (!is_error(ret)) {
10636             struct target_statfs64 *target_stfs;
10637 
10638             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10639                 return -TARGET_EFAULT;
10640             __put_user(stfs.f_type, &target_stfs->f_type);
10641             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10642             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10643             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10644             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10645             __put_user(stfs.f_files, &target_stfs->f_files);
10646             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10647             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10648             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10649             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10650             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10651 #ifdef _STATFS_F_FLAGS
10652             __put_user(stfs.f_flags, &target_stfs->f_flags);
10653 #else
10654             __put_user(0, &target_stfs->f_flags);
10655 #endif
10656             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10657             unlock_user_struct(target_stfs, arg3, 1);
10658         }
10659         return ret;
10660     case TARGET_NR_fstatfs64:
10661         ret = get_errno(fstatfs(arg1, &stfs));
10662         goto convert_statfs64;
10663 #endif
10664 #ifdef TARGET_NR_socketcall
10665     case TARGET_NR_socketcall:
10666         return do_socketcall(arg1, arg2);
10667 #endif
10668 #ifdef TARGET_NR_accept
10669     case TARGET_NR_accept:
10670         return do_accept4(arg1, arg2, arg3, 0);
10671 #endif
10672 #ifdef TARGET_NR_accept4
10673     case TARGET_NR_accept4:
10674         return do_accept4(arg1, arg2, arg3, arg4);
10675 #endif
10676 #ifdef TARGET_NR_bind
10677     case TARGET_NR_bind:
10678         return do_bind(arg1, arg2, arg3);
10679 #endif
10680 #ifdef TARGET_NR_connect
10681     case TARGET_NR_connect:
10682         return do_connect(arg1, arg2, arg3);
10683 #endif
10684 #ifdef TARGET_NR_getpeername
10685     case TARGET_NR_getpeername:
10686         return do_getpeername(arg1, arg2, arg3);
10687 #endif
10688 #ifdef TARGET_NR_getsockname
10689     case TARGET_NR_getsockname:
10690         return do_getsockname(arg1, arg2, arg3);
10691 #endif
10692 #ifdef TARGET_NR_getsockopt
10693     case TARGET_NR_getsockopt:
10694         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10695 #endif
10696 #ifdef TARGET_NR_listen
10697     case TARGET_NR_listen:
10698         return get_errno(listen(arg1, arg2));
10699 #endif
10700 #ifdef TARGET_NR_recv
10701     case TARGET_NR_recv:
10702         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10703 #endif
10704 #ifdef TARGET_NR_recvfrom
10705     case TARGET_NR_recvfrom:
10706         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10707 #endif
10708 #ifdef TARGET_NR_recvmsg
10709     case TARGET_NR_recvmsg:
10710         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10711 #endif
10712 #ifdef TARGET_NR_send
10713     case TARGET_NR_send:
10714         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10715 #endif
10716 #ifdef TARGET_NR_sendmsg
10717     case TARGET_NR_sendmsg:
10718         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10719 #endif
10720 #ifdef TARGET_NR_sendmmsg
10721     case TARGET_NR_sendmmsg:
10722         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10723 #endif
10724 #ifdef TARGET_NR_recvmmsg
10725     case TARGET_NR_recvmmsg:
10726         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10727 #endif
10728 #ifdef TARGET_NR_sendto
10729     case TARGET_NR_sendto:
10730         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10731 #endif
10732 #ifdef TARGET_NR_shutdown
10733     case TARGET_NR_shutdown:
10734         return get_errno(shutdown(arg1, arg2));
10735 #endif
10736 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10737     case TARGET_NR_getrandom:
10738         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10739         if (!p) {
10740             return -TARGET_EFAULT;
10741         }
10742         ret = get_errno(getrandom(p, arg2, arg3));
10743         unlock_user(p, arg1, ret);
10744         return ret;
10745 #endif
10746 #ifdef TARGET_NR_socket
10747     case TARGET_NR_socket:
10748         return do_socket(arg1, arg2, arg3);
10749 #endif
10750 #ifdef TARGET_NR_socketpair
10751     case TARGET_NR_socketpair:
10752         return do_socketpair(arg1, arg2, arg3, arg4);
10753 #endif
10754 #ifdef TARGET_NR_setsockopt
10755     case TARGET_NR_setsockopt:
10756         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10757 #endif
10758 #if defined(TARGET_NR_syslog)
10759     case TARGET_NR_syslog:
10760         {
10761             int len = arg2;
10762 
10763             switch (arg1) {
10764             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10765             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10766             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10767             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10768             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10769             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10770             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10771             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10772                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10773             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10774             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10775             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10776                 {
10777                     if (len < 0) {
10778                         return -TARGET_EINVAL;
10779                     }
10780                     if (len == 0) {
10781                         return 0;
10782                     }
10783                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10784                     if (!p) {
10785                         return -TARGET_EFAULT;
10786                     }
10787                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10788                     unlock_user(p, arg2, arg3);
10789                 }
10790                 return ret;
10791             default:
10792                 return -TARGET_EINVAL;
10793             }
10794         }
10795         break;
10796 #endif
10797     case TARGET_NR_setitimer:
10798         {
10799             struct itimerval value, ovalue, *pvalue;
10800 
10801             if (arg2) {
10802                 pvalue = &value;
10803                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10804                     || copy_from_user_timeval(&pvalue->it_value,
10805                                               arg2 + sizeof(struct target_timeval)))
10806                     return -TARGET_EFAULT;
10807             } else {
10808                 pvalue = NULL;
10809             }
10810             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10811             if (!is_error(ret) && arg3) {
10812                 if (copy_to_user_timeval(arg3,
10813                                          &ovalue.it_interval)
10814                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10815                                             &ovalue.it_value))
10816                     return -TARGET_EFAULT;
10817             }
10818         }
10819         return ret;
10820     case TARGET_NR_getitimer:
10821         {
10822             struct itimerval value;
10823 
10824             ret = get_errno(getitimer(arg1, &value));
10825             if (!is_error(ret) && arg2) {
10826                 if (copy_to_user_timeval(arg2,
10827                                          &value.it_interval)
10828                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10829                                             &value.it_value))
10830                     return -TARGET_EFAULT;
10831             }
10832         }
10833         return ret;
10834 #ifdef TARGET_NR_stat
10835     case TARGET_NR_stat:
10836         if (!(p = lock_user_string(arg1))) {
10837             return -TARGET_EFAULT;
10838         }
10839         ret = get_errno(stat(path(p), &st));
10840         unlock_user(p, arg1, 0);
10841         goto do_stat;
10842 #endif
10843 #ifdef TARGET_NR_lstat
10844     case TARGET_NR_lstat:
10845         if (!(p = lock_user_string(arg1))) {
10846             return -TARGET_EFAULT;
10847         }
10848         ret = get_errno(lstat(path(p), &st));
10849         unlock_user(p, arg1, 0);
10850         goto do_stat;
10851 #endif
10852 #ifdef TARGET_NR_fstat
10853     case TARGET_NR_fstat:
10854         {
10855             ret = get_errno(fstat(arg1, &st));
10856 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10857         do_stat:
10858 #endif
10859             if (!is_error(ret)) {
10860                 struct target_stat *target_st;
10861 
10862                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10863                     return -TARGET_EFAULT;
10864                 memset(target_st, 0, sizeof(*target_st));
10865                 __put_user(st.st_dev, &target_st->st_dev);
10866                 __put_user(st.st_ino, &target_st->st_ino);
10867                 __put_user(st.st_mode, &target_st->st_mode);
10868                 __put_user(st.st_uid, &target_st->st_uid);
10869                 __put_user(st.st_gid, &target_st->st_gid);
10870                 __put_user(st.st_nlink, &target_st->st_nlink);
10871                 __put_user(st.st_rdev, &target_st->st_rdev);
10872                 __put_user(st.st_size, &target_st->st_size);
10873                 __put_user(st.st_blksize, &target_st->st_blksize);
10874                 __put_user(st.st_blocks, &target_st->st_blocks);
10875                 __put_user(st.st_atime, &target_st->target_st_atime);
10876                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10877                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10878 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10879                 __put_user(st.st_atim.tv_nsec,
10880                            &target_st->target_st_atime_nsec);
10881                 __put_user(st.st_mtim.tv_nsec,
10882                            &target_st->target_st_mtime_nsec);
10883                 __put_user(st.st_ctim.tv_nsec,
10884                            &target_st->target_st_ctime_nsec);
10885 #endif
10886                 unlock_user_struct(target_st, arg2, 1);
10887             }
10888         }
10889         return ret;
10890 #endif
10891     case TARGET_NR_vhangup:
10892         return get_errno(vhangup());
10893 #ifdef TARGET_NR_syscall
10894     case TARGET_NR_syscall:
10895         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10896                           arg6, arg7, arg8, 0);
10897 #endif
10898 #if defined(TARGET_NR_wait4)
10899     case TARGET_NR_wait4:
10900         {
10901             int status;
10902             abi_long status_ptr = arg2;
10903             struct rusage rusage, *rusage_ptr;
10904             abi_ulong target_rusage = arg4;
10905             abi_long rusage_err;
10906             if (target_rusage)
10907                 rusage_ptr = &rusage;
10908             else
10909                 rusage_ptr = NULL;
10910             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10911             if (!is_error(ret)) {
10912                 if (status_ptr && ret) {
10913                     status = host_to_target_waitstatus(status);
10914                     if (put_user_s32(status, status_ptr))
10915                         return -TARGET_EFAULT;
10916                 }
10917                 if (target_rusage) {
10918                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10919                     if (rusage_err) {
10920                         ret = rusage_err;
10921                     }
10922                 }
10923             }
10924         }
10925         return ret;
10926 #endif
10927 #ifdef TARGET_NR_swapoff
10928     case TARGET_NR_swapoff:
10929         if (!(p = lock_user_string(arg1)))
10930             return -TARGET_EFAULT;
10931         ret = get_errno(swapoff(p));
10932         unlock_user(p, arg1, 0);
10933         return ret;
10934 #endif
10935     case TARGET_NR_sysinfo:
10936         {
10937             struct target_sysinfo *target_value;
10938             struct sysinfo value;
10939             ret = get_errno(sysinfo(&value));
10940             if (!is_error(ret) && arg1)
10941             {
10942                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10943                     return -TARGET_EFAULT;
10944                 __put_user(value.uptime, &target_value->uptime);
10945                 __put_user(value.loads[0], &target_value->loads[0]);
10946                 __put_user(value.loads[1], &target_value->loads[1]);
10947                 __put_user(value.loads[2], &target_value->loads[2]);
10948                 __put_user(value.totalram, &target_value->totalram);
10949                 __put_user(value.freeram, &target_value->freeram);
10950                 __put_user(value.sharedram, &target_value->sharedram);
10951                 __put_user(value.bufferram, &target_value->bufferram);
10952                 __put_user(value.totalswap, &target_value->totalswap);
10953                 __put_user(value.freeswap, &target_value->freeswap);
10954                 __put_user(value.procs, &target_value->procs);
10955                 __put_user(value.totalhigh, &target_value->totalhigh);
10956                 __put_user(value.freehigh, &target_value->freehigh);
10957                 __put_user(value.mem_unit, &target_value->mem_unit);
10958                 unlock_user_struct(target_value, arg1, 1);
10959             }
10960         }
10961         return ret;
10962 #ifdef TARGET_NR_ipc
10963     case TARGET_NR_ipc:
10964         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10965 #endif
10966 #ifdef TARGET_NR_semget
10967     case TARGET_NR_semget:
10968         return get_errno(semget(arg1, arg2, arg3));
10969 #endif
10970 #ifdef TARGET_NR_semop
10971     case TARGET_NR_semop:
10972         return do_semtimedop(arg1, arg2, arg3, 0, false);
10973 #endif
10974 #ifdef TARGET_NR_semtimedop
10975     case TARGET_NR_semtimedop:
10976         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10977 #endif
10978 #ifdef TARGET_NR_semtimedop_time64
10979     case TARGET_NR_semtimedop_time64:
10980         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10981 #endif
10982 #ifdef TARGET_NR_semctl
10983     case TARGET_NR_semctl:
10984         return do_semctl(arg1, arg2, arg3, arg4);
10985 #endif
10986 #ifdef TARGET_NR_msgctl
10987     case TARGET_NR_msgctl:
10988         return do_msgctl(arg1, arg2, arg3);
10989 #endif
10990 #ifdef TARGET_NR_msgget
10991     case TARGET_NR_msgget:
10992         return get_errno(msgget(arg1, arg2));
10993 #endif
10994 #ifdef TARGET_NR_msgrcv
10995     case TARGET_NR_msgrcv:
10996         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10997 #endif
10998 #ifdef TARGET_NR_msgsnd
10999     case TARGET_NR_msgsnd:
11000         return do_msgsnd(arg1, arg2, arg3, arg4);
11001 #endif
11002 #ifdef TARGET_NR_shmget
11003     case TARGET_NR_shmget:
11004         return get_errno(shmget(arg1, arg2, arg3));
11005 #endif
11006 #ifdef TARGET_NR_shmctl
11007     case TARGET_NR_shmctl:
11008         return do_shmctl(arg1, arg2, arg3);
11009 #endif
11010 #ifdef TARGET_NR_shmat
11011     case TARGET_NR_shmat:
11012         return target_shmat(cpu_env, arg1, arg2, arg3);
11013 #endif
11014 #ifdef TARGET_NR_shmdt
11015     case TARGET_NR_shmdt:
11016         return target_shmdt(arg1);
11017 #endif
11018     case TARGET_NR_fsync:
11019         return get_errno(fsync(arg1));
11020     case TARGET_NR_clone:
11021         /* Linux manages to have three different orderings for its
11022          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11023          * match the kernel's CONFIG_CLONE_* settings.
