xref: /qemu/migration/postcopy-ram.c (revision aef04fc7)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/madvise.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 #include "socket.h"
36 #include "yank_functions.h"
37 #include "tls.h"
38 #include "qemu/userfaultfd.h"
39 #include "qemu/mmap-alloc.h"
40 #include "options.h"
41 
42 /* Arbitrary limit on size of each discard command,
43  * keeps them around ~200 bytes
44  */
45 #define MAX_DISCARDS_PER_COMMAND 12
46 
47 struct PostcopyDiscardState {
48     const char *ramblock_name;
49     uint16_t cur_entry;
50     /*
51      * Start and length of a discard range (bytes)
52      */
53     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
54     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
55     unsigned int nsentwords;
56     unsigned int nsentcmds;
57 };
58 
59 static NotifierWithReturnList postcopy_notifier_list;
60 
61 void postcopy_infrastructure_init(void)
62 {
63     notifier_with_return_list_init(&postcopy_notifier_list);
64 }
65 
66 void postcopy_add_notifier(NotifierWithReturn *nn)
67 {
68     notifier_with_return_list_add(&postcopy_notifier_list, nn);
69 }
70 
71 void postcopy_remove_notifier(NotifierWithReturn *n)
72 {
73     notifier_with_return_remove(n);
74 }
75 
76 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
77 {
78     struct PostcopyNotifyData pnd;
79     pnd.reason = reason;
80     pnd.errp = errp;
81 
82     return notifier_with_return_list_notify(&postcopy_notifier_list,
83                                             &pnd);
84 }
85 
86 /*
87  * NOTE: this routine is not thread safe, we can't call it concurrently. But it
88  * should be good enough for migration's purposes.
89  */
90 void postcopy_thread_create(MigrationIncomingState *mis,
91                             QemuThread *thread, const char *name,
92                             void *(*fn)(void *), int joinable)
93 {
94     qemu_sem_init(&mis->thread_sync_sem, 0);
95     qemu_thread_create(thread, name, fn, mis, joinable);
96     qemu_sem_wait(&mis->thread_sync_sem);
97     qemu_sem_destroy(&mis->thread_sync_sem);
98 }
99 
100 /* Postcopy needs to detect accesses to pages that haven't yet been copied
101  * across, and efficiently map new pages in, the techniques for doing this
102  * are target OS specific.
103  */
104 #if defined(__linux__)
105 
106 #include <poll.h>
107 #include <sys/ioctl.h>
108 #include <sys/syscall.h>
109 #include <asm/types.h> /* for __u64 */
110 #endif
111 
112 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
113 #include <sys/eventfd.h>
114 #include <linux/userfaultfd.h>
115 
116 typedef struct PostcopyBlocktimeContext {
117     /* time when page fault initiated per vCPU */
118     uint32_t *page_fault_vcpu_time;
119     /* page address per vCPU */
120     uintptr_t *vcpu_addr;
121     uint32_t total_blocktime;
122     /* blocktime per vCPU */
123     uint32_t *vcpu_blocktime;
124     /* point in time when last page fault was initiated */
125     uint32_t last_begin;
126     /* number of vCPU are suspended */
127     int smp_cpus_down;
128     uint64_t start_time;
129 
130     /*
131      * Handler for exit event, necessary for
132      * releasing whole blocktime_ctx
133      */
134     Notifier exit_notifier;
135 } PostcopyBlocktimeContext;
136 
137 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
138 {
139     g_free(ctx->page_fault_vcpu_time);
140     g_free(ctx->vcpu_addr);
141     g_free(ctx->vcpu_blocktime);
142     g_free(ctx);
143 }
144 
145 static void migration_exit_cb(Notifier *n, void *data)
146 {
147     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
148                                                  exit_notifier);
149     destroy_blocktime_context(ctx);
150 }
151 
152 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
153 {
154     MachineState *ms = MACHINE(qdev_get_machine());
155     unsigned int smp_cpus = ms->smp.cpus;
156     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
157     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
158     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
159     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
160 
161     ctx->exit_notifier.notify = migration_exit_cb;
162     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
163     qemu_add_exit_notifier(&ctx->exit_notifier);
164     return ctx;
165 }
166 
167 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
168 {
169     MachineState *ms = MACHINE(qdev_get_machine());
170     uint32List *list = NULL;
171     int i;
172 
173     for (i = ms->smp.cpus - 1; i >= 0; i--) {
174         QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
175     }
176 
177     return list;
178 }
179 
180 /*
181  * This function just populates MigrationInfo from postcopy's
182  * blocktime context. It will not populate MigrationInfo,
183  * unless postcopy-blocktime capability was set.
