xref: /qemu/linux-user/syscall.c (revision 370ed600)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "target_mman.h"
27 #include <elf.h>
28 #include <endian.h>
29 #include <grp.h>
30 #include <sys/ipc.h>
31 #include <sys/msg.h>
32 #include <sys/wait.h>
33 #include <sys/mount.h>
34 #include <sys/file.h>
35 #include <sys/fsuid.h>
36 #include <sys/personality.h>
37 #include <sys/prctl.h>
38 #include <sys/resource.h>
39 #include <sys/swap.h>
40 #include <linux/capability.h>
41 #include <sched.h>
42 #include <sys/timex.h>
43 #include <sys/socket.h>
44 #include <linux/sockios.h>
45 #include <sys/un.h>
46 #include <sys/uio.h>
47 #include <poll.h>
48 #include <sys/times.h>
49 #include <sys/shm.h>
50 #include <sys/sem.h>
51 #include <sys/statfs.h>
52 #include <utime.h>
53 #include <sys/sysinfo.h>
54 #include <sys/signalfd.h>
55 //#include <sys/user.h>
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <linux/wireless.h>
61 #include <linux/icmp.h>
62 #include <linux/icmpv6.h>
63 #include <linux/if_tun.h>
64 #include <linux/in6.h>
65 #include <linux/errqueue.h>
66 #include <linux/random.h>
67 #ifdef CONFIG_TIMERFD
68 #include <sys/timerfd.h>
69 #endif
70 #ifdef CONFIG_EVENTFD
71 #include <sys/eventfd.h>
72 #endif
73 #ifdef CONFIG_EPOLL
74 #include <sys/epoll.h>
75 #endif
76 #ifdef CONFIG_ATTR
77 #include "qemu/xattr.h"
78 #endif
79 #ifdef CONFIG_SENDFILE
80 #include <sys/sendfile.h>
81 #endif
82 #ifdef HAVE_SYS_KCOV_H
83 #include <sys/kcov.h>
84 #endif
85 
86 #define termios host_termios
87 #define winsize host_winsize
88 #define termio host_termio
89 #define sgttyb host_sgttyb /* same as target */
90 #define tchars host_tchars /* same as target */
91 #define ltchars host_ltchars /* same as target */
92 
93 #include <linux/termios.h>
94 #include <linux/unistd.h>
95 #include <linux/cdrom.h>
96 #include <linux/hdreg.h>
97 #include <linux/soundcard.h>
98 #include <linux/kd.h>
99 #include <linux/mtio.h>
100 #include <linux/fs.h>
101 #include <linux/fd.h>
102 #if defined(CONFIG_FIEMAP)
103 #include <linux/fiemap.h>
104 #endif
105 #include <linux/fb.h>
106 #if defined(CONFIG_USBFS)
107 #include <linux/usbdevice_fs.h>
108 #include <linux/usb/ch9.h>
109 #endif
110 #include <linux/vt.h>
111 #include <linux/dm-ioctl.h>
112 #include <linux/reboot.h>
113 #include <linux/route.h>
114 #include <linux/filter.h>
115 #include <linux/blkpg.h>
116 #include <netpacket/packet.h>
117 #include <linux/netlink.h>
118 #include <linux/if_alg.h>
119 #include <linux/rtc.h>
120 #include <sound/asound.h>
121 #ifdef HAVE_BTRFS_H
122 #include <linux/btrfs.h>
123 #endif
124 #ifdef HAVE_DRM_H
125 #include <libdrm/drm.h>
126 #include <libdrm/i915_drm.h>
127 #endif
128 #include "linux_loop.h"
129 #include "uname.h"
130 
131 #include "qemu.h"
132 #include "user-internals.h"
133 #include "strace.h"
134 #include "signal-common.h"
135 #include "loader.h"
136 #include "user-mmap.h"
137 #include "user/safe-syscall.h"
138 #include "qemu/guest-random.h"
139 #include "qemu/selfmap.h"
140 #include "user/syscall-trace.h"
141 #include "special-errno.h"
142 #include "qapi/error.h"
143 #include "fd-trans.h"
144 #include "tcg/tcg.h"
145 #include "cpu_loop-common.h"
146 
147 #ifndef CLONE_IO
148 #define CLONE_IO                0x80000000      /* Clone io context */
149 #endif
150 
151 /* We can't directly call the host clone syscall, because this will
152  * badly confuse libc (breaking mutexes, for example). So we must
153  * divide clone flags into:
154  *  * flag combinations that look like pthread_create()
155  *  * flag combinations that look like fork()
156  *  * flags we can implement within QEMU itself
157  *  * flags we can't support and will return an error for
158  */
159 /* For thread creation, all these flags must be present; for
160  * fork, none must be present.
161  */
162 #define CLONE_THREAD_FLAGS                              \
163     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
164      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
165 
166 /* These flags are ignored:
167  * CLONE_DETACHED is now ignored by the kernel;
168  * CLONE_IO is just an optimisation hint to the I/O scheduler
169  */
170 #define CLONE_IGNORED_FLAGS                     \
171     (CLONE_DETACHED | CLONE_IO)
172 
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
176 
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS               \
179     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
181 
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
184     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
185      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
186 
187 #define CLONE_INVALID_FORK_FLAGS                                        \
188     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
189 
190 #define CLONE_INVALID_THREAD_FLAGS                                      \
191     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
192        CLONE_IGNORED_FLAGS))
193 
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195  * have almost all been allocated. We cannot support any of
196  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198  * The checks against the invalid thread masks above will catch these.
199  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
200  */
201 
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203  * once. This exercises the codepaths for restart.
204  */
205 //#define DEBUG_ERESTARTSYS
206 
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
212 
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
220 
221 #define _syscall0(type,name)		\
222 static type name (void)			\
223 {					\
224 	return syscall(__NR_##name);	\
225 }
226 
227 #define _syscall1(type,name,type1,arg1)		\
228 static type name (type1 arg1)			\
229 {						\
230 	return syscall(__NR_##name, arg1);	\
231 }
232 
233 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
234 static type name (type1 arg1,type2 arg2)		\
235 {							\
236 	return syscall(__NR_##name, arg1, arg2);	\
237 }
238 
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
240 static type name (type1 arg1,type2 arg2,type3 arg3)		\
241 {								\
242 	return syscall(__NR_##name, arg1, arg2, arg3);		\
243 }
244 
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
249 }
250 
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
252 		  type5,arg5)							\
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
254 {										\
255 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
256 }
257 
258 
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
260 		  type5,arg5,type6,arg6)					\
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
262                   type6 arg6)							\
263 {										\
264 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
265 }
266 
267 
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
283 
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
287 
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
292 
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
297 
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
300 
301 /* For the 64-bit guest on 32-bit host case we must emulate
302  * getdents using getdents64, because otherwise the host
303  * might hand us back more dirent records than we can fit
304  * into the guest buffer after structure format conversion.
305  * Otherwise we emulate getdents with getdents if the host has it.
306  */
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
310 
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek,  uint,  fd, ulong, hi, ulong, lo,
321           loff_t *, res, uint, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325           siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339           const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343           const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350                              unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357           unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360           unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363     uint32_t size;
364     uint32_t sched_policy;
365     uint64_t sched_flags;
366     int32_t sched_nice;
367     uint32_t sched_priority;
368     uint64_t sched_runtime;
369     uint64_t sched_deadline;
370     uint64_t sched_period;
371     uint32_t sched_util_min;
372     uint32_t sched_util_max;
373 };
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376           unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379           unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384           const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387           struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390           const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394           void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396           struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398           struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
408 
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411           unsigned long, idx1, unsigned long, idx2)
412 #endif
413 
414 /*
415  * It is assumed that struct statx is architecture independent.
416  */
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419           unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
424 
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
427   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
428   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
429   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
430   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
431   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
432   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
433   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
434   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
435   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
436   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
437   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
439 #if defined(O_DIRECT)
440   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
441 #endif
442 #if defined(O_NOATIME)
443   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
444 #endif
445 #if defined(O_CLOEXEC)
446   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
447 #endif
448 #if defined(O_PATH)
449   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
450 #endif
451 #if defined(O_TMPFILE)
452   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
453 #endif
454   /* Don't terminate the list prematurely on 64-bit host+guest.  */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
458   { 0, 0, 0, 0 }
459 };
460 
461 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
462 
463 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
464 #if defined(__NR_utimensat)
465 #define __NR_sys_utimensat __NR_utimensat
466 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
467           const struct timespec *,tsp,int,flags)
468 #else
469 static int sys_utimensat(int dirfd, const char *pathname,
470                          const struct timespec times[2], int flags)
471 {
472     errno = ENOSYS;
473     return -1;
474 }
475 #endif
476 #endif /* TARGET_NR_utimensat */
477 
478 #ifdef TARGET_NR_renameat2
479 #if defined(__NR_renameat2)
480 #define __NR_sys_renameat2 __NR_renameat2
481 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
482           const char *, new, unsigned int, flags)
483 #else
484 static int sys_renameat2(int oldfd, const char *old,
485                          int newfd, const char *new, int flags)
486 {
487     if (flags == 0) {
488         return renameat(oldfd, old, newfd, new);
489     }
490     errno = ENOSYS;
491     return -1;
492 }
493 #endif
494 #endif /* TARGET_NR_renameat2 */
495 
496 #ifdef CONFIG_INOTIFY
497 #include <sys/inotify.h>
498 #else
499 /* Userspace can usually survive runtime without inotify */
500 #undef TARGET_NR_inotify_init
501 #undef TARGET_NR_inotify_init1
502 #undef TARGET_NR_inotify_add_watch
503 #undef TARGET_NR_inotify_rm_watch
504 #endif /* CONFIG_INOTIFY  */
505 
506 #if defined(TARGET_NR_prlimit64)
507 #ifndef __NR_prlimit64
508 # define __NR_prlimit64 -1
509 #endif
510 #define __NR_sys_prlimit64 __NR_prlimit64
511 /* The glibc rlimit structure may not be that used by the underlying syscall */
512 struct host_rlimit64 {
513     uint64_t rlim_cur;
514     uint64_t rlim_max;
515 };
516 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
517           const struct host_rlimit64 *, new_limit,
518           struct host_rlimit64 *, old_limit)
519 #endif
520 
521 
522 #if defined(TARGET_NR_timer_create)
523 /* Maximum of 32 active POSIX timers allowed at any one time. */
524 #define GUEST_TIMER_MAX 32
525 static timer_t g_posix_timers[GUEST_TIMER_MAX];
526 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
527 
528 static inline int next_free_host_timer(void)
529 {
530     int k;
531     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
532         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
533             return k;
534         }
535     }
536     return -1;
537 }
538 
539 static inline void free_host_timer_slot(int id)
540 {
541     qatomic_store_release(g_posix_timer_allocated + id, 0);
542 }
543 #endif
544 
545 static inline int host_to_target_errno(int host_errno)
546 {
547     switch (host_errno) {
548 #define E(X)  case X: return TARGET_##X;
549 #include "errnos.c.inc"
550 #undef E
551     default:
552         return host_errno;
553     }
554 }
555 
556 static inline int target_to_host_errno(int target_errno)
557 {
558     switch (target_errno) {
559 #define E(X)  case TARGET_##X: return X;
560 #include "errnos.c.inc"
561 #undef E
562     default:
563         return target_errno;
564     }
565 }
566 
567 abi_long get_errno(abi_long ret)
568 {
569     if (ret == -1)
570         return -host_to_target_errno(errno);
571     else
572         return ret;
573 }
574 
575 const char *target_strerror(int err)
576 {
577     if (err == QEMU_ERESTARTSYS) {
578         return "To be restarted";
579     }
580     if (err == QEMU_ESIGRETURN) {
581         return "Successful exit from sigreturn";
582     }
583 
584     return strerror(target_to_host_errno(err));
585 }
586 
587 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
588 {
589     int i;
590     uint8_t b;
591     if (usize <= ksize) {
592         return 1;
593     }
594     for (i = ksize; i < usize; i++) {
595         if (get_user_u8(b, addr + i)) {
596             return -TARGET_EFAULT;
597         }
598         if (b != 0) {
599             return 0;
600         }
601     }
602     return 1;
603 }
604 
605 #define safe_syscall0(type, name) \
606 static type safe_##name(void) \
607 { \
608     return safe_syscall(__NR_##name); \
609 }
610 
611 #define safe_syscall1(type, name, type1, arg1) \
612 static type safe_##name(type1 arg1) \
613 { \
614     return safe_syscall(__NR_##name, arg1); \
615 }
616 
617 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
618 static type safe_##name(type1 arg1, type2 arg2) \
619 { \
620     return safe_syscall(__NR_##name, arg1, arg2); \
621 }
622 
623 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
624 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
625 { \
626     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
627 }
628 
629 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
630     type4, arg4) \
631 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
632 { \
633     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
634 }
635 
636 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
637     type4, arg4, type5, arg5) \
638 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
639     type5 arg5) \
640 { \
641     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
642 }
643 
644 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
645     type4, arg4, type5, arg5, type6, arg6) \
646 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
647     type5 arg5, type6 arg6) \
648 { \
649     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
650 }
651 
652 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
653 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
654 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
655               int, flags, mode_t, mode)
656 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
657 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
658               struct rusage *, rusage)
659 #endif
660 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
661               int, options, struct rusage *, rusage)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663               char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671               struct timespec *, tsp, const sigset_t *, sigmask,
672               size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675               int, maxevents, int, timeout, const sigset_t *, sigmask,
676               size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679               const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683               const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692               unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694               unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696               socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706               const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709               int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712               struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715     defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717               const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722               void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730               int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734               long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738               unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741     defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743               size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746     defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748               size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752               int, outfd, loff_t *, poutoff, size_t, length,
753               unsigned int, flags)
754 #endif
755 
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757  * "third argument might be integer or pointer or not present" behaviour of
758  * the libc function.
759  */
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763  *  use the flock64 struct rather than unsuffixed flock
764  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
765  */
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
771 
772 static inline int host_to_target_sock_type(int host_type)
773 {
774     int target_type;
775 
776     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777     case SOCK_DGRAM:
778         target_type = TARGET_SOCK_DGRAM;
779         break;
780     case SOCK_STREAM:
781         target_type = TARGET_SOCK_STREAM;
782         break;
783     default:
784         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785         break;
786     }
787 
788 #if defined(SOCK_CLOEXEC)
789     if (host_type & SOCK_CLOEXEC) {
790         target_type |= TARGET_SOCK_CLOEXEC;
791     }
792 #endif
793 
794 #if defined(SOCK_NONBLOCK)
795     if (host_type & SOCK_NONBLOCK) {
796         target_type |= TARGET_SOCK_NONBLOCK;
797     }
798 #endif
799 
800     return target_type;
801 }
802 
803 static abi_ulong target_brk;
804 static abi_ulong brk_page;
805 
806 void target_set_brk(abi_ulong new_brk)
807 {
808     target_brk = new_brk;
809     brk_page = HOST_PAGE_ALIGN(target_brk);
810 }
811 
812 /* do_brk() must return target values and target errnos. */
813 abi_long do_brk(abi_ulong brk_val)
814 {
815     abi_long mapped_addr;
816     abi_ulong new_alloc_size;
817     abi_ulong new_brk, new_host_brk_page;
818 
819     /* brk pointers are always untagged */
820 
821     /* return old brk value if brk_val unchanged or zero */
822     if (!brk_val || brk_val == target_brk) {
823         return target_brk;
824     }
825 
826     new_brk = TARGET_PAGE_ALIGN(brk_val);
827     new_host_brk_page = HOST_PAGE_ALIGN(brk_val);
828 
829     /* brk_val and old target_brk might be on the same page */
830     if (new_brk == TARGET_PAGE_ALIGN(target_brk)) {
831         if (brk_val > target_brk) {
832             /* empty remaining bytes in (possibly larger) host page */
833             memset(g2h_untagged(target_brk), 0, new_host_brk_page - target_brk);
834         }
835         target_brk = brk_val;
836         return target_brk;
837     }
838 
839     /* Release heap if necesary */
840     if (new_brk < target_brk) {
841         /* empty remaining bytes in (possibly larger) host page */
842         memset(g2h_untagged(brk_val), 0, new_host_brk_page - brk_val);
843 
844         /* free unused host pages and set new brk_page */
845         target_munmap(new_host_brk_page, brk_page - new_host_brk_page);
846         brk_page = new_host_brk_page;
847 
848         target_brk = brk_val;
849         return target_brk;
850     }
851 
852     /* We need to allocate more memory after the brk... Note that
853      * we don't use MAP_FIXED because that will map over the top of
854      * any existing mapping (like the one with the host libc or qemu
855      * itself); instead we treat "mapped but at wrong address" as
856      * a failure and unmap again.
857      */
858     new_alloc_size = new_host_brk_page - brk_page;
859     if (new_alloc_size) {
860         mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
861                                         PROT_READ|PROT_WRITE,
862                                         MAP_ANON|MAP_PRIVATE, 0, 0));
863     } else {
864         mapped_addr = brk_page;
865     }
866 
867     if (mapped_addr == brk_page) {
868         /* Heap contents are initialized to zero, as for anonymous
869          * mapped pages.  Technically the new pages are already
870          * initialized to zero since they *are* anonymous mapped
871          * pages, however we have to take care with the contents that
872          * come from the remaining part of the previous page: it may
873          * contains garbage data due to a previous heap usage (grown
874          * then shrunken).  */
875         memset(g2h_untagged(target_brk), 0, brk_page - target_brk);
876 
877         target_brk = brk_val;
878         brk_page = new_host_brk_page;
879         return target_brk;
880     } else if (mapped_addr != -1) {
881         /* Mapped but at wrong address, meaning there wasn't actually
882          * enough space for this brk.
883          */
884         target_munmap(mapped_addr, new_alloc_size);
885         mapped_addr = -1;
886     }
887 
888 #if defined(TARGET_ALPHA)
889     /* We (partially) emulate OSF/1 on Alpha, which requires we
890        return a proper errno, not an unchanged brk value.  */
891     return -TARGET_ENOMEM;
892 #endif
893     /* For everything else, return the previous break. */
894     return target_brk;
895 }
896 
897 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
898     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
899 static inline abi_long copy_from_user_fdset(fd_set *fds,
900                                             abi_ulong target_fds_addr,
901                                             int n)
902 {
903     int i, nw, j, k;
904     abi_ulong b, *target_fds;
905 
906     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
907     if (!(target_fds = lock_user(VERIFY_READ,
908                                  target_fds_addr,
909                                  sizeof(abi_ulong) * nw,
910                                  1)))
911         return -TARGET_EFAULT;
912 
913     FD_ZERO(fds);
914     k = 0;
915     for (i = 0; i < nw; i++) {
916         /* grab the abi_ulong */
917         __get_user(b, &target_fds[i]);
918         for (j = 0; j < TARGET_ABI_BITS; j++) {
919             /* check the bit inside the abi_ulong */
920             if ((b >> j) & 1)
921                 FD_SET(k, fds);
922             k++;
923         }
924     }
925 
926     unlock_user(target_fds, target_fds_addr, 0);
927 
928     return 0;
929 }
930 
931 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
932                                                  abi_ulong target_fds_addr,
933                                                  int n)
934 {
935     if (target_fds_addr) {
936         if (copy_from_user_fdset(fds, target_fds_addr, n))
937             return -TARGET_EFAULT;
938         *fds_ptr = fds;
939     } else {
940         *fds_ptr = NULL;
941     }
942     return 0;
943 }
944 
945 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
946                                           const fd_set *fds,
947                                           int n)
948 {
949     int i, nw, j, k;
950     abi_long v;
951     abi_ulong *target_fds;
952 
953     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
954     if (!(target_fds = lock_user(VERIFY_WRITE,
955                                  target_fds_addr,
956                                  sizeof(abi_ulong) * nw,
957                                  0)))
958         return -TARGET_EFAULT;
959 
960     k = 0;
961     for (i = 0; i < nw; i++) {
962         v = 0;
963         for (j = 0; j < TARGET_ABI_BITS; j++) {
964             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
965             k++;
966         }
967         __put_user(v, &target_fds[i]);
968     }
969 
970     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
971 
972     return 0;
973 }
974 #endif
975 
976 #if defined(__alpha__)
977 #define HOST_HZ 1024
978 #else
979 #define HOST_HZ 100
980 #endif
981 
982 static inline abi_long host_to_target_clock_t(long ticks)
983 {
984 #if HOST_HZ == TARGET_HZ
985     return ticks;
986 #else
987     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
988 #endif
989 }
990 
991 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
992                                              const struct rusage *rusage)
993 {
994     struct target_rusage *target_rusage;
995 
996     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
997         return -TARGET_EFAULT;
998     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
999     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1000     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1001     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1002     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1003     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1004     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1005     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1006     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1007     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1008     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1009     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1010     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1011     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1012     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1013     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1014     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1015     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1016     unlock_user_struct(target_rusage, target_addr, 1);
1017 
1018     return 0;
1019 }
1020 
1021 #ifdef TARGET_NR_setrlimit
1022 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1023 {
1024     abi_ulong target_rlim_swap;
1025     rlim_t result;
1026 
1027     target_rlim_swap = tswapal(target_rlim);
1028     if (target_rlim_swap == TARGET_RLIM_INFINITY)
1029         return RLIM_INFINITY;
1030 
1031     result = target_rlim_swap;
1032     if (target_rlim_swap != (rlim_t)result)
1033         return RLIM_INFINITY;
1034 
1035     return result;
1036 }
1037 #endif
1038 
1039 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1040 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1041 {
1042     abi_ulong target_rlim_swap;
1043     abi_ulong result;
1044 
1045     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1046         target_rlim_swap = TARGET_RLIM_INFINITY;
1047     else
1048         target_rlim_swap = rlim;
1049     result = tswapal(target_rlim_swap);
1050 
1051     return result;
1052 }
1053 #endif
1054 
1055 static inline int target_to_host_resource(int code)
1056 {
1057     switch (code) {
1058     case TARGET_RLIMIT_AS:
1059         return RLIMIT_AS;
1060     case TARGET_RLIMIT_CORE:
1061         return RLIMIT_CORE;
1062     case TARGET_RLIMIT_CPU:
1063         return RLIMIT_CPU;
1064     case TARGET_RLIMIT_DATA:
1065         return RLIMIT_DATA;
1066     case TARGET_RLIMIT_FSIZE:
1067         return RLIMIT_FSIZE;
1068     case TARGET_RLIMIT_LOCKS:
1069         return RLIMIT_LOCKS;
1070     case TARGET_RLIMIT_MEMLOCK:
1071         return RLIMIT_MEMLOCK;
1072     case TARGET_RLIMIT_MSGQUEUE:
1073         return RLIMIT_MSGQUEUE;
1074     case TARGET_RLIMIT_NICE:
1075         return RLIMIT_NICE;
1076     case TARGET_RLIMIT_NOFILE:
1077         return RLIMIT_NOFILE;
1078     case TARGET_RLIMIT_NPROC:
1079         return RLIMIT_NPROC;
1080     case TARGET_RLIMIT_RSS:
1081         return RLIMIT_RSS;
1082     case TARGET_RLIMIT_RTPRIO:
1083         return RLIMIT_RTPRIO;
1084 #ifdef RLIMIT_RTTIME
1085     case TARGET_RLIMIT_RTTIME:
1086         return RLIMIT_RTTIME;
1087 #endif
1088     case TARGET_RLIMIT_SIGPENDING:
1089         return RLIMIT_SIGPENDING;
1090     case TARGET_RLIMIT_STACK:
1091         return RLIMIT_STACK;
1092     default:
1093         return code;
1094     }
1095 }
1096 
1097 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1098                                               abi_ulong target_tv_addr)
1099 {
1100     struct target_timeval *target_tv;
1101 
1102     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1103         return -TARGET_EFAULT;
1104     }
1105 
1106     __get_user(tv->tv_sec, &target_tv->tv_sec);
1107     __get_user(tv->tv_usec, &target_tv->tv_usec);
1108 
1109     unlock_user_struct(target_tv, target_tv_addr, 0);
1110 
1111     return 0;
1112 }
1113 
1114 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1115                                             const struct timeval *tv)
1116 {
1117     struct target_timeval *target_tv;
1118 
1119     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120         return -TARGET_EFAULT;
1121     }
1122 
1123     __put_user(tv->tv_sec, &target_tv->tv_sec);
1124     __put_user(tv->tv_usec, &target_tv->tv_usec);
1125 
1126     unlock_user_struct(target_tv, target_tv_addr, 1);
1127 
1128     return 0;
1129 }
1130 
1131 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1132 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1133                                                 abi_ulong target_tv_addr)
1134 {
1135     struct target__kernel_sock_timeval *target_tv;
1136 
1137     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1138         return -TARGET_EFAULT;
1139     }
1140 
1141     __get_user(tv->tv_sec, &target_tv->tv_sec);
1142     __get_user(tv->tv_usec, &target_tv->tv_usec);
1143 
1144     unlock_user_struct(target_tv, target_tv_addr, 0);
1145 
1146     return 0;
1147 }
1148 #endif
1149 
1150 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1151                                               const struct timeval *tv)
1152 {
1153     struct target__kernel_sock_timeval *target_tv;
1154 
1155     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1156         return -TARGET_EFAULT;
1157     }
1158 
1159     __put_user(tv->tv_sec, &target_tv->tv_sec);
1160     __put_user(tv->tv_usec, &target_tv->tv_usec);
1161 
1162     unlock_user_struct(target_tv, target_tv_addr, 1);
1163 
1164     return 0;
1165 }
1166 
1167 #if defined(TARGET_NR_futex) || \
1168     defined(TARGET_NR_rt_sigtimedwait) || \
1169     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1170     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1171     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1172     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1173     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1174     defined(TARGET_NR_timer_settime) || \
1175     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1176 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1177                                                abi_ulong target_addr)
1178 {
1179     struct target_timespec *target_ts;
1180 
1181     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1182         return -TARGET_EFAULT;
1183     }
1184     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1185     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1186     unlock_user_struct(target_ts, target_addr, 0);
1187     return 0;
1188 }
1189 #endif
1190 
1191 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1192     defined(TARGET_NR_timer_settime64) || \
1193     defined(TARGET_NR_mq_timedsend_time64) || \
1194     defined(TARGET_NR_mq_timedreceive_time64) || \
1195     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1196     defined(TARGET_NR_clock_nanosleep_time64) || \
1197     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1198     defined(TARGET_NR_utimensat) || \
1199     defined(TARGET_NR_utimensat_time64) || \
1200     defined(TARGET_NR_semtimedop_time64) || \
1201     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1202 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1203                                                  abi_ulong target_addr)
1204 {
1205     struct target__kernel_timespec *target_ts;
1206 
1207     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1208         return -TARGET_EFAULT;
1209     }
1210     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1211     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1212     /* in 32bit mode, this drops the padding */
1213     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1214     unlock_user_struct(target_ts, target_addr, 0);
1215     return 0;
1216 }
1217 #endif
1218 
1219 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1220                                                struct timespec *host_ts)
1221 {
1222     struct target_timespec *target_ts;
1223 
1224     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1225         return -TARGET_EFAULT;
1226     }
1227     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1228     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1229     unlock_user_struct(target_ts, target_addr, 1);
1230     return 0;
1231 }
1232 
1233 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1234                                                  struct timespec *host_ts)
1235 {
1236     struct target__kernel_timespec *target_ts;
1237 
1238     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1239         return -TARGET_EFAULT;
1240     }
1241     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1242     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1243     unlock_user_struct(target_ts, target_addr, 1);
1244     return 0;
1245 }
1246 
1247 #if defined(TARGET_NR_gettimeofday)
1248 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1249                                              struct timezone *tz)
1250 {
1251     struct target_timezone *target_tz;
1252 
1253     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1254         return -TARGET_EFAULT;
1255     }
1256 
1257     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1258     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1259 
1260     unlock_user_struct(target_tz, target_tz_addr, 1);
1261 
1262     return 0;
1263 }
1264 #endif
1265 
1266 #if defined(TARGET_NR_settimeofday)
1267 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1268                                                abi_ulong target_tz_addr)
1269 {
1270     struct target_timezone *target_tz;
1271 
1272     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1273         return -TARGET_EFAULT;
1274     }
1275 
1276     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1277     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1278 
1279     unlock_user_struct(target_tz, target_tz_addr, 0);
1280 
1281     return 0;
1282 }
1283 #endif
1284 
1285 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1286 #include <mqueue.h>
1287 
1288 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1289                                               abi_ulong target_mq_attr_addr)
1290 {
1291     struct target_mq_attr *target_mq_attr;
1292 
1293     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1294                           target_mq_attr_addr, 1))
1295         return -TARGET_EFAULT;
1296 
1297     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1298     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1299     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1300     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1301 
1302     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1303 
1304     return 0;
1305 }
1306 
1307 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1308                                             const struct mq_attr *attr)
1309 {
1310     struct target_mq_attr *target_mq_attr;
1311 
1312     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1313                           target_mq_attr_addr, 0))
1314         return -TARGET_EFAULT;
1315 
1316     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1317     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1318     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1319     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1320 
1321     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1322 
1323     return 0;
1324 }
1325 #endif
1326 
1327 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1328 /* do_select() must return target values and target errnos. */
1329 static abi_long do_select(int n,
1330                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1331                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1332 {
1333     fd_set rfds, wfds, efds;
1334     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1335     struct timeval tv;
1336     struct timespec ts, *ts_ptr;
1337     abi_long ret;
1338 
1339     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1340     if (ret) {
1341         return ret;
1342     }
1343     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1344     if (ret) {
1345         return ret;
1346     }
1347     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1348     if (ret) {
1349         return ret;
1350     }
1351 
1352     if (target_tv_addr) {
1353         if (copy_from_user_timeval(&tv, target_tv_addr))
1354             return -TARGET_EFAULT;
1355         ts.tv_sec = tv.tv_sec;
1356         ts.tv_nsec = tv.tv_usec * 1000;
1357         ts_ptr = &ts;
1358     } else {
1359         ts_ptr = NULL;
1360     }
1361 
1362     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1363                                   ts_ptr, NULL));
1364 
1365     if (!is_error(ret)) {
1366         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1367             return -TARGET_EFAULT;
1368         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1369             return -TARGET_EFAULT;
1370         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1371             return -TARGET_EFAULT;
1372 
1373         if (target_tv_addr) {
1374             tv.tv_sec = ts.tv_sec;
1375             tv.tv_usec = ts.tv_nsec / 1000;
1376             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1377                 return -TARGET_EFAULT;
1378             }
1379         }
1380     }
1381 
1382     return ret;
1383 }
1384 
1385 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1386 static abi_long do_old_select(abi_ulong arg1)
1387 {
1388     struct target_sel_arg_struct *sel;
1389     abi_ulong inp, outp, exp, tvp;
1390     long nsel;
1391 
1392     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1393         return -TARGET_EFAULT;
1394     }
1395 
1396     nsel = tswapal(sel->n);
1397     inp = tswapal(sel->inp);
1398     outp = tswapal(sel->outp);
1399     exp = tswapal(sel->exp);
1400     tvp = tswapal(sel->tvp);
1401 
1402     unlock_user_struct(sel, arg1, 0);
1403 
1404     return do_select(nsel, inp, outp, exp, tvp);
1405 }
1406 #endif
1407 #endif
1408 
1409 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1410 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1411                             abi_long arg4, abi_long arg5, abi_long arg6,
1412                             bool time64)
1413 {
1414     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1415     fd_set rfds, wfds, efds;
1416     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1417     struct timespec ts, *ts_ptr;
1418     abi_long ret;
1419 
1420     /*
1421      * The 6th arg is actually two args smashed together,
1422      * so we cannot use the C library.
1423      */
1424     struct {
1425         sigset_t *set;
1426         size_t size;
1427     } sig, *sig_ptr;
1428 
1429     abi_ulong arg_sigset, arg_sigsize, *arg7;
1430 
1431     n = arg1;
1432     rfd_addr = arg2;
1433     wfd_addr = arg3;
1434     efd_addr = arg4;
1435     ts_addr = arg5;
1436 
1437     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1438     if (ret) {
1439         return ret;
1440     }
1441     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1442     if (ret) {
1443         return ret;
1444     }
1445     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1446     if (ret) {
1447         return ret;
1448     }
1449 
1450     /*
1451      * This takes a timespec, and not a timeval, so we cannot
1452      * use the do_select() helper ...
1453      */
1454     if (ts_addr) {
1455         if (time64) {
1456             if (target_to_host_timespec64(&ts, ts_addr)) {
1457                 return -TARGET_EFAULT;
1458             }
1459         } else {
1460             if (target_to_host_timespec(&ts, ts_addr)) {
1461                 return -TARGET_EFAULT;
1462             }
1463         }
1464             ts_ptr = &ts;
1465     } else {
1466         ts_ptr = NULL;
1467     }
1468 
1469     /* Extract the two packed args for the sigset */
1470     sig_ptr = NULL;
1471     if (arg6) {
1472         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1473         if (!arg7) {
1474             return -TARGET_EFAULT;
1475         }
1476         arg_sigset = tswapal(arg7[0]);
1477         arg_sigsize = tswapal(arg7[1]);
1478         unlock_user(arg7, arg6, 0);
1479 
1480         if (arg_sigset) {
1481             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1482             if (ret != 0) {
1483                 return ret;
1484             }
1485             sig_ptr = &sig;
1486             sig.size = SIGSET_T_SIZE;
1487         }
1488     }
1489 
1490     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1491                                   ts_ptr, sig_ptr));
1492 
1493     if (sig_ptr) {
1494         finish_sigsuspend_mask(ret);
1495     }
1496 
1497     if (!is_error(ret)) {
1498         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1499             return -TARGET_EFAULT;
1500         }
1501         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1502             return -TARGET_EFAULT;
1503         }
1504         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1505             return -TARGET_EFAULT;
1506         }
1507         if (time64) {
1508             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1509                 return -TARGET_EFAULT;
1510             }
1511         } else {
1512             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1513                 return -TARGET_EFAULT;
1514             }
1515         }
1516     }
1517     return ret;
1518 }
1519 #endif
1520 
1521 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1522     defined(TARGET_NR_ppoll_time64)
1523 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1524                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1525 {
1526     struct target_pollfd *target_pfd;
1527     unsigned int nfds = arg2;
1528     struct pollfd *pfd;
1529     unsigned int i;
1530     abi_long ret;
1531 
1532     pfd = NULL;
1533     target_pfd = NULL;
1534     if (nfds) {
1535         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1536             return -TARGET_EINVAL;
1537         }
1538         target_pfd = lock_user(VERIFY_WRITE, arg1,
1539                                sizeof(struct target_pollfd) * nfds, 1);
1540         if (!target_pfd) {
1541             return -TARGET_EFAULT;
1542         }
1543 
1544         pfd = alloca(sizeof(struct pollfd) * nfds);
1545         for (i = 0; i < nfds; i++) {
1546             pfd[i].fd = tswap32(target_pfd[i].fd);
1547             pfd[i].events = tswap16(target_pfd[i].events);
1548         }
1549     }
1550     if (ppoll) {
1551         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1552         sigset_t *set = NULL;
1553 
1554         if (arg3) {
1555             if (time64) {
1556                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1557                     unlock_user(target_pfd, arg1, 0);
1558                     return -TARGET_EFAULT;
1559                 }
1560             } else {
1561                 if (target_to_host_timespec(timeout_ts, arg3)) {
1562                     unlock_user(target_pfd, arg1, 0);
1563                     return -TARGET_EFAULT;
1564                 }
1565             }
1566         } else {
1567             timeout_ts = NULL;
1568         }
1569 
1570         if (arg4) {
1571             ret = process_sigsuspend_mask(&set, arg4, arg5);
1572             if (ret != 0) {
1573                 unlock_user(target_pfd, arg1, 0);
1574                 return ret;
1575             }
1576         }
1577 
1578         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1579                                    set, SIGSET_T_SIZE));
1580 
1581         if (set) {
1582             finish_sigsuspend_mask(ret);
1583         }
1584         if (!is_error(ret) && arg3) {
1585             if (time64) {
1586                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1587                     return -TARGET_EFAULT;
1588                 }
1589             } else {
1590                 if (host_to_target_timespec(arg3, timeout_ts)) {
1591                     return -TARGET_EFAULT;
1592                 }
1593             }
1594         }
1595     } else {
1596           struct timespec ts, *pts;
1597 
1598           if (arg3 >= 0) {
1599               /* Convert ms to secs, ns */
1600               ts.tv_sec = arg3 / 1000;
1601               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1602               pts = &ts;
1603           } else {
1604               /* -ve poll() timeout means "infinite" */
1605               pts = NULL;
1606           }
1607           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1608     }
1609 
1610     if (!is_error(ret)) {
1611         for (i = 0; i < nfds; i++) {
1612             target_pfd[i].revents = tswap16(pfd[i].revents);
1613         }
1614     }
1615     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1616     return ret;
1617 }
1618 #endif
1619 
1620 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1621                         int flags, int is_pipe2)
1622 {
1623     int host_pipe[2];
1624     abi_long ret;
1625     ret = pipe2(host_pipe, flags);
1626 
1627     if (is_error(ret))
1628         return get_errno(ret);
1629 
1630     /* Several targets have special calling conventions for the original
1631        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1632     if (!is_pipe2) {
1633 #if defined(TARGET_ALPHA)
1634         cpu_env->ir[IR_A4] = host_pipe[1];
1635         return host_pipe[0];
1636 #elif defined(TARGET_MIPS)
1637         cpu_env->active_tc.gpr[3] = host_pipe[1];
1638         return host_pipe[0];
1639 #elif defined(TARGET_SH4)
1640         cpu_env->gregs[1] = host_pipe[1];
1641         return host_pipe[0];
1642 #elif defined(TARGET_SPARC)
1643         cpu_env->regwptr[1] = host_pipe[1];
1644         return host_pipe[0];
1645 #endif
1646     }
1647 
1648     if (put_user_s32(host_pipe[0], pipedes)
1649         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1650         return -TARGET_EFAULT;
1651     return get_errno(ret);
1652 }
1653 
1654 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1655                                               abi_ulong target_addr,
1656                                               socklen_t len)
1657 {
1658     struct target_ip_mreqn *target_smreqn;
1659 
1660     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1661     if (!target_smreqn)
1662         return -TARGET_EFAULT;
1663     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1664     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1665     if (len == sizeof(struct target_ip_mreqn))
1666         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1667     unlock_user(target_smreqn, target_addr, 0);
1668 
1669     return 0;
1670 }
1671 
1672 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1673                                                abi_ulong target_addr,
1674                                                socklen_t len)
1675 {
1676     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1677     sa_family_t sa_family;
1678     struct target_sockaddr *target_saddr;
1679 
1680     if (fd_trans_target_to_host_addr(fd)) {
1681         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1682     }
1683 
1684     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1685     if (!target_saddr)
1686         return -TARGET_EFAULT;
1687 
1688     sa_family = tswap16(target_saddr->sa_family);
1689 
1690     /* Oops. The caller might send a incomplete sun_path; sun_path
1691      * must be terminated by \0 (see the manual page), but
1692      * unfortunately it is quite common to specify sockaddr_un
1693      * length as "strlen(x->sun_path)" while it should be
1694      * "strlen(...) + 1". We'll fix that here if needed.
1695      * Linux kernel has a similar feature.
1696      */
1697 
1698     if (sa_family == AF_UNIX) {
1699         if (len < unix_maxlen && len > 0) {
1700             char *cp = (char*)target_saddr;
1701 
1702             if ( cp[len-1] && !cp[len] )
1703                 len++;
1704         }
1705         if (len > unix_maxlen)
1706             len = unix_maxlen;
1707     }
1708 
1709     memcpy(addr, target_saddr, len);
1710     addr->sa_family = sa_family;
1711     if (sa_family == AF_NETLINK) {
1712         struct sockaddr_nl *nladdr;
1713 
1714         nladdr = (struct sockaddr_nl *)addr;
1715         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1716         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1717     } else if (sa_family == AF_PACKET) {
1718 	struct target_sockaddr_ll *lladdr;
1719 
1720 	lladdr = (struct target_sockaddr_ll *)addr;
1721 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1722 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1723     } else if (sa_family == AF_INET6) {
1724         struct sockaddr_in6 *in6addr;
1725 
1726         in6addr = (struct sockaddr_in6 *)addr;
1727         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1728     }
1729     unlock_user(target_saddr, target_addr, 0);
1730 
1731     return 0;
1732 }
1733 
1734 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1735                                                struct sockaddr *addr,
1736                                                socklen_t len)
1737 {
1738     struct target_sockaddr *target_saddr;
1739 
1740     if (len == 0) {
1741         return 0;
1742     }
1743     assert(addr);
1744 
1745     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1746     if (!target_saddr)
1747         return -TARGET_EFAULT;
1748     memcpy(target_saddr, addr, len);
1749     if (len >= offsetof(struct target_sockaddr, sa_family) +
1750         sizeof(target_saddr->sa_family)) {
1751         target_saddr->sa_family = tswap16(addr->sa_family);
1752     }
1753     if (addr->sa_family == AF_NETLINK &&
1754         len >= sizeof(struct target_sockaddr_nl)) {
1755         struct target_sockaddr_nl *target_nl =
1756                (struct target_sockaddr_nl *)target_saddr;
1757         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1758         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1759     } else if (addr->sa_family == AF_PACKET) {
1760         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1761         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1762         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1763     } else if (addr->sa_family == AF_INET6 &&
1764                len >= sizeof(struct target_sockaddr_in6)) {
1765         struct target_sockaddr_in6 *target_in6 =
1766                (struct target_sockaddr_in6 *)target_saddr;
1767         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1768     }
1769     unlock_user(target_saddr, target_addr, len);
1770 
1771     return 0;
1772 }
1773 
1774 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1775                                            struct target_msghdr *target_msgh)
1776 {
1777     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1778     abi_long msg_controllen;
1779     abi_ulong target_cmsg_addr;
1780     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1781     socklen_t space = 0;
1782 
1783     msg_controllen = tswapal(target_msgh->msg_controllen);
1784     if (msg_controllen < sizeof (struct target_cmsghdr))
1785         goto the_end;
1786     target_cmsg_addr = tswapal(target_msgh->msg_control);
1787     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1788     target_cmsg_start = target_cmsg;
1789     if (!target_cmsg)
1790         return -TARGET_EFAULT;
1791 
1792     while (cmsg && target_cmsg) {
1793         void *data = CMSG_DATA(cmsg);
1794         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1795 
1796         int len = tswapal(target_cmsg->cmsg_len)
1797             - sizeof(struct target_cmsghdr);
1798 
1799         space += CMSG_SPACE(len);
1800         if (space > msgh->msg_controllen) {
1801             space -= CMSG_SPACE(len);
1802             /* This is a QEMU bug, since we allocated the payload
1803              * area ourselves (unlike overflow in host-to-target
1804              * conversion, which is just the guest giving us a buffer
1805              * that's too small). It can't happen for the payload types
1806              * we currently support; if it becomes an issue in future
1807              * we would need to improve our allocation strategy to
1808              * something more intelligent than "twice the size of the
1809              * target buffer we're reading from".
1810              */
1811             qemu_log_mask(LOG_UNIMP,
1812                           ("Unsupported ancillary data %d/%d: "
1813                            "unhandled msg size\n"),
1814                           tswap32(target_cmsg->cmsg_level),
1815                           tswap32(target_cmsg->cmsg_type));
1816             break;
1817         }
1818 
1819         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1820             cmsg->cmsg_level = SOL_SOCKET;
1821         } else {
1822             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1823         }
1824         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1825         cmsg->cmsg_len = CMSG_LEN(len);
1826 
1827         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1828             int *fd = (int *)data;
1829             int *target_fd = (int *)target_data;
1830             int i, numfds = len / sizeof(int);
1831 
1832             for (i = 0; i < numfds; i++) {
1833                 __get_user(fd[i], target_fd + i);
1834             }
1835         } else if (cmsg->cmsg_level == SOL_SOCKET
1836                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1837             struct ucred *cred = (struct ucred *)data;
1838             struct target_ucred *target_cred =
1839                 (struct target_ucred *)target_data;
1840 
1841             __get_user(cred->pid, &target_cred->pid);
1842             __get_user(cred->uid, &target_cred->uid);
1843             __get_user(cred->gid, &target_cred->gid);
1844         } else if (cmsg->cmsg_level == SOL_ALG) {
1845             uint32_t *dst = (uint32_t *)data;
1846 
1847             memcpy(dst, target_data, len);
1848             /* fix endianess of first 32-bit word */
1849             if (len >= sizeof(uint32_t)) {
1850                 *dst = tswap32(*dst);
1851             }
1852         } else {
1853             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1854                           cmsg->cmsg_level, cmsg->cmsg_type);
1855             memcpy(data, target_data, len);
1856         }
1857 
1858         cmsg = CMSG_NXTHDR(msgh, cmsg);
1859         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1860                                          target_cmsg_start);
1861     }
1862     unlock_user(target_cmsg, target_cmsg_addr, 0);
1863  the_end:
1864     msgh->msg_controllen = space;
1865     return 0;
1866 }
1867 
1868 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1869                                            struct msghdr *msgh)
1870 {
1871     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1872     abi_long msg_controllen;
1873     abi_ulong target_cmsg_addr;
1874     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1875     socklen_t space = 0;
1876 
1877     msg_controllen = tswapal(target_msgh->msg_controllen);
1878     if (msg_controllen < sizeof (struct target_cmsghdr))
1879         goto the_end;
1880     target_cmsg_addr = tswapal(target_msgh->msg_control);
1881     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1882     target_cmsg_start = target_cmsg;
1883     if (!target_cmsg)
1884         return -TARGET_EFAULT;
1885 
1886     while (cmsg && target_cmsg) {
1887         void *data = CMSG_DATA(cmsg);
1888         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1889 
1890         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1891         int tgt_len, tgt_space;
1892 
1893         /* We never copy a half-header but may copy half-data;
1894          * this is Linux's behaviour in put_cmsg(). Note that
1895          * truncation here is a guest problem (which we report
1896          * to the guest via the CTRUNC bit), unlike truncation
1897          * in target_to_host_cmsg, which is a QEMU bug.
1898          */
1899         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1900             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1901             break;
1902         }
1903 
1904         if (cmsg->cmsg_level == SOL_SOCKET) {
1905             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1906         } else {
1907             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1908         }
1909         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1910 
1911         /* Payload types which need a different size of payload on
1912          * the target must adjust tgt_len here.
1913          */
1914         tgt_len = len;
1915         switch (cmsg->cmsg_level) {
1916         case SOL_SOCKET:
1917             switch (cmsg->cmsg_type) {
1918             case SO_TIMESTAMP:
1919                 tgt_len = sizeof(struct target_timeval);
1920                 break;
1921             default:
1922                 break;
1923             }
1924             break;
1925         default:
1926             break;
1927         }
1928 
1929         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1930             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1931             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1932         }
1933 
1934         /* We must now copy-and-convert len bytes of payload
1935          * into tgt_len bytes of destination space. Bear in mind
1936          * that in both source and destination we may be dealing
1937          * with a truncated value!
