xref: /qemu/linux-user/syscall.c (revision 9ed7c6dd)
1 /*
2  *  Linux syscalls
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include <elf.h>
29 #include <endian.h>
30 #include <grp.h>
31 #include <sys/ipc.h>
32 #include <sys/msg.h>
33 #include <sys/wait.h>
34 #include <sys/mount.h>
35 #include <sys/file.h>
36 #include <sys/fsuid.h>
37 #include <sys/personality.h>
38 #include <sys/prctl.h>
39 #include <sys/resource.h>
40 #include <sys/swap.h>
41 #include <linux/capability.h>
42 #include <sched.h>
43 #include <sys/timex.h>
44 #include <sys/socket.h>
45 #include <linux/sockios.h>
46 #include <sys/un.h>
47 #include <sys/uio.h>
48 #include <poll.h>
49 #include <sys/times.h>
50 #include <sys/shm.h>
51 #include <sys/sem.h>
52 #include <sys/statfs.h>
53 #include <utime.h>
54 #include <sys/sysinfo.h>
55 #include <sys/signalfd.h>
56 //#include <sys/user.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61 #include <linux/wireless.h>
62 #include <linux/icmp.h>
63 #include <linux/icmpv6.h>
64 #include <linux/if_tun.h>
65 #include <linux/in6.h>
66 #include <linux/errqueue.h>
67 #include <linux/random.h>
68 #ifdef CONFIG_TIMERFD
69 #include <sys/timerfd.h>
70 #endif
71 #ifdef CONFIG_EVENTFD
72 #include <sys/eventfd.h>
73 #endif
74 #ifdef CONFIG_EPOLL
75 #include <sys/epoll.h>
76 #endif
77 #ifdef CONFIG_ATTR
78 #include "qemu/xattr.h"
79 #endif
80 #ifdef CONFIG_SENDFILE
81 #include <sys/sendfile.h>
82 #endif
83 #ifdef HAVE_SYS_KCOV_H
84 #include <sys/kcov.h>
85 #endif
86 
87 #define termios host_termios
88 #define winsize host_winsize
89 #define termio host_termio
90 #define sgttyb host_sgttyb /* same as target */
91 #define tchars host_tchars /* same as target */
92 #define ltchars host_ltchars /* same as target */
93 
94 #include <linux/termios.h>
95 #include <linux/unistd.h>
96 #include <linux/cdrom.h>
97 #include <linux/hdreg.h>
98 #include <linux/soundcard.h>
99 #include <linux/kd.h>
100 #include <linux/mtio.h>
101 #include <linux/fs.h>
102 #include <linux/fd.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
105 #endif
106 #include <linux/fb.h>
107 #if defined(CONFIG_USBFS)
108 #include <linux/usbdevice_fs.h>
109 #include <linux/usb/ch9.h>
110 #endif
111 #include <linux/vt.h>
112 #include <linux/dm-ioctl.h>
113 #include <linux/reboot.h>
114 #include <linux/route.h>
115 #include <linux/filter.h>
116 #include <linux/blkpg.h>
117 #include <netpacket/packet.h>
118 #include <linux/netlink.h>
119 #include <linux/if_alg.h>
120 #include <linux/rtc.h>
121 #include <sound/asound.h>
122 #ifdef HAVE_BTRFS_H
123 #include <linux/btrfs.h>
124 #endif
125 #ifdef HAVE_DRM_H
126 #include <libdrm/drm.h>
127 #include <libdrm/i915_drm.h>
128 #endif
129 #include "linux_loop.h"
130 #include "uname.h"
131 
132 #include "qemu.h"
133 #include "user-internals.h"
134 #include "strace.h"
135 #include "signal-common.h"
136 #include "loader.h"
137 #include "user-mmap.h"
138 #include "user/safe-syscall.h"
139 #include "qemu/guest-random.h"
140 #include "qemu/selfmap.h"
141 #include "user/syscall-trace.h"
142 #include "special-errno.h"
143 #include "qapi/error.h"
144 #include "fd-trans.h"
145 #include "cpu_loop-common.h"
146 
147 #ifndef CLONE_IO
148 #define CLONE_IO                0x80000000      /* Clone io context */
149 #endif
150 
151 /* We can't directly call the host clone syscall, because this will
152  * badly confuse libc (breaking mutexes, for example). So we must
153  * divide clone flags into:
154  *  * flag combinations that look like pthread_create()
155  *  * flag combinations that look like fork()
156  *  * flags we can implement within QEMU itself
157  *  * flags we can't support and will return an error for
158  */
159 /* For thread creation, all these flags must be present; for
160  * fork, none must be present.
161  */
162 #define CLONE_THREAD_FLAGS                              \
163     (CLONE_VM | CLONE_FS | CLONE_FILES |                \
164      CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
165 
166 /* These flags are ignored:
167  * CLONE_DETACHED is now ignored by the kernel;
168  * CLONE_IO is just an optimisation hint to the I/O scheduler
169  */
170 #define CLONE_IGNORED_FLAGS                     \
171     (CLONE_DETACHED | CLONE_IO)
172 
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
176 
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS               \
179     (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
181 
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS                             \
184     (CLONE_SETTLS | CLONE_PARENT_SETTID |                       \
185      CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
186 
187 #define CLONE_INVALID_FORK_FLAGS                                        \
188     (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
189 
190 #define CLONE_INVALID_THREAD_FLAGS                                      \
191     (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS |     \
192        CLONE_IGNORED_FLAGS))
193 
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195  * have almost all been allocated. We cannot support any of
196  * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197  * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198  * The checks against the invalid thread masks above will catch these.
199  * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
200  */
201 
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203  * once. This exercises the codepaths for restart.
204  */
205 //#define DEBUG_ERESTARTSYS
206 
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209     _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211     _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
212 
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
220 
221 #define _syscall0(type,name)		\
222 static type name (void)			\
223 {					\
224 	return syscall(__NR_##name);	\
225 }
226 
227 #define _syscall1(type,name,type1,arg1)		\
228 static type name (type1 arg1)			\
229 {						\
230 	return syscall(__NR_##name, arg1);	\
231 }
232 
233 #define _syscall2(type,name,type1,arg1,type2,arg2)	\
234 static type name (type1 arg1,type2 arg2)		\
235 {							\
236 	return syscall(__NR_##name, arg1, arg2);	\
237 }
238 
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)	\
240 static type name (type1 arg1,type2 arg2,type3 arg3)		\
241 {								\
242 	return syscall(__NR_##name, arg1, arg2, arg3);		\
243 }
244 
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)	\
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4)			\
247 {										\
248 	return syscall(__NR_##name, arg1, arg2, arg3, arg4);			\
249 }
250 
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
252 		  type5,arg5)							\
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5)	\
254 {										\
255 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5);		\
256 }
257 
258 
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,	\
260 		  type5,arg5,type6,arg6)					\
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,	\
262                   type6 arg6)							\
263 {										\
264 	return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6);	\
265 }
266 
267 
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
283 
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
287 
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
292 
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
297 
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
300 
301 /* For the 64-bit guest on 32-bit host case we must emulate
302  * getdents using getdents64, because otherwise the host
303  * might hand us back more dirent records than we can fit
304  * into the guest buffer after structure format conversion.
305  * Otherwise we emulate getdents with getdents if the host has it.
306  */
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
310 
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315       !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316     (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek,  unsigned int,  fd, unsigned long, hi, unsigned long, lo,
321           loff_t *, res, unsigned int, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325           siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC     (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339           const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343           const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350                              unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357           unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360           unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363     uint32_t size;
364     uint32_t sched_policy;
365     uint64_t sched_flags;
366     int32_t sched_nice;
367     uint32_t sched_priority;
368     uint64_t sched_runtime;
369     uint64_t sched_deadline;
370     uint64_t sched_period;
371     uint32_t sched_util_min;
372     uint32_t sched_util_max;
373 };
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376           unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379           unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384           const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387           struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390           const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394           void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396           struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398           struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
408 
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411           unsigned long, idx1, unsigned long, idx2)
412 #endif
413 
414 /*
415  * It is assumed that struct statx is architecture independent.
416  */
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419           unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
424 
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426   { TARGET_O_ACCMODE,   TARGET_O_WRONLY,    O_ACCMODE,   O_WRONLY,    },
427   { TARGET_O_ACCMODE,   TARGET_O_RDWR,      O_ACCMODE,   O_RDWR,      },
428   { TARGET_O_CREAT,     TARGET_O_CREAT,     O_CREAT,     O_CREAT,     },
429   { TARGET_O_EXCL,      TARGET_O_EXCL,      O_EXCL,      O_EXCL,      },
430   { TARGET_O_NOCTTY,    TARGET_O_NOCTTY,    O_NOCTTY,    O_NOCTTY,    },
431   { TARGET_O_TRUNC,     TARGET_O_TRUNC,     O_TRUNC,     O_TRUNC,     },
432   { TARGET_O_APPEND,    TARGET_O_APPEND,    O_APPEND,    O_APPEND,    },
433   { TARGET_O_NONBLOCK,  TARGET_O_NONBLOCK,  O_NONBLOCK,  O_NONBLOCK,  },
434   { TARGET_O_SYNC,      TARGET_O_DSYNC,     O_SYNC,      O_DSYNC,     },
435   { TARGET_O_SYNC,      TARGET_O_SYNC,      O_SYNC,      O_SYNC,      },
436   { TARGET_FASYNC,      TARGET_FASYNC,      FASYNC,      FASYNC,      },
437   { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438   { TARGET_O_NOFOLLOW,  TARGET_O_NOFOLLOW,  O_NOFOLLOW,  O_NOFOLLOW,  },
439 #if defined(O_DIRECT)
440   { TARGET_O_DIRECT,    TARGET_O_DIRECT,    O_DIRECT,    O_DIRECT,    },
441 #endif
442 #if defined(O_NOATIME)
443   { TARGET_O_NOATIME,   TARGET_O_NOATIME,   O_NOATIME,   O_NOATIME    },
444 #endif
445 #if defined(O_CLOEXEC)
446   { TARGET_O_CLOEXEC,   TARGET_O_CLOEXEC,   O_CLOEXEC,   O_CLOEXEC    },
447 #endif
448 #if defined(O_PATH)
449   { TARGET_O_PATH,      TARGET_O_PATH,      O_PATH,      O_PATH       },
450 #endif
451 #if defined(O_TMPFILE)
452   { TARGET_O_TMPFILE,   TARGET_O_TMPFILE,   O_TMPFILE,   O_TMPFILE    },
453 #endif
454   /* Don't terminate the list prematurely on 64-bit host+guest.  */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456   { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
458 };
459 
460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
461 
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
466           const struct timespec *,tsp,int,flags)
467 #else
468 static int sys_utimensat(int dirfd, const char *pathname,
469                          const struct timespec times[2], int flags)
470 {
471     errno = ENOSYS;
472     return -1;
473 }
474 #endif
475 #endif /* TARGET_NR_utimensat */
476 
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
481           const char *, new, unsigned int, flags)
482 #else
483 static int sys_renameat2(int oldfd, const char *old,
484                          int newfd, const char *new, int flags)
485 {
486     if (flags == 0) {
487         return renameat(oldfd, old, newfd, new);
488     }
489     errno = ENOSYS;
490     return -1;
491 }
492 #endif
493 #endif /* TARGET_NR_renameat2 */
494 
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
497 #else
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY  */
504 
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
508 #endif
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64 {
512     uint64_t rlim_cur;
513     uint64_t rlim_max;
514 };
515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
516           const struct host_rlimit64 *, new_limit,
517           struct host_rlimit64 *, old_limit)
518 #endif
519 
520 
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers[GUEST_TIMER_MAX];
525 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
526 
527 static inline int next_free_host_timer(void)
528 {
529     int k;
530     for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
531         if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
532             return k;
533         }
534     }
535     return -1;
536 }
537 
538 static inline void free_host_timer_slot(int id)
539 {
540     qatomic_store_release(g_posix_timer_allocated + id, 0);
541 }
542 #endif
543 
544 static inline int host_to_target_errno(int host_errno)
545 {
546     switch (host_errno) {
547 #define E(X)  case X: return TARGET_##X;
548 #include "errnos.c.inc"
549 #undef E
550     default:
551         return host_errno;
552     }
553 }
554 
555 static inline int target_to_host_errno(int target_errno)
556 {
557     switch (target_errno) {
558 #define E(X)  case TARGET_##X: return X;
559 #include "errnos.c.inc"
560 #undef E
561     default:
562         return target_errno;
563     }
564 }
565 
566 abi_long get_errno(abi_long ret)
567 {
568     if (ret == -1)
569         return -host_to_target_errno(errno);
570     else
571         return ret;
572 }
573 
574 const char *target_strerror(int err)
575 {
576     if (err == QEMU_ERESTARTSYS) {
577         return "To be restarted";
578     }
579     if (err == QEMU_ESIGRETURN) {
580         return "Successful exit from sigreturn";
581     }
582 
583     return strerror(target_to_host_errno(err));
584 }
585 
586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
587 {
588     int i;
589     uint8_t b;
590     if (usize <= ksize) {
591         return 1;
592     }
593     for (i = ksize; i < usize; i++) {
594         if (get_user_u8(b, addr + i)) {
595             return -TARGET_EFAULT;
596         }
597         if (b != 0) {
598             return 0;
599         }
600     }
601     return 1;
602 }
603 
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
606 { \
607     return safe_syscall(__NR_##name); \
608 }
609 
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
612 { \
613     return safe_syscall(__NR_##name, arg1); \
614 }
615 
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
618 { \
619     return safe_syscall(__NR_##name, arg1, arg2); \
620 }
621 
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
624 { \
625     return safe_syscall(__NR_##name, arg1, arg2, arg3); \
626 }
627 
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
629     type4, arg4) \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
631 { \
632     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
633 }
634 
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636     type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
638     type5 arg5) \
639 { \
640     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
641 }
642 
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644     type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646     type5 arg5, type6 arg6) \
647 { \
648     return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
649 }
650 
651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
654               int, flags, mode_t, mode)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
657               struct rusage *, rusage)
658 #endif
659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
660               int, options, struct rusage *, rusage)
661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663               char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667               fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671               struct timespec *, tsp, const sigset_t *, sigmask,
672               size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675               int, maxevents, int, timeout, const sigset_t *, sigmask,
676               size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679               const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683               const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692               unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694               unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696               socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698               int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700               int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706               const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709               int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712               struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715     defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717               const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722               void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725               void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730               int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734               long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738               unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741     defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743               size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746     defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748               size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752               int, outfd, loff_t *, poutoff, size_t, length,
753               unsigned int, flags)
754 #endif
755 
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757  * "third argument might be integer or pointer or not present" behaviour of
758  * the libc function.
759  */
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762  *  pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763  *  use the flock64 struct rather than unsuffixed flock
764  * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
765  */
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
771 
772 static inline int host_to_target_sock_type(int host_type)
773 {
774     int target_type;
775 
776     switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777     case SOCK_DGRAM:
778         target_type = TARGET_SOCK_DGRAM;
779         break;
780     case SOCK_STREAM:
781         target_type = TARGET_SOCK_STREAM;
782         break;
783     default:
784         target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785         break;
786     }
787 
788 #if defined(SOCK_CLOEXEC)
789     if (host_type & SOCK_CLOEXEC) {
790         target_type |= TARGET_SOCK_CLOEXEC;
791     }
792 #endif
793 
794 #if defined(SOCK_NONBLOCK)
795     if (host_type & SOCK_NONBLOCK) {
796         target_type |= TARGET_SOCK_NONBLOCK;
797     }
798 #endif
799 
800     return target_type;
801 }
802 
803 static abi_ulong target_brk, initial_target_brk;
804 
805 void target_set_brk(abi_ulong new_brk)
806 {
807     target_brk = TARGET_PAGE_ALIGN(new_brk);
808     initial_target_brk = target_brk;
809 }
810 
811 /* do_brk() must return target values and target errnos. */
812 abi_long do_brk(abi_ulong brk_val)
813 {
814     abi_long mapped_addr;
815     abi_ulong new_brk;
816     abi_ulong old_brk;
817 
818     /* brk pointers are always untagged */
819 
820     /* do not allow to shrink below initial brk value */
821     if (brk_val < initial_target_brk) {
822         return target_brk;
823     }
824 
825     new_brk = TARGET_PAGE_ALIGN(brk_val);
826     old_brk = TARGET_PAGE_ALIGN(target_brk);
827 
828     /* new and old target_brk might be on the same page */
829     if (new_brk == old_brk) {
830         target_brk = brk_val;
831         return target_brk;
832     }
833 
834     /* Release heap if necessary */
835     if (new_brk < old_brk) {
836         target_munmap(new_brk, old_brk - new_brk);
837 
838         target_brk = brk_val;
839         return target_brk;
840     }
841 
842     mapped_addr = target_mmap(old_brk, new_brk - old_brk,
843                               PROT_READ | PROT_WRITE,
844                               MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
845                               -1, 0);
846 
847     if (mapped_addr == old_brk) {
848         target_brk = brk_val;
849         return target_brk;
850     }
851 
852 #if defined(TARGET_ALPHA)
853     /* We (partially) emulate OSF/1 on Alpha, which requires we
854        return a proper errno, not an unchanged brk value.  */
855     return -TARGET_ENOMEM;
856 #endif
857     /* For everything else, return the previous break. */
858     return target_brk;
859 }
860 
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long copy_from_user_fdset(fd_set *fds,
864                                             abi_ulong target_fds_addr,
865                                             int n)
866 {
867     int i, nw, j, k;
868     abi_ulong b, *target_fds;
869 
870     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
871     if (!(target_fds = lock_user(VERIFY_READ,
872                                  target_fds_addr,
873                                  sizeof(abi_ulong) * nw,
874                                  1)))
875         return -TARGET_EFAULT;
876 
877     FD_ZERO(fds);
878     k = 0;
879     for (i = 0; i < nw; i++) {
880         /* grab the abi_ulong */
881         __get_user(b, &target_fds[i]);
882         for (j = 0; j < TARGET_ABI_BITS; j++) {
883             /* check the bit inside the abi_ulong */
884             if ((b >> j) & 1)
885                 FD_SET(k, fds);
886             k++;
887         }
888     }
889 
890     unlock_user(target_fds, target_fds_addr, 0);
891 
892     return 0;
893 }
894 
895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
896                                                  abi_ulong target_fds_addr,
897                                                  int n)
898 {
899     if (target_fds_addr) {
900         if (copy_from_user_fdset(fds, target_fds_addr, n))
901             return -TARGET_EFAULT;
902         *fds_ptr = fds;
903     } else {
904         *fds_ptr = NULL;
905     }
906     return 0;
907 }
908 
909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
910                                           const fd_set *fds,
911                                           int n)
912 {
913     int i, nw, j, k;
914     abi_long v;
915     abi_ulong *target_fds;
916 
917     nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
918     if (!(target_fds = lock_user(VERIFY_WRITE,
919                                  target_fds_addr,
920                                  sizeof(abi_ulong) * nw,
921                                  0)))
922         return -TARGET_EFAULT;
923 
924     k = 0;
925     for (i = 0; i < nw; i++) {
926         v = 0;
927         for (j = 0; j < TARGET_ABI_BITS; j++) {
928             v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
929             k++;
930         }
931         __put_user(v, &target_fds[i]);
932     }
933 
934     unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
935 
936     return 0;
937 }
938 #endif
939 
940 #if defined(__alpha__)
941 #define HOST_HZ 1024
942 #else
943 #define HOST_HZ 100
944 #endif
945 
946 static inline abi_long host_to_target_clock_t(long ticks)
947 {
948 #if HOST_HZ == TARGET_HZ
949     return ticks;
950 #else
951     return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
952 #endif
953 }
954 
955 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
956                                              const struct rusage *rusage)
957 {
958     struct target_rusage *target_rusage;
959 
960     if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
961         return -TARGET_EFAULT;
962     target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
963     target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
964     target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
965     target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
966     target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
967     target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
968     target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
969     target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
970     target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
971     target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
972     target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
973     target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
974     target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
975     target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
976     target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
977     target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
978     target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
979     target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
980     unlock_user_struct(target_rusage, target_addr, 1);
981 
982     return 0;
983 }
984 
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
987 {
988     abi_ulong target_rlim_swap;
989     rlim_t result;
990 
991     target_rlim_swap = tswapal(target_rlim);
992     if (target_rlim_swap == TARGET_RLIM_INFINITY)
993         return RLIM_INFINITY;
994 
995     result = target_rlim_swap;
996     if (target_rlim_swap != (rlim_t)result)
997         return RLIM_INFINITY;
998 
999     return result;
1000 }
1001 #endif
1002 
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1005 {
1006     abi_ulong target_rlim_swap;
1007     abi_ulong result;
1008 
1009     if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1010         target_rlim_swap = TARGET_RLIM_INFINITY;
1011     else
1012         target_rlim_swap = rlim;
1013     result = tswapal(target_rlim_swap);
1014 
1015     return result;
1016 }
1017 #endif
1018 
1019 static inline int target_to_host_resource(int code)
1020 {
1021     switch (code) {
1022     case TARGET_RLIMIT_AS:
1023         return RLIMIT_AS;
1024     case TARGET_RLIMIT_CORE:
1025         return RLIMIT_CORE;
1026     case TARGET_RLIMIT_CPU:
1027         return RLIMIT_CPU;
1028     case TARGET_RLIMIT_DATA:
1029         return RLIMIT_DATA;
1030     case TARGET_RLIMIT_FSIZE:
1031         return RLIMIT_FSIZE;
1032     case TARGET_RLIMIT_LOCKS:
1033         return RLIMIT_LOCKS;
1034     case TARGET_RLIMIT_MEMLOCK:
1035         return RLIMIT_MEMLOCK;
1036     case TARGET_RLIMIT_MSGQUEUE:
1037         return RLIMIT_MSGQUEUE;
1038     case TARGET_RLIMIT_NICE:
1039         return RLIMIT_NICE;
1040     case TARGET_RLIMIT_NOFILE:
1041         return RLIMIT_NOFILE;
1042     case TARGET_RLIMIT_NPROC:
1043         return RLIMIT_NPROC;
1044     case TARGET_RLIMIT_RSS:
1045         return RLIMIT_RSS;
1046     case TARGET_RLIMIT_RTPRIO:
1047         return RLIMIT_RTPRIO;
1048 #ifdef RLIMIT_RTTIME
1049     case TARGET_RLIMIT_RTTIME:
1050         return RLIMIT_RTTIME;
1051 #endif
1052     case TARGET_RLIMIT_SIGPENDING:
1053         return RLIMIT_SIGPENDING;
1054     case TARGET_RLIMIT_STACK:
1055         return RLIMIT_STACK;
1056     default:
1057         return code;
1058     }
1059 }
1060 
1061 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1062                                               abi_ulong target_tv_addr)
1063 {
1064     struct target_timeval *target_tv;
1065 
1066     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1067         return -TARGET_EFAULT;
1068     }
1069 
1070     __get_user(tv->tv_sec, &target_tv->tv_sec);
1071     __get_user(tv->tv_usec, &target_tv->tv_usec);
1072 
1073     unlock_user_struct(target_tv, target_tv_addr, 0);
1074 
1075     return 0;
1076 }
1077 
1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1079                                             const struct timeval *tv)
1080 {
1081     struct target_timeval *target_tv;
1082 
1083     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1084         return -TARGET_EFAULT;
1085     }
1086 
1087     __put_user(tv->tv_sec, &target_tv->tv_sec);
1088     __put_user(tv->tv_usec, &target_tv->tv_usec);
1089 
1090     unlock_user_struct(target_tv, target_tv_addr, 1);
1091 
1092     return 0;
1093 }
1094 
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1097                                                 abi_ulong target_tv_addr)
1098 {
1099     struct target__kernel_sock_timeval *target_tv;
1100 
1101     if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1102         return -TARGET_EFAULT;
1103     }
1104 
1105     __get_user(tv->tv_sec, &target_tv->tv_sec);
1106     __get_user(tv->tv_usec, &target_tv->tv_usec);
1107 
1108     unlock_user_struct(target_tv, target_tv_addr, 0);
1109 
1110     return 0;
1111 }
1112 #endif
1113 
1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1115                                               const struct timeval *tv)
1116 {
1117     struct target__kernel_sock_timeval *target_tv;
1118 
1119     if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120         return -TARGET_EFAULT;
1121     }
1122 
1123     __put_user(tv->tv_sec, &target_tv->tv_sec);
1124     __put_user(tv->tv_usec, &target_tv->tv_usec);
1125 
1126     unlock_user_struct(target_tv, target_tv_addr, 1);
1127 
1128     return 0;
1129 }
1130 
1131 #if defined(TARGET_NR_futex) || \
1132     defined(TARGET_NR_rt_sigtimedwait) || \
1133     defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134     defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135     defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136     defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137     defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138     defined(TARGET_NR_timer_settime) || \
1139     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1141                                                abi_ulong target_addr)
1142 {
1143     struct target_timespec *target_ts;
1144 
1145     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1146         return -TARGET_EFAULT;
1147     }
1148     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1149     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1150     unlock_user_struct(target_ts, target_addr, 0);
1151     return 0;
1152 }
1153 #endif
1154 
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156     defined(TARGET_NR_timer_settime64) || \
1157     defined(TARGET_NR_mq_timedsend_time64) || \
1158     defined(TARGET_NR_mq_timedreceive_time64) || \
1159     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160     defined(TARGET_NR_clock_nanosleep_time64) || \
1161     defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162     defined(TARGET_NR_utimensat) || \
1163     defined(TARGET_NR_utimensat_time64) || \
1164     defined(TARGET_NR_semtimedop_time64) || \
1165     defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1167                                                  abi_ulong target_addr)
1168 {
1169     struct target__kernel_timespec *target_ts;
1170 
1171     if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1172         return -TARGET_EFAULT;
1173     }
1174     __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1175     __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176     /* in 32bit mode, this drops the padding */
1177     host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1178     unlock_user_struct(target_ts, target_addr, 0);
1179     return 0;
1180 }
1181 #endif
1182 
1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1184                                                struct timespec *host_ts)
1185 {
1186     struct target_timespec *target_ts;
1187 
1188     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1189         return -TARGET_EFAULT;
1190     }
1191     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1192     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1193     unlock_user_struct(target_ts, target_addr, 1);
1194     return 0;
1195 }
1196 
1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1198                                                  struct timespec *host_ts)
1199 {
1200     struct target__kernel_timespec *target_ts;
1201 
1202     if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1203         return -TARGET_EFAULT;
1204     }
1205     __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1206     __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1207     unlock_user_struct(target_ts, target_addr, 1);
1208     return 0;
1209 }
1210 
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1213                                              struct timezone *tz)
1214 {
1215     struct target_timezone *target_tz;
1216 
1217     if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1218         return -TARGET_EFAULT;
1219     }
1220 
1221     __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1222     __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1223 
1224     unlock_user_struct(target_tz, target_tz_addr, 1);
1225 
1226     return 0;
1227 }
1228 #endif
1229 
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1232                                                abi_ulong target_tz_addr)
1233 {
1234     struct target_timezone *target_tz;
1235 
1236     if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1237         return -TARGET_EFAULT;
1238     }
1239 
1240     __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1241     __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1242 
1243     unlock_user_struct(target_tz, target_tz_addr, 0);
1244 
1245     return 0;
1246 }
1247 #endif
1248 
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1250 #include <mqueue.h>
1251 
1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1253                                               abi_ulong target_mq_attr_addr)
1254 {
1255     struct target_mq_attr *target_mq_attr;
1256 
1257     if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1258                           target_mq_attr_addr, 1))
1259         return -TARGET_EFAULT;
1260 
1261     __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1262     __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1263     __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1264     __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1265 
1266     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1267 
1268     return 0;
1269 }
1270 
1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1272                                             const struct mq_attr *attr)
1273 {
1274     struct target_mq_attr *target_mq_attr;
1275 
1276     if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1277                           target_mq_attr_addr, 0))
1278         return -TARGET_EFAULT;
1279 
1280     __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1281     __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1282     __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1283     __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1284 
1285     unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1286 
1287     return 0;
1288 }
1289 #endif
1290 
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long do_select(int n,
1294                           abi_ulong rfd_addr, abi_ulong wfd_addr,
1295                           abi_ulong efd_addr, abi_ulong target_tv_addr)
1296 {
1297     fd_set rfds, wfds, efds;
1298     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1299     struct timeval tv;
1300     struct timespec ts, *ts_ptr;
1301     abi_long ret;
1302 
1303     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1304     if (ret) {
1305         return ret;
1306     }
1307     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1308     if (ret) {
1309         return ret;
1310     }
1311     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1312     if (ret) {
1313         return ret;
1314     }
1315 
1316     if (target_tv_addr) {
1317         if (copy_from_user_timeval(&tv, target_tv_addr))
1318             return -TARGET_EFAULT;
1319         ts.tv_sec = tv.tv_sec;
1320         ts.tv_nsec = tv.tv_usec * 1000;
1321         ts_ptr = &ts;
1322     } else {
1323         ts_ptr = NULL;
1324     }
1325 
1326     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1327                                   ts_ptr, NULL));
1328 
1329     if (!is_error(ret)) {
1330         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1331             return -TARGET_EFAULT;
1332         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1333             return -TARGET_EFAULT;
1334         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1335             return -TARGET_EFAULT;
1336 
1337         if (target_tv_addr) {
1338             tv.tv_sec = ts.tv_sec;
1339             tv.tv_usec = ts.tv_nsec / 1000;
1340             if (copy_to_user_timeval(target_tv_addr, &tv)) {
1341                 return -TARGET_EFAULT;
1342             }
1343         }
1344     }
1345 
1346     return ret;
1347 }
1348 
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long do_old_select(abi_ulong arg1)
1351 {
1352     struct target_sel_arg_struct *sel;
1353     abi_ulong inp, outp, exp, tvp;
1354     long nsel;
1355 
1356     if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1357         return -TARGET_EFAULT;
1358     }
1359 
1360     nsel = tswapal(sel->n);
1361     inp = tswapal(sel->inp);
1362     outp = tswapal(sel->outp);
1363     exp = tswapal(sel->exp);
1364     tvp = tswapal(sel->tvp);
1365 
1366     unlock_user_struct(sel, arg1, 0);
1367 
1368     return do_select(nsel, inp, outp, exp, tvp);
1369 }
1370 #endif
1371 #endif
1372 
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1375                             abi_long arg4, abi_long arg5, abi_long arg6,
1376                             bool time64)
1377 {
1378     abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1379     fd_set rfds, wfds, efds;
1380     fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1381     struct timespec ts, *ts_ptr;
1382     abi_long ret;
1383 
1384     /*
1385      * The 6th arg is actually two args smashed together,
1386      * so we cannot use the C library.
1387      */
1388     struct {
1389         sigset_t *set;
1390         size_t size;
1391     } sig, *sig_ptr;
1392 
1393     abi_ulong arg_sigset, arg_sigsize, *arg7;
1394 
1395     n = arg1;
1396     rfd_addr = arg2;
1397     wfd_addr = arg3;
1398     efd_addr = arg4;
1399     ts_addr = arg5;
1400 
1401     ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1402     if (ret) {
1403         return ret;
1404     }
1405     ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1406     if (ret) {
1407         return ret;
1408     }
1409     ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1410     if (ret) {
1411         return ret;
1412     }
1413 
1414     /*
1415      * This takes a timespec, and not a timeval, so we cannot
1416      * use the do_select() helper ...
1417      */
1418     if (ts_addr) {
1419         if (time64) {
1420             if (target_to_host_timespec64(&ts, ts_addr)) {
1421                 return -TARGET_EFAULT;
1422             }
1423         } else {
1424             if (target_to_host_timespec(&ts, ts_addr)) {
1425                 return -TARGET_EFAULT;
1426             }
1427         }
1428             ts_ptr = &ts;
1429     } else {
1430         ts_ptr = NULL;
1431     }
1432 
1433     /* Extract the two packed args for the sigset */
1434     sig_ptr = NULL;
1435     if (arg6) {
1436         arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1437         if (!arg7) {
1438             return -TARGET_EFAULT;
1439         }
1440         arg_sigset = tswapal(arg7[0]);
1441         arg_sigsize = tswapal(arg7[1]);
1442         unlock_user(arg7, arg6, 0);
1443 
1444         if (arg_sigset) {
1445             ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1446             if (ret != 0) {
1447                 return ret;
1448             }
1449             sig_ptr = &sig;
1450             sig.size = SIGSET_T_SIZE;
1451         }
1452     }
1453 
1454     ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1455                                   ts_ptr, sig_ptr));
1456 
1457     if (sig_ptr) {
1458         finish_sigsuspend_mask(ret);
1459     }
1460 
1461     if (!is_error(ret)) {
1462         if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1463             return -TARGET_EFAULT;
1464         }
1465         if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1466             return -TARGET_EFAULT;
1467         }
1468         if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1469             return -TARGET_EFAULT;
1470         }
1471         if (time64) {
1472             if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1473                 return -TARGET_EFAULT;
1474             }
1475         } else {
1476             if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1477                 return -TARGET_EFAULT;
1478             }
1479         }
1480     }
1481     return ret;
1482 }
1483 #endif
1484 
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486     defined(TARGET_NR_ppoll_time64)
1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1488                          abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1489 {
1490     struct target_pollfd *target_pfd;
1491     unsigned int nfds = arg2;
1492     struct pollfd *pfd;
1493     unsigned int i;
1494     abi_long ret;
1495 
1496     pfd = NULL;
1497     target_pfd = NULL;
1498     if (nfds) {
1499         if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1500             return -TARGET_EINVAL;
1501         }
1502         target_pfd = lock_user(VERIFY_WRITE, arg1,
1503                                sizeof(struct target_pollfd) * nfds, 1);
1504         if (!target_pfd) {
1505             return -TARGET_EFAULT;
1506         }
1507 
1508         pfd = alloca(sizeof(struct pollfd) * nfds);
1509         for (i = 0; i < nfds; i++) {
1510             pfd[i].fd = tswap32(target_pfd[i].fd);
1511             pfd[i].events = tswap16(target_pfd[i].events);
1512         }
1513     }
1514     if (ppoll) {
1515         struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1516         sigset_t *set = NULL;
1517 
1518         if (arg3) {
1519             if (time64) {
1520                 if (target_to_host_timespec64(timeout_ts, arg3)) {
1521                     unlock_user(target_pfd, arg1, 0);
1522                     return -TARGET_EFAULT;
1523                 }
1524             } else {
1525                 if (target_to_host_timespec(timeout_ts, arg3)) {
1526                     unlock_user(target_pfd, arg1, 0);
1527                     return -TARGET_EFAULT;
1528                 }
1529             }
1530         } else {
1531             timeout_ts = NULL;
1532         }
1533 
1534         if (arg4) {
1535             ret = process_sigsuspend_mask(&set, arg4, arg5);
1536             if (ret != 0) {
1537                 unlock_user(target_pfd, arg1, 0);
1538                 return ret;
1539             }
1540         }
1541 
1542         ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1543                                    set, SIGSET_T_SIZE));
1544 
1545         if (set) {
1546             finish_sigsuspend_mask(ret);
1547         }
1548         if (!is_error(ret) && arg3) {
1549             if (time64) {
1550                 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551                     return -TARGET_EFAULT;
1552                 }
1553             } else {
1554                 if (host_to_target_timespec(arg3, timeout_ts)) {
1555                     return -TARGET_EFAULT;
1556                 }
1557             }
1558         }
1559     } else {
1560           struct timespec ts, *pts;
1561 
1562           if (arg3 >= 0) {
1563               /* Convert ms to secs, ns */
1564               ts.tv_sec = arg3 / 1000;
1565               ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1566               pts = &ts;
1567           } else {
1568               /* -ve poll() timeout means "infinite" */
1569               pts = NULL;
1570           }
1571           ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1572     }
1573 
1574     if (!is_error(ret)) {
1575         for (i = 0; i < nfds; i++) {
1576             target_pfd[i].revents = tswap16(pfd[i].revents);
1577         }
1578     }
1579     unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1580     return ret;
1581 }
1582 #endif
1583 
1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1585                         int flags, int is_pipe2)
1586 {
1587     int host_pipe[2];
1588     abi_long ret;
1589     ret = pipe2(host_pipe, flags);
1590 
1591     if (is_error(ret))
1592         return get_errno(ret);
1593 
1594     /* Several targets have special calling conventions for the original
1595        pipe syscall, but didn't replicate this into the pipe2 syscall.  */
1596     if (!is_pipe2) {
1597 #if defined(TARGET_ALPHA)
1598         cpu_env->ir[IR_A4] = host_pipe[1];
1599         return host_pipe[0];
1600 #elif defined(TARGET_MIPS)
1601         cpu_env->active_tc.gpr[3] = host_pipe[1];
1602         return host_pipe[0];
1603 #elif defined(TARGET_SH4)
1604         cpu_env->gregs[1] = host_pipe[1];
1605         return host_pipe[0];
1606 #elif defined(TARGET_SPARC)
1607         cpu_env->regwptr[1] = host_pipe[1];
1608         return host_pipe[0];
1609 #endif
1610     }
1611 
1612     if (put_user_s32(host_pipe[0], pipedes)
1613         || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1614         return -TARGET_EFAULT;
1615     return get_errno(ret);
1616 }
1617 
1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1619                                               abi_ulong target_addr,
1620                                               socklen_t len)
1621 {
1622     struct target_ip_mreqn *target_smreqn;
1623 
1624     target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1625     if (!target_smreqn)
1626         return -TARGET_EFAULT;
1627     mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1628     mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1629     if (len == sizeof(struct target_ip_mreqn))
1630         mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1631     unlock_user(target_smreqn, target_addr, 0);
1632 
1633     return 0;
1634 }
1635 
1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1637                                                abi_ulong target_addr,
1638                                                socklen_t len)
1639 {
1640     const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1641     sa_family_t sa_family;
1642     struct target_sockaddr *target_saddr;
1643 
1644     if (fd_trans_target_to_host_addr(fd)) {
1645         return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1646     }
1647 
1648     target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1649     if (!target_saddr)
1650         return -TARGET_EFAULT;
1651 
1652     sa_family = tswap16(target_saddr->sa_family);
1653 
1654     /* Oops. The caller might send a incomplete sun_path; sun_path
1655      * must be terminated by \0 (see the manual page), but
1656      * unfortunately it is quite common to specify sockaddr_un
1657      * length as "strlen(x->sun_path)" while it should be
1658      * "strlen(...) + 1". We'll fix that here if needed.
1659      * Linux kernel has a similar feature.
1660      */
1661 
1662     if (sa_family == AF_UNIX) {
1663         if (len < unix_maxlen && len > 0) {
1664             char *cp = (char*)target_saddr;
1665 
1666             if ( cp[len-1] && !cp[len] )
1667                 len++;
1668         }
1669         if (len > unix_maxlen)
1670             len = unix_maxlen;
1671     }
1672 
1673     memcpy(addr, target_saddr, len);
1674     addr->sa_family = sa_family;
1675     if (sa_family == AF_NETLINK) {
1676         struct sockaddr_nl *nladdr;
1677 
1678         nladdr = (struct sockaddr_nl *)addr;
1679         nladdr->nl_pid = tswap32(nladdr->nl_pid);
1680         nladdr->nl_groups = tswap32(nladdr->nl_groups);
1681     } else if (sa_family == AF_PACKET) {
1682 	struct target_sockaddr_ll *lladdr;
1683 
1684 	lladdr = (struct target_sockaddr_ll *)addr;
1685 	lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1686 	lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1687     } else if (sa_family == AF_INET6) {
1688         struct sockaddr_in6 *in6addr;
1689 
1690         in6addr = (struct sockaddr_in6 *)addr;
1691         in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1692     }
1693     unlock_user(target_saddr, target_addr, 0);
1694 
1695     return 0;
1696 }
1697 
1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1699                                                struct sockaddr *addr,
1700                                                socklen_t len)
1701 {
1702     struct target_sockaddr *target_saddr;
1703 
1704     if (len == 0) {
1705         return 0;
1706     }
1707     assert(addr);
1708 
1709     target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1710     if (!target_saddr)
1711         return -TARGET_EFAULT;
1712     memcpy(target_saddr, addr, len);
1713     if (len >= offsetof(struct target_sockaddr, sa_family) +
1714         sizeof(target_saddr->sa_family)) {
1715         target_saddr->sa_family = tswap16(addr->sa_family);
1716     }
1717     if (addr->sa_family == AF_NETLINK &&
1718         len >= sizeof(struct target_sockaddr_nl)) {
1719         struct target_sockaddr_nl *target_nl =
1720                (struct target_sockaddr_nl *)target_saddr;
1721         target_nl->nl_pid = tswap32(target_nl->nl_pid);
1722         target_nl->nl_groups = tswap32(target_nl->nl_groups);
1723     } else if (addr->sa_family == AF_PACKET) {
1724         struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1725         target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1726         target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1727     } else if (addr->sa_family == AF_INET6 &&
1728                len >= sizeof(struct target_sockaddr_in6)) {
1729         struct target_sockaddr_in6 *target_in6 =
1730                (struct target_sockaddr_in6 *)target_saddr;
1731         target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1732     }
1733     unlock_user(target_saddr, target_addr, len);
1734 
1735     return 0;
1736 }
1737 
1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1739                                            struct target_msghdr *target_msgh)
1740 {
1741     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1742     abi_long msg_controllen;
1743     abi_ulong target_cmsg_addr;
1744     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1745     socklen_t space = 0;
1746 
1747     msg_controllen = tswapal(target_msgh->msg_controllen);
1748     if (msg_controllen < sizeof (struct target_cmsghdr))
1749         goto the_end;
1750     target_cmsg_addr = tswapal(target_msgh->msg_control);
1751     target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1752     target_cmsg_start = target_cmsg;
1753     if (!target_cmsg)
1754         return -TARGET_EFAULT;
1755 
1756     while (cmsg && target_cmsg) {
1757         void *data = CMSG_DATA(cmsg);
1758         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1759 
1760         int len = tswapal(target_cmsg->cmsg_len)
1761             - sizeof(struct target_cmsghdr);
1762 
1763         space += CMSG_SPACE(len);
1764         if (space > msgh->msg_controllen) {
1765             space -= CMSG_SPACE(len);
1766             /* This is a QEMU bug, since we allocated the payload
1767              * area ourselves (unlike overflow in host-to-target
1768              * conversion, which is just the guest giving us a buffer
1769              * that's too small). It can't happen for the payload types
1770              * we currently support; if it becomes an issue in future
1771              * we would need to improve our allocation strategy to
1772              * something more intelligent than "twice the size of the
1773              * target buffer we're reading from".
1774              */
1775             qemu_log_mask(LOG_UNIMP,
1776                           ("Unsupported ancillary data %d/%d: "
1777                            "unhandled msg size\n"),
1778                           tswap32(target_cmsg->cmsg_level),
1779                           tswap32(target_cmsg->cmsg_type));
1780             break;
1781         }
1782 
1783         if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1784             cmsg->cmsg_level = SOL_SOCKET;
1785         } else {
1786             cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1787         }
1788         cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1789         cmsg->cmsg_len = CMSG_LEN(len);
1790 
1791         if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1792             int *fd = (int *)data;
1793             int *target_fd = (int *)target_data;
1794             int i, numfds = len / sizeof(int);
1795 
1796             for (i = 0; i < numfds; i++) {
1797                 __get_user(fd[i], target_fd + i);
1798             }
1799         } else if (cmsg->cmsg_level == SOL_SOCKET
1800                &&  cmsg->cmsg_type == SCM_CREDENTIALS) {
1801             struct ucred *cred = (struct ucred *)data;
1802             struct target_ucred *target_cred =
1803                 (struct target_ucred *)target_data;
1804 
1805             __get_user(cred->pid, &target_cred->pid);
1806             __get_user(cred->uid, &target_cred->uid);
1807             __get_user(cred->gid, &target_cred->gid);
1808         } else if (cmsg->cmsg_level == SOL_ALG) {
1809             uint32_t *dst = (uint32_t *)data;
1810 
1811             memcpy(dst, target_data, len);
1812             /* fix endianness of first 32-bit word */
1813             if (len >= sizeof(uint32_t)) {
1814                 *dst = tswap32(*dst);
1815             }
1816         } else {
1817             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1818                           cmsg->cmsg_level, cmsg->cmsg_type);
1819             memcpy(data, target_data, len);
1820         }
1821 
1822         cmsg = CMSG_NXTHDR(msgh, cmsg);
1823         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1824                                          target_cmsg_start);
1825     }
1826     unlock_user(target_cmsg, target_cmsg_addr, 0);
1827  the_end:
1828     msgh->msg_controllen = space;
1829     return 0;
1830 }
1831 
1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1833                                            struct msghdr *msgh)
1834 {
1835     struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1836     abi_long msg_controllen;
1837     abi_ulong target_cmsg_addr;
1838     struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1839     socklen_t space = 0;
1840 
1841     msg_controllen = tswapal(target_msgh->msg_controllen);
1842     if (msg_controllen < sizeof (struct target_cmsghdr))
1843         goto the_end;
1844     target_cmsg_addr = tswapal(target_msgh->msg_control);
1845     target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1846     target_cmsg_start = target_cmsg;
1847     if (!target_cmsg)
1848         return -TARGET_EFAULT;
1849 
1850     while (cmsg && target_cmsg) {
1851         void *data = CMSG_DATA(cmsg);
1852         void *target_data = TARGET_CMSG_DATA(target_cmsg);
1853 
1854         int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1855         int tgt_len, tgt_space;
1856 
1857         /* We never copy a half-header but may copy half-data;
1858          * this is Linux's behaviour in put_cmsg(). Note that
1859          * truncation here is a guest problem (which we report
1860          * to the guest via the CTRUNC bit), unlike truncation
1861          * in target_to_host_cmsg, which is a QEMU bug.
1862          */
1863         if (msg_controllen < sizeof(struct target_cmsghdr)) {
1864             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1865             break;
1866         }
1867 
1868         if (cmsg->cmsg_level == SOL_SOCKET) {
1869             target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1870         } else {
1871             target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1872         }
1873         target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1874 
1875         /* Payload types which need a different size of payload on
1876          * the target must adjust tgt_len here.
1877          */
1878         tgt_len = len;
1879         switch (cmsg->cmsg_level) {
1880         case SOL_SOCKET:
1881             switch (cmsg->cmsg_type) {
1882             case SO_TIMESTAMP:
1883                 tgt_len = sizeof(struct target_timeval);
1884                 break;
1885             default:
1886                 break;
1887             }
1888             break;
1889         default:
1890             break;
1891         }
1892 
1893         if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1894             target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1895             tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1896         }
1897 
1898         /* We must now copy-and-convert len bytes of payload
1899          * into tgt_len bytes of destination space. Bear in mind
1900          * that in both source and destination we may be dealing
1901          * with a truncated value!