11024          * Microblaze is further special in that it uses a sixth
11025          * implicit argument to clone for the TLS pointer.
11026          */
11027 #if defined(TARGET_MICROBLAZE)
11028         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11029 #elif defined(TARGET_CLONE_BACKWARDS)
11030         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11031 #elif defined(TARGET_CLONE_BACKWARDS2)
11032         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11033 #else
11034         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11035 #endif
11036         return ret;
11037 #ifdef __NR_exit_group
11038         /* new thread calls */
11039     case TARGET_NR_exit_group:
11040         preexit_cleanup(cpu_env, arg1);
11041         return get_errno(exit_group(arg1));
11042 #endif
11043     case TARGET_NR_setdomainname:
11044         if (!(p = lock_user_string(arg1)))
11045             return -TARGET_EFAULT;
11046         ret = get_errno(setdomainname(p, arg2));
11047         unlock_user(p, arg1, 0);
11048         return ret;
11049     case TARGET_NR_uname:
11050         /* no need to transcode because we use the linux syscall */
11051         {
11052             struct new_utsname * buf;
11053 
11054             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11055                 return -TARGET_EFAULT;
11056             ret = get_errno(sys_uname(buf));
11057             if (!is_error(ret)) {
11058                 /* Overwrite the native machine name with whatever is being
11059                    emulated. */
11060                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11061                           sizeof(buf->machine));
11062                 /* Allow the user to override the reported release.  */
11063                 if (qemu_uname_release && *qemu_uname_release) {
11064                     g_strlcpy(buf->release, qemu_uname_release,
11065                               sizeof(buf->release));
11066                 }
11067             }
11068             unlock_user_struct(buf, arg1, 1);
11069         }
11070         return ret;
11071 #ifdef TARGET_I386
11072     case TARGET_NR_modify_ldt:
11073         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11074 #if !defined(TARGET_X86_64)
11075     case TARGET_NR_vm86:
11076         return do_vm86(cpu_env, arg1, arg2);
11077 #endif
11078 #endif
11079 #if defined(TARGET_NR_adjtimex)
11080     case TARGET_NR_adjtimex:
11081         {
11082             struct timex host_buf;
11083 
11084             if (target_to_host_timex(&host_buf, arg1) != 0) {
11085                 return -TARGET_EFAULT;
11086             }
11087             ret = get_errno(adjtimex(&host_buf));
11088             if (!is_error(ret)) {
11089                 if (host_to_target_timex(arg1, &host_buf) != 0) {
11090                     return -TARGET_EFAULT;
11091                 }
11092             }
11093         }
11094         return ret;
11095 #endif
11096 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11097     case TARGET_NR_clock_adjtime:
11098         {
11099             struct timex htx;
11100 
11101             if (target_to_host_timex(&htx, arg2) != 0) {
11102                 return -TARGET_EFAULT;
11103             }
11104             ret = get_errno(clock_adjtime(arg1, &htx));
11105             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11106                 return -TARGET_EFAULT;
11107             }
11108         }
11109         return ret;
11110 #endif
11111 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11112     case TARGET_NR_clock_adjtime64:
11113         {
11114             struct timex htx;
11115 
11116             if (target_to_host_timex64(&htx, arg2) != 0) {
11117                 return -TARGET_EFAULT;
11118             }
11119             ret = get_errno(clock_adjtime(arg1, &htx));
11120             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11121                     return -TARGET_EFAULT;
11122             }
11123         }
11124         return ret;
11125 #endif
11126     case TARGET_NR_getpgid:
11127         return get_errno(getpgid(arg1));
11128     case TARGET_NR_fchdir:
11129         return get_errno(fchdir(arg1));
11130     case TARGET_NR_personality:
11131         return get_errno(personality(arg1));
11132 #ifdef TARGET_NR__llseek /* Not on alpha */
11133     case TARGET_NR__llseek:
11134         {
11135             int64_t res;
11136 #if !defined(__NR_llseek)
11137             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11138             if (res == -1) {
11139                 ret = get_errno(res);
11140             } else {
11141                 ret = 0;
11142             }
11143 #else
11144             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11145 #endif
11146             if ((ret == 0) && put_user_s64(res, arg4)) {
11147                 return -TARGET_EFAULT;
11148             }
11149         }
11150         return ret;
11151 #endif
11152 #ifdef TARGET_NR_getdents
11153     case TARGET_NR_getdents:
11154         return do_getdents(arg1, arg2, arg3);
11155 #endif /* TARGET_NR_getdents */
11156 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11157     case TARGET_NR_getdents64:
11158         return do_getdents64(arg1, arg2, arg3);
11159 #endif /* TARGET_NR_getdents64 */
11160 #if defined(TARGET_NR__newselect)
11161     case TARGET_NR__newselect:
11162         return do_select(arg1, arg2, arg3, arg4, arg5);
11163 #endif
11164 #ifdef TARGET_NR_poll
11165     case TARGET_NR_poll:
11166         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11167 #endif
11168 #ifdef TARGET_NR_ppoll
11169     case TARGET_NR_ppoll:
11170         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11171 #endif
11172 #ifdef TARGET_NR_ppoll_time64
11173     case TARGET_NR_ppoll_time64:
11174         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11175 #endif
11176     case TARGET_NR_flock:
11177         /* NOTE: the flock constant seems to be the same for every
11178            Linux platform */
11179         return get_errno(safe_flock(arg1, arg2));
11180     case TARGET_NR_readv:
11181         {
11182             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11183             if (vec != NULL) {
11184                 ret = get_errno(safe_readv(arg1, vec, arg3));
11185                 unlock_iovec(vec, arg2, arg3, 1);
11186             } else {
11187                 ret = -host_to_target_errno(errno);
11188             }
11189         }
11190         return ret;
11191     case TARGET_NR_writev:
11192         {
11193             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11194             if (vec != NULL) {
11195                 ret = get_errno(safe_writev(arg1, vec, arg3));
11196                 unlock_iovec(vec, arg2, arg3, 0);
11197             } else {
11198                 ret = -host_to_target_errno(errno);
11199             }
11200         }
11201         return ret;
11202 #if defined(TARGET_NR_preadv)
11203     case TARGET_NR_preadv:
11204         {
11205             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11206             if (vec != NULL) {
11207                 unsigned long low, high;
11208 
11209                 target_to_host_low_high(arg4, arg5, &low, &high);
11210                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11211                 unlock_iovec(vec, arg2, arg3, 1);
11212             } else {
11213                 ret = -host_to_target_errno(errno);
11214            }
11215         }
11216         return ret;
11217 #endif
11218 #if defined(TARGET_NR_pwritev)
11219     case TARGET_NR_pwritev:
11220         {
11221             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11222             if (vec != NULL) {
11223                 unsigned long low, high;
11224 
11225                 target_to_host_low_high(arg4, arg5, &low, &high);
11226                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11227                 unlock_iovec(vec, arg2, arg3, 0);
11228             } else {
11229                 ret = -host_to_target_errno(errno);
11230            }
11231         }
11232         return ret;
11233 #endif
11234     case TARGET_NR_getsid:
11235         return get_errno(getsid(arg1));
11236 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11237     case TARGET_NR_fdatasync:
11238         return get_errno(fdatasync(arg1));
11239 #endif
11240     case TARGET_NR_sched_getaffinity:
11241         {
11242             unsigned int mask_size;
11243             unsigned long *mask;
11244 
11245             /*
11246              * sched_getaffinity needs multiples of ulong, so need to take
11247              * care of mismatches between target ulong and host ulong sizes.
11248              */
11249             if (arg2 & (sizeof(abi_ulong) - 1)) {
11250                 return -TARGET_EINVAL;
11251             }
11252             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11253 
11254             mask = alloca(mask_size);
11255             memset(mask, 0, mask_size);
11256             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11257 
11258             if (!is_error(ret)) {
11259                 if (ret > arg2) {
11260                     /* More data returned than the caller's buffer will fit.
11261                      * This only happens if sizeof(abi_long) < sizeof(long)
11262                      * and the caller passed us a buffer holding an odd number
11263                      * of abi_longs. If the host kernel is actually using the
11264                      * extra 4 bytes then fail EINVAL; otherwise we can just
11265                      * ignore them and only copy the interesting part.
11266                      */
11267                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11268                     if (numcpus > arg2 * 8) {
11269                         return -TARGET_EINVAL;
11270                     }
11271                     ret = arg2;
11272                 }
11273 
11274                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11275                     return -TARGET_EFAULT;
11276                 }
11277             }
11278         }
11279         return ret;
11280     case TARGET_NR_sched_setaffinity:
11281         {
11282             unsigned int mask_size;
11283             unsigned long *mask;
11284 
11285             /*
11286              * sched_setaffinity needs multiples of ulong, so need to take
11287              * care of mismatches between target ulong and host ulong sizes.