1938          */
1939         switch (cmsg->cmsg_level) {
1940         case SOL_SOCKET:
1941             switch (cmsg->cmsg_type) {
1942             case SCM_RIGHTS:
1943             {
1944                 int *fd = (int *)data;
1945                 int *target_fd = (int *)target_data;
1946                 int i, numfds = tgt_len / sizeof(int);
1947 
1948                 for (i = 0; i < numfds; i++) {
1949                     __put_user(fd[i], target_fd + i);
1950                 }
1951                 break;
1952             }
1953             case SO_TIMESTAMP:
1954             {
1955                 struct timeval *tv = (struct timeval *)data;
1956                 struct target_timeval *target_tv =
1957                     (struct target_timeval *)target_data;
1958 
1959                 if (len != sizeof(struct timeval) ||
1960                     tgt_len != sizeof(struct target_timeval)) {
1961                     goto unimplemented;
1962                 }
1963 
1964                 /* copy struct timeval to target */
1965                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1966                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1967                 break;
1968             }
1969             case SCM_CREDENTIALS:
1970             {
1971                 struct ucred *cred = (struct ucred *)data;
1972                 struct target_ucred *target_cred =
1973                     (struct target_ucred *)target_data;
1974 
1975                 __put_user(cred->pid, &target_cred->pid);
1976                 __put_user(cred->uid, &target_cred->uid);
1977                 __put_user(cred->gid, &target_cred->gid);
1978                 break;
1979             }
1980             default:
1981                 goto unimplemented;
1982             }
1983             break;
1984 
1985         case SOL_IP:
1986             switch (cmsg->cmsg_type) {
1987             case IP_TTL:
1988             {
1989                 uint32_t *v = (uint32_t *)data;
1990                 uint32_t *t_int = (uint32_t *)target_data;
1991 
1992                 if (len != sizeof(uint32_t) ||
1993                     tgt_len != sizeof(uint32_t)) {
1994                     goto unimplemented;
1995                 }
1996                 __put_user(*v, t_int);
1997                 break;
1998             }
1999             case IP_RECVERR:
2000             {
2001                 struct errhdr_t {
2002                    struct sock_extended_err ee;
2003                    struct sockaddr_in offender;
2004                 };
2005                 struct errhdr_t *errh = (struct errhdr_t *)data;
2006                 struct errhdr_t *target_errh =
2007                     (struct errhdr_t *)target_data;
2008 
2009                 if (len != sizeof(struct errhdr_t) ||
2010                     tgt_len != sizeof(struct errhdr_t)) {
2011                     goto unimplemented;
2012                 }
2013                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2014                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2015                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2016                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2017                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2018                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2019                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2020                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2021                     (void *) &errh->offender, sizeof(errh->offender));
2022                 break;
2023             }
2024             default:
2025                 goto unimplemented;
2026             }
2027             break;
2028 
2029         case SOL_IPV6:
2030             switch (cmsg->cmsg_type) {
2031             case IPV6_HOPLIMIT:
2032             {
2033                 uint32_t *v = (uint32_t *)data;
2034                 uint32_t *t_int = (uint32_t *)target_data;
2035 
2036                 if (len != sizeof(uint32_t) ||
2037                     tgt_len != sizeof(uint32_t)) {
2038                     goto unimplemented;
2039                 }
2040                 __put_user(*v, t_int);
2041                 break;
2042             }
2043             case IPV6_RECVERR:
2044             {
2045                 struct errhdr6_t {
2046                    struct sock_extended_err ee;
2047                    struct sockaddr_in6 offender;
2048                 };
2049                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2050                 struct errhdr6_t *target_errh =
2051                     (struct errhdr6_t *)target_data;
2052 
2053                 if (len != sizeof(struct errhdr6_t) ||
2054                     tgt_len != sizeof(struct errhdr6_t)) {
2055                     goto unimplemented;
2056                 }
2057                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2058                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2059                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2060                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2061                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2062                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2063                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2064                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2065                     (void *) &errh->offender, sizeof(errh->offender));
2066                 break;
2067             }
2068             default:
2069                 goto unimplemented;
2070             }
2071             break;
2072 
2073         default:
2074         unimplemented:
2075             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2076                           cmsg->cmsg_level, cmsg->cmsg_type);
2077             memcpy(target_data, data, MIN(len, tgt_len));
2078             if (tgt_len > len) {
2079                 memset(target_data + len, 0, tgt_len - len);
2080             }
2081         }
2082 
2083         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2084         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2085         if (msg_controllen < tgt_space) {
2086             tgt_space = msg_controllen;
2087         }
2088         msg_controllen -= tgt_space;
2089         space += tgt_space;
2090         cmsg = CMSG_NXTHDR(msgh, cmsg);
2091         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2092                                          target_cmsg_start);
2093     }
2094     unlock_user(target_cmsg, target_cmsg_addr, space);
2095  the_end:
2096     target_msgh->msg_controllen = tswapal(space);
2097     return 0;
2098 }
2099 
2100 /* do_setsockopt() Must return target values and target errnos. */
2101 static abi_long do_setsockopt(int sockfd, int level, int optname,
2102                               abi_ulong optval_addr, socklen_t optlen)
2103 {
2104     abi_long ret;
2105     int val;
2106     struct ip_mreqn *ip_mreq;
2107     struct ip_mreq_source *ip_mreq_source;
2108 
2109     switch(level) {
2110     case SOL_TCP:
2111     case SOL_UDP:
2112         /* TCP and UDP options all take an 'int' value.  */
2113         if (optlen < sizeof(uint32_t))
2114             return -TARGET_EINVAL;
2115 
2116         if (get_user_u32(val, optval_addr))
2117             return -TARGET_EFAULT;
2118         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2119         break;
2120     case SOL_IP:
2121         switch(optname) {
2122         case IP_TOS:
2123         case IP_TTL:
2124         case IP_HDRINCL:
2125         case IP_ROUTER_ALERT:
2126         case IP_RECVOPTS:
2127         case IP_RETOPTS:
2128         case IP_PKTINFO:
2129         case IP_MTU_DISCOVER:
2130         case IP_RECVERR:
2131         case IP_RECVTTL:
2132         case IP_RECVTOS:
2133 #ifdef IP_FREEBIND
2134         case IP_FREEBIND:
2135 #endif
2136         case IP_MULTICAST_TTL:
2137         case IP_MULTICAST_LOOP:
2138             val = 0;
2139             if (optlen >= sizeof(uint32_t)) {
2140                 if (get_user_u32(val, optval_addr))
2141                     return -TARGET_EFAULT;
2142             } else if (optlen >= 1) {
2143                 if (get_user_u8(val, optval_addr))
2144                     return -TARGET_EFAULT;
2145             }
2146             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2147             break;
2148         case IP_ADD_MEMBERSHIP:
2149         case IP_DROP_MEMBERSHIP:
2150             if (optlen < sizeof (struct target_ip_mreq) ||
2151                 optlen > sizeof (struct target_ip_mreqn))
2152                 return -TARGET_EINVAL;
2153 
2154             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2155             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2156             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2157             break;
2158 
2159         case IP_BLOCK_SOURCE:
2160         case IP_UNBLOCK_SOURCE:
2161         case IP_ADD_SOURCE_MEMBERSHIP:
2162         case IP_DROP_SOURCE_MEMBERSHIP:
2163             if (optlen != sizeof (struct target_ip_mreq_source))
2164                 return -TARGET_EINVAL;
2165 
2166             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2167             if (!ip_mreq_source) {
2168                 return -TARGET_EFAULT;
2169             }
2170             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2171             unlock_user (ip_mreq_source, optval_addr, 0);
2172             break;
2173 
2174         default:
2175             goto unimplemented;
2176         }
2177         break;
2178     case SOL_IPV6:
2179         switch (optname) {
2180         case IPV6_MTU_DISCOVER:
2181         case IPV6_MTU:
2182         case IPV6_V6ONLY:
2183         case IPV6_RECVPKTINFO:
2184         case IPV6_UNICAST_HOPS:
2185         case IPV6_MULTICAST_HOPS:
2186         case IPV6_MULTICAST_LOOP:
2187         case IPV6_RECVERR:
2188         case IPV6_RECVHOPLIMIT:
2189         case IPV6_2292HOPLIMIT:
2190         case IPV6_CHECKSUM:
2191         case IPV6_ADDRFORM:
2192         case IPV6_2292PKTINFO:
2193         case IPV6_RECVTCLASS:
2194         case IPV6_RECVRTHDR:
2195         case IPV6_2292RTHDR:
2196         case IPV6_RECVHOPOPTS:
2197         case IPV6_2292HOPOPTS:
2198         case IPV6_RECVDSTOPTS:
2199         case IPV6_2292DSTOPTS:
2200         case IPV6_TCLASS:
2201         case IPV6_ADDR_PREFERENCES:
2202 #ifdef IPV6_RECVPATHMTU
2203         case IPV6_RECVPATHMTU:
2204 #endif
2205 #ifdef IPV6_TRANSPARENT
2206         case IPV6_TRANSPARENT:
2207 #endif
2208 #ifdef IPV6_FREEBIND
2209         case IPV6_FREEBIND:
2210 #endif
2211 #ifdef IPV6_RECVORIGDSTADDR
2212         case IPV6_RECVORIGDSTADDR:
2213 #endif
2214             val = 0;
2215             if (optlen < sizeof(uint32_t)) {
2216                 return -TARGET_EINVAL;
2217             }
2218             if (get_user_u32(val, optval_addr)) {
2219                 return -TARGET_EFAULT;
2220             }
2221             ret = get_errno(setsockopt(sockfd, level, optname,
2222                                        &val, sizeof(val)));
2223             break;
2224         case IPV6_PKTINFO:
2225         {
2226             struct in6_pktinfo pki;
2227 
2228             if (optlen < sizeof(pki)) {
2229                 return -TARGET_EINVAL;
2230             }
2231 
2232             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2233                 return -TARGET_EFAULT;
2234             }
2235 
2236             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2237 
2238             ret = get_errno(setsockopt(sockfd, level, optname,
2239                                        &pki, sizeof(pki)));
2240             break;
2241         }
2242         case IPV6_ADD_MEMBERSHIP:
2243         case IPV6_DROP_MEMBERSHIP:
2244         {
2245             struct ipv6_mreq ipv6mreq;
2246 
2247             if (optlen < sizeof(ipv6mreq)) {
2248                 return -TARGET_EINVAL;
2249             }
2250 
2251             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2252                 return -TARGET_EFAULT;
2253             }
2254 
2255             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2256 
2257             ret = get_errno(setsockopt(sockfd, level, optname,
2258                                        &ipv6mreq, sizeof(ipv6mreq)));
2259             break;
2260         }
2261         default:
2262             goto unimplemented;
2263         }
2264         break;
2265     case SOL_ICMPV6:
2266         switch (optname) {
2267         case ICMPV6_FILTER:
2268         {
2269             struct icmp6_filter icmp6f;
2270 
2271             if (optlen > sizeof(icmp6f)) {
2272                 optlen = sizeof(icmp6f);
2273             }
2274 
2275             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2276                 return -TARGET_EFAULT;
2277             }
2278 
2279             for (val = 0; val < 8; val++) {
2280                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2281             }
2282 
2283             ret = get_errno(setsockopt(sockfd, level, optname,
2284                                        &icmp6f, optlen));
2285             break;
2286         }
2287         default:
2288             goto unimplemented;
2289         }
2290         break;
2291     case SOL_RAW:
2292         switch (optname) {
2293         case ICMP_FILTER:
2294         case IPV6_CHECKSUM:
2295             /* those take an u32 value */
2296             if (optlen < sizeof(uint32_t)) {
2297                 return -TARGET_EINVAL;
2298             }
2299 
2300             if (get_user_u32(val, optval_addr)) {
2301                 return -TARGET_EFAULT;
2302             }
2303             ret = get_errno(setsockopt(sockfd, level, optname,
2304                                        &val, sizeof(val)));
2305             break;
2306 
2307         default:
2308             goto unimplemented;
2309         }
2310         break;
2311 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2312     case SOL_ALG:
2313         switch (optname) {
2314         case ALG_SET_KEY:
2315         {
2316             char *alg_key = g_malloc(optlen);
2317 
2318             if (!alg_key) {
2319                 return -TARGET_ENOMEM;
2320             }
2321             if (copy_from_user(alg_key, optval_addr, optlen)) {
2322                 g_free(alg_key);
2323                 return -TARGET_EFAULT;
2324             }
2325             ret = get_errno(setsockopt(sockfd, level, optname,
2326                                        alg_key, optlen));
2327             g_free(alg_key);
2328             break;
2329         }
2330         case ALG_SET_AEAD_AUTHSIZE:
2331         {
2332             ret = get_errno(setsockopt(sockfd, level, optname,
2333                                        NULL, optlen));
2334             break;
2335         }
2336         default:
2337             goto unimplemented;
2338         }
2339         break;
2340 #endif
2341     case TARGET_SOL_SOCKET:
2342         switch (optname) {
2343         case TARGET_SO_RCVTIMEO:
2344         {
2345                 struct timeval tv;
2346 
2347                 optname = SO_RCVTIMEO;
2348 
2349 set_timeout:
2350                 if (optlen != sizeof(struct target_timeval)) {
2351                     return -TARGET_EINVAL;
2352                 }
2353 
2354                 if (copy_from_user_timeval(&tv, optval_addr)) {
2355                     return -TARGET_EFAULT;
2356                 }
2357 
2358                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2359                                 &tv, sizeof(tv)));
2360                 return ret;
2361         }
2362         case TARGET_SO_SNDTIMEO:
2363                 optname = SO_SNDTIMEO;
2364                 goto set_timeout;
2365         case TARGET_SO_ATTACH_FILTER:
2366         {
2367                 struct target_sock_fprog *tfprog;
2368                 struct target_sock_filter *tfilter;
2369                 struct sock_fprog fprog;
2370                 struct sock_filter *filter;
2371                 int i;
2372 
2373                 if (optlen != sizeof(*tfprog)) {
2374                     return -TARGET_EINVAL;
2375                 }
2376                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2377                     return -TARGET_EFAULT;
2378                 }
2379                 if (!lock_user_struct(VERIFY_READ, tfilter,
2380                                       tswapal(tfprog->filter), 0)) {
2381                     unlock_user_struct(tfprog, optval_addr, 1);
2382                     return -TARGET_EFAULT;
2383                 }
2384 
2385                 fprog.len = tswap16(tfprog->len);
2386                 filter = g_try_new(struct sock_filter, fprog.len);
2387                 if (filter == NULL) {
2388                     unlock_user_struct(tfilter, tfprog->filter, 1);
2389                     unlock_user_struct(tfprog, optval_addr, 1);
2390                     return -TARGET_ENOMEM;
2391                 }
2392                 for (i = 0; i < fprog.len; i++) {
2393                     filter[i].code = tswap16(tfilter[i].code);
2394                     filter[i].jt = tfilter[i].jt;
2395                     filter[i].jf = tfilter[i].jf;
2396                     filter[i].k = tswap32(tfilter[i].k);
2397                 }
2398                 fprog.filter = filter;
2399 
2400                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2401                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2402                 g_free(filter);
2403 
2404                 unlock_user_struct(tfilter, tfprog->filter, 1);
2405                 unlock_user_struct(tfprog, optval_addr, 1);
2406                 return ret;
2407         }
2408 	case TARGET_SO_BINDTODEVICE:
2409 	{
2410 		char *dev_ifname, *addr_ifname;
2411 
2412 		if (optlen > IFNAMSIZ - 1) {
2413 		    optlen = IFNAMSIZ - 1;
2414 		}
2415 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2416 		if (!dev_ifname) {
2417 		    return -TARGET_EFAULT;
2418 		}
2419 		optname = SO_BINDTODEVICE;
2420 		addr_ifname = alloca(IFNAMSIZ);
2421 		memcpy(addr_ifname, dev_ifname, optlen);
2422 		addr_ifname[optlen] = 0;
2423 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2424                                            addr_ifname, optlen));
2425 		unlock_user (dev_ifname, optval_addr, 0);
2426 		return ret;
2427 	}
2428         case TARGET_SO_LINGER:
2429         {
2430                 struct linger lg;
2431                 struct target_linger *tlg;
2432 
2433                 if (optlen != sizeof(struct target_linger)) {
2434                     return -TARGET_EINVAL;
2435                 }
2436                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2437                     return -TARGET_EFAULT;
2438                 }
2439                 __get_user(lg.l_onoff, &tlg->l_onoff);
2440                 __get_user(lg.l_linger, &tlg->l_linger);
2441                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2442                                 &lg, sizeof(lg)));
2443                 unlock_user_struct(tlg, optval_addr, 0);
2444                 return ret;
2445         }
2446             /* Options with 'int' argument.  */
2447         case TARGET_SO_DEBUG:
2448 		optname = SO_DEBUG;
2449 		break;
2450         case TARGET_SO_REUSEADDR:
2451 		optname = SO_REUSEADDR;
2452 		break;
2453 #ifdef SO_REUSEPORT
2454         case TARGET_SO_REUSEPORT:
2455                 optname = SO_REUSEPORT;
2456                 break;
2457 #endif
2458         case TARGET_SO_TYPE:
2459 		optname = SO_TYPE;
2460 		break;
2461         case TARGET_SO_ERROR:
2462 		optname = SO_ERROR;
2463 		break;
2464         case TARGET_SO_DONTROUTE:
2465 		optname = SO_DONTROUTE;
2466 		break;
2467         case TARGET_SO_BROADCAST:
2468 		optname = SO_BROADCAST;
2469 		break;
2470         case TARGET_SO_SNDBUF:
2471 		optname = SO_SNDBUF;
2472 		break;
2473         case TARGET_SO_SNDBUFFORCE:
2474                 optname = SO_SNDBUFFORCE;
2475                 break;
2476         case TARGET_SO_RCVBUF:
2477 		optname = SO_RCVBUF;
2478 		break;
2479         case TARGET_SO_RCVBUFFORCE:
2480                 optname = SO_RCVBUFFORCE;
2481                 break;
2482         case TARGET_SO_KEEPALIVE:
2483 		optname = SO_KEEPALIVE;
2484 		break;
2485         case TARGET_SO_OOBINLINE:
2486 		optname = SO_OOBINLINE;
2487 		break;
2488         case TARGET_SO_NO_CHECK:
2489 		optname = SO_NO_CHECK;
2490 		break;
2491         case TARGET_SO_PRIORITY:
2492 		optname = SO_PRIORITY;
2493 		break;
2494 #ifdef SO_BSDCOMPAT
2495         case TARGET_SO_BSDCOMPAT:
2496 		optname = SO_BSDCOMPAT;
2497 		break;
2498 #endif
2499         case TARGET_SO_PASSCRED:
2500 		optname = SO_PASSCRED;
2501 		break;
2502         case TARGET_SO_PASSSEC:
2503                 optname = SO_PASSSEC;
2504                 break;
2505         case TARGET_SO_TIMESTAMP:
2506 		optname = SO_TIMESTAMP;
2507 		break;
2508         case TARGET_SO_RCVLOWAT:
2509 		optname = SO_RCVLOWAT;
2510 		break;
2511         default:
2512             goto unimplemented;
2513         }
2514 	if (optlen < sizeof(uint32_t))
2515             return -TARGET_EINVAL;
2516 
2517 	if (get_user_u32(val, optval_addr))
2518             return -TARGET_EFAULT;
2519 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2520         break;
2521 #ifdef SOL_NETLINK
2522     case SOL_NETLINK:
2523         switch (optname) {
2524         case NETLINK_PKTINFO:
2525         case NETLINK_ADD_MEMBERSHIP:
2526         case NETLINK_DROP_MEMBERSHIP:
2527         case NETLINK_BROADCAST_ERROR:
2528         case NETLINK_NO_ENOBUFS:
2529 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2530         case NETLINK_LISTEN_ALL_NSID:
2531         case NETLINK_CAP_ACK:
2532 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2533 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2534         case NETLINK_EXT_ACK:
2535 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2536 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2537         case NETLINK_GET_STRICT_CHK:
2538 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2539             break;
2540         default:
2541             goto unimplemented;
2542         }
2543         val = 0;
2544         if (optlen < sizeof(uint32_t)) {
2545             return -TARGET_EINVAL;
2546         }
2547         if (get_user_u32(val, optval_addr)) {
2548             return -TARGET_EFAULT;
2549         }
2550         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2551                                    sizeof(val)));
2552         break;
2553 #endif /* SOL_NETLINK */
2554     default:
2555     unimplemented:
2556         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2557                       level, optname);
2558         ret = -TARGET_ENOPROTOOPT;
2559     }
2560     return ret;
2561 }
2562 
2563 /* do_getsockopt() Must return target values and target errnos. */
2564 static abi_long do_getsockopt(int sockfd, int level, int optname,
2565                               abi_ulong optval_addr, abi_ulong optlen)
2566 {
2567     abi_long ret;
2568     int len, val;
2569     socklen_t lv;
2570 
2571     switch(level) {
2572     case TARGET_SOL_SOCKET:
2573         level = SOL_SOCKET;
2574         switch (optname) {
2575         /* These don't just return a single integer */
2576         case TARGET_SO_PEERNAME:
2577             goto unimplemented;
2578         case TARGET_SO_RCVTIMEO: {
2579             struct timeval tv;
2580             socklen_t tvlen;
2581 
2582             optname = SO_RCVTIMEO;
2583 
2584 get_timeout:
2585             if (get_user_u32(len, optlen)) {
2586                 return -TARGET_EFAULT;
2587             }
2588             if (len < 0) {
2589                 return -TARGET_EINVAL;
2590             }
2591 
2592             tvlen = sizeof(tv);
2593             ret = get_errno(getsockopt(sockfd, level, optname,
2594                                        &tv, &tvlen));
2595             if (ret < 0) {
2596                 return ret;
2597             }
2598             if (len > sizeof(struct target_timeval)) {
2599                 len = sizeof(struct target_timeval);
2600             }
2601             if (copy_to_user_timeval(optval_addr, &tv)) {
2602                 return -TARGET_EFAULT;
2603             }
2604             if (put_user_u32(len, optlen)) {
2605                 return -TARGET_EFAULT;
2606             }
2607             break;
2608         }
2609         case TARGET_SO_SNDTIMEO:
2610             optname = SO_SNDTIMEO;
2611             goto get_timeout;
2612         case TARGET_SO_PEERCRED: {
2613             struct ucred cr;
2614             socklen_t crlen;
2615             struct target_ucred *tcr;
2616 
2617             if (get_user_u32(len, optlen)) {
2618                 return -TARGET_EFAULT;
2619             }
2620             if (len < 0) {
2621                 return -TARGET_EINVAL;
2622             }
2623 
2624             crlen = sizeof(cr);
2625             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2626                                        &cr, &crlen));
2627             if (ret < 0) {
2628                 return ret;
2629             }
2630             if (len > crlen) {
2631                 len = crlen;
2632             }
2633             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2634                 return -TARGET_EFAULT;
2635             }
2636             __put_user(cr.pid, &tcr->pid);
2637             __put_user(cr.uid, &tcr->uid);
2638             __put_user(cr.gid, &tcr->gid);
2639             unlock_user_struct(tcr, optval_addr, 1);
2640             if (put_user_u32(len, optlen)) {
2641                 return -TARGET_EFAULT;
2642             }
2643             break;
2644         }
2645         case TARGET_SO_PEERSEC: {
2646             char *name;
2647 
2648             if (get_user_u32(len, optlen)) {
2649                 return -TARGET_EFAULT;
2650             }
2651             if (len < 0) {
2652                 return -TARGET_EINVAL;
2653             }
2654             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2655             if (!name) {
2656                 return -TARGET_EFAULT;
2657             }
2658             lv = len;
2659             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2660                                        name, &lv));
2661             if (put_user_u32(lv, optlen)) {
2662                 ret = -TARGET_EFAULT;
2663             }
2664             unlock_user(name, optval_addr, lv);
2665             break;
2666         }
2667         case TARGET_SO_LINGER:
2668         {
2669             struct linger lg;
2670             socklen_t lglen;
2671             struct target_linger *tlg;
2672 
2673             if (get_user_u32(len, optlen)) {
2674                 return -TARGET_EFAULT;
2675             }
2676             if (len < 0) {
2677                 return -TARGET_EINVAL;
2678             }
2679 
2680             lglen = sizeof(lg);
2681             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2682                                        &lg, &lglen));
2683             if (ret < 0) {
2684                 return ret;
2685             }
2686             if (len > lglen) {
2687                 len = lglen;
2688             }
2689             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2690                 return -TARGET_EFAULT;
2691             }
2692             __put_user(lg.l_onoff, &tlg->l_onoff);
2693             __put_user(lg.l_linger, &tlg->l_linger);
2694             unlock_user_struct(tlg, optval_addr, 1);
2695             if (put_user_u32(len, optlen)) {
2696                 return -TARGET_EFAULT;
2697             }
2698             break;
2699         }
2700         /* Options with 'int' argument.  */
2701         case TARGET_SO_DEBUG:
2702             optname = SO_DEBUG;
2703             goto int_case;
2704         case TARGET_SO_REUSEADDR:
2705             optname = SO_REUSEADDR;
2706             goto int_case;
2707 #ifdef SO_REUSEPORT
2708         case TARGET_SO_REUSEPORT:
2709             optname = SO_REUSEPORT;
2710             goto int_case;
2711 #endif
2712         case TARGET_SO_TYPE:
2713             optname = SO_TYPE;
2714             goto int_case;
2715         case TARGET_SO_ERROR:
2716             optname = SO_ERROR;
2717             goto int_case;
2718         case TARGET_SO_DONTROUTE:
2719             optname = SO_DONTROUTE;
2720             goto int_case;
2721         case TARGET_SO_BROADCAST:
2722             optname = SO_BROADCAST;
2723             goto int_case;
2724         case TARGET_SO_SNDBUF:
2725             optname = SO_SNDBUF;
2726             goto int_case;
2727         case TARGET_SO_RCVBUF:
2728             optname = SO_RCVBUF;
2729             goto int_case;
2730         case TARGET_SO_KEEPALIVE:
2731             optname = SO_KEEPALIVE;
2732             goto int_case;
2733         case TARGET_SO_OOBINLINE:
2734             optname = SO_OOBINLINE;
2735             goto int_case;
2736         case TARGET_SO_NO_CHECK:
2737             optname = SO_NO_CHECK;
2738             goto int_case;
2739         case TARGET_SO_PRIORITY:
2740             optname = SO_PRIORITY;
2741             goto int_case;
2742 #ifdef SO_BSDCOMPAT
2743         case TARGET_SO_BSDCOMPAT:
2744             optname = SO_BSDCOMPAT;
2745             goto int_case;
2746 #endif
2747         case TARGET_SO_PASSCRED:
2748             optname = SO_PASSCRED;
2749             goto int_case;
2750         case TARGET_SO_TIMESTAMP:
2751             optname = SO_TIMESTAMP;
2752             goto int_case;
2753         case TARGET_SO_RCVLOWAT:
2754             optname = SO_RCVLOWAT;
2755             goto int_case;
2756         case TARGET_SO_ACCEPTCONN:
2757             optname = SO_ACCEPTCONN;
2758             goto int_case;
2759         case TARGET_SO_PROTOCOL:
2760             optname = SO_PROTOCOL;
2761             goto int_case;
2762         case TARGET_SO_DOMAIN:
2763             optname = SO_DOMAIN;
2764             goto int_case;
2765         default:
2766             goto int_case;
2767         }
2768         break;
2769     case SOL_TCP:
2770     case SOL_UDP:
2771         /* TCP and UDP options all take an 'int' value.  */
2772     int_case:
2773         if (get_user_u32(len, optlen))
2774             return -TARGET_EFAULT;
2775         if (len < 0)
2776             return -TARGET_EINVAL;
2777         lv = sizeof(lv);
2778         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2779         if (ret < 0)
2780             return ret;
2781         switch (optname) {
2782         case SO_TYPE:
2783             val = host_to_target_sock_type(val);
2784             break;
2785         case SO_ERROR:
2786             val = host_to_target_errno(val);
2787             break;
2788         }
2789         if (len > lv)
2790             len = lv;
2791         if (len == 4) {
2792             if (put_user_u32(val, optval_addr))
2793                 return -TARGET_EFAULT;
2794         } else {
2795             if (put_user_u8(val, optval_addr))
2796                 return -TARGET_EFAULT;
2797         }
2798         if (put_user_u32(len, optlen))
2799             return -TARGET_EFAULT;
2800         break;
2801     case SOL_IP:
2802         switch(optname) {
2803         case IP_TOS:
2804         case IP_TTL:
2805         case IP_HDRINCL:
2806         case IP_ROUTER_ALERT:
2807         case IP_RECVOPTS:
2808         case IP_RETOPTS:
2809         case IP_PKTINFO:
2810         case IP_MTU_DISCOVER:
2811         case IP_RECVERR:
2812         case IP_RECVTOS:
2813 #ifdef IP_FREEBIND
2814         case IP_FREEBIND:
2815 #endif
2816         case IP_MULTICAST_TTL:
2817         case IP_MULTICAST_LOOP:
2818             if (get_user_u32(len, optlen))
2819                 return -TARGET_EFAULT;
2820             if (len < 0)
2821                 return -TARGET_EINVAL;
2822             lv = sizeof(lv);
2823             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2824             if (ret < 0)
2825                 return ret;
2826             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2827                 len = 1;
2828                 if (put_user_u32(len, optlen)
2829                     || put_user_u8(val, optval_addr))
2830                     return -TARGET_EFAULT;
2831             } else {
2832                 if (len > sizeof(int))
2833                     len = sizeof(int);
2834                 if (put_user_u32(len, optlen)
2835                     || put_user_u32(val, optval_addr))
2836                     return -TARGET_EFAULT;
2837             }
2838             break;
2839         default:
2840             ret = -TARGET_ENOPROTOOPT;
2841             break;
2842         }
2843         break;
2844     case SOL_IPV6:
2845         switch (optname) {
2846         case IPV6_MTU_DISCOVER:
2847         case IPV6_MTU:
2848         case IPV6_V6ONLY:
2849         case IPV6_RECVPKTINFO:
2850         case IPV6_UNICAST_HOPS:
2851         case IPV6_MULTICAST_HOPS:
2852         case IPV6_MULTICAST_LOOP:
2853         case IPV6_RECVERR:
2854         case IPV6_RECVHOPLIMIT:
2855         case IPV6_2292HOPLIMIT:
2856         case IPV6_CHECKSUM:
2857         case IPV6_ADDRFORM:
2858         case IPV6_2292PKTINFO:
2859         case IPV6_RECVTCLASS:
2860         case IPV6_RECVRTHDR:
2861         case IPV6_2292RTHDR:
2862         case IPV6_RECVHOPOPTS:
2863         case IPV6_2292HOPOPTS:
2864         case IPV6_RECVDSTOPTS:
2865         case IPV6_2292DSTOPTS:
2866         case IPV6_TCLASS:
2867         case IPV6_ADDR_PREFERENCES:
2868 #ifdef IPV6_RECVPATHMTU
2869         case IPV6_RECVPATHMTU:
2870 #endif
2871 #ifdef IPV6_TRANSPARENT
2872         case IPV6_TRANSPARENT:
2873 #endif
2874 #ifdef IPV6_FREEBIND
2875         case IPV6_FREEBIND:
2876 #endif
2877 #ifdef IPV6_RECVORIGDSTADDR
2878         case IPV6_RECVORIGDSTADDR:
2879 #endif
2880             if (get_user_u32(len, optlen))
2881                 return -TARGET_EFAULT;
2882             if (len < 0)
2883                 return -TARGET_EINVAL;
2884             lv = sizeof(lv);
2885             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2886             if (ret < 0)
2887                 return ret;
2888             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2889                 len = 1;
2890                 if (put_user_u32(len, optlen)
2891                     || put_user_u8(val, optval_addr))
2892                     return -TARGET_EFAULT;
2893             } else {
2894                 if (len > sizeof(int))
2895                     len = sizeof(int);
2896                 if (put_user_u32(len, optlen)
2897                     || put_user_u32(val, optval_addr))
2898                     return -TARGET_EFAULT;
2899             }
2900             break;
2901         default:
2902             ret = -TARGET_ENOPROTOOPT;
2903             break;
2904         }
2905         break;
2906 #ifdef SOL_NETLINK
2907     case SOL_NETLINK:
2908         switch (optname) {
2909         case NETLINK_PKTINFO:
2910         case NETLINK_BROADCAST_ERROR:
2911         case NETLINK_NO_ENOBUFS:
2912 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2913         case NETLINK_LISTEN_ALL_NSID:
2914         case NETLINK_CAP_ACK:
2915 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2916 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2917         case NETLINK_EXT_ACK:
2918 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2919 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2920         case NETLINK_GET_STRICT_CHK:
2921 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2922             if (get_user_u32(len, optlen)) {
2923                 return -TARGET_EFAULT;
2924             }
2925             if (len != sizeof(val)) {
2926                 return -TARGET_EINVAL;
2927             }
2928             lv = len;
2929             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2930             if (ret < 0) {
2931                 return ret;
2932             }
2933             if (put_user_u32(lv, optlen)
2934                 || put_user_u32(val, optval_addr)) {
2935                 return -TARGET_EFAULT;
2936             }
2937             break;
2938 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2939         case NETLINK_LIST_MEMBERSHIPS:
2940         {
2941             uint32_t *results;
2942             int i;
2943             if (get_user_u32(len, optlen)) {
2944                 return -TARGET_EFAULT;
2945             }
2946             if (len < 0) {
2947                 return -TARGET_EINVAL;
2948             }
2949             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2950             if (!results && len > 0) {
2951                 return -TARGET_EFAULT;
2952             }
2953             lv = len;
2954             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2955             if (ret < 0) {
2956                 unlock_user(results, optval_addr, 0);
2957                 return ret;
2958             }
2959             /* swap host endianess to target endianess. */
2960             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2961                 results[i] = tswap32(results[i]);
2962             }
2963             if (put_user_u32(lv, optlen)) {
2964                 return -TARGET_EFAULT;
2965             }
2966             unlock_user(results, optval_addr, 0);
2967             break;
2968         }
2969 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2970         default:
2971             goto unimplemented;
2972         }
2973         break;
2974 #endif /* SOL_NETLINK */
2975     default:
2976     unimplemented:
2977         qemu_log_mask(LOG_UNIMP,
2978                       "getsockopt level=%d optname=%d not yet supported\n",
2979                       level, optname);
2980         ret = -TARGET_EOPNOTSUPP;
2981         break;
2982     }
2983     return ret;
2984 }
2985 
2986 /* Convert target low/high pair representing file offset into the host
2987  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2988  * as the kernel doesn't handle them either.
2989  */
2990 static void target_to_host_low_high(abi_ulong tlow,
2991                                     abi_ulong thigh,
2992                                     unsigned long *hlow,
2993                                     unsigned long *hhigh)
2994 {
2995     uint64_t off = tlow |
2996         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2997         TARGET_LONG_BITS / 2;
2998 
2999     *hlow = off;
3000     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
3001 }
3002 
3003 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3004                                 abi_ulong count, int copy)
3005 {
3006     struct target_iovec *target_vec;
3007     struct iovec *vec;
3008     abi_ulong total_len, max_len;
3009     int i;
3010     int err = 0;
3011     bool bad_address = false;
3012 
3013     if (count == 0) {
3014         errno = 0;
3015         return NULL;
3016     }
3017     if (count > IOV_MAX) {
3018         errno = EINVAL;
3019         return NULL;
3020     }
3021 
3022     vec = g_try_new0(struct iovec, count);
3023     if (vec == NULL) {
3024         errno = ENOMEM;
3025         return NULL;
3026     }
3027 
3028     target_vec = lock_user(VERIFY_READ, target_addr,
3029                            count * sizeof(struct target_iovec), 1);
3030     if (target_vec == NULL) {
3031         err = EFAULT;
3032         goto fail2;
3033     }
3034 
3035     /* ??? If host page size > target page size, this will result in a
3036        value larger than what we can actually support.  */
3037     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3038     total_len = 0;
3039 
3040     for (i = 0; i < count; i++) {
3041         abi_ulong base = tswapal(target_vec[i].iov_base);
3042         abi_long len = tswapal(target_vec[i].iov_len);
3043 
3044         if (len < 0) {
3045             err = EINVAL;
3046             goto fail;
3047         } else if (len == 0) {
3048             /* Zero length pointer is ignored.  */
3049             vec[i].iov_base = 0;
3050         } else {
3051             vec[i].iov_base = lock_user(type, base, len, copy);
3052             /* If the first buffer pointer is bad, this is a fault.  But
3053              * subsequent bad buffers will result in a partial write; this
3054              * is realized by filling the vector with null pointers and
3055              * zero lengths. */
3056             if (!vec[i].iov_base) {
3057                 if (i == 0) {
3058                     err = EFAULT;
3059                     goto fail;
3060                 } else {
3061                     bad_address = true;
3062                 }
3063             }
3064             if (bad_address) {
3065                 len = 0;
3066             }
3067             if (len > max_len - total_len) {
3068                 len = max_len - total_len;
3069             }
3070         }
3071         vec[i].iov_len = len;
3072         total_len += len;
3073     }
3074 
3075     unlock_user(target_vec, target_addr, 0);
3076     return vec;
3077 
3078  fail:
3079     while (--i >= 0) {
3080         if (tswapal(target_vec[i].iov_len) > 0) {
3081             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3082         }
3083     }
3084     unlock_user(target_vec, target_addr, 0);
3085  fail2:
3086     g_free(vec);
3087     errno = err;
3088     return NULL;
3089 }
3090 
3091 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3092                          abi_ulong count, int copy)
3093 {
3094     struct target_iovec *target_vec;
3095     int i;
3096 
3097     target_vec = lock_user(VERIFY_READ, target_addr,
3098                            count * sizeof(struct target_iovec), 1);
3099     if (target_vec) {
3100         for (i = 0; i < count; i++) {
3101             abi_ulong base = tswapal(target_vec[i].iov_base);
3102             abi_long len = tswapal(target_vec[i].iov_len);
3103             if (len < 0) {
3104                 break;
3105             }
3106             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3107         }
3108         unlock_user(target_vec, target_addr, 0);
3109     }
3110 
3111     g_free(vec);
3112 }
3113 
3114 static inline int target_to_host_sock_type(int *type)
3115 {
3116     int host_type = 0;
3117     int target_type = *type;
3118 
3119     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3120     case TARGET_SOCK_DGRAM:
3121         host_type = SOCK_DGRAM;
3122         break;
3123     case TARGET_SOCK_STREAM:
3124         host_type = SOCK_STREAM;
3125         break;
3126     default:
3127         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3128         break;
3129     }
3130     if (target_type & TARGET_SOCK_CLOEXEC) {
3131 #if defined(SOCK_CLOEXEC)
3132         host_type |= SOCK_CLOEXEC;
3133 #else
3134         return -TARGET_EINVAL;
3135 #endif
3136     }
3137     if (target_type & TARGET_SOCK_NONBLOCK) {
3138 #if defined(SOCK_NONBLOCK)
3139         host_type |= SOCK_NONBLOCK;
3140 #elif !defined(O_NONBLOCK)
3141         return -TARGET_EINVAL;
3142 #endif
3143     }
3144     *type = host_type;
3145     return 0;
3146 }
3147 
3148 /* Try to emulate socket type flags after socket creation.  */
3149 static int sock_flags_fixup(int fd, int target_type)
3150 {
3151 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3152     if (target_type & TARGET_SOCK_NONBLOCK) {
3153         int flags = fcntl(fd, F_GETFL);
3154         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3155             close(fd);
3156             return -TARGET_EINVAL;
3157         }
3158     }
3159 #endif
3160     return fd;
3161 }
3162 
3163 /* do_socket() Must return target values and target errnos. */
3164 static abi_long do_socket(int domain, int type, int protocol)
3165 {
3166     int target_type = type;
3167     int ret;
3168 
3169     ret = target_to_host_sock_type(&type);
3170     if (ret) {
3171         return ret;
3172     }
3173 
3174     if (domain == PF_NETLINK && !(
3175 #ifdef CONFIG_RTNETLINK
3176          protocol == NETLINK_ROUTE ||
3177 #endif
3178          protocol == NETLINK_KOBJECT_UEVENT ||
3179          protocol == NETLINK_AUDIT)) {
3180         return -TARGET_EPROTONOSUPPORT;
3181     }
3182 
3183     if (domain == AF_PACKET ||
3184         (domain == AF_INET && type == SOCK_PACKET)) {
3185         protocol = tswap16(protocol);
3186     }
3187 
3188     ret = get_errno(socket(domain, type, protocol));
3189     if (ret >= 0) {
3190         ret = sock_flags_fixup(ret, target_type);
3191         if (type == SOCK_PACKET) {
3192             /* Manage an obsolete case :
3193              * if socket type is SOCK_PACKET, bind by name
3194              */
3195             fd_trans_register(ret, &target_packet_trans);
3196         } else if (domain == PF_NETLINK) {
3197             switch (protocol) {
3198 #ifdef CONFIG_RTNETLINK
3199             case NETLINK_ROUTE:
3200                 fd_trans_register(ret, &target_netlink_route_trans);
3201                 break;
3202 #endif
3203             case NETLINK_KOBJECT_UEVENT:
3204                 /* nothing to do: messages are strings */
3205                 break;
3206             case NETLINK_AUDIT:
3207                 fd_trans_register(ret, &target_netlink_audit_trans);
3208                 break;
3209             default:
3210                 g_assert_not_reached();
3211             }
3212         }
3213     }
3214     return ret;
3215 }
3216 
3217 /* do_bind() Must return target values and target errnos. */
3218 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3219                         socklen_t addrlen)
3220 {
3221     void *addr;
3222     abi_long ret;
3223 
3224     if ((int)addrlen < 0) {
3225         return -TARGET_EINVAL;
3226     }
3227 
3228     addr = alloca(addrlen+1);
3229 
3230     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3231     if (ret)
3232         return ret;
3233 
3234     return get_errno(bind(sockfd, addr, addrlen));
3235 }
3236 
3237 /* do_connect() Must return target values and target errnos. */
3238 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3239                            socklen_t addrlen)
3240 {
3241     void *addr;
3242     abi_long ret;
3243 
3244     if ((int)addrlen < 0) {
3245         return -TARGET_EINVAL;
3246     }
3247 
3248     addr = alloca(addrlen+1);
3249 
3250     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3251     if (ret)
3252         return ret;
3253 
3254     return get_errno(safe_connect(sockfd, addr, addrlen));
3255 }
3256 
3257 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3258 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3259                                       int flags, int send)
3260 {
3261     abi_long ret, len;
3262     struct msghdr msg;
3263     abi_ulong count;
3264     struct iovec *vec;
3265     abi_ulong target_vec;
3266 
3267     if (msgp->msg_name) {
3268         msg.msg_namelen = tswap32(msgp->msg_namelen);
3269         msg.msg_name = alloca(msg.msg_namelen+1);
3270         ret = target_to_host_sockaddr(fd, msg.msg_name,
3271                                       tswapal(msgp->msg_name),
3272                                       msg.msg_namelen);
3273         if (ret == -TARGET_EFAULT) {
3274             /* For connected sockets msg_name and msg_namelen must
3275              * be ignored, so returning EFAULT immediately is wrong.
3276              * Instead, pass a bad msg_name to the host kernel, and
3277              * let it decide whether to return EFAULT or not.
3278              */
3279             msg.msg_name = (void *)-1;
3280         } else if (ret) {
3281             goto out2;
3282         }
3283     } else {
3284         msg.msg_name = NULL;
3285         msg.msg_namelen = 0;
3286     }
3287     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3288     msg.msg_control = alloca(msg.msg_controllen);
3289     memset(msg.msg_control, 0, msg.msg_controllen);
3290 
3291     msg.msg_flags = tswap32(msgp->msg_flags);
3292 
3293     count = tswapal(msgp->msg_iovlen);
3294     target_vec = tswapal(msgp->msg_iov);
3295 
3296     if (count > IOV_MAX) {
3297         /* sendrcvmsg returns a different errno for this condition than
3298          * readv/writev, so we must catch it here before lock_iovec() does.
3299          */
3300         ret = -TARGET_EMSGSIZE;
3301         goto out2;
3302     }
3303 
3304     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3305                      target_vec, count, send);
3306     if (vec == NULL) {
3307         ret = -host_to_target_errno(errno);
3308         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3309         if (!send || ret) {
3310             goto out2;
3311         }
3312     }
3313     msg.msg_iovlen = count;
3314     msg.msg_iov = vec;
3315 
3316     if (send) {
3317         if (fd_trans_target_to_host_data(fd)) {
3318             void *host_msg;
3319 
3320             host_msg = g_malloc(msg.msg_iov->iov_len);
3321             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3322             ret = fd_trans_target_to_host_data(fd)(host_msg,
3323                                                    msg.msg_iov->iov_len);
3324             if (ret >= 0) {
3325                 msg.msg_iov->iov_base = host_msg;
3326                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3327             }
3328             g_free(host_msg);
3329         } else {
3330             ret = target_to_host_cmsg(&msg, msgp);
3331             if (ret == 0) {
3332                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3333             }
3334         }
3335     } else {
3336         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3337         if (!is_error(ret)) {
3338             len = ret;
3339             if (fd_trans_host_to_target_data(fd)) {
3340                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3341                                                MIN(msg.msg_iov->iov_len, len));
3342             }
3343             if (!is_error(ret)) {
3344                 ret = host_to_target_cmsg(msgp, &msg);
3345             }
3346             if (!is_error(ret)) {
3347                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3348                 msgp->msg_flags = tswap32(msg.msg_flags);
3349                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3350                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3351                                     msg.msg_name, msg.msg_namelen);
3352                     if (ret) {
3353                         goto out;
3354                     }
3355                 }
3356 
3357                 ret = len;
3358             }
3359         }
3360     }
3361 
3362 out:
3363     if (vec) {
3364         unlock_iovec(vec, target_vec, count, !send);
3365     }
3366 out2:
3367     return ret;
3368 }
3369 
3370 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3371                                int flags, int send)
3372 {
3373     abi_long ret;
3374     struct target_msghdr *msgp;
3375 
3376     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3377                           msgp,
3378                           target_msg,
3379                           send ? 1 : 0)) {
3380         return -TARGET_EFAULT;
3381     }
3382     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3383     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3384     return ret;
3385 }
3386 
3387 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3388  * so it might not have this *mmsg-specific flag either.
3389  */
3390 #ifndef MSG_WAITFORONE
3391 #define MSG_WAITFORONE 0x10000
3392 #endif
3393 
3394 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3395                                 unsigned int vlen, unsigned int flags,
3396                                 int send)
3397 {
3398     struct target_mmsghdr *mmsgp;
3399     abi_long ret = 0;
3400     int i;
3401 
3402     if (vlen > UIO_MAXIOV) {
3403         vlen = UIO_MAXIOV;
3404     }
3405 
3406     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3407     if (!mmsgp) {
3408         return -TARGET_EFAULT;
3409     }
3410 
3411     for (i = 0; i < vlen; i++) {
3412         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3413         if (is_error(ret)) {
3414             break;
3415         }
3416         mmsgp[i].msg_len = tswap32(ret);
3417         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3418         if (flags & MSG_WAITFORONE) {
3419             flags |= MSG_DONTWAIT;
3420         }
3421     }
3422 
3423     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3424 
3425     /* Return number of datagrams sent if we sent any at all;
3426      * otherwise return the error.