1902          */
1903         switch (cmsg->cmsg_level) {
1904         case SOL_SOCKET:
1905             switch (cmsg->cmsg_type) {
1906             case SCM_RIGHTS:
1907             {
1908                 int *fd = (int *)data;
1909                 int *target_fd = (int *)target_data;
1910                 int i, numfds = tgt_len / sizeof(int);
1911 
1912                 for (i = 0; i < numfds; i++) {
1913                     __put_user(fd[i], target_fd + i);
1914                 }
1915                 break;
1916             }
1917             case SO_TIMESTAMP:
1918             {
1919                 struct timeval *tv = (struct timeval *)data;
1920                 struct target_timeval *target_tv =
1921                     (struct target_timeval *)target_data;
1922 
1923                 if (len != sizeof(struct timeval) ||
1924                     tgt_len != sizeof(struct target_timeval)) {
1925                     goto unimplemented;
1926                 }
1927 
1928                 /* copy struct timeval to target */
1929                 __put_user(tv->tv_sec, &target_tv->tv_sec);
1930                 __put_user(tv->tv_usec, &target_tv->tv_usec);
1931                 break;
1932             }
1933             case SCM_CREDENTIALS:
1934             {
1935                 struct ucred *cred = (struct ucred *)data;
1936                 struct target_ucred *target_cred =
1937                     (struct target_ucred *)target_data;
1938 
1939                 __put_user(cred->pid, &target_cred->pid);
1940                 __put_user(cred->uid, &target_cred->uid);
1941                 __put_user(cred->gid, &target_cred->gid);
1942                 break;
1943             }
1944             default:
1945                 goto unimplemented;
1946             }
1947             break;
1948 
1949         case SOL_IP:
1950             switch (cmsg->cmsg_type) {
1951             case IP_TTL:
1952             {
1953                 uint32_t *v = (uint32_t *)data;
1954                 uint32_t *t_int = (uint32_t *)target_data;
1955 
1956                 if (len != sizeof(uint32_t) ||
1957                     tgt_len != sizeof(uint32_t)) {
1958                     goto unimplemented;
1959                 }
1960                 __put_user(*v, t_int);
1961                 break;
1962             }
1963             case IP_RECVERR:
1964             {
1965                 struct errhdr_t {
1966                    struct sock_extended_err ee;
1967                    struct sockaddr_in offender;
1968                 };
1969                 struct errhdr_t *errh = (struct errhdr_t *)data;
1970                 struct errhdr_t *target_errh =
1971                     (struct errhdr_t *)target_data;
1972 
1973                 if (len != sizeof(struct errhdr_t) ||
1974                     tgt_len != sizeof(struct errhdr_t)) {
1975                     goto unimplemented;
1976                 }
1977                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1978                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1979                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
1980                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1981                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1982                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1983                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1984                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1985                     (void *) &errh->offender, sizeof(errh->offender));
1986                 break;
1987             }
1988             default:
1989                 goto unimplemented;
1990             }
1991             break;
1992 
1993         case SOL_IPV6:
1994             switch (cmsg->cmsg_type) {
1995             case IPV6_HOPLIMIT:
1996             {
1997                 uint32_t *v = (uint32_t *)data;
1998                 uint32_t *t_int = (uint32_t *)target_data;
1999 
2000                 if (len != sizeof(uint32_t) ||
2001                     tgt_len != sizeof(uint32_t)) {
2002                     goto unimplemented;
2003                 }
2004                 __put_user(*v, t_int);
2005                 break;
2006             }
2007             case IPV6_RECVERR:
2008             {
2009                 struct errhdr6_t {
2010                    struct sock_extended_err ee;
2011                    struct sockaddr_in6 offender;
2012                 };
2013                 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2014                 struct errhdr6_t *target_errh =
2015                     (struct errhdr6_t *)target_data;
2016 
2017                 if (len != sizeof(struct errhdr6_t) ||
2018                     tgt_len != sizeof(struct errhdr6_t)) {
2019                     goto unimplemented;
2020                 }
2021                 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2022                 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2023                 __put_user(errh->ee.ee_type,  &target_errh->ee.ee_type);
2024                 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2025                 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2026                 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2027                 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2028                 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2029                     (void *) &errh->offender, sizeof(errh->offender));
2030                 break;
2031             }
2032             default:
2033                 goto unimplemented;
2034             }
2035             break;
2036 
2037         default:
2038         unimplemented:
2039             qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2040                           cmsg->cmsg_level, cmsg->cmsg_type);
2041             memcpy(target_data, data, MIN(len, tgt_len));
2042             if (tgt_len > len) {
2043                 memset(target_data + len, 0, tgt_len - len);
2044             }
2045         }
2046 
2047         target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2048         tgt_space = TARGET_CMSG_SPACE(tgt_len);
2049         if (msg_controllen < tgt_space) {
2050             tgt_space = msg_controllen;
2051         }
2052         msg_controllen -= tgt_space;
2053         space += tgt_space;
2054         cmsg = CMSG_NXTHDR(msgh, cmsg);
2055         target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2056                                          target_cmsg_start);
2057     }
2058     unlock_user(target_cmsg, target_cmsg_addr, space);
2059  the_end:
2060     target_msgh->msg_controllen = tswapal(space);
2061     return 0;
2062 }
2063 
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long do_setsockopt(int sockfd, int level, int optname,
2066                               abi_ulong optval_addr, socklen_t optlen)
2067 {
2068     abi_long ret;
2069     int val;
2070     struct ip_mreqn *ip_mreq;
2071     struct ip_mreq_source *ip_mreq_source;
2072 
2073     switch(level) {
2074     case SOL_TCP:
2075     case SOL_UDP:
2076         /* TCP and UDP options all take an 'int' value.  */
2077         if (optlen < sizeof(uint32_t))
2078             return -TARGET_EINVAL;
2079 
2080         if (get_user_u32(val, optval_addr))
2081             return -TARGET_EFAULT;
2082         ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2083         break;
2084     case SOL_IP:
2085         switch(optname) {
2086         case IP_TOS:
2087         case IP_TTL:
2088         case IP_HDRINCL:
2089         case IP_ROUTER_ALERT:
2090         case IP_RECVOPTS:
2091         case IP_RETOPTS:
2092         case IP_PKTINFO:
2093         case IP_MTU_DISCOVER:
2094         case IP_RECVERR:
2095         case IP_RECVTTL:
2096         case IP_RECVTOS:
2097 #ifdef IP_FREEBIND
2098         case IP_FREEBIND:
2099 #endif
2100         case IP_MULTICAST_TTL:
2101         case IP_MULTICAST_LOOP:
2102             val = 0;
2103             if (optlen >= sizeof(uint32_t)) {
2104                 if (get_user_u32(val, optval_addr))
2105                     return -TARGET_EFAULT;
2106             } else if (optlen >= 1) {
2107                 if (get_user_u8(val, optval_addr))
2108                     return -TARGET_EFAULT;
2109             }
2110             ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2111             break;
2112         case IP_ADD_MEMBERSHIP:
2113         case IP_DROP_MEMBERSHIP:
2114             if (optlen < sizeof (struct target_ip_mreq) ||
2115                 optlen > sizeof (struct target_ip_mreqn))
2116                 return -TARGET_EINVAL;
2117 
2118             ip_mreq = (struct ip_mreqn *) alloca(optlen);
2119             target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2120             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2121             break;
2122 
2123         case IP_BLOCK_SOURCE:
2124         case IP_UNBLOCK_SOURCE:
2125         case IP_ADD_SOURCE_MEMBERSHIP:
2126         case IP_DROP_SOURCE_MEMBERSHIP:
2127             if (optlen != sizeof (struct target_ip_mreq_source))
2128                 return -TARGET_EINVAL;
2129 
2130             ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2131             if (!ip_mreq_source) {
2132                 return -TARGET_EFAULT;
2133             }
2134             ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2135             unlock_user (ip_mreq_source, optval_addr, 0);
2136             break;
2137 
2138         default:
2139             goto unimplemented;
2140         }
2141         break;
2142     case SOL_IPV6:
2143         switch (optname) {
2144         case IPV6_MTU_DISCOVER:
2145         case IPV6_MTU:
2146         case IPV6_V6ONLY:
2147         case IPV6_RECVPKTINFO:
2148         case IPV6_UNICAST_HOPS:
2149         case IPV6_MULTICAST_HOPS:
2150         case IPV6_MULTICAST_LOOP:
2151         case IPV6_RECVERR:
2152         case IPV6_RECVHOPLIMIT:
2153         case IPV6_2292HOPLIMIT:
2154         case IPV6_CHECKSUM:
2155         case IPV6_ADDRFORM:
2156         case IPV6_2292PKTINFO:
2157         case IPV6_RECVTCLASS:
2158         case IPV6_RECVRTHDR:
2159         case IPV6_2292RTHDR:
2160         case IPV6_RECVHOPOPTS:
2161         case IPV6_2292HOPOPTS:
2162         case IPV6_RECVDSTOPTS:
2163         case IPV6_2292DSTOPTS:
2164         case IPV6_TCLASS:
2165         case IPV6_ADDR_PREFERENCES:
2166 #ifdef IPV6_RECVPATHMTU
2167         case IPV6_RECVPATHMTU:
2168 #endif
2169 #ifdef IPV6_TRANSPARENT
2170         case IPV6_TRANSPARENT:
2171 #endif
2172 #ifdef IPV6_FREEBIND
2173         case IPV6_FREEBIND:
2174 #endif
2175 #ifdef IPV6_RECVORIGDSTADDR
2176         case IPV6_RECVORIGDSTADDR:
2177 #endif
2178             val = 0;
2179             if (optlen < sizeof(uint32_t)) {
2180                 return -TARGET_EINVAL;
2181             }
2182             if (get_user_u32(val, optval_addr)) {
2183                 return -TARGET_EFAULT;
2184             }
2185             ret = get_errno(setsockopt(sockfd, level, optname,
2186                                        &val, sizeof(val)));
2187             break;
2188         case IPV6_PKTINFO:
2189         {
2190             struct in6_pktinfo pki;
2191 
2192             if (optlen < sizeof(pki)) {
2193                 return -TARGET_EINVAL;
2194             }
2195 
2196             if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2197                 return -TARGET_EFAULT;
2198             }
2199 
2200             pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2201 
2202             ret = get_errno(setsockopt(sockfd, level, optname,
2203                                        &pki, sizeof(pki)));
2204             break;
2205         }
2206         case IPV6_ADD_MEMBERSHIP:
2207         case IPV6_DROP_MEMBERSHIP:
2208         {
2209             struct ipv6_mreq ipv6mreq;
2210 
2211             if (optlen < sizeof(ipv6mreq)) {
2212                 return -TARGET_EINVAL;
2213             }
2214 
2215             if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2216                 return -TARGET_EFAULT;
2217             }
2218 
2219             ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2220 
2221             ret = get_errno(setsockopt(sockfd, level, optname,
2222                                        &ipv6mreq, sizeof(ipv6mreq)));
2223             break;
2224         }
2225         default:
2226             goto unimplemented;
2227         }
2228         break;
2229     case SOL_ICMPV6:
2230         switch (optname) {
2231         case ICMPV6_FILTER:
2232         {
2233             struct icmp6_filter icmp6f;
2234 
2235             if (optlen > sizeof(icmp6f)) {
2236                 optlen = sizeof(icmp6f);
2237             }
2238 
2239             if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2240                 return -TARGET_EFAULT;
2241             }
2242 
2243             for (val = 0; val < 8; val++) {
2244                 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2245             }
2246 
2247             ret = get_errno(setsockopt(sockfd, level, optname,
2248                                        &icmp6f, optlen));
2249             break;
2250         }
2251         default:
2252             goto unimplemented;
2253         }
2254         break;
2255     case SOL_RAW:
2256         switch (optname) {
2257         case ICMP_FILTER:
2258         case IPV6_CHECKSUM:
2259             /* those take an u32 value */
2260             if (optlen < sizeof(uint32_t)) {
2261                 return -TARGET_EINVAL;
2262             }
2263 
2264             if (get_user_u32(val, optval_addr)) {
2265                 return -TARGET_EFAULT;
2266             }
2267             ret = get_errno(setsockopt(sockfd, level, optname,
2268                                        &val, sizeof(val)));
2269             break;
2270 
2271         default:
2272             goto unimplemented;
2273         }
2274         break;
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2276     case SOL_ALG:
2277         switch (optname) {
2278         case ALG_SET_KEY:
2279         {
2280             char *alg_key = g_malloc(optlen);
2281 
2282             if (!alg_key) {
2283                 return -TARGET_ENOMEM;
2284             }
2285             if (copy_from_user(alg_key, optval_addr, optlen)) {
2286                 g_free(alg_key);
2287                 return -TARGET_EFAULT;
2288             }
2289             ret = get_errno(setsockopt(sockfd, level, optname,
2290                                        alg_key, optlen));
2291             g_free(alg_key);
2292             break;
2293         }
2294         case ALG_SET_AEAD_AUTHSIZE:
2295         {
2296             ret = get_errno(setsockopt(sockfd, level, optname,
2297                                        NULL, optlen));
2298             break;
2299         }
2300         default:
2301             goto unimplemented;
2302         }
2303         break;
2304 #endif
2305     case TARGET_SOL_SOCKET:
2306         switch (optname) {
2307         case TARGET_SO_RCVTIMEO:
2308         {
2309                 struct timeval tv;
2310 
2311                 optname = SO_RCVTIMEO;
2312 
2313 set_timeout:
2314                 if (optlen != sizeof(struct target_timeval)) {
2315                     return -TARGET_EINVAL;
2316                 }
2317 
2318                 if (copy_from_user_timeval(&tv, optval_addr)) {
2319                     return -TARGET_EFAULT;
2320                 }
2321 
2322                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2323                                 &tv, sizeof(tv)));
2324                 return ret;
2325         }
2326         case TARGET_SO_SNDTIMEO:
2327                 optname = SO_SNDTIMEO;
2328                 goto set_timeout;
2329         case TARGET_SO_ATTACH_FILTER:
2330         {
2331                 struct target_sock_fprog *tfprog;
2332                 struct target_sock_filter *tfilter;
2333                 struct sock_fprog fprog;
2334                 struct sock_filter *filter;
2335                 int i;
2336 
2337                 if (optlen != sizeof(*tfprog)) {
2338                     return -TARGET_EINVAL;
2339                 }
2340                 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2341                     return -TARGET_EFAULT;
2342                 }
2343                 if (!lock_user_struct(VERIFY_READ, tfilter,
2344                                       tswapal(tfprog->filter), 0)) {
2345                     unlock_user_struct(tfprog, optval_addr, 1);
2346                     return -TARGET_EFAULT;
2347                 }
2348 
2349                 fprog.len = tswap16(tfprog->len);
2350                 filter = g_try_new(struct sock_filter, fprog.len);
2351                 if (filter == NULL) {
2352                     unlock_user_struct(tfilter, tfprog->filter, 1);
2353                     unlock_user_struct(tfprog, optval_addr, 1);
2354                     return -TARGET_ENOMEM;
2355                 }
2356                 for (i = 0; i < fprog.len; i++) {
2357                     filter[i].code = tswap16(tfilter[i].code);
2358                     filter[i].jt = tfilter[i].jt;
2359                     filter[i].jf = tfilter[i].jf;
2360                     filter[i].k = tswap32(tfilter[i].k);
2361                 }
2362                 fprog.filter = filter;
2363 
2364                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2365                                 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2366                 g_free(filter);
2367 
2368                 unlock_user_struct(tfilter, tfprog->filter, 1);
2369                 unlock_user_struct(tfprog, optval_addr, 1);
2370                 return ret;
2371         }
2372 	case TARGET_SO_BINDTODEVICE:
2373 	{
2374 		char *dev_ifname, *addr_ifname;
2375 
2376 		if (optlen > IFNAMSIZ - 1) {
2377 		    optlen = IFNAMSIZ - 1;
2378 		}
2379 		dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2380 		if (!dev_ifname) {
2381 		    return -TARGET_EFAULT;
2382 		}
2383 		optname = SO_BINDTODEVICE;
2384 		addr_ifname = alloca(IFNAMSIZ);
2385 		memcpy(addr_ifname, dev_ifname, optlen);
2386 		addr_ifname[optlen] = 0;
2387 		ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2388                                            addr_ifname, optlen));
2389 		unlock_user (dev_ifname, optval_addr, 0);
2390 		return ret;
2391 	}
2392         case TARGET_SO_LINGER:
2393         {
2394                 struct linger lg;
2395                 struct target_linger *tlg;
2396 
2397                 if (optlen != sizeof(struct target_linger)) {
2398                     return -TARGET_EINVAL;
2399                 }
2400                 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2401                     return -TARGET_EFAULT;
2402                 }
2403                 __get_user(lg.l_onoff, &tlg->l_onoff);
2404                 __get_user(lg.l_linger, &tlg->l_linger);
2405                 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2406                                 &lg, sizeof(lg)));
2407                 unlock_user_struct(tlg, optval_addr, 0);
2408                 return ret;
2409         }
2410             /* Options with 'int' argument.  */
2411         case TARGET_SO_DEBUG:
2412 		optname = SO_DEBUG;
2413 		break;
2414         case TARGET_SO_REUSEADDR:
2415 		optname = SO_REUSEADDR;
2416 		break;
2417 #ifdef SO_REUSEPORT
2418         case TARGET_SO_REUSEPORT:
2419                 optname = SO_REUSEPORT;
2420                 break;
2421 #endif
2422         case TARGET_SO_TYPE:
2423 		optname = SO_TYPE;
2424 		break;
2425         case TARGET_SO_ERROR:
2426 		optname = SO_ERROR;
2427 		break;
2428         case TARGET_SO_DONTROUTE:
2429 		optname = SO_DONTROUTE;
2430 		break;
2431         case TARGET_SO_BROADCAST:
2432 		optname = SO_BROADCAST;
2433 		break;
2434         case TARGET_SO_SNDBUF:
2435 		optname = SO_SNDBUF;
2436 		break;
2437         case TARGET_SO_SNDBUFFORCE:
2438                 optname = SO_SNDBUFFORCE;
2439                 break;
2440         case TARGET_SO_RCVBUF:
2441 		optname = SO_RCVBUF;
2442 		break;
2443         case TARGET_SO_RCVBUFFORCE:
2444                 optname = SO_RCVBUFFORCE;
2445                 break;
2446         case TARGET_SO_KEEPALIVE:
2447 		optname = SO_KEEPALIVE;
2448 		break;
2449         case TARGET_SO_OOBINLINE:
2450 		optname = SO_OOBINLINE;
2451 		break;
2452         case TARGET_SO_NO_CHECK:
2453 		optname = SO_NO_CHECK;
2454 		break;
2455         case TARGET_SO_PRIORITY:
2456 		optname = SO_PRIORITY;
2457 		break;
2458 #ifdef SO_BSDCOMPAT
2459         case TARGET_SO_BSDCOMPAT:
2460 		optname = SO_BSDCOMPAT;
2461 		break;
2462 #endif
2463         case TARGET_SO_PASSCRED:
2464 		optname = SO_PASSCRED;
2465 		break;
2466         case TARGET_SO_PASSSEC:
2467                 optname = SO_PASSSEC;
2468                 break;
2469         case TARGET_SO_TIMESTAMP:
2470 		optname = SO_TIMESTAMP;
2471 		break;
2472         case TARGET_SO_RCVLOWAT:
2473 		optname = SO_RCVLOWAT;
2474 		break;
2475         default:
2476             goto unimplemented;
2477         }
2478 	if (optlen < sizeof(uint32_t))
2479             return -TARGET_EINVAL;
2480 
2481 	if (get_user_u32(val, optval_addr))
2482             return -TARGET_EFAULT;
2483 	ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2484         break;
2485 #ifdef SOL_NETLINK
2486     case SOL_NETLINK:
2487         switch (optname) {
2488         case NETLINK_PKTINFO:
2489         case NETLINK_ADD_MEMBERSHIP:
2490         case NETLINK_DROP_MEMBERSHIP:
2491         case NETLINK_BROADCAST_ERROR:
2492         case NETLINK_NO_ENOBUFS:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494         case NETLINK_LISTEN_ALL_NSID:
2495         case NETLINK_CAP_ACK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498         case NETLINK_EXT_ACK:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501         case NETLINK_GET_STRICT_CHK:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2503             break;
2504         default:
2505             goto unimplemented;
2506         }
2507         val = 0;
2508         if (optlen < sizeof(uint32_t)) {
2509             return -TARGET_EINVAL;
2510         }
2511         if (get_user_u32(val, optval_addr)) {
2512             return -TARGET_EFAULT;
2513         }
2514         ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2515                                    sizeof(val)));
2516         break;
2517 #endif /* SOL_NETLINK */
2518     default:
2519     unimplemented:
2520         qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2521                       level, optname);
2522         ret = -TARGET_ENOPROTOOPT;
2523     }
2524     return ret;
2525 }
2526 
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long do_getsockopt(int sockfd, int level, int optname,
2529                               abi_ulong optval_addr, abi_ulong optlen)
2530 {
2531     abi_long ret;
2532     int len, val;
2533     socklen_t lv;
2534 
2535     switch(level) {
2536     case TARGET_SOL_SOCKET:
2537         level = SOL_SOCKET;
2538         switch (optname) {
2539         /* These don't just return a single integer */
2540         case TARGET_SO_PEERNAME:
2541             goto unimplemented;
2542         case TARGET_SO_RCVTIMEO: {
2543             struct timeval tv;
2544             socklen_t tvlen;
2545 
2546             optname = SO_RCVTIMEO;
2547 
2548 get_timeout:
2549             if (get_user_u32(len, optlen)) {
2550                 return -TARGET_EFAULT;
2551             }
2552             if (len < 0) {
2553                 return -TARGET_EINVAL;
2554             }
2555 
2556             tvlen = sizeof(tv);
2557             ret = get_errno(getsockopt(sockfd, level, optname,
2558                                        &tv, &tvlen));
2559             if (ret < 0) {
2560                 return ret;
2561             }
2562             if (len > sizeof(struct target_timeval)) {
2563                 len = sizeof(struct target_timeval);
2564             }
2565             if (copy_to_user_timeval(optval_addr, &tv)) {
2566                 return -TARGET_EFAULT;
2567             }
2568             if (put_user_u32(len, optlen)) {
2569                 return -TARGET_EFAULT;
2570             }
2571             break;
2572         }
2573         case TARGET_SO_SNDTIMEO:
2574             optname = SO_SNDTIMEO;
2575             goto get_timeout;
2576         case TARGET_SO_PEERCRED: {
2577             struct ucred cr;
2578             socklen_t crlen;
2579             struct target_ucred *tcr;
2580 
2581             if (get_user_u32(len, optlen)) {
2582                 return -TARGET_EFAULT;
2583             }
2584             if (len < 0) {
2585                 return -TARGET_EINVAL;
2586             }
2587 
2588             crlen = sizeof(cr);
2589             ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2590                                        &cr, &crlen));
2591             if (ret < 0) {
2592                 return ret;
2593             }
2594             if (len > crlen) {
2595                 len = crlen;
2596             }
2597             if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2598                 return -TARGET_EFAULT;
2599             }
2600             __put_user(cr.pid, &tcr->pid);
2601             __put_user(cr.uid, &tcr->uid);
2602             __put_user(cr.gid, &tcr->gid);
2603             unlock_user_struct(tcr, optval_addr, 1);
2604             if (put_user_u32(len, optlen)) {
2605                 return -TARGET_EFAULT;
2606             }
2607             break;
2608         }
2609         case TARGET_SO_PEERSEC: {
2610             char *name;
2611 
2612             if (get_user_u32(len, optlen)) {
2613                 return -TARGET_EFAULT;
2614             }
2615             if (len < 0) {
2616                 return -TARGET_EINVAL;
2617             }
2618             name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2619             if (!name) {
2620                 return -TARGET_EFAULT;
2621             }
2622             lv = len;
2623             ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2624                                        name, &lv));
2625             if (put_user_u32(lv, optlen)) {
2626                 ret = -TARGET_EFAULT;
2627             }
2628             unlock_user(name, optval_addr, lv);
2629             break;
2630         }
2631         case TARGET_SO_LINGER:
2632         {
2633             struct linger lg;
2634             socklen_t lglen;
2635             struct target_linger *tlg;
2636 
2637             if (get_user_u32(len, optlen)) {
2638                 return -TARGET_EFAULT;
2639             }
2640             if (len < 0) {
2641                 return -TARGET_EINVAL;
2642             }
2643 
2644             lglen = sizeof(lg);
2645             ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2646                                        &lg, &lglen));
2647             if (ret < 0) {
2648                 return ret;
2649             }
2650             if (len > lglen) {
2651                 len = lglen;
2652             }
2653             if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2654                 return -TARGET_EFAULT;
2655             }
2656             __put_user(lg.l_onoff, &tlg->l_onoff);
2657             __put_user(lg.l_linger, &tlg->l_linger);
2658             unlock_user_struct(tlg, optval_addr, 1);
2659             if (put_user_u32(len, optlen)) {
2660                 return -TARGET_EFAULT;
2661             }
2662             break;
2663         }
2664         /* Options with 'int' argument.  */
2665         case TARGET_SO_DEBUG:
2666             optname = SO_DEBUG;
2667             goto int_case;
2668         case TARGET_SO_REUSEADDR:
2669             optname = SO_REUSEADDR;
2670             goto int_case;
2671 #ifdef SO_REUSEPORT
2672         case TARGET_SO_REUSEPORT:
2673             optname = SO_REUSEPORT;
2674             goto int_case;
2675 #endif
2676         case TARGET_SO_TYPE:
2677             optname = SO_TYPE;
2678             goto int_case;
2679         case TARGET_SO_ERROR:
2680             optname = SO_ERROR;
2681             goto int_case;
2682         case TARGET_SO_DONTROUTE:
2683             optname = SO_DONTROUTE;
2684             goto int_case;
2685         case TARGET_SO_BROADCAST:
2686             optname = SO_BROADCAST;
2687             goto int_case;
2688         case TARGET_SO_SNDBUF:
2689             optname = SO_SNDBUF;
2690             goto int_case;
2691         case TARGET_SO_RCVBUF:
2692             optname = SO_RCVBUF;
2693             goto int_case;
2694         case TARGET_SO_KEEPALIVE:
2695             optname = SO_KEEPALIVE;
2696             goto int_case;
2697         case TARGET_SO_OOBINLINE:
2698             optname = SO_OOBINLINE;
2699             goto int_case;
2700         case TARGET_SO_NO_CHECK:
2701             optname = SO_NO_CHECK;
2702             goto int_case;
2703         case TARGET_SO_PRIORITY:
2704             optname = SO_PRIORITY;
2705             goto int_case;
2706 #ifdef SO_BSDCOMPAT
2707         case TARGET_SO_BSDCOMPAT:
2708             optname = SO_BSDCOMPAT;
2709             goto int_case;
2710 #endif
2711         case TARGET_SO_PASSCRED:
2712             optname = SO_PASSCRED;
2713             goto int_case;
2714         case TARGET_SO_TIMESTAMP:
2715             optname = SO_TIMESTAMP;
2716             goto int_case;
2717         case TARGET_SO_RCVLOWAT:
2718             optname = SO_RCVLOWAT;
2719             goto int_case;
2720         case TARGET_SO_ACCEPTCONN:
2721             optname = SO_ACCEPTCONN;
2722             goto int_case;
2723         case TARGET_SO_PROTOCOL:
2724             optname = SO_PROTOCOL;
2725             goto int_case;
2726         case TARGET_SO_DOMAIN:
2727             optname = SO_DOMAIN;
2728             goto int_case;
2729         default:
2730             goto int_case;
2731         }
2732         break;
2733     case SOL_TCP:
2734     case SOL_UDP:
2735         /* TCP and UDP options all take an 'int' value.  */
2736     int_case:
2737         if (get_user_u32(len, optlen))
2738             return -TARGET_EFAULT;
2739         if (len < 0)
2740             return -TARGET_EINVAL;
2741         lv = sizeof(lv);
2742         ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2743         if (ret < 0)
2744             return ret;
2745         switch (optname) {
2746         case SO_TYPE:
2747             val = host_to_target_sock_type(val);
2748             break;
2749         case SO_ERROR:
2750             val = host_to_target_errno(val);
2751             break;
2752         }
2753         if (len > lv)
2754             len = lv;
2755         if (len == 4) {
2756             if (put_user_u32(val, optval_addr))
2757                 return -TARGET_EFAULT;
2758         } else {
2759             if (put_user_u8(val, optval_addr))
2760                 return -TARGET_EFAULT;
2761         }
2762         if (put_user_u32(len, optlen))
2763             return -TARGET_EFAULT;
2764         break;
2765     case SOL_IP:
2766         switch(optname) {
2767         case IP_TOS:
2768         case IP_TTL:
2769         case IP_HDRINCL:
2770         case IP_ROUTER_ALERT:
2771         case IP_RECVOPTS:
2772         case IP_RETOPTS:
2773         case IP_PKTINFO:
2774         case IP_MTU_DISCOVER:
2775         case IP_RECVERR:
2776         case IP_RECVTOS:
2777 #ifdef IP_FREEBIND
2778         case IP_FREEBIND:
2779 #endif
2780         case IP_MULTICAST_TTL:
2781         case IP_MULTICAST_LOOP:
2782             if (get_user_u32(len, optlen))
2783                 return -TARGET_EFAULT;
2784             if (len < 0)
2785                 return -TARGET_EINVAL;
2786             lv = sizeof(lv);
2787             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2788             if (ret < 0)
2789                 return ret;
2790             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2791                 len = 1;
2792                 if (put_user_u32(len, optlen)
2793                     || put_user_u8(val, optval_addr))
2794                     return -TARGET_EFAULT;
2795             } else {
2796                 if (len > sizeof(int))
2797                     len = sizeof(int);
2798                 if (put_user_u32(len, optlen)
2799                     || put_user_u32(val, optval_addr))
2800                     return -TARGET_EFAULT;
2801             }
2802             break;
2803         default:
2804             ret = -TARGET_ENOPROTOOPT;
2805             break;
2806         }
2807         break;
2808     case SOL_IPV6:
2809         switch (optname) {
2810         case IPV6_MTU_DISCOVER:
2811         case IPV6_MTU:
2812         case IPV6_V6ONLY:
2813         case IPV6_RECVPKTINFO:
2814         case IPV6_UNICAST_HOPS:
2815         case IPV6_MULTICAST_HOPS:
2816         case IPV6_MULTICAST_LOOP:
2817         case IPV6_RECVERR:
2818         case IPV6_RECVHOPLIMIT:
2819         case IPV6_2292HOPLIMIT:
2820         case IPV6_CHECKSUM:
2821         case IPV6_ADDRFORM:
2822         case IPV6_2292PKTINFO:
2823         case IPV6_RECVTCLASS:
2824         case IPV6_RECVRTHDR:
2825         case IPV6_2292RTHDR:
2826         case IPV6_RECVHOPOPTS:
2827         case IPV6_2292HOPOPTS:
2828         case IPV6_RECVDSTOPTS:
2829         case IPV6_2292DSTOPTS:
2830         case IPV6_TCLASS:
2831         case IPV6_ADDR_PREFERENCES:
2832 #ifdef IPV6_RECVPATHMTU
2833         case IPV6_RECVPATHMTU:
2834 #endif
2835 #ifdef IPV6_TRANSPARENT
2836         case IPV6_TRANSPARENT:
2837 #endif
2838 #ifdef IPV6_FREEBIND
2839         case IPV6_FREEBIND:
2840 #endif
2841 #ifdef IPV6_RECVORIGDSTADDR
2842         case IPV6_RECVORIGDSTADDR:
2843 #endif
2844             if (get_user_u32(len, optlen))
2845                 return -TARGET_EFAULT;
2846             if (len < 0)
2847                 return -TARGET_EINVAL;
2848             lv = sizeof(lv);
2849             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2850             if (ret < 0)
2851                 return ret;
2852             if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2853                 len = 1;
2854                 if (put_user_u32(len, optlen)
2855                     || put_user_u8(val, optval_addr))
2856                     return -TARGET_EFAULT;
2857             } else {
2858                 if (len > sizeof(int))
2859                     len = sizeof(int);
2860                 if (put_user_u32(len, optlen)
2861                     || put_user_u32(val, optval_addr))
2862                     return -TARGET_EFAULT;
2863             }
2864             break;
2865         default:
2866             ret = -TARGET_ENOPROTOOPT;
2867             break;
2868         }
2869         break;
2870 #ifdef SOL_NETLINK
2871     case SOL_NETLINK:
2872         switch (optname) {
2873         case NETLINK_PKTINFO:
2874         case NETLINK_BROADCAST_ERROR:
2875         case NETLINK_NO_ENOBUFS:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877         case NETLINK_LISTEN_ALL_NSID:
2878         case NETLINK_CAP_ACK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881         case NETLINK_EXT_ACK:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884         case NETLINK_GET_STRICT_CHK:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886             if (get_user_u32(len, optlen)) {
2887                 return -TARGET_EFAULT;
2888             }
2889             if (len != sizeof(val)) {
2890                 return -TARGET_EINVAL;
2891             }
2892             lv = len;
2893             ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2894             if (ret < 0) {
2895                 return ret;
2896             }
2897             if (put_user_u32(lv, optlen)
2898                 || put_user_u32(val, optval_addr)) {
2899                 return -TARGET_EFAULT;
2900             }
2901             break;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903         case NETLINK_LIST_MEMBERSHIPS:
2904         {
2905             uint32_t *results;
2906             int i;
2907             if (get_user_u32(len, optlen)) {
2908                 return -TARGET_EFAULT;
2909             }
2910             if (len < 0) {
2911                 return -TARGET_EINVAL;
2912             }
2913             results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2914             if (!results && len > 0) {
2915                 return -TARGET_EFAULT;
2916             }
2917             lv = len;
2918             ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2919             if (ret < 0) {
2920                 unlock_user(results, optval_addr, 0);
2921                 return ret;
2922             }
2923             /* swap host endianness to target endianness. */
2924             for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2925                 results[i] = tswap32(results[i]);
2926             }
2927             if (put_user_u32(lv, optlen)) {
2928                 return -TARGET_EFAULT;
2929             }
2930             unlock_user(results, optval_addr, 0);
2931             break;
2932         }
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2934         default:
2935             goto unimplemented;
2936         }
2937         break;
2938 #endif /* SOL_NETLINK */
2939     default:
2940     unimplemented:
2941         qemu_log_mask(LOG_UNIMP,
2942                       "getsockopt level=%d optname=%d not yet supported\n",
2943                       level, optname);
2944         ret = -TARGET_EOPNOTSUPP;
2945         break;
2946     }
2947     return ret;
2948 }
2949 
2950 /* Convert target low/high pair representing file offset into the host
2951  * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952  * as the kernel doesn't handle them either.
2953  */
2954 static void target_to_host_low_high(abi_ulong tlow,
2955                                     abi_ulong thigh,
2956                                     unsigned long *hlow,
2957                                     unsigned long *hhigh)
2958 {
2959     uint64_t off = tlow |
2960         ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2961         TARGET_LONG_BITS / 2;
2962 
2963     *hlow = off;
2964     *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2965 }
2966 
2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2968                                 abi_ulong count, int copy)
2969 {
2970     struct target_iovec *target_vec;
2971     struct iovec *vec;
2972     abi_ulong total_len, max_len;
2973     int i;
2974     int err = 0;
2975     bool bad_address = false;
2976 
2977     if (count == 0) {
2978         errno = 0;
2979         return NULL;
2980     }
2981     if (count > IOV_MAX) {
2982         errno = EINVAL;
2983         return NULL;
2984     }
2985 
2986     vec = g_try_new0(struct iovec, count);
2987     if (vec == NULL) {
2988         errno = ENOMEM;
2989         return NULL;
2990     }
2991 
2992     target_vec = lock_user(VERIFY_READ, target_addr,
2993                            count * sizeof(struct target_iovec), 1);
2994     if (target_vec == NULL) {
2995         err = EFAULT;
2996         goto fail2;
2997     }
2998 
2999     /* ??? If host page size > target page size, this will result in a
3000        value larger than what we can actually support.  */
3001     max_len = 0x7fffffff & TARGET_PAGE_MASK;
3002     total_len = 0;
3003 
3004     for (i = 0; i < count; i++) {
3005         abi_ulong base = tswapal(target_vec[i].iov_base);
3006         abi_long len = tswapal(target_vec[i].iov_len);
3007 
3008         if (len < 0) {
3009             err = EINVAL;
3010             goto fail;
3011         } else if (len == 0) {
3012             /* Zero length pointer is ignored.  */
3013             vec[i].iov_base = 0;
3014         } else {
3015             vec[i].iov_base = lock_user(type, base, len, copy);
3016             /* If the first buffer pointer is bad, this is a fault.  But
3017              * subsequent bad buffers will result in a partial write; this
3018              * is realized by filling the vector with null pointers and
3019              * zero lengths. */
3020             if (!vec[i].iov_base) {
3021                 if (i == 0) {
3022                     err = EFAULT;
3023                     goto fail;
3024                 } else {
3025                     bad_address = true;
3026                 }
3027             }
3028             if (bad_address) {
3029                 len = 0;
3030             }
3031             if (len > max_len - total_len) {
3032                 len = max_len - total_len;
3033             }
3034         }
3035         vec[i].iov_len = len;
3036         total_len += len;
3037     }
3038 
3039     unlock_user(target_vec, target_addr, 0);
3040     return vec;
3041 
3042  fail:
3043     while (--i >= 0) {
3044         if (tswapal(target_vec[i].iov_len) > 0) {
3045             unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3046         }
3047     }
3048     unlock_user(target_vec, target_addr, 0);
3049  fail2:
3050     g_free(vec);
3051     errno = err;
3052     return NULL;
3053 }
3054 
3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3056                          abi_ulong count, int copy)
3057 {
3058     struct target_iovec *target_vec;
3059     int i;
3060 
3061     target_vec = lock_user(VERIFY_READ, target_addr,
3062                            count * sizeof(struct target_iovec), 1);
3063     if (target_vec) {
3064         for (i = 0; i < count; i++) {
3065             abi_ulong base = tswapal(target_vec[i].iov_base);
3066             abi_long len = tswapal(target_vec[i].iov_len);
3067             if (len < 0) {
3068                 break;
3069             }
3070             unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3071         }
3072         unlock_user(target_vec, target_addr, 0);
3073     }
3074 
3075     g_free(vec);
3076 }
3077 
3078 static inline int target_to_host_sock_type(int *type)
3079 {
3080     int host_type = 0;
3081     int target_type = *type;
3082 
3083     switch (target_type & TARGET_SOCK_TYPE_MASK) {
3084     case TARGET_SOCK_DGRAM:
3085         host_type = SOCK_DGRAM;
3086         break;
3087     case TARGET_SOCK_STREAM:
3088         host_type = SOCK_STREAM;
3089         break;
3090     default:
3091         host_type = target_type & TARGET_SOCK_TYPE_MASK;
3092         break;
3093     }
3094     if (target_type & TARGET_SOCK_CLOEXEC) {
3095 #if defined(SOCK_CLOEXEC)
3096         host_type |= SOCK_CLOEXEC;
3097 #else
3098         return -TARGET_EINVAL;
3099 #endif
3100     }
3101     if (target_type & TARGET_SOCK_NONBLOCK) {
3102 #if defined(SOCK_NONBLOCK)
3103         host_type |= SOCK_NONBLOCK;
3104 #elif !defined(O_NONBLOCK)
3105         return -TARGET_EINVAL;
3106 #endif
3107     }
3108     *type = host_type;
3109     return 0;
3110 }
3111 
3112 /* Try to emulate socket type flags after socket creation.  */
3113 static int sock_flags_fixup(int fd, int target_type)
3114 {
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116     if (target_type & TARGET_SOCK_NONBLOCK) {
3117         int flags = fcntl(fd, F_GETFL);
3118         if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3119             close(fd);
3120             return -TARGET_EINVAL;
3121         }
3122     }
3123 #endif
3124     return fd;
3125 }
3126 
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long do_socket(int domain, int type, int protocol)
3129 {
3130     int target_type = type;
3131     int ret;
3132 
3133     ret = target_to_host_sock_type(&type);
3134     if (ret) {
3135         return ret;
3136     }
3137 
3138     if (domain == PF_NETLINK && !(
3139 #ifdef CONFIG_RTNETLINK
3140          protocol == NETLINK_ROUTE ||
3141 #endif
3142          protocol == NETLINK_KOBJECT_UEVENT ||
3143          protocol == NETLINK_AUDIT)) {
3144         return -TARGET_EPROTONOSUPPORT;
3145     }
3146 
3147     if (domain == AF_PACKET ||
3148         (domain == AF_INET && type == SOCK_PACKET)) {
3149         protocol = tswap16(protocol);
3150     }
3151 
3152     ret = get_errno(socket(domain, type, protocol));
3153     if (ret >= 0) {
3154         ret = sock_flags_fixup(ret, target_type);
3155         if (type == SOCK_PACKET) {
3156             /* Manage an obsolete case :
3157              * if socket type is SOCK_PACKET, bind by name
3158              */
3159             fd_trans_register(ret, &target_packet_trans);
3160         } else if (domain == PF_NETLINK) {
3161             switch (protocol) {
3162 #ifdef CONFIG_RTNETLINK
3163             case NETLINK_ROUTE:
3164                 fd_trans_register(ret, &target_netlink_route_trans);
3165                 break;
3166 #endif
3167             case NETLINK_KOBJECT_UEVENT:
3168                 /* nothing to do: messages are strings */
3169                 break;
3170             case NETLINK_AUDIT:
3171                 fd_trans_register(ret, &target_netlink_audit_trans);
3172                 break;
3173             default:
3174                 g_assert_not_reached();
3175             }
3176         }
3177     }
3178     return ret;
3179 }
3180 
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3183                         socklen_t addrlen)
3184 {
3185     void *addr;
3186     abi_long ret;
3187 
3188     if ((int)addrlen < 0) {
3189         return -TARGET_EINVAL;
3190     }
3191 
3192     addr = alloca(addrlen+1);
3193 
3194     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3195     if (ret)
3196         return ret;
3197 
3198     return get_errno(bind(sockfd, addr, addrlen));
3199 }
3200 
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3203                            socklen_t addrlen)
3204 {
3205     void *addr;
3206     abi_long ret;
3207 
3208     if ((int)addrlen < 0) {
3209         return -TARGET_EINVAL;
3210     }
3211 
3212     addr = alloca(addrlen+1);
3213 
3214     ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215     if (ret)
3216         return ret;
3217 
3218     return get_errno(safe_connect(sockfd, addr, addrlen));
3219 }
3220 
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3223                                       int flags, int send)
3224 {
3225     abi_long ret, len;
3226     struct msghdr msg;
3227     abi_ulong count;
3228     struct iovec *vec;
3229     abi_ulong target_vec;
3230 
3231     if (msgp->msg_name) {
3232         msg.msg_namelen = tswap32(msgp->msg_namelen);
3233         msg.msg_name = alloca(msg.msg_namelen+1);
3234         ret = target_to_host_sockaddr(fd, msg.msg_name,
3235                                       tswapal(msgp->msg_name),
3236                                       msg.msg_namelen);
3237         if (ret == -TARGET_EFAULT) {
3238             /* For connected sockets msg_name and msg_namelen must
3239              * be ignored, so returning EFAULT immediately is wrong.
3240              * Instead, pass a bad msg_name to the host kernel, and
3241              * let it decide whether to return EFAULT or not.
3242              */
3243             msg.msg_name = (void *)-1;
3244         } else if (ret) {
3245             goto out2;
3246         }
3247     } else {
3248         msg.msg_name = NULL;
3249         msg.msg_namelen = 0;
3250     }
3251     msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3252     msg.msg_control = alloca(msg.msg_controllen);
3253     memset(msg.msg_control, 0, msg.msg_controllen);
3254 
3255     msg.msg_flags = tswap32(msgp->msg_flags);
3256 
3257     count = tswapal(msgp->msg_iovlen);
3258     target_vec = tswapal(msgp->msg_iov);
3259 
3260     if (count > IOV_MAX) {
3261         /* sendrcvmsg returns a different errno for this condition than
3262          * readv/writev, so we must catch it here before lock_iovec() does.
3263          */
3264         ret = -TARGET_EMSGSIZE;
3265         goto out2;
3266     }
3267 
3268     vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3269                      target_vec, count, send);
3270     if (vec == NULL) {
3271         ret = -host_to_target_errno(errno);
3272         /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3273         if (!send || ret) {
3274             goto out2;
3275         }
3276     }
3277     msg.msg_iovlen = count;
3278     msg.msg_iov = vec;
3279 
3280     if (send) {
3281         if (fd_trans_target_to_host_data(fd)) {
3282             void *host_msg;
3283 
3284             host_msg = g_malloc(msg.msg_iov->iov_len);
3285             memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3286             ret = fd_trans_target_to_host_data(fd)(host_msg,
3287                                                    msg.msg_iov->iov_len);
3288             if (ret >= 0) {
3289                 msg.msg_iov->iov_base = host_msg;
3290                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291             }
3292             g_free(host_msg);
3293         } else {
3294             ret = target_to_host_cmsg(&msg, msgp);
3295             if (ret == 0) {
3296                 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3297             }
3298         }
3299     } else {
3300         ret = get_errno(safe_recvmsg(fd, &msg, flags));
3301         if (!is_error(ret)) {
3302             len = ret;
3303             if (fd_trans_host_to_target_data(fd)) {
3304                 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3305                                                MIN(msg.msg_iov->iov_len, len));
3306             }
3307             if (!is_error(ret)) {
3308                 ret = host_to_target_cmsg(msgp, &msg);
3309             }
3310             if (!is_error(ret)) {
3311                 msgp->msg_namelen = tswap32(msg.msg_namelen);
3312                 msgp->msg_flags = tswap32(msg.msg_flags);
3313                 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3314                     ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3315                                     msg.msg_name, msg.msg_namelen);
3316                     if (ret) {
3317                         goto out;
3318                     }
3319                 }
3320 
3321                 ret = len;
3322             }
3323         }
3324     }
3325 
3326 out:
3327     if (vec) {
3328         unlock_iovec(vec, target_vec, count, !send);
3329     }
3330 out2:
3331     return ret;
3332 }
3333 
3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3335                                int flags, int send)
3336 {
3337     abi_long ret;
3338     struct target_msghdr *msgp;
3339 
3340     if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3341                           msgp,
3342                           target_msg,
3343                           send ? 1 : 0)) {
3344         return -TARGET_EFAULT;
3345     }
3346     ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3347     unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3348     return ret;
3349 }
3350 
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352  * so it might not have this *mmsg-specific flag either.
3353  */
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3356 #endif
3357 
3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3359                                 unsigned int vlen, unsigned int flags,
3360                                 int send)
3361 {
3362     struct target_mmsghdr *mmsgp;
3363     abi_long ret = 0;
3364     int i;
3365 
3366     if (vlen > UIO_MAXIOV) {
3367         vlen = UIO_MAXIOV;
3368     }
3369 
3370     mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3371     if (!mmsgp) {
3372         return -TARGET_EFAULT;
3373     }
3374 
3375     for (i = 0; i < vlen; i++) {
3376         ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3377         if (is_error(ret)) {
3378             break;
3379         }
3380         mmsgp[i].msg_len = tswap32(ret);
3381         /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382         if (flags & MSG_WAITFORONE) {
3383             flags |= MSG_DONTWAIT;
3384         }
3385     }
3386 
3387     unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3388 
3389     /* Return number of datagrams sent if we sent any at all;
3390      * otherwise return the error.
3391      */
3392     if (i) {
3393         return i;
3394     }
3395     return ret;
3396 }
3397 
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long do_accept4(int fd, abi_ulong target_addr,
3400                            abi_ulong target_addrlen_addr, int flags)
3401 {
3402     socklen_t addrlen, ret_addrlen;
3403     void *addr;
3404     abi_long ret;
3405     int host_flags;
3406 
3407     if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3408         return -TARGET_EINVAL;
3409     }
3410 
3411     host_flags = 0;
3412     if (flags & TARGET_SOCK_NONBLOCK) {
3413         host_flags |= SOCK_NONBLOCK;
3414     }
3415     if (flags & TARGET_SOCK_CLOEXEC) {
3416         host_flags |= SOCK_CLOEXEC;
3417     }
3418 
3419     if (target_addr == 0) {
3420         return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3421     }
3422 
3423     /* linux returns EFAULT if addrlen pointer is invalid */
3424     if (get_user_u32(addrlen, target_addrlen_addr))
3425         return -TARGET_EFAULT;
3426 
3427     if ((int)addrlen < 0) {
3428         return -TARGET_EINVAL;
3429     }
3430 
3431     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3432         return -TARGET_EFAULT;
3433     }
3434 
3435     addr = alloca(addrlen);
3436 
3437     ret_addrlen = addrlen;
3438     ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3439     if (!is_error(ret)) {
3440         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3441         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3442             ret = -TARGET_EFAULT;
3443         }
3444     }
3445     return ret;
3446 }
3447 
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3450                                abi_ulong target_addrlen_addr)
3451 {
3452     socklen_t addrlen, ret_addrlen;
3453     void *addr;
3454     abi_long ret;
3455 
3456     if (get_user_u32(addrlen, target_addrlen_addr))
3457         return -TARGET_EFAULT;
3458 
3459     if ((int)addrlen < 0) {
3460         return -TARGET_EINVAL;
3461     }
3462 
3463     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3464         return -TARGET_EFAULT;
3465     }
3466 
3467     addr = alloca(addrlen);
3468 
3469     ret_addrlen = addrlen;
3470     ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3471     if (!is_error(ret)) {
3472         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3473         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3474             ret = -TARGET_EFAULT;
3475         }
3476     }
3477     return ret;
3478 }
3479 
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3482                                abi_ulong target_addrlen_addr)
3483 {
3484     socklen_t addrlen, ret_addrlen;
3485     void *addr;
3486     abi_long ret;
3487 
3488     if (get_user_u32(addrlen, target_addrlen_addr))
3489         return -TARGET_EFAULT;
3490 
3491     if ((int)addrlen < 0) {
3492         return -TARGET_EINVAL;
3493     }
3494 
3495     if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3496         return -TARGET_EFAULT;
3497     }
3498 
3499     addr = alloca(addrlen);
3500 
3501     ret_addrlen = addrlen;
3502     ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3503     if (!is_error(ret)) {
3504         host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3505         if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3506             ret = -TARGET_EFAULT;
3507         }
3508     }
3509     return ret;
3510 }
3511 
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long do_socketpair(int domain, int type, int protocol,
3514                               abi_ulong target_tab_addr)
3515 {
3516     int tab[2];
3517     abi_long ret;
3518 
3519     target_to_host_sock_type(&type);
3520 
3521     ret = get_errno(socketpair(domain, type, protocol, tab));
3522     if (!is_error(ret)) {
3523         if (put_user_s32(tab[0], target_tab_addr)
3524             || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3525             ret = -TARGET_EFAULT;
3526     }
3527     return ret;
3528 }
3529 
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3532                           abi_ulong target_addr, socklen_t addrlen)
3533 {
3534     void *addr;
3535     void *host_msg;
3536     void *copy_msg = NULL;
3537     abi_long ret;
3538 
3539     if ((int)addrlen < 0) {
3540         return -TARGET_EINVAL;
3541     }
3542 
3543     host_msg = lock_user(VERIFY_READ, msg, len, 1);
3544     if (!host_msg)
3545         return -TARGET_EFAULT;
3546     if (fd_trans_target_to_host_data(fd)) {
3547         copy_msg = host_msg;
3548         host_msg = g_malloc(len);
3549         memcpy(host_msg, copy_msg, len);
3550         ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3551         if (ret < 0) {
3552             goto fail;
3553         }
3554     }
3555     if (target_addr) {
3556         addr = alloca(addrlen+1);
3557         ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3558         if (ret) {
3559             goto fail;
3560         }
3561         ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3562     } else {
3563         ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3564     }
3565 fail:
3566     if (copy_msg) {
3567         g_free(host_msg);
3568         host_msg = copy_msg;
3569     }
3570     unlock_user(host_msg, msg, 0);
3571     return ret;
3572 }
3573 
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3576                             abi_ulong target_addr,
3577                             abi_ulong target_addrlen)
3578 {
3579     socklen_t addrlen, ret_addrlen;
3580     void *addr;
3581     void *host_msg;
3582     abi_long ret;
3583 
3584     if (!msg) {
3585         host_msg = NULL;
3586     } else {
3587         host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3588         if (!host_msg) {
3589             return -TARGET_EFAULT;
3590         }
3591     }
3592     if (target_addr) {
3593         if (get_user_u32(addrlen, target_addrlen)) {
3594             ret = -TARGET_EFAULT;
3595             goto fail;
3596         }
3597         if ((int)addrlen < 0) {
3598             ret = -TARGET_EINVAL;
3599             goto fail;
3600         }
3601         addr = alloca(addrlen);
3602         ret_addrlen = addrlen;
3603         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3604                                       addr, &ret_addrlen));
3605     } else {
3606         addr = NULL; /* To keep compiler quiet.  */
3607         addrlen = 0; /* To keep compiler quiet.  */
3608         ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3609     }
3610     if (!is_error(ret)) {
3611         if (fd_trans_host_to_target_data(fd)) {
3612             abi_long trans;
3613             trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3614             if (is_error(trans)) {
3615                 ret = trans;
3616                 goto fail;
3617             }
3618         }
3619         if (target_addr) {
3620             host_to_target_sockaddr(target_addr, addr,
3621                                     MIN(addrlen, ret_addrlen));
3622             if (put_user_u32(ret_addrlen, target_addrlen)) {
3623                 ret = -TARGET_EFAULT;
3624                 goto fail;
3625             }
3626         }
3627         unlock_user(host_msg, msg, len);
3628     } else {
3629 fail:
3630         unlock_user(host_msg, msg, 0);
3631     }
3632     return ret;
3633 }
3634 
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long do_socketcall(int num, abi_ulong vptr)
3638 {
3639     static const unsigned nargs[] = { /* number of arguments per operation */
3640         [TARGET_SYS_SOCKET] = 3,      /* domain, type, protocol */
3641         [TARGET_SYS_BIND] = 3,        /* fd, addr, addrlen */
3642         [TARGET_SYS_CONNECT] = 3,     /* fd, addr, addrlen */
3643         [TARGET_SYS_LISTEN] = 2,      /* fd, backlog */
3644         [TARGET_SYS_ACCEPT] = 3,      /* fd, addr, addrlen */
3645         [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3646         [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3647         [TARGET_SYS_SOCKETPAIR] = 4,  /* domain, type, protocol, tab */
3648         [TARGET_SYS_SEND] = 4,        /* fd, msg, len, flags */
3649         [TARGET_SYS_RECV] = 4,        /* fd, msg, len, flags */
3650         [TARGET_SYS_SENDTO] = 6,      /* fd, msg, len, flags, addr, addrlen */
3651         [TARGET_SYS_RECVFROM] = 6,    /* fd, msg, len, flags, addr, addrlen */
3652         [TARGET_SYS_SHUTDOWN] = 2,    /* fd, how */
3653         [TARGET_SYS_SETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3654         [TARGET_SYS_GETSOCKOPT] = 5,  /* fd, level, optname, optval, optlen */
3655         [TARGET_SYS_SENDMSG] = 3,     /* fd, msg, flags */
3656         [TARGET_SYS_RECVMSG] = 3,     /* fd, msg, flags */
3657         [TARGET_SYS_ACCEPT4] = 4,     /* fd, addr, addrlen, flags */
3658         [TARGET_SYS_RECVMMSG] = 4,    /* fd, msgvec, vlen, flags */
3659         [TARGET_SYS_SENDMMSG] = 4,    /* fd, msgvec, vlen, flags */
3660     };
3661     abi_long a[6]; /* max 6 args */
3662     unsigned i;
3663 
3664     /* check the range of the first argument num */
3665     /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666     if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3667         return -TARGET_EINVAL;
3668     }
3669     /* ensure we have space for args */
3670     if (nargs[num] > ARRAY_SIZE(a)) {
3671         return -TARGET_EINVAL;
3672     }
3673     /* collect the arguments in a[] according to nargs[] */
3674     for (i = 0; i < nargs[num]; ++i) {
3675         if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3676             return -TARGET_EFAULT;
3677         }
3678     }
3679     /* now when we have the args, invoke the appropriate underlying function */
3680     switch (num) {
3681     case TARGET_SYS_SOCKET: /* domain, type, protocol */
3682         return do_socket(a[0], a[1], a[2]);
3683     case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3684         return do_bind(a[0], a[1], a[2]);
3685     case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3686         return do_connect(a[0], a[1], a[2]);
3687     case TARGET_SYS_LISTEN: /* sockfd, backlog */
3688         return get_errno(listen(a[0], a[1]));
3689     case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3690         return do_accept4(a[0], a[1], a[2], 0);
3691     case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3692         return do_getsockname(a[0], a[1], a[2]);
3693     case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3694         return do_getpeername(a[0], a[1], a[2]);
3695     case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3696         return do_socketpair(a[0], a[1], a[2], a[3]);
3697     case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3698         return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3699     case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3700         return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3701     case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3702         return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3703     case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3704         return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3705     case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3706         return get_errno(shutdown(a[0], a[1]));
3707     case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3708         return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3709     case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3710         return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3711     case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3712         return do_sendrecvmsg(a[0], a[1], a[2], 1);
3713     case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3714         return do_sendrecvmsg(a[0], a[1], a[2], 0);
3715     case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3716         return do_accept4(a[0], a[1], a[2], a[3]);
3717     case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3718         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3719     case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3720         return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3721     default:
3722         qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3723         return -TARGET_EINVAL;
3724     }
3725 }
3726 #endif
3727 
3728 #ifndef TARGET_SEMID64_DS
3729 /* asm-generic version of this struct */
3730 struct target_semid64_ds
3731 {
3732   struct target_ipc_perm sem_perm;
3733   abi_ulong sem_otime;
3734 #if TARGET_ABI_BITS == 32
3735   abi_ulong __unused1;
3736 #endif
3737   abi_ulong sem_ctime;
3738 #if TARGET_ABI_BITS == 32
3739   abi_ulong __unused2;
3740 #endif
3741   abi_ulong sem_nsems;
3742   abi_ulong __unused3;
3743   abi_ulong __unused4;
3744 };
3745 #endif
3746 
3747 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3748                                                abi_ulong target_addr)
3749 {
3750     struct target_ipc_perm *target_ip;
3751     struct target_semid64_ds *target_sd;
3752 
3753     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3754         return -TARGET_EFAULT;
3755     target_ip = &(target_sd->sem_perm);
3756     host_ip->__key = tswap32(target_ip->__key);
3757     host_ip->uid = tswap32(target_ip->uid);
3758     host_ip->gid = tswap32(target_ip->gid);
3759     host_ip->cuid = tswap32(target_ip->cuid);
3760     host_ip->cgid = tswap32(target_ip->cgid);
3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3762     host_ip->mode = tswap32(target_ip->mode);
3763 #else
3764     host_ip->mode = tswap16(target_ip->mode);
3765 #endif
3766 #if defined(TARGET_PPC)
3767     host_ip->__seq = tswap32(target_ip->__seq);
3768 #else
3769     host_ip->__seq = tswap16(target_ip->__seq);
3770 #endif
3771     unlock_user_struct(target_sd, target_addr, 0);
3772     return 0;
3773 }
3774 
3775 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3776                                                struct ipc_perm *host_ip)
3777 {
3778     struct target_ipc_perm *target_ip;
3779     struct target_semid64_ds *target_sd;
3780 
3781     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3782         return -TARGET_EFAULT;
3783     target_ip = &(target_sd->sem_perm);
3784     target_ip->__key = tswap32(host_ip->__key);
3785     target_ip->uid = tswap32(host_ip->uid);
3786     target_ip->gid = tswap32(host_ip->gid);
3787     target_ip->cuid = tswap32(host_ip->cuid);
3788     target_ip->cgid = tswap32(host_ip->cgid);
3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3790     target_ip->mode = tswap32(host_ip->mode);
3791 #else
3792     target_ip->mode = tswap16(host_ip->mode);
3793 #endif
3794 #if defined(TARGET_PPC)
3795     target_ip->__seq = tswap32(host_ip->__seq);
3796 #else
3797     target_ip->__seq = tswap16(host_ip->__seq);
3798 #endif
3799     unlock_user_struct(target_sd, target_addr, 1);
3800     return 0;
3801 }
3802 
3803 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3804                                                abi_ulong target_addr)
3805 {
3806     struct target_semid64_ds *target_sd;
3807 
3808     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3809         return -TARGET_EFAULT;
3810     if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3811         return -TARGET_EFAULT;
3812     host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3813     host_sd->sem_otime = tswapal(target_sd->sem_otime);
3814     host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3815     unlock_user_struct(target_sd, target_addr, 0);
3816     return 0;
3817 }
3818 
3819 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3820                                                struct semid_ds *host_sd)
3821 {
3822     struct target_semid64_ds *target_sd;
3823 
3824     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3825         return -TARGET_EFAULT;
3826     if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3827         return -TARGET_EFAULT;
3828     target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3829     target_sd->sem_otime = tswapal(host_sd->sem_otime);
3830     target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3831     unlock_user_struct(target_sd, target_addr, 1);
3832     return 0;
3833 }
3834 
3835 struct target_seminfo {
3836     int semmap;
3837     int semmni;
3838     int semmns;
3839     int semmnu;
3840     int semmsl;
3841     int semopm;
3842     int semume;
3843     int semusz;
3844     int semvmx;
3845     int semaem;
3846 };
3847 
3848 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3849                                               struct seminfo *host_seminfo)
3850 {
3851     struct target_seminfo *target_seminfo;
3852     if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3853         return -TARGET_EFAULT;
3854     __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3855     __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3856     __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3857     __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3858     __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3859     __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3860     __put_user(host_seminfo->semume, &target_seminfo->semume);
3861     __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3862     __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3863     __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3864     unlock_user_struct(target_seminfo, target_addr, 1);
3865     return 0;
3866 }
3867 
3868 union semun {
3869 	int val;
3870 	struct semid_ds *buf;
3871 	unsigned short *array;
3872 	struct seminfo *__buf;
3873 };
3874 
3875 union target_semun {
3876 	int val;
3877 	abi_ulong buf;
3878 	abi_ulong array;
3879 	abi_ulong __buf;
3880 };
3881 
3882 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3883                                                abi_ulong target_addr)
3884 {
3885     int nsems;
3886     unsigned short *array;
3887     union semun semun;
3888     struct semid_ds semid_ds;
3889     int i, ret;
3890 
3891     semun.buf = &semid_ds;
3892 
3893     ret = semctl(semid, 0, IPC_STAT, semun);
3894     if (ret == -1)
3895         return get_errno(ret);
3896 
3897     nsems = semid_ds.sem_nsems;
3898 
3899     *host_array = g_try_new(unsigned short, nsems);
3900     if (!*host_array) {
3901         return -TARGET_ENOMEM;
3902     }
3903     array = lock_user(VERIFY_READ, target_addr,
3904                       nsems*sizeof(unsigned short), 1);
3905     if (!array) {
3906         g_free(*host_array);
3907         return -TARGET_EFAULT;
3908     }
3909 
3910     for(i=0; i<nsems; i++) {
3911         __get_user((*host_array)[i], &array[i]);
3912     }
3913     unlock_user(array, target_addr, 0);
3914 
3915     return 0;
3916 }
3917 
3918 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3919                                                unsigned short **host_array)
3920 {
3921     int nsems;
3922     unsigned short *array;
3923     union semun semun;
3924     struct semid_ds semid_ds;
3925     int i, ret;
3926 
3927     semun.buf = &semid_ds;
3928 
3929     ret = semctl(semid, 0, IPC_STAT, semun);
3930     if (ret == -1)
3931         return get_errno(ret);
3932 
3933     nsems = semid_ds.sem_nsems;
3934 
3935     array = lock_user(VERIFY_WRITE, target_addr,
3936                       nsems*sizeof(unsigned short), 0);
3937     if (!array)
3938         return -TARGET_EFAULT;
3939 
3940     for(i=0; i<nsems; i++) {
3941         __put_user((*host_array)[i], &array[i]);
3942     }
3943     g_free(*host_array);
3944     unlock_user(array, target_addr, 1);
3945 
3946     return 0;
3947 }
3948 
3949 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3950                                  abi_ulong target_arg)
3951 {
3952     union target_semun target_su = { .buf = target_arg };
3953     union semun arg;
3954     struct semid_ds dsarg;
3955     unsigned short *array = NULL;
3956     struct seminfo seminfo;
3957     abi_long ret = -TARGET_EINVAL;
3958     abi_long err;
3959     cmd &= 0xff;
3960 
3961     switch( cmd ) {
3962 	case GETVAL:
3963 	case SETVAL:
3964             /* In 64 bit cross-endian situations, we will erroneously pick up
3965              * the wrong half of the union for the "val" element.  To rectify
3966              * this, the entire 8-byte structure is byteswapped, followed by
3967 	     * a swap of the 4 byte val field. In other cases, the data is
3968 	     * already in proper host byte order. */
3969 	    if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3970 		target_su.buf = tswapal(target_su.buf);
3971 		arg.val = tswap32(target_su.val);
3972 	    } else {
3973 		arg.val = target_su.val;
3974 	    }
3975             ret = get_errno(semctl(semid, semnum, cmd, arg));
3976             break;
3977 	case GETALL:
3978 	case SETALL:
3979             err = target_to_host_semarray(semid, &array, target_su.array);
3980             if (err)
3981                 return err;
3982             arg.array = array;
3983             ret = get_errno(semctl(semid, semnum, cmd, arg));
3984             err = host_to_target_semarray(semid, target_su.array, &array);
3985             if (err)
3986                 return err;
3987             break;
3988 	case IPC_STAT:
3989 	case IPC_SET:
3990 	case SEM_STAT:
3991             err = target_to_host_semid_ds(&dsarg, target_su.buf);
3992             if (err)
3993                 return err;
3994             arg.buf = &dsarg;
3995             ret = get_errno(semctl(semid, semnum, cmd, arg));
3996             err = host_to_target_semid_ds(target_su.buf, &dsarg);
3997             if (err)
3998                 return err;
3999             break;
4000 	case IPC_INFO:
4001 	case SEM_INFO:
4002             arg.__buf = &seminfo;
4003             ret = get_errno(semctl(semid, semnum, cmd, arg));
4004             err = host_to_target_seminfo(target_su.__buf, &seminfo);
4005             if (err)
4006                 return err;
4007             break;
4008 	case IPC_RMID:
4009 	case GETPID:
4010 	case GETNCNT:
4011 	case GETZCNT:
4012             ret = get_errno(semctl(semid, semnum, cmd, NULL));
4013             break;
4014     }
4015 
4016     return ret;
4017 }
4018 
4019 struct target_sembuf {
4020     unsigned short sem_num;
4021     short sem_op;
4022     short sem_flg;
4023 };
4024 
4025 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4026                                              abi_ulong target_addr,
4027                                              unsigned nsops)
4028 {
4029     struct target_sembuf *target_sembuf;
4030     int i;
4031 
4032     target_sembuf = lock_user(VERIFY_READ, target_addr,
4033                               nsops*sizeof(struct target_sembuf), 1);
4034     if (!target_sembuf)
4035         return -TARGET_EFAULT;
4036 
4037     for(i=0; i<nsops; i++) {
4038         __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4039         __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4040         __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4041     }
4042 
4043     unlock_user(target_sembuf, target_addr, 0);
4044 
4045     return 0;
4046 }
4047 
4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4049     defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4050 
4051 /*
4052  * This macro is required to handle the s390 variants, which passes the
4053  * arguments in a different order than default.