11288              */
11289             if (arg2 & (sizeof(abi_ulong) - 1)) {
11290                 return -TARGET_EINVAL;
11291             }
11292             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11293             mask = alloca(mask_size);
11294 
11295             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11296             if (ret) {
11297                 return ret;
11298             }
11299 
11300             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11301         }
11302     case TARGET_NR_getcpu:
11303         {
11304             unsigned cpuid, node;
11305             ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11306                                        arg2 ? &node : NULL,
11307                                        NULL));
11308             if (is_error(ret)) {
11309                 return ret;
11310             }
11311             if (arg1 && put_user_u32(cpuid, arg1)) {
11312                 return -TARGET_EFAULT;
11313             }
11314             if (arg2 && put_user_u32(node, arg2)) {
11315                 return -TARGET_EFAULT;
11316             }
11317         }
11318         return ret;
11319     case TARGET_NR_sched_setparam:
11320         {
11321             struct target_sched_param *target_schp;
11322             struct sched_param schp;
11323 
11324             if (arg2 == 0) {
11325                 return -TARGET_EINVAL;
11326             }
11327             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11328                 return -TARGET_EFAULT;
11329             }
11330             schp.sched_priority = tswap32(target_schp->sched_priority);
11331             unlock_user_struct(target_schp, arg2, 0);
11332             return get_errno(sys_sched_setparam(arg1, &schp));
11333         }
11334     case TARGET_NR_sched_getparam:
11335         {
11336             struct target_sched_param *target_schp;
11337             struct sched_param schp;
11338 
11339             if (arg2 == 0) {
11340                 return -TARGET_EINVAL;
11341             }
11342             ret = get_errno(sys_sched_getparam(arg1, &schp));
11343             if (!is_error(ret)) {
11344                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11345                     return -TARGET_EFAULT;
11346                 }
11347                 target_schp->sched_priority = tswap32(schp.sched_priority);
11348                 unlock_user_struct(target_schp, arg2, 1);
11349             }
11350         }
11351         return ret;
11352     case TARGET_NR_sched_setscheduler:
11353         {
11354             struct target_sched_param *target_schp;
11355             struct sched_param schp;
11356             if (arg3 == 0) {
11357                 return -TARGET_EINVAL;
11358             }
11359             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11360                 return -TARGET_EFAULT;
11361             }
11362             schp.sched_priority = tswap32(target_schp->sched_priority);
11363             unlock_user_struct(target_schp, arg3, 0);
11364             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11365         }
11366     case TARGET_NR_sched_getscheduler:
11367         return get_errno(sys_sched_getscheduler(arg1));
11368     case TARGET_NR_sched_getattr:
11369         {
11370             struct target_sched_attr *target_scha;
11371             struct sched_attr scha;
11372             if (arg2 == 0) {
11373                 return -TARGET_EINVAL;
11374             }
11375             if (arg3 > sizeof(scha)) {
11376                 arg3 = sizeof(scha);
11377             }
11378             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11379             if (!is_error(ret)) {
11380                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11381                 if (!target_scha) {
11382                     return -TARGET_EFAULT;
11383                 }
11384                 target_scha->size = tswap32(scha.size);
11385                 target_scha->sched_policy = tswap32(scha.sched_policy);
11386                 target_scha->sched_flags = tswap64(scha.sched_flags);
11387                 target_scha->sched_nice = tswap32(scha.sched_nice);
11388                 target_scha->sched_priority = tswap32(scha.sched_priority);
11389                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11390                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11391                 target_scha->sched_period = tswap64(scha.sched_period);
11392                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11393                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11394                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11395                 }
11396                 unlock_user(target_scha, arg2, arg3);
11397             }
11398             return ret;
11399         }
11400     case TARGET_NR_sched_setattr:
11401         {
11402             struct target_sched_attr *target_scha;
11403             struct sched_attr scha;
11404             uint32_t size;
11405             int zeroed;
11406             if (arg2 == 0) {
11407                 return -TARGET_EINVAL;
11408             }
11409             if (get_user_u32(size, arg2)) {
11410                 return -TARGET_EFAULT;
11411             }
11412             if (!size) {
11413                 size = offsetof(struct target_sched_attr, sched_util_min);
11414             }
11415             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11416                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11417                     return -TARGET_EFAULT;
11418                 }
11419                 return -TARGET_E2BIG;
11420             }
11421 
11422             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11423             if (zeroed < 0) {
11424                 return zeroed;
11425             } else if (zeroed == 0) {
11426                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11427                     return -TARGET_EFAULT;
11428                 }
11429                 return -TARGET_E2BIG;
11430             }
11431             if (size > sizeof(struct target_sched_attr)) {
11432                 size = sizeof(struct target_sched_attr);
11433             }
11434 
11435             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11436             if (!target_scha) {
11437                 return -TARGET_EFAULT;
11438             }
11439             scha.size = size;
11440             scha.sched_policy = tswap32(target_scha->sched_policy);
11441             scha.sched_flags = tswap64(target_scha->sched_flags);
11442             scha.sched_nice = tswap32(target_scha->sched_nice);
11443             scha.sched_priority = tswap32(target_scha->sched_priority);
11444             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11445             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11446             scha.sched_period = tswap64(target_scha->sched_period);
11447             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11448                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11449                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11450             }
11451             unlock_user(target_scha, arg2, 0);
11452             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11453         }
11454     case TARGET_NR_sched_yield:
11455         return get_errno(sched_yield());
11456     case TARGET_NR_sched_get_priority_max:
11457         return get_errno(sched_get_priority_max(arg1));
11458     case TARGET_NR_sched_get_priority_min:
11459         return get_errno(sched_get_priority_min(arg1));
11460 #ifdef TARGET_NR_sched_rr_get_interval
11461     case TARGET_NR_sched_rr_get_interval:
11462         {
11463             struct timespec ts;
11464             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11465             if (!is_error(ret)) {
11466                 ret = host_to_target_timespec(arg2, &ts);
11467             }
11468         }
11469         return ret;
11470 #endif
11471 #ifdef TARGET_NR_sched_rr_get_interval_time64
11472     case TARGET_NR_sched_rr_get_interval_time64:
11473         {
11474             struct timespec ts;
11475             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11476             if (!is_error(ret)) {
11477                 ret = host_to_target_timespec64(arg2, &ts);
11478             }
11479         }
11480         return ret;
11481 #endif
11482 #if defined(TARGET_NR_nanosleep)
11483     case TARGET_NR_nanosleep:
11484         {
11485             struct timespec req, rem;
11486             target_to_host_timespec(&req, arg1);
11487             ret = get_errno(safe_nanosleep(&req, &rem));
11488             if (is_error(ret) && arg2) {
11489                 host_to_target_timespec(arg2, &rem);
11490             }
11491         }
11492         return ret;
11493 #endif
11494     case TARGET_NR_prctl:
11495         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11496         break;
11497 #ifdef TARGET_NR_arch_prctl
11498     case TARGET_NR_arch_prctl:
11499         return do_arch_prctl(cpu_env, arg1, arg2);
11500 #endif
11501 #ifdef TARGET_NR_pread64
11502     case TARGET_NR_pread64:
11503         if (regpairs_aligned(cpu_env, num)) {
11504             arg4 = arg5;
11505             arg5 = arg6;
11506         }
11507         if (arg2 == 0 && arg3 == 0) {
11508             /* Special-case NULL buffer and zero length, which should succeed */
11509             p = 0;
11510         } else {
11511             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11512             if (!p) {
11513                 return -TARGET_EFAULT;
11514             }
11515         }
11516         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11517         unlock_user(p, arg2, ret);
11518         return ret;
11519     case TARGET_NR_pwrite64:
11520         if (regpairs_aligned(cpu_env, num)) {
11521             arg4 = arg5;
11522             arg5 = arg6;
11523         }
11524         if (arg2 == 0 && arg3 == 0) {
11525             /* Special-case NULL buffer and zero length, which should succeed */
11526             p = 0;
11527         } else {
11528             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11529             if (!p) {
11530                 return -TARGET_EFAULT;
11531             }
11532         }
11533         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11534         unlock_user(p, arg2, 0);
11535         return ret;
11536 #endif
11537     case TARGET_NR_getcwd:
11538         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11539             return -TARGET_EFAULT;
11540         ret = get_errno(sys_getcwd1(p, arg2));
11541         unlock_user(p, arg1, ret);
11542         return ret;
11543     case TARGET_NR_capget:
11544     case TARGET_NR_capset:
11545     {
11546         struct target_user_cap_header *target_header;
11547         struct target_user_cap_data *target_data = NULL;
11548         struct __user_cap_header_struct header;
11549         struct __user_cap_data_struct data[2];
11550         struct __user_cap_data_struct *dataptr = NULL;
11551         int i, target_datalen;
11552         int data_items = 1;
11553 
11554         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11555             return -TARGET_EFAULT;
11556         }
11557         header.version = tswap32(target_header->version);
11558         header.pid = tswap32(target_header->pid);
11559 
11560         if (header.version != _LINUX_CAPABILITY_VERSION) {
11561             /* Version 2 and up takes pointer to two user_data structs */
11562             data_items = 2;
11563         }
11564 
11565         target_datalen = sizeof(*target_data) * data_items;
11566 
11567         if (arg2) {
11568             if (num == TARGET_NR_capget) {
11569                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11570             } else {
11571                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11572             }
11573             if (!target_data) {
11574                 unlock_user_struct(target_header, arg1, 0);
11575                 return -TARGET_EFAULT;
11576             }
11577 
11578             if (num == TARGET_NR_capset) {
11579                 for (i = 0; i < data_items; i++) {
11580                     data[i].effective = tswap32(target_data[i].effective);
11581                     data[i].permitted = tswap32(target_data[i].permitted);
11582                     data[i].inheritable = tswap32(target_data[i].inheritable);
11583                 }
11584             }
11585 
11586             dataptr = data;
11587         }
11588 
11589         if (num == TARGET_NR_capget) {
11590             ret = get_errno(capget(&header, dataptr));
11591         } else {
11592             ret = get_errno(capset(&header, dataptr));
11593         }
11594 
11595         /* The kernel always updates version for both capget and capset */
11596         target_header->version = tswap32(header.version);
11597         unlock_user_struct(target_header, arg1, 1);
11598 
11599         if (arg2) {
11600             if (num == TARGET_NR_capget) {
11601                 for (i = 0; i < data_items; i++) {
11602                     target_data[i].effective = tswap32(data[i].effective);
11603                     target_data[i].permitted = tswap32(data[i].permitted);
11604                     target_data[i].inheritable = tswap32(data[i].inheritable);
11605                 }
11606                 unlock_user(target_data, arg2, target_datalen);
11607             } else {
11608                 unlock_user(target_data, arg2, 0);
11609             }
11610         }
11611         return ret;
11612     }
11613     case TARGET_NR_sigaltstack:
11614         return do_sigaltstack(arg1, arg2, cpu_env);
11615 
11616 #ifdef CONFIG_SENDFILE
11617 #ifdef TARGET_NR_sendfile
11618     case TARGET_NR_sendfile:
11619     {
11620         off_t *offp = NULL;
11621         off_t off;
11622         if (arg3) {
11623             ret = get_user_sal(off, arg3);
11624             if (is_error(ret)) {
11625                 return ret;
11626             }
11627             offp = &off;
11628         }
11629         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11630         if (!is_error(ret) && arg3) {
11631             abi_long ret2 = put_user_sal(off, arg3);
11632             if (is_error(ret2)) {
11633                 ret = ret2;
11634             }
11635         }
11636         return ret;
11637     }
11638 #endif
11639 #ifdef TARGET_NR_sendfile64
11640     case TARGET_NR_sendfile64:
11641     {
11642         off_t *offp = NULL;
11643         off_t off;
11644         if (arg3) {
11645             ret = get_user_s64(off, arg3);
11646             if (is_error(ret)) {
11647                 return ret;
11648             }
11649             offp = &off;
11650         }
11651         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11652         if (!is_error(ret) && arg3) {
11653             abi_long ret2 = put_user_s64(off, arg3);
11654             if (is_error(ret2)) {
11655                 ret = ret2;
11656             }
11657         }
11658         return ret;
11659     }
11660 #endif
11661 #endif
11662 #ifdef TARGET_NR_vfork
11663     case TARGET_NR_vfork:
11664         return get_errno(do_fork(cpu_env,
11665                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11666                          0, 0, 0, 0));
11667 #endif
11668 #ifdef TARGET_NR_ugetrlimit
11669     case TARGET_NR_ugetrlimit:
11670     {
11671 	struct rlimit rlim;
11672 	int resource = target_to_host_resource(arg1);
11673 	ret = get_errno(getrlimit(resource, &rlim));
11674 	if (!is_error(ret)) {
11675 	    struct target_rlimit *target_rlim;
11676             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11677                 return -TARGET_EFAULT;
11678 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11679 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11680             unlock_user_struct(target_rlim, arg2, 1);
11681 	}
11682         return ret;
11683     }
11684 #endif
11685 #ifdef TARGET_NR_truncate64
11686     case TARGET_NR_truncate64:
11687         if (!(p = lock_user_string(arg1)))
11688             return -TARGET_EFAULT;
11689 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11690         unlock_user(p, arg1, 0);
11691         return ret;
11692 #endif
11693 #ifdef TARGET_NR_ftruncate64
11694     case TARGET_NR_ftruncate64:
11695         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11696 #endif
11697 #ifdef TARGET_NR_stat64
11698     case TARGET_NR_stat64:
11699         if (!(p = lock_user_string(arg1))) {
11700             return -TARGET_EFAULT;
11701         }
11702         ret = get_errno(stat(path(p), &st));
11703         unlock_user(p, arg1, 0);
11704         if (!is_error(ret))
11705             ret = host_to_target_stat64(cpu_env, arg2, &st);
11706         return ret;
11707 #endif
11708 #ifdef TARGET_NR_lstat64
11709     case TARGET_NR_lstat64:
11710         if (!(p = lock_user_string(arg1))) {
11711             return -TARGET_EFAULT;
11712         }
11713         ret = get_errno(lstat(path(p), &st));
11714         unlock_user(p, arg1, 0);
11715         if (!is_error(ret))
11716             ret = host_to_target_stat64(cpu_env, arg2, &st);
11717         return ret;
11718 #endif
11719 #ifdef TARGET_NR_fstat64
11720     case TARGET_NR_fstat64:
11721         ret = get_errno(fstat(arg1, &st));
11722         if (!is_error(ret))
11723             ret = host_to_target_stat64(cpu_env, arg2, &st);
11724         return ret;
11725 #endif
11726 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11727 #ifdef TARGET_NR_fstatat64
11728     case TARGET_NR_fstatat64:
11729 #endif
11730 #ifdef TARGET_NR_newfstatat
11731     case TARGET_NR_newfstatat:
11732 #endif
11733         if (!(p = lock_user_string(arg2))) {
11734             return -TARGET_EFAULT;
11735         }
11736         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11737         unlock_user(p, arg2, 0);
11738         if (!is_error(ret))
11739             ret = host_to_target_stat64(cpu_env, arg3, &st);
11740         return ret;
11741 #endif
11742 #if defined(TARGET_NR_statx)
11743     case TARGET_NR_statx:
11744         {
11745             struct target_statx *target_stx;
11746             int dirfd = arg1;
11747             int flags = arg3;
11748 
11749             p = lock_user_string(arg2);
11750             if (p == NULL) {
11751                 return -TARGET_EFAULT;
11752             }
11753 #if defined(__NR_statx)
11754             {
11755                 /*
11756                  * It is assumed that struct statx is architecture independent.