184  *
185  * @info: pointer to MigrationInfo to populate
186  */
187 void fill_destination_postcopy_migration_info(MigrationInfo *info)
188 {
189     MigrationIncomingState *mis = migration_incoming_get_current();
190     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
191 
192     if (!bc) {
193         return;
194     }
195 
196     info->has_postcopy_blocktime = true;
197     info->postcopy_blocktime = bc->total_blocktime;
198     info->has_postcopy_vcpu_blocktime = true;
199     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
200 }
201 
202 static uint32_t get_postcopy_total_blocktime(void)
203 {
204     MigrationIncomingState *mis = migration_incoming_get_current();
205     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
206 
207     if (!bc) {
208         return 0;
209     }
210 
211     return bc->total_blocktime;
212 }
213 
214 /**
215  * receive_ufd_features: check userfault fd features, to request only supported
216  * features in the future.
217  *
218  * Returns: true on success
219  *
220  * __NR_userfaultfd - should be checked before
221  *  @features: out parameter will contain uffdio_api.features provided by kernel
222  *              in case of success
223  */
224 static bool receive_ufd_features(uint64_t *features)
225 {
226     struct uffdio_api api_struct = {0};
227     int ufd;
228     bool ret = true;
229 
230     ufd = uffd_open(O_CLOEXEC);
231     if (ufd == -1) {
232         error_report("%s: uffd_open() failed: %s", __func__, strerror(errno));
233         return false;
234     }
235 
236     /* ask features */
237     api_struct.api = UFFD_API;
238     api_struct.features = 0;
239     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
240         error_report("%s: UFFDIO_API failed: %s", __func__,
241                      strerror(errno));
242         ret = false;
243         goto release_ufd;
244     }
245 
246     *features = api_struct.features;
247 
248 release_ufd:
249     close(ufd);
250     return ret;
251 }
252 
253 /**
254  * request_ufd_features: this function should be called only once on a newly
255  * opened ufd, subsequent calls will lead to error.
256  *
257  * Returns: true on success
258  *
259  * @ufd: fd obtained from userfaultfd syscall
260  * @features: bit mask see UFFD_API_FEATURES
261  */
262 static bool request_ufd_features(int ufd, uint64_t features)
263 {
264     struct uffdio_api api_struct = {0};
265     uint64_t ioctl_mask;
266 
267     api_struct.api = UFFD_API;
268     api_struct.features = features;
269     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
270         error_report("%s failed: UFFDIO_API failed: %s", __func__,
271                      strerror(errno));
272         return false;
273     }
274 
275     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
276                  (__u64)1 << _UFFDIO_UNREGISTER;
277     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
278         error_report("Missing userfault features: %" PRIx64,
279                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
280         return false;
281     }
282 
283     return true;
284 }
285 
286 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
287 {
288     uint64_t asked_features = 0;
289     static uint64_t supported_features;
290 
291     /*
292      * it's not possible to
293      * request UFFD_API twice per one fd
294      * userfault fd features is persistent
295      */
296     if (!supported_features) {
297         if (!receive_ufd_features(&supported_features)) {
298             error_report("%s failed", __func__);
299             return false;
300         }
301     }
302 
303 #ifdef UFFD_FEATURE_THREAD_ID
304     if (UFFD_FEATURE_THREAD_ID & supported_features) {
305         asked_features |= UFFD_FEATURE_THREAD_ID;
306         if (migrate_postcopy_blocktime()) {
307             if (!mis->blocktime_ctx) {
308                 mis->blocktime_ctx = blocktime_context_new();
309             }
310         }
311     }
312 #endif
313 
314     /*
315      * request features, even if asked_features is 0, due to
316      * kernel expects UFFD_API before UFFDIO_REGISTER, per
317      * userfault file descriptor
318      */
319     if (!request_ufd_features(ufd, asked_features)) {
320         error_report("%s failed: features %" PRIu64, __func__,
321                      asked_features);
322         return false;
323     }
324 
325     if (qemu_real_host_page_size() != ram_pagesize_summary()) {
326         bool have_hp = false;
327         /* We've got a huge page */
328 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
329         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
330 #endif
331         if (!have_hp) {
332             error_report("Userfault on this host does not support huge pages");
333             return false;
334         }
335     }
336     return true;
337 }
338 
339 /* Callback from postcopy_ram_supported_by_host block iterator.