4054  */
4055 #ifdef __s390x__
4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4057   (__nsops), (__timeout), (__sops)
4058 #else
4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4060   (__nsops), 0, (__sops), (__timeout)
4061 #endif
4062 
4063 static inline abi_long do_semtimedop(int semid,
4064                                      abi_long ptr,
4065                                      unsigned nsops,
4066                                      abi_long timeout, bool time64)
4067 {
4068     struct sembuf *sops;
4069     struct timespec ts, *pts = NULL;
4070     abi_long ret;
4071 
4072     if (timeout) {
4073         pts = &ts;
4074         if (time64) {
4075             if (target_to_host_timespec64(pts, timeout)) {
4076                 return -TARGET_EFAULT;
4077             }
4078         } else {
4079             if (target_to_host_timespec(pts, timeout)) {
4080                 return -TARGET_EFAULT;
4081             }
4082         }
4083     }
4084 
4085     if (nsops > TARGET_SEMOPM) {
4086         return -TARGET_E2BIG;
4087     }
4088 
4089     sops = g_new(struct sembuf, nsops);
4090 
4091     if (target_to_host_sembuf(sops, ptr, nsops)) {
4092         g_free(sops);
4093         return -TARGET_EFAULT;
4094     }
4095 
4096     ret = -TARGET_ENOSYS;
4097 #ifdef __NR_semtimedop
4098     ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4099 #endif
4100 #ifdef __NR_ipc
4101     if (ret == -TARGET_ENOSYS) {
4102         ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4103                                  SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4104     }
4105 #endif
4106     g_free(sops);
4107     return ret;
4108 }
4109 #endif
4110 
4111 struct target_msqid_ds
4112 {
4113     struct target_ipc_perm msg_perm;
4114     abi_ulong msg_stime;
4115 #if TARGET_ABI_BITS == 32
4116     abi_ulong __unused1;
4117 #endif
4118     abi_ulong msg_rtime;
4119 #if TARGET_ABI_BITS == 32
4120     abi_ulong __unused2;
4121 #endif
4122     abi_ulong msg_ctime;
4123 #if TARGET_ABI_BITS == 32
4124     abi_ulong __unused3;
4125 #endif
4126     abi_ulong __msg_cbytes;
4127     abi_ulong msg_qnum;
4128     abi_ulong msg_qbytes;
4129     abi_ulong msg_lspid;
4130     abi_ulong msg_lrpid;
4131     abi_ulong __unused4;
4132     abi_ulong __unused5;
4133 };
4134 
4135 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4136                                                abi_ulong target_addr)
4137 {
4138     struct target_msqid_ds *target_md;
4139 
4140     if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4141         return -TARGET_EFAULT;
4142     if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4143         return -TARGET_EFAULT;
4144     host_md->msg_stime = tswapal(target_md->msg_stime);
4145     host_md->msg_rtime = tswapal(target_md->msg_rtime);
4146     host_md->msg_ctime = tswapal(target_md->msg_ctime);
4147     host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4148     host_md->msg_qnum = tswapal(target_md->msg_qnum);
4149     host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4150     host_md->msg_lspid = tswapal(target_md->msg_lspid);
4151     host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4152     unlock_user_struct(target_md, target_addr, 0);
4153     return 0;
4154 }
4155 
4156 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4157                                                struct msqid_ds *host_md)
4158 {
4159     struct target_msqid_ds *target_md;
4160 
4161     if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4162         return -TARGET_EFAULT;
4163     if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4164         return -TARGET_EFAULT;
4165     target_md->msg_stime = tswapal(host_md->msg_stime);
4166     target_md->msg_rtime = tswapal(host_md->msg_rtime);
4167     target_md->msg_ctime = tswapal(host_md->msg_ctime);
4168     target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4169     target_md->msg_qnum = tswapal(host_md->msg_qnum);
4170     target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4171     target_md->msg_lspid = tswapal(host_md->msg_lspid);
4172     target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4173     unlock_user_struct(target_md, target_addr, 1);
4174     return 0;
4175 }
4176 
4177 struct target_msginfo {
4178     int msgpool;
4179     int msgmap;
4180     int msgmax;
4181     int msgmnb;
4182     int msgmni;
4183     int msgssz;
4184     int msgtql;
4185     unsigned short int msgseg;
4186 };
4187 
4188 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4189                                               struct msginfo *host_msginfo)
4190 {
4191     struct target_msginfo *target_msginfo;
4192     if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4193         return -TARGET_EFAULT;
4194     __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4195     __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4196     __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4197     __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4198     __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4199     __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4200     __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4201     __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4202     unlock_user_struct(target_msginfo, target_addr, 1);
4203     return 0;
4204 }
4205 
4206 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4207 {
4208     struct msqid_ds dsarg;
4209     struct msginfo msginfo;
4210     abi_long ret = -TARGET_EINVAL;
4211 
4212     cmd &= 0xff;
4213 
4214     switch (cmd) {
4215     case IPC_STAT:
4216     case IPC_SET:
4217     case MSG_STAT:
4218         if (target_to_host_msqid_ds(&dsarg,ptr))
4219             return -TARGET_EFAULT;
4220         ret = get_errno(msgctl(msgid, cmd, &dsarg));
4221         if (host_to_target_msqid_ds(ptr,&dsarg))
4222             return -TARGET_EFAULT;
4223         break;
4224     case IPC_RMID:
4225         ret = get_errno(msgctl(msgid, cmd, NULL));
4226         break;
4227     case IPC_INFO:
4228     case MSG_INFO:
4229         ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4230         if (host_to_target_msginfo(ptr, &msginfo))
4231             return -TARGET_EFAULT;
4232         break;
4233     }
4234 
4235     return ret;
4236 }
4237 
4238 struct target_msgbuf {
4239     abi_long mtype;
4240     char	mtext[1];
4241 };
4242 
4243 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4244                                  ssize_t msgsz, int msgflg)
4245 {
4246     struct target_msgbuf *target_mb;
4247     struct msgbuf *host_mb;
4248     abi_long ret = 0;
4249 
4250     if (msgsz < 0) {
4251         return -TARGET_EINVAL;
4252     }
4253 
4254     if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4255         return -TARGET_EFAULT;
4256     host_mb = g_try_malloc(msgsz + sizeof(long));
4257     if (!host_mb) {
4258         unlock_user_struct(target_mb, msgp, 0);
4259         return -TARGET_ENOMEM;
4260     }
4261     host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4262     memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4263     ret = -TARGET_ENOSYS;
4264 #ifdef __NR_msgsnd
4265     ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4266 #endif
4267 #ifdef __NR_ipc
4268     if (ret == -TARGET_ENOSYS) {
4269 #ifdef __s390x__
4270         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4271                                  host_mb));
4272 #else
4273         ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4274                                  host_mb, 0));
4275 #endif
4276     }
4277 #endif
4278     g_free(host_mb);
4279     unlock_user_struct(target_mb, msgp, 0);
4280 
4281     return ret;
4282 }
4283 
4284 #ifdef __NR_ipc
4285 #if defined(__sparc__)
4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments.  */
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4288 #elif defined(__s390x__)
4289 /* The s390 sys_ipc variant has only five parameters.  */
4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4291     ((long int[]){(long int)__msgp, __msgtyp})
4292 #else
4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4294     ((long int[]){(long int)__msgp, __msgtyp}), 0
4295 #endif
4296 #endif
4297 
4298 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4299                                  ssize_t msgsz, abi_long msgtyp,
4300                                  int msgflg)
4301 {
4302     struct target_msgbuf *target_mb;
4303     char *target_mtext;
4304     struct msgbuf *host_mb;
4305     abi_long ret = 0;
4306 
4307     if (msgsz < 0) {
4308         return -TARGET_EINVAL;
4309     }
4310 
4311     if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4312         return -TARGET_EFAULT;
4313 
4314     host_mb = g_try_malloc(msgsz + sizeof(long));
4315     if (!host_mb) {
4316         ret = -TARGET_ENOMEM;
4317         goto end;
4318     }
4319     ret = -TARGET_ENOSYS;
4320 #ifdef __NR_msgrcv
4321     ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4322 #endif
4323 #ifdef __NR_ipc
4324     if (ret == -TARGET_ENOSYS) {
4325         ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4326                         msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4327     }
4328 #endif
4329 
4330     if (ret > 0) {
4331         abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4332         target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4333         if (!target_mtext) {
4334             ret = -TARGET_EFAULT;
4335             goto end;
4336         }
4337         memcpy(target_mb->mtext, host_mb->mtext, ret);
4338         unlock_user(target_mtext, target_mtext_addr, ret);
4339     }
4340 
4341     target_mb->mtype = tswapal(host_mb->mtype);
4342 
4343 end:
4344     if (target_mb)
4345         unlock_user_struct(target_mb, msgp, 1);
4346     g_free(host_mb);
4347     return ret;
4348 }
4349 
4350 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4351                                                abi_ulong target_addr)
4352 {
4353     struct target_shmid_ds *target_sd;
4354 
4355     if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4356         return -TARGET_EFAULT;
4357     if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4358         return -TARGET_EFAULT;
4359     __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4360     __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4361     __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4362     __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4363     __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4364     __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4365     __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4366     unlock_user_struct(target_sd, target_addr, 0);
4367     return 0;
4368 }
4369 
4370 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4371                                                struct shmid_ds *host_sd)
4372 {
4373     struct target_shmid_ds *target_sd;
4374 
4375     if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4376         return -TARGET_EFAULT;
4377     if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4378         return -TARGET_EFAULT;
4379     __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4380     __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4381     __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4382     __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4383     __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4384     __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4385     __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4386     unlock_user_struct(target_sd, target_addr, 1);
4387     return 0;
4388 }
4389 
4390 struct  target_shminfo {
4391     abi_ulong shmmax;
4392     abi_ulong shmmin;
4393     abi_ulong shmmni;
4394     abi_ulong shmseg;
4395     abi_ulong shmall;
4396 };
4397 
4398 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4399                                               struct shminfo *host_shminfo)
4400 {
4401     struct target_shminfo *target_shminfo;
4402     if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4403         return -TARGET_EFAULT;
4404     __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4405     __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4406     __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4407     __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4408     __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4409     unlock_user_struct(target_shminfo, target_addr, 1);
4410     return 0;
4411 }
4412 
4413 struct target_shm_info {
4414     int used_ids;
4415     abi_ulong shm_tot;
4416     abi_ulong shm_rss;
4417     abi_ulong shm_swp;
4418     abi_ulong swap_attempts;
4419     abi_ulong swap_successes;
4420 };
4421 
4422 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4423                                                struct shm_info *host_shm_info)
4424 {
4425     struct target_shm_info *target_shm_info;
4426     if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4427         return -TARGET_EFAULT;
4428     __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4429     __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4430     __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4431     __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4432     __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4433     __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4434     unlock_user_struct(target_shm_info, target_addr, 1);
4435     return 0;
4436 }
4437 
4438 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4439 {
4440     struct shmid_ds dsarg;
4441     struct shminfo shminfo;
4442     struct shm_info shm_info;
4443     abi_long ret = -TARGET_EINVAL;
4444 
4445     cmd &= 0xff;
4446 
4447     switch(cmd) {
4448     case IPC_STAT:
4449     case IPC_SET:
4450     case SHM_STAT:
4451         if (target_to_host_shmid_ds(&dsarg, buf))
4452             return -TARGET_EFAULT;
4453         ret = get_errno(shmctl(shmid, cmd, &dsarg));
4454         if (host_to_target_shmid_ds(buf, &dsarg))
4455             return -TARGET_EFAULT;
4456         break;
4457     case IPC_INFO:
4458         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4459         if (host_to_target_shminfo(buf, &shminfo))
4460             return -TARGET_EFAULT;
4461         break;
4462     case SHM_INFO:
4463         ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4464         if (host_to_target_shm_info(buf, &shm_info))
4465             return -TARGET_EFAULT;
4466         break;
4467     case IPC_RMID:
4468     case SHM_LOCK:
4469     case SHM_UNLOCK:
4470         ret = get_errno(shmctl(shmid, cmd, NULL));
4471         break;
4472     }
4473 
4474     return ret;
4475 }
4476 
4477 #ifdef TARGET_NR_ipc
4478 /* ??? This only works with linear mappings.  */
4479 /* do_ipc() must return target values and target errnos. */
4480 static abi_long do_ipc(CPUArchState *cpu_env,
4481                        unsigned int call, abi_long first,
4482                        abi_long second, abi_long third,
4483                        abi_long ptr, abi_long fifth)
4484 {
4485     int version;
4486     abi_long ret = 0;
4487 
4488     version = call >> 16;
4489     call &= 0xffff;
4490 
4491     switch (call) {
4492     case IPCOP_semop:
4493         ret = do_semtimedop(first, ptr, second, 0, false);
4494         break;
4495     case IPCOP_semtimedop:
4496     /*
4497      * The s390 sys_ipc variant has only five parameters instead of six
4498      * (as for default variant) and the only difference is the handling of
4499      * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4500      * to a struct timespec where the generic variant uses fifth parameter.
4501      */
4502 #if defined(TARGET_S390X)
4503         ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4504 #else
4505         ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4506 #endif
4507         break;
4508 
4509     case IPCOP_semget:
4510         ret = get_errno(semget(first, second, third));
4511         break;
4512 
4513     case IPCOP_semctl: {
4514         /* The semun argument to semctl is passed by value, so dereference the
4515          * ptr argument. */
4516         abi_ulong atptr;
4517         get_user_ual(atptr, ptr);
4518         ret = do_semctl(first, second, third, atptr);
4519         break;
4520     }
4521 
4522     case IPCOP_msgget:
4523         ret = get_errno(msgget(first, second));
4524         break;
4525 
4526     case IPCOP_msgsnd:
4527         ret = do_msgsnd(first, ptr, second, third);
4528         break;
4529 
4530     case IPCOP_msgctl:
4531         ret = do_msgctl(first, second, ptr);
4532         break;
4533 
4534     case IPCOP_msgrcv:
4535         switch (version) {
4536         case 0:
4537             {
4538                 struct target_ipc_kludge {
4539                     abi_long msgp;
4540                     abi_long msgtyp;
4541                 } *tmp;
4542 
4543                 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4544                     ret = -TARGET_EFAULT;
4545                     break;
4546                 }
4547 
4548                 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4549 
4550                 unlock_user_struct(tmp, ptr, 0);
4551                 break;
4552             }
4553         default:
4554             ret = do_msgrcv(first, ptr, second, fifth, third);
4555         }
4556         break;
4557 
4558     case IPCOP_shmat:
4559         switch (version) {
4560         default:
4561         {
4562             abi_ulong raddr;
4563             raddr = target_shmat(cpu_env, first, ptr, second);
4564             if (is_error(raddr))
4565                 return get_errno(raddr);
4566             if (put_user_ual(raddr, third))
4567                 return -TARGET_EFAULT;
4568             break;
4569         }
4570         case 1:
4571             ret = -TARGET_EINVAL;
4572             break;
4573         }
4574 	break;
4575     case IPCOP_shmdt:
4576         ret = target_shmdt(ptr);
4577 	break;
4578 
4579     case IPCOP_shmget:
4580 	/* IPC_* flag values are the same on all linux platforms */
4581 	ret = get_errno(shmget(first, second, third));
4582 	break;
4583 
4584 	/* IPC_* and SHM_* command values are the same on all linux platforms */
4585     case IPCOP_shmctl:
4586         ret = do_shmctl(first, second, ptr);
4587         break;
4588     default:
4589         qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4590                       call, version);
4591 	ret = -TARGET_ENOSYS;
4592 	break;
4593     }
4594     return ret;
4595 }
4596 #endif
4597 
4598 /* kernel structure types definitions */
4599 
4600 #define STRUCT(name, ...) STRUCT_ ## name,
4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4602 enum {
4603 #include "syscall_types.h"
4604 STRUCT_MAX
4605 };
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608 
4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = {  __VA_ARGS__, TYPE_NULL };
4610 #define STRUCT_SPECIAL(name)
4611 #include "syscall_types.h"
4612 #undef STRUCT
4613 #undef STRUCT_SPECIAL
4614 
4615 #define MAX_STRUCT_SIZE 4096
4616 
4617 #ifdef CONFIG_FIEMAP
4618 /* So fiemap access checks don't overflow on 32 bit systems.
4619  * This is very slightly smaller than the limit imposed by
4620  * the underlying kernel.
4621  */
4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap))  \
4623                             / sizeof(struct fiemap_extent))
4624 
4625 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4626                                        int fd, int cmd, abi_long arg)
4627 {
4628     /* The parameter for this ioctl is a struct fiemap followed
4629      * by an array of struct fiemap_extent whose size is set
4630      * in fiemap->fm_extent_count. The array is filled in by the
4631      * ioctl.
4632      */
4633     int target_size_in, target_size_out;
4634     struct fiemap *fm;
4635     const argtype *arg_type = ie->arg_type;
4636     const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4637     void *argptr, *p;
4638     abi_long ret;
4639     int i, extent_size = thunk_type_size(extent_arg_type, 0);
4640     uint32_t outbufsz;
4641     int free_fm = 0;
4642 
4643     assert(arg_type[0] == TYPE_PTR);
4644     assert(ie->access == IOC_RW);
4645     arg_type++;
4646     target_size_in = thunk_type_size(arg_type, 0);
4647     argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4648     if (!argptr) {
4649         return -TARGET_EFAULT;
4650     }
4651     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4652     unlock_user(argptr, arg, 0);
4653     fm = (struct fiemap *)buf_temp;
4654     if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4655         return -TARGET_EINVAL;
4656     }
4657 
4658     outbufsz = sizeof (*fm) +
4659         (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4660 
4661     if (outbufsz > MAX_STRUCT_SIZE) {
4662         /* We can't fit all the extents into the fixed size buffer.
4663          * Allocate one that is large enough and use it instead.
4664          */
4665         fm = g_try_malloc(outbufsz);
4666         if (!fm) {
4667             return -TARGET_ENOMEM;
4668         }
4669         memcpy(fm, buf_temp, sizeof(struct fiemap));
4670         free_fm = 1;
4671     }
4672     ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4673     if (!is_error(ret)) {
4674         target_size_out = target_size_in;
4675         /* An extent_count of 0 means we were only counting the extents
4676          * so there are no structs to copy
4677          */
4678         if (fm->fm_extent_count != 0) {
4679             target_size_out += fm->fm_mapped_extents * extent_size;
4680         }
4681         argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4682         if (!argptr) {
4683             ret = -TARGET_EFAULT;
4684         } else {
4685             /* Convert the struct fiemap */
4686             thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4687             if (fm->fm_extent_count != 0) {
4688                 p = argptr + target_size_in;
4689                 /* ...and then all the struct fiemap_extents */
4690                 for (i = 0; i < fm->fm_mapped_extents; i++) {
4691                     thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4692                                   THUNK_TARGET);
4693                     p += extent_size;
4694                 }
4695             }
4696             unlock_user(argptr, arg, target_size_out);
4697         }
4698     }
4699     if (free_fm) {
4700         g_free(fm);
4701     }
4702     return ret;
4703 }
4704 #endif
4705 
4706 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4707                                 int fd, int cmd, abi_long arg)
4708 {
4709     const argtype *arg_type = ie->arg_type;
4710     int target_size;
4711     void *argptr;
4712     int ret;
4713     struct ifconf *host_ifconf;
4714     uint32_t outbufsz;
4715     const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4716     const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4717     int target_ifreq_size;
4718     int nb_ifreq;
4719     int free_buf = 0;
4720     int i;
4721     int target_ifc_len;
4722     abi_long target_ifc_buf;
4723     int host_ifc_len;
4724     char *host_ifc_buf;
4725 
4726     assert(arg_type[0] == TYPE_PTR);
4727     assert(ie->access == IOC_RW);
4728 
4729     arg_type++;
4730     target_size = thunk_type_size(arg_type, 0);
4731 
4732     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4733     if (!argptr)
4734         return -TARGET_EFAULT;
4735     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4736     unlock_user(argptr, arg, 0);
4737 
4738     host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4739     target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4740     target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4741 
4742     if (target_ifc_buf != 0) {
4743         target_ifc_len = host_ifconf->ifc_len;
4744         nb_ifreq = target_ifc_len / target_ifreq_size;
4745         host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4746 
4747         outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4748         if (outbufsz > MAX_STRUCT_SIZE) {
4749             /*
4750              * We can't fit all the extents into the fixed size buffer.
4751              * Allocate one that is large enough and use it instead.
4752              */
4753             host_ifconf = g_try_malloc(outbufsz);
4754             if (!host_ifconf) {
4755                 return -TARGET_ENOMEM;
4756             }
4757             memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4758             free_buf = 1;
4759         }
4760         host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4761 
4762         host_ifconf->ifc_len = host_ifc_len;
4763     } else {
4764       host_ifc_buf = NULL;
4765     }
4766     host_ifconf->ifc_buf = host_ifc_buf;
4767 
4768     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4769     if (!is_error(ret)) {
4770 	/* convert host ifc_len to target ifc_len */
4771 
4772         nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4773         target_ifc_len = nb_ifreq * target_ifreq_size;
4774         host_ifconf->ifc_len = target_ifc_len;
4775 
4776 	/* restore target ifc_buf */
4777 
4778         host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4779 
4780 	/* copy struct ifconf to target user */
4781 
4782         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4783         if (!argptr)
4784             return -TARGET_EFAULT;
4785         thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4786         unlock_user(argptr, arg, target_size);
4787 
4788         if (target_ifc_buf != 0) {
4789             /* copy ifreq[] to target user */
4790             argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4791             for (i = 0; i < nb_ifreq ; i++) {
4792                 thunk_convert(argptr + i * target_ifreq_size,
4793                               host_ifc_buf + i * sizeof(struct ifreq),
4794                               ifreq_arg_type, THUNK_TARGET);
4795             }
4796             unlock_user(argptr, target_ifc_buf, target_ifc_len);
4797         }
4798     }
4799 
4800     if (free_buf) {
4801         g_free(host_ifconf);
4802     }
4803 
4804     return ret;
4805 }
4806 
4807 #if defined(CONFIG_USBFS)
4808 #if HOST_LONG_BITS > 64
4809 #error USBDEVFS thunks do not support >64 bit hosts yet.
4810 #endif
4811 struct live_urb {
4812     uint64_t target_urb_adr;
4813     uint64_t target_buf_adr;
4814     char *target_buf_ptr;
4815     struct usbdevfs_urb host_urb;
4816 };
4817 
4818 static GHashTable *usbdevfs_urb_hashtable(void)
4819 {
4820     static GHashTable *urb_hashtable;
4821 
4822     if (!urb_hashtable) {
4823         urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4824     }
4825     return urb_hashtable;
4826 }
4827 
4828 static void urb_hashtable_insert(struct live_urb *urb)
4829 {
4830     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831     g_hash_table_insert(urb_hashtable, urb, urb);
4832 }
4833 
4834 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4835 {
4836     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837     return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4838 }
4839 
4840 static void urb_hashtable_remove(struct live_urb *urb)
4841 {
4842     GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4843     g_hash_table_remove(urb_hashtable, urb);
4844 }
4845 
4846 static abi_long
4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4848                           int fd, int cmd, abi_long arg)
4849 {
4850     const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4851     const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4852     struct live_urb *lurb;
4853     void *argptr;
4854     uint64_t hurb;
4855     int target_size;
4856     uintptr_t target_urb_adr;
4857     abi_long ret;
4858 
4859     target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4860 
4861     memset(buf_temp, 0, sizeof(uint64_t));
4862     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4863     if (is_error(ret)) {
4864         return ret;
4865     }
4866 
4867     memcpy(&hurb, buf_temp, sizeof(uint64_t));
4868     lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4869     if (!lurb->target_urb_adr) {
4870         return -TARGET_EFAULT;
4871     }
4872     urb_hashtable_remove(lurb);
4873     unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4874         lurb->host_urb.buffer_length);
4875     lurb->target_buf_ptr = NULL;
4876 
4877     /* restore the guest buffer pointer */
4878     lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4879 
4880     /* update the guest urb struct */
4881     argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4882     if (!argptr) {
4883         g_free(lurb);
4884         return -TARGET_EFAULT;
4885     }
4886     thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4887     unlock_user(argptr, lurb->target_urb_adr, target_size);
4888 
4889     target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4890     /* write back the urb handle */
4891     argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4892     if (!argptr) {
4893         g_free(lurb);
4894         return -TARGET_EFAULT;
4895     }
4896 
4897     /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4898     target_urb_adr = lurb->target_urb_adr;
4899     thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4900     unlock_user(argptr, arg, target_size);
4901 
4902     g_free(lurb);
4903     return ret;
4904 }
4905 
4906 static abi_long
4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4908                              uint8_t *buf_temp __attribute__((unused)),
4909                              int fd, int cmd, abi_long arg)
4910 {
4911     struct live_urb *lurb;
4912 
4913     /* map target address back to host URB with metadata. */
4914     lurb = urb_hashtable_lookup(arg);
4915     if (!lurb) {
4916         return -TARGET_EFAULT;
4917     }
4918     return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4919 }
4920 
4921 static abi_long
4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4923                             int fd, int cmd, abi_long arg)
4924 {
4925     const argtype *arg_type = ie->arg_type;
4926     int target_size;
4927     abi_long ret;
4928     void *argptr;
4929     int rw_dir;
4930     struct live_urb *lurb;
4931 
4932     /*
4933      * each submitted URB needs to map to a unique ID for the
4934      * kernel, and that unique ID needs to be a pointer to
4935      * host memory.  hence, we need to malloc for each URB.
4936      * isochronous transfers have a variable length struct.
4937      */
4938     arg_type++;
4939     target_size = thunk_type_size(arg_type, THUNK_TARGET);
4940 
4941     /* construct host copy of urb and metadata */
4942     lurb = g_try_new0(struct live_urb, 1);
4943     if (!lurb) {
4944         return -TARGET_ENOMEM;
4945     }
4946 
4947     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4948     if (!argptr) {
4949         g_free(lurb);
4950         return -TARGET_EFAULT;
4951     }
4952     thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4953     unlock_user(argptr, arg, 0);
4954 
4955     lurb->target_urb_adr = arg;
4956     lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4957 
4958     /* buffer space used depends on endpoint type so lock the entire buffer */
4959     /* control type urbs should check the buffer contents for true direction */
4960     rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4961     lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4962         lurb->host_urb.buffer_length, 1);
4963     if (lurb->target_buf_ptr == NULL) {
4964         g_free(lurb);
4965         return -TARGET_EFAULT;
4966     }
4967 
4968     /* update buffer pointer in host copy */
4969     lurb->host_urb.buffer = lurb->target_buf_ptr;
4970 
4971     ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4972     if (is_error(ret)) {
4973         unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4974         g_free(lurb);
4975     } else {
4976         urb_hashtable_insert(lurb);
4977     }
4978 
4979     return ret;
4980 }
4981 #endif /* CONFIG_USBFS */
4982 
4983 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4984                             int cmd, abi_long arg)
4985 {
4986     void *argptr;
4987     struct dm_ioctl *host_dm;
4988     abi_long guest_data;
4989     uint32_t guest_data_size;
4990     int target_size;
4991     const argtype *arg_type = ie->arg_type;
4992     abi_long ret;
4993     void *big_buf = NULL;
4994     char *host_data;
4995 
4996     arg_type++;
4997     target_size = thunk_type_size(arg_type, 0);
4998     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4999     if (!argptr) {
5000         ret = -TARGET_EFAULT;
5001         goto out;
5002     }
5003     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5004     unlock_user(argptr, arg, 0);
5005 
5006     /* buf_temp is too small, so fetch things into a bigger buffer */
5007     big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5008     memcpy(big_buf, buf_temp, target_size);
5009     buf_temp = big_buf;
5010     host_dm = big_buf;
5011 
5012     guest_data = arg + host_dm->data_start;
5013     if ((guest_data - arg) < 0) {
5014         ret = -TARGET_EINVAL;
5015         goto out;
5016     }
5017     guest_data_size = host_dm->data_size - host_dm->data_start;
5018     host_data = (char*)host_dm + host_dm->data_start;
5019 
5020     argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5021     if (!argptr) {
5022         ret = -TARGET_EFAULT;
5023         goto out;
5024     }
5025 
5026     switch (ie->host_cmd) {
5027     case DM_REMOVE_ALL:
5028     case DM_LIST_DEVICES:
5029     case DM_DEV_CREATE:
5030     case DM_DEV_REMOVE:
5031     case DM_DEV_SUSPEND:
5032     case DM_DEV_STATUS:
5033     case DM_DEV_WAIT:
5034     case DM_TABLE_STATUS:
5035     case DM_TABLE_CLEAR:
5036     case DM_TABLE_DEPS:
5037     case DM_LIST_VERSIONS:
5038         /* no input data */
5039         break;
5040     case DM_DEV_RENAME:
5041     case DM_DEV_SET_GEOMETRY:
5042         /* data contains only strings */
5043         memcpy(host_data, argptr, guest_data_size);
5044         break;
5045     case DM_TARGET_MSG:
5046         memcpy(host_data, argptr, guest_data_size);
5047         *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5048         break;
5049     case DM_TABLE_LOAD:
5050     {
5051         void *gspec = argptr;
5052         void *cur_data = host_data;
5053         const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5054         int spec_size = thunk_type_size(dm_arg_type, 0);
5055         int i;
5056 
5057         for (i = 0; i < host_dm->target_count; i++) {
5058             struct dm_target_spec *spec = cur_data;
5059             uint32_t next;
5060             int slen;
5061 
5062             thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5063             slen = strlen((char*)gspec + spec_size) + 1;
5064             next = spec->next;
5065             spec->next = sizeof(*spec) + slen;
5066             strcpy((char*)&spec[1], gspec + spec_size);
5067             gspec += next;
5068             cur_data += spec->next;
5069         }
5070         break;
5071     }
5072     default:
5073         ret = -TARGET_EINVAL;
5074         unlock_user(argptr, guest_data, 0);
5075         goto out;
5076     }
5077     unlock_user(argptr, guest_data, 0);
5078 
5079     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5080     if (!is_error(ret)) {
5081         guest_data = arg + host_dm->data_start;
5082         guest_data_size = host_dm->data_size - host_dm->data_start;
5083         argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5084         switch (ie->host_cmd) {
5085         case DM_REMOVE_ALL:
5086         case DM_DEV_CREATE:
5087         case DM_DEV_REMOVE:
5088         case DM_DEV_RENAME:
5089         case DM_DEV_SUSPEND:
5090         case DM_DEV_STATUS:
5091         case DM_TABLE_LOAD:
5092         case DM_TABLE_CLEAR:
5093         case DM_TARGET_MSG:
5094         case DM_DEV_SET_GEOMETRY:
5095             /* no return data */
5096             break;
5097         case DM_LIST_DEVICES:
5098         {
5099             struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5100             uint32_t remaining_data = guest_data_size;
5101             void *cur_data = argptr;
5102             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5103             int nl_size = 12; /* can't use thunk_size due to alignment */
5104 
5105             while (1) {
5106                 uint32_t next = nl->next;
5107                 if (next) {
5108                     nl->next = nl_size + (strlen(nl->name) + 1);
5109                 }
5110                 if (remaining_data < nl->next) {
5111                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5112                     break;
5113                 }
5114                 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5115                 strcpy(cur_data + nl_size, nl->name);
5116                 cur_data += nl->next;
5117                 remaining_data -= nl->next;
5118                 if (!next) {
5119                     break;
5120                 }
5121                 nl = (void*)nl + next;
5122             }
5123             break;
5124         }
5125         case DM_DEV_WAIT:
5126         case DM_TABLE_STATUS:
5127         {
5128             struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5129             void *cur_data = argptr;
5130             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5131             int spec_size = thunk_type_size(dm_arg_type, 0);
5132             int i;
5133 
5134             for (i = 0; i < host_dm->target_count; i++) {
5135                 uint32_t next = spec->next;
5136                 int slen = strlen((char*)&spec[1]) + 1;
5137                 spec->next = (cur_data - argptr) + spec_size + slen;
5138                 if (guest_data_size < spec->next) {
5139                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5140                     break;
5141                 }
5142                 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5143                 strcpy(cur_data + spec_size, (char*)&spec[1]);
5144                 cur_data = argptr + spec->next;
5145                 spec = (void*)host_dm + host_dm->data_start + next;
5146             }
5147             break;
5148         }
5149         case DM_TABLE_DEPS:
5150         {
5151             void *hdata = (void*)host_dm + host_dm->data_start;
5152             int count = *(uint32_t*)hdata;
5153             uint64_t *hdev = hdata + 8;
5154             uint64_t *gdev = argptr + 8;
5155             int i;
5156 
5157             *(uint32_t*)argptr = tswap32(count);
5158             for (i = 0; i < count; i++) {
5159                 *gdev = tswap64(*hdev);
5160                 gdev++;
5161                 hdev++;
5162             }
5163             break;
5164         }
5165         case DM_LIST_VERSIONS:
5166         {
5167             struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5168             uint32_t remaining_data = guest_data_size;
5169             void *cur_data = argptr;
5170             const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5171             int vers_size = thunk_type_size(dm_arg_type, 0);
5172 
5173             while (1) {
5174                 uint32_t next = vers->next;
5175                 if (next) {
5176                     vers->next = vers_size + (strlen(vers->name) + 1);
5177                 }
5178                 if (remaining_data < vers->next) {
5179                     host_dm->flags |= DM_BUFFER_FULL_FLAG;
5180                     break;
5181                 }
5182                 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5183                 strcpy(cur_data + vers_size, vers->name);
5184                 cur_data += vers->next;
5185                 remaining_data -= vers->next;
5186                 if (!next) {
5187                     break;
5188                 }
5189                 vers = (void*)vers + next;
5190             }
5191             break;
5192         }
5193         default:
5194             unlock_user(argptr, guest_data, 0);
5195             ret = -TARGET_EINVAL;
5196             goto out;
5197         }
5198         unlock_user(argptr, guest_data, guest_data_size);
5199 
5200         argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5201         if (!argptr) {
5202             ret = -TARGET_EFAULT;
5203             goto out;
5204         }
5205         thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5206         unlock_user(argptr, arg, target_size);
5207     }
5208 out:
5209     g_free(big_buf);
5210     return ret;
5211 }
5212 
5213 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5214                                int cmd, abi_long arg)
5215 {
5216     void *argptr;
5217     int target_size;
5218     const argtype *arg_type = ie->arg_type;
5219     const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5220     abi_long ret;
5221 
5222     struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5223     struct blkpg_partition host_part;
5224 
5225     /* Read and convert blkpg */
5226     arg_type++;
5227     target_size = thunk_type_size(arg_type, 0);
5228     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5229     if (!argptr) {
5230         ret = -TARGET_EFAULT;
5231         goto out;
5232     }
5233     thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5234     unlock_user(argptr, arg, 0);
5235 
5236     switch (host_blkpg->op) {
5237     case BLKPG_ADD_PARTITION:
5238     case BLKPG_DEL_PARTITION:
5239         /* payload is struct blkpg_partition */
5240         break;
5241     default:
5242         /* Unknown opcode */
5243         ret = -TARGET_EINVAL;
5244         goto out;
5245     }
5246 
5247     /* Read and convert blkpg->data */
5248     arg = (abi_long)(uintptr_t)host_blkpg->data;
5249     target_size = thunk_type_size(part_arg_type, 0);
5250     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5251     if (!argptr) {
5252         ret = -TARGET_EFAULT;
5253         goto out;
5254     }
5255     thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5256     unlock_user(argptr, arg, 0);
5257 
5258     /* Swizzle the data pointer to our local copy and call! */
5259     host_blkpg->data = &host_part;
5260     ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5261 
5262 out:
5263     return ret;
5264 }
5265 
5266 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5267                                 int fd, int cmd, abi_long arg)
5268 {
5269     const argtype *arg_type = ie->arg_type;
5270     const StructEntry *se;
5271     const argtype *field_types;
5272     const int *dst_offsets, *src_offsets;
5273     int target_size;
5274     void *argptr;
5275     abi_ulong *target_rt_dev_ptr = NULL;
5276     unsigned long *host_rt_dev_ptr = NULL;
5277     abi_long ret;
5278     int i;
5279 
5280     assert(ie->access == IOC_W);
5281     assert(*arg_type == TYPE_PTR);
5282     arg_type++;
5283     assert(*arg_type == TYPE_STRUCT);
5284     target_size = thunk_type_size(arg_type, 0);
5285     argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5286     if (!argptr) {
5287         return -TARGET_EFAULT;
5288     }
5289     arg_type++;
5290     assert(*arg_type == (int)STRUCT_rtentry);
5291     se = struct_entries + *arg_type++;
5292     assert(se->convert[0] == NULL);
5293     /* convert struct here to be able to catch rt_dev string */
5294     field_types = se->field_types;
5295     dst_offsets = se->field_offsets[THUNK_HOST];
5296     src_offsets = se->field_offsets[THUNK_TARGET];
5297     for (i = 0; i < se->nb_fields; i++) {
5298         if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5299             assert(*field_types == TYPE_PTRVOID);
5300             target_rt_dev_ptr = argptr + src_offsets[i];
5301             host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5302             if (*target_rt_dev_ptr != 0) {
5303                 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5304                                                   tswapal(*target_rt_dev_ptr));
5305                 if (!*host_rt_dev_ptr) {
5306                     unlock_user(argptr, arg, 0);
5307                     return -TARGET_EFAULT;
5308                 }
5309             } else {
5310                 *host_rt_dev_ptr = 0;
5311             }
5312             field_types++;
5313             continue;
5314         }
5315         field_types = thunk_convert(buf_temp + dst_offsets[i],
5316                                     argptr + src_offsets[i],
5317                                     field_types, THUNK_HOST);
5318     }
5319     unlock_user(argptr, arg, 0);
5320 
5321     ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5322 
5323     assert(host_rt_dev_ptr != NULL);
5324     assert(target_rt_dev_ptr != NULL);
5325     if (*host_rt_dev_ptr != 0) {
5326         unlock_user((void *)*host_rt_dev_ptr,
5327                     *target_rt_dev_ptr, 0);
5328     }
5329     return ret;
5330 }
5331 
5332 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5333                                      int fd, int cmd, abi_long arg)
5334 {
5335     int sig = target_to_host_signal(arg);
5336     return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5337 }
5338 
5339 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5340                                     int fd, int cmd, abi_long arg)
5341 {
5342     struct timeval tv;
5343     abi_long ret;
5344 
5345     ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5346     if (is_error(ret)) {
5347         return ret;
5348     }
5349 
5350     if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5351         if (copy_to_user_timeval(arg, &tv)) {
5352             return -TARGET_EFAULT;
5353         }
5354     } else {
5355         if (copy_to_user_timeval64(arg, &tv)) {
5356             return -TARGET_EFAULT;
5357         }
5358     }
5359 
5360     return ret;
5361 }
5362 
5363 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5364                                       int fd, int cmd, abi_long arg)
5365 {
5366     struct timespec ts;
5367     abi_long ret;
5368 
5369     ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5370     if (is_error(ret)) {
5371         return ret;
5372     }
5373 
5374     if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5375         if (host_to_target_timespec(arg, &ts)) {
5376             return -TARGET_EFAULT;
5377         }
5378     } else{
5379         if (host_to_target_timespec64(arg, &ts)) {
5380             return -TARGET_EFAULT;
5381         }
5382     }
5383 
5384     return ret;
5385 }
5386 
5387 #ifdef TIOCGPTPEER
5388 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5389                                      int fd, int cmd, abi_long arg)
5390 {
5391     int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5392     return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5393 }
5394 #endif
5395 
5396 #ifdef HAVE_DRM_H
5397 
5398 static void unlock_drm_version(struct drm_version *host_ver,
5399                                struct target_drm_version *target_ver,
5400                                bool copy)
5401 {
5402     unlock_user(host_ver->name, target_ver->name,
5403                                 copy ? host_ver->name_len : 0);
5404     unlock_user(host_ver->date, target_ver->date,
5405                                 copy ? host_ver->date_len : 0);
5406     unlock_user(host_ver->desc, target_ver->desc,
5407                                 copy ? host_ver->desc_len : 0);
5408 }
5409 
5410 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5411                                           struct target_drm_version *target_ver)
5412 {
5413     memset(host_ver, 0, sizeof(*host_ver));
5414 
5415     __get_user(host_ver->name_len, &target_ver->name_len);
5416     if (host_ver->name_len) {
5417         host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5418                                    target_ver->name_len, 0);
5419         if (!host_ver->name) {
5420             return -EFAULT;
5421         }
5422     }
5423 
5424     __get_user(host_ver->date_len, &target_ver->date_len);
5425     if (host_ver->date_len) {
5426         host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5427                                    target_ver->date_len, 0);
5428         if (!host_ver->date) {
5429             goto err;
5430         }
5431     }
5432 
5433     __get_user(host_ver->desc_len, &target_ver->desc_len);
5434     if (host_ver->desc_len) {
5435         host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5436                                    target_ver->desc_len, 0);
5437         if (!host_ver->desc) {
5438             goto err;
5439         }
5440     }
5441 
5442     return 0;
5443 err:
5444     unlock_drm_version(host_ver, target_ver, false);
5445     return -EFAULT;
5446 }
5447 
5448 static inline void host_to_target_drmversion(
5449                                           struct target_drm_version *target_ver,
5450                                           struct drm_version *host_ver)
5451 {
5452     __put_user(host_ver->version_major, &target_ver->version_major);
5453     __put_user(host_ver->version_minor, &target_ver->version_minor);
5454     __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5455     __put_user(host_ver->name_len, &target_ver->name_len);
5456     __put_user(host_ver->date_len, &target_ver->date_len);
5457     __put_user(host_ver->desc_len, &target_ver->desc_len);
5458     unlock_drm_version(host_ver, target_ver, true);
5459 }
5460 
5461 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5462                              int fd, int cmd, abi_long arg)
5463 {
5464     struct drm_version *ver;
5465     struct target_drm_version *target_ver;
5466     abi_long ret;
5467 
5468     switch (ie->host_cmd) {
5469     case DRM_IOCTL_VERSION:
5470         if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5471             return -TARGET_EFAULT;
5472         }
5473         ver = (struct drm_version *)buf_temp;
5474         ret = target_to_host_drmversion(ver, target_ver);
5475         if (!is_error(ret)) {
5476             ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5477             if (is_error(ret)) {
5478                 unlock_drm_version(ver, target_ver, false);
5479             } else {
5480                 host_to_target_drmversion(target_ver, ver);
5481             }
5482         }
5483         unlock_user_struct(target_ver, arg, 0);
5484         return ret;
5485     }
5486     return -TARGET_ENOSYS;
5487 }
5488 
5489 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5490                                            struct drm_i915_getparam *gparam,
5491                                            int fd, abi_long arg)
5492 {
5493     abi_long ret;
5494     int value;
5495     struct target_drm_i915_getparam *target_gparam;
5496 
5497     if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5498         return -TARGET_EFAULT;
5499     }
5500 
5501     __get_user(gparam->param, &target_gparam->param);
5502     gparam->value = &value;
5503     ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5504     put_user_s32(value, target_gparam->value);
5505 
5506     unlock_user_struct(target_gparam, arg, 0);
5507     return ret;
5508 }
5509 
5510 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5511                                   int fd, int cmd, abi_long arg)
5512 {
5513     switch (ie->host_cmd) {
5514     case DRM_IOCTL_I915_GETPARAM:
5515         return do_ioctl_drm_i915_getparam(ie,
5516                                           (struct drm_i915_getparam *)buf_temp,
5517                                           fd, arg);
5518     default:
5519         return -TARGET_ENOSYS;
5520     }
5521 }
5522 
5523 #endif
5524 
5525 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5526                                         int fd, int cmd, abi_long arg)
5527 {
5528     struct tun_filter *filter = (struct tun_filter *)buf_temp;
5529     struct tun_filter *target_filter;
5530     char *target_addr;
5531 
5532     assert(ie->access == IOC_W);
5533 
5534     target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5535     if (!target_filter) {
5536         return -TARGET_EFAULT;
5537     }
5538     filter->flags = tswap16(target_filter->flags);
5539     filter->count = tswap16(target_filter->count);
5540     unlock_user(target_filter, arg, 0);
5541 
5542     if (filter->count) {
5543         if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5544             MAX_STRUCT_SIZE) {
5545             return -TARGET_EFAULT;
5546         }
5547 
5548         target_addr = lock_user(VERIFY_READ,
5549                                 arg + offsetof(struct tun_filter, addr),
5550                                 filter->count * ETH_ALEN, 1);
5551         if (!target_addr) {
5552             return -TARGET_EFAULT;
5553         }
5554         memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5555         unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5556     }
5557 
5558     return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5559 }
5560 
5561 IOCTLEntry ioctl_entries[] = {
5562 #define IOCTL(cmd, access, ...) \
5563     { TARGET_ ## cmd, cmd, #cmd, access, 0, {  __VA_ARGS__ } },
5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...)                      \
5565     { TARGET_ ## cmd, cmd, #cmd, access, dofn, {  __VA_ARGS__ } },
5566 #define IOCTL_IGNORE(cmd) \
5567     { TARGET_ ## cmd, 0, #cmd },
5568 #include "ioctls.h"
5569     { 0, 0, },
5570 };
5571 
5572 /* ??? Implement proper locking for ioctls.  */
5573 /* do_ioctl() Must return target values and target errnos. */
5574 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5575 {
5576     const IOCTLEntry *ie;
5577     const argtype *arg_type;
5578     abi_long ret;
5579     uint8_t buf_temp[MAX_STRUCT_SIZE];
5580     int target_size;
5581     void *argptr;
5582 
5583     ie = ioctl_entries;
5584     for(;;) {
5585         if (ie->target_cmd == 0) {
5586             qemu_log_mask(
5587                 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5588             return -TARGET_ENOTTY;
5589         }
5590         if (ie->target_cmd == cmd)
5591             break;
5592         ie++;
5593     }
5594     arg_type = ie->arg_type;
5595     if (ie->do_ioctl) {
5596         return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5597     } else if (!ie->host_cmd) {
5598         /* Some architectures define BSD ioctls in their headers
5599            that are not implemented in Linux.  */
5600         return -TARGET_ENOTTY;
5601     }
5602 
5603     switch(arg_type[0]) {
5604     case TYPE_NULL:
5605         /* no argument */
5606         ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5607         break;
5608     case TYPE_PTRVOID:
5609     case TYPE_INT:
5610     case TYPE_LONG:
5611     case TYPE_ULONG:
5612         ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5613         break;
5614     case TYPE_PTR:
5615         arg_type++;
5616         target_size = thunk_type_size(arg_type, 0);
5617         switch(ie->access) {
5618         case IOC_R:
5619             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5620             if (!is_error(ret)) {
5621                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5622                 if (!argptr)
5623                     return -TARGET_EFAULT;
5624                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5625                 unlock_user(argptr, arg, target_size);
5626             }
5627             break;
5628         case IOC_W:
5629             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5630             if (!argptr)
5631                 return -TARGET_EFAULT;
5632             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5633             unlock_user(argptr, arg, 0);
5634             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5635             break;
5636         default:
5637         case IOC_RW:
5638             argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5639             if (!argptr)
5640                 return -TARGET_EFAULT;
5641             thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5642             unlock_user(argptr, arg, 0);
5643             ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5644             if (!is_error(ret)) {
5645                 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5646                 if (!argptr)
5647                     return -TARGET_EFAULT;
5648                 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5649                 unlock_user(argptr, arg, target_size);
5650             }
5651             break;
5652         }
5653         break;
5654     default:
5655         qemu_log_mask(LOG_UNIMP,
5656                       "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5657                       (long)cmd, arg_type[0]);
5658         ret = -TARGET_ENOTTY;
5659         break;
5660     }
5661     return ret;
5662 }
5663 
5664 static const bitmask_transtbl iflag_tbl[] = {
5665         { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5666         { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5667         { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5668         { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5669         { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5670         { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5671         { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5672         { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5673         { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5674         { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5675         { TARGET_IXON, TARGET_IXON, IXON, IXON },
5676         { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5677         { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5678         { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5679         { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5680 };
5681 
5682 static const bitmask_transtbl oflag_tbl[] = {
5683 	{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5684 	{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5685 	{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5686 	{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5687 	{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5688 	{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5689 	{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5690 	{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5691 	{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5692 	{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5693 	{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5694 	{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5695 	{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5696 	{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5697 	{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5698 	{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5699 	{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5700 	{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5701 	{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5702 	{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5703 	{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5704 	{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5705 	{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5706 	{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5707 };
5708 
5709 static const bitmask_transtbl cflag_tbl[] = {
5710 	{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5711 	{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5712 	{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5713 	{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5714 	{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5715 	{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5716 	{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5717 	{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5718 	{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5719 	{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5720 	{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5721 	{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5722 	{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5723 	{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5724 	{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5725 	{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5726 	{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5727 	{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5728 	{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5729 	{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5730 	{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5731 	{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5732 	{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5733 	{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5734 	{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5735 	{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5736 	{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5737 	{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5738 	{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5739 	{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5740 	{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5741 };
5742 
5743 static const bitmask_transtbl lflag_tbl[] = {
5744   { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5745   { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5746   { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5747   { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5748   { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5749   { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5750   { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5751   { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5752   { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5753   { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5754   { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5755   { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5756   { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5757   { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5758   { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5759   { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5760 };
5761 
5762 static void target_to_host_termios (void *dst, const void *src)
5763 {
5764     struct host_termios *host = dst;
5765     const struct target_termios *target = src;
5766 
5767     host->c_iflag =
5768         target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5769     host->c_oflag =
5770         target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5771     host->c_cflag =
5772         target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5773     host->c_lflag =
5774         target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5775     host->c_line = target->c_line;
5776 
5777     memset(host->c_cc, 0, sizeof(host->c_cc));
5778     host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5779     host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5780     host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5781     host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5782     host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5783     host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5784     host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5785     host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5786     host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5787     host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5788     host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5789     host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5790     host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5791     host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5792     host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5793     host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5794     host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5795 }
5796 
5797 static void host_to_target_termios (void *dst, const void *src)
5798 {
5799     struct target_termios *target = dst;
5800     const struct host_termios *host = src;
5801 
5802     target->c_iflag =
5803         tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5804     target->c_oflag =
5805         tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5806     target->c_cflag =
5807         tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5808     target->c_lflag =
5809         tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5810     target->c_line = host->c_line;
5811 
5812     memset(target->c_cc, 0, sizeof(target->c_cc));
5813     target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5814     target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5815     target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5816     target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5817     target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5818     target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5819     target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5820     target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5821     target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5822     target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5823     target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5824     target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5825     target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5826     target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5827     target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5828     target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5829     target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5830 }
5831 
5832 static const StructEntry struct_termios_def = {
5833     .convert = { host_to_target_termios, target_to_host_termios },
5834     .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5835     .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5836     .print = print_termios,
5837 };
5838 
5839 /* If the host does not provide these bits, they may be safely discarded. */
5840 #ifndef MAP_SYNC
5841 #define MAP_SYNC 0
5842 #endif
5843 #ifndef MAP_UNINITIALIZED
5844 #define MAP_UNINITIALIZED 0
5845 #endif
5846 
5847 static const bitmask_transtbl mmap_flags_tbl[] = {
5848     { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5849     { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5850       MAP_ANONYMOUS, MAP_ANONYMOUS },
5851     { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5852       MAP_GROWSDOWN, MAP_GROWSDOWN },
5853     { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5854       MAP_DENYWRITE, MAP_DENYWRITE },
5855     { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5856       MAP_EXECUTABLE, MAP_EXECUTABLE },
5857     { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5858     { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5859       MAP_NORESERVE, MAP_NORESERVE },
5860     { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5861     /* MAP_STACK had been ignored by the kernel for quite some time.