11757                  */
11758                 struct target_statx host_stx;
11759                 int mask = arg4;
11760 
11761                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11762                 if (!is_error(ret)) {
11763                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11764                         unlock_user(p, arg2, 0);
11765                         return -TARGET_EFAULT;
11766                     }
11767                 }
11768 
11769                 if (ret != -TARGET_ENOSYS) {
11770                     unlock_user(p, arg2, 0);
11771                     return ret;
11772                 }
11773             }
11774 #endif
11775             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11776             unlock_user(p, arg2, 0);
11777 
11778             if (!is_error(ret)) {
11779                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11780                     return -TARGET_EFAULT;
11781                 }
11782                 memset(target_stx, 0, sizeof(*target_stx));
11783                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11784                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11785                 __put_user(st.st_ino, &target_stx->stx_ino);
11786                 __put_user(st.st_mode, &target_stx->stx_mode);
11787                 __put_user(st.st_uid, &target_stx->stx_uid);
11788                 __put_user(st.st_gid, &target_stx->stx_gid);
11789                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11790                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11791                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11792                 __put_user(st.st_size, &target_stx->stx_size);
11793                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11794                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11795                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11796                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11797                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11798                 unlock_user_struct(target_stx, arg5, 1);
11799             }
11800         }
11801         return ret;
11802 #endif
11803 #ifdef TARGET_NR_lchown
11804     case TARGET_NR_lchown:
11805         if (!(p = lock_user_string(arg1)))
11806             return -TARGET_EFAULT;
11807         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11808         unlock_user(p, arg1, 0);
11809         return ret;
11810 #endif
11811 #ifdef TARGET_NR_getuid
11812     case TARGET_NR_getuid:
11813         return get_errno(high2lowuid(getuid()));
11814 #endif
11815 #ifdef TARGET_NR_getgid
11816     case TARGET_NR_getgid:
11817         return get_errno(high2lowgid(getgid()));
11818 #endif
11819 #ifdef TARGET_NR_geteuid
11820     case TARGET_NR_geteuid:
11821         return get_errno(high2lowuid(geteuid()));
11822 #endif
11823 #ifdef TARGET_NR_getegid
11824     case TARGET_NR_getegid:
11825         return get_errno(high2lowgid(getegid()));
11826 #endif
11827     case TARGET_NR_setreuid:
11828         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11829     case TARGET_NR_setregid:
11830         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11831     case TARGET_NR_getgroups:
11832         { /* the same code as for TARGET_NR_getgroups32 */
11833             int gidsetsize = arg1;
11834             target_id *target_grouplist;
11835             g_autofree gid_t *grouplist = NULL;
11836             int i;
11837 
11838             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11839                 return -TARGET_EINVAL;
11840             }
11841             if (gidsetsize > 0) {
11842                 grouplist = g_try_new(gid_t, gidsetsize);
11843                 if (!grouplist) {
11844                     return -TARGET_ENOMEM;
11845                 }
11846             }
11847             ret = get_errno(getgroups(gidsetsize, grouplist));
11848             if (!is_error(ret) && gidsetsize > 0) {
11849                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11850                                              gidsetsize * sizeof(target_id), 0);
11851                 if (!target_grouplist) {
11852                     return -TARGET_EFAULT;
11853                 }
11854                 for (i = 0; i < ret; i++) {
11855                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11856                 }
11857                 unlock_user(target_grouplist, arg2,
11858                             gidsetsize * sizeof(target_id));
11859             }
11860             return ret;
11861         }
11862     case TARGET_NR_setgroups:
11863         { /* the same code as for TARGET_NR_setgroups32 */
11864             int gidsetsize = arg1;
11865             target_id *target_grouplist;
11866             g_autofree gid_t *grouplist = NULL;
11867             int i;
11868 
11869             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11870                 return -TARGET_EINVAL;
11871             }
11872             if (gidsetsize > 0) {
11873                 grouplist = g_try_new(gid_t, gidsetsize);
11874                 if (!grouplist) {
11875                     return -TARGET_ENOMEM;
11876                 }
11877                 target_grouplist = lock_user(VERIFY_READ, arg2,
11878                                              gidsetsize * sizeof(target_id), 1);
11879                 if (!target_grouplist) {
11880                     return -TARGET_EFAULT;
11881                 }
11882                 for (i = 0; i < gidsetsize; i++) {
11883                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11884                 }
11885                 unlock_user(target_grouplist, arg2,
11886                             gidsetsize * sizeof(target_id));
11887             }
11888             return get_errno(setgroups(gidsetsize, grouplist));
11889         }
11890     case TARGET_NR_fchown:
11891         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11892 #if defined(TARGET_NR_fchownat)
11893     case TARGET_NR_fchownat:
11894         if (!(p = lock_user_string(arg2)))
11895             return -TARGET_EFAULT;
11896         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11897                                  low2highgid(arg4), arg5));
11898         unlock_user(p, arg2, 0);
11899         return ret;
11900 #endif
11901 #ifdef TARGET_NR_setresuid
11902     case TARGET_NR_setresuid:
11903         return get_errno(sys_setresuid(low2highuid(arg1),
11904                                        low2highuid(arg2),
11905                                        low2highuid(arg3)));
11906 #endif
11907 #ifdef TARGET_NR_getresuid
11908     case TARGET_NR_getresuid:
11909         {
11910             uid_t ruid, euid, suid;
11911             ret = get_errno(getresuid(&ruid, &euid, &suid));
11912             if (!is_error(ret)) {
11913                 if (put_user_id(high2lowuid(ruid), arg1)
11914                     || put_user_id(high2lowuid(euid), arg2)
11915                     || put_user_id(high2lowuid(suid), arg3))
11916                     return -TARGET_EFAULT;
11917             }
11918         }
11919         return ret;
11920 #endif
11921 #ifdef TARGET_NR_getresgid
11922     case TARGET_NR_setresgid:
11923         return get_errno(sys_setresgid(low2highgid(arg1),
11924                                        low2highgid(arg2),
11925                                        low2highgid(arg3)));
11926 #endif
11927 #ifdef TARGET_NR_getresgid
11928     case TARGET_NR_getresgid:
11929         {
11930             gid_t rgid, egid, sgid;
11931             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11932             if (!is_error(ret)) {
11933                 if (put_user_id(high2lowgid(rgid), arg1)
11934                     || put_user_id(high2lowgid(egid), arg2)
11935                     || put_user_id(high2lowgid(sgid), arg3))
11936                     return -TARGET_EFAULT;
11937             }
11938         }
11939         return ret;
11940 #endif
11941 #ifdef TARGET_NR_chown
11942     case TARGET_NR_chown:
11943         if (!(p = lock_user_string(arg1)))
11944             return -TARGET_EFAULT;
11945         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11946         unlock_user(p, arg1, 0);
11947         return ret;
11948 #endif
11949     case TARGET_NR_setuid:
11950         return get_errno(sys_setuid(low2highuid(arg1)));
11951     case TARGET_NR_setgid:
11952         return get_errno(sys_setgid(low2highgid(arg1)));
11953     case TARGET_NR_setfsuid:
11954         return get_errno(setfsuid(arg1));
11955     case TARGET_NR_setfsgid:
11956         return get_errno(setfsgid(arg1));
11957 
11958 #ifdef TARGET_NR_lchown32
11959     case TARGET_NR_lchown32:
11960         if (!(p = lock_user_string(arg1)))
11961             return -TARGET_EFAULT;
11962         ret = get_errno(lchown(p, arg2, arg3));
11963         unlock_user(p, arg1, 0);
11964         return ret;
11965 #endif
11966 #ifdef TARGET_NR_getuid32
11967     case TARGET_NR_getuid32:
11968         return get_errno(getuid());
11969 #endif
11970 
11971 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11972    /* Alpha specific */
11973     case TARGET_NR_getxuid:
11974          {
11975             uid_t euid;
11976             euid=geteuid();
11977             cpu_env->ir[IR_A4]=euid;
11978          }
11979         return get_errno(getuid());
11980 #endif
11981 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11982    /* Alpha specific */
11983     case TARGET_NR_getxgid:
11984          {
11985             uid_t egid;
11986             egid=getegid();
11987             cpu_env->ir[IR_A4]=egid;
11988          }
11989         return get_errno(getgid());
11990 #endif
11991 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11992     /* Alpha specific */
11993     case TARGET_NR_osf_getsysinfo:
11994         ret = -TARGET_EOPNOTSUPP;
11995         switch (arg1) {
11996           case TARGET_GSI_IEEE_FP_CONTROL:
11997             {
11998                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11999                 uint64_t swcr = cpu_env->swcr;
12000 
12001                 swcr &= ~SWCR_STATUS_MASK;
12002                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12003 
12004                 if (put_user_u64 (swcr, arg2))
12005                         return -TARGET_EFAULT;
12006                 ret = 0;
12007             }
12008             break;
12009 
12010           /* case GSI_IEEE_STATE_AT_SIGNAL:
12011              -- Not implemented in linux kernel.
12012              case GSI_UACPROC:
12013              -- Retrieves current unaligned access state; not much used.
12014              case GSI_PROC_TYPE:
12015              -- Retrieves implver information; surely not used.
12016              case GSI_GET_HWRPB:
12017              -- Grabs a copy of the HWRPB; surely not used.
12018           */
12019         }
12020         return ret;
12021 #endif
12022 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12023     /* Alpha specific */
12024     case TARGET_NR_osf_setsysinfo:
12025         ret = -TARGET_EOPNOTSUPP;
12026         switch (arg1) {
12027           case TARGET_SSI_IEEE_FP_CONTROL:
12028             {
12029                 uint64_t swcr, fpcr;
12030 
12031                 if (get_user_u64 (swcr, arg2)) {
12032                     return -TARGET_EFAULT;
12033                 }
12034 
12035                 /*
12036                  * The kernel calls swcr_update_status to update the
12037                  * status bits from the fpcr at every point that it
12038                  * could be queried.  Therefore, we store the status
12039                  * bits only in FPCR.
12040                  */
12041                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12042 
12043                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12044                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12045                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12046                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12047                 ret = 0;
12048             }
12049             break;
12050 
12051           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12052             {
12053                 uint64_t exc, fpcr, fex;
12054 
12055                 if (get_user_u64(exc, arg2)) {
12056                     return -TARGET_EFAULT;
12057                 }
12058                 exc &= SWCR_STATUS_MASK;
12059                 fpcr = cpu_alpha_load_fpcr(cpu_env);
12060 
12061                 /* Old exceptions are not signaled.  */
12062                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12063                 fex = exc & ~fex;
12064                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12065                 fex &= (cpu_env)->swcr;
12066 
12067                 /* Update the hardware fpcr.  */
12068                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12069                 cpu_alpha_store_fpcr(cpu_env, fpcr);
12070 
12071                 if (fex) {
12072                     int si_code = TARGET_FPE_FLTUNK;
12073                     target_siginfo_t info;
12074 
12075                     if (fex & SWCR_TRAP_ENABLE_DNO) {
12076                         si_code = TARGET_FPE_FLTUND;
12077                     }
12078                     if (fex & SWCR_TRAP_ENABLE_INE) {
12079                         si_code = TARGET_FPE_FLTRES;
12080                     }
12081                     if (fex & SWCR_TRAP_ENABLE_UNF) {
12082                         si_code = TARGET_FPE_FLTUND;
12083                     }
12084                     if (fex & SWCR_TRAP_ENABLE_OVF) {
12085                         si_code = TARGET_FPE_FLTOVF;
12086                     }
12087                     if (fex & SWCR_TRAP_ENABLE_DZE) {
12088                         si_code = TARGET_FPE_FLTDIV;
12089                     }
12090                     if (fex & SWCR_TRAP_ENABLE_INV) {
12091                         si_code = TARGET_FPE_FLTINV;
12092                     }
12093 
12094                     info.si_signo = SIGFPE;
12095                     info.si_errno = 0;
12096                     info.si_code = si_code;
12097                     info._sifields._sigfault._addr = (cpu_env)->pc;
12098                     queue_signal(cpu_env, info.si_signo,
12099                                  QEMU_SI_FAULT, &info);
12100                 }
12101                 ret = 0;
12102             }
12103             break;
12104 
12105           /* case SSI_NVPAIRS:
12106              -- Used with SSIN_UACPROC to enable unaligned accesses.