3427      */
3428     if (i) {
3429         return i;
3430     }
3431     return ret;
3432 }
3433 
3434 /* do_accept4() Must return target values and target errnos. */
3435 static abi_long do_accept4(int fd, abi_ulong target_addr,
3436                            abi_ulong target_addrlen_addr, int flags)
3437 {
3438     socklen_t addrlen, ret_addrlen;
3439     void *addr;
3440     abi_long ret;
3441     int host_flags;
3442 
3443     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3444 
3445     if (target_addr == 0) {
3446         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3447     }
3448 
3449     /* linux returns EFAULT if addrlen pointer is invalid */
3450     if (get_user_u32(addrlen, target_addrlen_addr))
3451         return -TARGET_EFAULT;
3452 
3453     if ((int)addrlen < 0) {
3454         return -TARGET_EINVAL;
3455     }
3456 
3457     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3458         return -TARGET_EFAULT;
3459     }
3460 
3461     addr = alloca(addrlen);
3462 
3463     ret_addrlen = addrlen;
3464     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3465     if (!is_error(ret)) {
3466         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3467         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3468             ret = -TARGET_EFAULT;
3469         }
3470     }
3471     return ret;
3472 }
3473 
3474 /* do_getpeername() Must return target values and target errnos. */
3475 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3476                                abi_ulong target_addrlen_addr)
3477 {
3478     socklen_t addrlen, ret_addrlen;
3479     void *addr;
3480     abi_long ret;
3481 
3482     if (get_user_u32(addrlen, target_addrlen_addr))
3483         return -TARGET_EFAULT;
3484 
3485     if ((int)addrlen < 0) {
3486         return -TARGET_EINVAL;
3487     }
3488 
3489     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3490         return -TARGET_EFAULT;
3491     }
3492 
3493     addr = alloca(addrlen);
3494 
3495     ret_addrlen = addrlen;
3496     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3497     if (!is_error(ret)) {
3498         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3499         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3500             ret = -TARGET_EFAULT;
3501         }
3502     }
3503     return ret;
3504 }
3505 
3506 /* do_getsockname() Must return target values and target errnos. */
3507 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3508                                abi_ulong target_addrlen_addr)
3509 {
3510     socklen_t addrlen, ret_addrlen;
3511     void *addr;
3512     abi_long ret;
3513 
3514     if (get_user_u32(addrlen, target_addrlen_addr))
3515         return -TARGET_EFAULT;
3516 
3517     if ((int)addrlen < 0) {
3518         return -TARGET_EINVAL;
3519     }
3520 
3521     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3522         return -TARGET_EFAULT;
3523     }
3524 
3525     addr = alloca(addrlen);
3526 
3527     ret_addrlen = addrlen;
3528     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3529     if (!is_error(ret)) {
3530         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3531         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3532             ret = -TARGET_EFAULT;
3533         }
3534     }
3535     return ret;
3536 }
3537 
3538 /* do_socketpair() Must return target values and target errnos. */
3539 static abi_long do_socketpair(int domain, int type, int protocol,
3540                               abi_ulong target_tab_addr)
3541 {
3542     int tab[2];
3543     abi_long ret;
3544 
3545     target_to_host_sock_type(&type);
3546 
3547     ret = get_errno(socketpair(domain, type, protocol, tab));
3548     if (!is_error(ret)) {
3549         if (put_user_s32(tab[0], target_tab_addr)
3550             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3551             ret = -TARGET_EFAULT;
3552     }
3553     return ret;
3554 }
3555 
3556 /* do_sendto() Must return target values and target errnos. */
3557 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3558                           abi_ulong target_addr, socklen_t addrlen)
3559 {
3560     void *addr;
3561     void *host_msg;
3562     void *copy_msg = NULL;
3563     abi_long ret;
3564 
3565     if ((int)addrlen < 0) {
3566         return -TARGET_EINVAL;
3567     }
3568 
3569     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3570     if (!host_msg)
3571         return -TARGET_EFAULT;
3572     if (fd_trans_target_to_host_data(fd)) {
3573         copy_msg = host_msg;
3574         host_msg = g_malloc(len);
3575         memcpy(host_msg, copy_msg, len);
3576         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3577         if (ret < 0) {
3578             goto fail;
3579         }
3580     }
3581     if (target_addr) {
3582         addr = alloca(addrlen+1);
3583         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3584         if (ret) {
3585             goto fail;
3586         }
3587         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3588     } else {
3589         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3590     }
3591 fail:
3592     if (copy_msg) {
3593         g_free(host_msg);
3594         host_msg = copy_msg;
3595     }
3596     unlock_user(host_msg, msg, 0);
3597     return ret;
3598 }
3599 
3600 /* do_recvfrom() Must return target values and target errnos. */
3601 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3602                             abi_ulong target_addr,
3603                             abi_ulong target_addrlen)
3604 {
3605     socklen_t addrlen, ret_addrlen;
3606     void *addr;
3607     void *host_msg;
3608     abi_long ret;
3609 
3610     if (!msg) {
3611         host_msg = NULL;
3612     } else {
3613         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3614         if (!host_msg) {
3615             return -TARGET_EFAULT;
3616         }
3617     }
3618     if (target_addr) {
3619         if (get_user_u32(addrlen, target_addrlen)) {
3620             ret = -TARGET_EFAULT;
3621             goto fail;
3622         }
3623         if ((int)addrlen < 0) {
3624             ret = -TARGET_EINVAL;
3625             goto fail;
3626         }
3627         addr = alloca(addrlen);
3628         ret_addrlen = addrlen;
3629         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3630                                       addr, &ret_addrlen));
3631     } else {
3632         addr = NULL; /* To keep compiler quiet.  */
3633         addrlen = 0; /* To keep compiler quiet.  */
3634         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3635     }
3636     if (!is_error(ret)) {
3637         if (fd_trans_host_to_target_data(fd)) {
3638             abi_long trans;
3639             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3640             if (is_error(trans)) {
3641                 ret = trans;
3642                 goto fail;
3643             }
3644         }
3645         if (target_addr) {
3646             host_to_target_sockaddr(target_addr, addr,
3647                                     MIN(addrlen, ret_addrlen));
3648             if (put_user_u32(ret_addrlen, target_addrlen)) {
3649                 ret = -TARGET_EFAULT;
3650                 goto fail;
3651             }
3652         }
3653         unlock_user(host_msg, msg, len);
3654     } else {
3655 fail:
3656         unlock_user(host_msg, msg, 0);
3657     }
3658     return ret;
3659 }
3660 
3661 #ifdef TARGET_NR_socketcall
3662 /* do_socketcall() must return target values and target errnos. */
3663 static abi_long do_socketcall(int num, abi_ulong vptr)
3664 {
3665     static const unsigned nargs[] = { /* number of arguments per operation */
3666         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3667         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3668         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3669         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3670         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3671         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3672         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3673         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3674         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3675         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3676         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3677         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3678         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3679         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3680         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3681         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3682         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3683         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3684         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3685         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3686     };
3687     abi_long a[6]; /* max 6 args */
3688     unsigned i;
3689 
3690     /* check the range of the first argument num */
3691     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3692     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3693         return -TARGET_EINVAL;
3694     }
3695     /* ensure we have space for args */
3696     if (nargs[num] > ARRAY_SIZE(a)) {
3697         return -TARGET_EINVAL;
3698     }
3699     /* collect the arguments in a[] according to nargs[] */
3700     for (i = 0; i < nargs[num]; ++i) {
3701         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3702             return -TARGET_EFAULT;
3703         }
3704     }
3705     /* now when we have the args, invoke the appropriate underlying function */
3706     switch (num) {
3707     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3708         return do_socket(a[0], a[1], a[2]);
3709     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3710         return do_bind(a[0], a[1], a[2]);
3711     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3712         return do_connect(a[0], a[1], a[2]);
3713     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3714         return get_errno(listen(a[0], a[1]));
3715     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3716         return do_accept4(a[0], a[1], a[2], 0);
3717     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3718         return do_getsockname(a[0], a[1], a[2]);
3719     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3720         return do_getpeername(a[0], a[1], a[2]);
3721     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3722         return do_socketpair(a[0], a[1], a[2], a[3]);
3723     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3724         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3725     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3726         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3727     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3728         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3729     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3730         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3731     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3732         return get_errno(shutdown(a[0], a[1]));
3733     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3734         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3735     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3736         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3737     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3738         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3739     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3740         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3741     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3742         return do_accept4(a[0], a[1], a[2], a[3]);
3743     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3744         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3745     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3746         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3747     default:
3748         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3749         return -TARGET_EINVAL;
3750     }
3751 }
3752 #endif
3753 
3754 #define N_SHM_REGIONS	32
3755 
3756 static struct shm_region {
3757     abi_ulong start;
3758     abi_ulong size;
3759     bool in_use;
3760 } shm_regions[N_SHM_REGIONS];
3761 
3762 #ifndef TARGET_SEMID64_DS
3763 /* asm-generic version of this struct */
3764 struct target_semid64_ds
3765 {
3766   struct target_ipc_perm sem_perm;
3767   abi_ulong sem_otime;
3768 #if TARGET_ABI_BITS == 32
3769   abi_ulong __unused1;
3770 #endif
3771   abi_ulong sem_ctime;
3772 #if TARGET_ABI_BITS == 32
3773   abi_ulong __unused2;
3774 #endif
3775   abi_ulong sem_nsems;
3776   abi_ulong __unused3;
3777   abi_ulong __unused4;
3778 };
3779 #endif
3780 
3781 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3782                                                abi_ulong target_addr)
3783 {
3784     struct target_ipc_perm *target_ip;
3785     struct target_semid64_ds *target_sd;
3786 
3787     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3788         return -TARGET_EFAULT;
3789     target_ip = &(target_sd->sem_perm);
3790     host_ip->__key = tswap32(target_ip->__key);
3791     host_ip->uid = tswap32(target_ip->uid);
3792     host_ip->gid = tswap32(target_ip->gid);
3793     host_ip->cuid = tswap32(target_ip->cuid);
3794     host_ip->cgid = tswap32(target_ip->cgid);
3795 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3796     host_ip->mode = tswap32(target_ip->mode);
3797 #else
3798     host_ip->mode = tswap16(target_ip->mode);
3799 #endif
3800 #if defined(TARGET_PPC)
3801     host_ip->__seq = tswap32(target_ip->__seq);
3802 #else
3803     host_ip->__seq = tswap16(target_ip->__seq);
3804 #endif
3805     unlock_user_struct(target_sd, target_addr, 0);
3806     return 0;
3807 }
3808 
3809 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3810                                                struct ipc_perm *host_ip)
3811 {
3812     struct target_ipc_perm *target_ip;
3813     struct target_semid64_ds *target_sd;
3814 
3815     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3816         return -TARGET_EFAULT;
3817     target_ip = &(target_sd->sem_perm);
3818     target_ip->__key = tswap32(host_ip->__key);
3819     target_ip->uid = tswap32(host_ip->uid);
3820     target_ip->gid = tswap32(host_ip->gid);
3821     target_ip->cuid = tswap32(host_ip->cuid);
3822     target_ip->cgid = tswap32(host_ip->cgid);
3823 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3824     target_ip->mode = tswap32(host_ip->mode);
3825 #else
3826     target_ip->mode = tswap16(host_ip->mode);
3827 #endif
3828 #if defined(TARGET_PPC)
3829     target_ip->__seq = tswap32(host_ip->__seq);
3830 #else
3831     target_ip->__seq = tswap16(host_ip->__seq);
3832 #endif
3833     unlock_user_struct(target_sd, target_addr, 1);
3834     return 0;
3835 }
3836 
3837 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3838                                                abi_ulong target_addr)
3839 {
3840     struct target_semid64_ds *target_sd;
3841 
3842     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3843         return -TARGET_EFAULT;
3844     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3845         return -TARGET_EFAULT;
3846     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3847     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3848     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3849     unlock_user_struct(target_sd, target_addr, 0);
3850     return 0;
3851 }
3852 
3853 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3854                                                struct semid_ds *host_sd)
3855 {
3856     struct target_semid64_ds *target_sd;
3857 
3858     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3859         return -TARGET_EFAULT;
3860     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3861         return -TARGET_EFAULT;
3862     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3863     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3864     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3865     unlock_user_struct(target_sd, target_addr, 1);
3866     return 0;
3867 }
3868 
3869 struct target_seminfo {
3870     int semmap;
3871     int semmni;
3872     int semmns;
3873     int semmnu;
3874     int semmsl;
3875     int semopm;
3876     int semume;
3877     int semusz;
3878     int semvmx;
3879     int semaem;
3880 };
3881 
3882 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3883                                               struct seminfo *host_seminfo)
3884 {
3885     struct target_seminfo *target_seminfo;
3886     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3887         return -TARGET_EFAULT;
3888     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3889     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3890     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3891     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3892     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3893     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3894     __put_user(host_seminfo->semume, &target_seminfo->semume);
3895     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3896     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3897     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3898     unlock_user_struct(target_seminfo, target_addr, 1);
3899     return 0;
3900 }
3901 
3902 union semun {
3903 	int val;
3904 	struct semid_ds *buf;
3905 	unsigned short *array;
3906 	struct seminfo *__buf;
3907 };
3908 
3909 union target_semun {
3910 	int val;
3911 	abi_ulong buf;
3912 	abi_ulong array;
3913 	abi_ulong __buf;
3914 };
3915 
3916 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3917                                                abi_ulong target_addr)
3918 {
3919     int nsems;
3920     unsigned short *array;
3921     union semun semun;
3922     struct semid_ds semid_ds;
3923     int i, ret;
3924 
3925     semun.buf = &semid_ds;
3926 
3927     ret = semctl(semid, 0, IPC_STAT, semun);
3928     if (ret == -1)
3929         return get_errno(ret);
3930 
3931     nsems = semid_ds.sem_nsems;
3932 
3933     *host_array = g_try_new(unsigned short, nsems);
3934     if (!*host_array) {
3935         return -TARGET_ENOMEM;
3936     }
3937     array = lock_user(VERIFY_READ, target_addr,
3938                       nsems*sizeof(unsigned short), 1);
3939     if (!array) {
3940         g_free(*host_array);
3941         return -TARGET_EFAULT;
3942     }
3943 
3944     for(i=0; i<nsems; i++) {
3945         __get_user((*host_array)[i], &array[i]);
3946     }
3947     unlock_user(array, target_addr, 0);
3948 
3949     return 0;
3950 }
3951 
3952 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3953                                                unsigned short **host_array)
3954 {
3955     int nsems;
3956     unsigned short *array;
3957     union semun semun;
3958     struct semid_ds semid_ds;
3959     int i, ret;
3960 
3961     semun.buf = &semid_ds;
3962 
3963     ret = semctl(semid, 0, IPC_STAT, semun);
3964     if (ret == -1)
3965         return get_errno(ret);
3966 
3967     nsems = semid_ds.sem_nsems;
3968 
3969     array = lock_user(VERIFY_WRITE, target_addr,
3970                       nsems*sizeof(unsigned short), 0);
3971     if (!array)
3972         return -TARGET_EFAULT;
3973 
3974     for(i=0; i<nsems; i++) {
3975         __put_user((*host_array)[i], &array[i]);
3976     }
3977     g_free(*host_array);
3978     unlock_user(array, target_addr, 1);
3979 
3980     return 0;
3981 }
3982 
3983 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3984                                  abi_ulong target_arg)
3985 {
3986     union target_semun target_su = { .buf = target_arg };
3987     union semun arg;
3988     struct semid_ds dsarg;
3989     unsigned short *array = NULL;
3990     struct seminfo seminfo;
3991     abi_long ret = -TARGET_EINVAL;
3992     abi_long err;
3993     cmd &= 0xff;
3994 
3995     switch( cmd ) {
3996 	case GETVAL:
3997 	case SETVAL:
3998             /* In 64 bit cross-endian situations, we will erroneously pick up
3999              * the wrong half of the union for the "val" element.  To rectify
4000              * this, the entire 8-byte structure is byteswapped, followed by
4001 	     * a swap of the 4 byte val field. In other cases, the data is
4002 	     * already in proper host byte order. */
4003 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
4004 		target_su.buf = tswapal(target_su.buf);
4005 		arg.val = tswap32(target_su.val);
4006 	    } else {
4007 		arg.val = target_su.val;
4008 	    }
4009             ret = get_errno(semctl(semid, semnum, cmd, arg));
4010             break;
4011 	case GETALL:
4012 	case SETALL:
4013             err = target_to_host_semarray(semid, &array, target_su.array);
4014             if (err)
4015                 return err;
4016             arg.array = array;
4017             ret = get_errno(semctl(semid, semnum, cmd, arg));
4018             err = host_to_target_semarray(semid, target_su.array, &array);
4019             if (err)
4020                 return err;
4021             break;
4022 	case IPC_STAT:
4023 	case IPC_SET:
4024 	case SEM_STAT:
4025             err = target_to_host_semid_ds(&dsarg, target_su.buf);
4026             if (err)
4027                 return err;
4028             arg.buf = &dsarg;
4029             ret = get_errno(semctl(semid, semnum, cmd, arg));
4030             err = host_to_target_semid_ds(target_su.buf, &dsarg);
4031             if (err)
4032                 return err;
4033             break;
4034 	case IPC_INFO:
4035 	case SEM_INFO:
4036             arg.__buf = &seminfo;
4037             ret = get_errno(semctl(semid, semnum, cmd, arg));
4038             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4039             if (err)
4040                 return err;
4041             break;
4042 	case IPC_RMID:
4043 	case GETPID:
4044 	case GETNCNT:
4045 	case GETZCNT:
4046             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4047             break;
4048     }
4049 
4050     return ret;
4051 }
4052 
4053 struct target_sembuf {
4054     unsigned short sem_num;
4055     short sem_op;
4056     short sem_flg;
4057 };
4058 
4059 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4060                                              abi_ulong target_addr,
4061                                              unsigned nsops)
4062 {
4063     struct target_sembuf *target_sembuf;
4064     int i;
4065 
4066     target_sembuf = lock_user(VERIFY_READ, target_addr,
4067                               nsops*sizeof(struct target_sembuf), 1);
4068     if (!target_sembuf)
4069         return -TARGET_EFAULT;
4070 
4071     for(i=0; i<nsops; i++) {
4072         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4073         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4074         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4075     }
4076 
4077     unlock_user(target_sembuf, target_addr, 0);
4078 
4079     return 0;
4080 }
4081 
4082 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4083     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4084 
4085 /*
4086  * This macro is required to handle the s390 variants, which passes the
4087  * arguments in a different order than default.
4088  */
4089 #ifdef __s390x__
4090 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4091   (__nsops), (__timeout), (__sops)
4092 #else
4093 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4094   (__nsops), 0, (__sops), (__timeout)
4095 #endif
4096 
4097 static inline abi_long do_semtimedop(int semid,
4098                                      abi_long ptr,
4099                                      unsigned nsops,
4100                                      abi_long timeout, bool time64)
4101 {
4102     struct sembuf *sops;
4103     struct timespec ts, *pts = NULL;
4104     abi_long ret;
4105 
4106     if (timeout) {
4107         pts = &ts;
4108         if (time64) {
4109             if (target_to_host_timespec64(pts, timeout)) {
4110                 return -TARGET_EFAULT;
4111             }
4112         } else {
4113             if (target_to_host_timespec(pts, timeout)) {
4114                 return -TARGET_EFAULT;
4115             }
4116         }
4117     }
4118 
4119     if (nsops > TARGET_SEMOPM) {
4120         return -TARGET_E2BIG;
4121     }
4122 
4123     sops = g_new(struct sembuf, nsops);
4124 
4125     if (target_to_host_sembuf(sops, ptr, nsops)) {
4126         g_free(sops);
4127         return -TARGET_EFAULT;
4128     }
4129 
4130     ret = -TARGET_ENOSYS;
4131 #ifdef __NR_semtimedop
4132     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4133 #endif
4134 #ifdef __NR_ipc
4135     if (ret == -TARGET_ENOSYS) {
4136         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4137                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4138     }
4139 #endif
4140     g_free(sops);
4141     return ret;
4142 }
4143 #endif
4144 
4145 struct target_msqid_ds
4146 {
4147     struct target_ipc_perm msg_perm;
4148     abi_ulong msg_stime;
4149 #if TARGET_ABI_BITS == 32
4150     abi_ulong __unused1;
4151 #endif
4152     abi_ulong msg_rtime;
4153 #if TARGET_ABI_BITS == 32
4154     abi_ulong __unused2;
4155 #endif
4156     abi_ulong msg_ctime;
4157 #if TARGET_ABI_BITS == 32
4158     abi_ulong __unused3;
4159 #endif
4160     abi_ulong __msg_cbytes;
4161     abi_ulong msg_qnum;
4162     abi_ulong msg_qbytes;
4163     abi_ulong msg_lspid;
4164     abi_ulong msg_lrpid;
4165     abi_ulong __unused4;
4166     abi_ulong __unused5;
4167 };
4168 
4169 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4170                                                abi_ulong target_addr)
4171 {
4172     struct target_msqid_ds *target_md;
4173 
4174     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4175         return -TARGET_EFAULT;
4176     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4177         return -TARGET_EFAULT;
4178     host_md->msg_stime = tswapal(target_md->msg_stime);
4179     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4180     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4181     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4182     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4183     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4184     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4185     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4186     unlock_user_struct(target_md, target_addr, 0);
4187     return 0;
4188 }
4189 
4190 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4191                                                struct msqid_ds *host_md)
4192 {
4193     struct target_msqid_ds *target_md;
4194 
4195     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4196         return -TARGET_EFAULT;
4197     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4198         return -TARGET_EFAULT;
4199     target_md->msg_stime = tswapal(host_md->msg_stime);
4200     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4201     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4202     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4203     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4204     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4205     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4206     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4207     unlock_user_struct(target_md, target_addr, 1);
4208     return 0;
4209 }
4210 
4211 struct target_msginfo {
4212     int msgpool;
4213     int msgmap;
4214     int msgmax;
4215     int msgmnb;
4216     int msgmni;
4217     int msgssz;
4218     int msgtql;
4219     unsigned short int msgseg;
4220 };
4221 
4222 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4223                                               struct msginfo *host_msginfo)
4224 {
4225     struct target_msginfo *target_msginfo;
4226     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4227         return -TARGET_EFAULT;
4228     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4229     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4230     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4231     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4232     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4233     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4234     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4235     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4236     unlock_user_struct(target_msginfo, target_addr, 1);
4237     return 0;
4238 }
4239 
4240 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4241 {
4242     struct msqid_ds dsarg;
4243     struct msginfo msginfo;
4244     abi_long ret = -TARGET_EINVAL;
4245 
4246     cmd &= 0xff;
4247 
4248     switch (cmd) {
4249     case IPC_STAT:
4250     case IPC_SET:
4251     case MSG_STAT:
4252         if (target_to_host_msqid_ds(&dsarg,ptr))
4253             return -TARGET_EFAULT;
4254         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4255         if (host_to_target_msqid_ds(ptr,&dsarg))
4256             return -TARGET_EFAULT;
4257         break;
4258     case IPC_RMID:
4259         ret = get_errno(msgctl(msgid, cmd, NULL));
4260         break;
4261     case IPC_INFO:
4262     case MSG_INFO:
4263         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4264         if (host_to_target_msginfo(ptr, &msginfo))
4265             return -TARGET_EFAULT;
4266         break;
4267     }
4268 
4269     return ret;
4270 }
4271 
4272 struct target_msgbuf {
4273     abi_long mtype;
4274     char	mtext[1];
4275 };
4276 
4277 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4278                                  ssize_t msgsz, int msgflg)
4279 {
4280     struct target_msgbuf *target_mb;
4281     struct msgbuf *host_mb;
4282     abi_long ret = 0;
4283 
4284     if (msgsz < 0) {
4285         return -TARGET_EINVAL;
4286     }
4287 
4288     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4289         return -TARGET_EFAULT;
4290     host_mb = g_try_malloc(msgsz + sizeof(long));
4291     if (!host_mb) {
4292         unlock_user_struct(target_mb, msgp, 0);
4293         return -TARGET_ENOMEM;
4294     }
4295     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4296     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4297     ret = -TARGET_ENOSYS;
4298 #ifdef __NR_msgsnd
4299     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4300 #endif
4301 #ifdef __NR_ipc
4302     if (ret == -TARGET_ENOSYS) {
4303 #ifdef __s390x__
4304         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4305                                  host_mb));
4306 #else
4307         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4308                                  host_mb, 0));
4309 #endif
4310     }
4311 #endif
4312     g_free(host_mb);
4313     unlock_user_struct(target_mb, msgp, 0);
4314 
4315     return ret;
4316 }
4317 
4318 #ifdef __NR_ipc
4319 #if defined(__sparc__)
4320 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4321 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4322 #elif defined(__s390x__)
4323 /* The s390 sys_ipc variant has only five parameters.  */
4324 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4325     ((long int[]){(long int)__msgp, __msgtyp})
4326 #else
4327 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4328     ((long int[]){(long int)__msgp, __msgtyp}), 0
4329 #endif
4330 #endif
4331 
4332 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4333                                  ssize_t msgsz, abi_long msgtyp,
4334                                  int msgflg)
4335 {
4336     struct target_msgbuf *target_mb;
4337     char *target_mtext;
4338     struct msgbuf *host_mb;
4339     abi_long ret = 0;
4340 
4341     if (msgsz < 0) {
4342         return -TARGET_EINVAL;
4343     }
4344 
4345     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4346         return -TARGET_EFAULT;
4347 
4348     host_mb = g_try_malloc(msgsz + sizeof(long));
4349     if (!host_mb) {
4350         ret = -TARGET_ENOMEM;
4351         goto end;
4352     }
4353     ret = -TARGET_ENOSYS;
4354 #ifdef __NR_msgrcv
4355     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4356 #endif
4357 #ifdef __NR_ipc
4358     if (ret == -TARGET_ENOSYS) {
4359         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4360                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4361     }
4362 #endif
4363 
4364     if (ret > 0) {
4365         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4366         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4367         if (!target_mtext) {
4368             ret = -TARGET_EFAULT;
4369             goto end;
4370         }
4371         memcpy(target_mb->mtext, host_mb->mtext, ret);
4372         unlock_user(target_mtext, target_mtext_addr, ret);
4373     }
4374 
4375     target_mb->mtype = tswapal(host_mb->mtype);
4376 
4377 end:
4378     if (target_mb)
4379         unlock_user_struct(target_mb, msgp, 1);
4380     g_free(host_mb);
4381     return ret;
4382 }
4383 
4384 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4385                                                abi_ulong target_addr)
4386 {
4387     struct target_shmid_ds *target_sd;
4388 
4389     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4390         return -TARGET_EFAULT;
4391     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4392         return -TARGET_EFAULT;
4393     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4394     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4395     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4396     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4397     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4398     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4399     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4400     unlock_user_struct(target_sd, target_addr, 0);
4401     return 0;
4402 }
4403 
4404 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4405                                                struct shmid_ds *host_sd)
4406 {
4407     struct target_shmid_ds *target_sd;
4408 
4409     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4410         return -TARGET_EFAULT;
4411     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4412         return -TARGET_EFAULT;
4413     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4414     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4415     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4416     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4417     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4418     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4419     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4420     unlock_user_struct(target_sd, target_addr, 1);
4421     return 0;
4422 }
4423 
4424 struct  target_shminfo {
4425     abi_ulong shmmax;
4426     abi_ulong shmmin;
4427     abi_ulong shmmni;
4428     abi_ulong shmseg;
4429     abi_ulong shmall;
4430 };
4431 
4432 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4433                                               struct shminfo *host_shminfo)
4434 {
4435     struct target_shminfo *target_shminfo;
4436     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4437         return -TARGET_EFAULT;
4438     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4439     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4440     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4441     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4442     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4443     unlock_user_struct(target_shminfo, target_addr, 1);
4444     return 0;
4445 }
4446 
4447 struct target_shm_info {
4448     int used_ids;
4449     abi_ulong shm_tot;
4450     abi_ulong shm_rss;
4451     abi_ulong shm_swp;
4452     abi_ulong swap_attempts;
4453     abi_ulong swap_successes;
4454 };
4455 
4456 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4457                                                struct shm_info *host_shm_info)
4458 {
4459     struct target_shm_info *target_shm_info;
4460     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4461         return -TARGET_EFAULT;
4462     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4463     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4464     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4465     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4466     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4467     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4468     unlock_user_struct(target_shm_info, target_addr, 1);
4469     return 0;
4470 }
4471 
4472 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4473 {
4474     struct shmid_ds dsarg;
4475     struct shminfo shminfo;
4476     struct shm_info shm_info;
4477     abi_long ret = -TARGET_EINVAL;
4478 
4479     cmd &= 0xff;
4480 
4481     switch(cmd) {
4482     case IPC_STAT:
4483     case IPC_SET:
4484     case SHM_STAT:
4485         if (target_to_host_shmid_ds(&dsarg, buf))
4486             return -TARGET_EFAULT;
4487         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4488         if (host_to_target_shmid_ds(buf, &dsarg))
4489             return -TARGET_EFAULT;
4490         break;
4491     case IPC_INFO:
4492         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4493         if (host_to_target_shminfo(buf, &shminfo))
4494             return -TARGET_EFAULT;
4495         break;
4496     case SHM_INFO:
4497         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4498         if (host_to_target_shm_info(buf, &shm_info))
4499             return -TARGET_EFAULT;
4500         break;
4501     case IPC_RMID:
4502     case SHM_LOCK:
4503     case SHM_UNLOCK:
4504         ret = get_errno(shmctl(shmid, cmd, NULL));
4505         break;
4506     }
4507 
4508     return ret;
4509 }
4510 
4511 #ifndef TARGET_FORCE_SHMLBA
4512 /* For most architectures, SHMLBA is the same as the page size;
4513  * some architectures have larger values, in which case they should
4514  * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4515  * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4516  * and defining its own value for SHMLBA.
4517  *
4518  * The kernel also permits SHMLBA to be set by the architecture to a
4519  * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4520  * this means that addresses are rounded to the large size if
4521  * SHM_RND is set but addresses not aligned to that size are not rejected
4522  * as long as they are at least page-aligned. Since the only architecture
4523  * which uses this is ia64 this code doesn't provide for that oddity.
4524  */
4525 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4526 {
4527     return TARGET_PAGE_SIZE;
4528 }
4529 #endif
4530 
4531 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4532                                  int shmid, abi_ulong shmaddr, int shmflg)
4533 {
4534     CPUState *cpu = env_cpu(cpu_env);
4535     abi_long raddr;
4536     void *host_raddr;
4537     struct shmid_ds shm_info;
4538     int i,ret;
4539     abi_ulong shmlba;
4540 
4541     /* shmat pointers are always untagged */
4542 
4543     /* find out the length of the shared memory segment */
4544     ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4545     if (is_error(ret)) {
4546         /* can't get length, bail out */
4547         return ret;
4548     }
4549 
4550     shmlba = target_shmlba(cpu_env);
4551 
4552     if (shmaddr & (shmlba - 1)) {
4553         if (shmflg & SHM_RND) {
4554             shmaddr &= ~(shmlba - 1);
4555         } else {
4556             return -TARGET_EINVAL;
4557         }
4558     }
4559     if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4560         return -TARGET_EINVAL;
4561     }
4562 
4563     mmap_lock();
4564 
4565     /*
4566      * We're mapping shared memory, so ensure we generate code for parallel
4567      * execution and flush old translations.  This will work up to the level
4568      * supported by the host -- anything that requires EXCP_ATOMIC will not
4569      * be atomic with respect to an external process.
4570      */
4571     if (!(cpu->tcg_cflags & CF_PARALLEL)) {
4572         cpu->tcg_cflags |= CF_PARALLEL;
4573         tb_flush(cpu);
4574     }
4575 
4576     if (shmaddr)
4577         host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4578     else {
4579         abi_ulong mmap_start;
4580 
4581         /* In order to use the host shmat, we need to honor host SHMLBA.  */
4582         mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4583 
4584         if (mmap_start == -1) {
4585             errno = ENOMEM;
4586             host_raddr = (void *)-1;
4587         } else
4588             host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4589                                shmflg | SHM_REMAP);
4590     }
4591 
4592     if (host_raddr == (void *)-1) {
4593         mmap_unlock();
4594         return get_errno((long)host_raddr);
4595     }
4596     raddr=h2g((unsigned long)host_raddr);
4597 
4598     page_set_flags(raddr, raddr + shm_info.shm_segsz - 1,
4599                    PAGE_VALID | PAGE_RESET | PAGE_READ |
4600                    (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4601 
4602     for (i = 0; i < N_SHM_REGIONS; i++) {
4603         if (!shm_regions[i].in_use) {
4604             shm_regions[i].in_use = true;
4605             shm_regions[i].start = raddr;
4606             shm_regions[i].size = shm_info.shm_segsz;
4607             break;
4608         }
4609     }
4610 
4611     mmap_unlock();
4612     return raddr;
4613 
4614 }
4615 
4616 static inline abi_long do_shmdt(abi_ulong shmaddr)
4617 {
4618     int i;
4619     abi_long rv;
4620 
4621     /* shmdt pointers are always untagged */
4622 
4623     mmap_lock();
4624 
4625     for (i = 0; i < N_SHM_REGIONS; ++i) {
4626         if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4627             shm_regions[i].in_use = false;
4628             page_set_flags(shmaddr, shmaddr + shm_regions[i].size - 1, 0);
4629             break;
4630         }
4631     }
4632     rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4633 
4634     mmap_unlock();
4635 
4636     return rv;
4637 }
4638 
4639 #ifdef TARGET_NR_ipc
4640 /* ??? This only works with linear mappings.  */
4641 /* do_ipc() must return target values and target errnos. */
4642 static abi_long do_ipc(CPUArchState *cpu_env,
4643                        unsigned int call, abi_long first,
4644                        abi_long second, abi_long third,
4645                        abi_long ptr, abi_long fifth)
4646 {
4647     int version;
4648     abi_long ret = 0;
4649 
4650     version = call >> 16;
4651     call &= 0xffff;
4652 
4653     switch (call) {
4654     case IPCOP_semop:
4655         ret = do_semtimedop(first, ptr, second, 0, false);
4656         break;
4657     case IPCOP_semtimedop:
4658     /*
4659      * The s390 sys_ipc variant has only five parameters instead of six
4660      * (as for default variant) and the only difference is the handling of
4661      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4662      * to a struct timespec where the generic variant uses fifth parameter.
4663      */
4664 #if defined(TARGET_S390X)
4665         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4666 #else
4667         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4668 #endif
4669         break;
4670 
4671     case IPCOP_semget:
4672         ret = get_errno(semget(first, second, third));
4673         break;
4674 
4675     case IPCOP_semctl: {
4676         /* The semun argument to semctl is passed by value, so dereference the
4677          * ptr argument. */
4678         abi_ulong atptr;
4679         get_user_ual(atptr, ptr);
4680         ret = do_semctl(first, second, third, atptr);
4681         break;
4682     }
4683 
4684     case IPCOP_msgget:
4685         ret = get_errno(msgget(first, second));
4686         break;
4687 
4688     case IPCOP_msgsnd:
4689         ret = do_msgsnd(first, ptr, second, third);
4690         break;
4691 
4692     case IPCOP_msgctl:
4693         ret = do_msgctl(first, second, ptr);
4694         break;
4695 
4696     case IPCOP_msgrcv:
4697         switch (version) {
4698         case 0:
4699             {
4700                 struct target_ipc_kludge {
4701                     abi_long msgp;
4702                     abi_long msgtyp;
4703                 } *tmp;
4704 
4705                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4706                     ret = -TARGET_EFAULT;
4707                     break;
4708                 }
4709 
4710                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4711 
4712                 unlock_user_struct(tmp, ptr, 0);
4713                 break;
4714             }
4715         default:
4716             ret = do_msgrcv(first, ptr, second, fifth, third);
4717         }
4718         break;
4719 
4720     case IPCOP_shmat:
4721         switch (version) {
4722         default:
4723         {
4724             abi_ulong raddr;
4725             raddr = do_shmat(cpu_env, first, ptr, second);
4726             if (is_error(raddr))
4727                 return get_errno(raddr);
4728             if (put_user_ual(raddr, third))
4729                 return -TARGET_EFAULT;
4730             break;
4731         }
4732         case 1:
4733             ret = -TARGET_EINVAL;
4734             break;
4735         }
4736 	break;
4737     case IPCOP_shmdt:
4738         ret = do_shmdt(ptr);
4739 	break;
4740 
4741     case IPCOP_shmget:
4742 	/* IPC_* flag values are the same on all linux platforms */
4743 	ret = get_errno(shmget(first, second, third));
4744 	break;
4745 
4746 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4747     case IPCOP_shmctl:
4748         ret = do_shmctl(first, second, ptr);
4749         break;
4750     default:
4751         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4752                       call, version);
4753 	ret = -TARGET_ENOSYS;
4754 	break;
4755     }
4756     return ret;
4757 }
4758 #endif
4759 
4760 /* kernel structure types definitions */
4761 
4762 #define STRUCT(name, ...) STRUCT_ ## name,
4763 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4764 enum {
4765 #include "syscall_types.h"
4766 STRUCT_MAX
4767 };
4768 #undef STRUCT
4769 #undef STRUCT_SPECIAL
4770 
4771 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4772 #define STRUCT_SPECIAL(name)
4773 #include "syscall_types.h"
4774 #undef STRUCT
4775 #undef STRUCT_SPECIAL
4776 
4777 #define MAX_STRUCT_SIZE 4096
4778 
4779 #ifdef CONFIG_FIEMAP
4780 /* So fiemap access checks don't overflow on 32 bit systems.
4781  * This is very slightly smaller than the limit imposed by
4782  * the underlying kernel.
4783  */
4784 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4785                             / sizeof(struct fiemap_extent))
4786 
4787 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4788                                        int fd, int cmd, abi_long arg)
4789 {
4790     /* The parameter for this ioctl is a struct fiemap followed
4791      * by an array of struct fiemap_extent whose size is set
4792      * in fiemap->fm_extent_count. The array is filled in by the
4793      * ioctl.
4794      */
4795     int target_size_in, target_size_out;
4796     struct fiemap *fm;
4797     const argtype *arg_type = ie->arg_type;
4798     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4799     void *argptr, *p;
4800     abi_long ret;
4801     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4802     uint32_t outbufsz;
4803     int free_fm = 0;
4804 
4805     assert(arg_type[0] == TYPE_PTR);
4806     assert(ie->access == IOC_RW);
4807     arg_type++;
4808     target_size_in = thunk_type_size(arg_type, 0);
4809     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4810     if (!argptr) {
4811         return -TARGET_EFAULT;
4812     }
4813     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4814     unlock_user(argptr, arg, 0);
4815     fm = (struct fiemap *)buf_temp;
4816     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4817         return -TARGET_EINVAL;
4818     }
4819 
4820     outbufsz = sizeof (*fm) +
4821         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4822 
4823     if (outbufsz > MAX_STRUCT_SIZE) {
4824         /* We can't fit all the extents into the fixed size buffer.
4825          * Allocate one that is large enough and use it instead.
4826          */
4827         fm = g_try_malloc(outbufsz);
4828         if (!fm) {
4829             return -TARGET_ENOMEM;
4830         }
4831         memcpy(fm, buf_temp, sizeof(struct fiemap));
4832         free_fm = 1;
4833     }
4834     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4835     if (!is_error(ret)) {
4836         target_size_out = target_size_in;
4837         /* An extent_count of 0 means we were only counting the extents
4838          * so there are no structs to copy
4839          */
4840         if (fm->fm_extent_count != 0) {
4841             target_size_out += fm->fm_mapped_extents * extent_size;
4842         }
4843         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4844         if (!argptr) {
4845             ret = -TARGET_EFAULT;
4846         } else {
4847             /* Convert the struct fiemap */
4848             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4849             if (fm->fm_extent_count != 0) {
4850                 p = argptr + target_size_in;
4851                 /* ...and then all the struct fiemap_extents */
4852                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4853                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4854                                   THUNK_TARGET);
4855                     p += extent_size;
4856                 }
4857             }
4858             unlock_user(argptr, arg, target_size_out);
4859         }
4860     }
4861     if (free_fm) {
4862         g_free(fm);
4863     }
4864     return ret;
4865 }
4866 #endif
4867 
4868 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4869                                 int fd, int cmd, abi_long arg)
4870 {
4871     const argtype *arg_type = ie->arg_type;
4872     int target_size;
4873     void *argptr;
4874     int ret;
4875     struct ifconf *host_ifconf;
4876     uint32_t outbufsz;
4877     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4878     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4879     int target_ifreq_size;
4880     int nb_ifreq;
4881     int free_buf = 0;
4882     int i;
4883     int target_ifc_len;
4884     abi_long target_ifc_buf;
4885     int host_ifc_len;
4886     char *host_ifc_buf;
4887 
4888     assert(arg_type[0] == TYPE_PTR);
4889     assert(ie->access == IOC_RW);
4890 
4891     arg_type++;
4892     target_size = thunk_type_size(arg_type, 0);
4893 
4894     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4895     if (!argptr)
4896         return -TARGET_EFAULT;
4897     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4898     unlock_user(argptr, arg, 0);
4899 
4900     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4901     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4902     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4903 
4904     if (target_ifc_buf != 0) {
4905         target_ifc_len = host_ifconf->ifc_len;
4906         nb_ifreq = target_ifc_len / target_ifreq_size;
4907         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4908 
4909         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4910         if (outbufsz > MAX_STRUCT_SIZE) {
4911             /*
4912              * We can't fit all the extents into the fixed size buffer.
4913              * Allocate one that is large enough and use it instead.
4914              */
4915             host_ifconf = g_try_malloc(outbufsz);
4916             if (!host_ifconf) {
4917                 return -TARGET_ENOMEM;
4918             }
4919             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4920             free_buf = 1;
4921         }
4922         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4923 
4924         host_ifconf->ifc_len = host_ifc_len;
4925     } else {
4926       host_ifc_buf = NULL;
4927     }
4928     host_ifconf->ifc_buf = host_ifc_buf;
4929 
4930     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4931     if (!is_error(ret)) {
4932 	/* convert host ifc_len to target ifc_len */
4933 
4934         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4935         target_ifc_len = nb_ifreq * target_ifreq_size;
4936         host_ifconf->ifc_len = target_ifc_len;
4937 
4938 	/* restore target ifc_buf */
4939 
4940         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4941 
4942 	/* copy struct ifconf to target user */
4943 
4944         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4945         if (!argptr)
4946             return -TARGET_EFAULT;
4947         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4948         unlock_user(argptr, arg, target_size);
4949 
4950         if (target_ifc_buf != 0) {
4951             /* copy ifreq[] to target user */
4952             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4953             for (i = 0; i < nb_ifreq ; i++) {
4954                 thunk_convert(argptr + i * target_ifreq_size,
4955                               host_ifc_buf + i * sizeof(struct ifreq),
4956                               ifreq_arg_type, THUNK_TARGET);
4957             }
4958             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4959         }
4960     }
4961 
4962     if (free_buf) {
4963         g_free(host_ifconf);
4964     }
4965 
4966     return ret;
4967 }
4968 
4969 #if defined(CONFIG_USBFS)
4970 #if HOST_LONG_BITS > 64
4971 #error USBDEVFS thunks do not support >64 bit hosts yet.
4972 #endif
4973 struct live_urb {
4974     uint64_t target_urb_adr;
4975     uint64_t target_buf_adr;
4976     char *target_buf_ptr;
4977     struct usbdevfs_urb host_urb;
4978 };
4979 
4980 static GHashTable *usbdevfs_urb_hashtable(void)
4981 {
4982     static GHashTable *urb_hashtable;
4983 
4984     if (!urb_hashtable) {
4985         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4986     }
4987     return urb_hashtable;
4988 }
4989 
4990 static void urb_hashtable_insert(struct live_urb *urb)
4991 {
4992     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4993     g_hash_table_insert(urb_hashtable, urb, urb);
4994 }
4995 
4996 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4997 {
4998     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4999     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
5000 }
5001 
5002 static void urb_hashtable_remove(struct live_urb *urb)
5003 {
5004     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
5005     g_hash_table_remove(urb_hashtable, urb);
5006 }
5007 
5008 static abi_long
5009 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
5010                           int fd, int cmd, abi_long arg)
5011 {
5012     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
5013     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
5014     struct live_urb *lurb;
5015     void *argptr;
5016     uint64_t hurb;
5017     int target_size;
5018     uintptr_t target_urb_adr;
5019     abi_long ret;
5020 
5021     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
5022 
5023     memset(buf_temp, 0, sizeof(uint64_t));
5024     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5025     if (is_error(ret)) {
5026         return ret;
5027     }
5028 
5029     memcpy(&hurb, buf_temp, sizeof(uint64_t));
5030     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
5031     if (!lurb->target_urb_adr) {
5032         return -TARGET_EFAULT;
5033     }
5034     urb_hashtable_remove(lurb);
5035     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
5036         lurb->host_urb.buffer_length);
5037     lurb->target_buf_ptr = NULL;
5038 
5039     /* restore the guest buffer pointer */
5040     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
5041 
5042     /* update the guest urb struct */
5043     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
5044     if (!argptr) {
5045         g_free(lurb);
5046         return -TARGET_EFAULT;
5047     }
5048     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5049     unlock_user(argptr, lurb->target_urb_adr, target_size);
5050 
5051     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5052     /* write back the urb handle */
5053     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5054     if (!argptr) {
5055         g_free(lurb);
5056         return -TARGET_EFAULT;
5057     }
5058 
5059     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5060     target_urb_adr = lurb->target_urb_adr;
5061     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5062     unlock_user(argptr, arg, target_size);
5063 
5064     g_free(lurb);
5065     return ret;
5066 }
5067 
5068 static abi_long
5069 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5070                              uint8_t *buf_temp __attribute__((unused)),
5071                              int fd, int cmd, abi_long arg)
5072 {
5073     struct live_urb *lurb;
5074 
5075     /* map target address back to host URB with metadata. */
5076     lurb = urb_hashtable_lookup(arg);
5077     if (!lurb) {
5078         return -TARGET_EFAULT;
5079     }
5080     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5081 }
5082 
5083 static abi_long
5084 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5085                             int fd, int cmd, abi_long arg)
5086 {
5087     const argtype *arg_type = ie->arg_type;
5088     int target_size;
5089     abi_long ret;
5090     void *argptr;
5091     int rw_dir;
5092     struct live_urb *lurb;
5093 
5094     /*
5095      * each submitted URB needs to map to a unique ID for the
5096      * kernel, and that unique ID needs to be a pointer to
5097      * host memory.  hence, we need to malloc for each URB.
5098      * isochronous transfers have a variable length struct.