5862        Recognize it for the target insofar as we do not want to pass
5863        it through to the host.  */
5864     { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5865     { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5866     { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5867     { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5868       MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5869     { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5870       MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5871 };
5872 
5873 /*
5874  * Arrange for legacy / undefined architecture specific flags to be
5875  * ignored by mmap handling code.
5876  */
5877 #ifndef TARGET_MAP_32BIT
5878 #define TARGET_MAP_32BIT 0
5879 #endif
5880 #ifndef TARGET_MAP_HUGE_2MB
5881 #define TARGET_MAP_HUGE_2MB 0
5882 #endif
5883 #ifndef TARGET_MAP_HUGE_1GB
5884 #define TARGET_MAP_HUGE_1GB 0
5885 #endif
5886 
5887 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5888                         int target_flags, int fd, off_t offset)
5889 {
5890     /*
5891      * The historical set of flags that all mmap types implicitly support.
5892      */
5893     enum {
5894         TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5895                                | TARGET_MAP_PRIVATE
5896                                | TARGET_MAP_FIXED
5897                                | TARGET_MAP_ANONYMOUS
5898                                | TARGET_MAP_DENYWRITE
5899                                | TARGET_MAP_EXECUTABLE
5900                                | TARGET_MAP_UNINITIALIZED
5901                                | TARGET_MAP_GROWSDOWN
5902                                | TARGET_MAP_LOCKED
5903                                | TARGET_MAP_NORESERVE
5904                                | TARGET_MAP_POPULATE
5905                                | TARGET_MAP_NONBLOCK
5906                                | TARGET_MAP_STACK
5907                                | TARGET_MAP_HUGETLB
5908                                | TARGET_MAP_32BIT
5909                                | TARGET_MAP_HUGE_2MB
5910                                | TARGET_MAP_HUGE_1GB
5911     };
5912     int host_flags;
5913 
5914     switch (target_flags & TARGET_MAP_TYPE) {
5915     case TARGET_MAP_PRIVATE:
5916         host_flags = MAP_PRIVATE;
5917         break;
5918     case TARGET_MAP_SHARED:
5919         host_flags = MAP_SHARED;
5920         break;
5921     case TARGET_MAP_SHARED_VALIDATE:
5922         /*
5923          * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5924          * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5925          */
5926         if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5927             return -TARGET_EOPNOTSUPP;
5928         }
5929         host_flags = MAP_SHARED_VALIDATE;
5930         if (target_flags & TARGET_MAP_SYNC) {
5931             host_flags |= MAP_SYNC;
5932         }
5933         break;
5934     default:
5935         return -TARGET_EINVAL;
5936     }
5937     host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5938 
5939     return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5940 }
5941 
5942 /*
5943  * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5944  *       TARGET_I386 is defined if TARGET_X86_64 is defined
5945  */
5946 #if defined(TARGET_I386)
5947 
5948 /* NOTE: there is really one LDT for all the threads */
5949 static uint8_t *ldt_table;
5950 
5951 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5952 {
5953     int size;
5954     void *p;
5955 
5956     if (!ldt_table)
5957         return 0;
5958     size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5959     if (size > bytecount)
5960         size = bytecount;
5961     p = lock_user(VERIFY_WRITE, ptr, size, 0);
5962     if (!p)
5963         return -TARGET_EFAULT;
5964     /* ??? Should this by byteswapped?  */
5965     memcpy(p, ldt_table, size);
5966     unlock_user(p, ptr, size);
5967     return size;
5968 }
5969 
5970 /* XXX: add locking support */
5971 static abi_long write_ldt(CPUX86State *env,
5972                           abi_ulong ptr, unsigned long bytecount, int oldmode)
5973 {
5974     struct target_modify_ldt_ldt_s ldt_info;
5975     struct target_modify_ldt_ldt_s *target_ldt_info;
5976     int seg_32bit, contents, read_exec_only, limit_in_pages;
5977     int seg_not_present, useable, lm;
5978     uint32_t *lp, entry_1, entry_2;
5979 
5980     if (bytecount != sizeof(ldt_info))
5981         return -TARGET_EINVAL;
5982     if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5983         return -TARGET_EFAULT;
5984     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5985     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5986     ldt_info.limit = tswap32(target_ldt_info->limit);
5987     ldt_info.flags = tswap32(target_ldt_info->flags);
5988     unlock_user_struct(target_ldt_info, ptr, 0);
5989 
5990     if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5991         return -TARGET_EINVAL;
5992     seg_32bit = ldt_info.flags & 1;
5993     contents = (ldt_info.flags >> 1) & 3;
5994     read_exec_only = (ldt_info.flags >> 3) & 1;
5995     limit_in_pages = (ldt_info.flags >> 4) & 1;
5996     seg_not_present = (ldt_info.flags >> 5) & 1;
5997     useable = (ldt_info.flags >> 6) & 1;
5998 #ifdef TARGET_ABI32
5999     lm = 0;
6000 #else
6001     lm = (ldt_info.flags >> 7) & 1;
6002 #endif
6003     if (contents == 3) {
6004         if (oldmode)
6005             return -TARGET_EINVAL;
6006         if (seg_not_present == 0)
6007             return -TARGET_EINVAL;
6008     }
6009     /* allocate the LDT */
6010     if (!ldt_table) {
6011         env->ldt.base = target_mmap(0,
6012                                     TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6013                                     PROT_READ|PROT_WRITE,
6014                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6015         if (env->ldt.base == -1)
6016             return -TARGET_ENOMEM;
6017         memset(g2h_untagged(env->ldt.base), 0,
6018                TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6019         env->ldt.limit = 0xffff;
6020         ldt_table = g2h_untagged(env->ldt.base);
6021     }
6022 
6023     /* NOTE: same code as Linux kernel */
6024     /* Allow LDTs to be cleared by the user. */
6025     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6026         if (oldmode ||
6027             (contents == 0		&&
6028              read_exec_only == 1	&&
6029              seg_32bit == 0		&&
6030              limit_in_pages == 0	&&
6031              seg_not_present == 1	&&
6032              useable == 0 )) {
6033             entry_1 = 0;
6034             entry_2 = 0;
6035             goto install;
6036         }
6037     }
6038 
6039     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6040         (ldt_info.limit & 0x0ffff);
6041     entry_2 = (ldt_info.base_addr & 0xff000000) |
6042         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6043         (ldt_info.limit & 0xf0000) |
6044         ((read_exec_only ^ 1) << 9) |
6045         (contents << 10) |
6046         ((seg_not_present ^ 1) << 15) |
6047         (seg_32bit << 22) |
6048         (limit_in_pages << 23) |
6049         (lm << 21) |
6050         0x7000;
6051     if (!oldmode)
6052         entry_2 |= (useable << 20);
6053 
6054     /* Install the new entry ...  */
6055 install:
6056     lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6057     lp[0] = tswap32(entry_1);
6058     lp[1] = tswap32(entry_2);
6059     return 0;
6060 }
6061 
6062 /* specific and weird i386 syscalls */
6063 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6064                               unsigned long bytecount)
6065 {
6066     abi_long ret;
6067 
6068     switch (func) {
6069     case 0:
6070         ret = read_ldt(ptr, bytecount);
6071         break;
6072     case 1:
6073         ret = write_ldt(env, ptr, bytecount, 1);
6074         break;
6075     case 0x11:
6076         ret = write_ldt(env, ptr, bytecount, 0);
6077         break;
6078     default:
6079         ret = -TARGET_ENOSYS;
6080         break;
6081     }
6082     return ret;
6083 }
6084 
6085 #if defined(TARGET_ABI32)
6086 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6087 {
6088     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6089     struct target_modify_ldt_ldt_s ldt_info;
6090     struct target_modify_ldt_ldt_s *target_ldt_info;
6091     int seg_32bit, contents, read_exec_only, limit_in_pages;
6092     int seg_not_present, useable, lm;
6093     uint32_t *lp, entry_1, entry_2;
6094     int i;
6095 
6096     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6097     if (!target_ldt_info)
6098         return -TARGET_EFAULT;
6099     ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6100     ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6101     ldt_info.limit = tswap32(target_ldt_info->limit);
6102     ldt_info.flags = tswap32(target_ldt_info->flags);
6103     if (ldt_info.entry_number == -1) {
6104         for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6105             if (gdt_table[i] == 0) {
6106                 ldt_info.entry_number = i;
6107                 target_ldt_info->entry_number = tswap32(i);
6108                 break;
6109             }
6110         }
6111     }
6112     unlock_user_struct(target_ldt_info, ptr, 1);
6113 
6114     if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6115         ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6116            return -TARGET_EINVAL;
6117     seg_32bit = ldt_info.flags & 1;
6118     contents = (ldt_info.flags >> 1) & 3;
6119     read_exec_only = (ldt_info.flags >> 3) & 1;
6120     limit_in_pages = (ldt_info.flags >> 4) & 1;
6121     seg_not_present = (ldt_info.flags >> 5) & 1;
6122     useable = (ldt_info.flags >> 6) & 1;
6123 #ifdef TARGET_ABI32
6124     lm = 0;
6125 #else
6126     lm = (ldt_info.flags >> 7) & 1;
6127 #endif
6128 
6129     if (contents == 3) {
6130         if (seg_not_present == 0)
6131             return -TARGET_EINVAL;
6132     }
6133 
6134     /* NOTE: same code as Linux kernel */
6135     /* Allow LDTs to be cleared by the user. */
6136     if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6137         if ((contents == 0             &&
6138              read_exec_only == 1       &&
6139              seg_32bit == 0            &&
6140              limit_in_pages == 0       &&
6141              seg_not_present == 1      &&
6142              useable == 0 )) {
6143             entry_1 = 0;
6144             entry_2 = 0;
6145             goto install;
6146         }
6147     }
6148 
6149     entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6150         (ldt_info.limit & 0x0ffff);
6151     entry_2 = (ldt_info.base_addr & 0xff000000) |
6152         ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6153         (ldt_info.limit & 0xf0000) |
6154         ((read_exec_only ^ 1) << 9) |
6155         (contents << 10) |
6156         ((seg_not_present ^ 1) << 15) |
6157         (seg_32bit << 22) |
6158         (limit_in_pages << 23) |
6159         (useable << 20) |
6160         (lm << 21) |
6161         0x7000;
6162 
6163     /* Install the new entry ...  */
6164 install:
6165     lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6166     lp[0] = tswap32(entry_1);
6167     lp[1] = tswap32(entry_2);
6168     return 0;
6169 }
6170 
6171 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6172 {
6173     struct target_modify_ldt_ldt_s *target_ldt_info;
6174     uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6175     uint32_t base_addr, limit, flags;
6176     int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6177     int seg_not_present, useable, lm;
6178     uint32_t *lp, entry_1, entry_2;
6179 
6180     lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6181     if (!target_ldt_info)
6182         return -TARGET_EFAULT;
6183     idx = tswap32(target_ldt_info->entry_number);
6184     if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6185         idx > TARGET_GDT_ENTRY_TLS_MAX) {
6186         unlock_user_struct(target_ldt_info, ptr, 1);
6187         return -TARGET_EINVAL;
6188     }
6189     lp = (uint32_t *)(gdt_table + idx);
6190     entry_1 = tswap32(lp[0]);
6191     entry_2 = tswap32(lp[1]);
6192 
6193     read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6194     contents = (entry_2 >> 10) & 3;
6195     seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6196     seg_32bit = (entry_2 >> 22) & 1;
6197     limit_in_pages = (entry_2 >> 23) & 1;
6198     useable = (entry_2 >> 20) & 1;
6199 #ifdef TARGET_ABI32
6200     lm = 0;
6201 #else
6202     lm = (entry_2 >> 21) & 1;
6203 #endif
6204     flags = (seg_32bit << 0) | (contents << 1) |
6205         (read_exec_only << 3) | (limit_in_pages << 4) |
6206         (seg_not_present << 5) | (useable << 6) | (lm << 7);
6207     limit = (entry_1 & 0xffff) | (entry_2  & 0xf0000);
6208     base_addr = (entry_1 >> 16) |
6209         (entry_2 & 0xff000000) |
6210         ((entry_2 & 0xff) << 16);
6211     target_ldt_info->base_addr = tswapal(base_addr);
6212     target_ldt_info->limit = tswap32(limit);
6213     target_ldt_info->flags = tswap32(flags);
6214     unlock_user_struct(target_ldt_info, ptr, 1);
6215     return 0;
6216 }
6217 
6218 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6219 {
6220     return -TARGET_ENOSYS;
6221 }
6222 #else
6223 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6224 {
6225     abi_long ret = 0;
6226     abi_ulong val;
6227     int idx;
6228 
6229     switch(code) {
6230     case TARGET_ARCH_SET_GS:
6231     case TARGET_ARCH_SET_FS:
6232         if (code == TARGET_ARCH_SET_GS)
6233             idx = R_GS;
6234         else
6235             idx = R_FS;
6236         cpu_x86_load_seg(env, idx, 0);
6237         env->segs[idx].base = addr;
6238         break;
6239     case TARGET_ARCH_GET_GS:
6240     case TARGET_ARCH_GET_FS:
6241         if (code == TARGET_ARCH_GET_GS)
6242             idx = R_GS;
6243         else
6244             idx = R_FS;
6245         val = env->segs[idx].base;
6246         if (put_user(val, addr, abi_ulong))
6247             ret = -TARGET_EFAULT;
6248         break;
6249     default:
6250         ret = -TARGET_EINVAL;
6251         break;
6252     }
6253     return ret;
6254 }
6255 #endif /* defined(TARGET_ABI32 */
6256 #endif /* defined(TARGET_I386) */
6257 
6258 /*
6259  * These constants are generic.  Supply any that are missing from the host.
6260  */
6261 #ifndef PR_SET_NAME
6262 # define PR_SET_NAME    15
6263 # define PR_GET_NAME    16
6264 #endif
6265 #ifndef PR_SET_FP_MODE
6266 # define PR_SET_FP_MODE 45
6267 # define PR_GET_FP_MODE 46
6268 # define PR_FP_MODE_FR   (1 << 0)
6269 # define PR_FP_MODE_FRE  (1 << 1)
6270 #endif
6271 #ifndef PR_SVE_SET_VL
6272 # define PR_SVE_SET_VL  50
6273 # define PR_SVE_GET_VL  51
6274 # define PR_SVE_VL_LEN_MASK  0xffff
6275 # define PR_SVE_VL_INHERIT   (1 << 17)
6276 #endif
6277 #ifndef PR_PAC_RESET_KEYS
6278 # define PR_PAC_RESET_KEYS  54
6279 # define PR_PAC_APIAKEY   (1 << 0)
6280 # define PR_PAC_APIBKEY   (1 << 1)
6281 # define PR_PAC_APDAKEY   (1 << 2)
6282 # define PR_PAC_APDBKEY   (1 << 3)
6283 # define PR_PAC_APGAKEY   (1 << 4)
6284 #endif
6285 #ifndef PR_SET_TAGGED_ADDR_CTRL
6286 # define PR_SET_TAGGED_ADDR_CTRL 55
6287 # define PR_GET_TAGGED_ADDR_CTRL 56
6288 # define PR_TAGGED_ADDR_ENABLE  (1UL << 0)
6289 #endif
6290 #ifndef PR_MTE_TCF_SHIFT
6291 # define PR_MTE_TCF_SHIFT       1
6292 # define PR_MTE_TCF_NONE        (0UL << PR_MTE_TCF_SHIFT)
6293 # define PR_MTE_TCF_SYNC        (1UL << PR_MTE_TCF_SHIFT)
6294 # define PR_MTE_TCF_ASYNC       (2UL << PR_MTE_TCF_SHIFT)
6295 # define PR_MTE_TCF_MASK        (3UL << PR_MTE_TCF_SHIFT)
6296 # define PR_MTE_TAG_SHIFT       3
6297 # define PR_MTE_TAG_MASK        (0xffffUL << PR_MTE_TAG_SHIFT)
6298 #endif
6299 #ifndef PR_SET_IO_FLUSHER
6300 # define PR_SET_IO_FLUSHER 57
6301 # define PR_GET_IO_FLUSHER 58
6302 #endif
6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6304 # define PR_SET_SYSCALL_USER_DISPATCH 59
6305 #endif
6306 #ifndef PR_SME_SET_VL
6307 # define PR_SME_SET_VL  63
6308 # define PR_SME_GET_VL  64
6309 # define PR_SME_VL_LEN_MASK  0xffff
6310 # define PR_SME_VL_INHERIT   (1 << 17)
6311 #endif
6312 
6313 #include "target_prctl.h"
6314 
6315 static abi_long do_prctl_inval0(CPUArchState *env)
6316 {
6317     return -TARGET_EINVAL;
6318 }
6319 
6320 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6321 {
6322     return -TARGET_EINVAL;
6323 }
6324 
6325 #ifndef do_prctl_get_fp_mode
6326 #define do_prctl_get_fp_mode do_prctl_inval0
6327 #endif
6328 #ifndef do_prctl_set_fp_mode
6329 #define do_prctl_set_fp_mode do_prctl_inval1
6330 #endif
6331 #ifndef do_prctl_sve_get_vl
6332 #define do_prctl_sve_get_vl do_prctl_inval0
6333 #endif
6334 #ifndef do_prctl_sve_set_vl
6335 #define do_prctl_sve_set_vl do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_reset_keys
6338 #define do_prctl_reset_keys do_prctl_inval1
6339 #endif
6340 #ifndef do_prctl_set_tagged_addr_ctrl
6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6342 #endif
6343 #ifndef do_prctl_get_tagged_addr_ctrl
6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6345 #endif
6346 #ifndef do_prctl_get_unalign
6347 #define do_prctl_get_unalign do_prctl_inval1
6348 #endif
6349 #ifndef do_prctl_set_unalign
6350 #define do_prctl_set_unalign do_prctl_inval1
6351 #endif
6352 #ifndef do_prctl_sme_get_vl
6353 #define do_prctl_sme_get_vl do_prctl_inval0
6354 #endif
6355 #ifndef do_prctl_sme_set_vl
6356 #define do_prctl_sme_set_vl do_prctl_inval1
6357 #endif
6358 
6359 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6360                          abi_long arg3, abi_long arg4, abi_long arg5)
6361 {
6362     abi_long ret;
6363 
6364     switch (option) {
6365     case PR_GET_PDEATHSIG:
6366         {
6367             int deathsig;
6368             ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6369                                   arg3, arg4, arg5));
6370             if (!is_error(ret) &&
6371                 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6372                 return -TARGET_EFAULT;
6373             }
6374             return ret;
6375         }
6376     case PR_SET_PDEATHSIG:
6377         return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6378                                arg3, arg4, arg5));
6379     case PR_GET_NAME:
6380         {
6381             void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6382             if (!name) {
6383                 return -TARGET_EFAULT;
6384             }
6385             ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6386                                   arg3, arg4, arg5));
6387             unlock_user(name, arg2, 16);
6388             return ret;
6389         }
6390     case PR_SET_NAME:
6391         {
6392             void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6393             if (!name) {
6394                 return -TARGET_EFAULT;
6395             }
6396             ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6397                                   arg3, arg4, arg5));
6398             unlock_user(name, arg2, 0);
6399             return ret;
6400         }
6401     case PR_GET_FP_MODE:
6402         return do_prctl_get_fp_mode(env);
6403     case PR_SET_FP_MODE:
6404         return do_prctl_set_fp_mode(env, arg2);
6405     case PR_SVE_GET_VL:
6406         return do_prctl_sve_get_vl(env);
6407     case PR_SVE_SET_VL:
6408         return do_prctl_sve_set_vl(env, arg2);
6409     case PR_SME_GET_VL:
6410         return do_prctl_sme_get_vl(env);
6411     case PR_SME_SET_VL:
6412         return do_prctl_sme_set_vl(env, arg2);
6413     case PR_PAC_RESET_KEYS:
6414         if (arg3 || arg4 || arg5) {
6415             return -TARGET_EINVAL;
6416         }
6417         return do_prctl_reset_keys(env, arg2);
6418     case PR_SET_TAGGED_ADDR_CTRL:
6419         if (arg3 || arg4 || arg5) {
6420             return -TARGET_EINVAL;
6421         }
6422         return do_prctl_set_tagged_addr_ctrl(env, arg2);
6423     case PR_GET_TAGGED_ADDR_CTRL:
6424         if (arg2 || arg3 || arg4 || arg5) {
6425             return -TARGET_EINVAL;
6426         }
6427         return do_prctl_get_tagged_addr_ctrl(env);
6428 
6429     case PR_GET_UNALIGN:
6430         return do_prctl_get_unalign(env, arg2);
6431     case PR_SET_UNALIGN:
6432         return do_prctl_set_unalign(env, arg2);
6433 
6434     case PR_CAP_AMBIENT:
6435     case PR_CAPBSET_READ:
6436     case PR_CAPBSET_DROP:
6437     case PR_GET_DUMPABLE:
6438     case PR_SET_DUMPABLE:
6439     case PR_GET_KEEPCAPS:
6440     case PR_SET_KEEPCAPS:
6441     case PR_GET_SECUREBITS:
6442     case PR_SET_SECUREBITS:
6443     case PR_GET_TIMING:
6444     case PR_SET_TIMING:
6445     case PR_GET_TIMERSLACK:
6446     case PR_SET_TIMERSLACK:
6447     case PR_MCE_KILL:
6448     case PR_MCE_KILL_GET:
6449     case PR_GET_NO_NEW_PRIVS:
6450     case PR_SET_NO_NEW_PRIVS:
6451     case PR_GET_IO_FLUSHER:
6452     case PR_SET_IO_FLUSHER:
6453         /* Some prctl options have no pointer arguments and we can pass on. */
6454         return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6455 
6456     case PR_GET_CHILD_SUBREAPER:
6457     case PR_SET_CHILD_SUBREAPER:
6458     case PR_GET_SPECULATION_CTRL:
6459     case PR_SET_SPECULATION_CTRL:
6460     case PR_GET_TID_ADDRESS:
6461         /* TODO */
6462         return -TARGET_EINVAL;
6463 
6464     case PR_GET_FPEXC:
6465     case PR_SET_FPEXC:
6466         /* Was used for SPE on PowerPC. */
6467         return -TARGET_EINVAL;
6468 
6469     case PR_GET_ENDIAN:
6470     case PR_SET_ENDIAN:
6471     case PR_GET_FPEMU:
6472     case PR_SET_FPEMU:
6473     case PR_SET_MM:
6474     case PR_GET_SECCOMP:
6475     case PR_SET_SECCOMP:
6476     case PR_SET_SYSCALL_USER_DISPATCH:
6477     case PR_GET_THP_DISABLE:
6478     case PR_SET_THP_DISABLE:
6479     case PR_GET_TSC:
6480     case PR_SET_TSC:
6481         /* Disable to prevent the target disabling stuff we need. */
6482         return -TARGET_EINVAL;
6483 
6484     default:
6485         qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6486                       option);
6487         return -TARGET_EINVAL;
6488     }
6489 }
6490 
6491 #define NEW_STACK_SIZE 0x40000
6492 
6493 
6494 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6495 typedef struct {
6496     CPUArchState *env;
6497     pthread_mutex_t mutex;
6498     pthread_cond_t cond;
6499     pthread_t thread;
6500     uint32_t tid;
6501     abi_ulong child_tidptr;
6502     abi_ulong parent_tidptr;
6503     sigset_t sigmask;
6504 } new_thread_info;
6505 
6506 static void *clone_func(void *arg)
6507 {
6508     new_thread_info *info = arg;
6509     CPUArchState *env;
6510     CPUState *cpu;
6511     TaskState *ts;
6512 
6513     rcu_register_thread();
6514     tcg_register_thread();
6515     env = info->env;
6516     cpu = env_cpu(env);
6517     thread_cpu = cpu;
6518     ts = get_task_state(cpu);
6519     info->tid = sys_gettid();
6520     task_settid(ts);
6521     if (info->child_tidptr)
6522         put_user_u32(info->tid, info->child_tidptr);
6523     if (info->parent_tidptr)
6524         put_user_u32(info->tid, info->parent_tidptr);
6525     qemu_guest_random_seed_thread_part2(cpu->random_seed);
6526     /* Enable signals.  */
6527     sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6528     /* Signal to the parent that we're ready.  */
6529     pthread_mutex_lock(&info->mutex);
6530     pthread_cond_broadcast(&info->cond);
6531     pthread_mutex_unlock(&info->mutex);
6532     /* Wait until the parent has finished initializing the tls state.  */
6533     pthread_mutex_lock(&clone_lock);
6534     pthread_mutex_unlock(&clone_lock);
6535     cpu_loop(env);
6536     /* never exits */
6537     return NULL;
6538 }
6539 
6540 /* do_fork() Must return host values and target errnos (unlike most
6541    do_*() functions). */
6542 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6543                    abi_ulong parent_tidptr, target_ulong newtls,
6544                    abi_ulong child_tidptr)
6545 {
6546     CPUState *cpu = env_cpu(env);
6547     int ret;
6548     TaskState *ts;
6549     CPUState *new_cpu;
6550     CPUArchState *new_env;
6551     sigset_t sigmask;
6552 
6553     flags &= ~CLONE_IGNORED_FLAGS;
6554 
6555     /* Emulate vfork() with fork() */
6556     if (flags & CLONE_VFORK)
6557         flags &= ~(CLONE_VFORK | CLONE_VM);
6558 
6559     if (flags & CLONE_VM) {
6560         TaskState *parent_ts = get_task_state(cpu);
6561         new_thread_info info;
6562         pthread_attr_t attr;
6563 
6564         if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6565             (flags & CLONE_INVALID_THREAD_FLAGS)) {
6566             return -TARGET_EINVAL;
6567         }
6568 
6569         ts = g_new0(TaskState, 1);
6570         init_task_state(ts);
6571 
6572         /* Grab a mutex so that thread setup appears atomic.  */
6573         pthread_mutex_lock(&clone_lock);
6574 
6575         /*
6576          * If this is our first additional thread, we need to ensure we
6577          * generate code for parallel execution and flush old translations.
6578          * Do this now so that the copy gets CF_PARALLEL too.
6579          */
6580         if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6581             cpu->tcg_cflags |= CF_PARALLEL;
6582             tb_flush(cpu);
6583         }
6584 
6585         /* we create a new CPU instance. */
6586         new_env = cpu_copy(env);
6587         /* Init regs that differ from the parent.  */
6588         cpu_clone_regs_child(new_env, newsp, flags);
6589         cpu_clone_regs_parent(env, flags);
6590         new_cpu = env_cpu(new_env);
6591         new_cpu->opaque = ts;
6592         ts->bprm = parent_ts->bprm;
6593         ts->info = parent_ts->info;
6594         ts->signal_mask = parent_ts->signal_mask;
6595 
6596         if (flags & CLONE_CHILD_CLEARTID) {
6597             ts->child_tidptr = child_tidptr;
6598         }
6599 
6600         if (flags & CLONE_SETTLS) {
6601             cpu_set_tls (new_env, newtls);
6602         }
6603 
6604         memset(&info, 0, sizeof(info));
6605         pthread_mutex_init(&info.mutex, NULL);
6606         pthread_mutex_lock(&info.mutex);
6607         pthread_cond_init(&info.cond, NULL);
6608         info.env = new_env;
6609         if (flags & CLONE_CHILD_SETTID) {
6610             info.child_tidptr = child_tidptr;
6611         }
6612         if (flags & CLONE_PARENT_SETTID) {
6613             info.parent_tidptr = parent_tidptr;
6614         }
6615 
6616         ret = pthread_attr_init(&attr);
6617         ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6618         ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6619         /* It is not safe to deliver signals until the child has finished
6620            initializing, so temporarily block all signals.  */
6621         sigfillset(&sigmask);
6622         sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6623         cpu->random_seed = qemu_guest_random_seed_thread_part1();
6624 
6625         ret = pthread_create(&info.thread, &attr, clone_func, &info);
6626         /* TODO: Free new CPU state if thread creation failed.  */
6627 
6628         sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6629         pthread_attr_destroy(&attr);
6630         if (ret == 0) {
6631             /* Wait for the child to initialize.  */
6632             pthread_cond_wait(&info.cond, &info.mutex);
6633             ret = info.tid;
6634         } else {
6635             ret = -1;
6636         }
6637         pthread_mutex_unlock(&info.mutex);
6638         pthread_cond_destroy(&info.cond);
6639         pthread_mutex_destroy(&info.mutex);
6640         pthread_mutex_unlock(&clone_lock);
6641     } else {
6642         /* if no CLONE_VM, we consider it is a fork */
6643         if (flags & CLONE_INVALID_FORK_FLAGS) {
6644             return -TARGET_EINVAL;
6645         }
6646 
6647         /* We can't support custom termination signals */
6648         if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6649             return -TARGET_EINVAL;
6650         }
6651 
6652 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6653         if (flags & CLONE_PIDFD) {
6654             return -TARGET_EINVAL;
6655         }
6656 #endif
6657 
6658         /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6659         if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6660             return -TARGET_EINVAL;
6661         }
6662 
6663         if (block_signals()) {
6664             return -QEMU_ERESTARTSYS;
6665         }
6666 
6667         fork_start();
6668         ret = fork();
6669         if (ret == 0) {
6670             /* Child Process.  */
6671             cpu_clone_regs_child(env, newsp, flags);
6672             fork_end(ret);
6673             /* There is a race condition here.  The parent process could
6674                theoretically read the TID in the child process before the child
6675                tid is set.  This would require using either ptrace
6676                (not implemented) or having *_tidptr to point at a shared memory
6677                mapping.  We can't repeat the spinlock hack used above because
6678                the child process gets its own copy of the lock.  */
6679             if (flags & CLONE_CHILD_SETTID)
6680                 put_user_u32(sys_gettid(), child_tidptr);
6681             if (flags & CLONE_PARENT_SETTID)
6682                 put_user_u32(sys_gettid(), parent_tidptr);
6683             ts = get_task_state(cpu);
6684             if (flags & CLONE_SETTLS)
6685                 cpu_set_tls (env, newtls);
6686             if (flags & CLONE_CHILD_CLEARTID)
6687                 ts->child_tidptr = child_tidptr;
6688         } else {
6689             cpu_clone_regs_parent(env, flags);
6690             if (flags & CLONE_PIDFD) {
6691                 int pid_fd = 0;
6692 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6693                 int pid_child = ret;
6694                 pid_fd = pidfd_open(pid_child, 0);
6695                 if (pid_fd >= 0) {
6696                         fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6697                                                | FD_CLOEXEC);
6698                 } else {
6699                         pid_fd = 0;
6700                 }
6701 #endif
6702                 put_user_u32(pid_fd, parent_tidptr);
6703             }
6704             fork_end(ret);
6705         }
6706         g_assert(!cpu_in_exclusive_context(cpu));
6707     }
6708     return ret;
6709 }
6710 
6711 /* warning : doesn't handle linux specific flags... */
6712 static int target_to_host_fcntl_cmd(int cmd)
6713 {
6714     int ret;
6715 
6716     switch(cmd) {
6717     case TARGET_F_DUPFD:
6718     case TARGET_F_GETFD:
6719     case TARGET_F_SETFD:
6720     case TARGET_F_GETFL:
6721     case TARGET_F_SETFL:
6722     case TARGET_F_OFD_GETLK:
6723     case TARGET_F_OFD_SETLK:
6724     case TARGET_F_OFD_SETLKW:
6725         ret = cmd;
6726         break;
6727     case TARGET_F_GETLK:
6728         ret = F_GETLK64;
6729         break;
6730     case TARGET_F_SETLK:
6731         ret = F_SETLK64;
6732         break;
6733     case TARGET_F_SETLKW:
6734         ret = F_SETLKW64;
6735         break;
6736     case TARGET_F_GETOWN:
6737         ret = F_GETOWN;
6738         break;
6739     case TARGET_F_SETOWN:
6740         ret = F_SETOWN;
6741         break;
6742     case TARGET_F_GETSIG:
6743         ret = F_GETSIG;
6744         break;
6745     case TARGET_F_SETSIG:
6746         ret = F_SETSIG;
6747         break;
6748 #if TARGET_ABI_BITS == 32
6749     case TARGET_F_GETLK64:
6750         ret = F_GETLK64;
6751         break;
6752     case TARGET_F_SETLK64:
6753         ret = F_SETLK64;
6754         break;
6755     case TARGET_F_SETLKW64:
6756         ret = F_SETLKW64;
6757         break;
6758 #endif
6759     case TARGET_F_SETLEASE:
6760         ret = F_SETLEASE;
6761         break;
6762     case TARGET_F_GETLEASE:
6763         ret = F_GETLEASE;
6764         break;
6765 #ifdef F_DUPFD_CLOEXEC
6766     case TARGET_F_DUPFD_CLOEXEC:
6767         ret = F_DUPFD_CLOEXEC;
6768         break;
6769 #endif
6770     case TARGET_F_NOTIFY:
6771         ret = F_NOTIFY;
6772         break;
6773 #ifdef F_GETOWN_EX
6774     case TARGET_F_GETOWN_EX:
6775         ret = F_GETOWN_EX;
6776         break;
6777 #endif
6778 #ifdef F_SETOWN_EX
6779     case TARGET_F_SETOWN_EX:
6780         ret = F_SETOWN_EX;
6781         break;
6782 #endif
6783 #ifdef F_SETPIPE_SZ
6784     case TARGET_F_SETPIPE_SZ:
6785         ret = F_SETPIPE_SZ;
6786         break;
6787     case TARGET_F_GETPIPE_SZ:
6788         ret = F_GETPIPE_SZ;
6789         break;
6790 #endif
6791 #ifdef F_ADD_SEALS
6792     case TARGET_F_ADD_SEALS:
6793         ret = F_ADD_SEALS;
6794         break;
6795     case TARGET_F_GET_SEALS:
6796         ret = F_GET_SEALS;
6797         break;
6798 #endif
6799     default:
6800         ret = -TARGET_EINVAL;
6801         break;
6802     }
6803 
6804 #if defined(__powerpc64__)
6805     /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6806      * is not supported by kernel. The glibc fcntl call actually adjusts
6807      * them to 5, 6 and 7 before making the syscall(). Since we make the
6808      * syscall directly, adjust to what is supported by the kernel.
6809      */
6810     if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6811         ret -= F_GETLK64 - 5;
6812     }
6813 #endif
6814 
6815     return ret;
6816 }
6817 
6818 #define FLOCK_TRANSTBL \
6819     switch (type) { \
6820     TRANSTBL_CONVERT(F_RDLCK); \
6821     TRANSTBL_CONVERT(F_WRLCK); \
6822     TRANSTBL_CONVERT(F_UNLCK); \
6823     }
6824 
6825 static int target_to_host_flock(int type)
6826 {
6827 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6828     FLOCK_TRANSTBL
6829 #undef  TRANSTBL_CONVERT
6830     return -TARGET_EINVAL;
6831 }
6832 
6833 static int host_to_target_flock(int type)
6834 {
6835 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6836     FLOCK_TRANSTBL
6837 #undef  TRANSTBL_CONVERT
6838     /* if we don't know how to convert the value coming
6839      * from the host we copy to the target field as-is
6840      */
6841     return type;
6842 }
6843 
6844 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6845                                             abi_ulong target_flock_addr)
6846 {
6847     struct target_flock *target_fl;
6848     int l_type;
6849 
6850     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6851         return -TARGET_EFAULT;
6852     }
6853 
6854     __get_user(l_type, &target_fl->l_type);
6855     l_type = target_to_host_flock(l_type);
6856     if (l_type < 0) {
6857         return l_type;
6858     }
6859     fl->l_type = l_type;
6860     __get_user(fl->l_whence, &target_fl->l_whence);
6861     __get_user(fl->l_start, &target_fl->l_start);
6862     __get_user(fl->l_len, &target_fl->l_len);
6863     __get_user(fl->l_pid, &target_fl->l_pid);
6864     unlock_user_struct(target_fl, target_flock_addr, 0);
6865     return 0;
6866 }
6867 
6868 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6869                                           const struct flock64 *fl)
6870 {
6871     struct target_flock *target_fl;
6872     short l_type;
6873 
6874     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6875         return -TARGET_EFAULT;
6876     }
6877 
6878     l_type = host_to_target_flock(fl->l_type);
6879     __put_user(l_type, &target_fl->l_type);
6880     __put_user(fl->l_whence, &target_fl->l_whence);
6881     __put_user(fl->l_start, &target_fl->l_start);
6882     __put_user(fl->l_len, &target_fl->l_len);
6883     __put_user(fl->l_pid, &target_fl->l_pid);
6884     unlock_user_struct(target_fl, target_flock_addr, 1);
6885     return 0;
6886 }
6887 
6888 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6889 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6890 
6891 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6892 struct target_oabi_flock64 {
6893     abi_short l_type;
6894     abi_short l_whence;
6895     abi_llong l_start;
6896     abi_llong l_len;
6897     abi_int   l_pid;
6898 } QEMU_PACKED;
6899 
6900 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6901                                                    abi_ulong target_flock_addr)
6902 {
6903     struct target_oabi_flock64 *target_fl;
6904     int l_type;
6905 
6906     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6907         return -TARGET_EFAULT;
6908     }
6909 
6910     __get_user(l_type, &target_fl->l_type);
6911     l_type = target_to_host_flock(l_type);
6912     if (l_type < 0) {
6913         return l_type;
6914     }
6915     fl->l_type = l_type;
6916     __get_user(fl->l_whence, &target_fl->l_whence);
6917     __get_user(fl->l_start, &target_fl->l_start);
6918     __get_user(fl->l_len, &target_fl->l_len);
6919     __get_user(fl->l_pid, &target_fl->l_pid);
6920     unlock_user_struct(target_fl, target_flock_addr, 0);
6921     return 0;
6922 }
6923 
6924 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6925                                                  const struct flock64 *fl)
6926 {
6927     struct target_oabi_flock64 *target_fl;
6928     short l_type;
6929 
6930     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6931         return -TARGET_EFAULT;
6932     }
6933 
6934     l_type = host_to_target_flock(fl->l_type);
6935     __put_user(l_type, &target_fl->l_type);
6936     __put_user(fl->l_whence, &target_fl->l_whence);
6937     __put_user(fl->l_start, &target_fl->l_start);
6938     __put_user(fl->l_len, &target_fl->l_len);
6939     __put_user(fl->l_pid, &target_fl->l_pid);
6940     unlock_user_struct(target_fl, target_flock_addr, 1);
6941     return 0;
6942 }
6943 #endif
6944 
6945 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6946                                               abi_ulong target_flock_addr)
6947 {
6948     struct target_flock64 *target_fl;
6949     int l_type;
6950 
6951     if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6952         return -TARGET_EFAULT;
6953     }
6954 
6955     __get_user(l_type, &target_fl->l_type);
6956     l_type = target_to_host_flock(l_type);
6957     if (l_type < 0) {
6958         return l_type;
6959     }
6960     fl->l_type = l_type;
6961     __get_user(fl->l_whence, &target_fl->l_whence);
6962     __get_user(fl->l_start, &target_fl->l_start);
6963     __get_user(fl->l_len, &target_fl->l_len);
6964     __get_user(fl->l_pid, &target_fl->l_pid);
6965     unlock_user_struct(target_fl, target_flock_addr, 0);
6966     return 0;
6967 }
6968 
6969 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6970                                             const struct flock64 *fl)
6971 {
6972     struct target_flock64 *target_fl;
6973     short l_type;
6974 
6975     if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6976         return -TARGET_EFAULT;
6977     }
6978 
6979     l_type = host_to_target_flock(fl->l_type);
6980     __put_user(l_type, &target_fl->l_type);
6981     __put_user(fl->l_whence, &target_fl->l_whence);
6982     __put_user(fl->l_start, &target_fl->l_start);
6983     __put_user(fl->l_len, &target_fl->l_len);
6984     __put_user(fl->l_pid, &target_fl->l_pid);
6985     unlock_user_struct(target_fl, target_flock_addr, 1);
6986     return 0;
6987 }
6988 
6989 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6990 {
6991     struct flock64 fl64;
6992 #ifdef F_GETOWN_EX
6993     struct f_owner_ex fox;
6994     struct target_f_owner_ex *target_fox;
6995 #endif
6996     abi_long ret;
6997     int host_cmd = target_to_host_fcntl_cmd(cmd);
6998 
6999     if (host_cmd == -TARGET_EINVAL)
7000 	    return host_cmd;
7001 
7002     switch(cmd) {
7003     case TARGET_F_GETLK:
7004         ret = copy_from_user_flock(&fl64, arg);
7005         if (ret) {
7006             return ret;
7007         }
7008         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7009         if (ret == 0) {
7010             ret = copy_to_user_flock(arg, &fl64);
7011         }
7012         break;
7013 
7014     case TARGET_F_SETLK:
7015     case TARGET_F_SETLKW:
7016         ret = copy_from_user_flock(&fl64, arg);
7017         if (ret) {
7018             return ret;
7019         }
7020         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7021         break;
7022 
7023     case TARGET_F_GETLK64:
7024     case TARGET_F_OFD_GETLK:
7025         ret = copy_from_user_flock64(&fl64, arg);
7026         if (ret) {
7027             return ret;
7028         }
7029         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7030         if (ret == 0) {
7031             ret = copy_to_user_flock64(arg, &fl64);
7032         }
7033         break;
7034     case TARGET_F_SETLK64:
7035     case TARGET_F_SETLKW64:
7036     case TARGET_F_OFD_SETLK:
7037     case TARGET_F_OFD_SETLKW:
7038         ret = copy_from_user_flock64(&fl64, arg);
7039         if (ret) {
7040             return ret;
7041         }
7042         ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7043         break;
7044 
7045     case TARGET_F_GETFL:
7046         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7047         if (ret >= 0) {
7048             ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7049             /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7050             if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7051                 ret |= TARGET_O_LARGEFILE;
7052             }
7053         }
7054         break;
7055 
7056     case TARGET_F_SETFL:
7057         ret = get_errno(safe_fcntl(fd, host_cmd,
7058                                    target_to_host_bitmask(arg,
7059                                                           fcntl_flags_tbl)));
7060         break;
7061 
7062 #ifdef F_GETOWN_EX
7063     case TARGET_F_GETOWN_EX:
7064         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7065         if (ret >= 0) {
7066             if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7067                 return -TARGET_EFAULT;
7068             target_fox->type = tswap32(fox.type);
7069             target_fox->pid = tswap32(fox.pid);
7070             unlock_user_struct(target_fox, arg, 1);
7071         }
7072         break;
7073 #endif
7074 
7075 #ifdef F_SETOWN_EX
7076     case TARGET_F_SETOWN_EX:
7077         if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7078             return -TARGET_EFAULT;
7079         fox.type = tswap32(target_fox->type);
7080         fox.pid = tswap32(target_fox->pid);
7081         unlock_user_struct(target_fox, arg, 0);
7082         ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7083         break;
7084 #endif
7085 
7086     case TARGET_F_SETSIG:
7087         ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7088         break;
7089 
7090     case TARGET_F_GETSIG:
7091         ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7092         break;
7093 
7094     case TARGET_F_SETOWN:
7095     case TARGET_F_GETOWN:
7096     case TARGET_F_SETLEASE:
7097     case TARGET_F_GETLEASE:
7098     case TARGET_F_SETPIPE_SZ:
7099     case TARGET_F_GETPIPE_SZ:
7100     case TARGET_F_ADD_SEALS:
7101     case TARGET_F_GET_SEALS:
7102         ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7103         break;
7104 
7105     default:
7106         ret = get_errno(safe_fcntl(fd, cmd, arg));
7107         break;
7108     }
7109     return ret;
7110 }
7111 
7112 #ifdef USE_UID16
7113 
7114 static inline int high2lowuid(int uid)
7115 {
7116     if (uid > 65535)
7117         return 65534;
7118     else
7119         return uid;
7120 }
7121 
7122 static inline int high2lowgid(int gid)
7123 {
7124     if (gid > 65535)
7125         return 65534;
7126     else
7127         return gid;
7128 }
7129 
7130 static inline int low2highuid(int uid)
7131 {
7132     if ((int16_t)uid == -1)
7133         return -1;
7134     else
7135         return uid;
7136 }
7137 
7138 static inline int low2highgid(int gid)
7139 {
7140     if ((int16_t)gid == -1)
7141         return -1;
7142     else
7143         return gid;
7144 }
7145 static inline int tswapid(int id)
7146 {
7147     return tswap16(id);
7148 }
7149 
7150 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7151 
7152 #else /* !USE_UID16 */
7153 static inline int high2lowuid(int uid)
7154 {
7155     return uid;
7156 }
7157 static inline int high2lowgid(int gid)
7158 {
7159     return gid;
7160 }
7161 static inline int low2highuid(int uid)
7162 {
7163     return uid;
7164 }
7165 static inline int low2highgid(int gid)
7166 {
7167     return gid;
7168 }
7169 static inline int tswapid(int id)
7170 {
7171     return tswap32(id);
7172 }
7173 
7174 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7175 
7176 #endif /* USE_UID16 */
7177 
7178 /* We must do direct syscalls for setting UID/GID, because we want to
7179  * implement the Linux system call semantics of "change only for this thread",
7180  * not the libc/POSIX semantics of "change for all threads in process".
7181  * (See http://ewontfix.com/17/ for more details.)
7182  * We use the 32-bit version of the syscalls if present; if it is not
7183  * then either the host architecture supports 32-bit UIDs natively with
7184  * the standard syscall, or the 16-bit UID is the best we can do.