12107              case SSI_IEEE_STATE_AT_SIGNAL:
12108              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12109              -- Not implemented in linux kernel
12110           */
12111         }
12112         return ret;
12113 #endif
12114 #ifdef TARGET_NR_osf_sigprocmask
12115     /* Alpha specific.  */
12116     case TARGET_NR_osf_sigprocmask:
12117         {
12118             abi_ulong mask;
12119             int how;
12120             sigset_t set, oldset;
12121 
12122             switch(arg1) {
12123             case TARGET_SIG_BLOCK:
12124                 how = SIG_BLOCK;
12125                 break;
12126             case TARGET_SIG_UNBLOCK:
12127                 how = SIG_UNBLOCK;
12128                 break;
12129             case TARGET_SIG_SETMASK:
12130                 how = SIG_SETMASK;
12131                 break;
12132             default:
12133                 return -TARGET_EINVAL;
12134             }
12135             mask = arg2;
12136             target_to_host_old_sigset(&set, &mask);
12137             ret = do_sigprocmask(how, &set, &oldset);
12138             if (!ret) {
12139                 host_to_target_old_sigset(&mask, &oldset);
12140                 ret = mask;
12141             }
12142         }
12143         return ret;
12144 #endif
12145 
12146 #ifdef TARGET_NR_getgid32
12147     case TARGET_NR_getgid32:
12148         return get_errno(getgid());
12149 #endif
12150 #ifdef TARGET_NR_geteuid32
12151     case TARGET_NR_geteuid32:
12152         return get_errno(geteuid());
12153 #endif
12154 #ifdef TARGET_NR_getegid32
12155     case TARGET_NR_getegid32:
12156         return get_errno(getegid());
12157 #endif
12158 #ifdef TARGET_NR_setreuid32
12159     case TARGET_NR_setreuid32:
12160         return get_errno(setreuid(arg1, arg2));
12161 #endif
12162 #ifdef TARGET_NR_setregid32
12163     case TARGET_NR_setregid32:
12164         return get_errno(setregid(arg1, arg2));
12165 #endif
12166 #ifdef TARGET_NR_getgroups32
12167     case TARGET_NR_getgroups32:
12168         { /* the same code as for TARGET_NR_getgroups */
12169             int gidsetsize = arg1;
12170             uint32_t *target_grouplist;
12171             g_autofree gid_t *grouplist = NULL;
12172             int i;
12173 
12174             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12175                 return -TARGET_EINVAL;
12176             }
12177             if (gidsetsize > 0) {
12178                 grouplist = g_try_new(gid_t, gidsetsize);
12179                 if (!grouplist) {
12180                     return -TARGET_ENOMEM;
12181                 }
12182             }
12183             ret = get_errno(getgroups(gidsetsize, grouplist));
12184             if (!is_error(ret) && gidsetsize > 0) {
12185                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12186                                              gidsetsize * 4, 0);
12187                 if (!target_grouplist) {
12188                     return -TARGET_EFAULT;
12189                 }
12190                 for (i = 0; i < ret; i++) {
12191                     target_grouplist[i] = tswap32(grouplist[i]);
12192                 }
12193                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12194             }
12195             return ret;
12196         }
12197 #endif
12198 #ifdef TARGET_NR_setgroups32
12199     case TARGET_NR_setgroups32:
12200         { /* the same code as for TARGET_NR_setgroups */
12201             int gidsetsize = arg1;
12202             uint32_t *target_grouplist;
12203             g_autofree gid_t *grouplist = NULL;
12204             int i;
12205 
12206             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12207                 return -TARGET_EINVAL;
12208             }
12209             if (gidsetsize > 0) {
12210                 grouplist = g_try_new(gid_t, gidsetsize);
12211                 if (!grouplist) {
12212                     return -TARGET_ENOMEM;
12213                 }
12214                 target_grouplist = lock_user(VERIFY_READ, arg2,
12215                                              gidsetsize * 4, 1);
12216                 if (!target_grouplist) {
12217                     return -TARGET_EFAULT;
12218                 }
12219                 for (i = 0; i < gidsetsize; i++) {
12220                     grouplist[i] = tswap32(target_grouplist[i]);
12221                 }
12222                 unlock_user(target_grouplist, arg2, 0);
12223             }
12224             return get_errno(setgroups(gidsetsize, grouplist));
12225         }
12226 #endif
12227 #ifdef TARGET_NR_fchown32
12228     case TARGET_NR_fchown32:
12229         return get_errno(fchown(arg1, arg2, arg3));
12230 #endif
12231 #ifdef TARGET_NR_setresuid32
12232     case TARGET_NR_setresuid32:
12233         return get_errno(sys_setresuid(arg1, arg2, arg3));
12234 #endif
12235 #ifdef TARGET_NR_getresuid32
12236     case TARGET_NR_getresuid32:
12237         {
12238             uid_t ruid, euid, suid;
12239             ret = get_errno(getresuid(&ruid, &euid, &suid));
12240             if (!is_error(ret)) {
12241                 if (put_user_u32(ruid, arg1)
12242                     || put_user_u32(euid, arg2)
12243                     || put_user_u32(suid, arg3))
12244                     return -TARGET_EFAULT;
12245             }
12246         }
12247         return ret;
12248 #endif
12249 #ifdef TARGET_NR_setresgid32
12250     case TARGET_NR_setresgid32:
12251         return get_errno(sys_setresgid(arg1, arg2, arg3));
12252 #endif
12253 #ifdef TARGET_NR_getresgid32
12254     case TARGET_NR_getresgid32:
12255         {
12256             gid_t rgid, egid, sgid;
12257             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12258             if (!is_error(ret)) {
12259                 if (put_user_u32(rgid, arg1)
12260                     || put_user_u32(egid, arg2)
12261                     || put_user_u32(sgid, arg3))
12262                     return -TARGET_EFAULT;
12263             }
12264         }
12265         return ret;
12266 #endif
12267 #ifdef TARGET_NR_chown32
12268     case TARGET_NR_chown32:
12269         if (!(p = lock_user_string(arg1)))
12270             return -TARGET_EFAULT;
12271         ret = get_errno(chown(p, arg2, arg3));
12272         unlock_user(p, arg1, 0);
12273         return ret;
12274 #endif
12275 #ifdef TARGET_NR_setuid32
12276     case TARGET_NR_setuid32:
12277         return get_errno(sys_setuid(arg1));
12278 #endif
12279 #ifdef TARGET_NR_setgid32
12280     case TARGET_NR_setgid32:
12281         return get_errno(sys_setgid(arg1));
12282 #endif
12283 #ifdef TARGET_NR_setfsuid32
12284     case TARGET_NR_setfsuid32:
12285         return get_errno(setfsuid(arg1));
12286 #endif
12287 #ifdef TARGET_NR_setfsgid32
12288     case TARGET_NR_setfsgid32:
12289         return get_errno(setfsgid(arg1));
12290 #endif
12291 #ifdef TARGET_NR_mincore
12292     case TARGET_NR_mincore:
12293         {
12294             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12295             if (!a) {
12296                 return -TARGET_ENOMEM;
12297             }
12298             p = lock_user_string(arg3);
12299             if (!p) {
12300                 ret = -TARGET_EFAULT;
12301             } else {
12302                 ret = get_errno(mincore(a, arg2, p));
12303                 unlock_user(p, arg3, ret);
12304             }
12305             unlock_user(a, arg1, 0);
12306         }
12307         return ret;
12308 #endif
12309 #ifdef TARGET_NR_arm_fadvise64_64
12310     case TARGET_NR_arm_fadvise64_64:
12311         /* arm_fadvise64_64 looks like fadvise64_64 but
12312          * with different argument order: fd, advice, offset, len
12313          * rather than the usual fd, offset, len, advice.
12314          * Note that offset and len are both 64-bit so appear as
12315          * pairs of 32-bit registers.
12316          */
12317         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12318                             target_offset64(arg5, arg6), arg2);
12319         return -host_to_target_errno(ret);
12320 #endif
12321 
12322 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12323 
12324 #ifdef TARGET_NR_fadvise64_64
12325     case TARGET_NR_fadvise64_64:
12326 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12327         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12328         ret = arg2;
12329         arg2 = arg3;
12330         arg3 = arg4;
12331         arg4 = arg5;
12332         arg5 = arg6;
12333         arg6 = ret;
12334 #else
12335         /* 6 args: fd, offset (high, low), len (high, low), advice */
12336         if (regpairs_aligned(cpu_env, num)) {
12337             /* offset is in (3,4), len in (5,6) and advice in 7 */
12338             arg2 = arg3;
12339             arg3 = arg4;
12340             arg4 = arg5;
12341             arg5 = arg6;
12342             arg6 = arg7;
12343         }
12344 #endif
12345         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12346                             target_offset64(arg4, arg5), arg6);
12347         return -host_to_target_errno(ret);
12348 #endif
12349 
12350 #ifdef TARGET_NR_fadvise64
12351     case TARGET_NR_fadvise64:
12352         /* 5 args: fd, offset (high, low), len, advice */
12353         if (regpairs_aligned(cpu_env, num)) {
12354             /* offset is in (3,4), len in 5 and advice in 6 */
12355             arg2 = arg3;
12356             arg3 = arg4;
12357             arg4 = arg5;
12358             arg5 = arg6;
12359         }
12360         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12361         return -host_to_target_errno(ret);
12362 #endif
12363 
12364 #else /* not a 32-bit ABI */
12365 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12366 #ifdef TARGET_NR_fadvise64_64
12367     case TARGET_NR_fadvise64_64:
12368 #endif
12369 #ifdef TARGET_NR_fadvise64
12370     case TARGET_NR_fadvise64:
12371 #endif
12372 #ifdef TARGET_S390X
12373         switch (arg4) {
12374         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12375         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12376         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12377         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12378         default: break;
12379         }
12380 #endif
12381         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12382 #endif
12383 #endif /* end of 64-bit ABI fadvise handling */
12384 
12385 #ifdef TARGET_NR_madvise
12386     case TARGET_NR_madvise:
12387         return target_madvise(arg1, arg2, arg3);
12388 #endif
12389 #ifdef TARGET_NR_fcntl64
12390     case TARGET_NR_fcntl64:
12391     {
12392         int cmd;
12393         struct flock64 fl;
12394         from_flock64_fn *copyfrom = copy_from_user_flock64;
12395         to_flock64_fn *copyto = copy_to_user_flock64;
12396 
12397 #ifdef TARGET_ARM
12398         if (!cpu_env->eabi) {
12399             copyfrom = copy_from_user_oabi_flock64;
12400             copyto = copy_to_user_oabi_flock64;
12401         }
12402 #endif
12403 
12404         cmd = target_to_host_fcntl_cmd(arg2);
12405         if (cmd == -TARGET_EINVAL) {
12406             return cmd;
12407         }
12408 
12409         switch(arg2) {
12410         case TARGET_F_GETLK64:
12411             ret = copyfrom(&fl, arg3);
12412             if (ret) {
12413                 break;
12414             }
12415             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12416             if (ret == 0) {
12417                 ret = copyto(arg3, &fl);
12418             }
12419 	    break;
12420 
12421         case TARGET_F_SETLK64:
12422         case TARGET_F_SETLKW64:
12423             ret = copyfrom(&fl, arg3);
12424             if (ret) {
12425                 break;
12426             }
12427             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12428 	    break;
12429         default:
12430             ret = do_fcntl(arg1, arg2, arg3);
12431             break;
12432         }
12433         return ret;
12434     }
12435 #endif
12436 #ifdef TARGET_NR_cacheflush
12437     case TARGET_NR_cacheflush:
12438         /* self-modifying code is handled automatically, so nothing needed */
12439         return 0;
12440 #endif
12441 #ifdef TARGET_NR_getpagesize
12442     case TARGET_NR_getpagesize:
12443         return TARGET_PAGE_SIZE;
12444 #endif
12445     case TARGET_NR_gettid:
12446         return get_errno(sys_gettid());
12447 #ifdef TARGET_NR_readahead
12448     case TARGET_NR_readahead:
12449 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12450         if (regpairs_aligned(cpu_env, num)) {