5099      */
5100     arg_type++;
5101     target_size = thunk_type_size(arg_type, THUNK_TARGET);
5102 
5103     /* construct host copy of urb and metadata */
5104     lurb = g_try_new0(struct live_urb, 1);
5105     if (!lurb) {
5106         return -TARGET_ENOMEM;
5107     }
5108 
5109     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5110     if (!argptr) {
5111         g_free(lurb);
5112         return -TARGET_EFAULT;
5113     }
5114     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5115     unlock_user(argptr, arg, 0);
5116 
5117     lurb->target_urb_adr = arg;
5118     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5119 
5120     /* buffer space used depends on endpoint type so lock the entire buffer */
5121     /* control type urbs should check the buffer contents for true direction */
5122     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5123     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5124         lurb->host_urb.buffer_length, 1);
5125     if (lurb->target_buf_ptr == NULL) {
5126         g_free(lurb);
5127         return -TARGET_EFAULT;
5128     }
5129 
5130     /* update buffer pointer in host copy */
5131     lurb->host_urb.buffer = lurb->target_buf_ptr;
5132 
5133     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5134     if (is_error(ret)) {
5135         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5136         g_free(lurb);
5137     } else {
5138         urb_hashtable_insert(lurb);
5139     }
5140 
5141     return ret;
5142 }
5143 #endif /* CONFIG_USBFS */
5144 
5145 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5146                             int cmd, abi_long arg)
5147 {
5148     void *argptr;
5149     struct dm_ioctl *host_dm;
5150     abi_long guest_data;
5151     uint32_t guest_data_size;
5152     int target_size;
5153     const argtype *arg_type = ie->arg_type;
5154     abi_long ret;
5155     void *big_buf = NULL;
5156     char *host_data;
5157 
5158     arg_type++;
5159     target_size = thunk_type_size(arg_type, 0);
5160     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5161     if (!argptr) {
5162         ret = -TARGET_EFAULT;
5163         goto out;
5164     }
5165     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5166     unlock_user(argptr, arg, 0);
5167 
5168     /* buf_temp is too small, so fetch things into a bigger buffer */
5169     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5170     memcpy(big_buf, buf_temp, target_size);
5171     buf_temp = big_buf;
5172     host_dm = big_buf;
5173 
5174     guest_data = arg + host_dm->data_start;
5175     if ((guest_data - arg) < 0) {
5176         ret = -TARGET_EINVAL;
5177         goto out;
5178     }
5179     guest_data_size = host_dm->data_size - host_dm->data_start;
5180     host_data = (char*)host_dm + host_dm->data_start;
5181 
5182     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5183     if (!argptr) {
5184         ret = -TARGET_EFAULT;
5185         goto out;
5186     }
5187 
5188     switch (ie->host_cmd) {
5189     case DM_REMOVE_ALL:
5190     case DM_LIST_DEVICES:
5191     case DM_DEV_CREATE:
5192     case DM_DEV_REMOVE:
5193     case DM_DEV_SUSPEND:
5194     case DM_DEV_STATUS:
5195     case DM_DEV_WAIT:
5196     case DM_TABLE_STATUS:
5197     case DM_TABLE_CLEAR:
5198     case DM_TABLE_DEPS:
5199     case DM_LIST_VERSIONS:
5200         /* no input data */
5201         break;
5202     case DM_DEV_RENAME:
5203     case DM_DEV_SET_GEOMETRY:
5204         /* data contains only strings */
5205         memcpy(host_data, argptr, guest_data_size);
5206         break;
5207     case DM_TARGET_MSG:
5208         memcpy(host_data, argptr, guest_data_size);
5209         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5210         break;
5211     case DM_TABLE_LOAD:
5212     {
5213         void *gspec = argptr;
5214         void *cur_data = host_data;
5215         const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5216         int spec_size = thunk_type_size(arg_type, 0);
5217         int i;
5218 
5219         for (i = 0; i < host_dm->target_count; i++) {
5220             struct dm_target_spec *spec = cur_data;
5221             uint32_t next;
5222             int slen;
5223 
5224             thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5225             slen = strlen((char*)gspec + spec_size) + 1;
5226             next = spec->next;
5227             spec->next = sizeof(*spec) + slen;
5228             strcpy((char*)&spec[1], gspec + spec_size);
5229             gspec += next;
5230             cur_data += spec->next;
5231         }
5232         break;
5233     }
5234     default:
5235         ret = -TARGET_EINVAL;
5236         unlock_user(argptr, guest_data, 0);
5237         goto out;
5238     }
5239     unlock_user(argptr, guest_data, 0);
5240 
5241     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5242     if (!is_error(ret)) {
5243         guest_data = arg + host_dm->data_start;
5244         guest_data_size = host_dm->data_size - host_dm->data_start;
5245         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5246         switch (ie->host_cmd) {
5247         case DM_REMOVE_ALL:
5248         case DM_DEV_CREATE:
5249         case DM_DEV_REMOVE:
5250         case DM_DEV_RENAME:
5251         case DM_DEV_SUSPEND:
5252         case DM_DEV_STATUS:
5253         case DM_TABLE_LOAD:
5254         case DM_TABLE_CLEAR:
5255         case DM_TARGET_MSG:
5256         case DM_DEV_SET_GEOMETRY:
5257             /* no return data */
5258             break;
5259         case DM_LIST_DEVICES:
5260         {
5261             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5262             uint32_t remaining_data = guest_data_size;
5263             void *cur_data = argptr;
5264             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5265             int nl_size = 12; /* can't use thunk_size due to alignment */
5266 
5267             while (1) {
5268                 uint32_t next = nl->next;
5269                 if (next) {
5270                     nl->next = nl_size + (strlen(nl->name) + 1);
5271                 }
5272                 if (remaining_data < nl->next) {
5273                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5274                     break;
5275                 }
5276                 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5277                 strcpy(cur_data + nl_size, nl->name);
5278                 cur_data += nl->next;
5279                 remaining_data -= nl->next;
5280                 if (!next) {
5281                     break;
5282                 }
5283                 nl = (void*)nl + next;
5284             }
5285             break;
5286         }
5287         case DM_DEV_WAIT:
5288         case DM_TABLE_STATUS:
5289         {
5290             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5291             void *cur_data = argptr;
5292             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5293             int spec_size = thunk_type_size(arg_type, 0);
5294             int i;
5295 
5296             for (i = 0; i < host_dm->target_count; i++) {
5297                 uint32_t next = spec->next;
5298                 int slen = strlen((char*)&spec[1]) + 1;
5299                 spec->next = (cur_data - argptr) + spec_size + slen;
5300                 if (guest_data_size < spec->next) {
5301                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5302                     break;
5303                 }
5304                 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5305                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5306                 cur_data = argptr + spec->next;
5307                 spec = (void*)host_dm + host_dm->data_start + next;
5308             }
5309             break;
5310         }
5311         case DM_TABLE_DEPS:
5312         {
5313             void *hdata = (void*)host_dm + host_dm->data_start;
5314             int count = *(uint32_t*)hdata;
5315             uint64_t *hdev = hdata + 8;
5316             uint64_t *gdev = argptr + 8;
5317             int i;
5318 
5319             *(uint32_t*)argptr = tswap32(count);
5320             for (i = 0; i < count; i++) {
5321                 *gdev = tswap64(*hdev);
5322                 gdev++;
5323                 hdev++;
5324             }
5325             break;
5326         }
5327         case DM_LIST_VERSIONS:
5328         {
5329             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5330             uint32_t remaining_data = guest_data_size;
5331             void *cur_data = argptr;
5332             const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5333             int vers_size = thunk_type_size(arg_type, 0);
5334 
5335             while (1) {
5336                 uint32_t next = vers->next;
5337                 if (next) {
5338                     vers->next = vers_size + (strlen(vers->name) + 1);
5339                 }
5340                 if (remaining_data < vers->next) {
5341                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5342                     break;
5343                 }
5344                 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5345                 strcpy(cur_data + vers_size, vers->name);
5346                 cur_data += vers->next;
5347                 remaining_data -= vers->next;
5348                 if (!next) {
5349                     break;
5350                 }
5351                 vers = (void*)vers + next;
5352             }
5353             break;
5354         }
5355         default:
5356             unlock_user(argptr, guest_data, 0);
5357             ret = -TARGET_EINVAL;
5358             goto out;
5359         }
5360         unlock_user(argptr, guest_data, guest_data_size);
5361 
5362         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5363         if (!argptr) {
5364             ret = -TARGET_EFAULT;
5365             goto out;
5366         }
5367         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5368         unlock_user(argptr, arg, target_size);
5369     }
5370 out:
5371     g_free(big_buf);
5372     return ret;
5373 }
5374 
5375 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5376                                int cmd, abi_long arg)
5377 {
5378     void *argptr;
5379     int target_size;
5380     const argtype *arg_type = ie->arg_type;
5381     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5382     abi_long ret;
5383 
5384     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5385     struct blkpg_partition host_part;
5386 
5387     /* Read and convert blkpg */
5388     arg_type++;
5389     target_size = thunk_type_size(arg_type, 0);
5390     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5391     if (!argptr) {
5392         ret = -TARGET_EFAULT;
5393         goto out;
5394     }
5395     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5396     unlock_user(argptr, arg, 0);
5397 
5398     switch (host_blkpg->op) {
5399     case BLKPG_ADD_PARTITION:
5400     case BLKPG_DEL_PARTITION:
5401         /* payload is struct blkpg_partition */
5402         break;
5403     default:
5404         /* Unknown opcode */
5405         ret = -TARGET_EINVAL;
5406         goto out;
5407     }
5408 
5409     /* Read and convert blkpg->data */
5410     arg = (abi_long)(uintptr_t)host_blkpg->data;
5411     target_size = thunk_type_size(part_arg_type, 0);
5412     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5413     if (!argptr) {
5414         ret = -TARGET_EFAULT;
5415         goto out;
5416     }
5417     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5418     unlock_user(argptr, arg, 0);
5419 
5420     /* Swizzle the data pointer to our local copy and call! */
5421     host_blkpg->data = &host_part;
5422     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5423 
5424 out:
5425     return ret;
5426 }
5427 
5428 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5429                                 int fd, int cmd, abi_long arg)
5430 {
5431     const argtype *arg_type = ie->arg_type;
5432     const StructEntry *se;
5433     const argtype *field_types;
5434     const int *dst_offsets, *src_offsets;
5435     int target_size;
5436     void *argptr;
5437     abi_ulong *target_rt_dev_ptr = NULL;
5438     unsigned long *host_rt_dev_ptr = NULL;
5439     abi_long ret;
5440     int i;
5441 
5442     assert(ie->access == IOC_W);
5443     assert(*arg_type == TYPE_PTR);
5444     arg_type++;
5445     assert(*arg_type == TYPE_STRUCT);
5446     target_size = thunk_type_size(arg_type, 0);
5447     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5448     if (!argptr) {
5449         return -TARGET_EFAULT;
5450     }
5451     arg_type++;
5452     assert(*arg_type == (int)STRUCT_rtentry);
5453     se = struct_entries + *arg_type++;
5454     assert(se->convert[0] == NULL);
5455     /* convert struct here to be able to catch rt_dev string */
5456     field_types = se->field_types;
5457     dst_offsets = se->field_offsets[THUNK_HOST];
5458     src_offsets = se->field_offsets[THUNK_TARGET];
5459     for (i = 0; i < se->nb_fields; i++) {
5460         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5461             assert(*field_types == TYPE_PTRVOID);
5462             target_rt_dev_ptr = argptr + src_offsets[i];
5463             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5464             if (*target_rt_dev_ptr != 0) {
5465                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5466                                                   tswapal(*target_rt_dev_ptr));
5467                 if (!*host_rt_dev_ptr) {
5468                     unlock_user(argptr, arg, 0);
5469                     return -TARGET_EFAULT;
5470                 }
5471             } else {
5472                 *host_rt_dev_ptr = 0;
5473             }
5474             field_types++;
5475             continue;
5476         }
5477         field_types = thunk_convert(buf_temp + dst_offsets[i],
5478                                     argptr + src_offsets[i],
5479                                     field_types, THUNK_HOST);
5480     }
5481     unlock_user(argptr, arg, 0);
5482 
5483     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5484 
5485     assert(host_rt_dev_ptr != NULL);
5486     assert(target_rt_dev_ptr != NULL);
5487     if (*host_rt_dev_ptr != 0) {
5488         unlock_user((void *)*host_rt_dev_ptr,
5489                     *target_rt_dev_ptr, 0);
5490     }
5491     return ret;
5492 }
5493 
5494 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5495                                      int fd, int cmd, abi_long arg)
5496 {
5497     int sig = target_to_host_signal(arg);
5498     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5499 }
5500 
5501 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5502                                     int fd, int cmd, abi_long arg)
5503 {
5504     struct timeval tv;
5505     abi_long ret;
5506 
5507     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5508     if (is_error(ret)) {
5509         return ret;
5510     }
5511 
5512     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5513         if (copy_to_user_timeval(arg, &tv)) {
5514             return -TARGET_EFAULT;
5515         }
5516     } else {
5517         if (copy_to_user_timeval64(arg, &tv)) {
5518             return -TARGET_EFAULT;
5519         }
5520     }
5521 
5522     return ret;
5523 }
5524 
5525 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5526                                       int fd, int cmd, abi_long arg)
5527 {
5528     struct timespec ts;
5529     abi_long ret;
5530 
5531     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5532     if (is_error(ret)) {
5533         return ret;
5534     }
5535 
5536     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5537         if (host_to_target_timespec(arg, &ts)) {
5538             return -TARGET_EFAULT;
5539         }
5540     } else{
5541         if (host_to_target_timespec64(arg, &ts)) {
5542             return -TARGET_EFAULT;
5543         }
5544     }
5545 
5546     return ret;
5547 }
5548 
5549 #ifdef TIOCGPTPEER
5550 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5551                                      int fd, int cmd, abi_long arg)
5552 {
5553     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5554     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5555 }
5556 #endif
5557 
5558 #ifdef HAVE_DRM_H
5559 
5560 static void unlock_drm_version(struct drm_version *host_ver,
5561                                struct target_drm_version *target_ver,
5562                                bool copy)
5563 {
5564     unlock_user(host_ver->name, target_ver->name,
5565                                 copy ? host_ver->name_len : 0);
5566     unlock_user(host_ver->date, target_ver->date,
5567                                 copy ? host_ver->date_len : 0);
5568     unlock_user(host_ver->desc, target_ver->desc,
5569                                 copy ? host_ver->desc_len : 0);
5570 }
5571 
5572 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5573                                           struct target_drm_version *target_ver)
5574 {
5575     memset(host_ver, 0, sizeof(*host_ver));
5576 
5577     __get_user(host_ver->name_len, &target_ver->name_len);
5578     if (host_ver->name_len) {
5579         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5580                                    target_ver->name_len, 0);
5581         if (!host_ver->name) {
5582             return -EFAULT;
5583         }
5584     }
5585 
5586     __get_user(host_ver->date_len, &target_ver->date_len);
5587     if (host_ver->date_len) {
5588         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5589                                    target_ver->date_len, 0);
5590         if (!host_ver->date) {
5591             goto err;
5592         }
5593     }
5594 
5595     __get_user(host_ver->desc_len, &target_ver->desc_len);
5596     if (host_ver->desc_len) {
5597         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5598                                    target_ver->desc_len, 0);
5599         if (!host_ver->desc) {
5600             goto err;
5601         }
5602     }
5603 
5604     return 0;
5605 err:
5606     unlock_drm_version(host_ver, target_ver, false);
5607     return -EFAULT;
5608 }
5609 
5610 static inline void host_to_target_drmversion(
5611                                           struct target_drm_version *target_ver,
5612                                           struct drm_version *host_ver)
5613 {
5614     __put_user(host_ver->version_major, &target_ver->version_major);
5615     __put_user(host_ver->version_minor, &target_ver->version_minor);
5616     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5617     __put_user(host_ver->name_len, &target_ver->name_len);
5618     __put_user(host_ver->date_len, &target_ver->date_len);
5619     __put_user(host_ver->desc_len, &target_ver->desc_len);
5620     unlock_drm_version(host_ver, target_ver, true);
5621 }
5622 
5623 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5624                              int fd, int cmd, abi_long arg)
5625 {
5626     struct drm_version *ver;
5627     struct target_drm_version *target_ver;
5628     abi_long ret;
5629 
5630     switch (ie->host_cmd) {
5631     case DRM_IOCTL_VERSION:
5632         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5633             return -TARGET_EFAULT;
5634         }
5635         ver = (struct drm_version *)buf_temp;
5636         ret = target_to_host_drmversion(ver, target_ver);
5637         if (!is_error(ret)) {
5638             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5639             if (is_error(ret)) {
5640                 unlock_drm_version(ver, target_ver, false);
5641             } else {
5642                 host_to_target_drmversion(target_ver, ver);
5643             }
5644         }
5645         unlock_user_struct(target_ver, arg, 0);
5646         return ret;
5647     }
5648     return -TARGET_ENOSYS;
5649 }
5650 
5651 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5652                                            struct drm_i915_getparam *gparam,
5653                                            int fd, abi_long arg)
5654 {
5655     abi_long ret;
5656     int value;
5657     struct target_drm_i915_getparam *target_gparam;
5658 
5659     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5660         return -TARGET_EFAULT;
5661     }
5662 
5663     __get_user(gparam->param, &target_gparam->param);
5664     gparam->value = &value;
5665     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5666     put_user_s32(value, target_gparam->value);
5667 
5668     unlock_user_struct(target_gparam, arg, 0);
5669     return ret;
5670 }
5671 
5672 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5673                                   int fd, int cmd, abi_long arg)
5674 {
5675     switch (ie->host_cmd) {
5676     case DRM_IOCTL_I915_GETPARAM:
5677         return do_ioctl_drm_i915_getparam(ie,
5678                                           (struct drm_i915_getparam *)buf_temp,
5679                                           fd, arg);
5680     default:
5681         return -TARGET_ENOSYS;
5682     }
5683 }
5684 
5685 #endif
5686 
5687 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5688                                         int fd, int cmd, abi_long arg)
5689 {
5690     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5691     struct tun_filter *target_filter;
5692     char *target_addr;
5693 
5694     assert(ie->access == IOC_W);
5695 
5696     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5697     if (!target_filter) {
5698         return -TARGET_EFAULT;
5699     }
5700     filter->flags = tswap16(target_filter->flags);
5701     filter->count = tswap16(target_filter->count);
5702     unlock_user(target_filter, arg, 0);
5703 
5704     if (filter->count) {
5705         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5706             MAX_STRUCT_SIZE) {
5707             return -TARGET_EFAULT;
5708         }
5709 
5710         target_addr = lock_user(VERIFY_READ,
5711                                 arg + offsetof(struct tun_filter, addr),
5712                                 filter->count * ETH_ALEN, 1);
5713         if (!target_addr) {
5714             return -TARGET_EFAULT;
5715         }
5716         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5717         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5718     }
5719 
5720     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5721 }
5722 
5723 IOCTLEntry ioctl_entries[] = {
5724 #define IOCTL(cmd, access, ...) \
5725     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5726 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5727     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5728 #define IOCTL_IGNORE(cmd) \
5729     { TARGET_ ## cmd, 0, #cmd },
5730 #include "ioctls.h"
5731     { 0, 0, },
5732 };
5733 
5734 /* ??? Implement proper locking for ioctls.  */
5735 /* do_ioctl() Must return target values and target errnos. */
5736 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5737 {
5738     const IOCTLEntry *ie;
5739     const argtype *arg_type;
5740     abi_long ret;
5741     uint8_t buf_temp[MAX_STRUCT_SIZE];
5742     int target_size;
5743     void *argptr;
5744 
5745     ie = ioctl_entries;
5746     for(;;) {
5747         if (ie->target_cmd == 0) {
5748             qemu_log_mask(
5749                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5750             return -TARGET_ENOSYS;
5751         }
5752         if (ie->target_cmd == cmd)
5753             break;
5754         ie++;
5755     }
5756     arg_type = ie->arg_type;
5757     if (ie->do_ioctl) {
5758         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5759     } else if (!ie->host_cmd) {
5760         /* Some architectures define BSD ioctls in their headers
5761            that are not implemented in Linux.  */
5762         return -TARGET_ENOSYS;
5763     }
5764 
5765     switch(arg_type[0]) {
5766     case TYPE_NULL:
5767         /* no argument */
5768         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5769         break;
5770     case TYPE_PTRVOID:
5771     case TYPE_INT:
5772     case TYPE_LONG:
5773     case TYPE_ULONG:
5774         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5775         break;
5776     case TYPE_PTR:
5777         arg_type++;
5778         target_size = thunk_type_size(arg_type, 0);
5779         switch(ie->access) {
5780         case IOC_R:
5781             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5782             if (!is_error(ret)) {
5783                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5784                 if (!argptr)
5785                     return -TARGET_EFAULT;
5786                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5787                 unlock_user(argptr, arg, target_size);
5788             }
5789             break;
5790         case IOC_W:
5791             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5792             if (!argptr)
5793                 return -TARGET_EFAULT;
5794             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5795             unlock_user(argptr, arg, 0);
5796             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5797             break;
5798         default:
5799         case IOC_RW:
5800             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5801             if (!argptr)
5802                 return -TARGET_EFAULT;
5803             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5804             unlock_user(argptr, arg, 0);
5805             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5806             if (!is_error(ret)) {
5807                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5808                 if (!argptr)
5809                     return -TARGET_EFAULT;
5810                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5811                 unlock_user(argptr, arg, target_size);
5812             }
5813             break;
5814         }
5815         break;
5816     default:
5817         qemu_log_mask(LOG_UNIMP,
5818                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5819                       (long)cmd, arg_type[0]);
5820         ret = -TARGET_ENOSYS;
5821         break;
5822     }
5823     return ret;
5824 }
5825 
5826 static const bitmask_transtbl iflag_tbl[] = {
5827         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5828         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5829         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5830         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5831         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5832         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5833         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5834         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5835         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5836         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5837         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5838         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5839         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5840         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5841         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5842         { 0, 0, 0, 0 }
5843 };
5844 
5845 static const bitmask_transtbl oflag_tbl[] = {
5846 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5847 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5848 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5849 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5850 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5851 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5852 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5853 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5854 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5855 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5856 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5857 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5858 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5859 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5860 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5861 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5862 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5863 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5864 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5865 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5866 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5867 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5868 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5869 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5870 	{ 0, 0, 0, 0 }
5871 };
5872 
5873 static const bitmask_transtbl cflag_tbl[] = {
5874 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5875 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5876 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5877 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5878 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5879 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5880 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5881 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5882 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5883 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5884 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5885 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5886 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5887 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5888 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5889 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5890 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5891 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5892 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5893 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5894 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5895 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5896 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5897 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5898 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5899 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5900 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5901 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5902 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5903 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5904 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5905 	{ 0, 0, 0, 0 }
5906 };
5907 
5908 static const bitmask_transtbl lflag_tbl[] = {
5909   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5910   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5911   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5912   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5913   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5914   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5915   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5916   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5917   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5918   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5919   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5920   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5921   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5922   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5923   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5924   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5925   { 0, 0, 0, 0 }
5926 };
5927 
5928 static void target_to_host_termios (void *dst, const void *src)
5929 {
5930     struct host_termios *host = dst;
5931     const struct target_termios *target = src;
5932 
5933     host->c_iflag =
5934         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5935     host->c_oflag =
5936         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5937     host->c_cflag =
5938         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5939     host->c_lflag =
5940         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5941     host->c_line = target->c_line;
5942 
5943     memset(host->c_cc, 0, sizeof(host->c_cc));
5944     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5945     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5946     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5947     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5948     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5949     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5950     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5951     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5952     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5953     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5954     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5955     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5956     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5957     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5958     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5959     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5960     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5961 }
5962 
5963 static void host_to_target_termios (void *dst, const void *src)
5964 {
5965     struct target_termios *target = dst;
5966     const struct host_termios *host = src;
5967 
5968     target->c_iflag =
5969         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5970     target->c_oflag =
5971         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5972     target->c_cflag =
5973         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5974     target->c_lflag =
5975         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5976     target->c_line = host->c_line;
5977 
5978     memset(target->c_cc, 0, sizeof(target->c_cc));
5979     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5980     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5981     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5982     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5983     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5984     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5985     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5986     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5987     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5988     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5989     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5990     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5991     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5992     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5993     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5994     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5995     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5996 }
5997 
5998 static const StructEntry struct_termios_def = {
5999     .convert = { host_to_target_termios, target_to_host_termios },
6000     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
6001     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
6002     .print = print_termios,
6003 };
6004 
6005 static const bitmask_transtbl mmap_flags_tbl[] = {
6006     { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
6007     { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
6008     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
6009     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
6010       MAP_ANONYMOUS, MAP_ANONYMOUS },
6011     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
6012       MAP_GROWSDOWN, MAP_GROWSDOWN },
6013     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
6014       MAP_DENYWRITE, MAP_DENYWRITE },
6015     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
6016       MAP_EXECUTABLE, MAP_EXECUTABLE },
6017     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
6018     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
6019       MAP_NORESERVE, MAP_NORESERVE },
6020     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
6021     /* MAP_STACK had been ignored by the kernel for quite some time.
6022        Recognize it for the target insofar as we do not want to pass
6023        it through to the host.  */
6024     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6025     { 0, 0, 0, 0 }
6026 };
6027 
6028 /*
6029  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
6030  *       TARGET_I386 is defined if TARGET_X86_64 is defined
6031  */
6032 #if defined(TARGET_I386)
6033 
6034 /* NOTE: there is really one LDT for all the threads */
6035 static uint8_t *ldt_table;
6036 
6037 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6038 {
6039     int size;
6040     void *p;
6041 
6042     if (!ldt_table)
6043         return 0;
6044     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6045     if (size > bytecount)
6046         size = bytecount;
6047     p = lock_user(VERIFY_WRITE, ptr, size, 0);
6048     if (!p)
6049         return -TARGET_EFAULT;
6050     /* ??? Should this by byteswapped?  */
6051     memcpy(p, ldt_table, size);
6052     unlock_user(p, ptr, size);
6053     return size;
6054 }
6055 
6056 /* XXX: add locking support */
6057 static abi_long write_ldt(CPUX86State *env,
6058                           abi_ulong ptr, unsigned long bytecount, int oldmode)
6059 {
6060     struct target_modify_ldt_ldt_s ldt_info;
6061     struct target_modify_ldt_ldt_s *target_ldt_info;
6062     int seg_32bit, contents, read_exec_only, limit_in_pages;
6063     int seg_not_present, useable, lm;
6064     uint32_t *lp, entry_1, entry_2;
6065 
6066     if (bytecount != sizeof(ldt_info))
6067         return -TARGET_EINVAL;
6068     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6069         return -TARGET_EFAULT;
6070     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6071     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6072     ldt_info.limit = tswap32(target_ldt_info->limit);
6073     ldt_info.flags = tswap32(target_ldt_info->flags);
6074     unlock_user_struct(target_ldt_info, ptr, 0);
6075 
6076     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6077         return -TARGET_EINVAL;
6078     seg_32bit = ldt_info.flags & 1;
6079     contents = (ldt_info.flags >> 1) & 3;
6080     read_exec_only = (ldt_info.flags >> 3) & 1;
6081     limit_in_pages = (ldt_info.flags >> 4) & 1;
6082     seg_not_present = (ldt_info.flags >> 5) & 1;
6083     useable = (ldt_info.flags >> 6) & 1;
6084 #ifdef TARGET_ABI32
6085     lm = 0;
6086 #else
6087     lm = (ldt_info.flags >> 7) & 1;
6088 #endif
6089     if (contents == 3) {
6090         if (oldmode)
6091             return -TARGET_EINVAL;
6092         if (seg_not_present == 0)
6093             return -TARGET_EINVAL;
6094     }
6095     /* allocate the LDT */
6096     if (!ldt_table) {
6097         env->ldt.base = target_mmap(0,
6098                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6099                                     PROT_READ|PROT_WRITE,
6100                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6101         if (env->ldt.base == -1)
6102             return -TARGET_ENOMEM;
6103         memset(g2h_untagged(env->ldt.base), 0,
6104                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6105         env->ldt.limit = 0xffff;
6106         ldt_table = g2h_untagged(env->ldt.base);
6107     }
6108 
6109     /* NOTE: same code as Linux kernel */
6110     /* Allow LDTs to be cleared by the user. */
6111     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6112         if (oldmode ||
6113             (contents == 0		&&
6114              read_exec_only == 1	&&
6115              seg_32bit == 0		&&
6116              limit_in_pages == 0	&&
6117              seg_not_present == 1	&&
6118              useable == 0 )) {
6119             entry_1 = 0;
6120             entry_2 = 0;
6121             goto install;
6122         }
6123     }
6124 
6125     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6126         (ldt_info.limit & 0x0ffff);
6127     entry_2 = (ldt_info.base_addr & 0xff000000) |
6128         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6129         (ldt_info.limit & 0xf0000) |
6130         ((read_exec_only ^ 1) << 9) |
6131         (contents << 10) |
6132         ((seg_not_present ^ 1) << 15) |
6133         (seg_32bit << 22) |
6134         (limit_in_pages << 23) |
6135         (lm << 21) |
6136         0x7000;
6137     if (!oldmode)
6138         entry_2 |= (useable << 20);
6139 
6140     /* Install the new entry ...  */
6141 install:
6142     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6143     lp[0] = tswap32(entry_1);
6144     lp[1] = tswap32(entry_2);
6145     return 0;
6146 }
6147 
6148 /* specific and weird i386 syscalls */
6149 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6150                               unsigned long bytecount)
6151 {
6152     abi_long ret;
6153 
6154     switch (func) {
6155     case 0:
6156         ret = read_ldt(ptr, bytecount);
6157         break;
6158     case 1:
6159         ret = write_ldt(env, ptr, bytecount, 1);
6160         break;
6161     case 0x11:
6162         ret = write_ldt(env, ptr, bytecount, 0);
6163         break;
6164     default:
6165         ret = -TARGET_ENOSYS;
6166         break;
6167     }
6168     return ret;
6169 }
6170 
6171 #if defined(TARGET_ABI32)
6172 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6173 {
6174     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6175     struct target_modify_ldt_ldt_s ldt_info;
6176     struct target_modify_ldt_ldt_s *target_ldt_info;
6177     int seg_32bit, contents, read_exec_only, limit_in_pages;
6178     int seg_not_present, useable, lm;
6179     uint32_t *lp, entry_1, entry_2;
6180     int i;
6181 
6182     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6183     if (!target_ldt_info)
6184         return -TARGET_EFAULT;
6185     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6186     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6187     ldt_info.limit = tswap32(target_ldt_info->limit);
6188     ldt_info.flags = tswap32(target_ldt_info->flags);
6189     if (ldt_info.entry_number == -1) {
6190         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6191             if (gdt_table[i] == 0) {
6192                 ldt_info.entry_number = i;
6193                 target_ldt_info->entry_number = tswap32(i);
6194                 break;
6195             }
6196         }
6197     }
6198     unlock_user_struct(target_ldt_info, ptr, 1);
6199 
6200     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6201         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6202            return -TARGET_EINVAL;
6203     seg_32bit = ldt_info.flags & 1;
6204     contents = (ldt_info.flags >> 1) & 3;
6205     read_exec_only = (ldt_info.flags >> 3) & 1;
6206     limit_in_pages = (ldt_info.flags >> 4) & 1;
6207     seg_not_present = (ldt_info.flags >> 5) & 1;
6208     useable = (ldt_info.flags >> 6) & 1;
6209 #ifdef TARGET_ABI32
6210     lm = 0;
6211 #else
6212     lm = (ldt_info.flags >> 7) & 1;
6213 #endif
6214 
6215     if (contents == 3) {
6216         if (seg_not_present == 0)
6217             return -TARGET_EINVAL;
6218     }
6219 
6220     /* NOTE: same code as Linux kernel */
6221     /* Allow LDTs to be cleared by the user. */
6222     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6223         if ((contents == 0             &&
6224              read_exec_only == 1       &&
6225              seg_32bit == 0            &&
6226              limit_in_pages == 0       &&
6227              seg_not_present == 1      &&
6228              useable == 0 )) {
6229             entry_1 = 0;
6230             entry_2 = 0;
6231             goto install;
6232         }
6233     }
6234 
6235     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6236         (ldt_info.limit & 0x0ffff);
6237     entry_2 = (ldt_info.base_addr & 0xff000000) |
6238         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6239         (ldt_info.limit & 0xf0000) |
6240         ((read_exec_only ^ 1) << 9) |
6241         (contents << 10) |
6242         ((seg_not_present ^ 1) << 15) |
6243         (seg_32bit << 22) |
6244         (limit_in_pages << 23) |
6245         (useable << 20) |
6246         (lm << 21) |
6247         0x7000;
6248 
6249     /* Install the new entry ...  */
6250 install:
6251     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6252     lp[0] = tswap32(entry_1);
6253     lp[1] = tswap32(entry_2);
6254     return 0;
6255 }
6256 
6257 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6258 {
6259     struct target_modify_ldt_ldt_s *target_ldt_info;
6260     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6261     uint32_t base_addr, limit, flags;
6262     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6263     int seg_not_present, useable, lm;
6264     uint32_t *lp, entry_1, entry_2;
6265 
6266     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6267     if (!target_ldt_info)
6268         return -TARGET_EFAULT;
6269     idx = tswap32(target_ldt_info->entry_number);
6270     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6271         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6272         unlock_user_struct(target_ldt_info, ptr, 1);
6273         return -TARGET_EINVAL;
6274     }
6275     lp = (uint32_t *)(gdt_table + idx);
6276     entry_1 = tswap32(lp[0]);
6277     entry_2 = tswap32(lp[1]);
6278 
6279     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6280     contents = (entry_2 >> 10) & 3;
6281     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6282     seg_32bit = (entry_2 >> 22) & 1;
6283     limit_in_pages = (entry_2 >> 23) & 1;
6284     useable = (entry_2 >> 20) & 1;
6285 #ifdef TARGET_ABI32
6286     lm = 0;
6287 #else
6288     lm = (entry_2 >> 21) & 1;
6289 #endif
6290     flags = (seg_32bit << 0) | (contents << 1) |
6291         (read_exec_only << 3) | (limit_in_pages << 4) |
6292         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6293     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6294     base_addr = (entry_1 >> 16) |
6295         (entry_2 & 0xff000000) |
6296         ((entry_2 & 0xff) << 16);
6297     target_ldt_info->base_addr = tswapal(base_addr);
6298     target_ldt_info->limit = tswap32(limit);
6299     target_ldt_info->flags = tswap32(flags);
6300     unlock_user_struct(target_ldt_info, ptr, 1);
6301     return 0;
6302 }
6303 
6304 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6305 {
6306     return -TARGET_ENOSYS;
6307 }
6308 #else
6309 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6310 {
6311     abi_long ret = 0;
6312     abi_ulong val;
6313     int idx;
6314 
6315     switch(code) {
6316     case TARGET_ARCH_SET_GS:
6317     case TARGET_ARCH_SET_FS:
6318         if (code == TARGET_ARCH_SET_GS)
6319             idx = R_GS;
6320         else
6321             idx = R_FS;
6322         cpu_x86_load_seg(env, idx, 0);
6323         env->segs[idx].base = addr;
6324         break;
6325     case TARGET_ARCH_GET_GS:
6326     case TARGET_ARCH_GET_FS:
6327         if (code == TARGET_ARCH_GET_GS)
6328             idx = R_GS;
6329         else
6330             idx = R_FS;
6331         val = env->segs[idx].base;
6332         if (put_user(val, addr, abi_ulong))
6333             ret = -TARGET_EFAULT;
6334         break;
6335     default:
6336         ret = -TARGET_EINVAL;
6337         break;
6338     }
6339     return ret;
6340 }
6341 #endif /* defined(TARGET_ABI32 */
6342 #endif /* defined(TARGET_I386) */
6343 
6344 /*
6345  * These constants are generic.  Supply any that are missing from the host.
6346  */
6347 #ifndef PR_SET_NAME
6348 # define PR_SET_NAME    15
6349 # define PR_GET_NAME    16
6350 #endif
6351 #ifndef PR_SET_FP_MODE
6352 # define PR_SET_FP_MODE 45
6353 # define PR_GET_FP_MODE 46
6354 # define PR_FP_MODE_FR   (1 << 0)
6355 # define PR_FP_MODE_FRE  (1 << 1)
6356 #endif
6357 #ifndef PR_SVE_SET_VL
6358 # define PR_SVE_SET_VL  50
6359 # define PR_SVE_GET_VL  51
6360 # define PR_SVE_VL_LEN_MASK  0xffff
6361 # define PR_SVE_VL_INHERIT   (1 << 17)
6362 #endif
6363 #ifndef PR_PAC_RESET_KEYS
6364 # define PR_PAC_RESET_KEYS  54
6365 # define PR_PAC_APIAKEY   (1 << 0)
6366 # define PR_PAC_APIBKEY   (1 << 1)
6367 # define PR_PAC_APDAKEY   (1 << 2)
6368 # define PR_PAC_APDBKEY   (1 << 3)
6369 # define PR_PAC_APGAKEY   (1 << 4)
6370 #endif
6371 #ifndef PR_SET_TAGGED_ADDR_CTRL
6372 # define PR_SET_TAGGED_ADDR_CTRL 55
6373 # define PR_GET_TAGGED_ADDR_CTRL 56
6374 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6375 #endif
6376 #ifndef PR_MTE_TCF_SHIFT
6377 # define PR_MTE_TCF_SHIFT       1
6378 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6379 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6380 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6381 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6382 # define PR_MTE_TAG_SHIFT       3
6383 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6384 #endif
6385 #ifndef PR_SET_IO_FLUSHER
6386 # define PR_SET_IO_FLUSHER 57
6387 # define PR_GET_IO_FLUSHER 58
6388 #endif
6389 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6390 # define PR_SET_SYSCALL_USER_DISPATCH 59
6391 #endif
6392 #ifndef PR_SME_SET_VL
6393 # define PR_SME_SET_VL  63
6394 # define PR_SME_GET_VL  64
6395 # define PR_SME_VL_LEN_MASK  0xffff
6396 # define PR_SME_VL_INHERIT   (1 << 17)
6397 #endif
6398 
6399 #include "target_prctl.h"
6400 
6401 static abi_long do_prctl_inval0(CPUArchState *env)
6402 {
6403     return -TARGET_EINVAL;
6404 }
6405 
6406 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6407 {
6408     return -TARGET_EINVAL;
6409 }
6410 
6411 #ifndef do_prctl_get_fp_mode
6412 #define do_prctl_get_fp_mode do_prctl_inval0
6413 #endif
6414 #ifndef do_prctl_set_fp_mode
6415 #define do_prctl_set_fp_mode do_prctl_inval1
6416 #endif
6417 #ifndef do_prctl_sve_get_vl
6418 #define do_prctl_sve_get_vl do_prctl_inval0
6419 #endif
6420 #ifndef do_prctl_sve_set_vl
6421 #define do_prctl_sve_set_vl do_prctl_inval1
6422 #endif
6423 #ifndef do_prctl_reset_keys
6424 #define do_prctl_reset_keys do_prctl_inval1
6425 #endif
6426 #ifndef do_prctl_set_tagged_addr_ctrl
6427 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6428 #endif
6429 #ifndef do_prctl_get_tagged_addr_ctrl
6430 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6431 #endif
6432 #ifndef do_prctl_get_unalign
6433 #define do_prctl_get_unalign do_prctl_inval1
6434 #endif
6435 #ifndef do_prctl_set_unalign
6436 #define do_prctl_set_unalign do_prctl_inval1
6437 #endif
6438 #ifndef do_prctl_sme_get_vl
6439 #define do_prctl_sme_get_vl do_prctl_inval0
6440 #endif
6441 #ifndef do_prctl_sme_set_vl
6442 #define do_prctl_sme_set_vl do_prctl_inval1
6443 #endif
6444 
6445 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6446                          abi_long arg3, abi_long arg4, abi_long arg5)
6447 {
6448     abi_long ret;
6449 
6450     switch (option) {
6451     case PR_GET_PDEATHSIG:
6452         {
6453             int deathsig;
6454             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6455                                   arg3, arg4, arg5));
6456             if (!is_error(ret) &&
6457                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6458                 return -TARGET_EFAULT;
6459             }
6460             return ret;
6461         }
6462     case PR_SET_PDEATHSIG:
6463         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6464                                arg3, arg4, arg5));
6465     case PR_GET_NAME:
6466         {
6467             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6468             if (!name) {
6469                 return -TARGET_EFAULT;
6470             }
6471             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6472                                   arg3, arg4, arg5));
6473             unlock_user(name, arg2, 16);
6474             return ret;
6475         }
6476     case PR_SET_NAME:
6477         {
6478             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6479             if (!name) {
6480                 return -TARGET_EFAULT;
6481             }
6482             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6483                                   arg3, arg4, arg5));
6484             unlock_user(name, arg2, 0);
6485             return ret;
6486         }
6487     case PR_GET_FP_MODE:
6488         return do_prctl_get_fp_mode(env);
6489     case PR_SET_FP_MODE:
6490         return do_prctl_set_fp_mode(env, arg2);
6491     case PR_SVE_GET_VL:
6492         return do_prctl_sve_get_vl(env);
6493     case PR_SVE_SET_VL:
6494         return do_prctl_sve_set_vl(env, arg2);
6495     case PR_SME_GET_VL:
6496         return do_prctl_sme_get_vl(env);
6497     case PR_SME_SET_VL:
6498         return do_prctl_sme_set_vl(env, arg2);
6499     case PR_PAC_RESET_KEYS:
6500         if (arg3 || arg4 || arg5) {
6501             return -TARGET_EINVAL;
6502         }
6503         return do_prctl_reset_keys(env, arg2);
6504     case PR_SET_TAGGED_ADDR_CTRL:
6505         if (arg3 || arg4 || arg5) {
6506             return -TARGET_EINVAL;
6507         }
6508         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6509     case PR_GET_TAGGED_ADDR_CTRL:
6510         if (arg2 || arg3 || arg4 || arg5) {
6511             return -TARGET_EINVAL;
6512         }
6513         return do_prctl_get_tagged_addr_ctrl(env);
6514 
6515     case PR_GET_UNALIGN:
6516         return do_prctl_get_unalign(env, arg2);
6517     case PR_SET_UNALIGN:
6518         return do_prctl_set_unalign(env, arg2);
6519 
6520     case PR_CAP_AMBIENT:
6521     case PR_CAPBSET_READ:
6522     case PR_CAPBSET_DROP:
6523     case PR_GET_DUMPABLE:
6524     case PR_SET_DUMPABLE:
6525     case PR_GET_KEEPCAPS:
6526     case PR_SET_KEEPCAPS:
6527     case PR_GET_SECUREBITS:
6528     case PR_SET_SECUREBITS:
6529     case PR_GET_TIMING:
6530     case PR_SET_TIMING:
6531     case PR_GET_TIMERSLACK:
6532     case PR_SET_TIMERSLACK:
6533     case PR_MCE_KILL:
6534     case PR_MCE_KILL_GET:
6535     case PR_GET_NO_NEW_PRIVS:
6536     case PR_SET_NO_NEW_PRIVS:
6537     case PR_GET_IO_FLUSHER:
6538     case PR_SET_IO_FLUSHER:
6539         /* Some prctl options have no pointer arguments and we can pass on. */
6540         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6541 
6542     case PR_GET_CHILD_SUBREAPER:
6543     case PR_SET_CHILD_SUBREAPER:
6544     case PR_GET_SPECULATION_CTRL:
6545     case PR_SET_SPECULATION_CTRL:
6546     case PR_GET_TID_ADDRESS:
6547         /* TODO */
6548         return -TARGET_EINVAL;
6549 
6550     case PR_GET_FPEXC:
6551     case PR_SET_FPEXC:
6552         /* Was used for SPE on PowerPC. */
6553         return -TARGET_EINVAL;
6554 
6555     case PR_GET_ENDIAN:
6556     case PR_SET_ENDIAN:
6557     case PR_GET_FPEMU:
6558     case PR_SET_FPEMU:
6559     case PR_SET_MM:
6560     case PR_GET_SECCOMP:
6561     case PR_SET_SECCOMP:
6562     case PR_SET_SYSCALL_USER_DISPATCH:
6563     case PR_GET_THP_DISABLE:
6564     case PR_SET_THP_DISABLE:
6565     case PR_GET_TSC:
6566     case PR_SET_TSC:
6567         /* Disable to prevent the target disabling stuff we need. */
6568         return -TARGET_EINVAL;
6569 
6570     default:
6571         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6572                       option);
6573         return -TARGET_EINVAL;
6574     }
6575 }
6576 
6577 #define NEW_STACK_SIZE 0x40000
6578 
6579 
6580 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6581 typedef struct {
6582     CPUArchState *env;
6583     pthread_mutex_t mutex;
6584     pthread_cond_t cond;
6585     pthread_t thread;
6586     uint32_t tid;
6587     abi_ulong child_tidptr;
6588     abi_ulong parent_tidptr;
6589     sigset_t sigmask;
6590 } new_thread_info;
6591 
6592 static void *clone_func(void *arg)
6593 {
6594     new_thread_info *info = arg;
6595     CPUArchState *env;
6596     CPUState *cpu;
6597     TaskState *ts;
6598 
6599     rcu_register_thread();
6600     tcg_register_thread();
6601     env = info->env;
6602     cpu = env_cpu(env);
6603     thread_cpu = cpu;
6604     ts = (TaskState *)cpu->opaque;
6605     info->tid = sys_gettid();
6606     task_settid(ts);
6607     if (info->child_tidptr)
6608         put_user_u32(info->tid, info->child_tidptr);
6609     if (info->parent_tidptr)
6610         put_user_u32(info->tid, info->parent_tidptr);
6611     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6612     /* Enable signals.  */
6613     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6614     /* Signal to the parent that we're ready.  */
6615     pthread_mutex_lock(&info->mutex);
6616     pthread_cond_broadcast(&info->cond);
6617     pthread_mutex_unlock(&info->mutex);
6618     /* Wait until the parent has finished initializing the tls state.  */
6619     pthread_mutex_lock(&clone_lock);
6620     pthread_mutex_unlock(&clone_lock);
6621     cpu_loop(env);
6622     /* never exits */
6623     return NULL;
6624 }
6625 
6626 /* do_fork() Must return host values and target errnos (unlike most
6627    do_*() functions). */
6628 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6629                    abi_ulong parent_tidptr, target_ulong newtls,
6630                    abi_ulong child_tidptr)
6631 {
6632     CPUState *cpu = env_cpu(env);
6633     int ret;
6634     TaskState *ts;
6635     CPUState *new_cpu;
6636     CPUArchState *new_env;
6637     sigset_t sigmask;
6638 
6639     flags &= ~CLONE_IGNORED_FLAGS;
6640 
6641     /* Emulate vfork() with fork() */
6642     if (flags & CLONE_VFORK)
6643         flags &= ~(CLONE_VFORK | CLONE_VM);
6644 
6645     if (flags & CLONE_VM) {
6646         TaskState *parent_ts = (TaskState *)cpu->opaque;
6647         new_thread_info info;
6648         pthread_attr_t attr;
6649 
6650         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6651             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6652             return -TARGET_EINVAL;
6653         }
6654 
6655         ts = g_new0(TaskState, 1);
6656         init_task_state(ts);
6657 
6658         /* Grab a mutex so that thread setup appears atomic.  */
6659         pthread_mutex_lock(&clone_lock);
6660 
6661         /*
6662          * If this is our first additional thread, we need to ensure we
6663          * generate code for parallel execution and flush old translations.
6664          * Do this now so that the copy gets CF_PARALLEL too.
6665          */
6666         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6667             cpu->tcg_cflags |= CF_PARALLEL;
6668             tb_flush(cpu);
6669         }
6670 
6671         /* we create a new CPU instance. */
6672         new_env = cpu_copy(env);
6673         /* Init regs that differ from the parent.  */
6674         cpu_clone_regs_child(new_env, newsp, flags);
6675         cpu_clone_regs_parent(env, flags);
6676         new_cpu = env_cpu(new_env);
6677         new_cpu->opaque = ts;
6678         ts->bprm = parent_ts->bprm;
6679         ts->info = parent_ts->info;
6680         ts->signal_mask = parent_ts->signal_mask;
6681 
6682         if (flags & CLONE_CHILD_CLEARTID) {
6683             ts->child_tidptr = child_tidptr;
6684         }
6685 
6686         if (flags & CLONE_SETTLS) {
6687             cpu_set_tls (new_env, newtls);
6688         }
6689 
6690         memset(&info, 0, sizeof(info));
6691         pthread_mutex_init(&info.mutex, NULL);
6692         pthread_mutex_lock(&info.mutex);
6693         pthread_cond_init(&info.cond, NULL);
6694         info.env = new_env;
6695         if (flags & CLONE_CHILD_SETTID) {
6696             info.child_tidptr = child_tidptr;
6697         }
6698         if (flags & CLONE_PARENT_SETTID) {
6699             info.parent_tidptr = parent_tidptr;
6700         }
6701 
6702         ret = pthread_attr_init(&attr);
6703         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6704         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6705         /* It is not safe to deliver signals until the child has finished
6706            initializing, so temporarily block all signals.  */
6707         sigfillset(&sigmask);
6708         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6709         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6710 
6711         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6712         /* TODO: Free new CPU state if thread creation failed.  */
6713 
6714         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6715         pthread_attr_destroy(&attr);
6716         if (ret == 0) {
6717             /* Wait for the child to initialize.  */
6718             pthread_cond_wait(&info.cond, &info.mutex);
6719             ret = info.tid;
6720         } else {
6721             ret = -1;
6722         }
6723         pthread_mutex_unlock(&info.mutex);
6724         pthread_cond_destroy(&info.cond);
6725         pthread_mutex_destroy(&info.mutex);
6726         pthread_mutex_unlock(&clone_lock);
6727     } else {
6728         /* if no CLONE_VM, we consider it is a fork */
6729         if (flags & CLONE_INVALID_FORK_FLAGS) {
6730             return -TARGET_EINVAL;
6731         }
6732 
6733         /* We can't support custom termination signals */
6734         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6735             return -TARGET_EINVAL;
6736         }
6737 
6738 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6739         if (flags & CLONE_PIDFD) {
6740             return -TARGET_EINVAL;
6741         }
6742 #endif
6743 
6744         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6745         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6746             return -TARGET_EINVAL;
6747         }
6748 
6749         if (block_signals()) {
6750             return -QEMU_ERESTARTSYS;
6751         }
6752 
6753         fork_start();
6754         ret = fork();
6755         if (ret == 0) {
6756             /* Child Process.  */
6757             cpu_clone_regs_child(env, newsp, flags);
6758             fork_end(1);
6759             /* There is a race condition here.  The parent process could
6760                theoretically read the TID in the child process before the child
6761                tid is set.  This would require using either ptrace
6762                (not implemented) or having *_tidptr to point at a shared memory
6763                mapping.  We can't repeat the spinlock hack used above because
6764                the child process gets its own copy of the lock.  */
6765             if (flags & CLONE_CHILD_SETTID)
6766                 put_user_u32(sys_gettid(), child_tidptr);
6767             if (flags & CLONE_PARENT_SETTID)
6768                 put_user_u32(sys_gettid(), parent_tidptr);
6769             ts = (TaskState *)cpu->opaque;
6770             if (flags & CLONE_SETTLS)
6771                 cpu_set_tls (env, newtls);
6772             if (flags & CLONE_CHILD_CLEARTID)
6773                 ts->child_tidptr = child_tidptr;
6774         } else {
6775             cpu_clone_regs_parent(env, flags);
6776             if (flags & CLONE_PIDFD) {
6777                 int pid_fd = 0;
6778 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6779                 int pid_child = ret;
6780                 pid_fd = pidfd_open(pid_child, 0);
6781                 if (pid_fd >= 0) {
6782                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6783                                                | FD_CLOEXEC);
6784                 } else {
6785                         pid_fd = 0;
6786                 }
6787 #endif
6788                 put_user_u32(pid_fd, parent_tidptr);
6789                 }
6790             fork_end(0);
6791         }
6792         g_assert(!cpu_in_exclusive_context(cpu));
6793     }
6794     return ret;
6795 }
6796 
6797 /* warning : doesn't handle linux specific flags... */
6798 static int target_to_host_fcntl_cmd(int cmd)
6799 {
6800     int ret;
6801 
6802     switch(cmd) {
6803     case TARGET_F_DUPFD:
6804     case TARGET_F_GETFD:
6805     case TARGET_F_SETFD:
6806     case TARGET_F_GETFL:
6807     case TARGET_F_SETFL:
6808     case TARGET_F_OFD_GETLK:
6809     case TARGET_F_OFD_SETLK:
6810     case TARGET_F_OFD_SETLKW:
6811         ret = cmd;
6812         break;
6813     case TARGET_F_GETLK:
6814         ret = F_GETLK64;
6815         break;
6816     case TARGET_F_SETLK:
6817         ret = F_SETLK64;
6818         break;
6819     case TARGET_F_SETLKW:
6820         ret = F_SETLKW64;
6821         break;
6822     case TARGET_F_GETOWN:
6823         ret = F_GETOWN;
6824         break;
6825     case TARGET_F_SETOWN:
6826         ret = F_SETOWN;
6827         break;
6828     case TARGET_F_GETSIG:
6829         ret = F_GETSIG;
6830         break;
6831     case TARGET_F_SETSIG:
6832         ret = F_SETSIG;
6833         break;
6834 #if TARGET_ABI_BITS == 32
6835     case TARGET_F_GETLK64:
6836         ret = F_GETLK64;
6837         break;
6838     case TARGET_F_SETLK64:
6839         ret = F_SETLK64;
6840         break;
6841     case TARGET_F_SETLKW64:
6842         ret = F_SETLKW64;
6843         break;
6844 #endif
6845     case TARGET_F_SETLEASE:
6846         ret = F_SETLEASE;
6847         break;
6848     case TARGET_F_GETLEASE:
6849         ret = F_GETLEASE;
6850         break;
6851 #ifdef F_DUPFD_CLOEXEC
6852     case TARGET_F_DUPFD_CLOEXEC:
6853         ret = F_DUPFD_CLOEXEC;
6854         break;
6855 #endif
6856     case TARGET_F_NOTIFY:
6857         ret = F_NOTIFY;
6858         break;
6859 #ifdef F_GETOWN_EX
6860     case TARGET_F_GETOWN_EX:
6861         ret = F_GETOWN_EX;
6862         break;
6863 #endif
6864 #ifdef F_SETOWN_EX
6865     case TARGET_F_SETOWN_EX:
6866         ret = F_SETOWN_EX;
6867         break;
6868 #endif
6869 #ifdef F_SETPIPE_SZ
6870     case TARGET_F_SETPIPE_SZ:
6871         ret = F_SETPIPE_SZ;
6872         break;
6873     case TARGET_F_GETPIPE_SZ:
6874         ret = F_GETPIPE_SZ;
6875         break;
6876 #endif
6877 #ifdef F_ADD_SEALS
6878     case TARGET_F_ADD_SEALS:
6879         ret = F_ADD_SEALS;
6880         break;
6881     case TARGET_F_GET_SEALS:
6882         ret = F_GET_SEALS;
6883         break;
6884 #endif
6885     default:
6886         ret = -TARGET_EINVAL;
6887         break;
6888     }
6889 
6890 #if defined(__powerpc64__)
6891     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6892      * is not supported by kernel. The glibc fcntl call actually adjusts
6893      * them to 5, 6 and 7 before making the syscall(). Since we make the
6894      * syscall directly, adjust to what is supported by the kernel.
6895      */
6896     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6897         ret -= F_GETLK64 - 5;
6898     }
6899 #endif
6900 
6901     return ret;
6902 }
6903 
6904 #define FLOCK_TRANSTBL \
6905     switch (type) { \
6906     TRANSTBL_CONVERT(F_RDLCK); \
6907     TRANSTBL_CONVERT(F_WRLCK); \
6908     TRANSTBL_CONVERT(F_UNLCK); \
6909     }
6910 
6911 static int target_to_host_flock(int type)
6912 {
6913 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6914     FLOCK_TRANSTBL
6915 #undef  TRANSTBL_CONVERT
6916     return -TARGET_EINVAL;
6917 }
6918 
6919 static int host_to_target_flock(int type)
6920 {
6921 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6922     FLOCK_TRANSTBL
6923 #undef  TRANSTBL_CONVERT
6924     /* if we don't know how to convert the value coming
6925      * from the host we copy to the target field as-is
6926      */
6927     return type;
6928 }
6929 
6930 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6931                                             abi_ulong target_flock_addr)
6932 {
6933     struct target_flock *target_fl;
6934     int l_type;
6935 
6936     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6937         return -TARGET_EFAULT;
6938     }
6939 
6940     __get_user(l_type, &target_fl->l_type);
6941     l_type = target_to_host_flock(l_type);
6942     if (l_type < 0) {
6943         return l_type;
6944     }
6945     fl->l_type = l_type;
6946     __get_user(fl->l_whence, &target_fl->l_whence);
6947     __get_user(fl->l_start, &target_fl->l_start);
6948     __get_user(fl->l_len, &target_fl->l_len);
6949     __get_user(fl->l_pid, &target_fl->l_pid);
6950     unlock_user_struct(target_fl, target_flock_addr, 0);
6951     return 0;
6952 }
6953 
6954 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6955                                           const struct flock64 *fl)
6956 {
6957     struct target_flock *target_fl;
6958     short l_type;
6959 
6960     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6961         return -TARGET_EFAULT;
6962     }
6963 
6964     l_type = host_to_target_flock(fl->l_type);
6965     __put_user(l_type, &target_fl->l_type);
6966     __put_user(fl->l_whence, &target_fl->l_whence);
6967     __put_user(fl->l_start, &target_fl->l_start);
6968     __put_user(fl->l_len, &target_fl->l_len);
6969     __put_user(fl->l_pid, &target_fl->l_pid);
6970     unlock_user_struct(target_fl, target_flock_addr, 1);
6971     return 0;
6972 }
6973 
6974 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6975 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6976 
6977 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6978 struct target_oabi_flock64 {
6979     abi_short l_type;
6980     abi_short l_whence;
6981     abi_llong l_start;
6982     abi_llong l_len;
6983     abi_int   l_pid;
6984 } QEMU_PACKED;
6985 
6986 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6987                                                    abi_ulong target_flock_addr)
6988 {
6989     struct target_oabi_flock64 *target_fl;
6990     int l_type;
6991 
6992     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6993         return -TARGET_EFAULT;
6994     }
6995 
6996     __get_user(l_type, &target_fl->l_type);
6997     l_type = target_to_host_flock(l_type);
6998     if (l_type < 0) {
6999         return l_type;
7000     }
7001     fl->l_type = l_type;
7002     __get_user(fl->l_whence, &target_fl->l_whence);
7003     __get_user(fl->l_start, &target_fl->l_start);
7004     __get_user(fl->l_len, &target_fl->l_len);
7005     __get_user(fl->l_pid, &target_fl->l_pid);
7006     unlock_user_struct(target_fl, target_flock_addr, 0);
7007     return 0;
7008 }
7009 
7010 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
7011                                                  const struct flock64 *fl)
7012 {
7013     struct target_oabi_flock64 *target_fl;
7014     short l_type;
7015 
7016     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7017         return -TARGET_EFAULT;
7018     }
7019 
7020     l_type = host_to_target_flock(fl->l_type);
7021     __put_user(l_type, &target_fl->l_type);
7022     __put_user(fl->l_whence, &target_fl->l_whence);
7023     __put_user(fl->l_start, &target_fl->l_start);
7024     __put_user(fl->l_len, &target_fl->l_len);
7025     __put_user(fl->l_pid, &target_fl->l_pid);
7026     unlock_user_struct(target_fl, target_flock_addr, 1);
7027     return 0;
7028 }
7029 #endif
7030 
7031 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
7032                                               abi_ulong target_flock_addr)
7033 {
7034     struct target_flock64 *target_fl;
7035     int l_type;
7036 
7037     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
7038         return -TARGET_EFAULT;
7039     }
7040 
7041     __get_user(l_type, &target_fl->l_type);
7042     l_type = target_to_host_flock(l_type);
7043     if (l_type < 0) {
7044         return l_type;
7045     }
7046     fl->l_type = l_type;
7047     __get_user(fl->l_whence, &target_fl->l_whence);
7048     __get_user(fl->l_start, &target_fl->l_start);
7049     __get_user(fl->l_len, &target_fl->l_len);
7050     __get_user(fl->l_pid, &target_fl->l_pid);
7051     unlock_user_struct(target_fl, target_flock_addr, 0);
7052     return 0;
7053 }
7054 
7055 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
7056                                             const struct flock64 *fl)
7057 {
7058     struct target_flock64 *target_fl;
7059     short l_type;
7060 
7061     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7062         return -TARGET_EFAULT;
7063     }
7064 
7065     l_type = host_to_target_flock(fl->l_type);
7066     __put_user(l_type, &target_fl->l_type);
7067     __put_user(fl->l_whence, &target_fl->l_whence);
7068     __put_user(fl->l_start, &target_fl->l_start);
7069     __put_user(fl->l_len, &target_fl->l_len);
7070     __put_user(fl->l_pid, &target_fl->l_pid);
7071     unlock_user_struct(target_fl, target_flock_addr, 1);
7072     return 0;
7073 }
7074 
7075 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
7076 {
7077     struct flock64 fl64;
7078 #ifdef F_GETOWN_EX
7079     struct f_owner_ex fox;
7080     struct target_f_owner_ex *target_fox;
7081 #endif
7082     abi_long ret;
7083     int host_cmd = target_to_host_fcntl_cmd(cmd);
7084 
7085     if (host_cmd == -TARGET_EINVAL)
7086 	    return host_cmd;
7087 
7088     switch(cmd) {
7089     case TARGET_F_GETLK:
7090         ret = copy_from_user_flock(&fl64, arg);
7091         if (ret) {
7092             return ret;
7093         }
7094         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7095         if (ret == 0) {
7096             ret = copy_to_user_flock(arg, &fl64);
7097         }
7098         break;
7099 
7100     case TARGET_F_SETLK:
7101     case TARGET_F_SETLKW:
7102         ret = copy_from_user_flock(&fl64, arg);
7103         if (ret) {
7104             return ret;
7105         }
7106         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7107         break;
7108 
7109     case TARGET_F_GETLK64:
7110     case TARGET_F_OFD_GETLK:
7111         ret = copy_from_user_flock64(&fl64, arg);
7112         if (ret) {
7113             return ret;
7114         }
7115         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7116         if (ret == 0) {
7117             ret = copy_to_user_flock64(arg, &fl64);
7118         }
7119         break;
7120     case TARGET_F_SETLK64:
7121     case TARGET_F_SETLKW64:
7122     case TARGET_F_OFD_SETLK:
7123     case TARGET_F_OFD_SETLKW:
7124         ret = copy_from_user_flock64(&fl64, arg);
7125         if (ret) {
7126             return ret;
7127         }
7128         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7129         break;
7130 
7131     case TARGET_F_GETFL:
7132         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7133         if (ret >= 0) {
7134             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7135         }
7136         break;
7137 
7138     case TARGET_F_SETFL:
7139         ret = get_errno(safe_fcntl(fd, host_cmd,
7140                                    target_to_host_bitmask(arg,
7141                                                           fcntl_flags_tbl)));
7142         break;
7143 
7144 #ifdef F_GETOWN_EX
7145     case TARGET_F_GETOWN_EX:
7146         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7147         if (ret >= 0) {
7148             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7149                 return -TARGET_EFAULT;
7150             target_fox->type = tswap32(fox.type);
7151             target_fox->pid = tswap32(fox.pid);
7152             unlock_user_struct(target_fox, arg, 1);
7153         }
7154         break;
7155 #endif
7156 
7157 #ifdef F_SETOWN_EX
7158     case TARGET_F_SETOWN_EX:
7159         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7160             return -TARGET_EFAULT;
7161         fox.type = tswap32(target_fox->type);
7162         fox.pid = tswap32(target_fox->pid);
7163         unlock_user_struct(target_fox, arg, 0);
7164         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7165         break;
7166 #endif
7167 
7168     case TARGET_F_SETSIG:
7169         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7170         break;
7171 
7172     case TARGET_F_GETSIG:
7173         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7174         break;
7175 
7176     case TARGET_F_SETOWN:
7177     case TARGET_F_GETOWN:
7178     case TARGET_F_SETLEASE:
7179     case TARGET_F_GETLEASE:
7180     case TARGET_F_SETPIPE_SZ:
7181     case TARGET_F_GETPIPE_SZ:
7182     case TARGET_F_ADD_SEALS:
7183     case TARGET_F_GET_SEALS:
7184         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7185         break;
7186 
7187     default:
7188         ret = get_errno(safe_fcntl(fd, cmd, arg));
7189         break;
7190     }
7191     return ret;
7192 }
7193 
7194 #ifdef USE_UID16
7195 
7196 static inline int high2lowuid(int uid)
7197 {
7198     if (uid > 65535)
7199         return 65534;
7200     else
7201         return uid;
7202 }
7203 
7204 static inline int high2lowgid(int gid)
7205 {
7206     if (gid > 65535)
7207         return 65534;
7208     else
7209         return gid;
7210 }
7211 
7212 static inline int low2highuid(int uid)
7213 {
7214     if ((int16_t)uid == -1)
7215         return -1;
7216     else
7217         return uid;
7218 }
7219 
7220 static inline int low2highgid(int gid)
7221 {
7222     if ((int16_t)gid == -1)
7223         return -1;
7224     else
7225         return gid;
7226 }
7227 static inline int tswapid(int id)
7228 {
7229     return tswap16(id);
7230 }
7231 
7232 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7233 
7234 #else /* !USE_UID16 */
7235 static inline int high2lowuid(int uid)
7236 {
7237     return uid;
7238 }
7239 static inline int high2lowgid(int gid)
7240 {
7241     return gid;
7242 }
7243 static inline int low2highuid(int uid)
7244 {
7245     return uid;
7246 }
7247 static inline int low2highgid(int gid)
7248 {
7249     return gid;
7250 }
7251 static inline int tswapid(int id)
7252 {
7253     return tswap32(id);
7254 }
7255 
7256 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7257 
7258 #endif /* USE_UID16 */
7259 
7260 /* We must do direct syscalls for setting UID/GID, because we want to
7261  * implement the Linux system call semantics of "change only for this thread",
7262  * not the libc/POSIX semantics of "change for all threads in process".