7185  */
7186 #ifdef __NR_setuid32
7187 #define __NR_sys_setuid __NR_setuid32
7188 #else
7189 #define __NR_sys_setuid __NR_setuid
7190 #endif
7191 #ifdef __NR_setgid32
7192 #define __NR_sys_setgid __NR_setgid32
7193 #else
7194 #define __NR_sys_setgid __NR_setgid
7195 #endif
7196 #ifdef __NR_setresuid32
7197 #define __NR_sys_setresuid __NR_setresuid32
7198 #else
7199 #define __NR_sys_setresuid __NR_setresuid
7200 #endif
7201 #ifdef __NR_setresgid32
7202 #define __NR_sys_setresgid __NR_setresgid32
7203 #else
7204 #define __NR_sys_setresgid __NR_setresgid
7205 #endif
7206 
7207 _syscall1(int, sys_setuid, uid_t, uid)
7208 _syscall1(int, sys_setgid, gid_t, gid)
7209 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7210 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7211 
7212 void syscall_init(void)
7213 {
7214     IOCTLEntry *ie;
7215     const argtype *arg_type;
7216     int size;
7217 
7218     thunk_init(STRUCT_MAX);
7219 
7220 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7221 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7222 #include "syscall_types.h"
7223 #undef STRUCT
7224 #undef STRUCT_SPECIAL
7225 
7226     /* we patch the ioctl size if necessary. We rely on the fact that
7227        no ioctl has all the bits at '1' in the size field */
7228     ie = ioctl_entries;
7229     while (ie->target_cmd != 0) {
7230         if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7231             TARGET_IOC_SIZEMASK) {
7232             arg_type = ie->arg_type;
7233             if (arg_type[0] != TYPE_PTR) {
7234                 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7235                         ie->target_cmd);
7236                 exit(1);
7237             }
7238             arg_type++;
7239             size = thunk_type_size(arg_type, 0);
7240             ie->target_cmd = (ie->target_cmd &
7241                               ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7242                 (size << TARGET_IOC_SIZESHIFT);
7243         }
7244 
7245         /* automatic consistency check if same arch */
7246 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7247     (defined(__x86_64__) && defined(TARGET_X86_64))
7248         if (unlikely(ie->target_cmd != ie->host_cmd)) {
7249             fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7250                     ie->name, ie->target_cmd, ie->host_cmd);
7251         }
7252 #endif
7253         ie++;
7254     }
7255 }
7256 
7257 #ifdef TARGET_NR_truncate64
7258 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7259                                          abi_long arg2,
7260                                          abi_long arg3,
7261                                          abi_long arg4)
7262 {
7263     if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7264         arg2 = arg3;
7265         arg3 = arg4;
7266     }
7267     return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7268 }
7269 #endif
7270 
7271 #ifdef TARGET_NR_ftruncate64
7272 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7273                                           abi_long arg2,
7274                                           abi_long arg3,
7275                                           abi_long arg4)
7276 {
7277     if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7278         arg2 = arg3;
7279         arg3 = arg4;
7280     }
7281     return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7282 }
7283 #endif
7284 
7285 #if defined(TARGET_NR_timer_settime) || \
7286     (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7287 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7288                                                  abi_ulong target_addr)
7289 {
7290     if (target_to_host_timespec(&host_its->it_interval, target_addr +
7291                                 offsetof(struct target_itimerspec,
7292                                          it_interval)) ||
7293         target_to_host_timespec(&host_its->it_value, target_addr +
7294                                 offsetof(struct target_itimerspec,
7295                                          it_value))) {
7296         return -TARGET_EFAULT;
7297     }
7298 
7299     return 0;
7300 }
7301 #endif
7302 
7303 #if defined(TARGET_NR_timer_settime64) || \
7304     (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7305 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7306                                                    abi_ulong target_addr)
7307 {
7308     if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7309                                   offsetof(struct target__kernel_itimerspec,
7310                                            it_interval)) ||
7311         target_to_host_timespec64(&host_its->it_value, target_addr +
7312                                   offsetof(struct target__kernel_itimerspec,
7313                                            it_value))) {
7314         return -TARGET_EFAULT;
7315     }
7316 
7317     return 0;
7318 }
7319 #endif
7320 
7321 #if ((defined(TARGET_NR_timerfd_gettime) || \
7322       defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7323       defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7324 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7325                                                  struct itimerspec *host_its)
7326 {
7327     if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7328                                                        it_interval),
7329                                 &host_its->it_interval) ||
7330         host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7331                                                        it_value),
7332                                 &host_its->it_value)) {
7333         return -TARGET_EFAULT;
7334     }
7335     return 0;
7336 }
7337 #endif
7338 
7339 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7340       defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7341       defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7342 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7343                                                    struct itimerspec *host_its)
7344 {
7345     if (host_to_target_timespec64(target_addr +
7346                                   offsetof(struct target__kernel_itimerspec,
7347                                            it_interval),
7348                                   &host_its->it_interval) ||
7349         host_to_target_timespec64(target_addr +
7350                                   offsetof(struct target__kernel_itimerspec,
7351                                            it_value),
7352                                   &host_its->it_value)) {
7353         return -TARGET_EFAULT;
7354     }
7355     return 0;
7356 }
7357 #endif
7358 
7359 #if defined(TARGET_NR_adjtimex) || \
7360     (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7361 static inline abi_long target_to_host_timex(struct timex *host_tx,
7362                                             abi_long target_addr)
7363 {
7364     struct target_timex *target_tx;
7365 
7366     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7367         return -TARGET_EFAULT;
7368     }
7369 
7370     __get_user(host_tx->modes, &target_tx->modes);
7371     __get_user(host_tx->offset, &target_tx->offset);
7372     __get_user(host_tx->freq, &target_tx->freq);
7373     __get_user(host_tx->maxerror, &target_tx->maxerror);
7374     __get_user(host_tx->esterror, &target_tx->esterror);
7375     __get_user(host_tx->status, &target_tx->status);
7376     __get_user(host_tx->constant, &target_tx->constant);
7377     __get_user(host_tx->precision, &target_tx->precision);
7378     __get_user(host_tx->tolerance, &target_tx->tolerance);
7379     __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7380     __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7381     __get_user(host_tx->tick, &target_tx->tick);
7382     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7383     __get_user(host_tx->jitter, &target_tx->jitter);
7384     __get_user(host_tx->shift, &target_tx->shift);
7385     __get_user(host_tx->stabil, &target_tx->stabil);
7386     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7387     __get_user(host_tx->calcnt, &target_tx->calcnt);
7388     __get_user(host_tx->errcnt, &target_tx->errcnt);
7389     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7390     __get_user(host_tx->tai, &target_tx->tai);
7391 
7392     unlock_user_struct(target_tx, target_addr, 0);
7393     return 0;
7394 }
7395 
7396 static inline abi_long host_to_target_timex(abi_long target_addr,
7397                                             struct timex *host_tx)
7398 {
7399     struct target_timex *target_tx;
7400 
7401     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7402         return -TARGET_EFAULT;
7403     }
7404 
7405     __put_user(host_tx->modes, &target_tx->modes);
7406     __put_user(host_tx->offset, &target_tx->offset);
7407     __put_user(host_tx->freq, &target_tx->freq);
7408     __put_user(host_tx->maxerror, &target_tx->maxerror);
7409     __put_user(host_tx->esterror, &target_tx->esterror);
7410     __put_user(host_tx->status, &target_tx->status);
7411     __put_user(host_tx->constant, &target_tx->constant);
7412     __put_user(host_tx->precision, &target_tx->precision);
7413     __put_user(host_tx->tolerance, &target_tx->tolerance);
7414     __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7415     __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7416     __put_user(host_tx->tick, &target_tx->tick);
7417     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7418     __put_user(host_tx->jitter, &target_tx->jitter);
7419     __put_user(host_tx->shift, &target_tx->shift);
7420     __put_user(host_tx->stabil, &target_tx->stabil);
7421     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7422     __put_user(host_tx->calcnt, &target_tx->calcnt);
7423     __put_user(host_tx->errcnt, &target_tx->errcnt);
7424     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7425     __put_user(host_tx->tai, &target_tx->tai);
7426 
7427     unlock_user_struct(target_tx, target_addr, 1);
7428     return 0;
7429 }
7430 #endif
7431 
7432 
7433 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7434 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7435                                               abi_long target_addr)
7436 {
7437     struct target__kernel_timex *target_tx;
7438 
7439     if (copy_from_user_timeval64(&host_tx->time, target_addr +
7440                                  offsetof(struct target__kernel_timex,
7441                                           time))) {
7442         return -TARGET_EFAULT;
7443     }
7444 
7445     if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7446         return -TARGET_EFAULT;
7447     }
7448 
7449     __get_user(host_tx->modes, &target_tx->modes);
7450     __get_user(host_tx->offset, &target_tx->offset);
7451     __get_user(host_tx->freq, &target_tx->freq);
7452     __get_user(host_tx->maxerror, &target_tx->maxerror);
7453     __get_user(host_tx->esterror, &target_tx->esterror);
7454     __get_user(host_tx->status, &target_tx->status);
7455     __get_user(host_tx->constant, &target_tx->constant);
7456     __get_user(host_tx->precision, &target_tx->precision);
7457     __get_user(host_tx->tolerance, &target_tx->tolerance);
7458     __get_user(host_tx->tick, &target_tx->tick);
7459     __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7460     __get_user(host_tx->jitter, &target_tx->jitter);
7461     __get_user(host_tx->shift, &target_tx->shift);
7462     __get_user(host_tx->stabil, &target_tx->stabil);
7463     __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7464     __get_user(host_tx->calcnt, &target_tx->calcnt);
7465     __get_user(host_tx->errcnt, &target_tx->errcnt);
7466     __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7467     __get_user(host_tx->tai, &target_tx->tai);
7468 
7469     unlock_user_struct(target_tx, target_addr, 0);
7470     return 0;
7471 }
7472 
7473 static inline abi_long host_to_target_timex64(abi_long target_addr,
7474                                               struct timex *host_tx)
7475 {
7476     struct target__kernel_timex *target_tx;
7477 
7478    if (copy_to_user_timeval64(target_addr +
7479                               offsetof(struct target__kernel_timex, time),
7480                               &host_tx->time)) {
7481         return -TARGET_EFAULT;
7482     }
7483 
7484     if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7485         return -TARGET_EFAULT;
7486     }
7487 
7488     __put_user(host_tx->modes, &target_tx->modes);
7489     __put_user(host_tx->offset, &target_tx->offset);
7490     __put_user(host_tx->freq, &target_tx->freq);
7491     __put_user(host_tx->maxerror, &target_tx->maxerror);
7492     __put_user(host_tx->esterror, &target_tx->esterror);
7493     __put_user(host_tx->status, &target_tx->status);
7494     __put_user(host_tx->constant, &target_tx->constant);
7495     __put_user(host_tx->precision, &target_tx->precision);
7496     __put_user(host_tx->tolerance, &target_tx->tolerance);
7497     __put_user(host_tx->tick, &target_tx->tick);
7498     __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7499     __put_user(host_tx->jitter, &target_tx->jitter);
7500     __put_user(host_tx->shift, &target_tx->shift);
7501     __put_user(host_tx->stabil, &target_tx->stabil);
7502     __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7503     __put_user(host_tx->calcnt, &target_tx->calcnt);
7504     __put_user(host_tx->errcnt, &target_tx->errcnt);
7505     __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7506     __put_user(host_tx->tai, &target_tx->tai);
7507 
7508     unlock_user_struct(target_tx, target_addr, 1);
7509     return 0;
7510 }
7511 #endif
7512 
7513 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7514 #define sigev_notify_thread_id _sigev_un._tid
7515 #endif
7516 
7517 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7518                                                abi_ulong target_addr)
7519 {
7520     struct target_sigevent *target_sevp;
7521 
7522     if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7523         return -TARGET_EFAULT;
7524     }
7525 
7526     /* This union is awkward on 64 bit systems because it has a 32 bit
7527      * integer and a pointer in it; we follow the conversion approach
7528      * used for handling sigval types in signal.c so the guest should get
7529      * the correct value back even if we did a 64 bit byteswap and it's
7530      * using the 32 bit integer.
7531      */
7532     host_sevp->sigev_value.sival_ptr =
7533         (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7534     host_sevp->sigev_signo =
7535         target_to_host_signal(tswap32(target_sevp->sigev_signo));
7536     host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7537     host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7538 
7539     unlock_user_struct(target_sevp, target_addr, 1);
7540     return 0;
7541 }
7542 
7543 #if defined(TARGET_NR_mlockall)
7544 static inline int target_to_host_mlockall_arg(int arg)
7545 {
7546     int result = 0;
7547 
7548     if (arg & TARGET_MCL_CURRENT) {
7549         result |= MCL_CURRENT;
7550     }
7551     if (arg & TARGET_MCL_FUTURE) {
7552         result |= MCL_FUTURE;
7553     }
7554 #ifdef MCL_ONFAULT
7555     if (arg & TARGET_MCL_ONFAULT) {
7556         result |= MCL_ONFAULT;
7557     }
7558 #endif
7559 
7560     return result;
7561 }
7562 #endif
7563 
7564 static inline int target_to_host_msync_arg(abi_long arg)
7565 {
7566     return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7567            ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7568            ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7569            (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7570 }
7571 
7572 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) ||     \
7573      defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) ||  \
7574      defined(TARGET_NR_newfstatat))
7575 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7576                                              abi_ulong target_addr,
7577                                              struct stat *host_st)
7578 {
7579 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7580     if (cpu_env->eabi) {
7581         struct target_eabi_stat64 *target_st;
7582 
7583         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7584             return -TARGET_EFAULT;
7585         memset(target_st, 0, sizeof(struct target_eabi_stat64));
7586         __put_user(host_st->st_dev, &target_st->st_dev);
7587         __put_user(host_st->st_ino, &target_st->st_ino);
7588 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7589         __put_user(host_st->st_ino, &target_st->__st_ino);
7590 #endif
7591         __put_user(host_st->st_mode, &target_st->st_mode);
7592         __put_user(host_st->st_nlink, &target_st->st_nlink);
7593         __put_user(host_st->st_uid, &target_st->st_uid);
7594         __put_user(host_st->st_gid, &target_st->st_gid);
7595         __put_user(host_st->st_rdev, &target_st->st_rdev);
7596         __put_user(host_st->st_size, &target_st->st_size);
7597         __put_user(host_st->st_blksize, &target_st->st_blksize);
7598         __put_user(host_st->st_blocks, &target_st->st_blocks);
7599         __put_user(host_st->st_atime, &target_st->target_st_atime);
7600         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7601         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7602 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7603         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7604         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7605         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7606 #endif
7607         unlock_user_struct(target_st, target_addr, 1);
7608     } else
7609 #endif
7610     {
7611 #if defined(TARGET_HAS_STRUCT_STAT64)
7612         struct target_stat64 *target_st;
7613 #else
7614         struct target_stat *target_st;
7615 #endif
7616 
7617         if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7618             return -TARGET_EFAULT;
7619         memset(target_st, 0, sizeof(*target_st));
7620         __put_user(host_st->st_dev, &target_st->st_dev);
7621         __put_user(host_st->st_ino, &target_st->st_ino);
7622 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7623         __put_user(host_st->st_ino, &target_st->__st_ino);
7624 #endif
7625         __put_user(host_st->st_mode, &target_st->st_mode);
7626         __put_user(host_st->st_nlink, &target_st->st_nlink);
7627         __put_user(host_st->st_uid, &target_st->st_uid);
7628         __put_user(host_st->st_gid, &target_st->st_gid);
7629         __put_user(host_st->st_rdev, &target_st->st_rdev);
7630         /* XXX: better use of kernel struct */
7631         __put_user(host_st->st_size, &target_st->st_size);
7632         __put_user(host_st->st_blksize, &target_st->st_blksize);
7633         __put_user(host_st->st_blocks, &target_st->st_blocks);
7634         __put_user(host_st->st_atime, &target_st->target_st_atime);
7635         __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7636         __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7637 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7638         __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7639         __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7640         __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7641 #endif
7642         unlock_user_struct(target_st, target_addr, 1);
7643     }
7644 
7645     return 0;
7646 }
7647 #endif
7648 
7649 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7650 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7651                                             abi_ulong target_addr)
7652 {
7653     struct target_statx *target_stx;
7654 
7655     if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr,  0)) {
7656         return -TARGET_EFAULT;
7657     }
7658     memset(target_stx, 0, sizeof(*target_stx));
7659 
7660     __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7661     __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7662     __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7663     __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7664     __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7665     __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7666     __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7667     __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7668     __put_user(host_stx->stx_size, &target_stx->stx_size);
7669     __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7670     __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7671     __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7672     __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7673     __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7674     __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7675     __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7676     __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7677     __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7678     __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7679     __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7680     __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7681     __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7682     __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7683 
7684     unlock_user_struct(target_stx, target_addr, 1);
7685 
7686     return 0;
7687 }
7688 #endif
7689 
7690 static int do_sys_futex(int *uaddr, int op, int val,
7691                          const struct timespec *timeout, int *uaddr2,
7692                          int val3)
7693 {
7694 #if HOST_LONG_BITS == 64
7695 #if defined(__NR_futex)
7696     /* always a 64-bit time_t, it doesn't define _time64 version  */
7697     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7698 
7699 #endif
7700 #else /* HOST_LONG_BITS == 64 */
7701 #if defined(__NR_futex_time64)
7702     if (sizeof(timeout->tv_sec) == 8) {
7703         /* _time64 function on 32bit arch */
7704         return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7705     }
7706 #endif
7707 #if defined(__NR_futex)
7708     /* old function on 32bit arch */
7709     return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7710 #endif
7711 #endif /* HOST_LONG_BITS == 64 */
7712     g_assert_not_reached();
7713 }
7714 
7715 static int do_safe_futex(int *uaddr, int op, int val,
7716                          const struct timespec *timeout, int *uaddr2,
7717                          int val3)
7718 {
7719 #if HOST_LONG_BITS == 64
7720 #if defined(__NR_futex)
7721     /* always a 64-bit time_t, it doesn't define _time64 version  */
7722     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7723 #endif
7724 #else /* HOST_LONG_BITS == 64 */
7725 #if defined(__NR_futex_time64)
7726     if (sizeof(timeout->tv_sec) == 8) {
7727         /* _time64 function on 32bit arch */
7728         return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7729                                            val3));
7730     }
7731 #endif
7732 #if defined(__NR_futex)
7733     /* old function on 32bit arch */
7734     return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7735 #endif
7736 #endif /* HOST_LONG_BITS == 64 */
7737     return -TARGET_ENOSYS;
7738 }
7739 
7740 /* ??? Using host futex calls even when target atomic operations
7741    are not really atomic probably breaks things.  However implementing
7742    futexes locally would make futexes shared between multiple processes
7743    tricky.  However they're probably useless because guest atomic
7744    operations won't work either.  */
7745 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7746 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7747                     int op, int val, target_ulong timeout,
7748                     target_ulong uaddr2, int val3)
7749 {
7750     struct timespec ts, *pts = NULL;
7751     void *haddr2 = NULL;
7752     int base_op;
7753 
7754     /* We assume FUTEX_* constants are the same on both host and target. */
7755 #ifdef FUTEX_CMD_MASK
7756     base_op = op & FUTEX_CMD_MASK;
7757 #else
7758     base_op = op;
7759 #endif
7760     switch (base_op) {
7761     case FUTEX_WAIT:
7762     case FUTEX_WAIT_BITSET:
7763         val = tswap32(val);
7764         break;
7765     case FUTEX_WAIT_REQUEUE_PI:
7766         val = tswap32(val);
7767         haddr2 = g2h(cpu, uaddr2);
7768         break;
7769     case FUTEX_LOCK_PI:
7770     case FUTEX_LOCK_PI2:
7771         break;
7772     case FUTEX_WAKE:
7773     case FUTEX_WAKE_BITSET:
7774     case FUTEX_TRYLOCK_PI:
7775     case FUTEX_UNLOCK_PI:
7776         timeout = 0;
7777         break;
7778     case FUTEX_FD:
7779         val = target_to_host_signal(val);
7780         timeout = 0;
7781         break;
7782     case FUTEX_CMP_REQUEUE:
7783     case FUTEX_CMP_REQUEUE_PI:
7784         val3 = tswap32(val3);
7785         /* fall through */
7786     case FUTEX_REQUEUE:
7787     case FUTEX_WAKE_OP:
7788         /*
7789          * For these, the 4th argument is not TIMEOUT, but VAL2.
7790          * But the prototype of do_safe_futex takes a pointer, so
7791          * insert casts to satisfy the compiler.  We do not need
7792          * to tswap VAL2 since it's not compared to guest memory.
7793           */
7794         pts = (struct timespec *)(uintptr_t)timeout;
7795         timeout = 0;
7796         haddr2 = g2h(cpu, uaddr2);
7797         break;
7798     default:
7799         return -TARGET_ENOSYS;
7800     }
7801     if (timeout) {
7802         pts = &ts;
7803         if (time64
7804             ? target_to_host_timespec64(pts, timeout)
7805             : target_to_host_timespec(pts, timeout)) {
7806             return -TARGET_EFAULT;
7807         }
7808     }
7809     return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7810 }
7811 #endif
7812 
7813 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7814 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7815                                      abi_long handle, abi_long mount_id,
7816                                      abi_long flags)
7817 {
7818     struct file_handle *target_fh;
7819     struct file_handle *fh;
7820     int mid = 0;
7821     abi_long ret;
7822     char *name;
7823     unsigned int size, total_size;
7824 
7825     if (get_user_s32(size, handle)) {
7826         return -TARGET_EFAULT;
7827     }
7828 
7829     name = lock_user_string(pathname);
7830     if (!name) {
7831         return -TARGET_EFAULT;
7832     }
7833 
7834     total_size = sizeof(struct file_handle) + size;
7835     target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7836     if (!target_fh) {
7837         unlock_user(name, pathname, 0);
7838         return -TARGET_EFAULT;
7839     }
7840 
7841     fh = g_malloc0(total_size);
7842     fh->handle_bytes = size;
7843 
7844     ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7845     unlock_user(name, pathname, 0);
7846 
7847     /* man name_to_handle_at(2):
7848      * Other than the use of the handle_bytes field, the caller should treat
7849      * the file_handle structure as an opaque data type
7850      */
7851 
7852     memcpy(target_fh, fh, total_size);
7853     target_fh->handle_bytes = tswap32(fh->handle_bytes);
7854     target_fh->handle_type = tswap32(fh->handle_type);
7855     g_free(fh);
7856     unlock_user(target_fh, handle, total_size);
7857 
7858     if (put_user_s32(mid, mount_id)) {
7859         return -TARGET_EFAULT;
7860     }
7861 
7862     return ret;
7863 
7864 }
7865 #endif
7866 
7867 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7868 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7869                                      abi_long flags)
7870 {
7871     struct file_handle *target_fh;
7872     struct file_handle *fh;
7873     unsigned int size, total_size;
7874     abi_long ret;
7875 
7876     if (get_user_s32(size, handle)) {
7877         return -TARGET_EFAULT;
7878     }
7879 
7880     total_size = sizeof(struct file_handle) + size;
7881     target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7882     if (!target_fh) {
7883         return -TARGET_EFAULT;
7884     }
7885 
7886     fh = g_memdup(target_fh, total_size);
7887     fh->handle_bytes = size;
7888     fh->handle_type = tswap32(target_fh->handle_type);
7889 
7890     ret = get_errno(open_by_handle_at(mount_fd, fh,
7891                     target_to_host_bitmask(flags, fcntl_flags_tbl)));
7892 
7893     g_free(fh);
7894 
7895     unlock_user(target_fh, handle, total_size);
7896 
7897     return ret;
7898 }
7899 #endif
7900 
7901 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7902 
7903 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7904 {
7905     int host_flags;
7906     target_sigset_t *target_mask;
7907     sigset_t host_mask;
7908     abi_long ret;
7909 
7910     if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7911         return -TARGET_EINVAL;
7912     }
7913     if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7914         return -TARGET_EFAULT;
7915     }
7916 
7917     target_to_host_sigset(&host_mask, target_mask);
7918 
7919     host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7920 
7921     ret = get_errno(signalfd(fd, &host_mask, host_flags));
7922     if (ret >= 0) {
7923         fd_trans_register(ret, &target_signalfd_trans);
7924     }
7925 
7926     unlock_user_struct(target_mask, mask, 0);
7927 
7928     return ret;
7929 }
7930 #endif
7931 
7932 /* Map host to target signal numbers for the wait family of syscalls.
7933    Assume all other status bits are the same.  */
7934 int host_to_target_waitstatus(int status)
7935 {
7936     if (WIFSIGNALED(status)) {
7937         return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7938     }
7939     if (WIFSTOPPED(status)) {
7940         return (host_to_target_signal(WSTOPSIG(status)) << 8)
7941                | (status & 0xff);
7942     }
7943     return status;
7944 }
7945 
7946 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7947 {
7948     CPUState *cpu = env_cpu(cpu_env);
7949     struct linux_binprm *bprm = get_task_state(cpu)->bprm;
7950     int i;
7951 
7952     for (i = 0; i < bprm->argc; i++) {
7953         size_t len = strlen(bprm->argv[i]) + 1;
7954 
7955         if (write(fd, bprm->argv[i], len) != len) {
7956             return -1;
7957         }
7958     }
7959 
7960     return 0;
7961 }
7962 
7963 struct open_self_maps_data {
7964     TaskState *ts;
7965     IntervalTreeRoot *host_maps;
7966     int fd;
7967     bool smaps;
7968 };
7969 
7970 /*
7971  * Subroutine to output one line of /proc/self/maps,
7972  * or one region of /proc/self/smaps.
7973  */
7974 
7975 #ifdef TARGET_HPPA
7976 # define test_stack(S, E, L)  (E == L)
7977 #else
7978 # define test_stack(S, E, L)  (S == L)
7979 #endif
7980 
7981 static void open_self_maps_4(const struct open_self_maps_data *d,
7982                              const MapInfo *mi, abi_ptr start,
7983                              abi_ptr end, unsigned flags)
7984 {
7985     const struct image_info *info = d->ts->info;
7986     const char *path = mi->path;
7987     uint64_t offset;
7988     int fd = d->fd;
7989     int count;
7990 
7991     if (test_stack(start, end, info->stack_limit)) {
7992         path = "[stack]";
7993     } else if (start == info->brk) {
7994         path = "[heap]";
7995     } else if (start == info->vdso) {
7996         path = "[vdso]";
7997 #ifdef TARGET_X86_64
7998     } else if (start == TARGET_VSYSCALL_PAGE) {
7999         path = "[vsyscall]";
8000 #endif
8001     }
8002 
8003     /* Except null device (MAP_ANON), adjust offset for this fragment. */
8004     offset = mi->offset;
8005     if (mi->dev) {
8006         uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8007         offset += hstart - mi->itree.start;
8008     }
8009 
8010     count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8011                     " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8012                     start, end,
8013                     (flags & PAGE_READ) ? 'r' : '-',
8014                     (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8015                     (flags & PAGE_EXEC) ? 'x' : '-',
8016                     mi->is_priv ? 'p' : 's',
8017                     offset, major(mi->dev), minor(mi->dev),
8018                     (uint64_t)mi->inode);
8019     if (path) {
8020         dprintf(fd, "%*s%s\n", 73 - count, "", path);
8021     } else {
8022         dprintf(fd, "\n");
8023     }
8024 
8025     if (d->smaps) {
8026         unsigned long size = end - start;
8027         unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8028         unsigned long size_kb = size >> 10;
8029 
8030         dprintf(fd, "Size:                  %lu kB\n"
8031                 "KernelPageSize:        %lu kB\n"
8032                 "MMUPageSize:           %lu kB\n"
8033                 "Rss:                   0 kB\n"
8034                 "Pss:                   0 kB\n"
8035                 "Pss_Dirty:             0 kB\n"
8036                 "Shared_Clean:          0 kB\n"
8037                 "Shared_Dirty:          0 kB\n"
8038                 "Private_Clean:         0 kB\n"
8039                 "Private_Dirty:         0 kB\n"
8040                 "Referenced:            0 kB\n"
8041                 "Anonymous:             %lu kB\n"
8042                 "LazyFree:              0 kB\n"
8043                 "AnonHugePages:         0 kB\n"
8044                 "ShmemPmdMapped:        0 kB\n"
8045                 "FilePmdMapped:         0 kB\n"
8046                 "Shared_Hugetlb:        0 kB\n"
8047                 "Private_Hugetlb:       0 kB\n"
8048                 "Swap:                  0 kB\n"
8049                 "SwapPss:               0 kB\n"
8050                 "Locked:                0 kB\n"
8051                 "THPeligible:    0\n"
8052                 "VmFlags:%s%s%s%s%s%s%s%s\n",
8053                 size_kb, page_size_kb, page_size_kb,
8054                 (flags & PAGE_ANON ? size_kb : 0),
8055                 (flags & PAGE_READ) ? " rd" : "",
8056                 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8057                 (flags & PAGE_EXEC) ? " ex" : "",
8058                 mi->is_priv ? "" : " sh",
8059                 (flags & PAGE_READ) ? " mr" : "",
8060                 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8061                 (flags & PAGE_EXEC) ? " me" : "",
8062                 mi->is_priv ? "" : " ms");
8063     }
8064 }
8065 
8066 /*
8067  * Callback for walk_memory_regions, when read_self_maps() fails.
8068  * Proceed without the benefit of host /proc/self/maps cross-check.
8069  */
8070 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8071                             target_ulong guest_end, unsigned long flags)
8072 {
8073     static const MapInfo mi = { .is_priv = true };
8074 
8075     open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8076     return 0;
8077 }
8078 
8079 /*
8080  * Callback for walk_memory_regions, when read_self_maps() succeeds.
8081  */
8082 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8083                             target_ulong guest_end, unsigned long flags)
8084 {
8085     const struct open_self_maps_data *d = opaque;
8086     uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8087     uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8088 
8089 #ifdef TARGET_X86_64
8090     /*
8091      * Because of the extremely high position of the page within the guest
8092      * virtual address space, this is not backed by host memory at all.
8093      * Therefore the loop below would fail.  This is the only instance
8094      * of not having host backing memory.
8095      */
8096     if (guest_start == TARGET_VSYSCALL_PAGE) {
8097         return open_self_maps_3(opaque, guest_start, guest_end, flags);
8098     }
8099 #endif
8100 
8101     while (1) {
8102         IntervalTreeNode *n =
8103             interval_tree_iter_first(d->host_maps, host_start, host_start);
8104         MapInfo *mi = container_of(n, MapInfo, itree);
8105         uintptr_t this_hlast = MIN(host_last, n->last);
8106         target_ulong this_gend = h2g(this_hlast) + 1;
8107 
8108         open_self_maps_4(d, mi, guest_start, this_gend, flags);
8109 
8110         if (this_hlast == host_last) {
8111             return 0;
8112         }
8113         host_start = this_hlast + 1;
8114         guest_start = h2g(host_start);
8115     }
8116 }
8117 
8118 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8119 {
8120     struct open_self_maps_data d = {
8121         .ts = env_cpu(env)->opaque,
8122         .host_maps = read_self_maps(),
8123         .fd = fd,
8124         .smaps = smaps
8125     };
8126 
8127     if (d.host_maps) {
8128         walk_memory_regions(&d, open_self_maps_2);
8129         free_self_maps(d.host_maps);
8130     } else {
8131         walk_memory_regions(&d, open_self_maps_3);
8132     }
8133     return 0;
8134 }
8135 
8136 static int open_self_maps(CPUArchState *cpu_env, int fd)
8137 {
8138     return open_self_maps_1(cpu_env, fd, false);
8139 }
8140 
8141 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8142 {
8143     return open_self_maps_1(cpu_env, fd, true);
8144 }
8145 
8146 static int open_self_stat(CPUArchState *cpu_env, int fd)
8147 {
8148     CPUState *cpu = env_cpu(cpu_env);
8149     TaskState *ts = get_task_state(cpu);
8150     g_autoptr(GString) buf = g_string_new(NULL);
8151     int i;
8152 
8153     for (i = 0; i < 44; i++) {
8154         if (i == 0) {
8155             /* pid */
8156             g_string_printf(buf, FMT_pid " ", getpid());
8157         } else if (i == 1) {
8158             /* app name */
8159             gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8160             bin = bin ? bin + 1 : ts->bprm->argv[0];
8161             g_string_printf(buf, "(%.15s) ", bin);
8162         } else if (i == 2) {
8163             /* task state */
8164             g_string_assign(buf, "R "); /* we are running right now */
8165         } else if (i == 3) {
8166             /* ppid */
8167             g_string_printf(buf, FMT_pid " ", getppid());
8168         } else if (i == 21) {
8169             /* starttime */
8170             g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8171         } else if (i == 27) {
8172             /* stack bottom */
8173             g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8174         } else {
8175             /* for the rest, there is MasterCard */
8176             g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8177         }
8178 
8179         if (write(fd, buf->str, buf->len) != buf->len) {
8180             return -1;
8181         }
8182     }
8183 
8184     return 0;
8185 }
8186 
8187 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8188 {
8189     CPUState *cpu = env_cpu(cpu_env);
8190     TaskState *ts = get_task_state(cpu);
8191     abi_ulong auxv = ts->info->saved_auxv;
8192     abi_ulong len = ts->info->auxv_len;
8193     char *ptr;
8194 
8195     /*
8196      * Auxiliary vector is stored in target process stack.
8197      * read in whole auxv vector and copy it to file
8198      */
8199     ptr = lock_user(VERIFY_READ, auxv, len, 0);
8200     if (ptr != NULL) {
8201         while (len > 0) {
8202             ssize_t r;
8203             r = write(fd, ptr, len);
8204             if (r <= 0) {
8205                 break;
8206             }
8207             len -= r;
8208             ptr += r;
8209         }
8210         lseek(fd, 0, SEEK_SET);
8211         unlock_user(ptr, auxv, len);
8212     }
8213 
8214     return 0;
8215 }
8216 
8217 static int is_proc_myself(const char *filename, const char *entry)
8218 {
8219     if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8220         filename += strlen("/proc/");
8221         if (!strncmp(filename, "self/", strlen("self/"))) {
8222             filename += strlen("self/");
8223         } else if (*filename >= '1' && *filename <= '9') {
8224             char myself[80];
8225             snprintf(myself, sizeof(myself), "%d/", getpid());
8226             if (!strncmp(filename, myself, strlen(myself))) {
8227                 filename += strlen(myself);
8228             } else {
8229                 return 0;
8230             }
8231         } else {
8232             return 0;
8233         }
8234         if (!strcmp(filename, entry)) {
8235             return 1;
8236         }
8237     }
8238     return 0;
8239 }
8240 
8241 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8242                       const char *fmt, int code)
8243 {
8244     if (logfile) {
8245         CPUState *cs = env_cpu(env);
8246 
8247         fprintf(logfile, fmt, code);
8248         fprintf(logfile, "Failing executable: %s\n", exec_path);
8249         cpu_dump_state(cs, logfile, 0);
8250         open_self_maps(env, fileno(logfile));
8251     }
8252 }
8253 
8254 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8255 {
8256     /* dump to console */
8257     excp_dump_file(stderr, env, fmt, code);
8258 
8259     /* dump to log file */
8260     if (qemu_log_separate()) {
8261         FILE *logfile = qemu_log_trylock();
8262 
8263         excp_dump_file(logfile, env, fmt, code);
8264         qemu_log_unlock(logfile);
8265     }
8266 }
8267 
8268 #include "target_proc.h"
8269 
8270 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8271     defined(HAVE_ARCH_PROC_CPUINFO) || \
8272     defined(HAVE_ARCH_PROC_HARDWARE)
8273 static int is_proc(const char *filename, const char *entry)
8274 {
8275     return strcmp(filename, entry) == 0;
8276 }
8277 #endif
8278 
8279 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8280 static int open_net_route(CPUArchState *cpu_env, int fd)
8281 {
8282     FILE *fp;
8283     char *line = NULL;
8284     size_t len = 0;
8285     ssize_t read;
8286 
8287     fp = fopen("/proc/net/route", "r");
8288     if (fp == NULL) {
8289         return -1;
8290     }
8291 
8292     /* read header */
8293 
8294     read = getline(&line, &len, fp);
8295     dprintf(fd, "%s", line);
8296 
8297     /* read routes */
8298 
8299     while ((read = getline(&line, &len, fp)) != -1) {
8300         char iface[16];
8301         uint32_t dest, gw, mask;
8302         unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8303         int fields;
8304 
8305         fields = sscanf(line,
8306                         "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8307                         iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8308                         &mask, &mtu, &window, &irtt);
8309         if (fields != 11) {
8310             continue;
8311         }
8312         dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8313                 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8314                 metric, tswap32(mask), mtu, window, irtt);
8315     }
8316 
8317     free(line);
8318     fclose(fp);
8319 
8320     return 0;
8321 }
8322 #endif
8323 
8324 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8325                     int flags, mode_t mode, bool safe)
8326 {
8327     g_autofree char *proc_name = NULL;
8328     const char *pathname;
8329     struct fake_open {
8330         const char *filename;
8331         int (*fill)(CPUArchState *cpu_env, int fd);
8332         int (*cmp)(const char *s1, const char *s2);
8333     };
8334     const struct fake_open *fake_open;
8335     static const struct fake_open fakes[] = {
8336         { "maps", open_self_maps, is_proc_myself },
8337         { "smaps", open_self_smaps, is_proc_myself },
8338         { "stat", open_self_stat, is_proc_myself },
8339         { "auxv", open_self_auxv, is_proc_myself },
8340         { "cmdline", open_self_cmdline, is_proc_myself },
8341 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8342         { "/proc/net/route", open_net_route, is_proc },
8343 #endif
8344 #if defined(HAVE_ARCH_PROC_CPUINFO)
8345         { "/proc/cpuinfo", open_cpuinfo, is_proc },
8346 #endif
8347 #if defined(HAVE_ARCH_PROC_HARDWARE)
8348         { "/proc/hardware", open_hardware, is_proc },
8349 #endif
8350         { NULL, NULL, NULL }
8351     };
8352 
8353     /* if this is a file from /proc/ filesystem, expand full name */
8354     proc_name = realpath(fname, NULL);
8355     if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8356         pathname = proc_name;
8357     } else {
8358         pathname = fname;
8359     }
8360 
8361     if (is_proc_myself(pathname, "exe")) {
8362         if (safe) {
8363             return safe_openat(dirfd, exec_path, flags, mode);
8364         } else {
8365             return openat(dirfd, exec_path, flags, mode);
8366         }
8367     }
8368 
8369     for (fake_open = fakes; fake_open->filename; fake_open++) {
8370         if (fake_open->cmp(pathname, fake_open->filename)) {
8371             break;
8372         }
8373     }
8374 
8375     if (fake_open->filename) {
8376         const char *tmpdir;
8377         char filename[PATH_MAX];
8378         int fd, r;
8379 
8380         fd = memfd_create("qemu-open", 0);
8381         if (fd < 0) {
8382             if (errno != ENOSYS) {
8383                 return fd;
8384             }
8385             /* create temporary file to map stat to */
8386             tmpdir = getenv("TMPDIR");
8387             if (!tmpdir)
8388                 tmpdir = "/tmp";
8389             snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8390             fd = mkstemp(filename);
8391             if (fd < 0) {
8392                 return fd;
8393             }
8394             unlink(filename);
8395         }
8396 
8397         if ((r = fake_open->fill(cpu_env, fd))) {
8398             int e = errno;
8399             close(fd);
8400             errno = e;
8401             return r;
8402         }
8403         lseek(fd, 0, SEEK_SET);
8404 
8405         return fd;
8406     }
8407 
8408     if (safe) {
8409         return safe_openat(dirfd, path(pathname), flags, mode);
8410     } else {
8411         return openat(dirfd, path(pathname), flags, mode);
8412     }
8413 }
8414 
8415 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8416 {
8417     ssize_t ret;
8418 
8419     if (!pathname || !buf) {
8420         errno = EFAULT;
8421         return -1;
8422     }
8423 
8424     if (!bufsiz) {
8425         /* Short circuit this for the magic exe check. */
8426         errno = EINVAL;
8427         return -1;
8428     }
8429 
8430     if (is_proc_myself((const char *)pathname, "exe")) {
8431         /*
8432          * Don't worry about sign mismatch as earlier mapping
8433          * logic would have thrown a bad address error.
8434          */
8435         ret = MIN(strlen(exec_path), bufsiz);
8436         /* We cannot NUL terminate the string. */
8437         memcpy(buf, exec_path, ret);
8438     } else {
8439         ret = readlink(path(pathname), buf, bufsiz);
8440     }
8441 
8442     return ret;
8443 }
8444 
8445 static int do_execv(CPUArchState *cpu_env, int dirfd,
8446                     abi_long pathname, abi_long guest_argp,
8447                     abi_long guest_envp, int flags, bool is_execveat)
8448 {
8449     int ret;
8450     char **argp, **envp;
8451     int argc, envc;
8452     abi_ulong gp;
8453     abi_ulong addr;
8454     char **q;
8455     void *p;
8456 
8457     argc = 0;
8458 
8459     for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8460         if (get_user_ual(addr, gp)) {
8461             return -TARGET_EFAULT;
8462         }
8463         if (!addr) {
8464             break;
8465         }
8466         argc++;
8467     }
8468     envc = 0;
8469     for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8470         if (get_user_ual(addr, gp)) {
8471             return -TARGET_EFAULT;
8472         }
8473         if (!addr) {
8474             break;
8475         }
8476         envc++;
8477     }
8478 
8479     argp = g_new0(char *, argc + 1);
8480     envp = g_new0(char *, envc + 1);
8481 
8482     for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8483         if (get_user_ual(addr, gp)) {
8484             goto execve_efault;
8485         }
8486         if (!addr) {
8487             break;
8488         }
8489         *q = lock_user_string(addr);
8490         if (!*q) {
8491             goto execve_efault;
8492         }
8493     }
8494     *q = NULL;
8495 
8496     for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8497         if (get_user_ual(addr, gp)) {
8498             goto execve_efault;
8499         }
8500         if (!addr) {
8501             break;
8502         }
8503         *q = lock_user_string(addr);
8504         if (!*q) {
8505             goto execve_efault;
8506         }
8507     }
8508     *q = NULL;
8509 
8510     /*
8511      * Although execve() is not an interruptible syscall it is
8512      * a special case where we must use the safe_syscall wrapper:
8513      * if we allow a signal to happen before we make the host
8514      * syscall then we will 'lose' it, because at the point of
8515      * execve the process leaves QEMU's control. So we use the
8516      * safe syscall wrapper to ensure that we either take the
8517      * signal as a guest signal, or else it does not happen
8518      * before the execve completes and makes it the other
8519      * program's problem.
8520      */
8521     p = lock_user_string(pathname);
8522     if (!p) {
8523         goto execve_efault;
8524     }
8525 
8526     const char *exe = p;
8527     if (is_proc_myself(p, "exe")) {
8528         exe = exec_path;
8529     }
8530     ret = is_execveat
8531         ? safe_execveat(dirfd, exe, argp, envp, flags)
8532         : safe_execve(exe, argp, envp);
8533     ret = get_errno(ret);
8534 
8535     unlock_user(p, pathname, 0);
8536 
8537     goto execve_end;
8538 
8539 execve_efault:
8540     ret = -TARGET_EFAULT;
8541 
8542 execve_end:
8543     for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8544         if (get_user_ual(addr, gp) || !addr) {
8545             break;
8546         }
8547         unlock_user(*q, addr, 0);
8548     }
8549     for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8550         if (get_user_ual(addr, gp) || !addr) {
8551             break;
8552         }
8553         unlock_user(*q, addr, 0);
8554     }
8555 
8556     g_free(argp);
8557     g_free(envp);
8558     return ret;
8559 }
8560 
8561 #define TIMER_MAGIC 0x0caf0000
8562 #define TIMER_MAGIC_MASK 0xffff0000
8563 
8564 /* Convert QEMU provided timer ID back to internal 16bit index format */
8565 static target_timer_t get_timer_id(abi_long arg)
8566 {
8567     target_timer_t timerid = arg;
8568 
8569     if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8570         return -TARGET_EINVAL;
8571     }
8572 
8573     timerid &= 0xffff;
8574 
8575     if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8576         return -TARGET_EINVAL;
8577     }
8578 
8579     return timerid;
8580 }
8581 
8582 static int target_to_host_cpu_mask(unsigned long *host_mask,
8583                                    size_t host_size,
8584                                    abi_ulong target_addr,
8585                                    size_t target_size)
8586 {
8587     unsigned target_bits = sizeof(abi_ulong) * 8;
8588     unsigned host_bits = sizeof(*host_mask) * 8;
8589     abi_ulong *target_mask;
8590     unsigned i, j;
8591 
8592     assert(host_size >= target_size);
8593 
8594     target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8595     if (!target_mask) {
8596         return -TARGET_EFAULT;
8597     }
8598     memset(host_mask, 0, host_size);
8599 
8600     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8601         unsigned bit = i * target_bits;
8602         abi_ulong val;
8603 
8604         __get_user(val, &target_mask[i]);
8605         for (j = 0; j < target_bits; j++, bit++) {
8606             if (val & (1UL << j)) {
8607                 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8608             }
8609         }
8610     }
8611 
8612     unlock_user(target_mask, target_addr, 0);
8613     return 0;
8614 }
8615 
8616 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8617                                    size_t host_size,
8618                                    abi_ulong target_addr,
8619                                    size_t target_size)
8620 {
8621     unsigned target_bits = sizeof(abi_ulong) * 8;
8622     unsigned host_bits = sizeof(*host_mask) * 8;
8623     abi_ulong *target_mask;
8624     unsigned i, j;
8625 
8626     assert(host_size >= target_size);
8627 
8628     target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8629     if (!target_mask) {
8630         return -TARGET_EFAULT;
8631     }
8632 
8633     for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8634         unsigned bit = i * target_bits;
8635         abi_ulong val = 0;
8636 
8637         for (j = 0; j < target_bits; j++, bit++) {
8638             if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8639                 val |= 1UL << j;
8640             }
8641         }
8642         __put_user(val, &target_mask[i]);
8643     }
8644 
8645     unlock_user(target_mask, target_addr, target_size);
8646     return 0;
8647 }
8648 
8649 #ifdef TARGET_NR_getdents
8650 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8651 {
8652     g_autofree void *hdirp = NULL;
8653     void *tdirp;
8654     int hlen, hoff, toff;
8655     int hreclen, treclen;
8656     off64_t prev_diroff = 0;
8657 
8658     hdirp = g_try_malloc(count);
8659     if (!hdirp) {
8660         return -TARGET_ENOMEM;
8661     }
8662 
8663 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8664     hlen = sys_getdents(dirfd, hdirp, count);
8665 #else
8666     hlen = sys_getdents64(dirfd, hdirp, count);
8667 #endif
8668 
8669     hlen = get_errno(hlen);
8670     if (is_error(hlen)) {
8671         return hlen;
8672     }
8673 
8674     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8675     if (!tdirp) {
8676         return -TARGET_EFAULT;
8677     }
8678 
8679     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8680 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8681         struct linux_dirent *hde = hdirp + hoff;
8682 #else
8683         struct linux_dirent64 *hde = hdirp + hoff;
8684 #endif
8685         struct target_dirent *tde = tdirp + toff;
8686         int namelen;
8687         uint8_t type;
8688 
8689         namelen = strlen(hde->d_name);
8690         hreclen = hde->d_reclen;
8691         treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8692         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8693 
8694         if (toff + treclen > count) {
8695             /*
8696              * If the host struct is smaller than the target struct, or
8697              * requires less alignment and thus packs into less space,
8698              * then the host can return more entries than we can pass
8699              * on to the guest.
8700              */
8701             if (toff == 0) {
8702                 toff = -TARGET_EINVAL; /* result buffer is too small */
8703                 break;
8704             }
8705             /*
8706              * Return what we have, resetting the file pointer to the
8707              * location of the first record not returned.
8708              */
8709             lseek64(dirfd, prev_diroff, SEEK_SET);
8710             break;
8711         }
8712 
8713         prev_diroff = hde->d_off;
8714         tde->d_ino = tswapal(hde->d_ino);
8715         tde->d_off = tswapal(hde->d_off);
8716         tde->d_reclen = tswap16(treclen);
8717         memcpy(tde->d_name, hde->d_name, namelen + 1);
8718 
8719         /*
8720          * The getdents type is in what was formerly a padding byte at the
8721          * end of the structure.
8722          */
8723 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8724         type = *((uint8_t *)hde + hreclen - 1);
8725 #else
8726         type = hde->d_type;
8727 #endif
8728         *((uint8_t *)tde + treclen - 1) = type;
8729     }
8730 
8731     unlock_user(tdirp, arg2, toff);
8732     return toff;
8733 }
8734 #endif /* TARGET_NR_getdents */
8735 
8736 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8737 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8738 {
8739     g_autofree void *hdirp = NULL;
8740     void *tdirp;
8741     int hlen, hoff, toff;
8742     int hreclen, treclen;
8743     off64_t prev_diroff = 0;
8744 
8745     hdirp = g_try_malloc(count);
8746     if (!hdirp) {
8747         return -TARGET_ENOMEM;
8748     }
8749 
8750     hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8751     if (is_error(hlen)) {
8752         return hlen;
8753     }
8754 
8755     tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8756     if (!tdirp) {
8757         return -TARGET_EFAULT;
8758     }
8759 
8760     for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8761         struct linux_dirent64 *hde = hdirp + hoff;
8762         struct target_dirent64 *tde = tdirp + toff;
8763         int namelen;
8764 
8765         namelen = strlen(hde->d_name) + 1;
8766         hreclen = hde->d_reclen;
8767         treclen = offsetof(struct target_dirent64, d_name) + namelen;
8768         treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8769 
8770         if (toff + treclen > count) {
8771             /*
8772              * If the host struct is smaller than the target struct, or
8773              * requires less alignment and thus packs into less space,
8774              * then the host can return more entries than we can pass
8775              * on to the guest.
8776              */
8777             if (toff == 0) {
8778                 toff = -TARGET_EINVAL; /* result buffer is too small */
8779                 break;
8780             }
8781             /*
8782              * Return what we have, resetting the file pointer to the
8783              * location of the first record not returned.
8784              */
8785             lseek64(dirfd, prev_diroff, SEEK_SET);
8786             break;
8787         }
8788 
8789         prev_diroff = hde->d_off;
8790         tde->d_ino = tswap64(hde->d_ino);
8791         tde->d_off = tswap64(hde->d_off);
8792         tde->d_reclen = tswap16(treclen);
8793         tde->d_type = hde->d_type;
8794         memcpy(tde->d_name, hde->d_name, namelen);
8795     }
8796 
8797     unlock_user(tdirp, arg2, toff);
8798     return toff;
8799 }
8800 #endif /* TARGET_NR_getdents64 */
8801 
8802 #if defined(TARGET_NR_riscv_hwprobe)
8803 
8804 #define RISCV_HWPROBE_KEY_MVENDORID     0
8805 #define RISCV_HWPROBE_KEY_MARCHID       1
8806 #define RISCV_HWPROBE_KEY_MIMPID        2
8807 
8808 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8809 #define     RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8810 
8811 #define RISCV_HWPROBE_KEY_IMA_EXT_0     4
8812 #define     RISCV_HWPROBE_IMA_FD       (1 << 0)
8813 #define     RISCV_HWPROBE_IMA_C        (1 << 1)
8814 #define     RISCV_HWPROBE_IMA_V        (1 << 2)
8815 #define     RISCV_HWPROBE_EXT_ZBA      (1 << 3)
8816 #define     RISCV_HWPROBE_EXT_ZBB      (1 << 4)
8817 #define     RISCV_HWPROBE_EXT_ZBS      (1 << 5)
8818 
8819 #define RISCV_HWPROBE_KEY_CPUPERF_0     5
8820 #define     RISCV_HWPROBE_MISALIGNED_UNKNOWN     (0 << 0)
8821 #define     RISCV_HWPROBE_MISALIGNED_EMULATED    (1 << 0)
8822 #define     RISCV_HWPROBE_MISALIGNED_SLOW        (2 << 0)
8823 #define     RISCV_HWPROBE_MISALIGNED_FAST        (3 << 0)
8824 #define     RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8825 #define     RISCV_HWPROBE_MISALIGNED_MASK        (7 << 0)
8826 
8827 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8828 
8829 struct riscv_hwprobe {
8830     abi_llong  key;
8831     abi_ullong value;
8832 };
8833 
8834 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8835                                     struct riscv_hwprobe *pair,
8836                                     size_t pair_count)
8837 {
8838     const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8839 
8840     for (; pair_count > 0; pair_count--, pair++) {
8841         abi_llong key;
8842         abi_ullong value;
8843         __put_user(0, &pair->value);
8844         __get_user(key, &pair->key);
8845         switch (key) {
8846         case RISCV_HWPROBE_KEY_MVENDORID:
8847             __put_user(cfg->mvendorid, &pair->value);
8848             break;
8849         case RISCV_HWPROBE_KEY_MARCHID:
8850             __put_user(cfg->marchid, &pair->value);
8851             break;
8852         case RISCV_HWPROBE_KEY_MIMPID:
8853             __put_user(cfg->mimpid, &pair->value);
8854             break;
8855         case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8856             value = riscv_has_ext(env, RVI) &&
8857                     riscv_has_ext(env, RVM) &&
8858                     riscv_has_ext(env, RVA) ?
8859                     RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8860             __put_user(value, &pair->value);
8861             break;
8862         case RISCV_HWPROBE_KEY_IMA_EXT_0:
8863             value = riscv_has_ext(env, RVF) &&
8864                     riscv_has_ext(env, RVD) ?
8865                     RISCV_HWPROBE_IMA_FD : 0;
8866             value |= riscv_has_ext(env, RVC) ?
8867                      RISCV_HWPROBE_IMA_C : 0;
8868             value |= riscv_has_ext(env, RVV) ?
8869                      RISCV_HWPROBE_IMA_V : 0;
8870             value |= cfg->ext_zba ?
8871                      RISCV_HWPROBE_EXT_ZBA : 0;
8872             value |= cfg->ext_zbb ?
8873                      RISCV_HWPROBE_EXT_ZBB : 0;
8874             value |= cfg->ext_zbs ?
8875                      RISCV_HWPROBE_EXT_ZBS : 0;
8876             __put_user(value, &pair->value);
8877             break;
8878         case RISCV_HWPROBE_KEY_CPUPERF_0:
8879             __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8880             break;
8881         case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8882             value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8883             __put_user(value, &pair->value);
8884             break;
8885         default:
8886             __put_user(-1, &pair->key);
8887             break;
8888         }
8889     }
8890 }
8891 
8892 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8893 {
8894     int ret, i, tmp;
8895     size_t host_mask_size, target_mask_size;
8896     unsigned long *host_mask;
8897 
8898     /*
8899      * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8900      * arg3 contains the cpu count.