340  */
341 static int test_ramblock_postcopiable(RAMBlock *rb)
342 {
343     const char *block_name = qemu_ram_get_idstr(rb);
344     ram_addr_t length = qemu_ram_get_used_length(rb);
345     size_t pagesize = qemu_ram_pagesize(rb);
346     QemuFsType fs;
347 
348     if (length % pagesize) {
349         error_report("Postcopy requires RAM blocks to be a page size multiple,"
350                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
351                      "page size of 0x%zx", block_name, length, pagesize);
352         return 1;
353     }
354 
355     if (rb->fd >= 0) {
356         fs = qemu_fd_getfs(rb->fd);
357         if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) {
358             error_report("Host backend files need to be TMPFS or HUGETLBFS only");
359             return 1;
360         }
361     }
362 
363     return 0;
364 }
365 
366 /*
367  * Note: This has the side effect of munlock'ing all of RAM, that's
368  * normally fine since if the postcopy succeeds it gets turned back on at the
369  * end.
370  */
371 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
372 {
373     long pagesize = qemu_real_host_page_size();
374     int ufd = -1;
375     bool ret = false; /* Error unless we change it */
376     void *testarea = NULL;
377     struct uffdio_register reg_struct;
378     struct uffdio_range range_struct;
379     uint64_t feature_mask;
380     Error *local_err = NULL;
381     RAMBlock *block;
382 
383     if (qemu_target_page_size() > pagesize) {
384         error_report("Target page size bigger than host page size");
385         goto out;
386     }
387 
388     ufd = uffd_open(O_CLOEXEC);
389     if (ufd == -1) {
390         error_report("%s: userfaultfd not available: %s", __func__,
391                      strerror(errno));
392         goto out;
393     }
394 
395     /* Give devices a chance to object */
396     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
397         error_report_err(local_err);
398         goto out;
399     }
400 
401     /* Version and features check */
402     if (!ufd_check_and_apply(ufd, mis)) {
403         goto out;
404     }
405 
406     /*
407      * We don't support postcopy with some type of ramblocks.
408      *
409      * NOTE: we explicitly ignored ramblock_is_ignored() instead we checked
410      * all possible ramblocks.  This is because this function can be called
411      * when creating the migration object, during the phase RAM_MIGRATABLE
412      * is not even properly set for all the ramblocks.
413      *
414      * A side effect of this is we'll also check against RAM_SHARED
415      * ramblocks even if migrate_ignore_shared() is set (in which case
416      * we'll never migrate RAM_SHARED at all), but normally this shouldn't
417      * affect in reality, or we can revisit.
418      */
419     RAMBLOCK_FOREACH(block) {
420         if (test_ramblock_postcopiable(block)) {
421             goto out;
422         }
423     }
424 
425     /*
426      * userfault and mlock don't go together; we'll put it back later if
427      * it was enabled.
428      */
429     if (munlockall()) {
430         error_report("%s: munlockall: %s", __func__,  strerror(errno));
431         goto out;
432     }
433 
434     /*
435      *  We need to check that the ops we need are supported on anon memory
436      *  To do that we need to register a chunk and see the flags that
437      *  are returned.
438      */
439     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
440                                     MAP_ANONYMOUS, -1, 0);
441     if (testarea == MAP_FAILED) {
442         error_report("%s: Failed to map test area: %s", __func__,
443                      strerror(errno));
444         goto out;
445     }
446     g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
447 
448     reg_struct.range.start = (uintptr_t)testarea;
449     reg_struct.range.len = pagesize;
450     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
451 
452     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
453         error_report("%s userfault register: %s", __func__, strerror(errno));
454         goto out;
455     }
456 
457     range_struct.start = (uintptr_t)testarea;
458     range_struct.len = pagesize;
459     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
460         error_report("%s userfault unregister: %s", __func__, strerror(errno));
461         goto out;
462     }
463 
464     feature_mask = (__u64)1 << _UFFDIO_WAKE |
465                    (__u64)1 << _UFFDIO_COPY |
466                    (__u64)1 << _UFFDIO_ZEROPAGE;
467     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
468         error_report("Missing userfault map features: %" PRIx64,
469                      (uint64_t)(~reg_struct.ioctls & feature_mask));
470         goto out;
471     }
472 
473     /* Success! */
474     ret = true;
475 out:
476     if (testarea) {
477         munmap(testarea, pagesize);
478     }
479     if (ufd != -1) {
480         close(ufd);
481     }
482     return ret;
483 }
484 
485 /*
486  * Setup an area of RAM so that it *can* be used for postcopy later; this
487  * must be done right at the start prior to pre-copy.
488  * opaque should be the MIS.