7263  * (See http://ewontfix.com/17/ for more details.)
7264  * We use the 32-bit version of the syscalls if present; if it is not
7265  * then either the host architecture supports 32-bit UIDs natively with
7266  * the standard syscall, or the 16-bit UID is the best we can do.
7267  */
7268 #ifdef __NR_setuid32
7269 #define __NR_sys_setuid __NR_setuid32
7270 #else
7271 #define __NR_sys_setuid __NR_setuid
7272 #endif
7273 #ifdef __NR_setgid32
7274 #define __NR_sys_setgid __NR_setgid32
7275 #else
7276 #define __NR_sys_setgid __NR_setgid
7277 #endif
7278 #ifdef __NR_setresuid32
7279 #define __NR_sys_setresuid __NR_setresuid32
7280 #else
7281 #define __NR_sys_setresuid __NR_setresuid
7282 #endif
7283 #ifdef __NR_setresgid32
7284 #define __NR_sys_setresgid __NR_setresgid32
7285 #else
7286 #define __NR_sys_setresgid __NR_setresgid
7287 #endif
7288 
7289 _syscall1(int, sys_setuid, uid_t, uid)
7290 _syscall1(int, sys_setgid, gid_t, gid)
7291 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7292 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7293 
7294 void syscall_init(void)
7295 {
7296     IOCTLEntry *ie;
7297     const argtype *arg_type;
7298     int size;
7299 
7300     thunk_init(STRUCT_MAX);
7301 
7302 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7303 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7304 #include "syscall_types.h"
7305 #undef STRUCT
7306 #undef STRUCT_SPECIAL
7307 
7308     /* we patch the ioctl size if necessary. We rely on the fact that
7309        no ioctl has all the bits at '1' in the size field */
7310     ie = ioctl_entries;
7311     while (ie->target_cmd != 0) {
7312         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7313             TARGET_IOC_SIZEMASK) {
7314             arg_type = ie->arg_type;
7315             if (arg_type[0] != TYPE_PTR) {
7316                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7317                         ie->target_cmd);
7318                 exit(1);
7319             }
7320             arg_type++;
7321             size = thunk_type_size(arg_type, 0);
7322             ie->target_cmd = (ie->target_cmd &
7323                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7324                 (size << TARGET_IOC_SIZESHIFT);
7325         }
7326 
7327         /* automatic consistency check if same arch */
7328 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7329     (defined(__x86_64__) && defined(TARGET_X86_64))
7330         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7331             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7332                     ie->name, ie->target_cmd, ie->host_cmd);
7333         }
7334 #endif
7335         ie++;
7336     }
7337 }
7338 
7339 #ifdef TARGET_NR_truncate64
7340 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7341                                          abi_long arg2,
7342                                          abi_long arg3,
7343                                          abi_long arg4)
7344 {
7345     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7346         arg2 = arg3;
7347         arg3 = arg4;
7348     }
7349     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7350 }
7351 #endif
7352 
7353 #ifdef TARGET_NR_ftruncate64
7354 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7355                                           abi_long arg2,
7356                                           abi_long arg3,
7357                                           abi_long arg4)
7358 {
7359     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7360         arg2 = arg3;
7361         arg3 = arg4;
7362     }
7363     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7364 }
7365 #endif
7366 
7367 #if defined(TARGET_NR_timer_settime) || \
7368     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7369 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7370                                                  abi_ulong target_addr)
7371 {
7372     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7373                                 offsetof(struct target_itimerspec,
7374                                          it_interval)) ||
7375         target_to_host_timespec(&host_its->it_value, target_addr +
7376                                 offsetof(struct target_itimerspec,
7377                                          it_value))) {
7378         return -TARGET_EFAULT;
7379     }
7380 
7381     return 0;
7382 }
7383 #endif
7384 
7385 #if defined(TARGET_NR_timer_settime64) || \
7386     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7387 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7388                                                    abi_ulong target_addr)
7389 {
7390     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7391                                   offsetof(struct target__kernel_itimerspec,
7392                                            it_interval)) ||
7393         target_to_host_timespec64(&host_its->it_value, target_addr +
7394                                   offsetof(struct target__kernel_itimerspec,
7395                                            it_value))) {
7396         return -TARGET_EFAULT;
7397     }
7398 
7399     return 0;
7400 }
7401 #endif
7402 
7403 #if ((defined(TARGET_NR_timerfd_gettime) || \
7404       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7405       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7406 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7407                                                  struct itimerspec *host_its)
7408 {
7409     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7410                                                        it_interval),
7411                                 &host_its->it_interval) ||
7412         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7413                                                        it_value),
7414                                 &host_its->it_value)) {
7415         return -TARGET_EFAULT;
7416     }
7417     return 0;
7418 }
7419 #endif
7420 
7421 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7422       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7423       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7424 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7425                                                    struct itimerspec *host_its)
7426 {
7427     if (host_to_target_timespec64(target_addr +
7428                                   offsetof(struct target__kernel_itimerspec,
7429                                            it_interval),
7430                                   &host_its->it_interval) ||
7431         host_to_target_timespec64(target_addr +
7432                                   offsetof(struct target__kernel_itimerspec,
7433                                            it_value),
7434                                   &host_its->it_value)) {
7435         return -TARGET_EFAULT;
7436     }
7437     return 0;
7438 }
7439 #endif
7440 
7441 #if defined(TARGET_NR_adjtimex) || \
7442     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7443 static inline abi_long target_to_host_timex(struct timex *host_tx,
7444                                             abi_long target_addr)
7445 {
7446     struct target_timex *target_tx;
7447 
7448     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7449         return -TARGET_EFAULT;
7450     }
7451 
7452     __get_user(host_tx->modes, &target_tx->modes);
7453     __get_user(host_tx->offset, &target_tx->offset);
7454     __get_user(host_tx->freq, &target_tx->freq);
7455     __get_user(host_tx->maxerror, &target_tx->maxerror);
7456     __get_user(host_tx->esterror, &target_tx->esterror);
7457     __get_user(host_tx->status, &target_tx->status);
7458     __get_user(host_tx->constant, &target_tx->constant);
7459     __get_user(host_tx->precision, &target_tx->precision);
7460     __get_user(host_tx->tolerance, &target_tx->tolerance);
7461     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7462     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7463     __get_user(host_tx->tick, &target_tx->tick);
7464     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7465     __get_user(host_tx->jitter, &target_tx->jitter);
7466     __get_user(host_tx->shift, &target_tx->shift);
7467     __get_user(host_tx->stabil, &target_tx->stabil);
7468     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7469     __get_user(host_tx->calcnt, &target_tx->calcnt);
7470     __get_user(host_tx->errcnt, &target_tx->errcnt);
7471     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7472     __get_user(host_tx->tai, &target_tx->tai);
7473 
7474     unlock_user_struct(target_tx, target_addr, 0);
7475     return 0;
7476 }
7477 
7478 static inline abi_long host_to_target_timex(abi_long target_addr,
7479                                             struct timex *host_tx)
7480 {
7481     struct target_timex *target_tx;
7482 
7483     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7484         return -TARGET_EFAULT;
7485     }
7486 
7487     __put_user(host_tx->modes, &target_tx->modes);
7488     __put_user(host_tx->offset, &target_tx->offset);
7489     __put_user(host_tx->freq, &target_tx->freq);
7490     __put_user(host_tx->maxerror, &target_tx->maxerror);
7491     __put_user(host_tx->esterror, &target_tx->esterror);
7492     __put_user(host_tx->status, &target_tx->status);
7493     __put_user(host_tx->constant, &target_tx->constant);
7494     __put_user(host_tx->precision, &target_tx->precision);
7495     __put_user(host_tx->tolerance, &target_tx->tolerance);
7496     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7497     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7498     __put_user(host_tx->tick, &target_tx->tick);
7499     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7500     __put_user(host_tx->jitter, &target_tx->jitter);
7501     __put_user(host_tx->shift, &target_tx->shift);
7502     __put_user(host_tx->stabil, &target_tx->stabil);
7503     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7504     __put_user(host_tx->calcnt, &target_tx->calcnt);
7505     __put_user(host_tx->errcnt, &target_tx->errcnt);
7506     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7507     __put_user(host_tx->tai, &target_tx->tai);
7508 
7509     unlock_user_struct(target_tx, target_addr, 1);
7510     return 0;
7511 }
7512 #endif
7513 
7514 
7515 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7516 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7517                                               abi_long target_addr)
7518 {
7519     struct target__kernel_timex *target_tx;
7520 
7521     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7522                                  offsetof(struct target__kernel_timex,
7523                                           time))) {
7524         return -TARGET_EFAULT;
7525     }
7526 
7527     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7528         return -TARGET_EFAULT;
7529     }
7530 
7531     __get_user(host_tx->modes, &target_tx->modes);
7532     __get_user(host_tx->offset, &target_tx->offset);
7533     __get_user(host_tx->freq, &target_tx->freq);
7534     __get_user(host_tx->maxerror, &target_tx->maxerror);
7535     __get_user(host_tx->esterror, &target_tx->esterror);
7536     __get_user(host_tx->status, &target_tx->status);
7537     __get_user(host_tx->constant, &target_tx->constant);
7538     __get_user(host_tx->precision, &target_tx->precision);
7539     __get_user(host_tx->tolerance, &target_tx->tolerance);
7540     __get_user(host_tx->tick, &target_tx->tick);
7541     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7542     __get_user(host_tx->jitter, &target_tx->jitter);
7543     __get_user(host_tx->shift, &target_tx->shift);
7544     __get_user(host_tx->stabil, &target_tx->stabil);
7545     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7546     __get_user(host_tx->calcnt, &target_tx->calcnt);
7547     __get_user(host_tx->errcnt, &target_tx->errcnt);
7548     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7549     __get_user(host_tx->tai, &target_tx->tai);
7550 
7551     unlock_user_struct(target_tx, target_addr, 0);
7552     return 0;
7553 }
7554 
7555 static inline abi_long host_to_target_timex64(abi_long target_addr,
7556                                               struct timex *host_tx)
7557 {
7558     struct target__kernel_timex *target_tx;
7559 
7560    if (copy_to_user_timeval64(target_addr +
7561                               offsetof(struct target__kernel_timex, time),
7562                               &host_tx->time)) {
7563         return -TARGET_EFAULT;
7564     }
7565 
7566     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7567         return -TARGET_EFAULT;
7568     }
7569 
7570     __put_user(host_tx->modes, &target_tx->modes);
7571     __put_user(host_tx->offset, &target_tx->offset);
7572     __put_user(host_tx->freq, &target_tx->freq);
7573     __put_user(host_tx->maxerror, &target_tx->maxerror);
7574     __put_user(host_tx->esterror, &target_tx->esterror);
7575     __put_user(host_tx->status, &target_tx->status);
7576     __put_user(host_tx->constant, &target_tx->constant);
7577     __put_user(host_tx->precision, &target_tx->precision);
7578     __put_user(host_tx->tolerance, &target_tx->tolerance);
7579     __put_user(host_tx->tick, &target_tx->tick);
7580     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7581     __put_user(host_tx->jitter, &target_tx->jitter);
7582     __put_user(host_tx->shift, &target_tx->shift);
7583     __put_user(host_tx->stabil, &target_tx->stabil);
7584     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7585     __put_user(host_tx->calcnt, &target_tx->calcnt);
7586     __put_user(host_tx->errcnt, &target_tx->errcnt);
7587     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7588     __put_user(host_tx->tai, &target_tx->tai);
7589 
7590     unlock_user_struct(target_tx, target_addr, 1);
7591     return 0;
7592 }
7593 #endif
7594 
7595 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7596 #define sigev_notify_thread_id _sigev_un._tid
7597 #endif
7598 
7599 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7600                                                abi_ulong target_addr)
7601 {
7602     struct target_sigevent *target_sevp;
7603 
7604     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7605         return -TARGET_EFAULT;
7606     }
7607 
7608     /* This union is awkward on 64 bit systems because it has a 32 bit
7609      * integer and a pointer in it; we follow the conversion approach
7610      * used for handling sigval types in signal.c so the guest should get
7611      * the correct value back even if we did a 64 bit byteswap and it's
7612      * using the 32 bit integer.
7613      */
7614     host_sevp->sigev_value.sival_ptr =
7615         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7616     host_sevp->sigev_signo =
7617         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7618     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7619     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7620 
7621     unlock_user_struct(target_sevp, target_addr, 1);
7622     return 0;
7623 }
7624 
7625 #if defined(TARGET_NR_mlockall)
7626 static inline int target_to_host_mlockall_arg(int arg)
7627 {
7628     int result = 0;
7629 
7630     if (arg & TARGET_MCL_CURRENT) {
7631         result |= MCL_CURRENT;
7632     }
7633     if (arg & TARGET_MCL_FUTURE) {
7634         result |= MCL_FUTURE;
7635     }
7636 #ifdef MCL_ONFAULT
7637     if (arg & TARGET_MCL_ONFAULT) {
7638         result |= MCL_ONFAULT;
7639     }
7640 #endif
7641 
7642     return result;
7643 }
7644 #endif
7645 
7646 static inline int target_to_host_msync_arg(abi_long arg)
7647 {
7648     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7649            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7650            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7651            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7652 }
7653 
7654 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7655      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7656      defined(TARGET_NR_newfstatat))
7657 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7658                                              abi_ulong target_addr,
7659                                              struct stat *host_st)
7660 {
7661 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7662     if (cpu_env->eabi) {
7663         struct target_eabi_stat64 *target_st;
7664 
7665         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7666             return -TARGET_EFAULT;
7667         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7668         __put_user(host_st->st_dev, &target_st->st_dev);
7669         __put_user(host_st->st_ino, &target_st->st_ino);
7670 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7671         __put_user(host_st->st_ino, &target_st->__st_ino);
7672 #endif
7673         __put_user(host_st->st_mode, &target_st->st_mode);
7674         __put_user(host_st->st_nlink, &target_st->st_nlink);
7675         __put_user(host_st->st_uid, &target_st->st_uid);
7676         __put_user(host_st->st_gid, &target_st->st_gid);
7677         __put_user(host_st->st_rdev, &target_st->st_rdev);
7678         __put_user(host_st->st_size, &target_st->st_size);
7679         __put_user(host_st->st_blksize, &target_st->st_blksize);
7680         __put_user(host_st->st_blocks, &target_st->st_blocks);
7681         __put_user(host_st->st_atime, &target_st->target_st_atime);
7682         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7683         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7684 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7685         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7686         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7687         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7688 #endif
7689         unlock_user_struct(target_st, target_addr, 1);
7690     } else
7691 #endif
7692     {
7693 #if defined(TARGET_HAS_STRUCT_STAT64)
7694         struct target_stat64 *target_st;
7695 #else
7696         struct target_stat *target_st;
7697 #endif
7698 
7699         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7700             return -TARGET_EFAULT;
7701         memset(target_st, 0, sizeof(*target_st));
7702         __put_user(host_st->st_dev, &target_st->st_dev);
7703         __put_user(host_st->st_ino, &target_st->st_ino);
7704 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7705         __put_user(host_st->st_ino, &target_st->__st_ino);
7706 #endif
7707         __put_user(host_st->st_mode, &target_st->st_mode);
7708         __put_user(host_st->st_nlink, &target_st->st_nlink);
7709         __put_user(host_st->st_uid, &target_st->st_uid);
7710         __put_user(host_st->st_gid, &target_st->st_gid);
7711         __put_user(host_st->st_rdev, &target_st->st_rdev);
7712         /* XXX: better use of kernel struct */
7713         __put_user(host_st->st_size, &target_st->st_size);
7714         __put_user(host_st->st_blksize, &target_st->st_blksize);
7715         __put_user(host_st->st_blocks, &target_st->st_blocks);
7716         __put_user(host_st->st_atime, &target_st->target_st_atime);
7717         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7718         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7719 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7720         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7721         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7722         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7723 #endif
7724         unlock_user_struct(target_st, target_addr, 1);
7725     }
7726 
7727     return 0;
7728 }
7729 #endif
7730 
7731 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7732 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7733                                             abi_ulong target_addr)
7734 {
7735     struct target_statx *target_stx;
7736 
7737     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7738         return -TARGET_EFAULT;
7739     }
7740     memset(target_stx, 0, sizeof(*target_stx));
7741 
7742     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7743     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7744     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7745     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7746     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7747     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7748     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7749     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7750     __put_user(host_stx->stx_size, &target_stx->stx_size);
7751     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7752     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7753     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7754     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7755     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7756     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7757     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7758     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7759     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7760     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7761     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7762     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7763     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7764     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7765 
7766     unlock_user_struct(target_stx, target_addr, 1);
7767 
7768     return 0;
7769 }
7770 #endif
7771 
7772 static int do_sys_futex(int *uaddr, int op, int val,
7773                          const struct timespec *timeout, int *uaddr2,
7774                          int val3)
7775 {
7776 #if HOST_LONG_BITS == 64
7777 #if defined(__NR_futex)
7778     /* always a 64-bit time_t, it doesn't define _time64 version  */
7779     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7780 
7781 #endif
7782 #else /* HOST_LONG_BITS == 64 */
7783 #if defined(__NR_futex_time64)
7784     if (sizeof(timeout->tv_sec) == 8) {
7785         /* _time64 function on 32bit arch */
7786         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7787     }
7788 #endif
7789 #if defined(__NR_futex)
7790     /* old function on 32bit arch */
7791     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7792 #endif
7793 #endif /* HOST_LONG_BITS == 64 */
7794     g_assert_not_reached();
7795 }
7796 
7797 static int do_safe_futex(int *uaddr, int op, int val,
7798                          const struct timespec *timeout, int *uaddr2,
7799                          int val3)
7800 {
7801 #if HOST_LONG_BITS == 64
7802 #if defined(__NR_futex)
7803     /* always a 64-bit time_t, it doesn't define _time64 version  */
7804     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7805 #endif
7806 #else /* HOST_LONG_BITS == 64 */
7807 #if defined(__NR_futex_time64)
7808     if (sizeof(timeout->tv_sec) == 8) {
7809         /* _time64 function on 32bit arch */
7810         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7811                                            val3));
7812     }
7813 #endif
7814 #if defined(__NR_futex)
7815     /* old function on 32bit arch */
7816     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7817 #endif
7818 #endif /* HOST_LONG_BITS == 64 */
7819     return -TARGET_ENOSYS;
7820 }
7821 
7822 /* ??? Using host futex calls even when target atomic operations
7823    are not really atomic probably breaks things.  However implementing
7824    futexes locally would make futexes shared between multiple processes
7825    tricky.  However they're probably useless because guest atomic
7826    operations won't work either.  */
7827 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7828 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7829                     int op, int val, target_ulong timeout,
7830                     target_ulong uaddr2, int val3)
7831 {
7832     struct timespec ts, *pts = NULL;
7833     void *haddr2 = NULL;
7834     int base_op;
7835 
7836     /* We assume FUTEX_* constants are the same on both host and target. */
7837 #ifdef FUTEX_CMD_MASK
7838     base_op = op & FUTEX_CMD_MASK;
7839 #else
7840     base_op = op;
7841 #endif
7842     switch (base_op) {
7843     case FUTEX_WAIT:
7844     case FUTEX_WAIT_BITSET:
7845         val = tswap32(val);
7846         break;
7847     case FUTEX_WAIT_REQUEUE_PI:
7848         val = tswap32(val);
7849         haddr2 = g2h(cpu, uaddr2);
7850         break;
7851     case FUTEX_LOCK_PI:
7852     case FUTEX_LOCK_PI2:
7853         break;
7854     case FUTEX_WAKE:
7855     case FUTEX_WAKE_BITSET:
7856     case FUTEX_TRYLOCK_PI:
7857     case FUTEX_UNLOCK_PI:
7858         timeout = 0;
7859         break;
7860     case FUTEX_FD:
7861         val = target_to_host_signal(val);
7862         timeout = 0;
7863         break;
7864     case FUTEX_CMP_REQUEUE:
7865     case FUTEX_CMP_REQUEUE_PI:
7866         val3 = tswap32(val3);
7867         /* fall through */
7868     case FUTEX_REQUEUE:
7869     case FUTEX_WAKE_OP:
7870         /*
7871          * For these, the 4th argument is not TIMEOUT, but VAL2.
7872          * But the prototype of do_safe_futex takes a pointer, so
7873          * insert casts to satisfy the compiler.  We do not need
7874          * to tswap VAL2 since it's not compared to guest memory.
7875           */
7876         pts = (struct timespec *)(uintptr_t)timeout;
7877         timeout = 0;
7878         haddr2 = g2h(cpu, uaddr2);
7879         break;
7880     default:
7881         return -TARGET_ENOSYS;
7882     }
7883     if (timeout) {
7884         pts = &ts;
7885         if (time64
7886             ? target_to_host_timespec64(pts, timeout)
7887             : target_to_host_timespec(pts, timeout)) {
7888             return -TARGET_EFAULT;
7889         }
7890     }
7891     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7892 }
7893 #endif
7894 
7895 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7896 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7897                                      abi_long handle, abi_long mount_id,
7898                                      abi_long flags)
7899 {
7900     struct file_handle *target_fh;
7901     struct file_handle *fh;
7902     int mid = 0;
7903     abi_long ret;
7904     char *name;
7905     unsigned int size, total_size;
7906 
7907     if (get_user_s32(size, handle)) {
7908         return -TARGET_EFAULT;
7909     }
7910 
7911     name = lock_user_string(pathname);
7912     if (!name) {
7913         return -TARGET_EFAULT;
7914     }
7915 
7916     total_size = sizeof(struct file_handle) + size;
7917     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7918     if (!target_fh) {
7919         unlock_user(name, pathname, 0);
7920         return -TARGET_EFAULT;
7921     }
7922 
7923     fh = g_malloc0(total_size);
7924     fh->handle_bytes = size;
7925 
7926     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7927     unlock_user(name, pathname, 0);
7928 
7929     /* man name_to_handle_at(2):
7930      * Other than the use of the handle_bytes field, the caller should treat
7931      * the file_handle structure as an opaque data type
7932      */
7933 
7934     memcpy(target_fh, fh, total_size);
7935     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7936     target_fh->handle_type = tswap32(fh->handle_type);
7937     g_free(fh);
7938     unlock_user(target_fh, handle, total_size);
7939 
7940     if (put_user_s32(mid, mount_id)) {
7941         return -TARGET_EFAULT;
7942     }
7943 
7944     return ret;
7945 
7946 }
7947 #endif
7948 
7949 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7950 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7951                                      abi_long flags)
7952 {
7953     struct file_handle *target_fh;
7954     struct file_handle *fh;
7955     unsigned int size, total_size;
7956     abi_long ret;
7957 
7958     if (get_user_s32(size, handle)) {
7959         return -TARGET_EFAULT;
7960     }
7961 
7962     total_size = sizeof(struct file_handle) + size;
7963     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7964     if (!target_fh) {
7965         return -TARGET_EFAULT;
7966     }
7967 
7968     fh = g_memdup(target_fh, total_size);
7969     fh->handle_bytes = size;
7970     fh->handle_type = tswap32(target_fh->handle_type);
7971 
7972     ret = get_errno(open_by_handle_at(mount_fd, fh,
7973                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7974 
7975     g_free(fh);
7976 
7977     unlock_user(target_fh, handle, total_size);
7978 
7979     return ret;
7980 }
7981 #endif
7982 
7983 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7984 
7985 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7986 {
7987     int host_flags;
7988     target_sigset_t *target_mask;
7989     sigset_t host_mask;
7990     abi_long ret;
7991 
7992     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7993         return -TARGET_EINVAL;
7994     }
7995     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7996         return -TARGET_EFAULT;
7997     }
7998 
7999     target_to_host_sigset(&host_mask, target_mask);
8000 
8001     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
8002 
8003     ret = get_errno(signalfd(fd, &host_mask, host_flags));
8004     if (ret >= 0) {
8005         fd_trans_register(ret, &target_signalfd_trans);
8006     }
8007 
8008     unlock_user_struct(target_mask, mask, 0);
8009 
8010     return ret;
8011 }
8012 #endif
8013 
8014 /* Map host to target signal numbers for the wait family of syscalls.
8015    Assume all other status bits are the same.  */
8016 int host_to_target_waitstatus(int status)
8017 {
8018     if (WIFSIGNALED(status)) {
8019         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
8020     }
8021     if (WIFSTOPPED(status)) {
8022         return (host_to_target_signal(WSTOPSIG(status)) << 8)
8023                | (status & 0xff);
8024     }
8025     return status;
8026 }
8027 
8028 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
8029 {
8030     CPUState *cpu = env_cpu(cpu_env);
8031     struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
8032     int i;
8033 
8034     for (i = 0; i < bprm->argc; i++) {
8035         size_t len = strlen(bprm->argv[i]) + 1;
8036 
8037         if (write(fd, bprm->argv[i], len) != len) {
8038             return -1;
8039         }
8040     }
8041 
8042     return 0;
8043 }
8044 
8045 static int open_self_maps(CPUArchState *cpu_env, int fd)
8046 {
8047     CPUState *cpu = env_cpu(cpu_env);
8048     TaskState *ts = cpu->opaque;
8049     GSList *map_info = read_self_maps();
8050     GSList *s;
8051     int count;
8052 
8053     for (s = map_info; s; s = g_slist_next(s)) {
8054         MapInfo *e = (MapInfo *) s->data;
8055 
8056         if (h2g_valid(e->start)) {
8057             unsigned long min = e->start;
8058             unsigned long max = e->end;
8059             int flags = page_get_flags(h2g(min));
8060             const char *path;
8061 
8062             max = h2g_valid(max - 1) ?
8063                 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1;
8064 
8065             if (page_check_range(h2g(min), max - min, flags) == -1) {
8066                 continue;
8067             }
8068 
8069 #ifdef TARGET_HPPA
8070             if (h2g(max) == ts->info->stack_limit) {
8071 #else
8072             if (h2g(min) == ts->info->stack_limit) {
8073 #endif
8074                 path = "[stack]";
8075             } else {
8076                 path = e->path;
8077             }
8078 
8079             count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8080                             " %c%c%c%c %08" PRIx64 " %s %"PRId64,
8081                             h2g(min), h2g(max - 1) + 1,
8082                             (flags & PAGE_READ) ? 'r' : '-',
8083                             (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8084                             (flags & PAGE_EXEC) ? 'x' : '-',
8085                             e->is_priv ? 'p' : 's',
8086                             (uint64_t) e->offset, e->dev, e->inode);
8087             if (path) {
8088                 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8089             } else {
8090                 dprintf(fd, "\n");
8091             }
8092         }
8093     }
8094 
8095     free_self_maps(map_info);
8096 
8097 #ifdef TARGET_VSYSCALL_PAGE
8098     /*
8099      * We only support execution from the vsyscall page.
8100      * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
8101      */
8102     count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
8103                     " --xp 00000000 00:00 0",
8104                     TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
8105     dprintf(fd, "%*s%s\n", 73 - count, "",  "[vsyscall]");
8106 #endif
8107 
8108     return 0;
8109 }
8110 
8111 static int open_self_stat(CPUArchState *cpu_env, int fd)
8112 {
8113     CPUState *cpu = env_cpu(cpu_env);
8114     TaskState *ts = cpu->opaque;
8115     g_autoptr(GString) buf = g_string_new(NULL);
8116     int i;
8117 
8118     for (i = 0; i < 44; i++) {
8119         if (i == 0) {
8120             /* pid */
8121             g_string_printf(buf, FMT_pid " ", getpid());
8122         } else if (i == 1) {
8123             /* app name */
8124             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8125             bin = bin ? bin + 1 : ts->bprm->argv[0];
8126             g_string_printf(buf, "(%.15s) ", bin);
8127         } else if (i == 2) {
8128             /* task state */
8129             g_string_assign(buf, "R "); /* we are running right now */
8130         } else if (i == 3) {
8131             /* ppid */
8132             g_string_printf(buf, FMT_pid " ", getppid());
8133         } else if (i == 21) {
8134             /* starttime */
8135             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8136         } else if (i == 27) {
8137             /* stack bottom */
8138             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8139         } else {
8140             /* for the rest, there is MasterCard */
8141             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8142         }
8143 
8144         if (write(fd, buf->str, buf->len) != buf->len) {
8145             return -1;
8146         }
8147     }
8148 
8149     return 0;
8150 }
8151 
8152 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8153 {
8154     CPUState *cpu = env_cpu(cpu_env);
8155     TaskState *ts = cpu->opaque;
8156     abi_ulong auxv = ts->info->saved_auxv;
8157     abi_ulong len = ts->info->auxv_len;
8158     char *ptr;
8159 
8160     /*
8161      * Auxiliary vector is stored in target process stack.
8162      * read in whole auxv vector and copy it to file
8163      */
8164     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8165     if (ptr != NULL) {
8166         while (len > 0) {
8167             ssize_t r;
8168             r = write(fd, ptr, len);
8169             if (r <= 0) {
8170                 break;
8171             }
8172             len -= r;
8173             ptr += r;
8174         }
8175         lseek(fd, 0, SEEK_SET);
8176         unlock_user(ptr, auxv, len);
8177     }
8178 
8179     return 0;
8180 }
8181 
8182 static int is_proc_myself(const char *filename, const char *entry)
8183 {
8184     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8185         filename += strlen("/proc/");
8186         if (!strncmp(filename, "self/", strlen("self/"))) {
8187             filename += strlen("self/");
8188         } else if (*filename >= '1' && *filename <= '9') {
8189             char myself[80];
8190             snprintf(myself, sizeof(myself), "%d/", getpid());
8191             if (!strncmp(filename, myself, strlen(myself))) {
8192                 filename += strlen(myself);
8193             } else {
8194                 return 0;
8195             }
8196         } else {
8197             return 0;
8198         }
8199         if (!strcmp(filename, entry)) {
8200             return 1;
8201         }
8202     }
8203     return 0;
8204 }
8205 
8206 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8207                       const char *fmt, int code)
8208 {
8209     if (logfile) {
8210         CPUState *cs = env_cpu(env);
8211 
8212         fprintf(logfile, fmt, code);
8213         fprintf(logfile, "Failing executable: %s\n", exec_path);
8214         cpu_dump_state(cs, logfile, 0);
8215         open_self_maps(env, fileno(logfile));
8216     }
8217 }
8218 
8219 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8220 {
8221     /* dump to console */
8222     excp_dump_file(stderr, env, fmt, code);
8223 
8224     /* dump to log file */
8225     if (qemu_log_separate()) {
8226         FILE *logfile = qemu_log_trylock();
8227 
8228         excp_dump_file(logfile, env, fmt, code);
8229         qemu_log_unlock(logfile);
8230     }
8231 }
8232 
8233 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8234     defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
8235 static int is_proc(const char *filename, const char *entry)
8236 {
8237     return strcmp(filename, entry) == 0;
8238 }
8239 #endif
8240 
8241 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8242 static int open_net_route(CPUArchState *cpu_env, int fd)
8243 {
8244     FILE *fp;
8245     char *line = NULL;
8246     size_t len = 0;
8247     ssize_t read;
8248 
8249     fp = fopen("/proc/net/route", "r");
8250     if (fp == NULL) {
8251         return -1;
8252     }
8253 
8254     /* read header */
8255 
8256     read = getline(&line, &len, fp);
8257     dprintf(fd, "%s", line);
8258 
8259     /* read routes */
8260 
8261     while ((read = getline(&line, &len, fp)) != -1) {
8262         char iface[16];
8263         uint32_t dest, gw, mask;
8264         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8265         int fields;
8266 
8267         fields = sscanf(line,
8268                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8269                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8270                         &mask, &mtu, &window, &irtt);
8271         if (fields != 11) {
8272             continue;
8273         }
8274         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8275                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8276                 metric, tswap32(mask), mtu, window, irtt);
8277     }
8278 
8279     free(line);
8280     fclose(fp);
8281 
8282     return 0;
8283 }
8284 #endif
8285 
8286 #if defined(TARGET_SPARC)
8287 static int open_cpuinfo(CPUArchState *cpu_env, int fd)
8288 {
8289     dprintf(fd, "type\t\t: sun4u\n");
8290     return 0;
8291 }
8292 #endif
8293 
8294 #if defined(TARGET_HPPA)
8295 static int open_cpuinfo(CPUArchState *cpu_env, int fd)
8296 {
8297     int i, num_cpus;
8298 
8299     num_cpus = sysconf(_SC_NPROCESSORS_ONLN);
8300     for (i = 0; i < num_cpus; i++) {
8301         dprintf(fd, "processor\t: %d\n", i);
8302         dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
8303         dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
8304         dprintf(fd, "capabilities\t: os32\n");
8305         dprintf(fd, "model\t\t: 9000/778/B160L - "
8306                     "Merlin L2 160 QEMU (9000/778/B160L)\n\n");
8307     }
8308     return 0;
8309 }
8310 #endif
8311 
8312 #if defined(TARGET_M68K)
8313 static int open_hardware(CPUArchState *cpu_env, int fd)
8314 {
8315     dprintf(fd, "Model:\t\tqemu-m68k\n");
8316     return 0;
8317 }
8318 #endif
8319 
8320 static int do_openat(CPUArchState *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
8321 {
8322     struct fake_open {
8323         const char *filename;
8324         int (*fill)(CPUArchState *cpu_env, int fd);
8325         int (*cmp)(const char *s1, const char *s2);
8326     };
8327     const struct fake_open *fake_open;
8328     static const struct fake_open fakes[] = {
8329         { "maps", open_self_maps, is_proc_myself },
8330         { "stat", open_self_stat, is_proc_myself },
8331         { "auxv", open_self_auxv, is_proc_myself },
8332         { "cmdline", open_self_cmdline, is_proc_myself },
8333 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8334         { "/proc/net/route", open_net_route, is_proc },
8335 #endif
8336 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
8337         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8338 #endif
8339 #if defined(TARGET_M68K)
8340         { "/proc/hardware", open_hardware, is_proc },
8341 #endif
8342         { NULL, NULL, NULL }
8343     };
8344 
8345     if (is_proc_myself(pathname, "exe")) {
8346         return safe_openat(dirfd, exec_path, flags, mode);
8347     }
8348 
8349     for (fake_open = fakes; fake_open->filename; fake_open++) {
8350         if (fake_open->cmp(pathname, fake_open->filename)) {
8351             break;
8352         }
8353     }
8354 
8355     if (fake_open->filename) {
8356         const char *tmpdir;
8357         char filename[PATH_MAX];
8358         int fd, r;
8359 
8360         fd = memfd_create("qemu-open", 0);
8361         if (fd < 0) {
8362             if (errno != ENOSYS) {
8363                 return fd;
8364             }
8365             /* create temporary file to map stat to */
8366             tmpdir = getenv("TMPDIR");
8367             if (!tmpdir)
8368                 tmpdir = "/tmp";
8369             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8370             fd = mkstemp(filename);
8371             if (fd < 0) {
8372                 return fd;
8373             }
8374             unlink(filename);
8375         }
8376 
8377         if ((r = fake_open->fill(cpu_env, fd))) {
8378             int e = errno;
8379             close(fd);
8380             errno = e;
8381             return r;
8382         }
8383         lseek(fd, 0, SEEK_SET);
8384 
8385         return fd;
8386     }
8387 
8388     return safe_openat(dirfd, path(pathname), flags, mode);
8389 }
8390 
8391 static int do_execveat(CPUArchState *cpu_env, int dirfd,
8392                        abi_long pathname, abi_long guest_argp,
8393                        abi_long guest_envp, int flags)
8394 {
8395     int ret;
8396     char **argp, **envp;
8397     int argc, envc;
8398     abi_ulong gp;
8399     abi_ulong addr;
8400     char **q;
8401     void *p;
8402 
8403     argc = 0;
8404 
8405     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8406         if (get_user_ual(addr, gp)) {
8407             return -TARGET_EFAULT;
8408         }
8409         if (!addr) {
8410             break;
8411         }
8412         argc++;
8413     }
8414     envc = 0;
8415     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8416         if (get_user_ual(addr, gp)) {
8417             return -TARGET_EFAULT;
8418         }
8419         if (!addr) {
8420             break;
8421         }
8422         envc++;
8423     }
8424 
8425     argp = g_new0(char *, argc + 1);
8426     envp = g_new0(char *, envc + 1);
8427 
8428     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8429         if (get_user_ual(addr, gp)) {
8430             goto execve_efault;
8431         }
8432         if (!addr) {
8433             break;
8434         }
8435         *q = lock_user_string(addr);
8436         if (!*q) {
8437             goto execve_efault;
8438         }
8439     }
8440     *q = NULL;
8441 
8442     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8443         if (get_user_ual(addr, gp)) {
8444             goto execve_efault;
8445         }
8446         if (!addr) {
8447             break;
8448         }
8449         *q = lock_user_string(addr);
8450         if (!*q) {
8451             goto execve_efault;
8452         }
8453     }
8454     *q = NULL;
8455 
8456     /*
8457      * Although execve() is not an interruptible syscall it is
8458      * a special case where we must use the safe_syscall wrapper:
8459      * if we allow a signal to happen before we make the host
8460      * syscall then we will 'lose' it, because at the point of
8461      * execve the process leaves QEMU's control. So we use the
8462      * safe syscall wrapper to ensure that we either take the
8463      * signal as a guest signal, or else it does not happen
8464      * before the execve completes and makes it the other
8465      * program's problem.
8466      */
8467     p = lock_user_string(pathname);
8468     if (!p) {
8469         goto execve_efault;
8470     }
8471 
8472     if (is_proc_myself(p, "exe")) {
8473         ret = get_errno(safe_execveat(dirfd, exec_path, argp, envp, flags));
8474     } else {
8475         ret = get_errno(safe_execveat(dirfd, p, argp, envp, flags));
8476     }
8477 
8478     unlock_user(p, pathname, 0);
8479 
8480     goto execve_end;
8481 
8482 execve_efault:
8483     ret = -TARGET_EFAULT;
8484 
8485 execve_end:
8486     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8487         if (get_user_ual(addr, gp) || !addr) {
8488             break;
8489         }
8490         unlock_user(*q, addr, 0);
8491     }
8492     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8493         if (get_user_ual(addr, gp) || !addr) {
8494             break;
8495         }
8496         unlock_user(*q, addr, 0);
8497     }
8498 
8499     g_free(argp);
8500     g_free(envp);
8501     return ret;
8502 }
8503 
8504 #define TIMER_MAGIC 0x0caf0000
8505 #define TIMER_MAGIC_MASK 0xffff0000
8506 
8507 /* Convert QEMU provided timer ID back to internal 16bit index format */
8508 static target_timer_t get_timer_id(abi_long arg)
8509 {
8510     target_timer_t timerid = arg;
8511 
8512     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8513         return -TARGET_EINVAL;
8514     }
8515 
8516     timerid &= 0xffff;
8517 
8518     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8519         return -TARGET_EINVAL;
8520     }
8521 
8522     return timerid;
8523 }
8524 
8525 static int target_to_host_cpu_mask(unsigned long *host_mask,
8526                                    size_t host_size,
8527                                    abi_ulong target_addr,
8528                                    size_t target_size)
8529 {
8530     unsigned target_bits = sizeof(abi_ulong) * 8;
8531     unsigned host_bits = sizeof(*host_mask) * 8;
8532     abi_ulong *target_mask;
8533     unsigned i, j;
8534 
8535     assert(host_size >= target_size);
8536 
8537     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8538     if (!target_mask) {
8539         return -TARGET_EFAULT;
8540     }
8541     memset(host_mask, 0, host_size);
8542 
8543     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8544         unsigned bit = i * target_bits;
8545         abi_ulong val;
8546 
8547         __get_user(val, &target_mask[i]);
8548         for (j = 0; j < target_bits; j++, bit++) {
8549             if (val & (1UL << j)) {
8550                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8551             }
8552         }
8553     }
8554 
8555     unlock_user(target_mask, target_addr, 0);
8556     return 0;
8557 }
8558 
8559 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8560                                    size_t host_size,
8561                                    abi_ulong target_addr,
8562                                    size_t target_size)
8563 {
8564     unsigned target_bits = sizeof(abi_ulong) * 8;
8565     unsigned host_bits = sizeof(*host_mask) * 8;
8566     abi_ulong *target_mask;
8567     unsigned i, j;
8568 
8569     assert(host_size >= target_size);
8570 
8571     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8572     if (!target_mask) {
8573         return -TARGET_EFAULT;
8574     }
8575 
8576     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8577         unsigned bit = i * target_bits;
8578         abi_ulong val = 0;
8579 
8580         for (j = 0; j < target_bits; j++, bit++) {
8581             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8582                 val |= 1UL << j;
8583             }
8584         }
8585         __put_user(val, &target_mask[i]);
8586     }
8587 
8588     unlock_user(target_mask, target_addr, target_size);
8589     return 0;
8590 }
8591 
8592 #ifdef TARGET_NR_getdents
8593 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8594 {
8595     g_autofree void *hdirp = NULL;
8596     void *tdirp;
8597     int hlen, hoff, toff;
8598     int hreclen, treclen;
8599     off64_t prev_diroff = 0;
8600 
8601     hdirp = g_try_malloc(count);
8602     if (!hdirp) {
8603         return -TARGET_ENOMEM;
8604     }
8605 
8606 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8607     hlen = sys_getdents(dirfd, hdirp, count);
8608 #else
8609     hlen = sys_getdents64(dirfd, hdirp, count);
8610 #endif
8611 
8612     hlen = get_errno(hlen);
8613     if (is_error(hlen)) {
8614         return hlen;
8615     }
8616 
8617     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8618     if (!tdirp) {
8619         return -TARGET_EFAULT;
8620     }
8621 
8622     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8623 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8624         struct linux_dirent *hde = hdirp + hoff;
8625 #else
8626         struct linux_dirent64 *hde = hdirp + hoff;
8627 #endif
8628         struct target_dirent *tde = tdirp + toff;
8629         int namelen;
8630         uint8_t type;
8631 
8632         namelen = strlen(hde->d_name);
8633         hreclen = hde->d_reclen;
8634         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8635         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8636 
8637         if (toff + treclen > count) {
8638             /*
8639              * If the host struct is smaller than the target struct, or
8640              * requires less alignment and thus packs into less space,
8641              * then the host can return more entries than we can pass
8642              * on to the guest.
8643              */
8644             if (toff == 0) {
8645                 toff = -TARGET_EINVAL; /* result buffer is too small */
8646                 break;
8647             }
8648             /*
8649              * Return what we have, resetting the file pointer to the
8650              * location of the first record not returned.
8651              */
8652             lseek64(dirfd, prev_diroff, SEEK_SET);
8653             break;
8654         }
8655 
8656         prev_diroff = hde->d_off;
8657         tde->d_ino = tswapal(hde->d_ino);
8658         tde->d_off = tswapal(hde->d_off);
8659         tde->d_reclen = tswap16(treclen);
8660         memcpy(tde->d_name, hde->d_name, namelen + 1);
8661 
8662         /*
8663          * The getdents type is in what was formerly a padding byte at the
8664          * end of the structure.
8665          */
8666 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8667         type = *((uint8_t *)hde + hreclen - 1);
8668 #else
8669         type = hde->d_type;
8670 #endif
8671         *((uint8_t *)tde + treclen - 1) = type;
8672     }
8673 
8674     unlock_user(tdirp, arg2, toff);
8675     return toff;
8676 }
8677 #endif /* TARGET_NR_getdents */
8678 
8679 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8680 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8681 {
8682     g_autofree void *hdirp = NULL;
8683     void *tdirp;
8684     int hlen, hoff, toff;
8685     int hreclen, treclen;
8686     off64_t prev_diroff = 0;
8687 
8688     hdirp = g_try_malloc(count);
8689     if (!hdirp) {
8690         return -TARGET_ENOMEM;
8691     }
8692 
8693     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8694     if (is_error(hlen)) {
8695         return hlen;
8696     }
8697 
8698     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8699     if (!tdirp) {
8700         return -TARGET_EFAULT;
8701     }
8702 
8703     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8704         struct linux_dirent64 *hde = hdirp + hoff;
8705         struct target_dirent64 *tde = tdirp + toff;
8706         int namelen;
8707 
8708         namelen = strlen(hde->d_name) + 1;
8709         hreclen = hde->d_reclen;
8710         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8711         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8712 
8713         if (toff + treclen > count) {
8714             /*
8715              * If the host struct is smaller than the target struct, or
8716              * requires less alignment and thus packs into less space,
8717              * then the host can return more entries than we can pass
8718              * on to the guest.
8719              */
8720             if (toff == 0) {
8721                 toff = -TARGET_EINVAL; /* result buffer is too small */
8722                 break;
8723             }
8724             /*
8725              * Return what we have, resetting the file pointer to the
8726              * location of the first record not returned.
8727              */
8728             lseek64(dirfd, prev_diroff, SEEK_SET);
8729             break;
8730         }
8731 
8732         prev_diroff = hde->d_off;
8733         tde->d_ino = tswap64(hde->d_ino);
8734         tde->d_off = tswap64(hde->d_off);
8735         tde->d_reclen = tswap16(treclen);
8736         tde->d_type = hde->d_type;
8737         memcpy(tde->d_name, hde->d_name, namelen);
8738     }
8739 
8740     unlock_user(tdirp, arg2, toff);
8741     return toff;
8742 }
8743 #endif /* TARGET_NR_getdents64 */
8744 
8745 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8746 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8747 #endif
8748 
8749 /* This is an internal helper for do_syscall so that it is easier
8750  * to have a single return point, so that actions, such as logging
8751  * of syscall results, can be performed.