8901      */
8902     tmp = (8 * sizeof(abi_ulong));
8903     target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
8904     host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
8905                      ~(sizeof(*host_mask) - 1);
8906 
8907     host_mask = alloca(host_mask_size);
8908 
8909     ret = target_to_host_cpu_mask(host_mask, host_mask_size,
8910                                   arg4, target_mask_size);
8911     if (ret != 0) {
8912         return ret;
8913     }
8914 
8915     for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
8916         if (host_mask[i] != 0) {
8917             return 0;
8918         }
8919     }
8920     return -TARGET_EINVAL;
8921 }
8922 
8923 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
8924                                  abi_long arg2, abi_long arg3,
8925                                  abi_long arg4, abi_long arg5)
8926 {
8927     int ret;
8928     struct riscv_hwprobe *host_pairs;
8929 
8930     /* flags must be 0 */
8931     if (arg5 != 0) {
8932         return -TARGET_EINVAL;
8933     }
8934 
8935     /* check cpu_set */
8936     if (arg3 != 0) {
8937         ret = cpu_set_valid(arg3, arg4);
8938         if (ret != 0) {
8939             return ret;
8940         }
8941     } else if (arg4 != 0) {
8942         return -TARGET_EINVAL;
8943     }
8944 
8945     /* no pairs */
8946     if (arg2 == 0) {
8947         return 0;
8948     }
8949 
8950     host_pairs = lock_user(VERIFY_WRITE, arg1,
8951                            sizeof(*host_pairs) * (size_t)arg2, 0);
8952     if (host_pairs == NULL) {
8953         return -TARGET_EFAULT;
8954     }
8955     risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
8956     unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
8957     return 0;
8958 }
8959 #endif /* TARGET_NR_riscv_hwprobe */
8960 
8961 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8962 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8963 #endif
8964 
8965 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
8966 #define __NR_sys_open_tree __NR_open_tree
8967 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
8968           unsigned int, __flags)
8969 #endif
8970 
8971 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
8972 #define __NR_sys_move_mount __NR_move_mount
8973 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
8974            int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
8975 #endif
8976 
8977 /* This is an internal helper for do_syscall so that it is easier
8978  * to have a single return point, so that actions, such as logging
8979  * of syscall results, can be performed.
8980  * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8981  */
8982 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
8983                             abi_long arg2, abi_long arg3, abi_long arg4,
8984                             abi_long arg5, abi_long arg6, abi_long arg7,
8985                             abi_long arg8)
8986 {
8987     CPUState *cpu = env_cpu(cpu_env);
8988     abi_long ret;
8989 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8990     || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8991     || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8992     || defined(TARGET_NR_statx)
8993     struct stat st;
8994 #endif
8995 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8996     || defined(TARGET_NR_fstatfs)
8997     struct statfs stfs;
8998 #endif
8999     void *p;
9000 
9001     switch(num) {
9002     case TARGET_NR_exit:
9003         /* In old applications this may be used to implement _exit(2).
9004            However in threaded applications it is used for thread termination,
9005            and _exit_group is used for application termination.
9006            Do thread termination if we have more then one thread.  */
9007 
9008         if (block_signals()) {
9009             return -QEMU_ERESTARTSYS;
9010         }
9011 
9012         pthread_mutex_lock(&clone_lock);
9013 
9014         if (CPU_NEXT(first_cpu)) {
9015             TaskState *ts = get_task_state(cpu);
9016 
9017             if (ts->child_tidptr) {
9018                 put_user_u32(0, ts->child_tidptr);
9019                 do_sys_futex(g2h(cpu, ts->child_tidptr),
9020                              FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9021             }
9022 
9023             object_unparent(OBJECT(cpu));
9024             object_unref(OBJECT(cpu));
9025             /*
9026              * At this point the CPU should be unrealized and removed
9027              * from cpu lists. We can clean-up the rest of the thread
9028              * data without the lock held.
9029              */
9030 
9031             pthread_mutex_unlock(&clone_lock);
9032 
9033             thread_cpu = NULL;
9034             g_free(ts);
9035             rcu_unregister_thread();
9036             pthread_exit(NULL);
9037         }
9038 
9039         pthread_mutex_unlock(&clone_lock);
9040         preexit_cleanup(cpu_env, arg1);
9041         _exit(arg1);
9042         return 0; /* avoid warning */
9043     case TARGET_NR_read:
9044         if (arg2 == 0 && arg3 == 0) {
9045             return get_errno(safe_read(arg1, 0, 0));
9046         } else {
9047             if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9048                 return -TARGET_EFAULT;
9049             ret = get_errno(safe_read(arg1, p, arg3));
9050             if (ret >= 0 &&
9051                 fd_trans_host_to_target_data(arg1)) {
9052                 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9053             }
9054             unlock_user(p, arg2, ret);
9055         }
9056         return ret;
9057     case TARGET_NR_write:
9058         if (arg2 == 0 && arg3 == 0) {
9059             return get_errno(safe_write(arg1, 0, 0));
9060         }
9061         if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9062             return -TARGET_EFAULT;
9063         if (fd_trans_target_to_host_data(arg1)) {
9064             void *copy = g_malloc(arg3);
9065             memcpy(copy, p, arg3);
9066             ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9067             if (ret >= 0) {
9068                 ret = get_errno(safe_write(arg1, copy, ret));
9069             }
9070             g_free(copy);
9071         } else {
9072             ret = get_errno(safe_write(arg1, p, arg3));
9073         }
9074         unlock_user(p, arg2, 0);
9075         return ret;
9076 
9077 #ifdef TARGET_NR_open
9078     case TARGET_NR_open:
9079         if (!(p = lock_user_string(arg1)))
9080             return -TARGET_EFAULT;
9081         ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9082                                   target_to_host_bitmask(arg2, fcntl_flags_tbl),
9083                                   arg3, true));
9084         fd_trans_unregister(ret);
9085         unlock_user(p, arg1, 0);
9086         return ret;
9087 #endif
9088     case TARGET_NR_openat:
9089         if (!(p = lock_user_string(arg2)))
9090             return -TARGET_EFAULT;
9091         ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9092                                   target_to_host_bitmask(arg3, fcntl_flags_tbl),
9093                                   arg4, true));
9094         fd_trans_unregister(ret);
9095         unlock_user(p, arg2, 0);
9096         return ret;
9097 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9098     case TARGET_NR_name_to_handle_at:
9099         ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9100         return ret;
9101 #endif
9102 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9103     case TARGET_NR_open_by_handle_at:
9104         ret = do_open_by_handle_at(arg1, arg2, arg3);
9105         fd_trans_unregister(ret);
9106         return ret;
9107 #endif
9108 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9109     case TARGET_NR_pidfd_open:
9110         return get_errno(pidfd_open(arg1, arg2));
9111 #endif
9112 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9113     case TARGET_NR_pidfd_send_signal:
9114         {
9115             siginfo_t uinfo, *puinfo;
9116 
9117             if (arg3) {
9118                 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9119                 if (!p) {
9120                     return -TARGET_EFAULT;
9121                  }
9122                  target_to_host_siginfo(&uinfo, p);
9123                  unlock_user(p, arg3, 0);
9124                  puinfo = &uinfo;
9125             } else {
9126                  puinfo = NULL;
9127             }
9128             ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9129                                               puinfo, arg4));
9130         }
9131         return ret;
9132 #endif
9133 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9134     case TARGET_NR_pidfd_getfd:
9135         return get_errno(pidfd_getfd(arg1, arg2, arg3));
9136 #endif
9137     case TARGET_NR_close:
9138         fd_trans_unregister(arg1);
9139         return get_errno(close(arg1));
9140 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9141     case TARGET_NR_close_range:
9142         ret = get_errno(sys_close_range(arg1, arg2, arg3));
9143         if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9144             abi_long fd, maxfd;
9145             maxfd = MIN(arg2, target_fd_max);
9146             for (fd = arg1; fd < maxfd; fd++) {
9147                 fd_trans_unregister(fd);
9148             }
9149         }
9150         return ret;
9151 #endif
9152 
9153     case TARGET_NR_brk:
9154         return do_brk(arg1);
9155 #ifdef TARGET_NR_fork
9156     case TARGET_NR_fork:
9157         return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9158 #endif
9159 #ifdef TARGET_NR_waitpid
9160     case TARGET_NR_waitpid:
9161         {
9162             int status;
9163             ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9164             if (!is_error(ret) && arg2 && ret
9165                 && put_user_s32(host_to_target_waitstatus(status), arg2))
9166                 return -TARGET_EFAULT;
9167         }
9168         return ret;
9169 #endif
9170 #ifdef TARGET_NR_waitid
9171     case TARGET_NR_waitid:
9172         {
9173             siginfo_t info;
9174             info.si_pid = 0;
9175             ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
9176             if (!is_error(ret) && arg3 && info.si_pid != 0) {
9177                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
9178                     return -TARGET_EFAULT;
9179                 host_to_target_siginfo(p, &info);
9180                 unlock_user(p, arg3, sizeof(target_siginfo_t));
9181             }
9182         }
9183         return ret;
9184 #endif
9185 #ifdef TARGET_NR_creat /* not on alpha */
9186     case TARGET_NR_creat:
9187         if (!(p = lock_user_string(arg1)))
9188             return -TARGET_EFAULT;
9189         ret = get_errno(creat(p, arg2));
9190         fd_trans_unregister(ret);
9191         unlock_user(p, arg1, 0);
9192         return ret;
9193 #endif
9194 #ifdef TARGET_NR_link
9195     case TARGET_NR_link:
9196         {
9197             void * p2;
9198             p = lock_user_string(arg1);
9199             p2 = lock_user_string(arg2);
9200             if (!p || !p2)
9201                 ret = -TARGET_EFAULT;
9202             else
9203                 ret = get_errno(link(p, p2));
9204             unlock_user(p2, arg2, 0);
9205             unlock_user(p, arg1, 0);
9206         }
9207         return ret;
9208 #endif
9209 #if defined(TARGET_NR_linkat)
9210     case TARGET_NR_linkat:
9211         {
9212             void * p2 = NULL;
9213             if (!arg2 || !arg4)
9214                 return -TARGET_EFAULT;
9215             p  = lock_user_string(arg2);
9216             p2 = lock_user_string(arg4);
9217             if (!p || !p2)
9218                 ret = -TARGET_EFAULT;
9219             else
9220                 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9221             unlock_user(p, arg2, 0);
9222             unlock_user(p2, arg4, 0);
9223         }
9224         return ret;
9225 #endif
9226 #ifdef TARGET_NR_unlink
9227     case TARGET_NR_unlink:
9228         if (!(p = lock_user_string(arg1)))
9229             return -TARGET_EFAULT;
9230         ret = get_errno(unlink(p));
9231         unlock_user(p, arg1, 0);
9232         return ret;
9233 #endif
9234 #if defined(TARGET_NR_unlinkat)
9235     case TARGET_NR_unlinkat:
9236         if (!(p = lock_user_string(arg2)))
9237             return -TARGET_EFAULT;
9238         ret = get_errno(unlinkat(arg1, p, arg3));
9239         unlock_user(p, arg2, 0);
9240         return ret;
9241 #endif
9242     case TARGET_NR_execveat:
9243         return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9244     case TARGET_NR_execve:
9245         return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9246     case TARGET_NR_chdir:
9247         if (!(p = lock_user_string(arg1)))
9248             return -TARGET_EFAULT;
9249         ret = get_errno(chdir(p));
9250         unlock_user(p, arg1, 0);
9251         return ret;
9252 #ifdef TARGET_NR_time
9253     case TARGET_NR_time:
9254         {
9255             time_t host_time;
9256             ret = get_errno(time(&host_time));
9257             if (!is_error(ret)
9258                 && arg1
9259                 && put_user_sal(host_time, arg1))
9260                 return -TARGET_EFAULT;
9261         }
9262         return ret;
9263 #endif
9264 #ifdef TARGET_NR_mknod
9265     case TARGET_NR_mknod:
9266         if (!(p = lock_user_string(arg1)))
9267             return -TARGET_EFAULT;
9268         ret = get_errno(mknod(p, arg2, arg3));
9269         unlock_user(p, arg1, 0);
9270         return ret;
9271 #endif
9272 #if defined(TARGET_NR_mknodat)
9273     case TARGET_NR_mknodat:
9274         if (!(p = lock_user_string(arg2)))
9275             return -TARGET_EFAULT;
9276         ret = get_errno(mknodat(arg1, p, arg3, arg4));
9277         unlock_user(p, arg2, 0);
9278         return ret;
9279 #endif
9280 #ifdef TARGET_NR_chmod
9281     case TARGET_NR_chmod:
9282         if (!(p = lock_user_string(arg1)))
9283             return -TARGET_EFAULT;
9284         ret = get_errno(chmod(p, arg2));
9285         unlock_user(p, arg1, 0);
9286         return ret;
9287 #endif
9288 #ifdef TARGET_NR_lseek
9289     case TARGET_NR_lseek:
9290         return get_errno(lseek(arg1, arg2, arg3));
9291 #endif
9292 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9293     /* Alpha specific */
9294     case TARGET_NR_getxpid:
9295         cpu_env->ir[IR_A4] = getppid();
9296         return get_errno(getpid());
9297 #endif
9298 #ifdef TARGET_NR_getpid
9299     case TARGET_NR_getpid:
9300         return get_errno(getpid());
9301 #endif
9302     case TARGET_NR_mount:
9303         {
9304             /* need to look at the data field */
9305             void *p2, *p3;
9306 
9307             if (arg1) {
9308                 p = lock_user_string(arg1);
9309                 if (!p) {
9310                     return -TARGET_EFAULT;
9311                 }
9312             } else {
9313                 p = NULL;
9314             }
9315 
9316             p2 = lock_user_string(arg2);
9317             if (!p2) {
9318                 if (arg1) {
9319                     unlock_user(p, arg1, 0);
9320                 }
9321                 return -TARGET_EFAULT;
9322             }
9323 
9324             if (arg3) {
9325                 p3 = lock_user_string(arg3);
9326                 if (!p3) {
9327                     if (arg1) {
9328                         unlock_user(p, arg1, 0);
9329                     }
9330                     unlock_user(p2, arg2, 0);
9331                     return -TARGET_EFAULT;
9332                 }
9333             } else {
9334                 p3 = NULL;
9335             }
9336 
9337             /* FIXME - arg5 should be locked, but it isn't clear how to
9338              * do that since it's not guaranteed to be a NULL-terminated
9339              * string.
9340              */
9341             if (!arg5) {
9342                 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9343             } else {
9344                 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9345             }
9346             ret = get_errno(ret);
9347 
9348             if (arg1) {
9349                 unlock_user(p, arg1, 0);
9350             }
9351             unlock_user(p2, arg2, 0);
9352             if (arg3) {
9353                 unlock_user(p3, arg3, 0);
9354             }
9355         }
9356         return ret;
9357 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9358 #if defined(TARGET_NR_umount)
9359     case TARGET_NR_umount:
9360 #endif
9361 #if defined(TARGET_NR_oldumount)
9362     case TARGET_NR_oldumount:
9363 #endif
9364         if (!(p = lock_user_string(arg1)))
9365             return -TARGET_EFAULT;
9366         ret = get_errno(umount(p));
9367         unlock_user(p, arg1, 0);
9368         return ret;
9369 #endif
9370 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9371     case TARGET_NR_move_mount:
9372         {
9373             void *p2, *p4;
9374 
9375             if (!arg2 || !arg4) {
9376                 return -TARGET_EFAULT;
9377             }
9378 
9379             p2 = lock_user_string(arg2);
9380             if (!p2) {
9381                 return -TARGET_EFAULT;
9382             }
9383 
9384             p4 = lock_user_string(arg4);
9385             if (!p4) {
9386                 unlock_user(p2, arg2, 0);
9387                 return -TARGET_EFAULT;
9388             }
9389             ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9390 
9391             unlock_user(p2, arg2, 0);
9392             unlock_user(p4, arg4, 0);
9393 
9394             return ret;
9395         }
9396 #endif
9397 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9398     case TARGET_NR_open_tree:
9399         {
9400             void *p2;
9401             int host_flags;
9402 
9403             if (!arg2) {
9404                 return -TARGET_EFAULT;
9405             }
9406 
9407             p2 = lock_user_string(arg2);
9408             if (!p2) {
9409                 return -TARGET_EFAULT;
9410             }
9411 
9412             host_flags = arg3 & ~TARGET_O_CLOEXEC;
9413             if (arg3 & TARGET_O_CLOEXEC) {
9414                 host_flags |= O_CLOEXEC;
9415             }
9416 
9417             ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9418 
9419             unlock_user(p2, arg2, 0);
9420 
9421             return ret;
9422         }
9423 #endif
9424 #ifdef TARGET_NR_stime /* not on alpha */
9425     case TARGET_NR_stime:
9426         {
9427             struct timespec ts;
9428             ts.tv_nsec = 0;
9429             if (get_user_sal(ts.tv_sec, arg1)) {
9430                 return -TARGET_EFAULT;
9431             }
9432             return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9433         }
9434 #endif
9435 #ifdef TARGET_NR_alarm /* not on alpha */
9436     case TARGET_NR_alarm:
9437         return alarm(arg1);
9438 #endif
9439 #ifdef TARGET_NR_pause /* not on alpha */
9440     case TARGET_NR_pause:
9441         if (!block_signals()) {
9442             sigsuspend(&get_task_state(cpu)->signal_mask);
9443         }
9444         return -TARGET_EINTR;
9445 #endif
9446 #ifdef TARGET_NR_utime
9447     case TARGET_NR_utime:
9448         {
9449             struct utimbuf tbuf, *host_tbuf;
9450             struct target_utimbuf *target_tbuf;
9451             if (arg2) {
9452                 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9453                     return -TARGET_EFAULT;
9454                 tbuf.actime = tswapal(target_tbuf->actime);
9455                 tbuf.modtime = tswapal(target_tbuf->modtime);
9456                 unlock_user_struct(target_tbuf, arg2, 0);
9457                 host_tbuf = &tbuf;
9458             } else {
9459                 host_tbuf = NULL;
9460             }
9461             if (!(p = lock_user_string(arg1)))
9462                 return -TARGET_EFAULT;
9463             ret = get_errno(utime(p, host_tbuf));
9464             unlock_user(p, arg1, 0);
9465         }
9466         return ret;
9467 #endif
9468 #ifdef TARGET_NR_utimes
9469     case TARGET_NR_utimes:
9470         {
9471             struct timeval *tvp, tv[2];
9472             if (arg2) {
9473                 if (copy_from_user_timeval(&tv[0], arg2)
9474                     || copy_from_user_timeval(&tv[1],
9475                                               arg2 + sizeof(struct target_timeval)))
9476                     return -TARGET_EFAULT;
9477                 tvp = tv;
9478             } else {
9479                 tvp = NULL;
9480             }
9481             if (!(p = lock_user_string(arg1)))
9482                 return -TARGET_EFAULT;
9483             ret = get_errno(utimes(p, tvp));
9484             unlock_user(p, arg1, 0);
9485         }
9486         return ret;
9487 #endif
9488 #if defined(TARGET_NR_futimesat)
9489     case TARGET_NR_futimesat:
9490         {
9491             struct timeval *tvp, tv[2];
9492             if (arg3) {
9493                 if (copy_from_user_timeval(&tv[0], arg3)
9494                     || copy_from_user_timeval(&tv[1],
9495                                               arg3 + sizeof(struct target_timeval)))
9496                     return -TARGET_EFAULT;
9497                 tvp = tv;
9498             } else {
9499                 tvp = NULL;
9500             }
9501             if (!(p = lock_user_string(arg2))) {
9502                 return -TARGET_EFAULT;
9503             }
9504             ret = get_errno(futimesat(arg1, path(p), tvp));
9505             unlock_user(p, arg2, 0);
9506         }
9507         return ret;
9508 #endif
9509 #ifdef TARGET_NR_access
9510     case TARGET_NR_access:
9511         if (!(p = lock_user_string(arg1))) {
9512             return -TARGET_EFAULT;
9513         }
9514         ret = get_errno(access(path(p), arg2));
9515         unlock_user(p, arg1, 0);
9516         return ret;
9517 #endif
9518 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9519     case TARGET_NR_faccessat:
9520         if (!(p = lock_user_string(arg2))) {
9521             return -TARGET_EFAULT;
9522         }
9523         ret = get_errno(faccessat(arg1, p, arg3, 0));
9524         unlock_user(p, arg2, 0);
9525         return ret;
9526 #endif
9527 #if defined(TARGET_NR_faccessat2)
9528     case TARGET_NR_faccessat2:
9529         if (!(p = lock_user_string(arg2))) {
9530             return -TARGET_EFAULT;
9531         }
9532         ret = get_errno(faccessat(arg1, p, arg3, arg4));
9533         unlock_user(p, arg2, 0);
9534         return ret;
9535 #endif
9536 #ifdef TARGET_NR_nice /* not on alpha */
9537     case TARGET_NR_nice:
9538         return get_errno(nice(arg1));
9539 #endif
9540     case TARGET_NR_sync:
9541         sync();
9542         return 0;
9543 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9544     case TARGET_NR_syncfs:
9545         return get_errno(syncfs(arg1));
9546 #endif
9547     case TARGET_NR_kill:
9548         return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9549 #ifdef TARGET_NR_rename
9550     case TARGET_NR_rename:
9551         {
9552             void *p2;
9553             p = lock_user_string(arg1);
9554             p2 = lock_user_string(arg2);
9555             if (!p || !p2)
9556                 ret = -TARGET_EFAULT;
9557             else
9558                 ret = get_errno(rename(p, p2));
9559             unlock_user(p2, arg2, 0);
9560             unlock_user(p, arg1, 0);
9561         }
9562         return ret;
9563 #endif
9564 #if defined(TARGET_NR_renameat)
9565     case TARGET_NR_renameat:
9566         {
9567             void *p2;
9568             p  = lock_user_string(arg2);
9569             p2 = lock_user_string(arg4);
9570             if (!p || !p2)
9571                 ret = -TARGET_EFAULT;
9572             else
9573                 ret = get_errno(renameat(arg1, p, arg3, p2));
9574             unlock_user(p2, arg4, 0);
9575             unlock_user(p, arg2, 0);
9576         }
9577         return ret;
9578 #endif
9579 #if defined(TARGET_NR_renameat2)
9580     case TARGET_NR_renameat2:
9581         {
9582             void *p2;
9583             p  = lock_user_string(arg2);
9584             p2 = lock_user_string(arg4);
9585             if (!p || !p2) {
9586                 ret = -TARGET_EFAULT;
9587             } else {
9588                 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9589             }
9590             unlock_user(p2, arg4, 0);
9591             unlock_user(p, arg2, 0);
9592         }
9593         return ret;
9594 #endif
9595 #ifdef TARGET_NR_mkdir
9596     case TARGET_NR_mkdir:
9597         if (!(p = lock_user_string(arg1)))
9598             return -TARGET_EFAULT;
9599         ret = get_errno(mkdir(p, arg2));
9600         unlock_user(p, arg1, 0);
9601         return ret;
9602 #endif
9603 #if defined(TARGET_NR_mkdirat)
9604     case TARGET_NR_mkdirat:
9605         if (!(p = lock_user_string(arg2)))
9606             return -TARGET_EFAULT;
9607         ret = get_errno(mkdirat(arg1, p, arg3));
9608         unlock_user(p, arg2, 0);
9609         return ret;
9610 #endif
9611 #ifdef TARGET_NR_rmdir
9612     case TARGET_NR_rmdir:
9613         if (!(p = lock_user_string(arg1)))
9614             return -TARGET_EFAULT;
9615         ret = get_errno(rmdir(p));
9616         unlock_user(p, arg1, 0);
9617         return ret;
9618 #endif
9619     case TARGET_NR_dup:
9620         ret = get_errno(dup(arg1));
9621         if (ret >= 0) {
9622             fd_trans_dup(arg1, ret);
9623         }
9624         return ret;
9625 #ifdef TARGET_NR_pipe
9626     case TARGET_NR_pipe:
9627         return do_pipe(cpu_env, arg1, 0, 0);
9628 #endif
9629 #ifdef TARGET_NR_pipe2
9630     case TARGET_NR_pipe2:
9631         return do_pipe(cpu_env, arg1,
9632                        target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9633 #endif
9634     case TARGET_NR_times:
9635         {
9636             struct target_tms *tmsp;
9637             struct tms tms;
9638             ret = get_errno(times(&tms));
9639             if (arg1) {
9640                 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9641                 if (!tmsp)
9642                     return -TARGET_EFAULT;
9643                 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9644                 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9645                 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9646                 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9647             }
9648             if (!is_error(ret))
9649                 ret = host_to_target_clock_t(ret);
9650         }
9651         return ret;
9652     case TARGET_NR_acct:
9653         if (arg1 == 0) {
9654             ret = get_errno(acct(NULL));
9655         } else {
9656             if (!(p = lock_user_string(arg1))) {
9657                 return -TARGET_EFAULT;
9658             }
9659             ret = get_errno(acct(path(p)));
9660             unlock_user(p, arg1, 0);
9661         }
9662         return ret;
9663 #ifdef TARGET_NR_umount2
9664     case TARGET_NR_umount2:
9665         if (!(p = lock_user_string(arg1)))
9666             return -TARGET_EFAULT;
9667         ret = get_errno(umount2(p, arg2));
9668         unlock_user(p, arg1, 0);
9669         return ret;
9670 #endif
9671     case TARGET_NR_ioctl:
9672         return do_ioctl(arg1, arg2, arg3);
9673 #ifdef TARGET_NR_fcntl
9674     case TARGET_NR_fcntl:
9675         return do_fcntl(arg1, arg2, arg3);
9676 #endif
9677     case TARGET_NR_setpgid:
9678         return get_errno(setpgid(arg1, arg2));
9679     case TARGET_NR_umask:
9680         return get_errno(umask(arg1));
9681     case TARGET_NR_chroot:
9682         if (!(p = lock_user_string(arg1)))
9683             return -TARGET_EFAULT;
9684         ret = get_errno(chroot(p));
9685         unlock_user(p, arg1, 0);
9686         return ret;
9687 #ifdef TARGET_NR_dup2
9688     case TARGET_NR_dup2:
9689         ret = get_errno(dup2(arg1, arg2));
9690         if (ret >= 0) {
9691             fd_trans_dup(arg1, arg2);
9692         }
9693         return ret;
9694 #endif
9695 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9696     case TARGET_NR_dup3:
9697     {
9698         int host_flags;
9699 
9700         if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9701             return -EINVAL;
9702         }
9703         host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9704         ret = get_errno(dup3(arg1, arg2, host_flags));
9705         if (ret >= 0) {
9706             fd_trans_dup(arg1, arg2);
9707         }
9708         return ret;
9709     }
9710 #endif
9711 #ifdef TARGET_NR_getppid /* not on alpha */
9712     case TARGET_NR_getppid:
9713         return get_errno(getppid());
9714 #endif
9715 #ifdef TARGET_NR_getpgrp
9716     case TARGET_NR_getpgrp:
9717         return get_errno(getpgrp());
9718 #endif
9719     case TARGET_NR_setsid:
9720         return get_errno(setsid());
9721 #ifdef TARGET_NR_sigaction
9722     case TARGET_NR_sigaction:
9723         {
9724 #if defined(TARGET_MIPS)
9725 	    struct target_sigaction act, oact, *pact, *old_act;
9726 
9727 	    if (arg2) {
9728                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9729                     return -TARGET_EFAULT;
9730 		act._sa_handler = old_act->_sa_handler;
9731 		target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9732 		act.sa_flags = old_act->sa_flags;
9733 		unlock_user_struct(old_act, arg2, 0);
9734 		pact = &act;
9735 	    } else {
9736 		pact = NULL;
9737 	    }
9738 
9739         ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9740 
9741 	    if (!is_error(ret) && arg3) {
9742                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9743                     return -TARGET_EFAULT;
9744 		old_act->_sa_handler = oact._sa_handler;
9745 		old_act->sa_flags = oact.sa_flags;
9746 		old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9747 		old_act->sa_mask.sig[1] = 0;
9748 		old_act->sa_mask.sig[2] = 0;
9749 		old_act->sa_mask.sig[3] = 0;
9750 		unlock_user_struct(old_act, arg3, 1);
9751 	    }
9752 #else
9753             struct target_old_sigaction *old_act;
9754             struct target_sigaction act, oact, *pact;
9755             if (arg2) {
9756                 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9757                     return -TARGET_EFAULT;
9758                 act._sa_handler = old_act->_sa_handler;
9759                 target_siginitset(&act.sa_mask, old_act->sa_mask);
9760                 act.sa_flags = old_act->sa_flags;
9761 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9762                 act.sa_restorer = old_act->sa_restorer;
9763 #endif
9764                 unlock_user_struct(old_act, arg2, 0);
9765                 pact = &act;
9766             } else {
9767                 pact = NULL;
9768             }
9769             ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9770             if (!is_error(ret) && arg3) {
9771                 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9772                     return -TARGET_EFAULT;
9773                 old_act->_sa_handler = oact._sa_handler;
9774                 old_act->sa_mask = oact.sa_mask.sig[0];
9775                 old_act->sa_flags = oact.sa_flags;
9776 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9777                 old_act->sa_restorer = oact.sa_restorer;
9778 #endif
9779                 unlock_user_struct(old_act, arg3, 1);
9780             }
9781 #endif
9782         }
9783         return ret;
9784 #endif
9785     case TARGET_NR_rt_sigaction:
9786         {
9787             /*
9788              * For Alpha and SPARC this is a 5 argument syscall, with
9789              * a 'restorer' parameter which must be copied into the
9790              * sa_restorer field of the sigaction struct.
9791              * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9792              * and arg5 is the sigsetsize.
9793              */
9794 #if defined(TARGET_ALPHA)
9795             target_ulong sigsetsize = arg4;
9796             target_ulong restorer = arg5;
9797 #elif defined(TARGET_SPARC)
9798             target_ulong restorer = arg4;
9799             target_ulong sigsetsize = arg5;
9800 #else
9801             target_ulong sigsetsize = arg4;
9802             target_ulong restorer = 0;
9803 #endif
9804             struct target_sigaction *act = NULL;
9805             struct target_sigaction *oact = NULL;
9806 
9807             if (sigsetsize != sizeof(target_sigset_t)) {
9808                 return -TARGET_EINVAL;
9809             }
9810             if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9811                 return -TARGET_EFAULT;
9812             }
9813             if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9814                 ret = -TARGET_EFAULT;
9815             } else {
9816                 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9817                 if (oact) {
9818                     unlock_user_struct(oact, arg3, 1);
9819                 }
9820             }
9821             if (act) {
9822                 unlock_user_struct(act, arg2, 0);
9823             }
9824         }
9825         return ret;
9826 #ifdef TARGET_NR_sgetmask /* not on alpha */
9827     case TARGET_NR_sgetmask:
9828         {
9829             sigset_t cur_set;
9830             abi_ulong target_set;
9831             ret = do_sigprocmask(0, NULL, &cur_set);
9832             if (!ret) {
9833                 host_to_target_old_sigset(&target_set, &cur_set);
9834                 ret = target_set;
9835             }
9836         }
9837         return ret;
9838 #endif
9839 #ifdef TARGET_NR_ssetmask /* not on alpha */
9840     case TARGET_NR_ssetmask:
9841         {
9842             sigset_t set, oset;
9843             abi_ulong target_set = arg1;
9844             target_to_host_old_sigset(&set, &target_set);
9845             ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9846             if (!ret) {
9847                 host_to_target_old_sigset(&target_set, &oset);
9848                 ret = target_set;
9849             }
9850         }
9851         return ret;
9852 #endif
9853 #ifdef TARGET_NR_sigprocmask
9854     case TARGET_NR_sigprocmask:
9855         {
9856 #if defined(TARGET_ALPHA)
9857             sigset_t set, oldset;
9858             abi_ulong mask;
9859             int how;
9860 
9861             switch (arg1) {
9862             case TARGET_SIG_BLOCK:
9863                 how = SIG_BLOCK;
9864                 break;
9865             case TARGET_SIG_UNBLOCK:
9866                 how = SIG_UNBLOCK;
9867                 break;
9868             case TARGET_SIG_SETMASK:
9869                 how = SIG_SETMASK;
9870                 break;
9871             default:
9872                 return -TARGET_EINVAL;
9873             }
9874             mask = arg2;
9875             target_to_host_old_sigset(&set, &mask);
9876 
9877             ret = do_sigprocmask(how, &set, &oldset);
9878             if (!is_error(ret)) {
9879                 host_to_target_old_sigset(&mask, &oldset);
9880                 ret = mask;
9881                 cpu_env->ir[IR_V0] = 0; /* force no error */
9882             }
9883 #else
9884             sigset_t set, oldset, *set_ptr;
9885             int how;
9886 
9887             if (arg2) {
9888                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9889                 if (!p) {
9890                     return -TARGET_EFAULT;
9891                 }
9892                 target_to_host_old_sigset(&set, p);
9893                 unlock_user(p, arg2, 0);
9894                 set_ptr = &set;
9895                 switch (arg1) {
9896                 case TARGET_SIG_BLOCK:
9897                     how = SIG_BLOCK;
9898                     break;
9899                 case TARGET_SIG_UNBLOCK:
9900                     how = SIG_UNBLOCK;
9901                     break;
9902                 case TARGET_SIG_SETMASK:
9903                     how = SIG_SETMASK;
9904                     break;
9905                 default:
9906                     return -TARGET_EINVAL;
9907                 }
9908             } else {
9909                 how = 0;
9910                 set_ptr = NULL;
9911             }
9912             ret = do_sigprocmask(how, set_ptr, &oldset);
9913             if (!is_error(ret) && arg3) {
9914                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9915                     return -TARGET_EFAULT;
9916                 host_to_target_old_sigset(p, &oldset);
9917                 unlock_user(p, arg3, sizeof(target_sigset_t));
9918             }
9919 #endif
9920         }
9921         return ret;
9922 #endif
9923     case TARGET_NR_rt_sigprocmask:
9924         {
9925             int how = arg1;
9926             sigset_t set, oldset, *set_ptr;
9927 
9928             if (arg4 != sizeof(target_sigset_t)) {
9929                 return -TARGET_EINVAL;
9930             }
9931 
9932             if (arg2) {
9933                 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9934                 if (!p) {
9935                     return -TARGET_EFAULT;
9936                 }
9937                 target_to_host_sigset(&set, p);
9938                 unlock_user(p, arg2, 0);
9939                 set_ptr = &set;
9940                 switch(how) {
9941                 case TARGET_SIG_BLOCK:
9942                     how = SIG_BLOCK;
9943                     break;
9944                 case TARGET_SIG_UNBLOCK:
9945                     how = SIG_UNBLOCK;
9946                     break;
9947                 case TARGET_SIG_SETMASK:
9948                     how = SIG_SETMASK;
9949                     break;
9950                 default:
9951                     return -TARGET_EINVAL;
9952                 }
9953             } else {
9954                 how = 0;
9955                 set_ptr = NULL;
9956             }
9957             ret = do_sigprocmask(how, set_ptr, &oldset);
9958             if (!is_error(ret) && arg3) {
9959                 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9960                     return -TARGET_EFAULT;
9961                 host_to_target_sigset(p, &oldset);
9962                 unlock_user(p, arg3, sizeof(target_sigset_t));
9963             }
9964         }
9965         return ret;
9966 #ifdef TARGET_NR_sigpending
9967     case TARGET_NR_sigpending:
9968         {
9969             sigset_t set;
9970             ret = get_errno(sigpending(&set));
9971             if (!is_error(ret)) {
9972                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9973                     return -TARGET_EFAULT;
9974                 host_to_target_old_sigset(p, &set);
9975                 unlock_user(p, arg1, sizeof(target_sigset_t));
9976             }
9977         }
9978         return ret;
9979 #endif
9980     case TARGET_NR_rt_sigpending:
9981         {
9982             sigset_t set;
9983 
9984             /* Yes, this check is >, not != like most. We follow the kernel's
9985              * logic and it does it like this because it implements
9986              * NR_sigpending through the same code path, and in that case
9987              * the old_sigset_t is smaller in size.
9988              */
9989             if (arg2 > sizeof(target_sigset_t)) {
9990                 return -TARGET_EINVAL;
9991             }
9992 
9993             ret = get_errno(sigpending(&set));
9994             if (!is_error(ret)) {
9995                 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9996                     return -TARGET_EFAULT;
9997                 host_to_target_sigset(p, &set);
9998                 unlock_user(p, arg1, sizeof(target_sigset_t));
9999             }
10000         }
10001         return ret;
10002 #ifdef TARGET_NR_sigsuspend
10003     case TARGET_NR_sigsuspend:
10004         {
10005             sigset_t *set;
10006 
10007 #if defined(TARGET_ALPHA)
10008             TaskState *ts = get_task_state(cpu);
10009             /* target_to_host_old_sigset will bswap back */
10010             abi_ulong mask = tswapal(arg1);
10011             set = &ts->sigsuspend_mask;
10012             target_to_host_old_sigset(set, &mask);
10013 #else
10014             ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10015             if (ret != 0) {
10016                 return ret;
10017             }
10018 #endif
10019             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10020             finish_sigsuspend_mask(ret);
10021         }
10022         return ret;
10023 #endif
10024     case TARGET_NR_rt_sigsuspend:
10025         {
10026             sigset_t *set;
10027 
10028             ret = process_sigsuspend_mask(&set, arg1, arg2);
10029             if (ret != 0) {
10030                 return ret;
10031             }
10032             ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10033             finish_sigsuspend_mask(ret);
10034         }
10035         return ret;
10036 #ifdef TARGET_NR_rt_sigtimedwait
10037     case TARGET_NR_rt_sigtimedwait:
10038         {
10039             sigset_t set;
10040             struct timespec uts, *puts;
10041             siginfo_t uinfo;
10042 
10043             if (arg4 != sizeof(target_sigset_t)) {
10044                 return -TARGET_EINVAL;
10045             }
10046 
10047             if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10048                 return -TARGET_EFAULT;
10049             target_to_host_sigset(&set, p);
10050             unlock_user(p, arg1, 0);
10051             if (arg3) {
10052                 puts = &uts;
10053                 if (target_to_host_timespec(puts, arg3)) {
10054                     return -TARGET_EFAULT;
10055                 }
10056             } else {
10057                 puts = NULL;
10058             }
10059             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10060                                                  SIGSET_T_SIZE));
10061             if (!is_error(ret)) {
10062                 if (arg2) {
10063                     p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10064                                   0);
10065                     if (!p) {
10066                         return -TARGET_EFAULT;
10067                     }
10068                     host_to_target_siginfo(p, &uinfo);
10069                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10070                 }
10071                 ret = host_to_target_signal(ret);
10072             }
10073         }
10074         return ret;
10075 #endif
10076 #ifdef TARGET_NR_rt_sigtimedwait_time64
10077     case TARGET_NR_rt_sigtimedwait_time64:
10078         {
10079             sigset_t set;
10080             struct timespec uts, *puts;
10081             siginfo_t uinfo;
10082 
10083             if (arg4 != sizeof(target_sigset_t)) {
10084                 return -TARGET_EINVAL;
10085             }
10086 
10087             p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10088             if (!p) {
10089                 return -TARGET_EFAULT;
10090             }
10091             target_to_host_sigset(&set, p);
10092             unlock_user(p, arg1, 0);
10093             if (arg3) {
10094                 puts = &uts;
10095                 if (target_to_host_timespec64(puts, arg3)) {
10096                     return -TARGET_EFAULT;
10097                 }
10098             } else {
10099                 puts = NULL;
10100             }
10101             ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10102                                                  SIGSET_T_SIZE));
10103             if (!is_error(ret)) {
10104                 if (arg2) {
10105                     p = lock_user(VERIFY_WRITE, arg2,
10106                                   sizeof(target_siginfo_t), 0);
10107                     if (!p) {
10108                         return -TARGET_EFAULT;
10109                     }
10110                     host_to_target_siginfo(p, &uinfo);
10111                     unlock_user(p, arg2, sizeof(target_siginfo_t));
10112                 }
10113                 ret = host_to_target_signal(ret);
10114             }
10115         }
10116         return ret;
10117 #endif
10118     case TARGET_NR_rt_sigqueueinfo:
10119         {
10120             siginfo_t uinfo;
10121 
10122             p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10123             if (!p) {
10124                 return -TARGET_EFAULT;
10125             }
10126             target_to_host_siginfo(&uinfo, p);
10127             unlock_user(p, arg3, 0);
10128             ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10129         }
10130         return ret;
10131     case TARGET_NR_rt_tgsigqueueinfo:
10132         {
10133             siginfo_t uinfo;
10134 
10135             p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10136             if (!p) {
10137                 return -TARGET_EFAULT;
10138             }
10139             target_to_host_siginfo(&uinfo, p);
10140             unlock_user(p, arg4, 0);
10141             ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10142         }
10143         return ret;
10144 #ifdef TARGET_NR_sigreturn
10145     case TARGET_NR_sigreturn:
10146         if (block_signals()) {
10147             return -QEMU_ERESTARTSYS;
10148         }
10149         return do_sigreturn(cpu_env);
10150 #endif
10151     case TARGET_NR_rt_sigreturn:
10152         if (block_signals()) {
10153             return -QEMU_ERESTARTSYS;
10154         }
10155         return do_rt_sigreturn(cpu_env);
10156     case TARGET_NR_sethostname:
10157         if (!(p = lock_user_string(arg1)))
10158             return -TARGET_EFAULT;
10159         ret = get_errno(sethostname(p, arg2));
10160         unlock_user(p, arg1, 0);
10161         return ret;
10162 #ifdef TARGET_NR_setrlimit
10163     case TARGET_NR_setrlimit:
10164         {
10165             int resource = target_to_host_resource(arg1);
10166             struct target_rlimit *target_rlim;
10167             struct rlimit rlim;
10168             if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10169                 return -TARGET_EFAULT;
10170             rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10171             rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10172             unlock_user_struct(target_rlim, arg2, 0);
10173             /*
10174              * If we just passed through resource limit settings for memory then
10175              * they would also apply to QEMU's own allocations, and QEMU will
10176              * crash or hang or die if its allocations fail. Ideally we would
10177              * track the guest allocations in QEMU and apply the limits ourselves.
10178              * For now, just tell the guest the call succeeded but don't actually
10179              * limit anything.
10180              */
10181             if (resource != RLIMIT_AS &&
10182                 resource != RLIMIT_DATA &&
10183                 resource != RLIMIT_STACK) {
10184                 return get_errno(setrlimit(resource, &rlim));
10185             } else {
10186                 return 0;
10187             }
10188         }
10189 #endif
10190 #ifdef TARGET_NR_getrlimit
10191     case TARGET_NR_getrlimit:
10192         {
10193             int resource = target_to_host_resource(arg1);
10194             struct target_rlimit *target_rlim;
10195             struct rlimit rlim;
10196 
10197             ret = get_errno(getrlimit(resource, &rlim));
10198             if (!is_error(ret)) {
10199                 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10200                     return -TARGET_EFAULT;
10201                 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10202                 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10203                 unlock_user_struct(target_rlim, arg2, 1);
10204             }
10205         }
10206         return ret;
10207 #endif
10208     case TARGET_NR_getrusage:
10209         {
10210             struct rusage rusage;
10211             ret = get_errno(getrusage(arg1, &rusage));
10212             if (!is_error(ret)) {
10213                 ret = host_to_target_rusage(arg2, &rusage);
10214             }
10215         }
10216         return ret;
10217 #if defined(TARGET_NR_gettimeofday)
10218     case TARGET_NR_gettimeofday:
10219         {
10220             struct timeval tv;
10221             struct timezone tz;
10222 
10223             ret = get_errno(gettimeofday(&tv, &tz));
10224             if (!is_error(ret)) {
10225                 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10226                     return -TARGET_EFAULT;
10227                 }
10228                 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10229                     return -TARGET_EFAULT;
10230                 }
10231             }
10232         }
10233         return ret;
10234 #endif
10235 #if defined(TARGET_NR_settimeofday)
10236     case TARGET_NR_settimeofday:
10237         {
10238             struct timeval tv, *ptv = NULL;
10239             struct timezone tz, *ptz = NULL;
10240 
10241             if (arg1) {
10242                 if (copy_from_user_timeval(&tv, arg1)) {
10243                     return -TARGET_EFAULT;
10244                 }
10245                 ptv = &tv;
10246             }
10247 
10248             if (arg2) {
10249                 if (copy_from_user_timezone(&tz, arg2)) {
10250                     return -TARGET_EFAULT;
10251                 }
10252                 ptz = &tz;
10253             }
10254 
10255             return get_errno(settimeofday(ptv, ptz));
10256         }
10257 #endif
10258 #if defined(TARGET_NR_select)
10259     case TARGET_NR_select:
10260 #if defined(TARGET_WANT_NI_OLD_SELECT)
10261         /* some architectures used to have old_select here
10262          * but now ENOSYS it.
10263          */
10264         ret = -TARGET_ENOSYS;
10265 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10266         ret = do_old_select(arg1);
10267 #else
10268         ret = do_select(arg1, arg2, arg3, arg4, arg5);
10269 #endif
10270         return ret;
10271 #endif
10272 #ifdef TARGET_NR_pselect6
10273     case TARGET_NR_pselect6:
10274         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10275 #endif
10276 #ifdef TARGET_NR_pselect6_time64
10277     case TARGET_NR_pselect6_time64:
10278         return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10279 #endif
10280 #ifdef TARGET_NR_symlink
10281     case TARGET_NR_symlink:
10282         {
10283             void *p2;
10284             p = lock_user_string(arg1);
10285             p2 = lock_user_string(arg2);
10286             if (!p || !p2)
10287                 ret = -TARGET_EFAULT;
10288             else
10289                 ret = get_errno(symlink(p, p2));
10290             unlock_user(p2, arg2, 0);
10291             unlock_user(p, arg1, 0);
10292         }
10293         return ret;
10294 #endif
10295 #if defined(TARGET_NR_symlinkat)
10296     case TARGET_NR_symlinkat:
10297         {
10298             void *p2;
10299             p  = lock_user_string(arg1);
10300             p2 = lock_user_string(arg3);
10301             if (!p || !p2)
10302                 ret = -TARGET_EFAULT;
10303             else
10304                 ret = get_errno(symlinkat(p, arg2, p2));
10305             unlock_user(p2, arg3, 0);
10306             unlock_user(p, arg1, 0);
10307         }
10308         return ret;
10309 #endif
10310 #ifdef TARGET_NR_readlink
10311     case TARGET_NR_readlink:
10312         {
10313             void *p2;
10314             p = lock_user_string(arg1);
10315             p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10316             ret = get_errno(do_guest_readlink(p, p2, arg3));
10317             unlock_user(p2, arg2, ret);
10318             unlock_user(p, arg1, 0);
10319         }
10320         return ret;
10321 #endif
10322 #if defined(TARGET_NR_readlinkat)
10323     case TARGET_NR_readlinkat:
10324         {
10325             void *p2;
10326             p  = lock_user_string(arg2);
10327             p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10328             if (!p || !p2) {
10329                 ret = -TARGET_EFAULT;
10330             } else if (!arg4) {
10331                 /* Short circuit this for the magic exe check. */
10332                 ret = -TARGET_EINVAL;
10333             } else if (is_proc_myself((const char *)p, "exe")) {
10334                 /*
10335                  * Don't worry about sign mismatch as earlier mapping
10336                  * logic would have thrown a bad address error.