12451             arg2 = arg3;
12452             arg3 = arg4;
12453             arg4 = arg5;
12454         }
12455         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12456 #else
12457         ret = get_errno(readahead(arg1, arg2, arg3));
12458 #endif
12459         return ret;
12460 #endif
12461 #ifdef CONFIG_ATTR
12462 #ifdef TARGET_NR_setxattr
12463     case TARGET_NR_listxattr:
12464     case TARGET_NR_llistxattr:
12465     {
12466         void *b = 0;
12467         if (arg2) {
12468             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12469             if (!b) {
12470                 return -TARGET_EFAULT;
12471             }
12472         }
12473         p = lock_user_string(arg1);
12474         if (p) {
12475             if (num == TARGET_NR_listxattr) {
12476                 ret = get_errno(listxattr(p, b, arg3));
12477             } else {
12478                 ret = get_errno(llistxattr(p, b, arg3));
12479             }
12480         } else {
12481             ret = -TARGET_EFAULT;
12482         }
12483         unlock_user(p, arg1, 0);
12484         unlock_user(b, arg2, arg3);
12485         return ret;
12486     }
12487     case TARGET_NR_flistxattr:
12488     {
12489         void *b = 0;
12490         if (arg2) {
12491             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12492             if (!b) {
12493                 return -TARGET_EFAULT;
12494             }
12495         }
12496         ret = get_errno(flistxattr(arg1, b, arg3));
12497         unlock_user(b, arg2, arg3);
12498         return ret;
12499     }
12500     case TARGET_NR_setxattr:
12501     case TARGET_NR_lsetxattr:
12502         {
12503             void *n, *v = 0;
12504             if (arg3) {
12505                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12506                 if (!v) {
12507                     return -TARGET_EFAULT;
12508                 }
12509             }
12510             p = lock_user_string(arg1);
12511             n = lock_user_string(arg2);
12512             if (p && n) {
12513                 if (num == TARGET_NR_setxattr) {
12514                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12515                 } else {
12516                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12517                 }
12518             } else {
12519                 ret = -TARGET_EFAULT;
12520             }
12521             unlock_user(p, arg1, 0);
12522             unlock_user(n, arg2, 0);
12523             unlock_user(v, arg3, 0);
12524         }
12525         return ret;
12526     case TARGET_NR_fsetxattr:
12527         {
12528             void *n, *v = 0;
12529             if (arg3) {
12530                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12531                 if (!v) {
12532                     return -TARGET_EFAULT;
12533                 }
12534             }
12535             n = lock_user_string(arg2);
12536             if (n) {
12537                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12538             } else {
12539                 ret = -TARGET_EFAULT;
12540             }
12541             unlock_user(n, arg2, 0);
12542             unlock_user(v, arg3, 0);
12543         }
12544         return ret;
12545     case TARGET_NR_getxattr:
12546     case TARGET_NR_lgetxattr:
12547         {
12548             void *n, *v = 0;
12549             if (arg3) {
12550                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12551                 if (!v) {
12552                     return -TARGET_EFAULT;
12553                 }
12554             }
12555             p = lock_user_string(arg1);
12556             n = lock_user_string(arg2);
12557             if (p && n) {
12558                 if (num == TARGET_NR_getxattr) {
12559                     ret = get_errno(getxattr(p, n, v, arg4));
12560                 } else {
12561                     ret = get_errno(lgetxattr(p, n, v, arg4));
12562                 }
12563             } else {
12564                 ret = -TARGET_EFAULT;
12565             }
12566             unlock_user(p, arg1, 0);
12567             unlock_user(n, arg2, 0);
12568             unlock_user(v, arg3, arg4);
12569         }
12570         return ret;
12571     case TARGET_NR_fgetxattr:
12572         {
12573             void *n, *v = 0;
12574             if (arg3) {
12575                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12576                 if (!v) {
12577                     return -TARGET_EFAULT;
12578                 }
12579             }
12580             n = lock_user_string(arg2);
12581             if (n) {
12582                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12583             } else {
12584                 ret = -TARGET_EFAULT;
12585             }
12586             unlock_user(n, arg2, 0);
12587             unlock_user(v, arg3, arg4);
12588         }
12589         return ret;
12590     case TARGET_NR_removexattr:
12591     case TARGET_NR_lremovexattr:
12592         {
12593             void *n;
12594             p = lock_user_string(arg1);
12595             n = lock_user_string(arg2);
12596             if (p && n) {
12597                 if (num == TARGET_NR_removexattr) {
12598                     ret = get_errno(removexattr(p, n));
12599                 } else {
12600                     ret = get_errno(lremovexattr(p, n));
12601                 }
12602             } else {
12603                 ret = -TARGET_EFAULT;
12604             }
12605             unlock_user(p, arg1, 0);
12606             unlock_user(n, arg2, 0);
12607         }
12608         return ret;
12609     case TARGET_NR_fremovexattr:
12610         {
12611             void *n;
12612             n = lock_user_string(arg2);
12613             if (n) {
12614                 ret = get_errno(fremovexattr(arg1, n));
12615             } else {
12616                 ret = -TARGET_EFAULT;
12617             }
12618             unlock_user(n, arg2, 0);
12619         }
12620         return ret;
12621 #endif
12622 #endif /* CONFIG_ATTR */
12623 #ifdef TARGET_NR_set_thread_area
12624     case TARGET_NR_set_thread_area:
12625 #if defined(TARGET_MIPS)
12626       cpu_env->active_tc.CP0_UserLocal = arg1;
12627       return 0;
12628 #elif defined(TARGET_CRIS)
12629       if (arg1 & 0xff)
12630           ret = -TARGET_EINVAL;
12631       else {
12632           cpu_env->pregs[PR_PID] = arg1;
12633           ret = 0;
12634       }
12635       return ret;
12636 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12637       return do_set_thread_area(cpu_env, arg1);
12638 #elif defined(TARGET_M68K)
12639       {
12640           TaskState *ts = get_task_state(cpu);
12641           ts->tp_value = arg1;
12642           return 0;
12643       }
12644 #else
12645       return -TARGET_ENOSYS;
12646 #endif
12647 #endif
12648 #ifdef TARGET_NR_get_thread_area
12649     case TARGET_NR_get_thread_area:
12650 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12651         return do_get_thread_area(cpu_env, arg1);
12652 #elif defined(TARGET_M68K)
12653         {
12654             TaskState *ts = get_task_state(cpu);
12655             return ts->tp_value;
12656         }
12657 #else
12658         return -TARGET_ENOSYS;
12659 #endif
12660 #endif
12661 #ifdef TARGET_NR_getdomainname
12662     case TARGET_NR_getdomainname:
12663         return -TARGET_ENOSYS;
12664 #endif
12665 
12666 #ifdef TARGET_NR_clock_settime
12667     case TARGET_NR_clock_settime:
12668     {
12669         struct timespec ts;
12670 
12671         ret = target_to_host_timespec(&ts, arg2);
12672         if (!is_error(ret)) {
12673             ret = get_errno(clock_settime(arg1, &ts));
12674         }
12675         return ret;
12676     }
12677 #endif
12678 #ifdef TARGET_NR_clock_settime64
12679     case TARGET_NR_clock_settime64:
12680     {
12681         struct timespec ts;
12682 
12683         ret = target_to_host_timespec64(&ts, arg2);
12684         if (!is_error(ret)) {
12685             ret = get_errno(clock_settime(arg1, &ts));
12686         }
12687         return ret;
12688     }
12689 #endif
12690 #ifdef TARGET_NR_clock_gettime
12691     case TARGET_NR_clock_gettime:
12692     {
12693         struct timespec ts;
12694         ret = get_errno(clock_gettime(arg1, &ts));
12695         if (!is_error(ret)) {
12696             ret = host_to_target_timespec(arg2, &ts);
12697         }
12698         return ret;
12699     }
12700 #endif
12701 #ifdef TARGET_NR_clock_gettime64
12702     case TARGET_NR_clock_gettime64:
12703     {
12704         struct timespec ts;
12705         ret = get_errno(clock_gettime(arg1, &ts));
12706         if (!is_error(ret)) {
12707             ret = host_to_target_timespec64(arg2, &ts);
12708         }
12709         return ret;
12710     }
12711 #endif
12712 #ifdef TARGET_NR_clock_getres
12713     case TARGET_NR_clock_getres:
12714     {
12715         struct timespec ts;
12716         ret = get_errno(clock_getres(arg1, &ts));
12717         if (!is_error(ret)) {
12718             host_to_target_timespec(arg2, &ts);
12719         }
12720         return ret;
12721     }
12722 #endif
12723 #ifdef TARGET_NR_clock_getres_time64
12724     case TARGET_NR_clock_getres_time64:
12725     {
12726         struct timespec ts;
12727         ret = get_errno(clock_getres(arg1, &ts));
12728         if (!is_error(ret)) {
12729             host_to_target_timespec64(arg2, &ts);
12730         }
12731         return ret;
12732     }
12733 #endif
12734 #ifdef TARGET_NR_clock_nanosleep
12735     case TARGET_NR_clock_nanosleep:
12736     {
12737         struct timespec ts;
12738         if (target_to_host_timespec(&ts, arg3)) {
12739             return -TARGET_EFAULT;
12740         }
12741         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12742                                              &ts, arg4 ? &ts : NULL));
12743         /*
12744          * if the call is interrupted by a signal handler, it fails
12745          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12746          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12747          */
12748         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12749             host_to_target_timespec(arg4, &ts)) {
12750               return -TARGET_EFAULT;
12751         }
12752 
12753         return ret;
12754     }
12755 #endif
12756 #ifdef TARGET_NR_clock_nanosleep_time64
12757     case TARGET_NR_clock_nanosleep_time64:
12758     {
12759         struct timespec ts;
12760 
12761         if (target_to_host_timespec64(&ts, arg3)) {
12762             return -TARGET_EFAULT;
12763         }
12764 
12765         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12766                                              &ts, arg4 ? &ts : NULL));
12767 
12768         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12769             host_to_target_timespec64(arg4, &ts)) {
12770             return -TARGET_EFAULT;
12771         }
12772         return ret;
12773     }
12774 #endif
12775 
12776 #if defined(TARGET_NR_set_tid_address)
12777     case TARGET_NR_set_tid_address:
12778     {
12779         TaskState *ts = get_task_state(cpu);
12780         ts->child_tidptr = arg1;
12781         /* do not call host set_tid_address() syscall, instead return tid() */
12782         return get_errno(sys_gettid());
12783     }
12784 #endif
12785 
12786     case TARGET_NR_tkill:
12787         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12788 
12789     case TARGET_NR_tgkill:
12790         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12791                          target_to_host_signal(arg3)));
12792 
12793 #ifdef TARGET_NR_set_robust_list
12794     case TARGET_NR_set_robust_list:
12795     case TARGET_NR_get_robust_list:
12796         /* The ABI for supporting robust futexes has userspace pass
12797          * the kernel a pointer to a linked list which is updated by
12798          * userspace after the syscall; the list is walked by the kernel
12799          * when the thread exits. Since the linked list in QEMU guest
12800          * memory isn't a valid linked list for the host and we have
12801          * no way to reliably intercept the thread-death event, we can't
12802          * support these. Silently return ENOSYS so that guest userspace
12803          * falls back to a non-robust futex implementation (which should
12804          * be OK except in the corner case of the guest crashing while
12805          * holding a mutex that is shared with another process via
12806          * shared memory).