8752  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8753  */
8754 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
8755                             abi_long arg2, abi_long arg3, abi_long arg4,
8756                             abi_long arg5, abi_long arg6, abi_long arg7,
8757                             abi_long arg8)
8758 {
8759     CPUState *cpu = env_cpu(cpu_env);
8760     abi_long ret;
8761 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8762     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8763     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8764     || defined(TARGET_NR_statx)
8765     struct stat st;
8766 #endif
8767 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8768     || defined(TARGET_NR_fstatfs)
8769     struct statfs stfs;
8770 #endif
8771     void *p;
8772 
8773     switch(num) {
8774     case TARGET_NR_exit:
8775         /* In old applications this may be used to implement _exit(2).
8776            However in threaded applications it is used for thread termination,
8777            and _exit_group is used for application termination.
8778            Do thread termination if we have more then one thread.  */
8779 
8780         if (block_signals()) {
8781             return -QEMU_ERESTARTSYS;
8782         }
8783 
8784         pthread_mutex_lock(&clone_lock);
8785 
8786         if (CPU_NEXT(first_cpu)) {
8787             TaskState *ts = cpu->opaque;
8788 
8789             if (ts->child_tidptr) {
8790                 put_user_u32(0, ts->child_tidptr);
8791                 do_sys_futex(g2h(cpu, ts->child_tidptr),
8792                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
8793             }
8794 
8795             object_unparent(OBJECT(cpu));
8796             object_unref(OBJECT(cpu));
8797             /*
8798              * At this point the CPU should be unrealized and removed
8799              * from cpu lists. We can clean-up the rest of the thread
8800              * data without the lock held.
8801              */
8802 
8803             pthread_mutex_unlock(&clone_lock);
8804 
8805             thread_cpu = NULL;
8806             g_free(ts);
8807             rcu_unregister_thread();
8808             pthread_exit(NULL);
8809         }
8810 
8811         pthread_mutex_unlock(&clone_lock);
8812         preexit_cleanup(cpu_env, arg1);
8813         _exit(arg1);
8814         return 0; /* avoid warning */
8815     case TARGET_NR_read:
8816         if (arg2 == 0 && arg3 == 0) {
8817             return get_errno(safe_read(arg1, 0, 0));
8818         } else {
8819             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8820                 return -TARGET_EFAULT;
8821             ret = get_errno(safe_read(arg1, p, arg3));
8822             if (ret >= 0 &&
8823                 fd_trans_host_to_target_data(arg1)) {
8824                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
8825             }
8826             unlock_user(p, arg2, ret);
8827         }
8828         return ret;
8829     case TARGET_NR_write:
8830         if (arg2 == 0 && arg3 == 0) {
8831             return get_errno(safe_write(arg1, 0, 0));
8832         }
8833         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8834             return -TARGET_EFAULT;
8835         if (fd_trans_target_to_host_data(arg1)) {
8836             void *copy = g_malloc(arg3);
8837             memcpy(copy, p, arg3);
8838             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
8839             if (ret >= 0) {
8840                 ret = get_errno(safe_write(arg1, copy, ret));
8841             }
8842             g_free(copy);
8843         } else {
8844             ret = get_errno(safe_write(arg1, p, arg3));
8845         }
8846         unlock_user(p, arg2, 0);
8847         return ret;
8848 
8849 #ifdef TARGET_NR_open
8850     case TARGET_NR_open:
8851         if (!(p = lock_user_string(arg1)))
8852             return -TARGET_EFAULT;
8853         ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
8854                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
8855                                   arg3));
8856         fd_trans_unregister(ret);
8857         unlock_user(p, arg1, 0);
8858         return ret;
8859 #endif
8860     case TARGET_NR_openat:
8861         if (!(p = lock_user_string(arg2)))
8862             return -TARGET_EFAULT;
8863         ret = get_errno(do_openat(cpu_env, arg1, p,
8864                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
8865                                   arg4));
8866         fd_trans_unregister(ret);
8867         unlock_user(p, arg2, 0);
8868         return ret;
8869 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8870     case TARGET_NR_name_to_handle_at:
8871         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
8872         return ret;
8873 #endif
8874 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8875     case TARGET_NR_open_by_handle_at:
8876         ret = do_open_by_handle_at(arg1, arg2, arg3);
8877         fd_trans_unregister(ret);
8878         return ret;
8879 #endif
8880 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
8881     case TARGET_NR_pidfd_open:
8882         return get_errno(pidfd_open(arg1, arg2));
8883 #endif
8884 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
8885     case TARGET_NR_pidfd_send_signal:
8886         {
8887             siginfo_t uinfo, *puinfo;
8888 
8889             if (arg3) {
8890                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
8891                 if (!p) {
8892                     return -TARGET_EFAULT;
8893                  }
8894                  target_to_host_siginfo(&uinfo, p);
8895                  unlock_user(p, arg3, 0);
8896                  puinfo = &uinfo;
8897             } else {
8898                  puinfo = NULL;
8899             }
8900             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
8901                                               puinfo, arg4));
8902         }
8903         return ret;
8904 #endif
8905 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
8906     case TARGET_NR_pidfd_getfd:
8907         return get_errno(pidfd_getfd(arg1, arg2, arg3));
8908 #endif
8909     case TARGET_NR_close:
8910         fd_trans_unregister(arg1);
8911         return get_errno(close(arg1));
8912 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
8913     case TARGET_NR_close_range:
8914         ret = get_errno(sys_close_range(arg1, arg2, arg3));
8915         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
8916             abi_long fd, maxfd;
8917             maxfd = MIN(arg2, target_fd_max);
8918             for (fd = arg1; fd < maxfd; fd++) {
8919                 fd_trans_unregister(fd);
8920             }
8921         }
8922         return ret;
8923 #endif
8924 
8925     case TARGET_NR_brk:
8926         return do_brk(arg1);
8927 #ifdef TARGET_NR_fork
8928     case TARGET_NR_fork:
8929         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
8930 #endif
8931 #ifdef TARGET_NR_waitpid
8932     case TARGET_NR_waitpid:
8933         {
8934             int status;
8935             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
8936             if (!is_error(ret) && arg2 && ret
8937                 && put_user_s32(host_to_target_waitstatus(status), arg2))
8938                 return -TARGET_EFAULT;
8939         }
8940         return ret;
8941 #endif
8942 #ifdef TARGET_NR_waitid
8943     case TARGET_NR_waitid:
8944         {
8945             siginfo_t info;
8946             info.si_pid = 0;
8947             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
8948             if (!is_error(ret) && arg3 && info.si_pid != 0) {
8949                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
8950                     return -TARGET_EFAULT;
8951                 host_to_target_siginfo(p, &info);
8952                 unlock_user(p, arg3, sizeof(target_siginfo_t));
8953             }
8954         }
8955         return ret;
8956 #endif
8957 #ifdef TARGET_NR_creat /* not on alpha */
8958     case TARGET_NR_creat:
8959         if (!(p = lock_user_string(arg1)))
8960             return -TARGET_EFAULT;
8961         ret = get_errno(creat(p, arg2));
8962         fd_trans_unregister(ret);
8963         unlock_user(p, arg1, 0);
8964         return ret;
8965 #endif
8966 #ifdef TARGET_NR_link
8967     case TARGET_NR_link:
8968         {
8969             void * p2;
8970             p = lock_user_string(arg1);
8971             p2 = lock_user_string(arg2);
8972             if (!p || !p2)
8973                 ret = -TARGET_EFAULT;
8974             else
8975                 ret = get_errno(link(p, p2));
8976             unlock_user(p2, arg2, 0);
8977             unlock_user(p, arg1, 0);
8978         }
8979         return ret;
8980 #endif
8981 #if defined(TARGET_NR_linkat)
8982     case TARGET_NR_linkat:
8983         {
8984             void * p2 = NULL;
8985             if (!arg2 || !arg4)
8986                 return -TARGET_EFAULT;
8987             p  = lock_user_string(arg2);
8988             p2 = lock_user_string(arg4);
8989             if (!p || !p2)
8990                 ret = -TARGET_EFAULT;
8991             else
8992                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8993             unlock_user(p, arg2, 0);
8994             unlock_user(p2, arg4, 0);
8995         }
8996         return ret;
8997 #endif
8998 #ifdef TARGET_NR_unlink
8999     case TARGET_NR_unlink:
9000         if (!(p = lock_user_string(arg1)))
9001             return -TARGET_EFAULT;
9002         ret = get_errno(unlink(p));
9003         unlock_user(p, arg1, 0);
9004         return ret;
9005 #endif
9006 #if defined(TARGET_NR_unlinkat)
9007     case TARGET_NR_unlinkat:
9008         if (!(p = lock_user_string(arg2)))
9009             return -TARGET_EFAULT;
9010         ret = get_errno(unlinkat(arg1, p, arg3));
9011         unlock_user(p, arg2, 0);
9012         return ret;
9013 #endif
9014     case TARGET_NR_execveat:
9015         return do_execveat(cpu_env, arg1, arg2, arg3, arg4, arg5);
9016     case TARGET_NR_execve:
9017         return do_execveat(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0);
9018     case TARGET_NR_chdir:
9019         if (!(p = lock_user_string(arg1)))
9020             return -TARGET_EFAULT;
9021         ret = get_errno(chdir(p));
9022         unlock_user(p, arg1, 0);
9023         return ret;
9024 #ifdef TARGET_NR_time
9025     case TARGET_NR_time:
9026         {
9027             time_t host_time;
9028             ret = get_errno(time(&host_time));
9029             if (!is_error(ret)
9030                 && arg1
9031                 && put_user_sal(host_time, arg1))
9032                 return -TARGET_EFAULT;
9033         }
9034         return ret;
9035 #endif
9036 #ifdef TARGET_NR_mknod
9037     case TARGET_NR_mknod:
9038         if (!(p = lock_user_string(arg1)))
9039             return -TARGET_EFAULT;
9040         ret = get_errno(mknod(p, arg2, arg3));
9041         unlock_user(p, arg1, 0);
9042         return ret;
9043 #endif
9044 #if defined(TARGET_NR_mknodat)
9045     case TARGET_NR_mknodat:
9046         if (!(p = lock_user_string(arg2)))
9047             return -TARGET_EFAULT;
9048         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9049         unlock_user(p, arg2, 0);
9050         return ret;
9051 #endif
9052 #ifdef TARGET_NR_chmod
9053     case TARGET_NR_chmod:
9054         if (!(p = lock_user_string(arg1)))
9055             return -TARGET_EFAULT;
9056         ret = get_errno(chmod(p, arg2));
9057         unlock_user(p, arg1, 0);
9058         return ret;
9059 #endif
9060 #ifdef TARGET_NR_lseek
9061     case TARGET_NR_lseek:
9062         return get_errno(lseek(arg1, arg2, arg3));
9063 #endif
9064 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9065     /* Alpha specific */
9066     case TARGET_NR_getxpid:
9067         cpu_env->ir[IR_A4] = getppid();
9068         return get_errno(getpid());
9069 #endif
9070 #ifdef TARGET_NR_getpid
9071     case TARGET_NR_getpid:
9072         return get_errno(getpid());
9073 #endif
9074     case TARGET_NR_mount:
9075         {
9076             /* need to look at the data field */
9077             void *p2, *p3;
9078 
9079             if (arg1) {
9080                 p = lock_user_string(arg1);
9081                 if (!p) {
9082                     return -TARGET_EFAULT;
9083                 }
9084             } else {
9085                 p = NULL;
9086             }
9087 
9088             p2 = lock_user_string(arg2);
9089             if (!p2) {
9090                 if (arg1) {
9091                     unlock_user(p, arg1, 0);
9092                 }
9093                 return -TARGET_EFAULT;
9094             }
9095 
9096             if (arg3) {
9097                 p3 = lock_user_string(arg3);
9098                 if (!p3) {
9099                     if (arg1) {
9100                         unlock_user(p, arg1, 0);
9101                     }
9102                     unlock_user(p2, arg2, 0);
9103                     return -TARGET_EFAULT;
9104                 }
9105             } else {
9106                 p3 = NULL;
9107             }
9108 
9109             /* FIXME - arg5 should be locked, but it isn't clear how to
9110              * do that since it's not guaranteed to be a NULL-terminated
9111              * string.
9112              */
9113             if (!arg5) {
9114                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9115             } else {
9116                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9117             }
9118             ret = get_errno(ret);
9119 
9120             if (arg1) {
9121                 unlock_user(p, arg1, 0);
9122             }
9123             unlock_user(p2, arg2, 0);
9124             if (arg3) {
9125                 unlock_user(p3, arg3, 0);
9126             }
9127         }
9128         return ret;
9129 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9130 #if defined(TARGET_NR_umount)
9131     case TARGET_NR_umount:
9132 #endif
9133 #if defined(TARGET_NR_oldumount)
9134     case TARGET_NR_oldumount:
9135 #endif
9136         if (!(p = lock_user_string(arg1)))
9137             return -TARGET_EFAULT;
9138         ret = get_errno(umount(p));
9139         unlock_user(p, arg1, 0);
9140         return ret;
9141 #endif
9142 #ifdef TARGET_NR_stime /* not on alpha */
9143     case TARGET_NR_stime:
9144         {
9145             struct timespec ts;
9146             ts.tv_nsec = 0;
9147             if (get_user_sal(ts.tv_sec, arg1)) {
9148                 return -TARGET_EFAULT;
9149             }
9150             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9151         }
9152 #endif
9153 #ifdef TARGET_NR_alarm /* not on alpha */
9154     case TARGET_NR_alarm:
9155         return alarm(arg1);
9156 #endif
9157 #ifdef TARGET_NR_pause /* not on alpha */
9158     case TARGET_NR_pause:
9159         if (!block_signals()) {
9160             sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9161         }
9162         return -TARGET_EINTR;
9163 #endif
9164 #ifdef TARGET_NR_utime
9165     case TARGET_NR_utime:
9166         {
9167             struct utimbuf tbuf, *host_tbuf;
9168             struct target_utimbuf *target_tbuf;
9169             if (arg2) {
9170                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9171                     return -TARGET_EFAULT;
9172                 tbuf.actime = tswapal(target_tbuf->actime);
9173                 tbuf.modtime = tswapal(target_tbuf->modtime);
9174                 unlock_user_struct(target_tbuf, arg2, 0);
9175                 host_tbuf = &tbuf;
9176             } else {
9177                 host_tbuf = NULL;
9178             }
9179             if (!(p = lock_user_string(arg1)))
9180                 return -TARGET_EFAULT;
9181             ret = get_errno(utime(p, host_tbuf));
9182             unlock_user(p, arg1, 0);
9183         }
9184         return ret;
9185 #endif
9186 #ifdef TARGET_NR_utimes
9187     case TARGET_NR_utimes:
9188         {
9189             struct timeval *tvp, tv[2];
9190             if (arg2) {
9191                 if (copy_from_user_timeval(&tv[0], arg2)
9192                     || copy_from_user_timeval(&tv[1],
9193                                               arg2 + sizeof(struct target_timeval)))
9194                     return -TARGET_EFAULT;
9195                 tvp = tv;
9196             } else {
9197                 tvp = NULL;
9198             }
9199             if (!(p = lock_user_string(arg1)))
9200                 return -TARGET_EFAULT;
9201             ret = get_errno(utimes(p, tvp));
9202             unlock_user(p, arg1, 0);
9203         }
9204         return ret;
9205 #endif
9206 #if defined(TARGET_NR_futimesat)
9207     case TARGET_NR_futimesat:
9208         {
9209             struct timeval *tvp, tv[2];
9210             if (arg3) {
9211                 if (copy_from_user_timeval(&tv[0], arg3)
9212                     || copy_from_user_timeval(&tv[1],
9213                                               arg3 + sizeof(struct target_timeval)))
9214                     return -TARGET_EFAULT;
9215                 tvp = tv;
9216             } else {
9217                 tvp = NULL;
9218             }
9219             if (!(p = lock_user_string(arg2))) {
9220                 return -TARGET_EFAULT;
9221             }
9222             ret = get_errno(futimesat(arg1, path(p), tvp));
9223             unlock_user(p, arg2, 0);
9224         }
9225         return ret;
9226 #endif
9227 #ifdef TARGET_NR_access
9228     case TARGET_NR_access:
9229         if (!(p = lock_user_string(arg1))) {
9230             return -TARGET_EFAULT;
9231         }
9232         ret = get_errno(access(path(p), arg2));
9233         unlock_user(p, arg1, 0);
9234         return ret;
9235 #endif
9236 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9237     case TARGET_NR_faccessat:
9238         if (!(p = lock_user_string(arg2))) {
9239             return -TARGET_EFAULT;
9240         }
9241         ret = get_errno(faccessat(arg1, p, arg3, 0));
9242         unlock_user(p, arg2, 0);
9243         return ret;
9244 #endif
9245 #if defined(TARGET_NR_faccessat2)
9246     case TARGET_NR_faccessat2:
9247         if (!(p = lock_user_string(arg2))) {
9248             return -TARGET_EFAULT;
9249         }
9250         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9251         unlock_user(p, arg2, 0);
9252         return ret;
9253 #endif
9254 #ifdef TARGET_NR_nice /* not on alpha */
9255     case TARGET_NR_nice:
9256         return get_errno(nice(arg1));
9257 #endif
9258     case TARGET_NR_sync:
9259         sync();
9260         return 0;
9261 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9262     case TARGET_NR_syncfs:
9263         return get_errno(syncfs(arg1));
9264 #endif
9265     case TARGET_NR_kill:
9266         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9267 #ifdef TARGET_NR_rename
9268     case TARGET_NR_rename:
9269         {
9270             void *p2;
9271             p = lock_user_string(arg1);
9272             p2 = lock_user_string(arg2);
9273             if (!p || !p2)
9274                 ret = -TARGET_EFAULT;
9275             else
9276                 ret = get_errno(rename(p, p2));
9277             unlock_user(p2, arg2, 0);
9278             unlock_user(p, arg1, 0);
9279         }
9280         return ret;
9281 #endif
9282 #if defined(TARGET_NR_renameat)
9283     case TARGET_NR_renameat:
9284         {
9285             void *p2;
9286             p  = lock_user_string(arg2);
9287             p2 = lock_user_string(arg4);
9288             if (!p || !p2)
9289                 ret = -TARGET_EFAULT;
9290             else
9291                 ret = get_errno(renameat(arg1, p, arg3, p2));
9292             unlock_user(p2, arg4, 0);
9293             unlock_user(p, arg2, 0);
9294         }
9295         return ret;
9296 #endif
9297 #if defined(TARGET_NR_renameat2)
9298     case TARGET_NR_renameat2:
9299         {
9300             void *p2;
9301             p  = lock_user_string(arg2);
9302             p2 = lock_user_string(arg4);
9303             if (!p || !p2) {
9304                 ret = -TARGET_EFAULT;
9305             } else {
9306                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9307             }
9308             unlock_user(p2, arg4, 0);
9309             unlock_user(p, arg2, 0);
9310         }
9311         return ret;
9312 #endif
9313 #ifdef TARGET_NR_mkdir
9314     case TARGET_NR_mkdir:
9315         if (!(p = lock_user_string(arg1)))
9316             return -TARGET_EFAULT;
9317         ret = get_errno(mkdir(p, arg2));
9318         unlock_user(p, arg1, 0);
9319         return ret;
9320 #endif
9321 #if defined(TARGET_NR_mkdirat)
9322     case TARGET_NR_mkdirat:
9323         if (!(p = lock_user_string(arg2)))
9324             return -TARGET_EFAULT;
9325         ret = get_errno(mkdirat(arg1, p, arg3));
9326         unlock_user(p, arg2, 0);
9327         return ret;
9328 #endif
9329 #ifdef TARGET_NR_rmdir
9330     case TARGET_NR_rmdir:
9331         if (!(p = lock_user_string(arg1)))
9332             return -TARGET_EFAULT;
9333         ret = get_errno(rmdir(p));
9334         unlock_user(p, arg1, 0);
9335         return ret;
9336 #endif
9337     case TARGET_NR_dup:
9338         ret = get_errno(dup(arg1));
9339         if (ret >= 0) {
9340             fd_trans_dup(arg1, ret);
9341         }
9342         return ret;
9343 #ifdef TARGET_NR_pipe
9344     case TARGET_NR_pipe:
9345         return do_pipe(cpu_env, arg1, 0, 0);
9346 #endif
9347 #ifdef TARGET_NR_pipe2
9348     case TARGET_NR_pipe2:
9349         return do_pipe(cpu_env, arg1,
9350                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9351 #endif
9352     case TARGET_NR_times:
9353         {
9354             struct target_tms *tmsp;
9355             struct tms tms;
9356             ret = get_errno(times(&tms));
9357             if (arg1) {
9358                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9359                 if (!tmsp)
9360                     return -TARGET_EFAULT;
9361                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9362                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9363                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9364                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9365             }
9366             if (!is_error(ret))
9367                 ret = host_to_target_clock_t(ret);
9368         }
9369         return ret;
9370     case TARGET_NR_acct:
9371         if (arg1 == 0) {
9372             ret = get_errno(acct(NULL));
9373         } else {
9374             if (!(p = lock_user_string(arg1))) {
9375                 return -TARGET_EFAULT;
9376             }
9377             ret = get_errno(acct(path(p)));
9378             unlock_user(p, arg1, 0);
9379         }
9380         return ret;
9381 #ifdef TARGET_NR_umount2
9382     case TARGET_NR_umount2:
9383         if (!(p = lock_user_string(arg1)))
9384             return -TARGET_EFAULT;
9385         ret = get_errno(umount2(p, arg2));
9386         unlock_user(p, arg1, 0);
9387         return ret;
9388 #endif
9389     case TARGET_NR_ioctl:
9390         return do_ioctl(arg1, arg2, arg3);
9391 #ifdef TARGET_NR_fcntl
9392     case TARGET_NR_fcntl:
9393         return do_fcntl(arg1, arg2, arg3);
9394 #endif
9395     case TARGET_NR_setpgid:
9396         return get_errno(setpgid(arg1, arg2));
9397     case TARGET_NR_umask:
9398         return get_errno(umask(arg1));
9399     case TARGET_NR_chroot:
9400         if (!(p = lock_user_string(arg1)))
9401             return -TARGET_EFAULT;
9402         ret = get_errno(chroot(p));
9403         unlock_user(p, arg1, 0);
9404         return ret;
9405 #ifdef TARGET_NR_dup2
9406     case TARGET_NR_dup2:
9407         ret = get_errno(dup2(arg1, arg2));
9408         if (ret >= 0) {
9409             fd_trans_dup(arg1, arg2);
9410         }
9411         return ret;
9412 #endif
9413 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9414     case TARGET_NR_dup3:
9415     {
9416         int host_flags;
9417 
9418         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9419             return -EINVAL;
9420         }
9421         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9422         ret = get_errno(dup3(arg1, arg2, host_flags));
9423         if (ret >= 0) {
9424             fd_trans_dup(arg1, arg2);
9425         }
9426         return ret;
9427     }
9428 #endif
9429 #ifdef TARGET_NR_getppid /* not on alpha */
9430     case TARGET_NR_getppid:
9431         return get_errno(getppid());
9432 #endif
9433 #ifdef TARGET_NR_getpgrp
9434     case TARGET_NR_getpgrp:
9435         return get_errno(getpgrp());
9436 #endif
9437     case TARGET_NR_setsid:
9438         return get_errno(setsid());
9439 #ifdef TARGET_NR_sigaction
9440     case TARGET_NR_sigaction:
9441         {
9442 #if defined(TARGET_MIPS)
9443 	    struct target_sigaction act, oact, *pact, *old_act;
9444 
9445 	    if (arg2) {
9446                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9447                     return -TARGET_EFAULT;
9448 		act._sa_handler = old_act->_sa_handler;
9449 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9450 		act.sa_flags = old_act->sa_flags;
9451 		unlock_user_struct(old_act, arg2, 0);
9452 		pact = &act;
9453 	    } else {
9454 		pact = NULL;
9455 	    }
9456 
9457         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9458 
9459 	    if (!is_error(ret) && arg3) {
9460                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9461                     return -TARGET_EFAULT;
9462 		old_act->_sa_handler = oact._sa_handler;
9463 		old_act->sa_flags = oact.sa_flags;
9464 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9465 		old_act->sa_mask.sig[1] = 0;
9466 		old_act->sa_mask.sig[2] = 0;
9467 		old_act->sa_mask.sig[3] = 0;
9468 		unlock_user_struct(old_act, arg3, 1);
9469 	    }
9470 #else
9471             struct target_old_sigaction *old_act;
9472             struct target_sigaction act, oact, *pact;
9473             if (arg2) {
9474                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9475                     return -TARGET_EFAULT;
9476                 act._sa_handler = old_act->_sa_handler;
9477                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9478                 act.sa_flags = old_act->sa_flags;
9479 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9480                 act.sa_restorer = old_act->sa_restorer;
9481 #endif
9482                 unlock_user_struct(old_act, arg2, 0);
9483                 pact = &act;
9484             } else {
9485                 pact = NULL;
9486             }
9487             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9488             if (!is_error(ret) && arg3) {
9489                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9490                     return -TARGET_EFAULT;
9491                 old_act->_sa_handler = oact._sa_handler;
9492                 old_act->sa_mask = oact.sa_mask.sig[0];
9493                 old_act->sa_flags = oact.sa_flags;
9494 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9495                 old_act->sa_restorer = oact.sa_restorer;
9496 #endif
9497                 unlock_user_struct(old_act, arg3, 1);
9498             }
9499 #endif
9500         }
9501         return ret;
9502 #endif
9503     case TARGET_NR_rt_sigaction:
9504         {
9505             /*
9506              * For Alpha and SPARC this is a 5 argument syscall, with
9507              * a 'restorer' parameter which must be copied into the
9508              * sa_restorer field of the sigaction struct.
9509              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9510              * and arg5 is the sigsetsize.
9511              */
9512 #if defined(TARGET_ALPHA)
9513             target_ulong sigsetsize = arg4;
9514             target_ulong restorer = arg5;
9515 #elif defined(TARGET_SPARC)
9516             target_ulong restorer = arg4;
9517             target_ulong sigsetsize = arg5;
9518 #else
9519             target_ulong sigsetsize = arg4;
9520             target_ulong restorer = 0;
9521 #endif
9522             struct target_sigaction *act = NULL;
9523             struct target_sigaction *oact = NULL;
9524 
9525             if (sigsetsize != sizeof(target_sigset_t)) {
9526                 return -TARGET_EINVAL;
9527             }
9528             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9529                 return -TARGET_EFAULT;
9530             }
9531             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9532                 ret = -TARGET_EFAULT;
9533             } else {
9534                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9535                 if (oact) {
9536                     unlock_user_struct(oact, arg3, 1);
9537                 }
9538             }
9539             if (act) {
9540                 unlock_user_struct(act, arg2, 0);
9541             }
9542         }
9543         return ret;
9544 #ifdef TARGET_NR_sgetmask /* not on alpha */
9545     case TARGET_NR_sgetmask:
9546         {
9547             sigset_t cur_set;
9548             abi_ulong target_set;
9549             ret = do_sigprocmask(0, NULL, &cur_set);
9550             if (!ret) {
9551                 host_to_target_old_sigset(&target_set, &cur_set);
9552                 ret = target_set;
9553             }
9554         }
9555         return ret;
9556 #endif
9557 #ifdef TARGET_NR_ssetmask /* not on alpha */
9558     case TARGET_NR_ssetmask:
9559         {
9560             sigset_t set, oset;
9561             abi_ulong target_set = arg1;
9562             target_to_host_old_sigset(&set, &target_set);
9563             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9564             if (!ret) {
9565                 host_to_target_old_sigset(&target_set, &oset);
9566                 ret = target_set;
9567             }
9568         }
9569         return ret;
9570 #endif
9571 #ifdef TARGET_NR_sigprocmask
9572     case TARGET_NR_sigprocmask:
9573         {
9574 #if defined(TARGET_ALPHA)
9575             sigset_t set, oldset;
9576             abi_ulong mask;
9577             int how;
9578 
9579             switch (arg1) {
9580             case TARGET_SIG_BLOCK:
9581                 how = SIG_BLOCK;
9582                 break;
9583             case TARGET_SIG_UNBLOCK:
9584                 how = SIG_UNBLOCK;
9585                 break;
9586             case TARGET_SIG_SETMASK:
9587                 how = SIG_SETMASK;
9588                 break;
9589             default:
9590                 return -TARGET_EINVAL;
9591             }
9592             mask = arg2;
9593             target_to_host_old_sigset(&set, &mask);
9594 
9595             ret = do_sigprocmask(how, &set, &oldset);
9596             if (!is_error(ret)) {
9597                 host_to_target_old_sigset(&mask, &oldset);
9598                 ret = mask;
9599                 cpu_env->ir[IR_V0] = 0; /* force no error */
9600             }
9601 #else
9602             sigset_t set, oldset, *set_ptr;
9603             int how;
9604 
9605             if (arg2) {
9606                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9607                 if (!p) {
9608                     return -TARGET_EFAULT;
9609                 }
9610                 target_to_host_old_sigset(&set, p);
9611                 unlock_user(p, arg2, 0);
9612                 set_ptr = &set;
9613                 switch (arg1) {
9614                 case TARGET_SIG_BLOCK:
9615                     how = SIG_BLOCK;
9616                     break;
9617                 case TARGET_SIG_UNBLOCK:
9618                     how = SIG_UNBLOCK;
9619                     break;
9620                 case TARGET_SIG_SETMASK:
9621                     how = SIG_SETMASK;
9622                     break;
9623                 default:
9624                     return -TARGET_EINVAL;
9625                 }
9626             } else {
9627                 how = 0;
9628                 set_ptr = NULL;
9629             }
9630             ret = do_sigprocmask(how, set_ptr, &oldset);
9631             if (!is_error(ret) && arg3) {
9632                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9633                     return -TARGET_EFAULT;
9634                 host_to_target_old_sigset(p, &oldset);
9635                 unlock_user(p, arg3, sizeof(target_sigset_t));
9636             }
9637 #endif
9638         }
9639         return ret;
9640 #endif
9641     case TARGET_NR_rt_sigprocmask:
9642         {
9643             int how = arg1;
9644             sigset_t set, oldset, *set_ptr;
9645 
9646             if (arg4 != sizeof(target_sigset_t)) {
9647                 return -TARGET_EINVAL;
9648             }
9649 
9650             if (arg2) {
9651                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9652                 if (!p) {
9653                     return -TARGET_EFAULT;
9654                 }
9655                 target_to_host_sigset(&set, p);
9656                 unlock_user(p, arg2, 0);
9657                 set_ptr = &set;
9658                 switch(how) {
9659                 case TARGET_SIG_BLOCK:
9660                     how = SIG_BLOCK;
9661                     break;
9662                 case TARGET_SIG_UNBLOCK:
9663                     how = SIG_UNBLOCK;
9664                     break;
9665                 case TARGET_SIG_SETMASK:
9666                     how = SIG_SETMASK;
9667                     break;
9668                 default:
9669                     return -TARGET_EINVAL;
9670                 }
9671             } else {
9672                 how = 0;
9673                 set_ptr = NULL;
9674             }
9675             ret = do_sigprocmask(how, set_ptr, &oldset);
9676             if (!is_error(ret) && arg3) {
9677                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9678                     return -TARGET_EFAULT;
9679                 host_to_target_sigset(p, &oldset);
9680                 unlock_user(p, arg3, sizeof(target_sigset_t));
9681             }
9682         }
9683         return ret;
9684 #ifdef TARGET_NR_sigpending
9685     case TARGET_NR_sigpending:
9686         {
9687             sigset_t set;
9688             ret = get_errno(sigpending(&set));
9689             if (!is_error(ret)) {
9690                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9691                     return -TARGET_EFAULT;
9692                 host_to_target_old_sigset(p, &set);
9693                 unlock_user(p, arg1, sizeof(target_sigset_t));
9694             }
9695         }
9696         return ret;
9697 #endif
9698     case TARGET_NR_rt_sigpending:
9699         {
9700             sigset_t set;
9701 
9702             /* Yes, this check is >, not != like most. We follow the kernel's
9703              * logic and it does it like this because it implements
9704              * NR_sigpending through the same code path, and in that case
9705              * the old_sigset_t is smaller in size.
9706              */
9707             if (arg2 > sizeof(target_sigset_t)) {
9708                 return -TARGET_EINVAL;
9709             }
9710 
9711             ret = get_errno(sigpending(&set));
9712             if (!is_error(ret)) {
9713                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9714                     return -TARGET_EFAULT;
9715                 host_to_target_sigset(p, &set);
9716                 unlock_user(p, arg1, sizeof(target_sigset_t));
9717             }
9718         }
9719         return ret;
9720 #ifdef TARGET_NR_sigsuspend
9721     case TARGET_NR_sigsuspend:
9722         {
9723             sigset_t *set;
9724 
9725 #if defined(TARGET_ALPHA)
9726             TaskState *ts = cpu->opaque;
9727             /* target_to_host_old_sigset will bswap back */
9728             abi_ulong mask = tswapal(arg1);
9729             set = &ts->sigsuspend_mask;
9730             target_to_host_old_sigset(set, &mask);
9731 #else
9732             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
9733             if (ret != 0) {
9734                 return ret;
9735             }
9736 #endif
9737             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
9738             finish_sigsuspend_mask(ret);
9739         }
9740         return ret;
9741 #endif
9742     case TARGET_NR_rt_sigsuspend:
9743         {
9744             sigset_t *set;
9745 
9746             ret = process_sigsuspend_mask(&set, arg1, arg2);
9747             if (ret != 0) {
9748                 return ret;
9749             }
9750             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
9751             finish_sigsuspend_mask(ret);
9752         }
9753         return ret;
9754 #ifdef TARGET_NR_rt_sigtimedwait
9755     case TARGET_NR_rt_sigtimedwait:
9756         {
9757             sigset_t set;
9758             struct timespec uts, *puts;
9759             siginfo_t uinfo;
9760 
9761             if (arg4 != sizeof(target_sigset_t)) {
9762                 return -TARGET_EINVAL;
9763             }
9764 
9765             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9766                 return -TARGET_EFAULT;
9767             target_to_host_sigset(&set, p);
9768             unlock_user(p, arg1, 0);
9769             if (arg3) {
9770                 puts = &uts;
9771                 if (target_to_host_timespec(puts, arg3)) {
9772                     return -TARGET_EFAULT;
9773                 }
9774             } else {
9775                 puts = NULL;
9776             }
9777             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9778                                                  SIGSET_T_SIZE));
9779             if (!is_error(ret)) {
9780                 if (arg2) {
9781                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9782                                   0);
9783                     if (!p) {
9784                         return -TARGET_EFAULT;
9785                     }
9786                     host_to_target_siginfo(p, &uinfo);
9787                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9788                 }
9789                 ret = host_to_target_signal(ret);
9790             }
9791         }
9792         return ret;
9793 #endif
9794 #ifdef TARGET_NR_rt_sigtimedwait_time64
9795     case TARGET_NR_rt_sigtimedwait_time64:
9796         {
9797             sigset_t set;
9798             struct timespec uts, *puts;
9799             siginfo_t uinfo;
9800 
9801             if (arg4 != sizeof(target_sigset_t)) {
9802                 return -TARGET_EINVAL;
9803             }
9804 
9805             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
9806             if (!p) {
9807                 return -TARGET_EFAULT;
9808             }
9809             target_to_host_sigset(&set, p);
9810             unlock_user(p, arg1, 0);
9811             if (arg3) {
9812                 puts = &uts;
9813                 if (target_to_host_timespec64(puts, arg3)) {
9814                     return -TARGET_EFAULT;
9815                 }
9816             } else {
9817                 puts = NULL;
9818             }
9819             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9820                                                  SIGSET_T_SIZE));
9821             if (!is_error(ret)) {
9822                 if (arg2) {
9823                     p = lock_user(VERIFY_WRITE, arg2,
9824                                   sizeof(target_siginfo_t), 0);
9825                     if (!p) {
9826                         return -TARGET_EFAULT;
9827                     }
9828                     host_to_target_siginfo(p, &uinfo);
9829                     unlock_user(p, arg2, sizeof(target_siginfo_t));
9830                 }
9831                 ret = host_to_target_signal(ret);
9832             }
9833         }
9834         return ret;
9835 #endif
9836     case TARGET_NR_rt_sigqueueinfo:
9837         {
9838             siginfo_t uinfo;
9839 
9840             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9841             if (!p) {
9842                 return -TARGET_EFAULT;
9843             }
9844             target_to_host_siginfo(&uinfo, p);
9845             unlock_user(p, arg3, 0);
9846             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
9847         }
9848         return ret;
9849     case TARGET_NR_rt_tgsigqueueinfo:
9850         {
9851             siginfo_t uinfo;
9852 
9853             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9854             if (!p) {
9855                 return -TARGET_EFAULT;
9856             }
9857             target_to_host_siginfo(&uinfo, p);
9858             unlock_user(p, arg4, 0);
9859             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
9860         }
9861         return ret;
9862 #ifdef TARGET_NR_sigreturn
9863     case TARGET_NR_sigreturn:
9864         if (block_signals()) {
9865             return -QEMU_ERESTARTSYS;
9866         }
9867         return do_sigreturn(cpu_env);
9868 #endif
9869     case TARGET_NR_rt_sigreturn:
9870         if (block_signals()) {
9871             return -QEMU_ERESTARTSYS;
9872         }
9873         return do_rt_sigreturn(cpu_env);
9874     case TARGET_NR_sethostname:
9875         if (!(p = lock_user_string(arg1)))
9876             return -TARGET_EFAULT;
9877         ret = get_errno(sethostname(p, arg2));
9878         unlock_user(p, arg1, 0);
9879         return ret;
9880 #ifdef TARGET_NR_setrlimit
9881     case TARGET_NR_setrlimit:
9882         {
9883             int resource = target_to_host_resource(arg1);
9884             struct target_rlimit *target_rlim;
9885             struct rlimit rlim;
9886             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9887                 return -TARGET_EFAULT;
9888             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9889             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9890             unlock_user_struct(target_rlim, arg2, 0);
9891             /*
9892              * If we just passed through resource limit settings for memory then
9893              * they would also apply to QEMU's own allocations, and QEMU will
9894              * crash or hang or die if its allocations fail. Ideally we would
9895              * track the guest allocations in QEMU and apply the limits ourselves.
9896              * For now, just tell the guest the call succeeded but don't actually
9897              * limit anything.
9898              */
9899             if (resource != RLIMIT_AS &&
9900                 resource != RLIMIT_DATA &&
9901                 resource != RLIMIT_STACK) {
9902                 return get_errno(setrlimit(resource, &rlim));
9903             } else {
9904                 return 0;
9905             }
9906         }
9907 #endif
9908 #ifdef TARGET_NR_getrlimit
9909     case TARGET_NR_getrlimit:
9910         {
9911             int resource = target_to_host_resource(arg1);
9912             struct target_rlimit *target_rlim;
9913             struct rlimit rlim;
9914 
9915             ret = get_errno(getrlimit(resource, &rlim));
9916             if (!is_error(ret)) {
9917                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9918                     return -TARGET_EFAULT;
9919                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9920                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9921                 unlock_user_struct(target_rlim, arg2, 1);
9922             }
9923         }
9924         return ret;
9925 #endif
9926     case TARGET_NR_getrusage:
9927         {
9928             struct rusage rusage;
9929             ret = get_errno(getrusage(arg1, &rusage));
9930             if (!is_error(ret)) {
9931                 ret = host_to_target_rusage(arg2, &rusage);
9932             }
9933         }
9934         return ret;
9935 #if defined(TARGET_NR_gettimeofday)
9936     case TARGET_NR_gettimeofday:
9937         {
9938             struct timeval tv;
9939             struct timezone tz;
9940 
9941             ret = get_errno(gettimeofday(&tv, &tz));
9942             if (!is_error(ret)) {
9943                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
9944                     return -TARGET_EFAULT;
9945                 }
9946                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
9947                     return -TARGET_EFAULT;
9948                 }
9949             }
9950         }
9951         return ret;
9952 #endif
9953 #if defined(TARGET_NR_settimeofday)
9954     case TARGET_NR_settimeofday:
9955         {
9956             struct timeval tv, *ptv = NULL;
9957             struct timezone tz, *ptz = NULL;
9958 
9959             if (arg1) {
9960                 if (copy_from_user_timeval(&tv, arg1)) {
9961                     return -TARGET_EFAULT;
9962                 }
9963                 ptv = &tv;
9964             }
9965 
9966             if (arg2) {
9967                 if (copy_from_user_timezone(&tz, arg2)) {
9968                     return -TARGET_EFAULT;
9969                 }
9970                 ptz = &tz;
9971             }
9972 
9973             return get_errno(settimeofday(ptv, ptz));
9974         }
9975 #endif
9976 #if defined(TARGET_NR_select)
9977     case TARGET_NR_select:
9978 #if defined(TARGET_WANT_NI_OLD_SELECT)
9979         /* some architectures used to have old_select here
9980          * but now ENOSYS it.
9981          */
9982         ret = -TARGET_ENOSYS;
9983 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9984         ret = do_old_select(arg1);
9985 #else
9986         ret = do_select(arg1, arg2, arg3, arg4, arg5);
9987 #endif
9988         return ret;
9989 #endif
9990 #ifdef TARGET_NR_pselect6
9991     case TARGET_NR_pselect6:
9992         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
9993 #endif
9994 #ifdef TARGET_NR_pselect6_time64
9995     case TARGET_NR_pselect6_time64:
9996         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
9997 #endif
9998 #ifdef TARGET_NR_symlink
9999     case TARGET_NR_symlink:
10000         {
10001             void *p2;
10002             p = lock_user_string(arg1);
10003             p2 = lock_user_string(arg2);
10004             if (!p || !p2)
10005                 ret = -TARGET_EFAULT;
10006             else
10007                 ret = get_errno(symlink(p, p2));
10008             unlock_user(p2, arg2, 0);
10009             unlock_user(p, arg1, 0);
10010         }
10011         return ret;
10012 #endif
10013 #if defined(TARGET_NR_symlinkat)
10014     case TARGET_NR_symlinkat:
10015         {
10016             void *p2;
10017             p  = lock_user_string(arg1);
10018             p2 = lock_user_string(arg3);
10019             if (!p || !p2)
10020                 ret = -TARGET_EFAULT;
10021             else
10022                 ret = get_errno(symlinkat(p, arg2, p2));
10023             unlock_user(p2, arg3, 0);
10024             unlock_user(p, arg1, 0);
10025         }
10026         return ret;
10027 #endif
10028 #ifdef TARGET_NR_readlink
10029     case TARGET_NR_readlink:
10030         {
10031             void *p2;
10032             p = lock_user_string(arg1);
10033             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10034             if (!p || !p2) {
10035                 ret = -TARGET_EFAULT;
10036             } else if (!arg3) {
10037                 /* Short circuit this for the magic exe check. */
10038                 ret = -TARGET_EINVAL;
10039             } else if (is_proc_myself((const char *)p, "exe")) {
10040                 /*
10041                  * Don't worry about sign mismatch as earlier mapping
10042                  * logic would have thrown a bad address error.
10043                  */
10044                 ret = MIN(strlen(exec_path), arg3);
10045                 /* We cannot NUL terminate the string. */
10046                 memcpy(p2, exec_path, ret);
10047             } else {
10048                 ret = get_errno(readlink(path(p), p2, arg3));
10049             }
10050             unlock_user(p2, arg2, ret);
10051             unlock_user(p, arg1, 0);
10052         }
10053         return ret;
10054 #endif
10055 #if defined(TARGET_NR_readlinkat)
10056     case TARGET_NR_readlinkat:
10057         {
10058             void *p2;
10059             p  = lock_user_string(arg2);
10060             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10061             if (!p || !p2) {
10062                 ret = -TARGET_EFAULT;
10063             } else if (!arg4) {
10064                 /* Short circuit this for the magic exe check. */
10065                 ret = -TARGET_EINVAL;
10066             } else if (is_proc_myself((const char *)p, "exe")) {
10067                 /*
10068                  * Don't worry about sign mismatch as earlier mapping
10069                  * logic would have thrown a bad address error.