10337                  */
10338                 ret = MIN(strlen(exec_path), arg4);
10339                 /* We cannot NUL terminate the string. */
10340                 memcpy(p2, exec_path, ret);
10341             } else {
10342                 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10343             }
10344             unlock_user(p2, arg3, ret);
10345             unlock_user(p, arg2, 0);
10346         }
10347         return ret;
10348 #endif
10349 #ifdef TARGET_NR_swapon
10350     case TARGET_NR_swapon:
10351         if (!(p = lock_user_string(arg1)))
10352             return -TARGET_EFAULT;
10353         ret = get_errno(swapon(p, arg2));
10354         unlock_user(p, arg1, 0);
10355         return ret;
10356 #endif
10357     case TARGET_NR_reboot:
10358         if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10359            /* arg4 must be ignored in all other cases */
10360            p = lock_user_string(arg4);
10361            if (!p) {
10362                return -TARGET_EFAULT;
10363            }
10364            ret = get_errno(reboot(arg1, arg2, arg3, p));
10365            unlock_user(p, arg4, 0);
10366         } else {
10367            ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10368         }
10369         return ret;
10370 #ifdef TARGET_NR_mmap
10371     case TARGET_NR_mmap:
10372 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10373     (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10374     defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10375     || defined(TARGET_S390X)
10376         {
10377             abi_ulong *v;
10378             abi_ulong v1, v2, v3, v4, v5, v6;
10379             if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10380                 return -TARGET_EFAULT;
10381             v1 = tswapal(v[0]);
10382             v2 = tswapal(v[1]);
10383             v3 = tswapal(v[2]);
10384             v4 = tswapal(v[3]);
10385             v5 = tswapal(v[4]);
10386             v6 = tswapal(v[5]);
10387             unlock_user(v, arg1, 0);
10388             return do_mmap(v1, v2, v3, v4, v5, v6);
10389         }
10390 #else
10391         /* mmap pointers are always untagged */
10392         return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10393 #endif
10394 #endif
10395 #ifdef TARGET_NR_mmap2
10396     case TARGET_NR_mmap2:
10397 #ifndef MMAP_SHIFT
10398 #define MMAP_SHIFT 12
10399 #endif
10400         return do_mmap(arg1, arg2, arg3, arg4, arg5,
10401                        (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10402 #endif
10403     case TARGET_NR_munmap:
10404         arg1 = cpu_untagged_addr(cpu, arg1);
10405         return get_errno(target_munmap(arg1, arg2));
10406     case TARGET_NR_mprotect:
10407         arg1 = cpu_untagged_addr(cpu, arg1);
10408         {
10409             TaskState *ts = get_task_state(cpu);
10410             /* Special hack to detect libc making the stack executable.  */
10411             if ((arg3 & PROT_GROWSDOWN)
10412                 && arg1 >= ts->info->stack_limit
10413                 && arg1 <= ts->info->start_stack) {
10414                 arg3 &= ~PROT_GROWSDOWN;
10415                 arg2 = arg2 + arg1 - ts->info->stack_limit;
10416                 arg1 = ts->info->stack_limit;
10417             }
10418         }
10419         return get_errno(target_mprotect(arg1, arg2, arg3));
10420 #ifdef TARGET_NR_mremap
10421     case TARGET_NR_mremap:
10422         arg1 = cpu_untagged_addr(cpu, arg1);
10423         /* mremap new_addr (arg5) is always untagged */
10424         return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10425 #endif
10426         /* ??? msync/mlock/munlock are broken for softmmu.  */
10427 #ifdef TARGET_NR_msync
10428     case TARGET_NR_msync:
10429         return get_errno(msync(g2h(cpu, arg1), arg2,
10430                                target_to_host_msync_arg(arg3)));
10431 #endif
10432 #ifdef TARGET_NR_mlock
10433     case TARGET_NR_mlock:
10434         return get_errno(mlock(g2h(cpu, arg1), arg2));
10435 #endif
10436 #ifdef TARGET_NR_munlock
10437     case TARGET_NR_munlock:
10438         return get_errno(munlock(g2h(cpu, arg1), arg2));
10439 #endif
10440 #ifdef TARGET_NR_mlockall
10441     case TARGET_NR_mlockall:
10442         return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10443 #endif
10444 #ifdef TARGET_NR_munlockall
10445     case TARGET_NR_munlockall:
10446         return get_errno(munlockall());
10447 #endif
10448 #ifdef TARGET_NR_truncate
10449     case TARGET_NR_truncate:
10450         if (!(p = lock_user_string(arg1)))
10451             return -TARGET_EFAULT;
10452         ret = get_errno(truncate(p, arg2));
10453         unlock_user(p, arg1, 0);
10454         return ret;
10455 #endif
10456 #ifdef TARGET_NR_ftruncate
10457     case TARGET_NR_ftruncate:
10458         return get_errno(ftruncate(arg1, arg2));
10459 #endif
10460     case TARGET_NR_fchmod:
10461         return get_errno(fchmod(arg1, arg2));
10462 #if defined(TARGET_NR_fchmodat)
10463     case TARGET_NR_fchmodat:
10464         if (!(p = lock_user_string(arg2)))
10465             return -TARGET_EFAULT;
10466         ret = get_errno(fchmodat(arg1, p, arg3, 0));
10467         unlock_user(p, arg2, 0);
10468         return ret;
10469 #endif
10470     case TARGET_NR_getpriority:
10471         /* Note that negative values are valid for getpriority, so we must
10472            differentiate based on errno settings.  */
10473         errno = 0;
10474         ret = getpriority(arg1, arg2);
10475         if (ret == -1 && errno != 0) {
10476             return -host_to_target_errno(errno);
10477         }
10478 #ifdef TARGET_ALPHA
10479         /* Return value is the unbiased priority.  Signal no error.  */
10480         cpu_env->ir[IR_V0] = 0;
10481 #else
10482         /* Return value is a biased priority to avoid negative numbers.  */
10483         ret = 20 - ret;
10484 #endif
10485         return ret;
10486     case TARGET_NR_setpriority:
10487         return get_errno(setpriority(arg1, arg2, arg3));
10488 #ifdef TARGET_NR_statfs
10489     case TARGET_NR_statfs:
10490         if (!(p = lock_user_string(arg1))) {
10491             return -TARGET_EFAULT;
10492         }
10493         ret = get_errno(statfs(path(p), &stfs));
10494         unlock_user(p, arg1, 0);
10495     convert_statfs:
10496         if (!is_error(ret)) {
10497             struct target_statfs *target_stfs;
10498 
10499             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10500                 return -TARGET_EFAULT;
10501             __put_user(stfs.f_type, &target_stfs->f_type);
10502             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10503             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10504             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10505             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10506             __put_user(stfs.f_files, &target_stfs->f_files);
10507             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10508             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10509             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10510             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10511             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10512 #ifdef _STATFS_F_FLAGS
10513             __put_user(stfs.f_flags, &target_stfs->f_flags);
10514 #else
10515             __put_user(0, &target_stfs->f_flags);
10516 #endif
10517             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10518             unlock_user_struct(target_stfs, arg2, 1);
10519         }
10520         return ret;
10521 #endif
10522 #ifdef TARGET_NR_fstatfs
10523     case TARGET_NR_fstatfs:
10524         ret = get_errno(fstatfs(arg1, &stfs));
10525         goto convert_statfs;
10526 #endif
10527 #ifdef TARGET_NR_statfs64
10528     case TARGET_NR_statfs64:
10529         if (!(p = lock_user_string(arg1))) {
10530             return -TARGET_EFAULT;
10531         }
10532         ret = get_errno(statfs(path(p), &stfs));
10533         unlock_user(p, arg1, 0);
10534     convert_statfs64:
10535         if (!is_error(ret)) {
10536             struct target_statfs64 *target_stfs;
10537 
10538             if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10539                 return -TARGET_EFAULT;
10540             __put_user(stfs.f_type, &target_stfs->f_type);
10541             __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10542             __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10543             __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10544             __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10545             __put_user(stfs.f_files, &target_stfs->f_files);
10546             __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10547             __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10548             __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10549             __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10550             __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10551 #ifdef _STATFS_F_FLAGS
10552             __put_user(stfs.f_flags, &target_stfs->f_flags);
10553 #else
10554             __put_user(0, &target_stfs->f_flags);
10555 #endif
10556             memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10557             unlock_user_struct(target_stfs, arg3, 1);
10558         }
10559         return ret;
10560     case TARGET_NR_fstatfs64:
10561         ret = get_errno(fstatfs(arg1, &stfs));
10562         goto convert_statfs64;
10563 #endif
10564 #ifdef TARGET_NR_socketcall
10565     case TARGET_NR_socketcall:
10566         return do_socketcall(arg1, arg2);
10567 #endif
10568 #ifdef TARGET_NR_accept
10569     case TARGET_NR_accept:
10570         return do_accept4(arg1, arg2, arg3, 0);
10571 #endif
10572 #ifdef TARGET_NR_accept4
10573     case TARGET_NR_accept4:
10574         return do_accept4(arg1, arg2, arg3, arg4);
10575 #endif
10576 #ifdef TARGET_NR_bind
10577     case TARGET_NR_bind:
10578         return do_bind(arg1, arg2, arg3);
10579 #endif
10580 #ifdef TARGET_NR_connect
10581     case TARGET_NR_connect:
10582         return do_connect(arg1, arg2, arg3);
10583 #endif
10584 #ifdef TARGET_NR_getpeername
10585     case TARGET_NR_getpeername:
10586         return do_getpeername(arg1, arg2, arg3);
10587 #endif
10588 #ifdef TARGET_NR_getsockname
10589     case TARGET_NR_getsockname:
10590         return do_getsockname(arg1, arg2, arg3);
10591 #endif
10592 #ifdef TARGET_NR_getsockopt
10593     case TARGET_NR_getsockopt:
10594         return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10595 #endif
10596 #ifdef TARGET_NR_listen
10597     case TARGET_NR_listen:
10598         return get_errno(listen(arg1, arg2));
10599 #endif
10600 #ifdef TARGET_NR_recv
10601     case TARGET_NR_recv:
10602         return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10603 #endif
10604 #ifdef TARGET_NR_recvfrom
10605     case TARGET_NR_recvfrom:
10606         return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10607 #endif
10608 #ifdef TARGET_NR_recvmsg
10609     case TARGET_NR_recvmsg:
10610         return do_sendrecvmsg(arg1, arg2, arg3, 0);
10611 #endif
10612 #ifdef TARGET_NR_send
10613     case TARGET_NR_send:
10614         return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10615 #endif
10616 #ifdef TARGET_NR_sendmsg
10617     case TARGET_NR_sendmsg:
10618         return do_sendrecvmsg(arg1, arg2, arg3, 1);
10619 #endif
10620 #ifdef TARGET_NR_sendmmsg
10621     case TARGET_NR_sendmmsg:
10622         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10623 #endif
10624 #ifdef TARGET_NR_recvmmsg
10625     case TARGET_NR_recvmmsg:
10626         return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10627 #endif
10628 #ifdef TARGET_NR_sendto
10629     case TARGET_NR_sendto:
10630         return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10631 #endif
10632 #ifdef TARGET_NR_shutdown
10633     case TARGET_NR_shutdown:
10634         return get_errno(shutdown(arg1, arg2));
10635 #endif
10636 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10637     case TARGET_NR_getrandom:
10638         p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10639         if (!p) {
10640             return -TARGET_EFAULT;
10641         }
10642         ret = get_errno(getrandom(p, arg2, arg3));
10643         unlock_user(p, arg1, ret);
10644         return ret;
10645 #endif
10646 #ifdef TARGET_NR_socket
10647     case TARGET_NR_socket:
10648         return do_socket(arg1, arg2, arg3);
10649 #endif
10650 #ifdef TARGET_NR_socketpair
10651     case TARGET_NR_socketpair:
10652         return do_socketpair(arg1, arg2, arg3, arg4);
10653 #endif
10654 #ifdef TARGET_NR_setsockopt
10655     case TARGET_NR_setsockopt:
10656         return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10657 #endif
10658 #if defined(TARGET_NR_syslog)
10659     case TARGET_NR_syslog:
10660         {
10661             int len = arg2;
10662 
10663             switch (arg1) {
10664             case TARGET_SYSLOG_ACTION_CLOSE:         /* Close log */
10665             case TARGET_SYSLOG_ACTION_OPEN:          /* Open log */
10666             case TARGET_SYSLOG_ACTION_CLEAR:         /* Clear ring buffer */
10667             case TARGET_SYSLOG_ACTION_CONSOLE_OFF:   /* Disable logging */
10668             case TARGET_SYSLOG_ACTION_CONSOLE_ON:    /* Enable logging */
10669             case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10670             case TARGET_SYSLOG_ACTION_SIZE_UNREAD:   /* Number of chars */
10671             case TARGET_SYSLOG_ACTION_SIZE_BUFFER:   /* Size of the buffer */
10672                 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10673             case TARGET_SYSLOG_ACTION_READ:          /* Read from log */
10674             case TARGET_SYSLOG_ACTION_READ_CLEAR:    /* Read/clear msgs */
10675             case TARGET_SYSLOG_ACTION_READ_ALL:      /* Read last messages */
10676                 {
10677                     if (len < 0) {
10678                         return -TARGET_EINVAL;
10679                     }
10680                     if (len == 0) {
10681                         return 0;
10682                     }
10683                     p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10684                     if (!p) {
10685                         return -TARGET_EFAULT;
10686                     }
10687                     ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10688                     unlock_user(p, arg2, arg3);
10689                 }
10690                 return ret;
10691             default:
10692                 return -TARGET_EINVAL;
10693             }
10694         }
10695         break;
10696 #endif
10697     case TARGET_NR_setitimer:
10698         {
10699             struct itimerval value, ovalue, *pvalue;
10700 
10701             if (arg2) {
10702                 pvalue = &value;
10703                 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10704                     || copy_from_user_timeval(&pvalue->it_value,
10705                                               arg2 + sizeof(struct target_timeval)))
10706                     return -TARGET_EFAULT;
10707             } else {
10708                 pvalue = NULL;
10709             }
10710             ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10711             if (!is_error(ret) && arg3) {
10712                 if (copy_to_user_timeval(arg3,
10713                                          &ovalue.it_interval)
10714                     || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10715                                             &ovalue.it_value))
10716                     return -TARGET_EFAULT;
10717             }
10718         }
10719         return ret;
10720     case TARGET_NR_getitimer:
10721         {
10722             struct itimerval value;
10723 
10724             ret = get_errno(getitimer(arg1, &value));
10725             if (!is_error(ret) && arg2) {
10726                 if (copy_to_user_timeval(arg2,
10727                                          &value.it_interval)
10728                     || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10729                                             &value.it_value))
10730                     return -TARGET_EFAULT;
10731             }
10732         }
10733         return ret;
10734 #ifdef TARGET_NR_stat
10735     case TARGET_NR_stat:
10736         if (!(p = lock_user_string(arg1))) {
10737             return -TARGET_EFAULT;
10738         }
10739         ret = get_errno(stat(path(p), &st));
10740         unlock_user(p, arg1, 0);
10741         goto do_stat;
10742 #endif
10743 #ifdef TARGET_NR_lstat
10744     case TARGET_NR_lstat:
10745         if (!(p = lock_user_string(arg1))) {
10746             return -TARGET_EFAULT;
10747         }
10748         ret = get_errno(lstat(path(p), &st));
10749         unlock_user(p, arg1, 0);
10750         goto do_stat;
10751 #endif
10752 #ifdef TARGET_NR_fstat
10753     case TARGET_NR_fstat:
10754         {
10755             ret = get_errno(fstat(arg1, &st));
10756 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10757         do_stat:
10758 #endif
10759             if (!is_error(ret)) {
10760                 struct target_stat *target_st;
10761 
10762                 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10763                     return -TARGET_EFAULT;
10764                 memset(target_st, 0, sizeof(*target_st));
10765                 __put_user(st.st_dev, &target_st->st_dev);
10766                 __put_user(st.st_ino, &target_st->st_ino);
10767                 __put_user(st.st_mode, &target_st->st_mode);
10768                 __put_user(st.st_uid, &target_st->st_uid);
10769                 __put_user(st.st_gid, &target_st->st_gid);
10770                 __put_user(st.st_nlink, &target_st->st_nlink);
10771                 __put_user(st.st_rdev, &target_st->st_rdev);
10772                 __put_user(st.st_size, &target_st->st_size);
10773                 __put_user(st.st_blksize, &target_st->st_blksize);
10774                 __put_user(st.st_blocks, &target_st->st_blocks);
10775                 __put_user(st.st_atime, &target_st->target_st_atime);
10776                 __put_user(st.st_mtime, &target_st->target_st_mtime);
10777                 __put_user(st.st_ctime, &target_st->target_st_ctime);
10778 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10779                 __put_user(st.st_atim.tv_nsec,
10780                            &target_st->target_st_atime_nsec);
10781                 __put_user(st.st_mtim.tv_nsec,
10782                            &target_st->target_st_mtime_nsec);
10783                 __put_user(st.st_ctim.tv_nsec,
10784                            &target_st->target_st_ctime_nsec);
10785 #endif
10786                 unlock_user_struct(target_st, arg2, 1);
10787             }
10788         }
10789         return ret;
10790 #endif
10791     case TARGET_NR_vhangup:
10792         return get_errno(vhangup());
10793 #ifdef TARGET_NR_syscall
10794     case TARGET_NR_syscall:
10795         return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10796                           arg6, arg7, arg8, 0);
10797 #endif
10798 #if defined(TARGET_NR_wait4)
10799     case TARGET_NR_wait4:
10800         {
10801             int status;
10802             abi_long status_ptr = arg2;
10803             struct rusage rusage, *rusage_ptr;
10804             abi_ulong target_rusage = arg4;
10805             abi_long rusage_err;
10806             if (target_rusage)
10807                 rusage_ptr = &rusage;
10808             else
10809                 rusage_ptr = NULL;
10810             ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10811             if (!is_error(ret)) {
10812                 if (status_ptr && ret) {
10813                     status = host_to_target_waitstatus(status);
10814                     if (put_user_s32(status, status_ptr))
10815                         return -TARGET_EFAULT;
10816                 }
10817                 if (target_rusage) {
10818                     rusage_err = host_to_target_rusage(target_rusage, &rusage);
10819                     if (rusage_err) {
10820                         ret = rusage_err;
10821                     }
10822                 }
10823             }
10824         }
10825         return ret;
10826 #endif
10827 #ifdef TARGET_NR_swapoff
10828     case TARGET_NR_swapoff:
10829         if (!(p = lock_user_string(arg1)))
10830             return -TARGET_EFAULT;
10831         ret = get_errno(swapoff(p));
10832         unlock_user(p, arg1, 0);
10833         return ret;
10834 #endif
10835     case TARGET_NR_sysinfo:
10836         {
10837             struct target_sysinfo *target_value;
10838             struct sysinfo value;
10839             ret = get_errno(sysinfo(&value));
10840             if (!is_error(ret) && arg1)
10841             {
10842                 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10843                     return -TARGET_EFAULT;
10844                 __put_user(value.uptime, &target_value->uptime);
10845                 __put_user(value.loads[0], &target_value->loads[0]);
10846                 __put_user(value.loads[1], &target_value->loads[1]);
10847                 __put_user(value.loads[2], &target_value->loads[2]);
10848                 __put_user(value.totalram, &target_value->totalram);
10849                 __put_user(value.freeram, &target_value->freeram);
10850                 __put_user(value.sharedram, &target_value->sharedram);
10851                 __put_user(value.bufferram, &target_value->bufferram);
10852                 __put_user(value.totalswap, &target_value->totalswap);
10853                 __put_user(value.freeswap, &target_value->freeswap);
10854                 __put_user(value.procs, &target_value->procs);
10855                 __put_user(value.totalhigh, &target_value->totalhigh);
10856                 __put_user(value.freehigh, &target_value->freehigh);
10857                 __put_user(value.mem_unit, &target_value->mem_unit);
10858                 unlock_user_struct(target_value, arg1, 1);
10859             }
10860         }
10861         return ret;
10862 #ifdef TARGET_NR_ipc
10863     case TARGET_NR_ipc:
10864         return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10865 #endif
10866 #ifdef TARGET_NR_semget
10867     case TARGET_NR_semget:
10868         return get_errno(semget(arg1, arg2, arg3));
10869 #endif
10870 #ifdef TARGET_NR_semop
10871     case TARGET_NR_semop:
10872         return do_semtimedop(arg1, arg2, arg3, 0, false);
10873 #endif
10874 #ifdef TARGET_NR_semtimedop
10875     case TARGET_NR_semtimedop:
10876         return do_semtimedop(arg1, arg2, arg3, arg4, false);
10877 #endif
10878 #ifdef TARGET_NR_semtimedop_time64
10879     case TARGET_NR_semtimedop_time64:
10880         return do_semtimedop(arg1, arg2, arg3, arg4, true);
10881 #endif
10882 #ifdef TARGET_NR_semctl
10883     case TARGET_NR_semctl:
10884         return do_semctl(arg1, arg2, arg3, arg4);
10885 #endif
10886 #ifdef TARGET_NR_msgctl
10887     case TARGET_NR_msgctl:
10888         return do_msgctl(arg1, arg2, arg3);
10889 #endif
10890 #ifdef TARGET_NR_msgget
10891     case TARGET_NR_msgget:
10892         return get_errno(msgget(arg1, arg2));
10893 #endif
10894 #ifdef TARGET_NR_msgrcv
10895     case TARGET_NR_msgrcv:
10896         return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10897 #endif
10898 #ifdef TARGET_NR_msgsnd
10899     case TARGET_NR_msgsnd:
10900         return do_msgsnd(arg1, arg2, arg3, arg4);
10901 #endif
10902 #ifdef TARGET_NR_shmget
10903     case TARGET_NR_shmget:
10904         return get_errno(shmget(arg1, arg2, arg3));
10905 #endif
10906 #ifdef TARGET_NR_shmctl
10907     case TARGET_NR_shmctl:
10908         return do_shmctl(arg1, arg2, arg3);
10909 #endif
10910 #ifdef TARGET_NR_shmat
10911     case TARGET_NR_shmat:
10912         return target_shmat(cpu_env, arg1, arg2, arg3);
10913 #endif
10914 #ifdef TARGET_NR_shmdt
10915     case TARGET_NR_shmdt:
10916         return target_shmdt(arg1);
10917 #endif
10918     case TARGET_NR_fsync:
10919         return get_errno(fsync(arg1));
10920     case TARGET_NR_clone:
10921         /* Linux manages to have three different orderings for its
10922          * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10923          * match the kernel's CONFIG_CLONE_* settings.
10924          * Microblaze is further special in that it uses a sixth
10925          * implicit argument to clone for the TLS pointer.
10926          */
10927 #if defined(TARGET_MICROBLAZE)
10928         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10929 #elif defined(TARGET_CLONE_BACKWARDS)
10930         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10931 #elif defined(TARGET_CLONE_BACKWARDS2)
10932         ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10933 #else
10934         ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10935 #endif
10936         return ret;
10937 #ifdef __NR_exit_group
10938         /* new thread calls */
10939     case TARGET_NR_exit_group:
10940         preexit_cleanup(cpu_env, arg1);
10941         return get_errno(exit_group(arg1));
10942 #endif
10943     case TARGET_NR_setdomainname:
10944         if (!(p = lock_user_string(arg1)))
10945             return -TARGET_EFAULT;
10946         ret = get_errno(setdomainname(p, arg2));
10947         unlock_user(p, arg1, 0);
10948         return ret;
10949     case TARGET_NR_uname:
10950         /* no need to transcode because we use the linux syscall */
10951         {
10952             struct new_utsname * buf;
10953 
10954             if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10955                 return -TARGET_EFAULT;
10956             ret = get_errno(sys_uname(buf));
10957             if (!is_error(ret)) {
10958                 /* Overwrite the native machine name with whatever is being
10959                    emulated. */
10960                 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10961                           sizeof(buf->machine));
10962                 /* Allow the user to override the reported release.  */
10963                 if (qemu_uname_release && *qemu_uname_release) {
10964                     g_strlcpy(buf->release, qemu_uname_release,
10965                               sizeof(buf->release));
10966                 }
10967             }
10968             unlock_user_struct(buf, arg1, 1);
10969         }
10970         return ret;
10971 #ifdef TARGET_I386
10972     case TARGET_NR_modify_ldt:
10973         return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10974 #if !defined(TARGET_X86_64)
10975     case TARGET_NR_vm86:
10976         return do_vm86(cpu_env, arg1, arg2);
10977 #endif
10978 #endif
10979 #if defined(TARGET_NR_adjtimex)
10980     case TARGET_NR_adjtimex:
10981         {
10982             struct timex host_buf;
10983 
10984             if (target_to_host_timex(&host_buf, arg1) != 0) {
10985                 return -TARGET_EFAULT;
10986             }
10987             ret = get_errno(adjtimex(&host_buf));
10988             if (!is_error(ret)) {
10989                 if (host_to_target_timex(arg1, &host_buf) != 0) {
10990                     return -TARGET_EFAULT;
10991                 }
10992             }
10993         }
10994         return ret;
10995 #endif
10996 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10997     case TARGET_NR_clock_adjtime:
10998         {
10999             struct timex htx;
11000 
11001             if (target_to_host_timex(&htx, arg2) != 0) {
11002                 return -TARGET_EFAULT;
11003             }
11004             ret = get_errno(clock_adjtime(arg1, &htx));
11005             if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11006                 return -TARGET_EFAULT;
11007             }
11008         }
11009         return ret;
11010 #endif
11011 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11012     case TARGET_NR_clock_adjtime64:
11013         {
11014             struct timex htx;
11015 
11016             if (target_to_host_timex64(&htx, arg2) != 0) {
11017                 return -TARGET_EFAULT;
11018             }
11019             ret = get_errno(clock_adjtime(arg1, &htx));
11020             if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11021                     return -TARGET_EFAULT;
11022             }
11023         }
11024         return ret;
11025 #endif
11026     case TARGET_NR_getpgid:
11027         return get_errno(getpgid(arg1));
11028     case TARGET_NR_fchdir:
11029         return get_errno(fchdir(arg1));
11030     case TARGET_NR_personality:
11031         return get_errno(personality(arg1));
11032 #ifdef TARGET_NR__llseek /* Not on alpha */
11033     case TARGET_NR__llseek:
11034         {
11035             int64_t res;
11036 #if !defined(__NR_llseek)
11037             res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11038             if (res == -1) {
11039                 ret = get_errno(res);
11040             } else {
11041                 ret = 0;
11042             }
11043 #else
11044             ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11045 #endif
11046             if ((ret == 0) && put_user_s64(res, arg4)) {
11047                 return -TARGET_EFAULT;
11048             }
11049         }
11050         return ret;
11051 #endif
11052 #ifdef TARGET_NR_getdents
11053     case TARGET_NR_getdents:
11054         return do_getdents(arg1, arg2, arg3);
11055 #endif /* TARGET_NR_getdents */
11056 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11057     case TARGET_NR_getdents64:
11058         return do_getdents64(arg1, arg2, arg3);
11059 #endif /* TARGET_NR_getdents64 */
11060 #if defined(TARGET_NR__newselect)
11061     case TARGET_NR__newselect:
11062         return do_select(arg1, arg2, arg3, arg4, arg5);
11063 #endif
11064 #ifdef TARGET_NR_poll
11065     case TARGET_NR_poll:
11066         return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11067 #endif
11068 #ifdef TARGET_NR_ppoll
11069     case TARGET_NR_ppoll:
11070         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11071 #endif
11072 #ifdef TARGET_NR_ppoll_time64
11073     case TARGET_NR_ppoll_time64:
11074         return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11075 #endif
11076     case TARGET_NR_flock:
11077         /* NOTE: the flock constant seems to be the same for every
11078            Linux platform */
11079         return get_errno(safe_flock(arg1, arg2));
11080     case TARGET_NR_readv:
11081         {
11082             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11083             if (vec != NULL) {
11084                 ret = get_errno(safe_readv(arg1, vec, arg3));
11085                 unlock_iovec(vec, arg2, arg3, 1);
11086             } else {
11087                 ret = -host_to_target_errno(errno);
11088             }
11089         }
11090         return ret;
11091     case TARGET_NR_writev:
11092         {
11093             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11094             if (vec != NULL) {
11095                 ret = get_errno(safe_writev(arg1, vec, arg3));
11096                 unlock_iovec(vec, arg2, arg3, 0);
11097             } else {
11098                 ret = -host_to_target_errno(errno);
11099             }
11100         }
11101         return ret;
11102 #if defined(TARGET_NR_preadv)
11103     case TARGET_NR_preadv:
11104         {
11105             struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11106             if (vec != NULL) {
11107                 unsigned long low, high;
11108 
11109                 target_to_host_low_high(arg4, arg5, &low, &high);
11110                 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11111                 unlock_iovec(vec, arg2, arg3, 1);
11112             } else {
11113                 ret = -host_to_target_errno(errno);
11114            }
11115         }
11116         return ret;
11117 #endif
11118 #if defined(TARGET_NR_pwritev)
11119     case TARGET_NR_pwritev:
11120         {
11121             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11122             if (vec != NULL) {
11123                 unsigned long low, high;
11124 
11125                 target_to_host_low_high(arg4, arg5, &low, &high);
11126                 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11127                 unlock_iovec(vec, arg2, arg3, 0);
11128             } else {
11129                 ret = -host_to_target_errno(errno);
11130            }
11131         }
11132         return ret;
11133 #endif
11134     case TARGET_NR_getsid:
11135         return get_errno(getsid(arg1));
11136 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11137     case TARGET_NR_fdatasync:
11138         return get_errno(fdatasync(arg1));
11139 #endif
11140     case TARGET_NR_sched_getaffinity:
11141         {
11142             unsigned int mask_size;
11143             unsigned long *mask;
11144 
11145             /*
11146              * sched_getaffinity needs multiples of ulong, so need to take
11147              * care of mismatches between target ulong and host ulong sizes.
11148              */
11149             if (arg2 & (sizeof(abi_ulong) - 1)) {
11150                 return -TARGET_EINVAL;
11151             }
11152             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11153 
11154             mask = alloca(mask_size);
11155             memset(mask, 0, mask_size);
11156             ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11157 
11158             if (!is_error(ret)) {
11159                 if (ret > arg2) {
11160                     /* More data returned than the caller's buffer will fit.
11161                      * This only happens if sizeof(abi_long) < sizeof(long)
11162                      * and the caller passed us a buffer holding an odd number
11163                      * of abi_longs. If the host kernel is actually using the
11164                      * extra 4 bytes then fail EINVAL; otherwise we can just
11165                      * ignore them and only copy the interesting part.
11166                      */
11167                     int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11168                     if (numcpus > arg2 * 8) {
11169                         return -TARGET_EINVAL;
11170                     }
11171                     ret = arg2;
11172                 }
11173 
11174                 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11175                     return -TARGET_EFAULT;
11176                 }
11177             }
11178         }
11179         return ret;
11180     case TARGET_NR_sched_setaffinity:
11181         {
11182             unsigned int mask_size;
11183             unsigned long *mask;
11184 
11185             /*
11186              * sched_setaffinity needs multiples of ulong, so need to take
11187              * care of mismatches between target ulong and host ulong sizes.
11188              */
11189             if (arg2 & (sizeof(abi_ulong) - 1)) {
11190                 return -TARGET_EINVAL;
11191             }
11192             mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11193             mask = alloca(mask_size);
11194 
11195             ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11196             if (ret) {
11197                 return ret;
11198             }
11199 
11200             return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11201         }
11202     case TARGET_NR_getcpu:
11203         {
11204             unsigned cpuid, node;
11205             ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11206                                        arg2 ? &node : NULL,
11207                                        NULL));
11208             if (is_error(ret)) {
11209                 return ret;
11210             }
11211             if (arg1 && put_user_u32(cpuid, arg1)) {
11212                 return -TARGET_EFAULT;
11213             }
11214             if (arg2 && put_user_u32(node, arg2)) {
11215                 return -TARGET_EFAULT;
11216             }
11217         }
11218         return ret;
11219     case TARGET_NR_sched_setparam:
11220         {
11221             struct target_sched_param *target_schp;
11222             struct sched_param schp;
11223 
11224             if (arg2 == 0) {
11225                 return -TARGET_EINVAL;
11226             }
11227             if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11228                 return -TARGET_EFAULT;
11229             }
11230             schp.sched_priority = tswap32(target_schp->sched_priority);
11231             unlock_user_struct(target_schp, arg2, 0);
11232             return get_errno(sys_sched_setparam(arg1, &schp));
11233         }
11234     case TARGET_NR_sched_getparam:
11235         {
11236             struct target_sched_param *target_schp;
11237             struct sched_param schp;
11238 
11239             if (arg2 == 0) {
11240                 return -TARGET_EINVAL;
11241             }
11242             ret = get_errno(sys_sched_getparam(arg1, &schp));
11243             if (!is_error(ret)) {
11244                 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11245                     return -TARGET_EFAULT;
11246                 }
11247                 target_schp->sched_priority = tswap32(schp.sched_priority);
11248                 unlock_user_struct(target_schp, arg2, 1);
11249             }
11250         }
11251         return ret;
11252     case TARGET_NR_sched_setscheduler:
11253         {
11254             struct target_sched_param *target_schp;
11255             struct sched_param schp;
11256             if (arg3 == 0) {
11257                 return -TARGET_EINVAL;
11258             }
11259             if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11260                 return -TARGET_EFAULT;
11261             }
11262             schp.sched_priority = tswap32(target_schp->sched_priority);
11263             unlock_user_struct(target_schp, arg3, 0);
11264             return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11265         }
11266     case TARGET_NR_sched_getscheduler:
11267         return get_errno(sys_sched_getscheduler(arg1));
11268     case TARGET_NR_sched_getattr:
11269         {
11270             struct target_sched_attr *target_scha;
11271             struct sched_attr scha;
11272             if (arg2 == 0) {
11273                 return -TARGET_EINVAL;
11274             }
11275             if (arg3 > sizeof(scha)) {
11276                 arg3 = sizeof(scha);
11277             }
11278             ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11279             if (!is_error(ret)) {
11280                 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11281                 if (!target_scha) {
11282                     return -TARGET_EFAULT;
11283                 }
11284                 target_scha->size = tswap32(scha.size);
11285                 target_scha->sched_policy = tswap32(scha.sched_policy);
11286                 target_scha->sched_flags = tswap64(scha.sched_flags);
11287                 target_scha->sched_nice = tswap32(scha.sched_nice);
11288                 target_scha->sched_priority = tswap32(scha.sched_priority);
11289                 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11290                 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11291                 target_scha->sched_period = tswap64(scha.sched_period);
11292                 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11293                     target_scha->sched_util_min = tswap32(scha.sched_util_min);
11294                     target_scha->sched_util_max = tswap32(scha.sched_util_max);
11295                 }
11296                 unlock_user(target_scha, arg2, arg3);
11297             }
11298             return ret;
11299         }
11300     case TARGET_NR_sched_setattr:
11301         {
11302             struct target_sched_attr *target_scha;
11303             struct sched_attr scha;
11304             uint32_t size;
11305             int zeroed;
11306             if (arg2 == 0) {
11307                 return -TARGET_EINVAL;
11308             }
11309             if (get_user_u32(size, arg2)) {
11310                 return -TARGET_EFAULT;
11311             }
11312             if (!size) {
11313                 size = offsetof(struct target_sched_attr, sched_util_min);
11314             }
11315             if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11316                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11317                     return -TARGET_EFAULT;
11318                 }
11319                 return -TARGET_E2BIG;
11320             }
11321 
11322             zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11323             if (zeroed < 0) {
11324                 return zeroed;
11325             } else if (zeroed == 0) {
11326                 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11327                     return -TARGET_EFAULT;
11328                 }
11329                 return -TARGET_E2BIG;
11330             }
11331             if (size > sizeof(struct target_sched_attr)) {
11332                 size = sizeof(struct target_sched_attr);
11333             }
11334 
11335             target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11336             if (!target_scha) {
11337                 return -TARGET_EFAULT;
11338             }
11339             scha.size = size;
11340             scha.sched_policy = tswap32(target_scha->sched_policy);
11341             scha.sched_flags = tswap64(target_scha->sched_flags);
11342             scha.sched_nice = tswap32(target_scha->sched_nice);
11343             scha.sched_priority = tswap32(target_scha->sched_priority);
11344             scha.sched_runtime = tswap64(target_scha->sched_runtime);
11345             scha.sched_deadline = tswap64(target_scha->sched_deadline);
11346             scha.sched_period = tswap64(target_scha->sched_period);
11347             if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11348                 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11349                 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11350             }
11351             unlock_user(target_scha, arg2, 0);
11352             return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11353         }
11354     case TARGET_NR_sched_yield:
11355         return get_errno(sched_yield());
11356     case TARGET_NR_sched_get_priority_max:
11357         return get_errno(sched_get_priority_max(arg1));
11358     case TARGET_NR_sched_get_priority_min:
11359         return get_errno(sched_get_priority_min(arg1));
11360 #ifdef TARGET_NR_sched_rr_get_interval
11361     case TARGET_NR_sched_rr_get_interval:
11362         {
11363             struct timespec ts;
11364             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11365             if (!is_error(ret)) {
11366                 ret = host_to_target_timespec(arg2, &ts);
11367             }
11368         }
11369         return ret;
11370 #endif
11371 #ifdef TARGET_NR_sched_rr_get_interval_time64
11372     case TARGET_NR_sched_rr_get_interval_time64:
11373         {
11374             struct timespec ts;
11375             ret = get_errno(sched_rr_get_interval(arg1, &ts));
11376             if (!is_error(ret)) {
11377                 ret = host_to_target_timespec64(arg2, &ts);
11378             }
11379         }
11380         return ret;
11381 #endif
11382 #if defined(TARGET_NR_nanosleep)
11383     case TARGET_NR_nanosleep:
11384         {
11385             struct timespec req, rem;
11386             target_to_host_timespec(&req, arg1);
11387             ret = get_errno(safe_nanosleep(&req, &rem));
11388             if (is_error(ret) && arg2) {
11389                 host_to_target_timespec(arg2, &rem);
11390             }
11391         }
11392         return ret;
11393 #endif
11394     case TARGET_NR_prctl:
11395         return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11396         break;
11397 #ifdef TARGET_NR_arch_prctl
11398     case TARGET_NR_arch_prctl:
11399         return do_arch_prctl(cpu_env, arg1, arg2);
11400 #endif
11401 #ifdef TARGET_NR_pread64
11402     case TARGET_NR_pread64:
11403         if (regpairs_aligned(cpu_env, num)) {
11404             arg4 = arg5;
11405             arg5 = arg6;
11406         }
11407         if (arg2 == 0 && arg3 == 0) {
11408             /* Special-case NULL buffer and zero length, which should succeed */
11409             p = 0;
11410         } else {
11411             p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11412             if (!p) {
11413                 return -TARGET_EFAULT;
11414             }
11415         }
11416         ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11417         unlock_user(p, arg2, ret);
11418         return ret;
11419     case TARGET_NR_pwrite64:
11420         if (regpairs_aligned(cpu_env, num)) {
11421             arg4 = arg5;
11422             arg5 = arg6;
11423         }
11424         if (arg2 == 0 && arg3 == 0) {
11425             /* Special-case NULL buffer and zero length, which should succeed */
11426             p = 0;
11427         } else {
11428             p = lock_user(VERIFY_READ, arg2, arg3, 1);
11429             if (!p) {
11430                 return -TARGET_EFAULT;
11431             }
11432         }
11433         ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11434         unlock_user(p, arg2, 0);
11435         return ret;
11436 #endif
11437     case TARGET_NR_getcwd:
11438         if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11439             return -TARGET_EFAULT;
11440         ret = get_errno(sys_getcwd1(p, arg2));
11441         unlock_user(p, arg1, ret);
11442         return ret;
11443     case TARGET_NR_capget:
11444     case TARGET_NR_capset:
11445     {
11446         struct target_user_cap_header *target_header;
11447         struct target_user_cap_data *target_data = NULL;
11448         struct __user_cap_header_struct header;
11449         struct __user_cap_data_struct data[2];
11450         struct __user_cap_data_struct *dataptr = NULL;
11451         int i, target_datalen;
11452         int data_items = 1;
11453 
11454         if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11455             return -TARGET_EFAULT;
11456         }
11457         header.version = tswap32(target_header->version);
11458         header.pid = tswap32(target_header->pid);
11459 
11460         if (header.version != _LINUX_CAPABILITY_VERSION) {
11461             /* Version 2 and up takes pointer to two user_data structs */
11462             data_items = 2;
11463         }
11464 
11465         target_datalen = sizeof(*target_data) * data_items;
11466 
11467         if (arg2) {
11468             if (num == TARGET_NR_capget) {
11469                 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11470             } else {
11471                 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11472             }
11473             if (!target_data) {
11474                 unlock_user_struct(target_header, arg1, 0);
11475                 return -TARGET_EFAULT;
11476             }
11477 
11478             if (num == TARGET_NR_capset) {
11479                 for (i = 0; i < data_items; i++) {
11480                     data[i].effective = tswap32(target_data[i].effective);
11481                     data[i].permitted = tswap32(target_data[i].permitted);
11482                     data[i].inheritable = tswap32(target_data[i].inheritable);
11483                 }
11484             }
11485 
11486             dataptr = data;
11487         }
11488 
11489         if (num == TARGET_NR_capget) {
11490             ret = get_errno(capget(&header, dataptr));
11491         } else {
11492             ret = get_errno(capset(&header, dataptr));
11493         }
11494 
11495         /* The kernel always updates version for both capget and capset */
11496         target_header->version = tswap32(header.version);
11497         unlock_user_struct(target_header, arg1, 1);
11498 
11499         if (arg2) {
11500             if (num == TARGET_NR_capget) {
11501                 for (i = 0; i < data_items; i++) {
11502                     target_data[i].effective = tswap32(data[i].effective);
11503                     target_data[i].permitted = tswap32(data[i].permitted);
11504                     target_data[i].inheritable = tswap32(data[i].inheritable);
11505                 }
11506                 unlock_user(target_data, arg2, target_datalen);
11507             } else {
11508                 unlock_user(target_data, arg2, 0);
11509             }
11510         }
11511         return ret;
11512     }
11513     case TARGET_NR_sigaltstack:
11514         return do_sigaltstack(arg1, arg2, cpu_env);
11515 
11516 #ifdef CONFIG_SENDFILE
11517 #ifdef TARGET_NR_sendfile
11518     case TARGET_NR_sendfile:
11519     {
11520         off_t *offp = NULL;
11521         off_t off;
11522         if (arg3) {
11523             ret = get_user_sal(off, arg3);
11524             if (is_error(ret)) {
11525                 return ret;
11526             }
11527             offp = &off;
11528         }
11529         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11530         if (!is_error(ret) && arg3) {
11531             abi_long ret2 = put_user_sal(off, arg3);
11532             if (is_error(ret2)) {
11533                 ret = ret2;
11534             }
11535         }
11536         return ret;
11537     }
11538 #endif
11539 #ifdef TARGET_NR_sendfile64
11540     case TARGET_NR_sendfile64:
11541     {
11542         off_t *offp = NULL;
11543         off_t off;
11544         if (arg3) {
11545             ret = get_user_s64(off, arg3);
11546             if (is_error(ret)) {
11547                 return ret;
11548             }
11549             offp = &off;
11550         }
11551         ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11552         if (!is_error(ret) && arg3) {
11553             abi_long ret2 = put_user_s64(off, arg3);
11554             if (is_error(ret2)) {
11555                 ret = ret2;
11556             }
11557         }
11558         return ret;
11559     }
11560 #endif
11561 #endif
11562 #ifdef TARGET_NR_vfork
11563     case TARGET_NR_vfork:
11564         return get_errno(do_fork(cpu_env,
11565                          CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11566                          0, 0, 0, 0));
11567 #endif
11568 #ifdef TARGET_NR_ugetrlimit
11569     case TARGET_NR_ugetrlimit:
11570     {
11571 	struct rlimit rlim;
11572 	int resource = target_to_host_resource(arg1);
11573 	ret = get_errno(getrlimit(resource, &rlim));
11574 	if (!is_error(ret)) {
11575 	    struct target_rlimit *target_rlim;
11576             if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11577                 return -TARGET_EFAULT;
11578 	    target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11579 	    target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11580             unlock_user_struct(target_rlim, arg2, 1);
11581 	}
11582         return ret;
11583     }
11584 #endif
11585 #ifdef TARGET_NR_truncate64
11586     case TARGET_NR_truncate64:
11587         if (!(p = lock_user_string(arg1)))
11588             return -TARGET_EFAULT;
11589 	ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11590         unlock_user(p, arg1, 0);
11591         return ret;
11592 #endif
11593 #ifdef TARGET_NR_ftruncate64
11594     case TARGET_NR_ftruncate64:
11595         return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11596 #endif
11597 #ifdef TARGET_NR_stat64
11598     case TARGET_NR_stat64:
11599         if (!(p = lock_user_string(arg1))) {
11600             return -TARGET_EFAULT;
11601         }
11602         ret = get_errno(stat(path(p), &st));
11603         unlock_user(p, arg1, 0);
11604         if (!is_error(ret))
11605             ret = host_to_target_stat64(cpu_env, arg2, &st);
11606         return ret;
11607 #endif
11608 #ifdef TARGET_NR_lstat64
11609     case TARGET_NR_lstat64:
11610         if (!(p = lock_user_string(arg1))) {
11611             return -TARGET_EFAULT;
11612         }
11613         ret = get_errno(lstat(path(p), &st));
11614         unlock_user(p, arg1, 0);
11615         if (!is_error(ret))
11616             ret = host_to_target_stat64(cpu_env, arg2, &st);
11617         return ret;
11618 #endif
11619 #ifdef TARGET_NR_fstat64
11620     case TARGET_NR_fstat64:
11621         ret = get_errno(fstat(arg1, &st));
11622         if (!is_error(ret))
11623             ret = host_to_target_stat64(cpu_env, arg2, &st);
11624         return ret;
11625 #endif
11626 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11627 #ifdef TARGET_NR_fstatat64
11628     case TARGET_NR_fstatat64:
11629 #endif
11630 #ifdef TARGET_NR_newfstatat
11631     case TARGET_NR_newfstatat:
11632 #endif
11633         if (!(p = lock_user_string(arg2))) {
11634             return -TARGET_EFAULT;
11635         }
11636         ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11637         unlock_user(p, arg2, 0);
11638         if (!is_error(ret))
11639             ret = host_to_target_stat64(cpu_env, arg3, &st);
11640         return ret;
11641 #endif
11642 #if defined(TARGET_NR_statx)
11643     case TARGET_NR_statx:
11644         {
11645             struct target_statx *target_stx;
11646             int dirfd = arg1;
11647             int flags = arg3;
11648 
11649             p = lock_user_string(arg2);
11650             if (p == NULL) {
11651                 return -TARGET_EFAULT;
11652             }
11653 #if defined(__NR_statx)
11654             {
11655                 /*
11656                  * It is assumed that struct statx is architecture independent.
11657                  */
11658                 struct target_statx host_stx;
11659                 int mask = arg4;
11660 
11661                 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11662                 if (!is_error(ret)) {
11663                     if (host_to_target_statx(&host_stx, arg5) != 0) {
11664                         unlock_user(p, arg2, 0);
11665                         return -TARGET_EFAULT;
11666                     }
11667                 }
11668 
11669                 if (ret != -TARGET_ENOSYS) {
11670                     unlock_user(p, arg2, 0);
11671                     return ret;
11672                 }
11673             }
11674 #endif
11675             ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11676             unlock_user(p, arg2, 0);
11677 
11678             if (!is_error(ret)) {
11679                 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11680                     return -TARGET_EFAULT;
11681                 }
11682                 memset(target_stx, 0, sizeof(*target_stx));
11683                 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11684                 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11685                 __put_user(st.st_ino, &target_stx->stx_ino);
11686                 __put_user(st.st_mode, &target_stx->stx_mode);
11687                 __put_user(st.st_uid, &target_stx->stx_uid);
11688                 __put_user(st.st_gid, &target_stx->stx_gid);
11689                 __put_user(st.st_nlink, &target_stx->stx_nlink);
11690                 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11691                 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11692                 __put_user(st.st_size, &target_stx->stx_size);
11693                 __put_user(st.st_blksize, &target_stx->stx_blksize);
11694                 __put_user(st.st_blocks, &target_stx->stx_blocks);
11695                 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11696                 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11697                 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11698                 unlock_user_struct(target_stx, arg5, 1);
11699             }
11700         }
11701         return ret;
11702 #endif
11703 #ifdef TARGET_NR_lchown
11704     case TARGET_NR_lchown:
11705         if (!(p = lock_user_string(arg1)))
11706             return -TARGET_EFAULT;
11707         ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11708         unlock_user(p, arg1, 0);
11709         return ret;
11710 #endif
11711 #ifdef TARGET_NR_getuid
11712     case TARGET_NR_getuid:
11713         return get_errno(high2lowuid(getuid()));
11714 #endif
11715 #ifdef TARGET_NR_getgid
11716     case TARGET_NR_getgid:
11717         return get_errno(high2lowgid(getgid()));
11718 #endif
11719 #ifdef TARGET_NR_geteuid
11720     case TARGET_NR_geteuid:
11721         return get_errno(high2lowuid(geteuid()));
11722 #endif
11723 #ifdef TARGET_NR_getegid
11724     case TARGET_NR_getegid:
11725         return get_errno(high2lowgid(getegid()));
11726 #endif
11727     case TARGET_NR_setreuid:
11728         return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11729     case TARGET_NR_setregid:
11730         return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11731     case TARGET_NR_getgroups:
11732         { /* the same code as for TARGET_NR_getgroups32 */
11733             int gidsetsize = arg1;
11734             target_id *target_grouplist;
11735             g_autofree gid_t *grouplist = NULL;
11736             int i;
11737 
11738             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11739                 return -TARGET_EINVAL;
11740             }
11741             if (gidsetsize > 0) {
11742                 grouplist = g_try_new(gid_t, gidsetsize);
11743                 if (!grouplist) {
11744                     return -TARGET_ENOMEM;
11745                 }
11746             }
11747             ret = get_errno(getgroups(gidsetsize, grouplist));
11748             if (!is_error(ret) && gidsetsize > 0) {
11749                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11750                                              gidsetsize * sizeof(target_id), 0);
11751                 if (!target_grouplist) {
11752                     return -TARGET_EFAULT;
11753                 }
11754                 for (i = 0; i < ret; i++) {
11755                     target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11756                 }
11757                 unlock_user(target_grouplist, arg2,
11758                             gidsetsize * sizeof(target_id));
11759             }
11760             return ret;
11761         }
11762     case TARGET_NR_setgroups:
11763         { /* the same code as for TARGET_NR_setgroups32 */
11764             int gidsetsize = arg1;
11765             target_id *target_grouplist;
11766             g_autofree gid_t *grouplist = NULL;
11767             int i;
11768 
11769             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11770                 return -TARGET_EINVAL;
11771             }
11772             if (gidsetsize > 0) {
11773                 grouplist = g_try_new(gid_t, gidsetsize);
11774                 if (!grouplist) {
11775                     return -TARGET_ENOMEM;
11776                 }
11777                 target_grouplist = lock_user(VERIFY_READ, arg2,
11778                                              gidsetsize * sizeof(target_id), 1);
11779                 if (!target_grouplist) {
11780                     return -TARGET_EFAULT;
11781                 }
11782                 for (i = 0; i < gidsetsize; i++) {
11783                     grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11784                 }
11785                 unlock_user(target_grouplist, arg2,
11786                             gidsetsize * sizeof(target_id));
11787             }
11788             return get_errno(setgroups(gidsetsize, grouplist));
11789         }
11790     case TARGET_NR_fchown:
11791         return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11792 #if defined(TARGET_NR_fchownat)
11793     case TARGET_NR_fchownat:
11794         if (!(p = lock_user_string(arg2)))
11795             return -TARGET_EFAULT;
11796         ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11797                                  low2highgid(arg4), arg5));
11798         unlock_user(p, arg2, 0);
11799         return ret;
11800 #endif
11801 #ifdef TARGET_NR_setresuid
11802     case TARGET_NR_setresuid:
11803         return get_errno(sys_setresuid(low2highuid(arg1),
11804                                        low2highuid(arg2),
11805                                        low2highuid(arg3)));
11806 #endif
11807 #ifdef TARGET_NR_getresuid
11808     case TARGET_NR_getresuid:
11809         {
11810             uid_t ruid, euid, suid;
11811             ret = get_errno(getresuid(&ruid, &euid, &suid));
11812             if (!is_error(ret)) {
11813                 if (put_user_id(high2lowuid(ruid), arg1)
11814                     || put_user_id(high2lowuid(euid), arg2)
11815                     || put_user_id(high2lowuid(suid), arg3))
11816                     return -TARGET_EFAULT;
11817             }
11818         }
11819         return ret;
11820 #endif
11821 #ifdef TARGET_NR_getresgid
11822     case TARGET_NR_setresgid:
11823         return get_errno(sys_setresgid(low2highgid(arg1),
11824                                        low2highgid(arg2),
11825                                        low2highgid(arg3)));
11826 #endif
11827 #ifdef TARGET_NR_getresgid
11828     case TARGET_NR_getresgid:
11829         {
11830             gid_t rgid, egid, sgid;
11831             ret = get_errno(getresgid(&rgid, &egid, &sgid));
11832             if (!is_error(ret)) {
11833                 if (put_user_id(high2lowgid(rgid), arg1)
11834                     || put_user_id(high2lowgid(egid), arg2)
11835                     || put_user_id(high2lowgid(sgid), arg3))
11836                     return -TARGET_EFAULT;
11837             }
11838         }
11839         return ret;
11840 #endif
11841 #ifdef TARGET_NR_chown
11842     case TARGET_NR_chown:
11843         if (!(p = lock_user_string(arg1)))
11844             return -TARGET_EFAULT;
11845         ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11846         unlock_user(p, arg1, 0);
11847         return ret;
11848 #endif
11849     case TARGET_NR_setuid:
11850         return get_errno(sys_setuid(low2highuid(arg1)));
11851     case TARGET_NR_setgid:
11852         return get_errno(sys_setgid(low2highgid(arg1)));
11853     case TARGET_NR_setfsuid:
11854         return get_errno(setfsuid(arg1));
11855     case TARGET_NR_setfsgid:
11856         return get_errno(setfsgid(arg1));
11857 
11858 #ifdef TARGET_NR_lchown32
11859     case TARGET_NR_lchown32:
11860         if (!(p = lock_user_string(arg1)))
11861             return -TARGET_EFAULT;
11862         ret = get_errno(lchown(p, arg2, arg3));
11863         unlock_user(p, arg1, 0);
11864         return ret;
11865 #endif
11866 #ifdef TARGET_NR_getuid32
11867     case TARGET_NR_getuid32:
11868         return get_errno(getuid());
11869 #endif
11870 
11871 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11872    /* Alpha specific */
11873     case TARGET_NR_getxuid:
11874          {
11875             uid_t euid;
11876             euid=geteuid();
11877             cpu_env->ir[IR_A4]=euid;
11878          }
11879         return get_errno(getuid());
11880 #endif
11881 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11882    /* Alpha specific */
11883     case TARGET_NR_getxgid:
11884          {
11885             uid_t egid;
11886             egid=getegid();
11887             cpu_env->ir[IR_A4]=egid;
11888          }
11889         return get_errno(getgid());
11890 #endif
11891 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11892     /* Alpha specific */
11893     case TARGET_NR_osf_getsysinfo:
11894         ret = -TARGET_EOPNOTSUPP;
11895         switch (arg1) {
11896           case TARGET_GSI_IEEE_FP_CONTROL:
11897             {
11898                 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11899                 uint64_t swcr = cpu_env->swcr;
11900 
11901                 swcr &= ~SWCR_STATUS_MASK;
11902                 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11903 
11904                 if (put_user_u64 (swcr, arg2))
11905                         return -TARGET_EFAULT;
11906                 ret = 0;
11907             }
11908             break;
11909 
11910           /* case GSI_IEEE_STATE_AT_SIGNAL:
11911              -- Not implemented in linux kernel.
11912              case GSI_UACPROC:
11913              -- Retrieves current unaligned access state; not much used.
11914              case GSI_PROC_TYPE:
11915              -- Retrieves implver information; surely not used.
11916              case GSI_GET_HWRPB:
11917              -- Grabs a copy of the HWRPB; surely not used.
11918           */
11919         }
11920         return ret;
11921 #endif
11922 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11923     /* Alpha specific */
11924     case TARGET_NR_osf_setsysinfo:
11925         ret = -TARGET_EOPNOTSUPP;
11926         switch (arg1) {
11927           case TARGET_SSI_IEEE_FP_CONTROL:
11928             {
11929                 uint64_t swcr, fpcr;
11930 
11931                 if (get_user_u64 (swcr, arg2)) {
11932                     return -TARGET_EFAULT;
11933                 }
11934 
11935                 /*
11936                  * The kernel calls swcr_update_status to update the
11937                  * status bits from the fpcr at every point that it
11938                  * could be queried.  Therefore, we store the status
11939                  * bits only in FPCR.
11940                  */
11941                 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11942 
11943                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11944                 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11945                 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11946                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11947                 ret = 0;
11948             }
11949             break;
11950 
11951           case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11952             {
11953                 uint64_t exc, fpcr, fex;
11954 
11955                 if (get_user_u64(exc, arg2)) {
11956                     return -TARGET_EFAULT;
11957                 }
11958                 exc &= SWCR_STATUS_MASK;
11959                 fpcr = cpu_alpha_load_fpcr(cpu_env);
11960 
11961                 /* Old exceptions are not signaled.  */
11962                 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11963                 fex = exc & ~fex;
11964                 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11965                 fex &= (cpu_env)->swcr;
11966 
11967                 /* Update the hardware fpcr.  */
11968                 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11969                 cpu_alpha_store_fpcr(cpu_env, fpcr);
11970 
11971                 if (fex) {
11972                     int si_code = TARGET_FPE_FLTUNK;
11973                     target_siginfo_t info;
11974 
11975                     if (fex & SWCR_TRAP_ENABLE_DNO) {
11976                         si_code = TARGET_FPE_FLTUND;
11977                     }
11978                     if (fex & SWCR_TRAP_ENABLE_INE) {
11979                         si_code = TARGET_FPE_FLTRES;
11980                     }
11981                     if (fex & SWCR_TRAP_ENABLE_UNF) {
11982                         si_code = TARGET_FPE_FLTUND;
11983                     }
11984                     if (fex & SWCR_TRAP_ENABLE_OVF) {
11985                         si_code = TARGET_FPE_FLTOVF;
11986                     }
11987                     if (fex & SWCR_TRAP_ENABLE_DZE) {
11988                         si_code = TARGET_FPE_FLTDIV;
11989                     }
11990                     if (fex & SWCR_TRAP_ENABLE_INV) {
11991                         si_code = TARGET_FPE_FLTINV;
11992                     }
11993 
11994                     info.si_signo = SIGFPE;
11995                     info.si_errno = 0;
11996                     info.si_code = si_code;
11997                     info._sifields._sigfault._addr = (cpu_env)->pc;
11998                     queue_signal(cpu_env, info.si_signo,
11999                                  QEMU_SI_FAULT, &info);
12000                 }
12001                 ret = 0;
12002             }
12003             break;
12004 
12005           /* case SSI_NVPAIRS:
12006              -- Used with SSIN_UACPROC to enable unaligned accesses.