12807          */
12808         return -TARGET_ENOSYS;
12809 #endif
12810 
12811 #if defined(TARGET_NR_utimensat)
12812     case TARGET_NR_utimensat:
12813         {
12814             struct timespec *tsp, ts[2];
12815             if (!arg3) {
12816                 tsp = NULL;
12817             } else {
12818                 if (target_to_host_timespec(ts, arg3)) {
12819                     return -TARGET_EFAULT;
12820                 }
12821                 if (target_to_host_timespec(ts + 1, arg3 +
12822                                             sizeof(struct target_timespec))) {
12823                     return -TARGET_EFAULT;
12824                 }
12825                 tsp = ts;
12826             }
12827             if (!arg2)
12828                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12829             else {
12830                 if (!(p = lock_user_string(arg2))) {
12831                     return -TARGET_EFAULT;
12832                 }
12833                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12834                 unlock_user(p, arg2, 0);
12835             }
12836         }
12837         return ret;
12838 #endif
12839 #ifdef TARGET_NR_utimensat_time64
12840     case TARGET_NR_utimensat_time64:
12841         {
12842             struct timespec *tsp, ts[2];
12843             if (!arg3) {
12844                 tsp = NULL;
12845             } else {
12846                 if (target_to_host_timespec64(ts, arg3)) {
12847                     return -TARGET_EFAULT;
12848                 }
12849                 if (target_to_host_timespec64(ts + 1, arg3 +
12850                                      sizeof(struct target__kernel_timespec))) {
12851                     return -TARGET_EFAULT;
12852                 }
12853                 tsp = ts;
12854             }
12855             if (!arg2)
12856                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12857             else {
12858                 p = lock_user_string(arg2);
12859                 if (!p) {
12860                     return -TARGET_EFAULT;
12861                 }
12862                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12863                 unlock_user(p, arg2, 0);
12864             }
12865         }
12866         return ret;
12867 #endif
12868 #ifdef TARGET_NR_futex
12869     case TARGET_NR_futex:
12870         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12871 #endif
12872 #ifdef TARGET_NR_futex_time64
12873     case TARGET_NR_futex_time64:
12874         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12875 #endif
12876 #ifdef CONFIG_INOTIFY
12877 #if defined(TARGET_NR_inotify_init)
12878     case TARGET_NR_inotify_init:
12879         ret = get_errno(inotify_init());
12880         if (ret >= 0) {
12881             fd_trans_register(ret, &target_inotify_trans);
12882         }
12883         return ret;
12884 #endif
12885 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12886     case TARGET_NR_inotify_init1:
12887         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12888                                           fcntl_flags_tbl)));
12889         if (ret >= 0) {
12890             fd_trans_register(ret, &target_inotify_trans);
12891         }
12892         return ret;
12893 #endif
12894 #if defined(TARGET_NR_inotify_add_watch)
12895     case TARGET_NR_inotify_add_watch:
12896         p = lock_user_string(arg2);
12897         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12898         unlock_user(p, arg2, 0);
12899         return ret;
12900 #endif
12901 #if defined(TARGET_NR_inotify_rm_watch)
12902     case TARGET_NR_inotify_rm_watch:
12903         return get_errno(inotify_rm_watch(arg1, arg2));
12904 #endif
12905 #endif
12906 
12907 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12908     case TARGET_NR_mq_open:
12909         {
12910             struct mq_attr posix_mq_attr;
12911             struct mq_attr *pposix_mq_attr;
12912             int host_flags;
12913 
12914             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12915             pposix_mq_attr = NULL;
12916             if (arg4) {
12917                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12918                     return -TARGET_EFAULT;
12919                 }
12920                 pposix_mq_attr = &posix_mq_attr;
12921             }
12922             p = lock_user_string(arg1 - 1);
12923             if (!p) {
12924                 return -TARGET_EFAULT;
12925             }
12926             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12927             unlock_user (p, arg1, 0);
12928         }
12929         return ret;
12930 
12931     case TARGET_NR_mq_unlink:
12932         p = lock_user_string(arg1 - 1);
12933         if (!p) {
12934             return -TARGET_EFAULT;
12935         }
12936         ret = get_errno(mq_unlink(p));
12937         unlock_user (p, arg1, 0);
12938         return ret;
12939 
12940 #ifdef TARGET_NR_mq_timedsend
12941     case TARGET_NR_mq_timedsend:
12942         {
12943             struct timespec ts;
12944 
12945             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12946             if (arg5 != 0) {
12947                 if (target_to_host_timespec(&ts, arg5)) {
12948                     return -TARGET_EFAULT;
12949                 }
12950                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12951                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12952                     return -TARGET_EFAULT;
12953                 }
12954             } else {
12955                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12956             }
12957             unlock_user (p, arg2, arg3);
12958         }
12959         return ret;
12960 #endif
12961 #ifdef TARGET_NR_mq_timedsend_time64
12962     case TARGET_NR_mq_timedsend_time64:
12963         {
12964             struct timespec ts;
12965 
12966             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12967             if (arg5 != 0) {
12968                 if (target_to_host_timespec64(&ts, arg5)) {
12969                     return -TARGET_EFAULT;
12970                 }
12971                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12972                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12973                     return -TARGET_EFAULT;
12974                 }
12975             } else {
12976                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12977             }
12978             unlock_user(p, arg2, arg3);
12979         }
12980         return ret;
12981 #endif
12982 
12983 #ifdef TARGET_NR_mq_timedreceive
12984     case TARGET_NR_mq_timedreceive:
12985         {
12986             struct timespec ts;
12987             unsigned int prio;
12988 
12989             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12990             if (arg5 != 0) {
12991                 if (target_to_host_timespec(&ts, arg5)) {
12992                     return -TARGET_EFAULT;
12993                 }
12994                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12995                                                      &prio, &ts));
12996                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12997                     return -TARGET_EFAULT;
12998                 }
12999             } else {
13000                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13001                                                      &prio, NULL));
13002             }
13003             unlock_user (p, arg2, arg3);
13004             if (arg4 != 0)
13005                 put_user_u32(prio, arg4);
13006         }
13007         return ret;
13008 #endif
13009 #ifdef TARGET_NR_mq_timedreceive_time64
13010     case TARGET_NR_mq_timedreceive_time64:
13011         {
13012             struct timespec ts;
13013             unsigned int prio;
13014 
13015             p = lock_user(VERIFY_READ, arg2, arg3, 1);
13016             if (arg5 != 0) {
13017                 if (target_to_host_timespec64(&ts, arg5)) {
13018                     return -TARGET_EFAULT;
13019                 }
13020                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13021                                                      &prio, &ts));
13022                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13023                     return -TARGET_EFAULT;
13024                 }
13025             } else {
13026                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13027                                                      &prio, NULL));
13028             }
13029             unlock_user(p, arg2, arg3);
13030             if (arg4 != 0) {
13031                 put_user_u32(prio, arg4);
13032             }
13033         }
13034         return ret;
13035 #endif
13036 
13037     /* Not implemented for now... */
13038 /*     case TARGET_NR_mq_notify: */
13039 /*         break; */
13040 
13041     case TARGET_NR_mq_getsetattr:
13042         {
13043             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13044             ret = 0;
13045             if (arg2 != 0) {
13046                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13047                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13048                                            &posix_mq_attr_out));
13049             } else if (arg3 != 0) {
13050                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13051             }
13052             if (ret == 0 && arg3 != 0) {
13053                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13054             }
13055         }
13056         return ret;
13057 #endif
13058 
13059 #ifdef CONFIG_SPLICE
13060 #ifdef TARGET_NR_tee
13061     case TARGET_NR_tee:
13062         {
13063             ret = get_errno(tee(arg1,arg2,arg3,arg4));
13064         }
13065         return ret;
13066 #endif
13067 #ifdef TARGET_NR_splice
13068     case TARGET_NR_splice:
13069         {
13070             loff_t loff_in, loff_out;
13071             loff_t *ploff_in = NULL, *ploff_out = NULL;
13072             if (arg2) {
13073                 if (get_user_u64(loff_in, arg2)) {
13074                     return -TARGET_EFAULT;
13075                 }
13076                 ploff_in = &loff_in;
13077             }
13078             if (arg4) {
13079                 if (get_user_u64(loff_out, arg4)) {
13080                     return -TARGET_EFAULT;
13081                 }
13082                 ploff_out = &loff_out;
13083             }
13084             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13085             if (arg2) {
13086                 if (put_user_u64(loff_in, arg2)) {
13087                     return -TARGET_EFAULT;
13088                 }
13089             }
13090             if (arg4) {
13091                 if (put_user_u64(loff_out, arg4)) {
13092                     return -TARGET_EFAULT;
13093                 }
13094             }
13095         }
13096         return ret;
13097 #endif
13098 #ifdef TARGET_NR_vmsplice
13099 	case TARGET_NR_vmsplice:
13100         {
13101             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13102             if (vec != NULL) {
13103                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13104                 unlock_iovec(vec, arg2, arg3, 0);
13105             } else {
13106                 ret = -host_to_target_errno(errno);
13107             }
13108         }
13109         return ret;
13110 #endif
13111 #endif /* CONFIG_SPLICE */
13112 #ifdef CONFIG_EVENTFD
13113 #if defined(TARGET_NR_eventfd)
13114     case TARGET_NR_eventfd:
13115         ret = get_errno(eventfd(arg1, 0));
13116         if (ret >= 0) {
13117             fd_trans_register(ret, &target_eventfd_trans);
13118         }
13119         return ret;
13120 #endif
13121 #if defined(TARGET_NR_eventfd2)
13122     case TARGET_NR_eventfd2:
13123     {
13124         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13125         if (arg2 & TARGET_O_NONBLOCK) {
13126             host_flags |= O_NONBLOCK;
13127         }
13128         if (arg2 & TARGET_O_CLOEXEC) {
13129             host_flags |= O_CLOEXEC;
13130         }
13131         ret = get_errno(eventfd(arg1, host_flags));
13132         if (ret >= 0) {
13133             fd_trans_register(ret, &target_eventfd_trans);
13134         }
13135         return ret;
13136     }
13137 #endif
13138 #endif /* CONFIG_EVENTFD  */
13139 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13140     case TARGET_NR_fallocate:
13141 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13142         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13143                                   target_offset64(arg5, arg6)));
13144 #else
13145         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13146 #endif
13147         return ret;
13148 #endif
13149 #if defined(CONFIG_SYNC_FILE_RANGE)
13150 #if defined(TARGET_NR_sync_file_range)
13151     case TARGET_NR_sync_file_range:
13152 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13153 #if defined(TARGET_MIPS)
13154         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13155                                         target_offset64(arg5, arg6), arg7));
13156 #else
13157         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13158                                         target_offset64(arg4, arg5), arg6));
13159 #endif /* !TARGET_MIPS */
13160 #else
13161         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13162 #endif
13163         return ret;
13164 #endif
13165 #if defined(TARGET_NR_sync_file_range2) || \
13166     defined(TARGET_NR_arm_sync_file_range)
13167 #if defined(TARGET_NR_sync_file_range2)
13168     case TARGET_NR_sync_file_range2:
13169 #endif
13170 #if defined(TARGET_NR_arm_sync_file_range)
13171     case TARGET_NR_arm_sync_file_range:
13172 #endif
13173         /* This is like sync_file_range but the arguments are reordered */
13174 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13175         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13176                                         target_offset64(arg5, arg6), arg2));
13177 #else
13178         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13179 #endif
13180         return ret;
13181 #endif
13182 #endif
13183 #if defined(TARGET_NR_signalfd4)
13184     case TARGET_NR_signalfd4:
13185         return do_signalfd4(arg1, arg2, arg4);
13186 #endif
13187 #if defined(TARGET_NR_signalfd)
13188     case TARGET_NR_signalfd:
13189         return do_signalfd4(arg1, arg2, 0);
13190 #endif
13191 #if defined(CONFIG_EPOLL)
13192 #if defined(TARGET_NR_epoll_create)
13193     case TARGET_NR_epoll_create:
13194         return get_errno(epoll_create(arg1));
13195 #endif
13196 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13197     case TARGET_NR_epoll_create1:
13198         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13199 #endif
13200 #if defined(TARGET_NR_epoll_ctl)
13201     case TARGET_NR_epoll_ctl:
13202     {
13203         struct epoll_event ep;
13204         struct epoll_event *epp = 0;
13205         if (arg4) {
13206             if (arg2 != EPOLL_CTL_DEL) {
13207                 struct target_epoll_event *target_ep;
13208                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13209                     return -TARGET_EFAULT;
13210                 }
13211                 ep.events = tswap32(target_ep->events);
13212                 /*
13213                  * The epoll_data_t union is just opaque data to the kernel,
13214                  * so we transfer all 64 bits across and need not worry what
13215                  * actual data type it is.
13216                  */
13217                 ep.data.u64 = tswap64(target_ep->data.u64);
13218                 unlock_user_struct(target_ep, arg4, 0);
13219             }
13220             /*
13221              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13222              * non-null pointer, even though this argument is ignored.