10070                  */
10071                 ret = MIN(strlen(exec_path), arg4);
10072                 /* We cannot NUL terminate the string. */
10073                 memcpy(p2, exec_path, ret);
10074             } else {
10075                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10076             }
10077             unlock_user(p2, arg3, ret);
10078             unlock_user(p, arg2, 0);
10079         }
10080         return ret;
10081 #endif
10082 #ifdef TARGET_NR_swapon
10083     case TARGET_NR_swapon:
10084         if (!(p = lock_user_string(arg1)))
10085             return -TARGET_EFAULT;
10086         ret = get_errno(swapon(p, arg2));
10087         unlock_user(p, arg1, 0);
10088         return ret;
10089 #endif
10090     case TARGET_NR_reboot:
10091         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10092            /* arg4 must be ignored in all other cases */
10093            p = lock_user_string(arg4);
10094            if (!p) {
10095                return -TARGET_EFAULT;
10096            }
10097            ret = get_errno(reboot(arg1, arg2, arg3, p));
10098            unlock_user(p, arg4, 0);
10099         } else {
10100            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10101         }
10102         return ret;
10103 #ifdef TARGET_NR_mmap
10104     case TARGET_NR_mmap:
10105 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10106     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10107     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10108     || defined(TARGET_S390X)
10109         {
10110             abi_ulong *v;
10111             abi_ulong v1, v2, v3, v4, v5, v6;
10112             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10113                 return -TARGET_EFAULT;
10114             v1 = tswapal(v[0]);
10115             v2 = tswapal(v[1]);
10116             v3 = tswapal(v[2]);
10117             v4 = tswapal(v[3]);
10118             v5 = tswapal(v[4]);
10119             v6 = tswapal(v[5]);
10120             unlock_user(v, arg1, 0);
10121             ret = get_errno(target_mmap(v1, v2, v3,
10122                                         target_to_host_bitmask(v4, mmap_flags_tbl),
10123                                         v5, v6));
10124         }
10125 #else
10126         /* mmap pointers are always untagged */
10127         ret = get_errno(target_mmap(arg1, arg2, arg3,
10128                                     target_to_host_bitmask(arg4, mmap_flags_tbl),
10129                                     arg5,
10130                                     arg6));
10131 #endif
10132         return ret;
10133 #endif
10134 #ifdef TARGET_NR_mmap2
10135     case TARGET_NR_mmap2:
10136 #ifndef MMAP_SHIFT
10137 #define MMAP_SHIFT 12
10138 #endif
10139         ret = target_mmap(arg1, arg2, arg3,
10140                           target_to_host_bitmask(arg4, mmap_flags_tbl),
10141                           arg5, arg6 << MMAP_SHIFT);
10142         return get_errno(ret);
10143 #endif
10144     case TARGET_NR_munmap:
10145         arg1 = cpu_untagged_addr(cpu, arg1);
10146         return get_errno(target_munmap(arg1, arg2));
10147     case TARGET_NR_mprotect:
10148         arg1 = cpu_untagged_addr(cpu, arg1);
10149         {
10150             TaskState *ts = cpu->opaque;
10151             /* Special hack to detect libc making the stack executable.  */
10152             if ((arg3 & PROT_GROWSDOWN)
10153                 && arg1 >= ts->info->stack_limit
10154                 && arg1 <= ts->info->start_stack) {
10155                 arg3 &= ~PROT_GROWSDOWN;
10156                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10157                 arg1 = ts->info->stack_limit;
10158             }
10159         }
10160         return get_errno(target_mprotect(arg1, arg2, arg3));
10161 #ifdef TARGET_NR_mremap
10162     case TARGET_NR_mremap:
10163         arg1 = cpu_untagged_addr(cpu, arg1);
10164         /* mremap new_addr (arg5) is always untagged */
10165         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10166 #endif
10167         /* ??? msync/mlock/munlock are broken for softmmu.  */
10168 #ifdef TARGET_NR_msync
10169     case TARGET_NR_msync:
10170         return get_errno(msync(g2h(cpu, arg1), arg2,
10171                                target_to_host_msync_arg(arg3)));
10172 #endif
10173 #ifdef TARGET_NR_mlock
10174     case TARGET_NR_mlock:
10175         return get_errno(mlock(g2h(cpu, arg1), arg2));
10176 #endif
10177 #ifdef TARGET_NR_munlock
10178     case TARGET_NR_munlock:
10179         return get_errno(munlock(g2h(cpu, arg1), arg2));
10180 #endif
10181 #ifdef TARGET_NR_mlockall
10182     case TARGET_NR_mlockall:
10183         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10184 #endif
10185 #ifdef TARGET_NR_munlockall
10186     case TARGET_NR_munlockall:
10187         return get_errno(munlockall());
10188 #endif
10189 #ifdef TARGET_NR_truncate
10190     case TARGET_NR_truncate:
10191         if (!(p = lock_user_string(arg1)))
10192             return -TARGET_EFAULT;
10193         ret = get_errno(truncate(p, arg2));
10194         unlock_user(p, arg1, 0);
10195         return ret;
10196 #endif
10197 #ifdef TARGET_NR_ftruncate
10198     case TARGET_NR_ftruncate:
10199         return get_errno(ftruncate(arg1, arg2));
10200 #endif
10201     case TARGET_NR_fchmod:
10202         return get_errno(fchmod(arg1, arg2));
10203 #if defined(TARGET_NR_fchmodat)
10204     case TARGET_NR_fchmodat:
10205         if (!(p = lock_user_string(arg2)))
10206             return -TARGET_EFAULT;
10207         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10208         unlock_user(p, arg2, 0);
10209         return ret;
10210 #endif
10211     case TARGET_NR_getpriority:
10212         /* Note that negative values are valid for getpriority, so we must
10213            differentiate based on errno settings.  */
10214         errno = 0;
10215         ret = getpriority(arg1, arg2);
10216         if (ret == -1 && errno != 0) {
10217             return -host_to_target_errno(errno);
10218         }
10219 #ifdef TARGET_ALPHA
10220         /* Return value is the unbiased priority.  Signal no error.  */
10221         cpu_env->ir[IR_V0] = 0;
10222 #else
10223         /* Return value is a biased priority to avoid negative numbers.  */
10224         ret = 20 - ret;
10225 #endif
10226         return ret;
10227     case TARGET_NR_setpriority:
10228         return get_errno(setpriority(arg1, arg2, arg3));
10229 #ifdef TARGET_NR_statfs
10230     case TARGET_NR_statfs:
10231         if (!(p = lock_user_string(arg1))) {
10232             return -TARGET_EFAULT;
10233         }
10234         ret = get_errno(statfs(path(p), &stfs));
10235         unlock_user(p, arg1, 0);
10236     convert_statfs:
10237         if (!is_error(ret)) {
10238             struct target_statfs *target_stfs;
10239 
10240             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10241                 return -TARGET_EFAULT;
10242             __put_user(stfs.f_type, &target_stfs->f_type);
10243             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10244             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10245             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10246             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10247             __put_user(stfs.f_files, &target_stfs->f_files);
10248             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10249             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10250             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10251             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10252             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10253 #ifdef _STATFS_F_FLAGS
10254             __put_user(stfs.f_flags, &target_stfs->f_flags);
10255 #else
10256             __put_user(0, &target_stfs->f_flags);
10257 #endif
10258             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10259             unlock_user_struct(target_stfs, arg2, 1);
10260         }
10261         return ret;
10262 #endif
10263 #ifdef TARGET_NR_fstatfs
10264     case TARGET_NR_fstatfs:
10265         ret = get_errno(fstatfs(arg1, &stfs));
10266         goto convert_statfs;
10267 #endif
10268 #ifdef TARGET_NR_statfs64
10269     case TARGET_NR_statfs64:
10270         if (!(p = lock_user_string(arg1))) {
10271             return -TARGET_EFAULT;
10272         }
10273         ret = get_errno(statfs(path(p), &stfs));
10274         unlock_user(p, arg1, 0);
10275     convert_statfs64:
10276         if (!is_error(ret)) {
10277             struct target_statfs64 *target_stfs;
10278 
10279             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10280                 return -TARGET_EFAULT;
10281             __put_user(stfs.f_type, &target_stfs->f_type);
10282             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10283             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10284             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10285             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10286             __put_user(stfs.f_files, &target_stfs->f_files);
10287             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10288             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10289             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10290             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10291             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10292 #ifdef _STATFS_F_FLAGS
10293             __put_user(stfs.f_flags, &target_stfs->f_flags);
10294 #else
10295             __put_user(0, &target_stfs->f_flags);
10296 #endif
10297             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10298             unlock_user_struct(target_stfs, arg3, 1);
10299         }
10300         return ret;
10301     case TARGET_NR_fstatfs64:
10302         ret = get_errno(fstatfs(arg1, &stfs));
10303         goto convert_statfs64;
10304 #endif
10305 #ifdef TARGET_NR_socketcall
10306     case TARGET_NR_socketcall:
10307         return do_socketcall(arg1, arg2);
10308 #endif
10309 #ifdef TARGET_NR_accept
10310     case TARGET_NR_accept:
10311         return do_accept4(arg1, arg2, arg3, 0);
10312 #endif
10313 #ifdef TARGET_NR_accept4
10314     case TARGET_NR_accept4:
10315         return do_accept4(arg1, arg2, arg3, arg4);
10316 #endif
10317 #ifdef TARGET_NR_bind
10318     case TARGET_NR_bind:
10319         return do_bind(arg1, arg2, arg3);
10320 #endif
10321 #ifdef TARGET_NR_connect
10322     case TARGET_NR_connect:
10323         return do_connect(arg1, arg2, arg3);
10324 #endif
10325 #ifdef TARGET_NR_getpeername
10326     case TARGET_NR_getpeername:
10327         return do_getpeername(arg1, arg2, arg3);
10328 #endif
10329 #ifdef TARGET_NR_getsockname
10330     case TARGET_NR_getsockname:
10331         return do_getsockname(arg1, arg2, arg3);
10332 #endif
10333 #ifdef TARGET_NR_getsockopt
10334     case TARGET_NR_getsockopt:
10335         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10336 #endif
10337 #ifdef TARGET_NR_listen
10338     case TARGET_NR_listen:
10339         return get_errno(listen(arg1, arg2));
10340 #endif
10341 #ifdef TARGET_NR_recv
10342     case TARGET_NR_recv:
10343         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10344 #endif
10345 #ifdef TARGET_NR_recvfrom
10346     case TARGET_NR_recvfrom:
10347         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10348 #endif
10349 #ifdef TARGET_NR_recvmsg
10350     case TARGET_NR_recvmsg:
10351         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10352 #endif
10353 #ifdef TARGET_NR_send
10354     case TARGET_NR_send:
10355         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10356 #endif
10357 #ifdef TARGET_NR_sendmsg
10358     case TARGET_NR_sendmsg:
10359         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10360 #endif
10361 #ifdef TARGET_NR_sendmmsg
10362     case TARGET_NR_sendmmsg:
10363         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10364 #endif
10365 #ifdef TARGET_NR_recvmmsg
10366     case TARGET_NR_recvmmsg:
10367         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10368 #endif
10369 #ifdef TARGET_NR_sendto
10370     case TARGET_NR_sendto:
10371         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10372 #endif
10373 #ifdef TARGET_NR_shutdown
10374     case TARGET_NR_shutdown:
10375         return get_errno(shutdown(arg1, arg2));
10376 #endif
10377 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10378     case TARGET_NR_getrandom:
10379         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10380         if (!p) {
10381             return -TARGET_EFAULT;
10382         }
10383         ret = get_errno(getrandom(p, arg2, arg3));
10384         unlock_user(p, arg1, ret);
10385         return ret;
10386 #endif
10387 #ifdef TARGET_NR_socket
10388     case TARGET_NR_socket:
10389         return do_socket(arg1, arg2, arg3);
10390 #endif
10391 #ifdef TARGET_NR_socketpair
10392     case TARGET_NR_socketpair:
10393         return do_socketpair(arg1, arg2, arg3, arg4);
10394 #endif
10395 #ifdef TARGET_NR_setsockopt
10396     case TARGET_NR_setsockopt:
10397         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10398 #endif
10399 #if defined(TARGET_NR_syslog)
10400     case TARGET_NR_syslog:
10401         {
10402             int len = arg2;
10403 
10404             switch (arg1) {
10405             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10406             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10407             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10408             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10409             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10410             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10411             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10412             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10413                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10414             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10415             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10416             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10417                 {
10418                     if (len < 0) {
10419                         return -TARGET_EINVAL;
10420                     }
10421                     if (len == 0) {
10422                         return 0;
10423                     }
10424                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10425                     if (!p) {
10426                         return -TARGET_EFAULT;
10427                     }
10428                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10429                     unlock_user(p, arg2, arg3);
10430                 }
10431                 return ret;
10432             default:
10433                 return -TARGET_EINVAL;
10434             }
10435         }
10436         break;
10437 #endif
10438     case TARGET_NR_setitimer:
10439         {
10440             struct itimerval value, ovalue, *pvalue;
10441 
10442             if (arg2) {
10443                 pvalue = &value;
10444                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10445                     || copy_from_user_timeval(&pvalue->it_value,
10446                                               arg2 + sizeof(struct target_timeval)))
10447                     return -TARGET_EFAULT;
10448             } else {
10449                 pvalue = NULL;
10450             }
10451             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10452             if (!is_error(ret) && arg3) {
10453                 if (copy_to_user_timeval(arg3,
10454                                          &ovalue.it_interval)
10455                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10456                                             &ovalue.it_value))
10457                     return -TARGET_EFAULT;
10458             }
10459         }
10460         return ret;
10461     case TARGET_NR_getitimer:
10462         {
10463             struct itimerval value;
10464 
10465             ret = get_errno(getitimer(arg1, &value));
10466             if (!is_error(ret) && arg2) {
10467                 if (copy_to_user_timeval(arg2,
10468                                          &value.it_interval)
10469                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10470                                             &value.it_value))
10471                     return -TARGET_EFAULT;
10472             }
10473         }
10474         return ret;
10475 #ifdef TARGET_NR_stat
10476     case TARGET_NR_stat:
10477         if (!(p = lock_user_string(arg1))) {
10478             return -TARGET_EFAULT;
10479         }
10480         ret = get_errno(stat(path(p), &st));
10481         unlock_user(p, arg1, 0);
10482         goto do_stat;
10483 #endif
10484 #ifdef TARGET_NR_lstat
10485     case TARGET_NR_lstat:
10486         if (!(p = lock_user_string(arg1))) {
10487             return -TARGET_EFAULT;
10488         }
10489         ret = get_errno(lstat(path(p), &st));
10490         unlock_user(p, arg1, 0);
10491         goto do_stat;
10492 #endif
10493 #ifdef TARGET_NR_fstat
10494     case TARGET_NR_fstat:
10495         {
10496             ret = get_errno(fstat(arg1, &st));
10497 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10498         do_stat:
10499 #endif
10500             if (!is_error(ret)) {
10501                 struct target_stat *target_st;
10502 
10503                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10504                     return -TARGET_EFAULT;
10505                 memset(target_st, 0, sizeof(*target_st));
10506                 __put_user(st.st_dev, &target_st->st_dev);
10507                 __put_user(st.st_ino, &target_st->st_ino);
10508                 __put_user(st.st_mode, &target_st->st_mode);
10509                 __put_user(st.st_uid, &target_st->st_uid);
10510                 __put_user(st.st_gid, &target_st->st_gid);
10511                 __put_user(st.st_nlink, &target_st->st_nlink);
10512                 __put_user(st.st_rdev, &target_st->st_rdev);
10513                 __put_user(st.st_size, &target_st->st_size);
10514                 __put_user(st.st_blksize, &target_st->st_blksize);
10515                 __put_user(st.st_blocks, &target_st->st_blocks);
10516                 __put_user(st.st_atime, &target_st->target_st_atime);
10517                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10518                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10519 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10520                 __put_user(st.st_atim.tv_nsec,
10521                            &target_st->target_st_atime_nsec);
10522                 __put_user(st.st_mtim.tv_nsec,
10523                            &target_st->target_st_mtime_nsec);
10524                 __put_user(st.st_ctim.tv_nsec,
10525                            &target_st->target_st_ctime_nsec);
10526 #endif
10527                 unlock_user_struct(target_st, arg2, 1);
10528             }
10529         }
10530         return ret;
10531 #endif
10532     case TARGET_NR_vhangup:
10533         return get_errno(vhangup());
10534 #ifdef TARGET_NR_syscall
10535     case TARGET_NR_syscall:
10536         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10537                           arg6, arg7, arg8, 0);
10538 #endif
10539 #if defined(TARGET_NR_wait4)
10540     case TARGET_NR_wait4:
10541         {
10542             int status;
10543             abi_long status_ptr = arg2;
10544             struct rusage rusage, *rusage_ptr;
10545             abi_ulong target_rusage = arg4;
10546             abi_long rusage_err;
10547             if (target_rusage)
10548                 rusage_ptr = &rusage;
10549             else
10550                 rusage_ptr = NULL;
10551             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10552             if (!is_error(ret)) {
10553                 if (status_ptr && ret) {
10554                     status = host_to_target_waitstatus(status);
10555                     if (put_user_s32(status, status_ptr))
10556                         return -TARGET_EFAULT;
10557                 }
10558                 if (target_rusage) {
10559                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10560                     if (rusage_err) {
10561                         ret = rusage_err;
10562                     }
10563                 }
10564             }
10565         }
10566         return ret;
10567 #endif
10568 #ifdef TARGET_NR_swapoff
10569     case TARGET_NR_swapoff:
10570         if (!(p = lock_user_string(arg1)))
10571             return -TARGET_EFAULT;
10572         ret = get_errno(swapoff(p));
10573         unlock_user(p, arg1, 0);
10574         return ret;
10575 #endif
10576     case TARGET_NR_sysinfo:
10577         {
10578             struct target_sysinfo *target_value;
10579             struct sysinfo value;
10580             ret = get_errno(sysinfo(&value));
10581             if (!is_error(ret) && arg1)
10582             {
10583                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10584                     return -TARGET_EFAULT;
10585                 __put_user(value.uptime, &target_value->uptime);
10586                 __put_user(value.loads[0], &target_value->loads[0]);
10587                 __put_user(value.loads[1], &target_value->loads[1]);
10588                 __put_user(value.loads[2], &target_value->loads[2]);
10589                 __put_user(value.totalram, &target_value->totalram);
10590                 __put_user(value.freeram, &target_value->freeram);
10591                 __put_user(value.sharedram, &target_value->sharedram);
10592                 __put_user(value.bufferram, &target_value->bufferram);
10593                 __put_user(value.totalswap, &target_value->totalswap);
10594                 __put_user(value.freeswap, &target_value->freeswap);
10595                 __put_user(value.procs, &target_value->procs);
10596                 __put_user(value.totalhigh, &target_value->totalhigh);
10597                 __put_user(value.freehigh, &target_value->freehigh);
10598                 __put_user(value.mem_unit, &target_value->mem_unit);
10599                 unlock_user_struct(target_value, arg1, 1);
10600             }
10601         }
10602         return ret;
10603 #ifdef TARGET_NR_ipc
10604     case TARGET_NR_ipc:
10605         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10606 #endif
10607 #ifdef TARGET_NR_semget
10608     case TARGET_NR_semget:
10609         return get_errno(semget(arg1, arg2, arg3));
10610 #endif
10611 #ifdef TARGET_NR_semop
10612     case TARGET_NR_semop:
10613         return do_semtimedop(arg1, arg2, arg3, 0, false);
10614 #endif
10615 #ifdef TARGET_NR_semtimedop
10616     case TARGET_NR_semtimedop:
10617         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10618 #endif
10619 #ifdef TARGET_NR_semtimedop_time64
10620     case TARGET_NR_semtimedop_time64:
10621         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10622 #endif
10623 #ifdef TARGET_NR_semctl
10624     case TARGET_NR_semctl:
10625         return do_semctl(arg1, arg2, arg3, arg4);
10626 #endif
10627 #ifdef TARGET_NR_msgctl
10628     case TARGET_NR_msgctl:
10629         return do_msgctl(arg1, arg2, arg3);
10630 #endif
10631 #ifdef TARGET_NR_msgget
10632     case TARGET_NR_msgget:
10633         return get_errno(msgget(arg1, arg2));
10634 #endif
10635 #ifdef TARGET_NR_msgrcv
10636     case TARGET_NR_msgrcv:
10637         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10638 #endif
10639 #ifdef TARGET_NR_msgsnd
10640     case TARGET_NR_msgsnd:
10641         return do_msgsnd(arg1, arg2, arg3, arg4);
10642 #endif
10643 #ifdef TARGET_NR_shmget
10644     case TARGET_NR_shmget:
10645         return get_errno(shmget(arg1, arg2, arg3));
10646 #endif
10647 #ifdef TARGET_NR_shmctl
10648     case TARGET_NR_shmctl:
10649         return do_shmctl(arg1, arg2, arg3);
10650 #endif
10651 #ifdef TARGET_NR_shmat
10652     case TARGET_NR_shmat:
10653         return do_shmat(cpu_env, arg1, arg2, arg3);
10654 #endif
10655 #ifdef TARGET_NR_shmdt
10656     case TARGET_NR_shmdt:
10657         return do_shmdt(arg1);
10658 #endif
10659     case TARGET_NR_fsync:
10660         return get_errno(fsync(arg1));
10661     case TARGET_NR_clone:
10662         /* Linux manages to have three different orderings for its
10663          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10664          * match the kernel's CONFIG_CLONE_* settings.
10665          * Microblaze is further special in that it uses a sixth
10666          * implicit argument to clone for the TLS pointer.
10667          */
10668 #if defined(TARGET_MICROBLAZE)
10669         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10670 #elif defined(TARGET_CLONE_BACKWARDS)
10671         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10672 #elif defined(TARGET_CLONE_BACKWARDS2)
10673         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10674 #else
10675         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10676 #endif
10677         return ret;
10678 #ifdef __NR_exit_group
10679         /* new thread calls */
10680     case TARGET_NR_exit_group:
10681         preexit_cleanup(cpu_env, arg1);
10682         return get_errno(exit_group(arg1));
10683 #endif
10684     case TARGET_NR_setdomainname:
10685         if (!(p = lock_user_string(arg1)))
10686             return -TARGET_EFAULT;
10687         ret = get_errno(setdomainname(p, arg2));
10688         unlock_user(p, arg1, 0);
10689         return ret;
10690     case TARGET_NR_uname:
10691         /* no need to transcode because we use the linux syscall */
10692         {
10693             struct new_utsname * buf;
10694 
10695             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10696                 return -TARGET_EFAULT;
10697             ret = get_errno(sys_uname(buf));
10698             if (!is_error(ret)) {
10699                 /* Overwrite the native machine name with whatever is being
10700                    emulated. */
10701                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10702                           sizeof(buf->machine));
10703                 /* Allow the user to override the reported release.  */
10704                 if (qemu_uname_release && *qemu_uname_release) {
10705                     g_strlcpy(buf->release, qemu_uname_release,
10706                               sizeof(buf->release));
10707                 }
10708             }
10709             unlock_user_struct(buf, arg1, 1);
10710         }
10711         return ret;
10712 #ifdef TARGET_I386
10713     case TARGET_NR_modify_ldt:
10714         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10715 #if !defined(TARGET_X86_64)
10716     case TARGET_NR_vm86:
10717         return do_vm86(cpu_env, arg1, arg2);
10718 #endif
10719 #endif
10720 #if defined(TARGET_NR_adjtimex)
10721     case TARGET_NR_adjtimex:
10722         {
10723             struct timex host_buf;
10724 
10725             if (target_to_host_timex(&host_buf, arg1) != 0) {
10726                 return -TARGET_EFAULT;
10727             }
10728             ret = get_errno(adjtimex(&host_buf));
10729             if (!is_error(ret)) {
10730                 if (host_to_target_timex(arg1, &host_buf) != 0) {
10731                     return -TARGET_EFAULT;
10732                 }
10733             }
10734         }
10735         return ret;
10736 #endif
10737 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10738     case TARGET_NR_clock_adjtime:
10739         {
10740             struct timex htx, *phtx = &htx;
10741 
10742             if (target_to_host_timex(phtx, arg2) != 0) {
10743                 return -TARGET_EFAULT;
10744             }
10745             ret = get_errno(clock_adjtime(arg1, phtx));
10746             if (!is_error(ret) && phtx) {
10747                 if (host_to_target_timex(arg2, phtx) != 0) {
10748                     return -TARGET_EFAULT;
10749                 }
10750             }
10751         }
10752         return ret;
10753 #endif
10754 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10755     case TARGET_NR_clock_adjtime64:
10756         {
10757             struct timex htx;
10758 
10759             if (target_to_host_timex64(&htx, arg2) != 0) {
10760                 return -TARGET_EFAULT;
10761             }
10762             ret = get_errno(clock_adjtime(arg1, &htx));
10763             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
10764                     return -TARGET_EFAULT;
10765             }
10766         }
10767         return ret;
10768 #endif
10769     case TARGET_NR_getpgid:
10770         return get_errno(getpgid(arg1));
10771     case TARGET_NR_fchdir:
10772         return get_errno(fchdir(arg1));
10773     case TARGET_NR_personality:
10774         return get_errno(personality(arg1));
10775 #ifdef TARGET_NR__llseek /* Not on alpha */
10776     case TARGET_NR__llseek:
10777         {
10778             int64_t res;
10779 #if !defined(__NR_llseek)
10780             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10781             if (res == -1) {
10782                 ret = get_errno(res);
10783             } else {
10784                 ret = 0;
10785             }
10786 #else
10787             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10788 #endif
10789             if ((ret == 0) && put_user_s64(res, arg4)) {
10790                 return -TARGET_EFAULT;
10791             }
10792         }
10793         return ret;
10794 #endif
10795 #ifdef TARGET_NR_getdents
10796     case TARGET_NR_getdents:
10797         return do_getdents(arg1, arg2, arg3);
10798 #endif /* TARGET_NR_getdents */
10799 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10800     case TARGET_NR_getdents64:
10801         return do_getdents64(arg1, arg2, arg3);
10802 #endif /* TARGET_NR_getdents64 */
10803 #if defined(TARGET_NR__newselect)
10804     case TARGET_NR__newselect:
10805         return do_select(arg1, arg2, arg3, arg4, arg5);
10806 #endif
10807 #ifdef TARGET_NR_poll
10808     case TARGET_NR_poll:
10809         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
10810 #endif
10811 #ifdef TARGET_NR_ppoll
10812     case TARGET_NR_ppoll:
10813         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
10814 #endif
10815 #ifdef TARGET_NR_ppoll_time64
10816     case TARGET_NR_ppoll_time64:
10817         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
10818 #endif
10819     case TARGET_NR_flock:
10820         /* NOTE: the flock constant seems to be the same for every
10821            Linux platform */
10822         return get_errno(safe_flock(arg1, arg2));
10823     case TARGET_NR_readv:
10824         {
10825             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10826             if (vec != NULL) {
10827                 ret = get_errno(safe_readv(arg1, vec, arg3));
10828                 unlock_iovec(vec, arg2, arg3, 1);
10829             } else {
10830                 ret = -host_to_target_errno(errno);
10831             }
10832         }
10833         return ret;
10834     case TARGET_NR_writev:
10835         {
10836             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10837             if (vec != NULL) {
10838                 ret = get_errno(safe_writev(arg1, vec, arg3));
10839                 unlock_iovec(vec, arg2, arg3, 0);
10840             } else {
10841                 ret = -host_to_target_errno(errno);
10842             }
10843         }
10844         return ret;
10845 #if defined(TARGET_NR_preadv)
10846     case TARGET_NR_preadv:
10847         {
10848             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10849             if (vec != NULL) {
10850                 unsigned long low, high;
10851 
10852                 target_to_host_low_high(arg4, arg5, &low, &high);
10853                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10854                 unlock_iovec(vec, arg2, arg3, 1);
10855             } else {
10856                 ret = -host_to_target_errno(errno);
10857            }
10858         }
10859         return ret;
10860 #endif
10861 #if defined(TARGET_NR_pwritev)
10862     case TARGET_NR_pwritev:
10863         {
10864             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10865             if (vec != NULL) {
10866                 unsigned long low, high;
10867 
10868                 target_to_host_low_high(arg4, arg5, &low, &high);
10869                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10870                 unlock_iovec(vec, arg2, arg3, 0);
10871             } else {
10872                 ret = -host_to_target_errno(errno);
10873            }
10874         }
10875         return ret;
10876 #endif
10877     case TARGET_NR_getsid:
10878         return get_errno(getsid(arg1));
10879 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10880     case TARGET_NR_fdatasync:
10881         return get_errno(fdatasync(arg1));
10882 #endif
10883     case TARGET_NR_sched_getaffinity:
10884         {
10885             unsigned int mask_size;
10886             unsigned long *mask;
10887 
10888             /*
10889              * sched_getaffinity needs multiples of ulong, so need to take
10890              * care of mismatches between target ulong and host ulong sizes.
10891              */
10892             if (arg2 & (sizeof(abi_ulong) - 1)) {
10893                 return -TARGET_EINVAL;
10894             }
10895             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10896 
10897             mask = alloca(mask_size);
10898             memset(mask, 0, mask_size);
10899             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10900 
10901             if (!is_error(ret)) {
10902                 if (ret > arg2) {
10903                     /* More data returned than the caller's buffer will fit.
10904                      * This only happens if sizeof(abi_long) < sizeof(long)
10905                      * and the caller passed us a buffer holding an odd number
10906                      * of abi_longs. If the host kernel is actually using the
10907                      * extra 4 bytes then fail EINVAL; otherwise we can just
10908                      * ignore them and only copy the interesting part.
10909                      */
10910                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10911                     if (numcpus > arg2 * 8) {
10912                         return -TARGET_EINVAL;
10913                     }
10914                     ret = arg2;
10915                 }
10916 
10917                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10918                     return -TARGET_EFAULT;
10919                 }
10920             }
10921         }
10922         return ret;
10923     case TARGET_NR_sched_setaffinity:
10924         {
10925             unsigned int mask_size;
10926             unsigned long *mask;
10927 
10928             /*
10929              * sched_setaffinity needs multiples of ulong, so need to take
10930              * care of mismatches between target ulong and host ulong sizes.
10931              */
10932             if (arg2 & (sizeof(abi_ulong) - 1)) {
10933                 return -TARGET_EINVAL;
10934             }
10935             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10936             mask = alloca(mask_size);
10937 
10938             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10939             if (ret) {
10940                 return ret;
10941             }
10942 
10943             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10944         }
10945     case TARGET_NR_getcpu:
10946         {
10947             unsigned cpu, node;
10948             ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10949                                        arg2 ? &node : NULL,
10950                                        NULL));
10951             if (is_error(ret)) {
10952                 return ret;
10953             }
10954             if (arg1 && put_user_u32(cpu, arg1)) {
10955                 return -TARGET_EFAULT;
10956             }
10957             if (arg2 && put_user_u32(node, arg2)) {
10958                 return -TARGET_EFAULT;
10959             }
10960         }
10961         return ret;
10962     case TARGET_NR_sched_setparam:
10963         {
10964             struct target_sched_param *target_schp;
10965             struct sched_param schp;
10966 
10967             if (arg2 == 0) {
10968                 return -TARGET_EINVAL;
10969             }
10970             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
10971                 return -TARGET_EFAULT;
10972             }
10973             schp.sched_priority = tswap32(target_schp->sched_priority);
10974             unlock_user_struct(target_schp, arg2, 0);
10975             return get_errno(sys_sched_setparam(arg1, &schp));
10976         }
10977     case TARGET_NR_sched_getparam:
10978         {
10979             struct target_sched_param *target_schp;
10980             struct sched_param schp;
10981 
10982             if (arg2 == 0) {
10983                 return -TARGET_EINVAL;
10984             }
10985             ret = get_errno(sys_sched_getparam(arg1, &schp));
10986             if (!is_error(ret)) {
10987                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
10988                     return -TARGET_EFAULT;
10989                 }
10990                 target_schp->sched_priority = tswap32(schp.sched_priority);
10991                 unlock_user_struct(target_schp, arg2, 1);
10992             }
10993         }
10994         return ret;
10995     case TARGET_NR_sched_setscheduler:
10996         {
10997             struct target_sched_param *target_schp;
10998             struct sched_param schp;
10999             if (arg3 == 0) {
11000                 return -TARGET_EINVAL;
11001             }
11002             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11003                 return -TARGET_EFAULT;
11004             }
11005             schp.sched_priority = tswap32(target_schp->sched_priority);
11006             unlock_user_struct(target_schp, arg3, 0);
11007             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11008         }
11009     case TARGET_NR_sched_getscheduler:
11010         return get_errno(sys_sched_getscheduler(arg1));
11011     case TARGET_NR_sched_getattr:
11012         {
11013             struct target_sched_attr *target_scha;
11014             struct sched_attr scha;
11015             if (arg2 == 0) {
11016                 return -TARGET_EINVAL;
11017             }
11018             if (arg3 > sizeof(scha)) {
11019                 arg3 = sizeof(scha);
11020             }
11021             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11022             if (!is_error(ret)) {
11023                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11024                 if (!target_scha) {
11025                     return -TARGET_EFAULT;
11026                 }
11027                 target_scha->size = tswap32(scha.size);
11028                 target_scha->sched_policy = tswap32(scha.sched_policy);
11029                 target_scha->sched_flags = tswap64(scha.sched_flags);
11030                 target_scha->sched_nice = tswap32(scha.sched_nice);
11031                 target_scha->sched_priority = tswap32(scha.sched_priority);
11032                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11033                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11034                 target_scha->sched_period = tswap64(scha.sched_period);
11035                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11036                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11037                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11038                 }
11039                 unlock_user(target_scha, arg2, arg3);
11040             }
11041             return ret;
11042         }
11043     case TARGET_NR_sched_setattr:
11044         {
11045             struct target_sched_attr *target_scha;
11046             struct sched_attr scha;
11047             uint32_t size;
11048             int zeroed;
11049             if (arg2 == 0) {
11050                 return -TARGET_EINVAL;
11051             }
11052             if (get_user_u32(size, arg2)) {
11053                 return -TARGET_EFAULT;
11054             }
11055             if (!size) {
11056                 size = offsetof(struct target_sched_attr, sched_util_min);
11057             }
11058             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11059                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11060                     return -TARGET_EFAULT;
11061                 }
11062                 return -TARGET_E2BIG;
11063             }
11064 
11065             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11066             if (zeroed < 0) {
11067                 return zeroed;
11068             } else if (zeroed == 0) {
11069                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11070                     return -TARGET_EFAULT;
11071                 }
11072                 return -TARGET_E2BIG;
11073             }
11074             if (size > sizeof(struct target_sched_attr)) {
11075                 size = sizeof(struct target_sched_attr);
11076             }
11077 
11078             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11079             if (!target_scha) {
11080                 return -TARGET_EFAULT;
11081             }
11082             scha.size = size;
11083             scha.sched_policy = tswap32(target_scha->sched_policy);
11084             scha.sched_flags = tswap64(target_scha->sched_flags);
11085             scha.sched_nice = tswap32(target_scha->sched_nice);
11086             scha.sched_priority = tswap32(target_scha->sched_priority);
11087             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11088             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11089             scha.sched_period = tswap64(target_scha->sched_period);
11090             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11091                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11092                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11093             }
11094             unlock_user(target_scha, arg2, 0);
11095             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11096         }
11097     case TARGET_NR_sched_yield:
11098         return get_errno(sched_yield());
11099     case TARGET_NR_sched_get_priority_max:
11100         return get_errno(sched_get_priority_max(arg1));
11101     case TARGET_NR_sched_get_priority_min:
11102         return get_errno(sched_get_priority_min(arg1));
11103 #ifdef TARGET_NR_sched_rr_get_interval
11104     case TARGET_NR_sched_rr_get_interval:
11105         {
11106             struct timespec ts;
11107             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11108             if (!is_error(ret)) {
11109                 ret = host_to_target_timespec(arg2, &ts);
11110             }
11111         }
11112         return ret;
11113 #endif
11114 #ifdef TARGET_NR_sched_rr_get_interval_time64
11115     case TARGET_NR_sched_rr_get_interval_time64:
11116         {
11117             struct timespec ts;
11118             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11119             if (!is_error(ret)) {
11120                 ret = host_to_target_timespec64(arg2, &ts);
11121             }
11122         }
11123         return ret;
11124 #endif
11125 #if defined(TARGET_NR_nanosleep)
11126     case TARGET_NR_nanosleep:
11127         {
11128             struct timespec req, rem;
11129             target_to_host_timespec(&req, arg1);
11130             ret = get_errno(safe_nanosleep(&req, &rem));
11131             if (is_error(ret) && arg2) {
11132                 host_to_target_timespec(arg2, &rem);
11133             }
11134         }
11135         return ret;
11136 #endif
11137     case TARGET_NR_prctl:
11138         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11139         break;
11140 #ifdef TARGET_NR_arch_prctl
11141     case TARGET_NR_arch_prctl:
11142         return do_arch_prctl(cpu_env, arg1, arg2);
11143 #endif
11144 #ifdef TARGET_NR_pread64
11145     case TARGET_NR_pread64:
11146         if (regpairs_aligned(cpu_env, num)) {
11147             arg4 = arg5;
11148             arg5 = arg6;
11149         }
11150         if (arg2 == 0 && arg3 == 0) {
11151             /* Special-case NULL buffer and zero length, which should succeed */
11152             p = 0;
11153         } else {
11154             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11155             if (!p) {
11156                 return -TARGET_EFAULT;
11157             }
11158         }
11159         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11160         unlock_user(p, arg2, ret);
11161         return ret;
11162     case TARGET_NR_pwrite64:
11163         if (regpairs_aligned(cpu_env, num)) {
11164             arg4 = arg5;
11165             arg5 = arg6;
11166         }
11167         if (arg2 == 0 && arg3 == 0) {
11168             /* Special-case NULL buffer and zero length, which should succeed */
11169             p = 0;
11170         } else {
11171             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11172             if (!p) {
11173                 return -TARGET_EFAULT;
11174             }
11175         }
11176         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11177         unlock_user(p, arg2, 0);
11178         return ret;
11179 #endif
11180     case TARGET_NR_getcwd:
11181         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11182             return -TARGET_EFAULT;
11183         ret = get_errno(sys_getcwd1(p, arg2));
11184         unlock_user(p, arg1, ret);
11185         return ret;
11186     case TARGET_NR_capget:
11187     case TARGET_NR_capset:
11188     {
11189         struct target_user_cap_header *target_header;
11190         struct target_user_cap_data *target_data = NULL;
11191         struct __user_cap_header_struct header;
11192         struct __user_cap_data_struct data[2];
11193         struct __user_cap_data_struct *dataptr = NULL;
11194         int i, target_datalen;
11195         int data_items = 1;
11196 
11197         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11198             return -TARGET_EFAULT;
11199         }
11200         header.version = tswap32(target_header->version);
11201         header.pid = tswap32(target_header->pid);
11202 
11203         if (header.version != _LINUX_CAPABILITY_VERSION) {
11204             /* Version 2 and up takes pointer to two user_data structs */
11205             data_items = 2;
11206         }
11207 
11208         target_datalen = sizeof(*target_data) * data_items;
11209 
11210         if (arg2) {
11211             if (num == TARGET_NR_capget) {
11212                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11213             } else {
11214                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11215             }
11216             if (!target_data) {
11217                 unlock_user_struct(target_header, arg1, 0);
11218                 return -TARGET_EFAULT;
11219             }
11220 
11221             if (num == TARGET_NR_capset) {
11222                 for (i = 0; i < data_items; i++) {
11223                     data[i].effective = tswap32(target_data[i].effective);
11224                     data[i].permitted = tswap32(target_data[i].permitted);
11225                     data[i].inheritable = tswap32(target_data[i].inheritable);
11226                 }
11227             }
11228 
11229             dataptr = data;
11230         }
11231 
11232         if (num == TARGET_NR_capget) {
11233             ret = get_errno(capget(&header, dataptr));
11234         } else {
11235             ret = get_errno(capset(&header, dataptr));
11236         }
11237 
11238         /* The kernel always updates version for both capget and capset */
11239         target_header->version = tswap32(header.version);
11240         unlock_user_struct(target_header, arg1, 1);
11241 
11242         if (arg2) {
11243             if (num == TARGET_NR_capget) {
11244                 for (i = 0; i < data_items; i++) {
11245                     target_data[i].effective = tswap32(data[i].effective);
11246                     target_data[i].permitted = tswap32(data[i].permitted);
11247                     target_data[i].inheritable = tswap32(data[i].inheritable);
11248                 }
11249                 unlock_user(target_data, arg2, target_datalen);
11250             } else {
11251                 unlock_user(target_data, arg2, 0);
11252             }
11253         }
11254         return ret;
11255     }
11256     case TARGET_NR_sigaltstack:
11257         return do_sigaltstack(arg1, arg2, cpu_env);
11258 
11259 #ifdef CONFIG_SENDFILE
11260 #ifdef TARGET_NR_sendfile
11261     case TARGET_NR_sendfile:
11262     {
11263         off_t *offp = NULL;
11264         off_t off;
11265         if (arg3) {
11266             ret = get_user_sal(off, arg3);
11267             if (is_error(ret)) {
11268                 return ret;
11269             }
11270             offp = &off;
11271         }
11272         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11273         if (!is_error(ret) && arg3) {
11274             abi_long ret2 = put_user_sal(off, arg3);
11275             if (is_error(ret2)) {
11276                 ret = ret2;
11277             }
11278         }
11279         return ret;
11280     }
11281 #endif
11282 #ifdef TARGET_NR_sendfile64
11283     case TARGET_NR_sendfile64:
11284     {
11285         off_t *offp = NULL;
11286         off_t off;
11287         if (arg3) {
11288             ret = get_user_s64(off, arg3);
11289             if (is_error(ret)) {
11290                 return ret;
11291             }
11292             offp = &off;
11293         }
11294         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11295         if (!is_error(ret) && arg3) {
11296             abi_long ret2 = put_user_s64(off, arg3);
11297             if (is_error(ret2)) {
11298                 ret = ret2;
11299             }
11300         }
11301         return ret;
11302     }
11303 #endif
11304 #endif
11305 #ifdef TARGET_NR_vfork
11306     case TARGET_NR_vfork:
11307         return get_errno(do_fork(cpu_env,
11308                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11309                          0, 0, 0, 0));
11310 #endif
11311 #ifdef TARGET_NR_ugetrlimit
11312     case TARGET_NR_ugetrlimit:
11313     {
11314 	struct rlimit rlim;
11315 	int resource = target_to_host_resource(arg1);
11316 	ret = get_errno(getrlimit(resource, &rlim));
11317 	if (!is_error(ret)) {
11318 	    struct target_rlimit *target_rlim;
11319             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11320                 return -TARGET_EFAULT;
11321 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11322 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11323             unlock_user_struct(target_rlim, arg2, 1);
11324 	}
11325         return ret;
11326     }
11327 #endif
11328 #ifdef TARGET_NR_truncate64
11329     case TARGET_NR_truncate64:
11330         if (!(p = lock_user_string(arg1)))
11331             return -TARGET_EFAULT;
11332 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11333         unlock_user(p, arg1, 0);
11334         return ret;
11335 #endif
11336 #ifdef TARGET_NR_ftruncate64
11337     case TARGET_NR_ftruncate64:
11338         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11339 #endif
11340 #ifdef TARGET_NR_stat64
11341     case TARGET_NR_stat64:
11342         if (!(p = lock_user_string(arg1))) {
11343             return -TARGET_EFAULT;
11344         }
11345         ret = get_errno(stat(path(p), &st));
11346         unlock_user(p, arg1, 0);
11347         if (!is_error(ret))
11348             ret = host_to_target_stat64(cpu_env, arg2, &st);
11349         return ret;
11350 #endif
11351 #ifdef TARGET_NR_lstat64
11352     case TARGET_NR_lstat64:
11353         if (!(p = lock_user_string(arg1))) {
11354             return -TARGET_EFAULT;
11355         }
11356         ret = get_errno(lstat(path(p), &st));
11357         unlock_user(p, arg1, 0);
11358         if (!is_error(ret))
11359             ret = host_to_target_stat64(cpu_env, arg2, &st);
11360         return ret;
11361 #endif
11362 #ifdef TARGET_NR_fstat64
11363     case TARGET_NR_fstat64:
11364         ret = get_errno(fstat(arg1, &st));
11365         if (!is_error(ret))
11366             ret = host_to_target_stat64(cpu_env, arg2, &st);
11367         return ret;
11368 #endif
11369 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11370 #ifdef TARGET_NR_fstatat64
11371     case TARGET_NR_fstatat64:
11372 #endif
11373 #ifdef TARGET_NR_newfstatat
11374     case TARGET_NR_newfstatat:
11375 #endif
11376         if (!(p = lock_user_string(arg2))) {
11377             return -TARGET_EFAULT;
11378         }
11379         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11380         unlock_user(p, arg2, 0);
11381         if (!is_error(ret))
11382             ret = host_to_target_stat64(cpu_env, arg3, &st);
11383         return ret;
11384 #endif
11385 #if defined(TARGET_NR_statx)
11386     case TARGET_NR_statx:
11387         {
11388             struct target_statx *target_stx;
11389             int dirfd = arg1;
11390             int flags = arg3;
11391 
11392             p = lock_user_string(arg2);
11393             if (p == NULL) {
11394                 return -TARGET_EFAULT;
11395             }
11396 #if defined(__NR_statx)
11397             {
11398                 /*
11399                  * It is assumed that struct statx is architecture independent.
11400                  */
11401                 struct target_statx host_stx;
11402                 int mask = arg4;
11403 
11404                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11405                 if (!is_error(ret)) {
11406                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11407                         unlock_user(p, arg2, 0);
11408                         return -TARGET_EFAULT;
11409                     }
11410                 }
11411 
11412                 if (ret != -TARGET_ENOSYS) {
11413                     unlock_user(p, arg2, 0);
11414                     return ret;
11415                 }
11416             }
11417 #endif
11418             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11419             unlock_user(p, arg2, 0);
11420 
11421             if (!is_error(ret)) {
11422                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11423                     return -TARGET_EFAULT;
11424                 }
11425                 memset(target_stx, 0, sizeof(*target_stx));
11426                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11427                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11428                 __put_user(st.st_ino, &target_stx->stx_ino);
11429                 __put_user(st.st_mode, &target_stx->stx_mode);
11430                 __put_user(st.st_uid, &target_stx->stx_uid);
11431                 __put_user(st.st_gid, &target_stx->stx_gid);
11432                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11433                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11434                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11435                 __put_user(st.st_size, &target_stx->stx_size);
11436                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11437                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11438                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11439                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11440                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11441                 unlock_user_struct(target_stx, arg5, 1);
11442             }
11443         }
11444         return ret;
11445 #endif
11446 #ifdef TARGET_NR_lchown
11447     case TARGET_NR_lchown:
11448         if (!(p = lock_user_string(arg1)))
11449             return -TARGET_EFAULT;
11450         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11451         unlock_user(p, arg1, 0);
11452         return ret;
11453 #endif
11454 #ifdef TARGET_NR_getuid
11455     case TARGET_NR_getuid:
11456         return get_errno(high2lowuid(getuid()));
11457 #endif
11458 #ifdef TARGET_NR_getgid
11459     case TARGET_NR_getgid:
11460         return get_errno(high2lowgid(getgid()));
11461 #endif
11462 #ifdef TARGET_NR_geteuid
11463     case TARGET_NR_geteuid:
11464         return get_errno(high2lowuid(geteuid()));
11465 #endif
11466 #ifdef TARGET_NR_getegid
11467     case TARGET_NR_getegid:
11468         return get_errno(high2lowgid(getegid()));
11469 #endif
11470     case TARGET_NR_setreuid:
11471         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11472     case TARGET_NR_setregid:
11473         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11474     case TARGET_NR_getgroups:
11475         {
11476             int gidsetsize = arg1;
11477             target_id *target_grouplist;
11478             gid_t *grouplist;
11479             int i;
11480 
11481             grouplist = alloca(gidsetsize * sizeof(gid_t));
11482             ret = get_errno(getgroups(gidsetsize, grouplist));
11483             if (gidsetsize == 0)
11484                 return ret;
11485             if (!is_error(ret)) {
11486                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11487                 if (!target_grouplist)
11488                     return -TARGET_EFAULT;
11489                 for(i = 0;i < ret; i++)
11490                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11491                 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11492             }
11493         }
11494         return ret;
11495     case TARGET_NR_setgroups:
11496         {
11497             int gidsetsize = arg1;
11498             target_id *target_grouplist;
11499             gid_t *grouplist = NULL;
11500             int i;
11501             if (gidsetsize) {
11502                 grouplist = alloca(gidsetsize * sizeof(gid_t));
11503                 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11504                 if (!target_grouplist) {
11505                     return -TARGET_EFAULT;
11506                 }
11507                 for (i = 0; i < gidsetsize; i++) {
11508                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11509                 }
11510                 unlock_user(target_grouplist, arg2, 0);
11511             }
11512             return get_errno(setgroups(gidsetsize, grouplist));
11513         }
11514     case TARGET_NR_fchown:
11515         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11516 #if defined(TARGET_NR_fchownat)
11517     case TARGET_NR_fchownat:
11518         if (!(p = lock_user_string(arg2)))
11519             return -TARGET_EFAULT;
11520         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11521                                  low2highgid(arg4), arg5));
11522         unlock_user(p, arg2, 0);
11523         return ret;
11524 #endif
11525 #ifdef TARGET_NR_setresuid
11526     case TARGET_NR_setresuid:
11527         return get_errno(sys_setresuid(low2highuid(arg1),
11528                                        low2highuid(arg2),
11529                                        low2highuid(arg3)));
11530 #endif
11531 #ifdef TARGET_NR_getresuid
11532     case TARGET_NR_getresuid:
11533         {
11534             uid_t ruid, euid, suid;
11535             ret = get_errno(getresuid(&ruid, &euid, &suid));
11536             if (!is_error(ret)) {
11537                 if (put_user_id(high2lowuid(ruid), arg1)
11538                     || put_user_id(high2lowuid(euid), arg2)
11539                     || put_user_id(high2lowuid(suid), arg3))
11540                     return -TARGET_EFAULT;
11541             }
11542         }
11543         return ret;
11544 #endif
11545 #ifdef TARGET_NR_getresgid
11546     case TARGET_NR_setresgid:
11547         return get_errno(sys_setresgid(low2highgid(arg1),
11548                                        low2highgid(arg2),
11549                                        low2highgid(arg3)));
11550 #endif
11551 #ifdef TARGET_NR_getresgid
11552     case TARGET_NR_getresgid:
11553         {
11554             gid_t rgid, egid, sgid;
11555             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11556             if (!is_error(ret)) {
11557                 if (put_user_id(high2lowgid(rgid), arg1)
11558                     || put_user_id(high2lowgid(egid), arg2)
11559                     || put_user_id(high2lowgid(sgid), arg3))
11560                     return -TARGET_EFAULT;
11561             }
11562         }
11563         return ret;
11564 #endif
11565 #ifdef TARGET_NR_chown
11566     case TARGET_NR_chown:
11567         if (!(p = lock_user_string(arg1)))
11568             return -TARGET_EFAULT;
11569         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11570         unlock_user(p, arg1, 0);
11571         return ret;
11572 #endif
11573     case TARGET_NR_setuid:
11574         return get_errno(sys_setuid(low2highuid(arg1)));
11575     case TARGET_NR_setgid:
11576         return get_errno(sys_setgid(low2highgid(arg1)));
11577     case TARGET_NR_setfsuid:
11578         return get_errno(setfsuid(arg1));
11579     case TARGET_NR_setfsgid:
11580         return get_errno(setfsgid(arg1));
11581 
11582 #ifdef TARGET_NR_lchown32
11583     case TARGET_NR_lchown32:
11584         if (!(p = lock_user_string(arg1)))
11585             return -TARGET_EFAULT;
11586         ret = get_errno(lchown(p, arg2, arg3));
11587         unlock_user(p, arg1, 0);
11588         return ret;
11589 #endif
11590 #ifdef TARGET_NR_getuid32
11591     case TARGET_NR_getuid32:
11592         return get_errno(getuid());
11593 #endif
11594 
11595 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11596    /* Alpha specific */
11597     case TARGET_NR_getxuid:
11598          {
11599             uid_t euid;
11600             euid=geteuid();
11601             cpu_env->ir[IR_A4]=euid;
11602          }
11603         return get_errno(getuid());
11604 #endif
11605 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11606    /* Alpha specific */
11607     case TARGET_NR_getxgid:
11608          {
11609             uid_t egid;
11610             egid=getegid();
11611             cpu_env->ir[IR_A4]=egid;
11612          }
11613         return get_errno(getgid());
11614 #endif
11615 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11616     /* Alpha specific */
11617     case TARGET_NR_osf_getsysinfo:
11618         ret = -TARGET_EOPNOTSUPP;
11619         switch (arg1) {
11620           case TARGET_GSI_IEEE_FP_CONTROL:
11621             {
11622                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11623                 uint64_t swcr = cpu_env->swcr;
11624 
11625                 swcr &= ~SWCR_STATUS_MASK;
11626                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11627 
11628                 if (put_user_u64 (swcr, arg2))
11629                         return -TARGET_EFAULT;
11630                 ret = 0;
11631             }
11632             break;
11633 
11634           /* case GSI_IEEE_STATE_AT_SIGNAL:
11635              -- Not implemented in linux kernel.
11636              case GSI_UACPROC:
11637              -- Retrieves current unaligned access state; not much used.
11638              case GSI_PROC_TYPE:
11639              -- Retrieves implver information; surely not used.
11640              case GSI_GET_HWRPB:
11641              -- Grabs a copy of the HWRPB; surely not used.
11642           */
11643         }
11644         return ret;
11645 #endif
11646 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11647     /* Alpha specific */
11648     case TARGET_NR_osf_setsysinfo:
11649         ret = -TARGET_EOPNOTSUPP;
11650         switch (arg1) {
11651           case TARGET_SSI_IEEE_FP_CONTROL:
11652             {
11653                 uint64_t swcr, fpcr;
11654 
11655                 if (get_user_u64 (swcr, arg2)) {
11656                     return -TARGET_EFAULT;
11657                 }
11658 
11659                 /*
11660                  * The kernel calls swcr_update_status to update the
11661                  * status bits from the fpcr at every point that it
11662                  * could be queried.  Therefore, we store the status
11663                  * bits only in FPCR.
11664                  */
11665                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11666 
11667                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11668                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11669                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11670                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11671                 ret = 0;
11672             }
11673             break;
11674 
11675           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11676             {
11677                 uint64_t exc, fpcr, fex;
11678 
11679                 if (get_user_u64(exc, arg2)) {
11680                     return -TARGET_EFAULT;
11681                 }
11682                 exc &= SWCR_STATUS_MASK;
11683                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11684 
11685                 /* Old exceptions are not signaled.  */
11686                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11687                 fex = exc & ~fex;
11688                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11689                 fex &= (cpu_env)->swcr;
11690 
11691                 /* Update the hardware fpcr.  */
11692                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11693                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11694 
11695                 if (fex) {
11696                     int si_code = TARGET_FPE_FLTUNK;
11697                     target_siginfo_t info;
11698 
11699                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11700                         si_code = TARGET_FPE_FLTUND;
11701                     }
11702                     if (fex & SWCR_TRAP_ENABLE_INE) {
11703                         si_code = TARGET_FPE_FLTRES;
11704                     }
11705                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11706                         si_code = TARGET_FPE_FLTUND;
11707                     }
11708                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11709                         si_code = TARGET_FPE_FLTOVF;
11710                     }
11711                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11712                         si_code = TARGET_FPE_FLTDIV;
11713                     }
11714                     if (fex & SWCR_TRAP_ENABLE_INV) {
11715                         si_code = TARGET_FPE_FLTINV;
11716                     }
11717 
11718                     info.si_signo = SIGFPE;
11719                     info.si_errno = 0;
11720                     info.si_code = si_code;
11721                     info._sifields._sigfault._addr = (cpu_env)->pc;
11722                     queue_signal(cpu_env, info.si_signo,
11723                                  QEMU_SI_FAULT, &info);
11724                 }
11725                 ret = 0;
11726             }
11727             break;
11728 
11729           /* case SSI_NVPAIRS:
11730              -- Used with SSIN_UACPROC to enable unaligned accesses.