12007              case SSI_IEEE_STATE_AT_SIGNAL:
12008              case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12009              -- Not implemented in linux kernel
12010           */
12011         }
12012         return ret;
12013 #endif
12014 #ifdef TARGET_NR_osf_sigprocmask
12015     /* Alpha specific.  */
12016     case TARGET_NR_osf_sigprocmask:
12017         {
12018             abi_ulong mask;
12019             int how;
12020             sigset_t set, oldset;
12021 
12022             switch(arg1) {
12023             case TARGET_SIG_BLOCK:
12024                 how = SIG_BLOCK;
12025                 break;
12026             case TARGET_SIG_UNBLOCK:
12027                 how = SIG_UNBLOCK;
12028                 break;
12029             case TARGET_SIG_SETMASK:
12030                 how = SIG_SETMASK;
12031                 break;
12032             default:
12033                 return -TARGET_EINVAL;
12034             }
12035             mask = arg2;
12036             target_to_host_old_sigset(&set, &mask);
12037             ret = do_sigprocmask(how, &set, &oldset);
12038             if (!ret) {
12039                 host_to_target_old_sigset(&mask, &oldset);
12040                 ret = mask;
12041             }
12042         }
12043         return ret;
12044 #endif
12045 
12046 #ifdef TARGET_NR_getgid32
12047     case TARGET_NR_getgid32:
12048         return get_errno(getgid());
12049 #endif
12050 #ifdef TARGET_NR_geteuid32
12051     case TARGET_NR_geteuid32:
12052         return get_errno(geteuid());
12053 #endif
12054 #ifdef TARGET_NR_getegid32
12055     case TARGET_NR_getegid32:
12056         return get_errno(getegid());
12057 #endif
12058 #ifdef TARGET_NR_setreuid32
12059     case TARGET_NR_setreuid32:
12060         return get_errno(setreuid(arg1, arg2));
12061 #endif
12062 #ifdef TARGET_NR_setregid32
12063     case TARGET_NR_setregid32:
12064         return get_errno(setregid(arg1, arg2));
12065 #endif
12066 #ifdef TARGET_NR_getgroups32
12067     case TARGET_NR_getgroups32:
12068         { /* the same code as for TARGET_NR_getgroups */
12069             int gidsetsize = arg1;
12070             uint32_t *target_grouplist;
12071             g_autofree gid_t *grouplist = NULL;
12072             int i;
12073 
12074             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12075                 return -TARGET_EINVAL;
12076             }
12077             if (gidsetsize > 0) {
12078                 grouplist = g_try_new(gid_t, gidsetsize);
12079                 if (!grouplist) {
12080                     return -TARGET_ENOMEM;
12081                 }
12082             }
12083             ret = get_errno(getgroups(gidsetsize, grouplist));
12084             if (!is_error(ret) && gidsetsize > 0) {
12085                 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12086                                              gidsetsize * 4, 0);
12087                 if (!target_grouplist) {
12088                     return -TARGET_EFAULT;
12089                 }
12090                 for (i = 0; i < ret; i++) {
12091                     target_grouplist[i] = tswap32(grouplist[i]);
12092                 }
12093                 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12094             }
12095             return ret;
12096         }
12097 #endif
12098 #ifdef TARGET_NR_setgroups32
12099     case TARGET_NR_setgroups32:
12100         { /* the same code as for TARGET_NR_setgroups */
12101             int gidsetsize = arg1;
12102             uint32_t *target_grouplist;
12103             g_autofree gid_t *grouplist = NULL;
12104             int i;
12105 
12106             if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12107                 return -TARGET_EINVAL;
12108             }
12109             if (gidsetsize > 0) {
12110                 grouplist = g_try_new(gid_t, gidsetsize);
12111                 if (!grouplist) {
12112                     return -TARGET_ENOMEM;
12113                 }
12114                 target_grouplist = lock_user(VERIFY_READ, arg2,
12115                                              gidsetsize * 4, 1);
12116                 if (!target_grouplist) {
12117                     return -TARGET_EFAULT;
12118                 }
12119                 for (i = 0; i < gidsetsize; i++) {
12120                     grouplist[i] = tswap32(target_grouplist[i]);
12121                 }
12122                 unlock_user(target_grouplist, arg2, 0);
12123             }
12124             return get_errno(setgroups(gidsetsize, grouplist));
12125         }
12126 #endif
12127 #ifdef TARGET_NR_fchown32
12128     case TARGET_NR_fchown32:
12129         return get_errno(fchown(arg1, arg2, arg3));
12130 #endif
12131 #ifdef TARGET_NR_setresuid32
12132     case TARGET_NR_setresuid32:
12133         return get_errno(sys_setresuid(arg1, arg2, arg3));
12134 #endif
12135 #ifdef TARGET_NR_getresuid32
12136     case TARGET_NR_getresuid32:
12137         {
12138             uid_t ruid, euid, suid;
12139             ret = get_errno(getresuid(&ruid, &euid, &suid));
12140             if (!is_error(ret)) {
12141                 if (put_user_u32(ruid, arg1)
12142                     || put_user_u32(euid, arg2)
12143                     || put_user_u32(suid, arg3))
12144                     return -TARGET_EFAULT;
12145             }
12146         }
12147         return ret;
12148 #endif
12149 #ifdef TARGET_NR_setresgid32
12150     case TARGET_NR_setresgid32:
12151         return get_errno(sys_setresgid(arg1, arg2, arg3));
12152 #endif
12153 #ifdef TARGET_NR_getresgid32
12154     case TARGET_NR_getresgid32:
12155         {
12156             gid_t rgid, egid, sgid;
12157             ret = get_errno(getresgid(&rgid, &egid, &sgid));
12158             if (!is_error(ret)) {
12159                 if (put_user_u32(rgid, arg1)
12160                     || put_user_u32(egid, arg2)
12161                     || put_user_u32(sgid, arg3))
12162                     return -TARGET_EFAULT;
12163             }
12164         }
12165         return ret;
12166 #endif
12167 #ifdef TARGET_NR_chown32
12168     case TARGET_NR_chown32:
12169         if (!(p = lock_user_string(arg1)))
12170             return -TARGET_EFAULT;
12171         ret = get_errno(chown(p, arg2, arg3));
12172         unlock_user(p, arg1, 0);
12173         return ret;
12174 #endif
12175 #ifdef TARGET_NR_setuid32
12176     case TARGET_NR_setuid32:
12177         return get_errno(sys_setuid(arg1));
12178 #endif
12179 #ifdef TARGET_NR_setgid32
12180     case TARGET_NR_setgid32:
12181         return get_errno(sys_setgid(arg1));
12182 #endif
12183 #ifdef TARGET_NR_setfsuid32
12184     case TARGET_NR_setfsuid32:
12185         return get_errno(setfsuid(arg1));
12186 #endif
12187 #ifdef TARGET_NR_setfsgid32
12188     case TARGET_NR_setfsgid32:
12189         return get_errno(setfsgid(arg1));
12190 #endif
12191 #ifdef TARGET_NR_mincore
12192     case TARGET_NR_mincore:
12193         {
12194             void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12195             if (!a) {
12196                 return -TARGET_ENOMEM;
12197             }
12198             p = lock_user_string(arg3);
12199             if (!p) {
12200                 ret = -TARGET_EFAULT;
12201             } else {
12202                 ret = get_errno(mincore(a, arg2, p));
12203                 unlock_user(p, arg3, ret);
12204             }
12205             unlock_user(a, arg1, 0);
12206         }
12207         return ret;
12208 #endif
12209 #ifdef TARGET_NR_arm_fadvise64_64
12210     case TARGET_NR_arm_fadvise64_64:
12211         /* arm_fadvise64_64 looks like fadvise64_64 but
12212          * with different argument order: fd, advice, offset, len
12213          * rather than the usual fd, offset, len, advice.
12214          * Note that offset and len are both 64-bit so appear as
12215          * pairs of 32-bit registers.
12216          */
12217         ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12218                             target_offset64(arg5, arg6), arg2);
12219         return -host_to_target_errno(ret);
12220 #endif
12221 
12222 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12223 
12224 #ifdef TARGET_NR_fadvise64_64
12225     case TARGET_NR_fadvise64_64:
12226 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12227         /* 6 args: fd, advice, offset (high, low), len (high, low) */
12228         ret = arg2;
12229         arg2 = arg3;
12230         arg3 = arg4;
12231         arg4 = arg5;
12232         arg5 = arg6;
12233         arg6 = ret;
12234 #else
12235         /* 6 args: fd, offset (high, low), len (high, low), advice */
12236         if (regpairs_aligned(cpu_env, num)) {
12237             /* offset is in (3,4), len in (5,6) and advice in 7 */
12238             arg2 = arg3;
12239             arg3 = arg4;
12240             arg4 = arg5;
12241             arg5 = arg6;
12242             arg6 = arg7;
12243         }
12244 #endif
12245         ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12246                             target_offset64(arg4, arg5), arg6);
12247         return -host_to_target_errno(ret);
12248 #endif
12249 
12250 #ifdef TARGET_NR_fadvise64
12251     case TARGET_NR_fadvise64:
12252         /* 5 args: fd, offset (high, low), len, advice */
12253         if (regpairs_aligned(cpu_env, num)) {
12254             /* offset is in (3,4), len in 5 and advice in 6 */
12255             arg2 = arg3;
12256             arg3 = arg4;
12257             arg4 = arg5;
12258             arg5 = arg6;
12259         }
12260         ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12261         return -host_to_target_errno(ret);
12262 #endif
12263 
12264 #else /* not a 32-bit ABI */
12265 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12266 #ifdef TARGET_NR_fadvise64_64
12267     case TARGET_NR_fadvise64_64:
12268 #endif
12269 #ifdef TARGET_NR_fadvise64
12270     case TARGET_NR_fadvise64:
12271 #endif
12272 #ifdef TARGET_S390X
12273         switch (arg4) {
12274         case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12275         case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12276         case 6: arg4 = POSIX_FADV_DONTNEED; break;
12277         case 7: arg4 = POSIX_FADV_NOREUSE; break;
12278         default: break;
12279         }
12280 #endif
12281         return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12282 #endif
12283 #endif /* end of 64-bit ABI fadvise handling */
12284 
12285 #ifdef TARGET_NR_madvise
12286     case TARGET_NR_madvise:
12287         return target_madvise(arg1, arg2, arg3);
12288 #endif
12289 #ifdef TARGET_NR_fcntl64
12290     case TARGET_NR_fcntl64:
12291     {
12292         int cmd;
12293         struct flock64 fl;
12294         from_flock64_fn *copyfrom = copy_from_user_flock64;
12295         to_flock64_fn *copyto = copy_to_user_flock64;
12296 
12297 #ifdef TARGET_ARM
12298         if (!cpu_env->eabi) {
12299             copyfrom = copy_from_user_oabi_flock64;
12300             copyto = copy_to_user_oabi_flock64;
12301         }
12302 #endif
12303 
12304         cmd = target_to_host_fcntl_cmd(arg2);
12305         if (cmd == -TARGET_EINVAL) {
12306             return cmd;
12307         }
12308 
12309         switch(arg2) {
12310         case TARGET_F_GETLK64:
12311             ret = copyfrom(&fl, arg3);
12312             if (ret) {
12313                 break;
12314             }
12315             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12316             if (ret == 0) {
12317                 ret = copyto(arg3, &fl);
12318             }
12319 	    break;
12320 
12321         case TARGET_F_SETLK64:
12322         case TARGET_F_SETLKW64:
12323             ret = copyfrom(&fl, arg3);
12324             if (ret) {
12325                 break;
12326             }
12327             ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12328 	    break;
12329         default:
12330             ret = do_fcntl(arg1, arg2, arg3);
12331             break;
12332         }
12333         return ret;
12334     }
12335 #endif
12336 #ifdef TARGET_NR_cacheflush
12337     case TARGET_NR_cacheflush:
12338         /* self-modifying code is handled automatically, so nothing needed */
12339         return 0;
12340 #endif
12341 #ifdef TARGET_NR_getpagesize
12342     case TARGET_NR_getpagesize:
12343         return TARGET_PAGE_SIZE;
12344 #endif
12345     case TARGET_NR_gettid:
12346         return get_errno(sys_gettid());
12347 #ifdef TARGET_NR_readahead
12348     case TARGET_NR_readahead:
12349 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12350         if (regpairs_aligned(cpu_env, num)) {
12351             arg2 = arg3;
12352             arg3 = arg4;
12353             arg4 = arg5;
12354         }
12355         ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12356 #else
12357         ret = get_errno(readahead(arg1, arg2, arg3));
12358 #endif
12359         return ret;
12360 #endif
12361 #ifdef CONFIG_ATTR
12362 #ifdef TARGET_NR_setxattr
12363     case TARGET_NR_listxattr:
12364     case TARGET_NR_llistxattr:
12365     {
12366         void *b = 0;
12367         if (arg2) {
12368             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12369             if (!b) {
12370                 return -TARGET_EFAULT;
12371             }
12372         }
12373         p = lock_user_string(arg1);
12374         if (p) {
12375             if (num == TARGET_NR_listxattr) {
12376                 ret = get_errno(listxattr(p, b, arg3));
12377             } else {
12378                 ret = get_errno(llistxattr(p, b, arg3));
12379             }
12380         } else {
12381             ret = -TARGET_EFAULT;
12382         }
12383         unlock_user(p, arg1, 0);
12384         unlock_user(b, arg2, arg3);
12385         return ret;
12386     }
12387     case TARGET_NR_flistxattr:
12388     {
12389         void *b = 0;
12390         if (arg2) {
12391             b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12392             if (!b) {
12393                 return -TARGET_EFAULT;
12394             }
12395         }
12396         ret = get_errno(flistxattr(arg1, b, arg3));
12397         unlock_user(b, arg2, arg3);
12398         return ret;
12399     }
12400     case TARGET_NR_setxattr:
12401     case TARGET_NR_lsetxattr:
12402         {
12403             void *n, *v = 0;
12404             if (arg3) {
12405                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12406                 if (!v) {
12407                     return -TARGET_EFAULT;
12408                 }
12409             }
12410             p = lock_user_string(arg1);
12411             n = lock_user_string(arg2);
12412             if (p && n) {
12413                 if (num == TARGET_NR_setxattr) {
12414                     ret = get_errno(setxattr(p, n, v, arg4, arg5));
12415                 } else {
12416                     ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12417                 }
12418             } else {
12419                 ret = -TARGET_EFAULT;
12420             }
12421             unlock_user(p, arg1, 0);
12422             unlock_user(n, arg2, 0);
12423             unlock_user(v, arg3, 0);
12424         }
12425         return ret;
12426     case TARGET_NR_fsetxattr:
12427         {
12428             void *n, *v = 0;
12429             if (arg3) {
12430                 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12431                 if (!v) {
12432                     return -TARGET_EFAULT;
12433                 }
12434             }
12435             n = lock_user_string(arg2);
12436             if (n) {
12437                 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12438             } else {
12439                 ret = -TARGET_EFAULT;
12440             }
12441             unlock_user(n, arg2, 0);
12442             unlock_user(v, arg3, 0);
12443         }
12444         return ret;
12445     case TARGET_NR_getxattr:
12446     case TARGET_NR_lgetxattr:
12447         {
12448             void *n, *v = 0;
12449             if (arg3) {
12450                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12451                 if (!v) {
12452                     return -TARGET_EFAULT;
12453                 }
12454             }
12455             p = lock_user_string(arg1);
12456             n = lock_user_string(arg2);
12457             if (p && n) {
12458                 if (num == TARGET_NR_getxattr) {
12459                     ret = get_errno(getxattr(p, n, v, arg4));
12460                 } else {
12461                     ret = get_errno(lgetxattr(p, n, v, arg4));
12462                 }
12463             } else {
12464                 ret = -TARGET_EFAULT;
12465             }
12466             unlock_user(p, arg1, 0);
12467             unlock_user(n, arg2, 0);
12468             unlock_user(v, arg3, arg4);
12469         }
12470         return ret;
12471     case TARGET_NR_fgetxattr:
12472         {
12473             void *n, *v = 0;
12474             if (arg3) {
12475                 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12476                 if (!v) {
12477                     return -TARGET_EFAULT;
12478                 }
12479             }
12480             n = lock_user_string(arg2);
12481             if (n) {
12482                 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12483             } else {
12484                 ret = -TARGET_EFAULT;
12485             }
12486             unlock_user(n, arg2, 0);
12487             unlock_user(v, arg3, arg4);
12488         }
12489         return ret;
12490     case TARGET_NR_removexattr:
12491     case TARGET_NR_lremovexattr:
12492         {
12493             void *n;
12494             p = lock_user_string(arg1);
12495             n = lock_user_string(arg2);
12496             if (p && n) {
12497                 if (num == TARGET_NR_removexattr) {
12498                     ret = get_errno(removexattr(p, n));
12499                 } else {
12500                     ret = get_errno(lremovexattr(p, n));
12501                 }
12502             } else {
12503                 ret = -TARGET_EFAULT;
12504             }
12505             unlock_user(p, arg1, 0);
12506             unlock_user(n, arg2, 0);
12507         }
12508         return ret;
12509     case TARGET_NR_fremovexattr:
12510         {
12511             void *n;
12512             n = lock_user_string(arg2);
12513             if (n) {
12514                 ret = get_errno(fremovexattr(arg1, n));
12515             } else {
12516                 ret = -TARGET_EFAULT;
12517             }
12518             unlock_user(n, arg2, 0);
12519         }
12520         return ret;
12521 #endif
12522 #endif /* CONFIG_ATTR */
12523 #ifdef TARGET_NR_set_thread_area
12524     case TARGET_NR_set_thread_area:
12525 #if defined(TARGET_MIPS)
12526       cpu_env->active_tc.CP0_UserLocal = arg1;
12527       return 0;
12528 #elif defined(TARGET_CRIS)
12529       if (arg1 & 0xff)
12530           ret = -TARGET_EINVAL;
12531       else {
12532           cpu_env->pregs[PR_PID] = arg1;
12533           ret = 0;
12534       }
12535       return ret;
12536 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12537       return do_set_thread_area(cpu_env, arg1);
12538 #elif defined(TARGET_M68K)
12539       {
12540           TaskState *ts = get_task_state(cpu);
12541           ts->tp_value = arg1;
12542           return 0;
12543       }
12544 #else
12545       return -TARGET_ENOSYS;
12546 #endif
12547 #endif
12548 #ifdef TARGET_NR_get_thread_area
12549     case TARGET_NR_get_thread_area:
12550 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12551         return do_get_thread_area(cpu_env, arg1);
12552 #elif defined(TARGET_M68K)
12553         {
12554             TaskState *ts = get_task_state(cpu);
12555             return ts->tp_value;
12556         }
12557 #else
12558         return -TARGET_ENOSYS;
12559 #endif
12560 #endif
12561 #ifdef TARGET_NR_getdomainname
12562     case TARGET_NR_getdomainname:
12563         return -TARGET_ENOSYS;
12564 #endif
12565 
12566 #ifdef TARGET_NR_clock_settime
12567     case TARGET_NR_clock_settime:
12568     {
12569         struct timespec ts;
12570 
12571         ret = target_to_host_timespec(&ts, arg2);
12572         if (!is_error(ret)) {
12573             ret = get_errno(clock_settime(arg1, &ts));
12574         }
12575         return ret;
12576     }
12577 #endif
12578 #ifdef TARGET_NR_clock_settime64
12579     case TARGET_NR_clock_settime64:
12580     {
12581         struct timespec ts;
12582 
12583         ret = target_to_host_timespec64(&ts, arg2);
12584         if (!is_error(ret)) {
12585             ret = get_errno(clock_settime(arg1, &ts));
12586         }
12587         return ret;
12588     }
12589 #endif
12590 #ifdef TARGET_NR_clock_gettime
12591     case TARGET_NR_clock_gettime:
12592     {
12593         struct timespec ts;
12594         ret = get_errno(clock_gettime(arg1, &ts));
12595         if (!is_error(ret)) {
12596             ret = host_to_target_timespec(arg2, &ts);
12597         }
12598         return ret;
12599     }
12600 #endif
12601 #ifdef TARGET_NR_clock_gettime64
12602     case TARGET_NR_clock_gettime64:
12603     {
12604         struct timespec ts;
12605         ret = get_errno(clock_gettime(arg1, &ts));
12606         if (!is_error(ret)) {
12607             ret = host_to_target_timespec64(arg2, &ts);
12608         }
12609         return ret;
12610     }
12611 #endif
12612 #ifdef TARGET_NR_clock_getres
12613     case TARGET_NR_clock_getres:
12614     {
12615         struct timespec ts;
12616         ret = get_errno(clock_getres(arg1, &ts));
12617         if (!is_error(ret)) {
12618             host_to_target_timespec(arg2, &ts);
12619         }
12620         return ret;
12621     }
12622 #endif
12623 #ifdef TARGET_NR_clock_getres_time64
12624     case TARGET_NR_clock_getres_time64:
12625     {
12626         struct timespec ts;
12627         ret = get_errno(clock_getres(arg1, &ts));
12628         if (!is_error(ret)) {
12629             host_to_target_timespec64(arg2, &ts);
12630         }
12631         return ret;
12632     }
12633 #endif
12634 #ifdef TARGET_NR_clock_nanosleep
12635     case TARGET_NR_clock_nanosleep:
12636     {
12637         struct timespec ts;
12638         if (target_to_host_timespec(&ts, arg3)) {
12639             return -TARGET_EFAULT;
12640         }
12641         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12642                                              &ts, arg4 ? &ts : NULL));
12643         /*
12644          * if the call is interrupted by a signal handler, it fails
12645          * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12646          * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12647          */
12648         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12649             host_to_target_timespec(arg4, &ts)) {
12650               return -TARGET_EFAULT;
12651         }
12652 
12653         return ret;
12654     }
12655 #endif
12656 #ifdef TARGET_NR_clock_nanosleep_time64
12657     case TARGET_NR_clock_nanosleep_time64:
12658     {
12659         struct timespec ts;
12660 
12661         if (target_to_host_timespec64(&ts, arg3)) {
12662             return -TARGET_EFAULT;
12663         }
12664 
12665         ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12666                                              &ts, arg4 ? &ts : NULL));
12667 
12668         if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12669             host_to_target_timespec64(arg4, &ts)) {
12670             return -TARGET_EFAULT;
12671         }
12672         return ret;
12673     }
12674 #endif
12675 
12676 #if defined(TARGET_NR_set_tid_address)
12677     case TARGET_NR_set_tid_address:
12678     {
12679         TaskState *ts = get_task_state(cpu);
12680         ts->child_tidptr = arg1;
12681         /* do not call host set_tid_address() syscall, instead return tid() */
12682         return get_errno(sys_gettid());
12683     }
12684 #endif
12685 
12686     case TARGET_NR_tkill:
12687         return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12688 
12689     case TARGET_NR_tgkill:
12690         return get_errno(safe_tgkill((int)arg1, (int)arg2,
12691                          target_to_host_signal(arg3)));
12692 
12693 #ifdef TARGET_NR_set_robust_list
12694     case TARGET_NR_set_robust_list:
12695     case TARGET_NR_get_robust_list:
12696         /* The ABI for supporting robust futexes has userspace pass
12697          * the kernel a pointer to a linked list which is updated by
12698          * userspace after the syscall; the list is walked by the kernel
12699          * when the thread exits. Since the linked list in QEMU guest
12700          * memory isn't a valid linked list for the host and we have
12701          * no way to reliably intercept the thread-death event, we can't
12702          * support these. Silently return ENOSYS so that guest userspace
12703          * falls back to a non-robust futex implementation (which should
12704          * be OK except in the corner case of the guest crashing while
12705          * holding a mutex that is shared with another process via
12706          * shared memory).
12707          */
12708         return -TARGET_ENOSYS;
12709 #endif
12710 
12711 #if defined(TARGET_NR_utimensat)
12712     case TARGET_NR_utimensat:
12713         {
12714             struct timespec *tsp, ts[2];
12715             if (!arg3) {
12716                 tsp = NULL;
12717             } else {
12718                 if (target_to_host_timespec(ts, arg3)) {
12719                     return -TARGET_EFAULT;
12720                 }
12721                 if (target_to_host_timespec(ts + 1, arg3 +
12722                                             sizeof(struct target_timespec))) {
12723                     return -TARGET_EFAULT;
12724                 }
12725                 tsp = ts;
12726             }
12727             if (!arg2)
12728                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12729             else {
12730                 if (!(p = lock_user_string(arg2))) {
12731                     return -TARGET_EFAULT;
12732                 }
12733                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12734                 unlock_user(p, arg2, 0);
12735             }
12736         }
12737         return ret;
12738 #endif
12739 #ifdef TARGET_NR_utimensat_time64
12740     case TARGET_NR_utimensat_time64:
12741         {
12742             struct timespec *tsp, ts[2];
12743             if (!arg3) {
12744                 tsp = NULL;
12745             } else {
12746                 if (target_to_host_timespec64(ts, arg3)) {
12747                     return -TARGET_EFAULT;
12748                 }
12749                 if (target_to_host_timespec64(ts + 1, arg3 +
12750                                      sizeof(struct target__kernel_timespec))) {
12751                     return -TARGET_EFAULT;
12752                 }
12753                 tsp = ts;
12754             }
12755             if (!arg2)
12756                 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12757             else {
12758                 p = lock_user_string(arg2);
12759                 if (!p) {
12760                     return -TARGET_EFAULT;
12761                 }
12762                 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12763                 unlock_user(p, arg2, 0);
12764             }
12765         }
12766         return ret;
12767 #endif
12768 #ifdef TARGET_NR_futex
12769     case TARGET_NR_futex:
12770         return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12771 #endif
12772 #ifdef TARGET_NR_futex_time64
12773     case TARGET_NR_futex_time64:
12774         return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12775 #endif
12776 #ifdef CONFIG_INOTIFY
12777 #if defined(TARGET_NR_inotify_init)
12778     case TARGET_NR_inotify_init:
12779         ret = get_errno(inotify_init());
12780         if (ret >= 0) {
12781             fd_trans_register(ret, &target_inotify_trans);
12782         }
12783         return ret;
12784 #endif
12785 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12786     case TARGET_NR_inotify_init1:
12787         ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12788                                           fcntl_flags_tbl)));
12789         if (ret >= 0) {
12790             fd_trans_register(ret, &target_inotify_trans);
12791         }
12792         return ret;
12793 #endif
12794 #if defined(TARGET_NR_inotify_add_watch)
12795     case TARGET_NR_inotify_add_watch:
12796         p = lock_user_string(arg2);
12797         ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12798         unlock_user(p, arg2, 0);
12799         return ret;
12800 #endif
12801 #if defined(TARGET_NR_inotify_rm_watch)
12802     case TARGET_NR_inotify_rm_watch:
12803         return get_errno(inotify_rm_watch(arg1, arg2));
12804 #endif
12805 #endif
12806 
12807 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12808     case TARGET_NR_mq_open:
12809         {
12810             struct mq_attr posix_mq_attr;
12811             struct mq_attr *pposix_mq_attr;
12812             int host_flags;
12813 
12814             host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12815             pposix_mq_attr = NULL;
12816             if (arg4) {
12817                 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12818                     return -TARGET_EFAULT;
12819                 }
12820                 pposix_mq_attr = &posix_mq_attr;
12821             }
12822             p = lock_user_string(arg1 - 1);
12823             if (!p) {
12824                 return -TARGET_EFAULT;
12825             }
12826             ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12827             unlock_user (p, arg1, 0);
12828         }
12829         return ret;
12830 
12831     case TARGET_NR_mq_unlink:
12832         p = lock_user_string(arg1 - 1);
12833         if (!p) {
12834             return -TARGET_EFAULT;
12835         }
12836         ret = get_errno(mq_unlink(p));
12837         unlock_user (p, arg1, 0);
12838         return ret;
12839 
12840 #ifdef TARGET_NR_mq_timedsend
12841     case TARGET_NR_mq_timedsend:
12842         {
12843             struct timespec ts;
12844 
12845             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12846             if (arg5 != 0) {
12847                 if (target_to_host_timespec(&ts, arg5)) {
12848                     return -TARGET_EFAULT;
12849                 }
12850                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12851                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12852                     return -TARGET_EFAULT;
12853                 }
12854             } else {
12855                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12856             }
12857             unlock_user (p, arg2, arg3);
12858         }
12859         return ret;
12860 #endif
12861 #ifdef TARGET_NR_mq_timedsend_time64
12862     case TARGET_NR_mq_timedsend_time64:
12863         {
12864             struct timespec ts;
12865 
12866             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12867             if (arg5 != 0) {
12868                 if (target_to_host_timespec64(&ts, arg5)) {
12869                     return -TARGET_EFAULT;
12870                 }
12871                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12872                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12873                     return -TARGET_EFAULT;
12874                 }
12875             } else {
12876                 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12877             }
12878             unlock_user(p, arg2, arg3);
12879         }
12880         return ret;
12881 #endif
12882 
12883 #ifdef TARGET_NR_mq_timedreceive
12884     case TARGET_NR_mq_timedreceive:
12885         {
12886             struct timespec ts;
12887             unsigned int prio;
12888 
12889             p = lock_user (VERIFY_READ, arg2, arg3, 1);
12890             if (arg5 != 0) {
12891                 if (target_to_host_timespec(&ts, arg5)) {
12892                     return -TARGET_EFAULT;
12893                 }
12894                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12895                                                      &prio, &ts));
12896                 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12897                     return -TARGET_EFAULT;
12898                 }
12899             } else {
12900                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12901                                                      &prio, NULL));
12902             }
12903             unlock_user (p, arg2, arg3);
12904             if (arg4 != 0)
12905                 put_user_u32(prio, arg4);
12906         }
12907         return ret;
12908 #endif
12909 #ifdef TARGET_NR_mq_timedreceive_time64
12910     case TARGET_NR_mq_timedreceive_time64:
12911         {
12912             struct timespec ts;
12913             unsigned int prio;
12914 
12915             p = lock_user(VERIFY_READ, arg2, arg3, 1);
12916             if (arg5 != 0) {
12917                 if (target_to_host_timespec64(&ts, arg5)) {
12918                     return -TARGET_EFAULT;
12919                 }
12920                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12921                                                      &prio, &ts));
12922                 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12923                     return -TARGET_EFAULT;
12924                 }
12925             } else {
12926                 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12927                                                      &prio, NULL));
12928             }
12929             unlock_user(p, arg2, arg3);
12930             if (arg4 != 0) {
12931                 put_user_u32(prio, arg4);
12932             }
12933         }
12934         return ret;
12935 #endif
12936 
12937     /* Not implemented for now... */
12938 /*     case TARGET_NR_mq_notify: */
12939 /*         break; */
12940 
12941     case TARGET_NR_mq_getsetattr:
12942         {
12943             struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12944             ret = 0;
12945             if (arg2 != 0) {
12946                 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12947                 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12948                                            &posix_mq_attr_out));
12949             } else if (arg3 != 0) {
12950                 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12951             }
12952             if (ret == 0 && arg3 != 0) {
12953                 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12954             }
12955         }
12956         return ret;
12957 #endif
12958 
12959 #ifdef CONFIG_SPLICE
12960 #ifdef TARGET_NR_tee
12961     case TARGET_NR_tee:
12962         {
12963             ret = get_errno(tee(arg1,arg2,arg3,arg4));
12964         }
12965         return ret;
12966 #endif
12967 #ifdef TARGET_NR_splice
12968     case TARGET_NR_splice:
12969         {
12970             loff_t loff_in, loff_out;
12971             loff_t *ploff_in = NULL, *ploff_out = NULL;
12972             if (arg2) {
12973                 if (get_user_u64(loff_in, arg2)) {
12974                     return -TARGET_EFAULT;
12975                 }
12976                 ploff_in = &loff_in;
12977             }
12978             if (arg4) {
12979                 if (get_user_u64(loff_out, arg4)) {
12980                     return -TARGET_EFAULT;
12981                 }
12982                 ploff_out = &loff_out;
12983             }
12984             ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12985             if (arg2) {
12986                 if (put_user_u64(loff_in, arg2)) {
12987                     return -TARGET_EFAULT;
12988                 }
12989             }
12990             if (arg4) {
12991                 if (put_user_u64(loff_out, arg4)) {
12992                     return -TARGET_EFAULT;
12993                 }
12994             }
12995         }
12996         return ret;
12997 #endif
12998 #ifdef TARGET_NR_vmsplice
12999 	case TARGET_NR_vmsplice:
13000         {
13001             struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13002             if (vec != NULL) {
13003                 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13004                 unlock_iovec(vec, arg2, arg3, 0);
13005             } else {
13006                 ret = -host_to_target_errno(errno);
13007             }
13008         }
13009         return ret;
13010 #endif
13011 #endif /* CONFIG_SPLICE */
13012 #ifdef CONFIG_EVENTFD
13013 #if defined(TARGET_NR_eventfd)
13014     case TARGET_NR_eventfd:
13015         ret = get_errno(eventfd(arg1, 0));
13016         if (ret >= 0) {
13017             fd_trans_register(ret, &target_eventfd_trans);
13018         }
13019         return ret;
13020 #endif
13021 #if defined(TARGET_NR_eventfd2)
13022     case TARGET_NR_eventfd2:
13023     {
13024         int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13025         if (arg2 & TARGET_O_NONBLOCK) {
13026             host_flags |= O_NONBLOCK;
13027         }
13028         if (arg2 & TARGET_O_CLOEXEC) {
13029             host_flags |= O_CLOEXEC;
13030         }
13031         ret = get_errno(eventfd(arg1, host_flags));
13032         if (ret >= 0) {
13033             fd_trans_register(ret, &target_eventfd_trans);
13034         }
13035         return ret;
13036     }
13037 #endif
13038 #endif /* CONFIG_EVENTFD  */
13039 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13040     case TARGET_NR_fallocate:
13041 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13042         ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13043                                   target_offset64(arg5, arg6)));
13044 #else
13045         ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13046 #endif
13047         return ret;
13048 #endif
13049 #if defined(CONFIG_SYNC_FILE_RANGE)
13050 #if defined(TARGET_NR_sync_file_range)
13051     case TARGET_NR_sync_file_range:
13052 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13053 #if defined(TARGET_MIPS)
13054         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13055                                         target_offset64(arg5, arg6), arg7));
13056 #else
13057         ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13058                                         target_offset64(arg4, arg5), arg6));
13059 #endif /* !TARGET_MIPS */
13060 #else
13061         ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13062 #endif
13063         return ret;
13064 #endif
13065 #if defined(TARGET_NR_sync_file_range2) || \
13066     defined(TARGET_NR_arm_sync_file_range)
13067 #if defined(TARGET_NR_sync_file_range2)
13068     case TARGET_NR_sync_file_range2:
13069 #endif
13070 #if defined(TARGET_NR_arm_sync_file_range)
13071     case TARGET_NR_arm_sync_file_range:
13072 #endif
13073         /* This is like sync_file_range but the arguments are reordered */
13074 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13075         ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13076                                         target_offset64(arg5, arg6), arg2));
13077 #else
13078         ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13079 #endif
13080         return ret;
13081 #endif
13082 #endif
13083 #if defined(TARGET_NR_signalfd4)
13084     case TARGET_NR_signalfd4:
13085         return do_signalfd4(arg1, arg2, arg4);
13086 #endif
13087 #if defined(TARGET_NR_signalfd)
13088     case TARGET_NR_signalfd:
13089         return do_signalfd4(arg1, arg2, 0);
13090 #endif
13091 #if defined(CONFIG_EPOLL)
13092 #if defined(TARGET_NR_epoll_create)
13093     case TARGET_NR_epoll_create:
13094         return get_errno(epoll_create(arg1));
13095 #endif
13096 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13097     case TARGET_NR_epoll_create1:
13098         return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13099 #endif
13100 #if defined(TARGET_NR_epoll_ctl)
13101     case TARGET_NR_epoll_ctl:
13102     {
13103         struct epoll_event ep;
13104         struct epoll_event *epp = 0;
13105         if (arg4) {
13106             if (arg2 != EPOLL_CTL_DEL) {
13107                 struct target_epoll_event *target_ep;
13108                 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13109                     return -TARGET_EFAULT;
13110                 }
13111                 ep.events = tswap32(target_ep->events);
13112                 /*
13113                  * The epoll_data_t union is just opaque data to the kernel,
13114                  * so we transfer all 64 bits across and need not worry what
13115                  * actual data type it is.
13116                  */
13117                 ep.data.u64 = tswap64(target_ep->data.u64);
13118                 unlock_user_struct(target_ep, arg4, 0);
13119             }
13120             /*
13121              * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13122              * non-null pointer, even though this argument is ignored.
13123              *
13124              */
13125             epp = &ep;
13126         }
13127         return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13128     }
13129 #endif
13130 
13131 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13132 #if defined(TARGET_NR_epoll_wait)
13133     case TARGET_NR_epoll_wait:
13134 #endif
13135 #if defined(TARGET_NR_epoll_pwait)
13136     case TARGET_NR_epoll_pwait:
13137 #endif
13138     {
13139         struct target_epoll_event *target_ep;
13140         struct epoll_event *ep;
13141         int epfd = arg1;
13142         int maxevents = arg3;
13143         int timeout = arg4;
13144 
13145         if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13146             return -TARGET_EINVAL;
13147         }
13148 
13149         target_ep = lock_user(VERIFY_WRITE, arg2,
13150                               maxevents * sizeof(struct target_epoll_event), 1);
13151         if (!target_ep) {
13152             return -TARGET_EFAULT;
13153         }
13154 
13155         ep = g_try_new(struct epoll_event, maxevents);
13156         if (!ep) {
13157             unlock_user(target_ep, arg2, 0);
13158             return -TARGET_ENOMEM;
13159         }
13160 
13161         switch (num) {
13162 #if defined(TARGET_NR_epoll_pwait)
13163         case TARGET_NR_epoll_pwait:
13164         {
13165             sigset_t *set = NULL;
13166 
13167             if (arg5) {
13168                 ret = process_sigsuspend_mask(&set, arg5, arg6);
13169                 if (ret != 0) {
13170                     break;
13171                 }
13172             }
13173 
13174             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13175                                              set, SIGSET_T_SIZE));
13176 
13177             if (set) {
13178                 finish_sigsuspend_mask(ret);
13179             }
13180             break;
13181         }
13182 #endif
13183 #if defined(TARGET_NR_epoll_wait)
13184         case TARGET_NR_epoll_wait:
13185             ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13186                                              NULL, 0));
13187             break;
13188 #endif
13189         default:
13190             ret = -TARGET_ENOSYS;
13191         }
13192         if (!is_error(ret)) {
13193             int i;
13194             for (i = 0; i < ret; i++) {
13195                 target_ep[i].events = tswap32(ep[i].events);
13196                 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13197             }
13198             unlock_user(target_ep, arg2,
13199                         ret * sizeof(struct target_epoll_event));
13200         } else {
13201             unlock_user(target_ep, arg2, 0);
13202         }
13203         g_free(ep);
13204         return ret;
13205     }
13206 #endif
13207 #endif
13208 #ifdef TARGET_NR_prlimit64
13209     case TARGET_NR_prlimit64:
13210     {
13211         /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13212         struct target_rlimit64 *target_rnew, *target_rold;
13213         struct host_rlimit64 rnew, rold, *rnewp = 0;
13214         int resource = target_to_host_resource(arg2);
13215 
13216         if (arg3 && (resource != RLIMIT_AS &&
13217                      resource != RLIMIT_DATA &&
13218                      resource != RLIMIT_STACK)) {
13219             if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13220                 return -TARGET_EFAULT;
13221             }
13222             __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13223             __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13224             unlock_user_struct(target_rnew, arg3, 0);
13225             rnewp = &rnew;
13226         }
13227 
13228         ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13229         if (!is_error(ret) && arg4) {
13230             if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13231                 return -TARGET_EFAULT;
13232             }
13233             __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13234             __put_user(rold.rlim_max, &target_rold->rlim_max);
13235             unlock_user_struct(target_rold, arg4, 1);
13236         }
13237         return ret;
13238     }
13239 #endif
13240 #ifdef TARGET_NR_gethostname
13241     case TARGET_NR_gethostname:
13242     {
13243         char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13244         if (name) {
13245             ret = get_errno(gethostname(name, arg2));
13246             unlock_user(name, arg1, arg2);
13247         } else {
13248             ret = -TARGET_EFAULT;
13249         }
13250         return ret;
13251     }
13252 #endif
13253 #ifdef TARGET_NR_atomic_cmpxchg_32
13254     case TARGET_NR_atomic_cmpxchg_32:
13255     {
13256         /* should use start_exclusive from main.c */
13257         abi_ulong mem_value;
13258         if (get_user_u32(mem_value, arg6)) {
13259             target_siginfo_t info;
13260             info.si_signo = SIGSEGV;
13261             info.si_errno = 0;
13262             info.si_code = TARGET_SEGV_MAPERR;
13263             info._sifields._sigfault._addr = arg6;
13264             queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13265             ret = 0xdeadbeef;
13266 
13267         }
13268         if (mem_value == arg2)
13269             put_user_u32(arg1, arg6);
13270         return mem_value;
13271     }
13272 #endif
13273 #ifdef TARGET_NR_atomic_barrier
13274     case TARGET_NR_atomic_barrier:
13275         /* Like the kernel implementation and the
13276            qemu arm barrier, no-op this? */
13277         return 0;
13278 #endif
13279 
13280 #ifdef TARGET_NR_timer_create
13281     case TARGET_NR_timer_create:
13282     {
13283         /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13284 
13285         struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13286 
13287         int clkid = arg1;
13288         int timer_index = next_free_host_timer();
13289 
13290         if (timer_index < 0) {
13291             ret = -TARGET_EAGAIN;
13292         } else {
13293             timer_t *phtimer = g_posix_timers  + timer_index;
13294 
13295             if (arg2) {
13296                 phost_sevp = &host_sevp;
13297                 ret = target_to_host_sigevent(phost_sevp, arg2);
13298                 if (ret != 0) {
13299                     free_host_timer_slot(timer_index);
13300                     return ret;
13301                 }
13302             }
13303 
13304             ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13305             if (ret) {
13306                 free_host_timer_slot(timer_index);
13307             } else {
13308                 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13309                     timer_delete(*phtimer);
13310                     free_host_timer_slot(timer_index);
13311                     return -TARGET_EFAULT;
13312                 }
13313             }
13314         }
13315         return ret;
13316     }
13317 #endif
13318 
13319 #ifdef TARGET_NR_timer_settime
13320     case TARGET_NR_timer_settime:
13321     {
13322         /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13323          * struct itimerspec * old_value */
13324         target_timer_t timerid = get_timer_id(arg1);
13325 
13326         if (timerid < 0) {
13327             ret = timerid;
13328         } else if (arg3 == 0) {
13329             ret = -TARGET_EINVAL;
13330         } else {
13331             timer_t htimer = g_posix_timers[timerid];
13332             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13333 
13334             if (target_to_host_itimerspec(&hspec_new, arg3)) {
13335                 return -TARGET_EFAULT;
13336             }
13337             ret = get_errno(
13338                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13339             if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13340                 return -TARGET_EFAULT;
13341             }
13342         }
13343         return ret;
13344     }
13345 #endif
13346 
13347 #ifdef TARGET_NR_timer_settime64
13348     case TARGET_NR_timer_settime64:
13349     {
13350         target_timer_t timerid = get_timer_id(arg1);
13351 
13352         if (timerid < 0) {
13353             ret = timerid;
13354         } else if (arg3 == 0) {
13355             ret = -TARGET_EINVAL;
13356         } else {
13357             timer_t htimer = g_posix_timers[timerid];
13358             struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13359 
13360             if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13361                 return -TARGET_EFAULT;
13362             }
13363             ret = get_errno(
13364                           timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13365             if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13366                 return -TARGET_EFAULT;
13367             }
13368         }
13369         return ret;
13370     }
13371 #endif
13372 
13373 #ifdef TARGET_NR_timer_gettime
13374     case TARGET_NR_timer_gettime:
13375     {
13376         /* args: timer_t timerid, struct itimerspec *curr_value */
13377         target_timer_t timerid = get_timer_id(arg1);
13378 
13379         if (timerid < 0) {
13380             ret = timerid;
13381         } else if (!arg2) {
13382             ret = -TARGET_EFAULT;
13383         } else {
13384             timer_t htimer = g_posix_timers[timerid];
13385             struct itimerspec hspec;
13386             ret = get_errno(timer_gettime(htimer, &hspec));
13387 
13388             if (host_to_target_itimerspec(arg2, &hspec)) {
13389                 ret = -TARGET_EFAULT;
13390             }
13391         }
13392         return ret;
13393     }
13394 #endif
13395 
13396 #ifdef TARGET_NR_timer_gettime64
13397     case TARGET_NR_timer_gettime64:
13398     {
13399         /* args: timer_t timerid, struct itimerspec64 *curr_value */
13400         target_timer_t timerid = get_timer_id(arg1);
13401 
13402         if (timerid < 0) {
13403             ret = timerid;
13404         } else if (!arg2) {
13405             ret = -TARGET_EFAULT;
13406         } else {
13407             timer_t htimer = g_posix_timers[timerid];
13408             struct itimerspec hspec;
13409             ret = get_errno(timer_gettime(htimer, &hspec));
13410 
13411             if (host_to_target_itimerspec64(arg2, &hspec)) {
13412                 ret = -TARGET_EFAULT;
13413             }
13414         }
13415         return ret;
13416     }
13417 #endif
13418 
13419 #ifdef TARGET_NR_timer_getoverrun
13420     case TARGET_NR_timer_getoverrun:
13421     {
13422         /* args: timer_t timerid */
13423         target_timer_t timerid = get_timer_id(arg1);
13424 
13425         if (timerid < 0) {
13426             ret = timerid;
13427         } else {
13428             timer_t htimer = g_posix_timers[timerid];
13429             ret = get_errno(timer_getoverrun(htimer));
13430         }
13431         return ret;
13432     }
13433 #endif
13434 
13435 #ifdef TARGET_NR_timer_delete
13436     case TARGET_NR_timer_delete:
13437     {
13438         /* args: timer_t timerid */
13439         target_timer_t timerid = get_timer_id(arg1);
13440 
13441         if (timerid < 0) {
13442             ret = timerid;
13443         } else {
13444             timer_t htimer = g_posix_timers[timerid];
13445             ret = get_errno(timer_delete(htimer));
13446             free_host_timer_slot(timerid);
13447         }
13448         return ret;
13449     }
13450 #endif
13451 
13452 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13453     case TARGET_NR_timerfd_create:
13454         ret = get_errno(timerfd_create(arg1,
13455                         target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13456         if (ret >= 0) {
13457             fd_trans_register(ret, &target_timerfd_trans);
13458         }
13459         return ret;
13460 #endif
13461 
13462 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13463     case TARGET_NR_timerfd_gettime:
13464         {
13465             struct itimerspec its_curr;
13466 
13467             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13468 
13469             if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13470                 return -TARGET_EFAULT;
13471             }
13472         }
13473         return ret;
13474 #endif
13475 
13476 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13477     case TARGET_NR_timerfd_gettime64:
13478         {
13479             struct itimerspec its_curr;
13480 
13481             ret = get_errno(timerfd_gettime(arg1, &its_curr));
13482 
13483             if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13484                 return -TARGET_EFAULT;
13485             }
13486         }
13487         return ret;
13488 #endif
13489 
13490 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13491     case TARGET_NR_timerfd_settime:
13492         {
13493             struct itimerspec its_new, its_old, *p_new;
13494 
13495             if (arg3) {
13496                 if (target_to_host_itimerspec(&its_new, arg3)) {
13497                     return -TARGET_EFAULT;
13498                 }
13499                 p_new = &its_new;
13500             } else {
13501                 p_new = NULL;
13502             }
13503 
13504             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13505 
13506             if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13507                 return -TARGET_EFAULT;
13508             }
13509         }
13510         return ret;
13511 #endif
13512 
13513 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13514     case TARGET_NR_timerfd_settime64:
13515         {
13516             struct itimerspec its_new, its_old, *p_new;
13517 
13518             if (arg3) {
13519                 if (target_to_host_itimerspec64(&its_new, arg3)) {
13520                     return -TARGET_EFAULT;
13521                 }
13522                 p_new = &its_new;
13523             } else {
13524                 p_new = NULL;
13525             }
13526 
13527             ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13528 
13529             if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13530                 return -TARGET_EFAULT;
13531             }
13532         }
13533         return ret;
13534 #endif
13535 
13536 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13537     case TARGET_NR_ioprio_get:
13538         return get_errno(ioprio_get(arg1, arg2));
13539 #endif
13540 
13541 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13542     case TARGET_NR_ioprio_set:
13543         return get_errno(ioprio_set(arg1, arg2, arg3));
13544 #endif
13545 
13546 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13547     case TARGET_NR_setns:
13548         return get_errno(setns(arg1, arg2));
13549 #endif
13550 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13551     case TARGET_NR_unshare:
13552         return get_errno(unshare(arg1));
13553 #endif
13554 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13555     case TARGET_NR_kcmp:
13556         return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13557 #endif
13558 #ifdef TARGET_NR_swapcontext
13559     case TARGET_NR_swapcontext:
13560         /* PowerPC specific.  */
13561         return do_swapcontext(cpu_env, arg1, arg2, arg3);
13562 #endif
13563 #ifdef TARGET_NR_memfd_create
13564     case TARGET_NR_memfd_create:
13565         p = lock_user_string(arg1);
13566         if (!p) {
13567             return -TARGET_EFAULT;
13568         }
13569         ret = get_errno(memfd_create(p, arg2));
13570         fd_trans_unregister(ret);
13571         unlock_user(p, arg1, 0);
13572         return ret;
13573 #endif
13574 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13575     case TARGET_NR_membarrier:
13576         return get_errno(membarrier(arg1, arg2));
13577 #endif
13578 
13579 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13580     case TARGET_NR_copy_file_range:
13581         {
13582             loff_t inoff, outoff;
13583             loff_t *pinoff = NULL, *poutoff = NULL;
13584 
13585             if (arg2) {
13586                 if (get_user_u64(inoff, arg2)) {
13587                     return -TARGET_EFAULT;
13588                 }
13589                 pinoff = &inoff;
13590             }
13591             if (arg4) {
13592                 if (get_user_u64(outoff, arg4)) {
13593                     return -TARGET_EFAULT;
13594                 }
13595                 poutoff = &outoff;
13596             }
13597             /* Do not sign-extend the count parameter. */
13598             ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13599                                                  (abi_ulong)arg5, arg6));
13600             if (!is_error(ret) && ret > 0) {
13601                 if (arg2) {
13602                     if (put_user_u64(inoff, arg2)) {
13603                         return -TARGET_EFAULT;
13604                     }
13605                 }
13606                 if (arg4) {
13607                     if (put_user_u64(outoff, arg4)) {
13608                         return -TARGET_EFAULT;
13609                     }
13610                 }
13611             }
13612         }
13613         return ret;
13614 #endif
13615 
13616 #if defined(TARGET_NR_pivot_root)
13617     case TARGET_NR_pivot_root:
13618         {
13619             void *p2;
13620             p = lock_user_string(arg1); /* new_root */
13621             p2 = lock_user_string(arg2); /* put_old */
13622             if (!p || !p2) {
13623                 ret = -TARGET_EFAULT;
13624             } else {
13625                 ret = get_errno(pivot_root(p, p2));
13626             }
13627             unlock_user(p2, arg2, 0);
13628             unlock_user(p, arg1, 0);
13629         }
13630         return ret;
13631 #endif
13632 
13633 #if defined(TARGET_NR_riscv_hwprobe)
13634     case TARGET_NR_riscv_hwprobe:
13635         return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13636 #endif
13637 
13638     default:
13639         qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13640         return -TARGET_ENOSYS;
13641     }
13642     return ret;
13643 }
13644 
13645 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13646                     abi_long arg2, abi_long arg3, abi_long arg4,
13647                     abi_long arg5, abi_long arg6, abi_long arg7,
13648                     abi_long arg8)
13649 {
13650     CPUState *cpu = env_cpu(cpu_env);
13651     abi_long ret;
13652 
13653 #ifdef DEBUG_ERESTARTSYS
13654     /* Debug-only code for exercising the syscall-restart code paths
13655      * in the per-architecture cpu main loops: restart every syscall
13656      * the guest makes once before letting it through.
13657      */
13658     {
13659         static bool flag;
13660         flag = !flag;
13661         if (flag) {
13662             return -QEMU_ERESTARTSYS;
13663         }
13664     }
13665 #endif
13666 
13667     record_syscall_start(cpu, num, arg1,
13668                          arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13669 
13670     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13671         print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13672     }
13673 
13674     ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13675                       arg5, arg6, arg7, arg8);
13676 
13677     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13678         print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13679                           arg3, arg4, arg5, arg6);
13680     }
13681 
13682     record_syscall_return(cpu, num, ret);
13683     return ret;
13684 }
13685