13223              *
13224              */
13225             epp = &ep;
13226         }
13227         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13228     }
13229 #endif
13230 
13231 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13232 #if defined(TARGET_NR_epoll_wait)
13233     case TARGET_NR_epoll_wait:
13234 #endif
13235 #if defined(TARGET_NR_epoll_pwait)
13236     case TARGET_NR_epoll_pwait:
13237 #endif
13238     {
13239         struct target_epoll_event *target_ep;
13240         struct epoll_event *ep;
13241         int epfd = arg1;
13242         int maxevents = arg3;
13243         int timeout = arg4;
13244 
13245         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13246             return -TARGET_EINVAL;
13247         }
13248 
13249         target_ep = lock_user(VERIFY_WRITE, arg2,
13250                               maxevents * sizeof(struct target_epoll_event), 1);
13251         if (!target_ep) {
13252             return -TARGET_EFAULT;
13253         }
13254 
13255         ep = g_try_new(struct epoll_event, maxevents);
13256         if (!ep) {
13257             unlock_user(target_ep, arg2, 0);
13258             return -TARGET_ENOMEM;
13259         }
13260 
13261         switch (num) {
13262 #if defined(TARGET_NR_epoll_pwait)
13263         case TARGET_NR_epoll_pwait:
13264         {
13265             sigset_t *set = NULL;
13266 
13267             if (arg5) {
13268                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13269                 if (ret != 0) {
13270                     break;
13271                 }
13272             }
13273 
13274             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13275                                              set, SIGSET_T_SIZE));
13276 
13277             if (set) {
13278                 finish_sigsuspend_mask(ret);
13279             }
13280             break;
13281         }
13282 #endif
13283 #if defined(TARGET_NR_epoll_wait)
13284         case TARGET_NR_epoll_wait:
13285             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13286                                              NULL, 0));
13287             break;
13288 #endif
13289         default:
13290             ret = -TARGET_ENOSYS;
13291         }
13292         if (!is_error(ret)) {
13293             int i;
13294             for (i = 0; i < ret; i++) {
13295                 target_ep[i].events = tswap32(ep[i].events);
13296                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13297             }
13298             unlock_user(target_ep, arg2,
13299                         ret * sizeof(struct target_epoll_event));
13300         } else {
13301             unlock_user(target_ep, arg2, 0);
13302         }
13303         g_free(ep);
13304         return ret;
13305     }
13306 #endif
13307 #endif
13308 #ifdef TARGET_NR_prlimit64
13309     case TARGET_NR_prlimit64:
13310     {
13311         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13312         struct target_rlimit64 *target_rnew, *target_rold;
13313         struct host_rlimit64 rnew, rold, *rnewp = 0;
13314         int resource = target_to_host_resource(arg2);
13315 
13316         if (arg3 && (resource != RLIMIT_AS &&
13317                      resource != RLIMIT_DATA &&
13318                      resource != RLIMIT_STACK)) {
13319             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13320                 return -TARGET_EFAULT;
13321             }
13322             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13323             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13324             unlock_user_struct(target_rnew, arg3, 0);
13325             rnewp = &rnew;
13326         }
13327 
13328         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13329         if (!is_error(ret) && arg4) {
13330             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13331                 return -TARGET_EFAULT;
13332             }
13333             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13334             __put_user(rold.rlim_max, &target_rold->rlim_max);
13335             unlock_user_struct(target_rold, arg4, 1);
13336         }
13337         return ret;
13338     }
13339 #endif
13340 #ifdef TARGET_NR_gethostname
13341     case TARGET_NR_gethostname:
13342     {
13343         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13344         if (name) {
13345             ret = get_errno(gethostname(name, arg2));
13346             unlock_user(name, arg1, arg2);
13347         } else {
13348             ret = -TARGET_EFAULT;
13349         }
13350         return ret;
13351     }
13352 #endif
13353 #ifdef TARGET_NR_atomic_cmpxchg_32
13354     case TARGET_NR_atomic_cmpxchg_32:
13355     {
13356         /* should use start_exclusive from main.c */
13357         abi_ulong mem_value;
13358         if (get_user_u32(mem_value, arg6)) {
13359             target_siginfo_t info;
13360             info.si_signo = SIGSEGV;
13361             info.si_errno = 0;
13362             info.si_code = TARGET_SEGV_MAPERR;
13363             info._sifields._sigfault._addr = arg6;
13364             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13365             ret = 0xdeadbeef;
13366 
13367         }
13368         if (mem_value == arg2)
13369             put_user_u32(arg1, arg6);
13370         return mem_value;
13371     }
13372 #endif
13373 #ifdef TARGET_NR_atomic_barrier
13374     case TARGET_NR_atomic_barrier:
13375         /* Like the kernel implementation and the
13376            qemu arm barrier, no-op this? */
13377         return 0;
13378 #endif
13379 
13380 #ifdef TARGET_NR_timer_create
13381     case TARGET_NR_timer_create:
13382     {
13383         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13384 
13385         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13386 
13387         int clkid = arg1;
13388         int timer_index = next_free_host_timer();
13389 
13390         if (timer_index < 0) {
13391             ret = -TARGET_EAGAIN;
13392         } else {
13393             timer_t *phtimer = g_posix_timers  + timer_index;
13394 
13395             if (arg2) {
13396                 phost_sevp = &host_sevp;
13397                 ret = target_to_host_sigevent(phost_sevp, arg2);
13398                 if (ret != 0) {
13399                     free_host_timer_slot(timer_index);
13400                     return ret;
13401                 }
13402             }
13403 
13404             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13405             if (ret) {
13406                 free_host_timer_slot(timer_index);
13407             } else {
13408                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13409                     timer_delete(*phtimer);
13410                     free_host_timer_slot(timer_index);
13411                     return -TARGET_EFAULT;
13412                 }
13413             }
13414         }
13415         return ret;
13416     }
13417 #endif
13418 
13419 #ifdef TARGET_NR_timer_settime
13420     case TARGET_NR_timer_settime:
13421     {
13422         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13423          * struct itimerspec * old_value */
13424         target_timer_t timerid = get_timer_id(arg1);
13425 
13426         if (timerid < 0) {
13427             ret = timerid;
13428         } else if (arg3 == 0) {
13429             ret = -TARGET_EINVAL;
13430         } else {
13431             timer_t htimer = g_posix_timers[timerid];
13432             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13433 
13434             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13435                 return -TARGET_EFAULT;
13436             }
13437             ret = get_errno(
13438                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13439             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13440                 return -TARGET_EFAULT;
13441             }
13442         }
13443         return ret;
13444     }
13445 #endif
13446 
13447 #ifdef TARGET_NR_timer_settime64
13448     case TARGET_NR_timer_settime64:
13449     {
13450         target_timer_t timerid = get_timer_id(arg1);
13451 
13452         if (timerid < 0) {
13453             ret = timerid;
13454         } else if (arg3 == 0) {
13455             ret = -TARGET_EINVAL;
13456         } else {
13457             timer_t htimer = g_posix_timers[timerid];
13458             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13459 
13460             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13461                 return -TARGET_EFAULT;
13462             }
13463             ret = get_errno(
13464                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13465             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13466                 return -TARGET_EFAULT;
13467             }
13468         }
13469         return ret;
13470     }
13471 #endif
13472 
13473 #ifdef TARGET_NR_timer_gettime
13474     case TARGET_NR_timer_gettime:
13475     {
13476         /* args: timer_t timerid, struct itimerspec *curr_value */
13477         target_timer_t timerid = get_timer_id(arg1);
13478 
13479         if (timerid < 0) {
13480             ret = timerid;
13481         } else if (!arg2) {
13482             ret = -TARGET_EFAULT;
13483         } else {
13484             timer_t htimer = g_posix_timers[timerid];
13485             struct itimerspec hspec;
13486             ret = get_errno(timer_gettime(htimer, &hspec));
13487 
13488             if (host_to_target_itimerspec(arg2, &hspec)) {
13489                 ret = -TARGET_EFAULT;
13490             }
13491         }
13492         return ret;
13493     }
13494 #endif
13495 
13496 #ifdef TARGET_NR_timer_gettime64
13497     case TARGET_NR_timer_gettime64:
13498     {
13499         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13500         target_timer_t timerid = get_timer_id(arg1);
13501 
13502         if (timerid < 0) {
13503             ret = timerid;
13504         } else if (!arg2) {
13505             ret = -TARGET_EFAULT;
13506         } else {
13507             timer_t htimer = g_posix_timers[timerid];
13508             struct itimerspec hspec;
13509             ret = get_errno(timer_gettime(htimer, &hspec));
13510 
13511             if (host_to_target_itimerspec64(arg2, &hspec)) {
13512                 ret = -TARGET_EFAULT;
13513             }
13514         }
13515         return ret;
13516     }
13517 #endif
13518 
13519 #ifdef TARGET_NR_timer_getoverrun
13520     case TARGET_NR_timer_getoverrun:
13521     {
13522         /* args: timer_t timerid */
13523         target_timer_t timerid = get_timer_id(arg1);
13524 
13525         if (timerid < 0) {
13526             ret = timerid;
13527         } else {
13528             timer_t htimer = g_posix_timers[timerid];
13529             ret = get_errno(timer_getoverrun(htimer));
13530         }
13531         return ret;
13532     }
13533 #endif
13534 
13535 #ifdef TARGET_NR_timer_delete
13536     case TARGET_NR_timer_delete:
13537     {
13538         /* args: timer_t timerid */
13539         target_timer_t timerid = get_timer_id(arg1);
13540 
13541         if (timerid < 0) {
13542             ret = timerid;
13543         } else {
13544             timer_t htimer = g_posix_timers[timerid];
13545             ret = get_errno(timer_delete(htimer));
13546             free_host_timer_slot(timerid);
13547         }
13548         return ret;
13549     }
13550 #endif
13551 
13552 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13553     case TARGET_NR_timerfd_create:
13554         ret = get_errno(timerfd_create(arg1,
13555                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13556         if (ret >= 0) {
13557             fd_trans_register(ret, &target_timerfd_trans);
13558         }
13559         return ret;
13560 #endif
13561 
13562 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13563     case TARGET_NR_timerfd_gettime:
13564         {
13565             struct itimerspec its_curr;
13566 
13567             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13568 
13569             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13570                 return -TARGET_EFAULT;
13571             }
13572         }
13573         return ret;
13574 #endif
13575 
13576 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13577     case TARGET_NR_timerfd_gettime64:
13578         {
13579             struct itimerspec its_curr;
13580 
13581             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13582 
13583             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13584                 return -TARGET_EFAULT;
13585             }
13586         }
13587         return ret;
13588 #endif
13589 
13590 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13591     case TARGET_NR_timerfd_settime:
13592         {
13593             struct itimerspec its_new, its_old, *p_new;
13594 
13595             if (arg3) {
13596                 if (target_to_host_itimerspec(&its_new, arg3)) {
13597                     return -TARGET_EFAULT;
13598                 }
13599                 p_new = &its_new;
13600             } else {
13601                 p_new = NULL;
13602             }
13603 
13604             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13605 
13606             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13607                 return -TARGET_EFAULT;
13608             }
13609         }
13610         return ret;
13611 #endif
13612 
13613 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13614     case TARGET_NR_timerfd_settime64:
13615         {
13616             struct itimerspec its_new, its_old, *p_new;
13617 
13618             if (arg3) {
13619                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13620                     return -TARGET_EFAULT;
13621                 }
13622                 p_new = &its_new;
13623             } else {
13624                 p_new = NULL;
13625             }
13626 
13627             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13628 
13629             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13630                 return -TARGET_EFAULT;
13631             }
13632         }
13633         return ret;
13634 #endif
13635 
13636 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13637     case TARGET_NR_ioprio_get:
13638         return get_errno(ioprio_get(arg1, arg2));
13639 #endif
13640 
13641 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13642     case TARGET_NR_ioprio_set:
13643         return get_errno(ioprio_set(arg1, arg2, arg3));
13644 #endif
13645 
13646 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13647     case TARGET_NR_setns:
13648         return get_errno(setns(arg1, arg2));
13649 #endif
13650 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13651     case TARGET_NR_unshare:
13652         return get_errno(unshare(arg1));
13653 #endif
13654 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13655     case TARGET_NR_kcmp:
13656         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13657 #endif
13658 #ifdef TARGET_NR_swapcontext
13659     case TARGET_NR_swapcontext:
13660         /* PowerPC specific.  */
13661         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13662 #endif
13663 #ifdef TARGET_NR_memfd_create
13664     case TARGET_NR_memfd_create:
13665         p = lock_user_string(arg1);
13666         if (!p) {
13667             return -TARGET_EFAULT;
13668         }
13669         ret = get_errno(memfd_create(p, arg2));
13670         fd_trans_unregister(ret);
13671         unlock_user(p, arg1, 0);
13672         return ret;
13673 #endif
13674 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13675     case TARGET_NR_membarrier:
13676         return get_errno(membarrier(arg1, arg2));
13677 #endif
13678 
13679 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13680     case TARGET_NR_copy_file_range:
13681         {
13682             loff_t inoff, outoff;
13683             loff_t *pinoff = NULL, *poutoff = NULL;
13684 
13685             if (arg2) {
13686                 if (get_user_u64(inoff, arg2)) {
13687                     return -TARGET_EFAULT;
13688                 }
13689                 pinoff = &inoff;
13690             }
13691             if (arg4) {
13692                 if (get_user_u64(outoff, arg4)) {
13693                     return -TARGET_EFAULT;
13694                 }
13695                 poutoff = &outoff;
13696             }
13697             /* Do not sign-extend the count parameter. */
13698             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13699                                                  (abi_ulong)arg5, arg6));
13700             if (!is_error(ret) && ret > 0) {
13701                 if (arg2) {
13702                     if (put_user_u64(inoff, arg2)) {
13703                         return -TARGET_EFAULT;
13704                     }
13705                 }
13706                 if (arg4) {
13707                     if (put_user_u64(outoff, arg4)) {
13708                         return -TARGET_EFAULT;
13709                     }
13710                 }
13711             }
13712         }
13713         return ret;
13714 #endif
13715 
13716 #if defined(TARGET_NR_pivot_root)
13717     case TARGET_NR_pivot_root:
13718         {
13719             void *p2;
13720             p = lock_user_string(arg1); /* new_root */
13721             p2 = lock_user_string(arg2); /* put_old */
13722             if (!p || !p2) {
13723                 ret = -TARGET_EFAULT;
13724             } else {
13725                 ret = get_errno(pivot_root(p, p2));
13726             }
13727             unlock_user(p2, arg2, 0);
13728             unlock_user(p, arg1, 0);
13729         }
13730         return ret;
13731 #endif
13732 
13733 #if defined(TARGET_NR_riscv_hwprobe)
13734     case TARGET_NR_riscv_hwprobe:
13735         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13736 #endif
13737 
13738     default:
13739         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13740         return -TARGET_ENOSYS;
13741     }
13742     return ret;
13743 }
13744 
13745 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13746                     abi_long arg2, abi_long arg3, abi_long arg4,
13747                     abi_long arg5, abi_long arg6, abi_long arg7,
13748                     abi_long arg8)
13749 {
13750     CPUState *cpu = env_cpu(cpu_env);
13751     abi_long ret;
13752 
13753 #ifdef DEBUG_ERESTARTSYS
13754     /* Debug-only code for exercising the syscall-restart code paths
13755      * in the per-architecture cpu main loops: restart every syscall
13756      * the guest makes once before letting it through.
13757      */
13758     {
13759         static bool flag;
13760         flag = !flag;
13761         if (flag) {
13762             return -QEMU_ERESTARTSYS;
13763         }
13764     }
13765 #endif
13766 
13767     record_syscall_start(cpu, num, arg1,
13768                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13769 
13770     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13771         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13772     }
13773 
13774     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13775                       arg5, arg6, arg7, arg8);
13776 
13777     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13778         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13779                           arg3, arg4, arg5, arg6);
13780     }
13781 
13782     record_syscall_return(cpu, num, ret);
13783     return ret;
13784 }
13785