11731              case SSI_IEEE_STATE_AT_SIGNAL:
11732              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11733              -- Not implemented in linux kernel
11734           */
11735         }
11736         return ret;
11737 #endif
11738 #ifdef TARGET_NR_osf_sigprocmask
11739     /* Alpha specific.  */
11740     case TARGET_NR_osf_sigprocmask:
11741         {
11742             abi_ulong mask;
11743             int how;
11744             sigset_t set, oldset;
11745 
11746             switch(arg1) {
11747             case TARGET_SIG_BLOCK:
11748                 how = SIG_BLOCK;
11749                 break;
11750             case TARGET_SIG_UNBLOCK:
11751                 how = SIG_UNBLOCK;
11752                 break;
11753             case TARGET_SIG_SETMASK:
11754                 how = SIG_SETMASK;
11755                 break;
11756             default:
11757                 return -TARGET_EINVAL;
11758             }
11759             mask = arg2;
11760             target_to_host_old_sigset(&set, &mask);
11761             ret = do_sigprocmask(how, &set, &oldset);
11762             if (!ret) {
11763                 host_to_target_old_sigset(&mask, &oldset);
11764                 ret = mask;
11765             }
11766         }
11767         return ret;
11768 #endif
11769 
11770 #ifdef TARGET_NR_getgid32
11771     case TARGET_NR_getgid32:
11772         return get_errno(getgid());
11773 #endif
11774 #ifdef TARGET_NR_geteuid32
11775     case TARGET_NR_geteuid32:
11776         return get_errno(geteuid());
11777 #endif
11778 #ifdef TARGET_NR_getegid32
11779     case TARGET_NR_getegid32:
11780         return get_errno(getegid());
11781 #endif
11782 #ifdef TARGET_NR_setreuid32
11783     case TARGET_NR_setreuid32:
11784         return get_errno(setreuid(arg1, arg2));
11785 #endif
11786 #ifdef TARGET_NR_setregid32
11787     case TARGET_NR_setregid32:
11788         return get_errno(setregid(arg1, arg2));
11789 #endif
11790 #ifdef TARGET_NR_getgroups32
11791     case TARGET_NR_getgroups32:
11792         {
11793             int gidsetsize = arg1;
11794             uint32_t *target_grouplist;
11795             gid_t *grouplist;
11796             int i;
11797 
11798             grouplist = alloca(gidsetsize * sizeof(gid_t));
11799             ret = get_errno(getgroups(gidsetsize, grouplist));
11800             if (gidsetsize == 0)
11801                 return ret;
11802             if (!is_error(ret)) {
11803                 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11804                 if (!target_grouplist) {
11805                     return -TARGET_EFAULT;
11806                 }
11807                 for(i = 0;i < ret; i++)
11808                     target_grouplist[i] = tswap32(grouplist[i]);
11809                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11810             }
11811         }
11812         return ret;
11813 #endif
11814 #ifdef TARGET_NR_setgroups32
11815     case TARGET_NR_setgroups32:
11816         {
11817             int gidsetsize = arg1;
11818             uint32_t *target_grouplist;
11819             gid_t *grouplist;
11820             int i;
11821 
11822             grouplist = alloca(gidsetsize * sizeof(gid_t));
11823             target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11824             if (!target_grouplist) {
11825                 return -TARGET_EFAULT;
11826             }
11827             for(i = 0;i < gidsetsize; i++)
11828                 grouplist[i] = tswap32(target_grouplist[i]);
11829             unlock_user(target_grouplist, arg2, 0);
11830             return get_errno(setgroups(gidsetsize, grouplist));
11831         }
11832 #endif
11833 #ifdef TARGET_NR_fchown32
11834     case TARGET_NR_fchown32:
11835         return get_errno(fchown(arg1, arg2, arg3));
11836 #endif
11837 #ifdef TARGET_NR_setresuid32
11838     case TARGET_NR_setresuid32:
11839         return get_errno(sys_setresuid(arg1, arg2, arg3));
11840 #endif
11841 #ifdef TARGET_NR_getresuid32
11842     case TARGET_NR_getresuid32:
11843         {
11844             uid_t ruid, euid, suid;
11845             ret = get_errno(getresuid(&ruid, &euid, &suid));
11846             if (!is_error(ret)) {
11847                 if (put_user_u32(ruid, arg1)
11848                     || put_user_u32(euid, arg2)
11849                     || put_user_u32(suid, arg3))
11850                     return -TARGET_EFAULT;
11851             }
11852         }
11853         return ret;
11854 #endif
11855 #ifdef TARGET_NR_setresgid32
11856     case TARGET_NR_setresgid32:
11857         return get_errno(sys_setresgid(arg1, arg2, arg3));
11858 #endif
11859 #ifdef TARGET_NR_getresgid32
11860     case TARGET_NR_getresgid32:
11861         {
11862             gid_t rgid, egid, sgid;
11863             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11864             if (!is_error(ret)) {
11865                 if (put_user_u32(rgid, arg1)
11866                     || put_user_u32(egid, arg2)
11867                     || put_user_u32(sgid, arg3))
11868                     return -TARGET_EFAULT;
11869             }
11870         }
11871         return ret;
11872 #endif
11873 #ifdef TARGET_NR_chown32
11874     case TARGET_NR_chown32:
11875         if (!(p = lock_user_string(arg1)))
11876             return -TARGET_EFAULT;
11877         ret = get_errno(chown(p, arg2, arg3));
11878         unlock_user(p, arg1, 0);
11879         return ret;
11880 #endif
11881 #ifdef TARGET_NR_setuid32
11882     case TARGET_NR_setuid32:
11883         return get_errno(sys_setuid(arg1));
11884 #endif
11885 #ifdef TARGET_NR_setgid32
11886     case TARGET_NR_setgid32:
11887         return get_errno(sys_setgid(arg1));
11888 #endif
11889 #ifdef TARGET_NR_setfsuid32
11890     case TARGET_NR_setfsuid32:
11891         return get_errno(setfsuid(arg1));
11892 #endif
11893 #ifdef TARGET_NR_setfsgid32
11894     case TARGET_NR_setfsgid32:
11895         return get_errno(setfsgid(arg1));
11896 #endif
11897 #ifdef TARGET_NR_mincore
11898     case TARGET_NR_mincore:
11899         {
11900             void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11901             if (!a) {
11902                 return -TARGET_ENOMEM;
11903             }
11904             p = lock_user_string(arg3);
11905             if (!p) {
11906                 ret = -TARGET_EFAULT;
11907             } else {
11908                 ret = get_errno(mincore(a, arg2, p));
11909                 unlock_user(p, arg3, ret);
11910             }
11911             unlock_user(a, arg1, 0);
11912         }
11913         return ret;
11914 #endif
11915 #ifdef TARGET_NR_arm_fadvise64_64
11916     case TARGET_NR_arm_fadvise64_64:
11917         /* arm_fadvise64_64 looks like fadvise64_64 but
11918          * with different argument order: fd, advice, offset, len
11919          * rather than the usual fd, offset, len, advice.
11920          * Note that offset and len are both 64-bit so appear as
11921          * pairs of 32-bit registers.
11922          */
11923         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11924                             target_offset64(arg5, arg6), arg2);
11925         return -host_to_target_errno(ret);
11926 #endif
11927 
11928 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
11929 
11930 #ifdef TARGET_NR_fadvise64_64
11931     case TARGET_NR_fadvise64_64:
11932 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11933         /* 6 args: fd, advice, offset (high, low), len (high, low) */
11934         ret = arg2;
11935         arg2 = arg3;
11936         arg3 = arg4;
11937         arg4 = arg5;
11938         arg5 = arg6;
11939         arg6 = ret;
11940 #else
11941         /* 6 args: fd, offset (high, low), len (high, low), advice */
11942         if (regpairs_aligned(cpu_env, num)) {
11943             /* offset is in (3,4), len in (5,6) and advice in 7 */
11944             arg2 = arg3;
11945             arg3 = arg4;
11946             arg4 = arg5;
11947             arg5 = arg6;
11948             arg6 = arg7;
11949         }
11950 #endif
11951         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11952                             target_offset64(arg4, arg5), arg6);
11953         return -host_to_target_errno(ret);
11954 #endif
11955 
11956 #ifdef TARGET_NR_fadvise64
11957     case TARGET_NR_fadvise64:
11958         /* 5 args: fd, offset (high, low), len, advice */
11959         if (regpairs_aligned(cpu_env, num)) {
11960             /* offset is in (3,4), len in 5 and advice in 6 */
11961             arg2 = arg3;
11962             arg3 = arg4;
11963             arg4 = arg5;
11964             arg5 = arg6;
11965         }
11966         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11967         return -host_to_target_errno(ret);
11968 #endif
11969 
11970 #else /* not a 32-bit ABI */
11971 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11972 #ifdef TARGET_NR_fadvise64_64
11973     case TARGET_NR_fadvise64_64:
11974 #endif
11975 #ifdef TARGET_NR_fadvise64
11976     case TARGET_NR_fadvise64:
11977 #endif
11978 #ifdef TARGET_S390X
11979         switch (arg4) {
11980         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11981         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11982         case 6: arg4 = POSIX_FADV_DONTNEED; break;
11983         case 7: arg4 = POSIX_FADV_NOREUSE; break;
11984         default: break;
11985         }
11986 #endif
11987         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11988 #endif
11989 #endif /* end of 64-bit ABI fadvise handling */
11990 
11991 #ifdef TARGET_NR_madvise
11992     case TARGET_NR_madvise:
11993         return target_madvise(arg1, arg2, arg3);
11994 #endif
11995 #ifdef TARGET_NR_fcntl64
11996     case TARGET_NR_fcntl64:
11997     {
11998         int cmd;
11999         struct flock64 fl;
12000         from_flock64_fn *copyfrom = copy_from_user_flock64;
12001         to_flock64_fn *copyto = copy_to_user_flock64;
12002 
12003 #ifdef TARGET_ARM
12004         if (!cpu_env->eabi) {
12005             copyfrom = copy_from_user_oabi_flock64;
12006             copyto = copy_to_user_oabi_flock64;
12007         }
12008 #endif
12009 
12010         cmd = target_to_host_fcntl_cmd(arg2);
12011         if (cmd == -TARGET_EINVAL) {
12012             return cmd;
12013         }
12014 
12015         switch(arg2) {
12016         case TARGET_F_GETLK64:
12017             ret = copyfrom(&fl, arg3);
12018             if (ret) {
12019                 break;
12020             }
12021             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12022             if (ret == 0) {
12023                 ret = copyto(arg3, &fl);
12024             }
12025 	    break;
12026 
12027         case TARGET_F_SETLK64:
12028         case TARGET_F_SETLKW64:
12029             ret = copyfrom(&fl, arg3);
12030             if (ret) {
12031                 break;
12032             }
12033             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12034 	    break;
12035         default:
12036             ret = do_fcntl(arg1, arg2, arg3);
12037             break;
12038         }
12039         return ret;
12040     }
12041 #endif
12042 #ifdef TARGET_NR_cacheflush
12043     case TARGET_NR_cacheflush:
12044         /* self-modifying code is handled automatically, so nothing needed */
12045         return 0;
12046 #endif
12047 #ifdef TARGET_NR_getpagesize
12048     case TARGET_NR_getpagesize:
12049         return TARGET_PAGE_SIZE;
12050 #endif
12051     case TARGET_NR_gettid:
12052         return get_errno(sys_gettid());
12053 #ifdef TARGET_NR_readahead
12054     case TARGET_NR_readahead:
12055 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12056         if (regpairs_aligned(cpu_env, num)) {
12057             arg2 = arg3;
12058             arg3 = arg4;
12059             arg4 = arg5;
12060         }
12061         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12062 #else
12063         ret = get_errno(readahead(arg1, arg2, arg3));
12064 #endif
12065         return ret;
12066 #endif
12067 #ifdef CONFIG_ATTR
12068 #ifdef TARGET_NR_setxattr
12069     case TARGET_NR_listxattr:
12070     case TARGET_NR_llistxattr:
12071     {
12072         void *p, *b = 0;
12073         if (arg2) {
12074             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12075             if (!b) {
12076                 return -TARGET_EFAULT;
12077             }
12078         }
12079         p = lock_user_string(arg1);
12080         if (p) {
12081             if (num == TARGET_NR_listxattr) {
12082                 ret = get_errno(listxattr(p, b, arg3));
12083             } else {
12084                 ret = get_errno(llistxattr(p, b, arg3));
12085             }
12086         } else {
12087             ret = -TARGET_EFAULT;
12088         }
12089         unlock_user(p, arg1, 0);
12090         unlock_user(b, arg2, arg3);
12091         return ret;
12092     }
12093     case TARGET_NR_flistxattr:
12094     {
12095         void *b = 0;
12096         if (arg2) {
12097             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12098             if (!b) {
12099                 return -TARGET_EFAULT;
12100             }
12101         }
12102         ret = get_errno(flistxattr(arg1, b, arg3));
12103         unlock_user(b, arg2, arg3);
12104         return ret;
12105     }
12106     case TARGET_NR_setxattr:
12107     case TARGET_NR_lsetxattr:
12108         {
12109             void *p, *n, *v = 0;
12110             if (arg3) {
12111                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12112                 if (!v) {
12113                     return -TARGET_EFAULT;
12114                 }
12115             }
12116             p = lock_user_string(arg1);
12117             n = lock_user_string(arg2);
12118             if (p && n) {
12119                 if (num == TARGET_NR_setxattr) {
12120                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12121                 } else {
12122                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12123                 }
12124             } else {
12125                 ret = -TARGET_EFAULT;
12126             }
12127             unlock_user(p, arg1, 0);
12128             unlock_user(n, arg2, 0);
12129             unlock_user(v, arg3, 0);
12130         }
12131         return ret;
12132     case TARGET_NR_fsetxattr:
12133         {
12134             void *n, *v = 0;
12135             if (arg3) {
12136                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12137                 if (!v) {
12138                     return -TARGET_EFAULT;
12139                 }
12140             }
12141             n = lock_user_string(arg2);
12142             if (n) {
12143                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12144             } else {
12145                 ret = -TARGET_EFAULT;
12146             }
12147             unlock_user(n, arg2, 0);
12148             unlock_user(v, arg3, 0);
12149         }
12150         return ret;
12151     case TARGET_NR_getxattr:
12152     case TARGET_NR_lgetxattr:
12153         {
12154             void *p, *n, *v = 0;
12155             if (arg3) {
12156                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12157                 if (!v) {
12158                     return -TARGET_EFAULT;
12159                 }
12160             }
12161             p = lock_user_string(arg1);
12162             n = lock_user_string(arg2);
12163             if (p && n) {
12164                 if (num == TARGET_NR_getxattr) {
12165                     ret = get_errno(getxattr(p, n, v, arg4));
12166                 } else {
12167                     ret = get_errno(lgetxattr(p, n, v, arg4));
12168                 }
12169             } else {
12170                 ret = -TARGET_EFAULT;
12171             }
12172             unlock_user(p, arg1, 0);
12173             unlock_user(n, arg2, 0);
12174             unlock_user(v, arg3, arg4);
12175         }
12176         return ret;
12177     case TARGET_NR_fgetxattr:
12178         {
12179             void *n, *v = 0;
12180             if (arg3) {
12181                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12182                 if (!v) {
12183                     return -TARGET_EFAULT;
12184                 }
12185             }
12186             n = lock_user_string(arg2);
12187             if (n) {
12188                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12189             } else {
12190                 ret = -TARGET_EFAULT;
12191             }
12192             unlock_user(n, arg2, 0);
12193             unlock_user(v, arg3, arg4);
12194         }
12195         return ret;
12196     case TARGET_NR_removexattr:
12197     case TARGET_NR_lremovexattr:
12198         {
12199             void *p, *n;
12200             p = lock_user_string(arg1);
12201             n = lock_user_string(arg2);
12202             if (p && n) {
12203                 if (num == TARGET_NR_removexattr) {
12204                     ret = get_errno(removexattr(p, n));
12205                 } else {
12206                     ret = get_errno(lremovexattr(p, n));
12207                 }
12208             } else {
12209                 ret = -TARGET_EFAULT;
12210             }
12211             unlock_user(p, arg1, 0);
12212             unlock_user(n, arg2, 0);
12213         }
12214         return ret;
12215     case TARGET_NR_fremovexattr:
12216         {
12217             void *n;
12218             n = lock_user_string(arg2);
12219             if (n) {
12220                 ret = get_errno(fremovexattr(arg1, n));
12221             } else {
12222                 ret = -TARGET_EFAULT;
12223             }
12224             unlock_user(n, arg2, 0);
12225         }
12226         return ret;
12227 #endif
12228 #endif /* CONFIG_ATTR */
12229 #ifdef TARGET_NR_set_thread_area
12230     case TARGET_NR_set_thread_area:
12231 #if defined(TARGET_MIPS)
12232       cpu_env->active_tc.CP0_UserLocal = arg1;
12233       return 0;
12234 #elif defined(TARGET_CRIS)
12235       if (arg1 & 0xff)
12236           ret = -TARGET_EINVAL;
12237       else {
12238           cpu_env->pregs[PR_PID] = arg1;
12239           ret = 0;
12240       }
12241       return ret;
12242 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12243       return do_set_thread_area(cpu_env, arg1);
12244 #elif defined(TARGET_M68K)
12245       {
12246           TaskState *ts = cpu->opaque;
12247           ts->tp_value = arg1;
12248           return 0;
12249       }
12250 #else
12251       return -TARGET_ENOSYS;
12252 #endif
12253 #endif
12254 #ifdef TARGET_NR_get_thread_area
12255     case TARGET_NR_get_thread_area:
12256 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12257         return do_get_thread_area(cpu_env, arg1);
12258 #elif defined(TARGET_M68K)
12259         {
12260             TaskState *ts = cpu->opaque;
12261             return ts->tp_value;
12262         }
12263 #else
12264         return -TARGET_ENOSYS;
12265 #endif
12266 #endif
12267 #ifdef TARGET_NR_getdomainname
12268     case TARGET_NR_getdomainname:
12269         return -TARGET_ENOSYS;
12270 #endif
12271 
12272 #ifdef TARGET_NR_clock_settime
12273     case TARGET_NR_clock_settime:
12274     {
12275         struct timespec ts;
12276 
12277         ret = target_to_host_timespec(&ts, arg2);
12278         if (!is_error(ret)) {
12279             ret = get_errno(clock_settime(arg1, &ts));
12280         }
12281         return ret;
12282     }
12283 #endif
12284 #ifdef TARGET_NR_clock_settime64
12285     case TARGET_NR_clock_settime64:
12286     {
12287         struct timespec ts;
12288 
12289         ret = target_to_host_timespec64(&ts, arg2);
12290         if (!is_error(ret)) {
12291             ret = get_errno(clock_settime(arg1, &ts));
12292         }
12293         return ret;
12294     }
12295 #endif
12296 #ifdef TARGET_NR_clock_gettime
12297     case TARGET_NR_clock_gettime:
12298     {
12299         struct timespec ts;
12300         ret = get_errno(clock_gettime(arg1, &ts));
12301         if (!is_error(ret)) {
12302             ret = host_to_target_timespec(arg2, &ts);
12303         }
12304         return ret;
12305     }
12306 #endif
12307 #ifdef TARGET_NR_clock_gettime64
12308     case TARGET_NR_clock_gettime64:
12309     {
12310         struct timespec ts;
12311         ret = get_errno(clock_gettime(arg1, &ts));
12312         if (!is_error(ret)) {
12313             ret = host_to_target_timespec64(arg2, &ts);
12314         }
12315         return ret;
12316     }
12317 #endif
12318 #ifdef TARGET_NR_clock_getres
12319     case TARGET_NR_clock_getres:
12320     {
12321         struct timespec ts;
12322         ret = get_errno(clock_getres(arg1, &ts));
12323         if (!is_error(ret)) {
12324             host_to_target_timespec(arg2, &ts);
12325         }
12326         return ret;
12327     }
12328 #endif
12329 #ifdef TARGET_NR_clock_getres_time64
12330     case TARGET_NR_clock_getres_time64:
12331     {
12332         struct timespec ts;
12333         ret = get_errno(clock_getres(arg1, &ts));
12334         if (!is_error(ret)) {
12335             host_to_target_timespec64(arg2, &ts);
12336         }
12337         return ret;
12338     }
12339 #endif
12340 #ifdef TARGET_NR_clock_nanosleep
12341     case TARGET_NR_clock_nanosleep:
12342     {
12343         struct timespec ts;
12344         if (target_to_host_timespec(&ts, arg3)) {
12345             return -TARGET_EFAULT;
12346         }
12347         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12348                                              &ts, arg4 ? &ts : NULL));
12349         /*
12350          * if the call is interrupted by a signal handler, it fails
12351          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12352          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12353          */
12354         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12355             host_to_target_timespec(arg4, &ts)) {
12356               return -TARGET_EFAULT;
12357         }
12358 
12359         return ret;
12360     }
12361 #endif
12362 #ifdef TARGET_NR_clock_nanosleep_time64
12363     case TARGET_NR_clock_nanosleep_time64:
12364     {
12365         struct timespec ts;
12366 
12367         if (target_to_host_timespec64(&ts, arg3)) {
12368             return -TARGET_EFAULT;
12369         }
12370 
12371         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12372                                              &ts, arg4 ? &ts : NULL));
12373 
12374         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12375             host_to_target_timespec64(arg4, &ts)) {
12376             return -TARGET_EFAULT;
12377         }
12378         return ret;
12379     }
12380 #endif
12381 
12382 #if defined(TARGET_NR_set_tid_address)
12383     case TARGET_NR_set_tid_address:
12384     {
12385         TaskState *ts = cpu->opaque;
12386         ts->child_tidptr = arg1;
12387         /* do not call host set_tid_address() syscall, instead return tid() */
12388         return get_errno(sys_gettid());
12389     }
12390 #endif
12391 
12392     case TARGET_NR_tkill:
12393         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12394 
12395     case TARGET_NR_tgkill:
12396         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12397                          target_to_host_signal(arg3)));
12398 
12399 #ifdef TARGET_NR_set_robust_list
12400     case TARGET_NR_set_robust_list:
12401     case TARGET_NR_get_robust_list:
12402         /* The ABI for supporting robust futexes has userspace pass
12403          * the kernel a pointer to a linked list which is updated by
12404          * userspace after the syscall; the list is walked by the kernel
12405          * when the thread exits. Since the linked list in QEMU guest
12406          * memory isn't a valid linked list for the host and we have
12407          * no way to reliably intercept the thread-death event, we can't
12408          * support these. Silently return ENOSYS so that guest userspace
12409          * falls back to a non-robust futex implementation (which should
12410          * be OK except in the corner case of the guest crashing while
12411          * holding a mutex that is shared with another process via
12412          * shared memory).
12413          */
12414         return -TARGET_ENOSYS;
12415 #endif
12416 
12417 #if defined(TARGET_NR_utimensat)
12418     case TARGET_NR_utimensat:
12419         {
12420             struct timespec *tsp, ts[2];
12421             if (!arg3) {
12422                 tsp = NULL;
12423             } else {
12424                 if (target_to_host_timespec(ts, arg3)) {
12425                     return -TARGET_EFAULT;
12426                 }
12427                 if (target_to_host_timespec(ts + 1, arg3 +
12428                                             sizeof(struct target_timespec))) {
12429                     return -TARGET_EFAULT;
12430                 }
12431                 tsp = ts;
12432             }
12433             if (!arg2)
12434                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12435             else {
12436                 if (!(p = lock_user_string(arg2))) {
12437                     return -TARGET_EFAULT;
12438                 }
12439                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12440                 unlock_user(p, arg2, 0);
12441             }
12442         }
12443         return ret;
12444 #endif
12445 #ifdef TARGET_NR_utimensat_time64
12446     case TARGET_NR_utimensat_time64:
12447         {
12448             struct timespec *tsp, ts[2];
12449             if (!arg3) {
12450                 tsp = NULL;
12451             } else {
12452                 if (target_to_host_timespec64(ts, arg3)) {
12453                     return -TARGET_EFAULT;
12454                 }
12455                 if (target_to_host_timespec64(ts + 1, arg3 +
12456                                      sizeof(struct target__kernel_timespec))) {
12457                     return -TARGET_EFAULT;
12458                 }
12459                 tsp = ts;
12460             }
12461             if (!arg2)
12462                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12463             else {
12464                 p = lock_user_string(arg2);
12465                 if (!p) {
12466                     return -TARGET_EFAULT;
12467                 }
12468                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12469                 unlock_user(p, arg2, 0);
12470             }
12471         }
12472         return ret;
12473 #endif
12474 #ifdef TARGET_NR_futex
12475     case TARGET_NR_futex:
12476         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12477 #endif
12478 #ifdef TARGET_NR_futex_time64
12479     case TARGET_NR_futex_time64:
12480         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12481 #endif
12482 #ifdef CONFIG_INOTIFY
12483 #if defined(TARGET_NR_inotify_init)
12484     case TARGET_NR_inotify_init:
12485         ret = get_errno(inotify_init());
12486         if (ret >= 0) {
12487             fd_trans_register(ret, &target_inotify_trans);
12488         }
12489         return ret;
12490 #endif
12491 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12492     case TARGET_NR_inotify_init1:
12493         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12494                                           fcntl_flags_tbl)));
12495         if (ret >= 0) {
12496             fd_trans_register(ret, &target_inotify_trans);
12497         }
12498         return ret;
12499 #endif
12500 #if defined(TARGET_NR_inotify_add_watch)
12501     case TARGET_NR_inotify_add_watch:
12502         p = lock_user_string(arg2);
12503         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12504         unlock_user(p, arg2, 0);
12505         return ret;
12506 #endif
12507 #if defined(TARGET_NR_inotify_rm_watch)
12508     case TARGET_NR_inotify_rm_watch:
12509         return get_errno(inotify_rm_watch(arg1, arg2));
12510 #endif
12511 #endif
12512 
12513 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12514     case TARGET_NR_mq_open:
12515         {
12516             struct mq_attr posix_mq_attr;
12517             struct mq_attr *pposix_mq_attr;
12518             int host_flags;
12519 
12520             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12521             pposix_mq_attr = NULL;
12522             if (arg4) {
12523                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12524                     return -TARGET_EFAULT;
12525                 }
12526                 pposix_mq_attr = &posix_mq_attr;
12527             }
12528             p = lock_user_string(arg1 - 1);
12529             if (!p) {
12530                 return -TARGET_EFAULT;
12531             }
12532             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12533             unlock_user (p, arg1, 0);
12534         }
12535         return ret;
12536 
12537     case TARGET_NR_mq_unlink:
12538         p = lock_user_string(arg1 - 1);
12539         if (!p) {
12540             return -TARGET_EFAULT;
12541         }
12542         ret = get_errno(mq_unlink(p));
12543         unlock_user (p, arg1, 0);
12544         return ret;
12545 
12546 #ifdef TARGET_NR_mq_timedsend
12547     case TARGET_NR_mq_timedsend:
12548         {
12549             struct timespec ts;
12550 
12551             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12552             if (arg5 != 0) {
12553                 if (target_to_host_timespec(&ts, arg5)) {
12554                     return -TARGET_EFAULT;
12555                 }
12556                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12557                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12558                     return -TARGET_EFAULT;
12559                 }
12560             } else {
12561                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12562             }
12563             unlock_user (p, arg2, arg3);
12564         }
12565         return ret;
12566 #endif
12567 #ifdef TARGET_NR_mq_timedsend_time64
12568     case TARGET_NR_mq_timedsend_time64:
12569         {
12570             struct timespec ts;
12571 
12572             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12573             if (arg5 != 0) {
12574                 if (target_to_host_timespec64(&ts, arg5)) {
12575                     return -TARGET_EFAULT;
12576                 }
12577                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12578                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12579                     return -TARGET_EFAULT;
12580                 }
12581             } else {
12582                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12583             }
12584             unlock_user(p, arg2, arg3);
12585         }
12586         return ret;
12587 #endif
12588 
12589 #ifdef TARGET_NR_mq_timedreceive
12590     case TARGET_NR_mq_timedreceive:
12591         {
12592             struct timespec ts;
12593             unsigned int prio;
12594 
12595             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12596             if (arg5 != 0) {
12597                 if (target_to_host_timespec(&ts, arg5)) {
12598                     return -TARGET_EFAULT;
12599                 }
12600                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12601                                                      &prio, &ts));
12602                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12603                     return -TARGET_EFAULT;
12604                 }
12605             } else {
12606                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12607                                                      &prio, NULL));
12608             }
12609             unlock_user (p, arg2, arg3);
12610             if (arg4 != 0)
12611                 put_user_u32(prio, arg4);
12612         }
12613         return ret;
12614 #endif
12615 #ifdef TARGET_NR_mq_timedreceive_time64
12616     case TARGET_NR_mq_timedreceive_time64:
12617         {
12618             struct timespec ts;
12619             unsigned int prio;
12620 
12621             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12622             if (arg5 != 0) {
12623                 if (target_to_host_timespec64(&ts, arg5)) {
12624                     return -TARGET_EFAULT;
12625                 }
12626                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12627                                                      &prio, &ts));
12628                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12629                     return -TARGET_EFAULT;
12630                 }
12631             } else {
12632                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12633                                                      &prio, NULL));
12634             }
12635             unlock_user(p, arg2, arg3);
12636             if (arg4 != 0) {
12637                 put_user_u32(prio, arg4);
12638             }
12639         }
12640         return ret;
12641 #endif
12642 
12643     /* Not implemented for now... */
12644 /*     case TARGET_NR_mq_notify: */
12645 /*         break; */
12646 
12647     case TARGET_NR_mq_getsetattr:
12648         {
12649             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12650             ret = 0;
12651             if (arg2 != 0) {
12652                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12653                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12654                                            &posix_mq_attr_out));
12655             } else if (arg3 != 0) {
12656                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12657             }
12658             if (ret == 0 && arg3 != 0) {
12659                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12660             }
12661         }
12662         return ret;
12663 #endif
12664 
12665 #ifdef CONFIG_SPLICE
12666 #ifdef TARGET_NR_tee
12667     case TARGET_NR_tee:
12668         {
12669             ret = get_errno(tee(arg1,arg2,arg3,arg4));
12670         }
12671         return ret;
12672 #endif
12673 #ifdef TARGET_NR_splice
12674     case TARGET_NR_splice:
12675         {
12676             loff_t loff_in, loff_out;
12677             loff_t *ploff_in = NULL, *ploff_out = NULL;
12678             if (arg2) {
12679                 if (get_user_u64(loff_in, arg2)) {
12680                     return -TARGET_EFAULT;
12681                 }
12682                 ploff_in = &loff_in;
12683             }
12684             if (arg4) {
12685                 if (get_user_u64(loff_out, arg4)) {
12686                     return -TARGET_EFAULT;
12687                 }
12688                 ploff_out = &loff_out;
12689             }
12690             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12691             if (arg2) {
12692                 if (put_user_u64(loff_in, arg2)) {
12693                     return -TARGET_EFAULT;
12694                 }
12695             }
12696             if (arg4) {
12697                 if (put_user_u64(loff_out, arg4)) {
12698                     return -TARGET_EFAULT;
12699                 }
12700             }
12701         }
12702         return ret;
12703 #endif
12704 #ifdef TARGET_NR_vmsplice
12705 	case TARGET_NR_vmsplice:
12706         {
12707             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12708             if (vec != NULL) {
12709                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12710                 unlock_iovec(vec, arg2, arg3, 0);
12711             } else {
12712                 ret = -host_to_target_errno(errno);
12713             }
12714         }
12715         return ret;
12716 #endif
12717 #endif /* CONFIG_SPLICE */
12718 #ifdef CONFIG_EVENTFD
12719 #if defined(TARGET_NR_eventfd)
12720     case TARGET_NR_eventfd:
12721         ret = get_errno(eventfd(arg1, 0));
12722         if (ret >= 0) {
12723             fd_trans_register(ret, &target_eventfd_trans);
12724         }
12725         return ret;
12726 #endif
12727 #if defined(TARGET_NR_eventfd2)
12728     case TARGET_NR_eventfd2:
12729     {
12730         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
12731         if (arg2 & TARGET_O_NONBLOCK) {
12732             host_flags |= O_NONBLOCK;
12733         }
12734         if (arg2 & TARGET_O_CLOEXEC) {
12735             host_flags |= O_CLOEXEC;
12736         }
12737         ret = get_errno(eventfd(arg1, host_flags));
12738         if (ret >= 0) {
12739             fd_trans_register(ret, &target_eventfd_trans);
12740         }
12741         return ret;
12742     }
12743 #endif
12744 #endif /* CONFIG_EVENTFD  */
12745 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12746     case TARGET_NR_fallocate:
12747 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12748         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12749                                   target_offset64(arg5, arg6)));
12750 #else
12751         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12752 #endif
12753         return ret;
12754 #endif
12755 #if defined(CONFIG_SYNC_FILE_RANGE)
12756 #if defined(TARGET_NR_sync_file_range)
12757     case TARGET_NR_sync_file_range:
12758 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12759 #if defined(TARGET_MIPS)
12760         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12761                                         target_offset64(arg5, arg6), arg7));
12762 #else
12763         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12764                                         target_offset64(arg4, arg5), arg6));
12765 #endif /* !TARGET_MIPS */
12766 #else
12767         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12768 #endif
12769         return ret;
12770 #endif
12771 #if defined(TARGET_NR_sync_file_range2) || \
12772     defined(TARGET_NR_arm_sync_file_range)
12773 #if defined(TARGET_NR_sync_file_range2)
12774     case TARGET_NR_sync_file_range2:
12775 #endif
12776 #if defined(TARGET_NR_arm_sync_file_range)
12777     case TARGET_NR_arm_sync_file_range:
12778 #endif
12779         /* This is like sync_file_range but the arguments are reordered */
12780 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12781         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12782                                         target_offset64(arg5, arg6), arg2));
12783 #else
12784         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12785 #endif
12786         return ret;
12787 #endif
12788 #endif
12789 #if defined(TARGET_NR_signalfd4)
12790     case TARGET_NR_signalfd4:
12791         return do_signalfd4(arg1, arg2, arg4);
12792 #endif
12793 #if defined(TARGET_NR_signalfd)
12794     case TARGET_NR_signalfd:
12795         return do_signalfd4(arg1, arg2, 0);
12796 #endif
12797 #if defined(CONFIG_EPOLL)
12798 #if defined(TARGET_NR_epoll_create)
12799     case TARGET_NR_epoll_create:
12800         return get_errno(epoll_create(arg1));
12801 #endif
12802 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12803     case TARGET_NR_epoll_create1:
12804         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12805 #endif
12806 #if defined(TARGET_NR_epoll_ctl)
12807     case TARGET_NR_epoll_ctl:
12808     {
12809         struct epoll_event ep;
12810         struct epoll_event *epp = 0;
12811         if (arg4) {
12812             if (arg2 != EPOLL_CTL_DEL) {
12813                 struct target_epoll_event *target_ep;
12814                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12815                     return -TARGET_EFAULT;
12816                 }
12817                 ep.events = tswap32(target_ep->events);
12818                 /*
12819                  * The epoll_data_t union is just opaque data to the kernel,
12820                  * so we transfer all 64 bits across and need not worry what
12821                  * actual data type it is.
12822                  */
12823                 ep.data.u64 = tswap64(target_ep->data.u64);
12824                 unlock_user_struct(target_ep, arg4, 0);
12825             }
12826             /*
12827              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
12828              * non-null pointer, even though this argument is ignored.
12829              *
12830              */
12831             epp = &ep;
12832         }
12833         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12834     }
12835 #endif
12836 
12837 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12838 #if defined(TARGET_NR_epoll_wait)
12839     case TARGET_NR_epoll_wait:
12840 #endif
12841 #if defined(TARGET_NR_epoll_pwait)
12842     case TARGET_NR_epoll_pwait:
12843 #endif
12844     {
12845         struct target_epoll_event *target_ep;
12846         struct epoll_event *ep;
12847         int epfd = arg1;
12848         int maxevents = arg3;
12849         int timeout = arg4;
12850 
12851         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12852             return -TARGET_EINVAL;
12853         }
12854 
12855         target_ep = lock_user(VERIFY_WRITE, arg2,
12856                               maxevents * sizeof(struct target_epoll_event), 1);
12857         if (!target_ep) {
12858             return -TARGET_EFAULT;
12859         }
12860 
12861         ep = g_try_new(struct epoll_event, maxevents);
12862         if (!ep) {
12863             unlock_user(target_ep, arg2, 0);
12864             return -TARGET_ENOMEM;
12865         }
12866 
12867         switch (num) {
12868 #if defined(TARGET_NR_epoll_pwait)
12869         case TARGET_NR_epoll_pwait:
12870         {
12871             sigset_t *set = NULL;
12872 
12873             if (arg5) {
12874                 ret = process_sigsuspend_mask(&set, arg5, arg6);
12875                 if (ret != 0) {
12876                     break;
12877                 }
12878             }
12879 
12880             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12881                                              set, SIGSET_T_SIZE));
12882 
12883             if (set) {
12884                 finish_sigsuspend_mask(ret);
12885             }
12886             break;
12887         }
12888 #endif
12889 #if defined(TARGET_NR_epoll_wait)
12890         case TARGET_NR_epoll_wait:
12891             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12892                                              NULL, 0));
12893             break;
12894 #endif
12895         default:
12896             ret = -TARGET_ENOSYS;
12897         }
12898         if (!is_error(ret)) {
12899             int i;
12900             for (i = 0; i < ret; i++) {
12901                 target_ep[i].events = tswap32(ep[i].events);
12902                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12903             }
12904             unlock_user(target_ep, arg2,
12905                         ret * sizeof(struct target_epoll_event));
12906         } else {
12907             unlock_user(target_ep, arg2, 0);
12908         }
12909         g_free(ep);
12910         return ret;
12911     }
12912 #endif
12913 #endif
12914 #ifdef TARGET_NR_prlimit64
12915     case TARGET_NR_prlimit64:
12916     {
12917         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12918         struct target_rlimit64 *target_rnew, *target_rold;
12919         struct host_rlimit64 rnew, rold, *rnewp = 0;
12920         int resource = target_to_host_resource(arg2);
12921 
12922         if (arg3 && (resource != RLIMIT_AS &&
12923                      resource != RLIMIT_DATA &&
12924                      resource != RLIMIT_STACK)) {
12925             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12926                 return -TARGET_EFAULT;
12927             }
12928             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
12929             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
12930             unlock_user_struct(target_rnew, arg3, 0);
12931             rnewp = &rnew;
12932         }
12933 
12934         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12935         if (!is_error(ret) && arg4) {
12936             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12937                 return -TARGET_EFAULT;
12938             }
12939             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
12940             __put_user(rold.rlim_max, &target_rold->rlim_max);
12941             unlock_user_struct(target_rold, arg4, 1);
12942         }
12943         return ret;
12944     }
12945 #endif
12946 #ifdef TARGET_NR_gethostname
12947     case TARGET_NR_gethostname:
12948     {
12949         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12950         if (name) {
12951             ret = get_errno(gethostname(name, arg2));
12952             unlock_user(name, arg1, arg2);
12953         } else {
12954             ret = -TARGET_EFAULT;
12955         }
12956         return ret;
12957     }
12958 #endif
12959 #ifdef TARGET_NR_atomic_cmpxchg_32
12960     case TARGET_NR_atomic_cmpxchg_32:
12961     {
12962         /* should use start_exclusive from main.c */
12963         abi_ulong mem_value;
12964         if (get_user_u32(mem_value, arg6)) {
12965             target_siginfo_t info;
12966             info.si_signo = SIGSEGV;
12967             info.si_errno = 0;
12968             info.si_code = TARGET_SEGV_MAPERR;
12969             info._sifields._sigfault._addr = arg6;
12970             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
12971             ret = 0xdeadbeef;
12972 
12973         }
12974         if (mem_value == arg2)
12975             put_user_u32(arg1, arg6);
12976         return mem_value;
12977     }
12978 #endif
12979 #ifdef TARGET_NR_atomic_barrier
12980     case TARGET_NR_atomic_barrier:
12981         /* Like the kernel implementation and the
12982            qemu arm barrier, no-op this? */
12983         return 0;
12984 #endif
12985 
12986 #ifdef TARGET_NR_timer_create
12987     case TARGET_NR_timer_create:
12988     {
12989         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12990 
12991         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12992 
12993         int clkid = arg1;
12994         int timer_index = next_free_host_timer();
12995 
12996         if (timer_index < 0) {
12997             ret = -TARGET_EAGAIN;
12998         } else {
12999             timer_t *phtimer = g_posix_timers  + timer_index;
13000 
13001             if (arg2) {
13002                 phost_sevp = &host_sevp;
13003                 ret = target_to_host_sigevent(phost_sevp, arg2);
13004                 if (ret != 0) {
13005                     free_host_timer_slot(timer_index);
13006                     return ret;
13007                 }
13008             }
13009 
13010             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13011             if (ret) {
13012                 free_host_timer_slot(timer_index);
13013             } else {
13014                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13015                     timer_delete(*phtimer);
13016                     free_host_timer_slot(timer_index);
13017                     return -TARGET_EFAULT;
13018                 }
13019             }
13020         }
13021         return ret;
13022     }
13023 #endif
13024 
13025 #ifdef TARGET_NR_timer_settime
13026     case TARGET_NR_timer_settime:
13027     {
13028         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13029          * struct itimerspec * old_value */
13030         target_timer_t timerid = get_timer_id(arg1);
13031 
13032         if (timerid < 0) {
13033             ret = timerid;
13034         } else if (arg3 == 0) {
13035             ret = -TARGET_EINVAL;
13036         } else {
13037             timer_t htimer = g_posix_timers[timerid];
13038             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13039 
13040             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13041                 return -TARGET_EFAULT;
13042             }
13043             ret = get_errno(
13044                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13045             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13046                 return -TARGET_EFAULT;
13047             }
13048         }
13049         return ret;
13050     }
13051 #endif
13052 
13053 #ifdef TARGET_NR_timer_settime64
13054     case TARGET_NR_timer_settime64:
13055     {
13056         target_timer_t timerid = get_timer_id(arg1);
13057 
13058         if (timerid < 0) {
13059             ret = timerid;
13060         } else if (arg3 == 0) {
13061             ret = -TARGET_EINVAL;
13062         } else {
13063             timer_t htimer = g_posix_timers[timerid];
13064             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13065 
13066             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13067                 return -TARGET_EFAULT;
13068             }
13069             ret = get_errno(
13070                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13071             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13072                 return -TARGET_EFAULT;
13073             }
13074         }
13075         return ret;
13076     }
13077 #endif
13078 
13079 #ifdef TARGET_NR_timer_gettime
13080     case TARGET_NR_timer_gettime:
13081     {
13082         /* args: timer_t timerid, struct itimerspec *curr_value */
13083         target_timer_t timerid = get_timer_id(arg1);
13084 
13085         if (timerid < 0) {
13086             ret = timerid;
13087         } else if (!arg2) {
13088             ret = -TARGET_EFAULT;
13089         } else {
13090             timer_t htimer = g_posix_timers[timerid];
13091             struct itimerspec hspec;
13092             ret = get_errno(timer_gettime(htimer, &hspec));
13093 
13094             if (host_to_target_itimerspec(arg2, &hspec)) {
13095                 ret = -TARGET_EFAULT;
13096             }
13097         }
13098         return ret;
13099     }
13100 #endif
13101 
13102 #ifdef TARGET_NR_timer_gettime64
13103     case TARGET_NR_timer_gettime64:
13104     {
13105         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13106         target_timer_t timerid = get_timer_id(arg1);
13107 
13108         if (timerid < 0) {
13109             ret = timerid;
13110         } else if (!arg2) {
13111             ret = -TARGET_EFAULT;
13112         } else {
13113             timer_t htimer = g_posix_timers[timerid];
13114             struct itimerspec hspec;
13115             ret = get_errno(timer_gettime(htimer, &hspec));
13116 
13117             if (host_to_target_itimerspec64(arg2, &hspec)) {
13118                 ret = -TARGET_EFAULT;
13119             }
13120         }
13121         return ret;
13122     }
13123 #endif
13124 
13125 #ifdef TARGET_NR_timer_getoverrun
13126     case TARGET_NR_timer_getoverrun:
13127     {
13128         /* args: timer_t timerid */
13129         target_timer_t timerid = get_timer_id(arg1);
13130 
13131         if (timerid < 0) {
13132             ret = timerid;
13133         } else {
13134             timer_t htimer = g_posix_timers[timerid];
13135             ret = get_errno(timer_getoverrun(htimer));
13136         }
13137         return ret;
13138     }
13139 #endif
13140 
13141 #ifdef TARGET_NR_timer_delete
13142     case TARGET_NR_timer_delete:
13143     {
13144         /* args: timer_t timerid */
13145         target_timer_t timerid = get_timer_id(arg1);
13146 
13147         if (timerid < 0) {
13148             ret = timerid;
13149         } else {
13150             timer_t htimer = g_posix_timers[timerid];
13151             ret = get_errno(timer_delete(htimer));
13152             free_host_timer_slot(timerid);
13153         }
13154         return ret;
13155     }
13156 #endif
13157 
13158 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13159     case TARGET_NR_timerfd_create:
13160         ret = get_errno(timerfd_create(arg1,
13161                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13162         if (ret >= 0) {
13163             fd_trans_register(ret, &target_timerfd_trans);
13164         }
13165         return ret;
13166 #endif
13167 
13168 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13169     case TARGET_NR_timerfd_gettime:
13170         {
13171             struct itimerspec its_curr;
13172 
13173             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13174 
13175             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13176                 return -TARGET_EFAULT;
13177             }
13178         }
13179         return ret;
13180 #endif
13181 
13182 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13183     case TARGET_NR_timerfd_gettime64:
13184         {
13185             struct itimerspec its_curr;
13186 
13187             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13188 
13189             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13190                 return -TARGET_EFAULT;
13191             }
13192         }
13193         return ret;
13194 #endif
13195 
13196 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13197     case TARGET_NR_timerfd_settime:
13198         {
13199             struct itimerspec its_new, its_old, *p_new;
13200 
13201             if (arg3) {
13202                 if (target_to_host_itimerspec(&its_new, arg3)) {
13203                     return -TARGET_EFAULT;
13204                 }
13205                 p_new = &its_new;
13206             } else {
13207                 p_new = NULL;
13208             }
13209 
13210             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13211 
13212             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13213                 return -TARGET_EFAULT;
13214             }
13215         }
13216         return ret;
13217 #endif
13218 
13219 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13220     case TARGET_NR_timerfd_settime64:
13221         {
13222             struct itimerspec its_new, its_old, *p_new;
13223 
13224             if (arg3) {
13225                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13226                     return -TARGET_EFAULT;
13227                 }
13228                 p_new = &its_new;
13229             } else {
13230                 p_new = NULL;
13231             }
13232 
13233             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13234 
13235             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13236                 return -TARGET_EFAULT;
13237             }
13238         }
13239         return ret;
13240 #endif
13241 
13242 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13243     case TARGET_NR_ioprio_get:
13244         return get_errno(ioprio_get(arg1, arg2));
13245 #endif
13246 
13247 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13248     case TARGET_NR_ioprio_set:
13249         return get_errno(ioprio_set(arg1, arg2, arg3));
13250 #endif
13251 
13252 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13253     case TARGET_NR_setns:
13254         return get_errno(setns(arg1, arg2));
13255 #endif
13256 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13257     case TARGET_NR_unshare:
13258         return get_errno(unshare(arg1));
13259 #endif
13260 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13261     case TARGET_NR_kcmp:
13262         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13263 #endif
13264 #ifdef TARGET_NR_swapcontext
13265     case TARGET_NR_swapcontext:
13266         /* PowerPC specific.  */
13267         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13268 #endif
13269 #ifdef TARGET_NR_memfd_create
13270     case TARGET_NR_memfd_create:
13271         p = lock_user_string(arg1);
13272         if (!p) {
13273             return -TARGET_EFAULT;
13274         }
13275         ret = get_errno(memfd_create(p, arg2));
13276         fd_trans_unregister(ret);
13277         unlock_user(p, arg1, 0);
13278         return ret;
13279 #endif
13280 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13281     case TARGET_NR_membarrier:
13282         return get_errno(membarrier(arg1, arg2));
13283 #endif
13284 
13285 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13286     case TARGET_NR_copy_file_range:
13287         {
13288             loff_t inoff, outoff;
13289             loff_t *pinoff = NULL, *poutoff = NULL;
13290 
13291             if (arg2) {
13292                 if (get_user_u64(inoff, arg2)) {
13293                     return -TARGET_EFAULT;
13294                 }
13295                 pinoff = &inoff;
13296             }
13297             if (arg4) {
13298                 if (get_user_u64(outoff, arg4)) {
13299                     return -TARGET_EFAULT;
13300                 }
13301                 poutoff = &outoff;
13302             }
13303             /* Do not sign-extend the count parameter. */
13304             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13305                                                  (abi_ulong)arg5, arg6));
13306             if (!is_error(ret) && ret > 0) {
13307                 if (arg2) {
13308                     if (put_user_u64(inoff, arg2)) {
13309                         return -TARGET_EFAULT;
13310                     }
13311                 }
13312                 if (arg4) {
13313                     if (put_user_u64(outoff, arg4)) {
13314                         return -TARGET_EFAULT;
13315                     }
13316                 }
13317             }
13318         }
13319         return ret;
13320 #endif
13321 
13322 #if defined(TARGET_NR_pivot_root)
13323     case TARGET_NR_pivot_root:
13324         {
13325             void *p2;
13326             p = lock_user_string(arg1); /* new_root */
13327             p2 = lock_user_string(arg2); /* put_old */
13328             if (!p || !p2) {
13329                 ret = -TARGET_EFAULT;
13330             } else {
13331                 ret = get_errno(pivot_root(p, p2));
13332             }
13333             unlock_user(p2, arg2, 0);
13334             unlock_user(p, arg1, 0);
13335         }
13336         return ret;
13337 #endif
13338 
13339     default:
13340         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13341         return -TARGET_ENOSYS;
13342     }
13343     return ret;
13344 }
13345 
13346 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13347                     abi_long arg2, abi_long arg3, abi_long arg4,
13348                     abi_long arg5, abi_long arg6, abi_long arg7,
13349                     abi_long arg8)
13350 {
13351     CPUState *cpu = env_cpu(cpu_env);
13352     abi_long ret;
13353 
13354 #ifdef DEBUG_ERESTARTSYS
13355     /* Debug-only code for exercising the syscall-restart code paths
13356      * in the per-architecture cpu main loops: restart every syscall
13357      * the guest makes once before letting it through.
13358      */
13359     {
13360         static bool flag;
13361         flag = !flag;
13362         if (flag) {
13363             return -QEMU_ERESTARTSYS;
13364         }
13365     }
13366 #endif
13367 
13368     record_syscall_start(cpu, num, arg1,
13369                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13370 
13371     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13372         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13373     }
13374 
13375     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13376                       arg5, arg6, arg7, arg8);
13377 
13378     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13379         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13380                           arg3, arg4, arg5, arg6);
13381     }
13382 
13383     record_syscall_return(cpu, num, ret);
13384     return ret;
13385 }
13386