489  */
490 static int init_range(RAMBlock *rb, void *opaque)
491 {
492     const char *block_name = qemu_ram_get_idstr(rb);
493     void *host_addr = qemu_ram_get_host_addr(rb);
494     ram_addr_t offset = qemu_ram_get_offset(rb);
495     ram_addr_t length = qemu_ram_get_used_length(rb);
496     trace_postcopy_init_range(block_name, host_addr, offset, length);
497 
498     /*
499      * Save the used_length before running the guest. In case we have to
500      * resize RAM blocks when syncing RAM block sizes from the source during
501      * precopy, we'll update it manually via the ram block notifier.
502      */
503     rb->postcopy_length = length;
504 
505     /*
506      * We need the whole of RAM to be truly empty for postcopy, so things
507      * like ROMs and any data tables built during init must be zero'd
508      * - we're going to get the copy from the source anyway.
509      * (Precopy will just overwrite this data, so doesn't need the discard)
510      */
511     if (ram_discard_range(block_name, 0, length)) {
512         return -1;
513     }
514 
515     return 0;
516 }
517 
518 /*
519  * At the end of migration, undo the effects of init_range
520  * opaque should be the MIS.
521  */
522 static int cleanup_range(RAMBlock *rb, void *opaque)
523 {
524     const char *block_name = qemu_ram_get_idstr(rb);
525     void *host_addr = qemu_ram_get_host_addr(rb);
526     ram_addr_t offset = qemu_ram_get_offset(rb);
527     ram_addr_t length = rb->postcopy_length;
528     MigrationIncomingState *mis = opaque;
529     struct uffdio_range range_struct;
530     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
531 
532     /*
533      * We turned off hugepage for the precopy stage with postcopy enabled
534      * we can turn it back on now.
535      */
536     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
537 
538     /*
539      * We can also turn off userfault now since we should have all the
540      * pages.   It can be useful to leave it on to debug postcopy
541      * if you're not sure it's always getting every page.
542      */
543     range_struct.start = (uintptr_t)host_addr;
544     range_struct.len = length;
545 
546     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
547         error_report("%s: userfault unregister %s", __func__, strerror(errno));
548 
549         return -1;
550     }
551 
552     return 0;
553 }
554 
555 /*
556  * Initialise postcopy-ram, setting the RAM to a state where we can go into
557  * postcopy later; must be called prior to any precopy.
558  * called from arch_init's similarly named ram_postcopy_incoming_init
559  */
560 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
561 {
562     if (foreach_not_ignored_block(init_range, NULL)) {
563         return -1;
564     }
565 
566     return 0;
567 }
568 
569 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
570 {
571     int i;
572 
573     if (mis->postcopy_tmp_pages) {
574         for (i = 0; i < mis->postcopy_channels; i++) {
575             if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
576                 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
577                        mis->largest_page_size);
578                 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
579             }
580         }
581         g_free(mis->postcopy_tmp_pages);
582         mis->postcopy_tmp_pages = NULL;
583     }
584 
585     if (mis->postcopy_tmp_zero_page) {
586         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
587         mis->postcopy_tmp_zero_page = NULL;
588     }
589 }
590 
591 /*
592  * At the end of a migration where postcopy_ram_incoming_init was called.
593  */
594 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
595 {
596     trace_postcopy_ram_incoming_cleanup_entry();
597 
598     if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) {
599         /* Notify the fast load thread to quit */
600         mis->preempt_thread_status = PREEMPT_THREAD_QUIT;
601         if (mis->postcopy_qemufile_dst) {
602             qemu_file_shutdown(mis->postcopy_qemufile_dst);
603         }
604         qemu_thread_join(&mis->postcopy_prio_thread);
605         mis->preempt_thread_status = PREEMPT_THREAD_NONE;
606     }
607 
608     if (mis->have_fault_thread) {
609         Error *local_err = NULL;
610 
611         /* Let the fault thread quit */
612         qatomic_set(&mis->fault_thread_quit, 1);
613         postcopy_fault_thread_notify(mis);
614         trace_postcopy_ram_incoming_cleanup_join();
615         qemu_thread_join(&mis->fault_thread);
616 
617         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
618             error_report_err(local_err);
619             return -1;
620         }
621 
622         if (foreach_not_ignored_block(cleanup_range, mis)) {
623             return -1;
624         }
625 
626         trace_postcopy_ram_incoming_cleanup_closeuf();
627         close(mis->userfault_fd);
628         close(mis->userfault_event_fd);
629         mis->have_fault_thread = false;
630     }
631 
632     if (enable_mlock) {
633         if (os_mlock() < 0) {
634             error_report("mlock: %s", strerror(errno));
635             /*
636              * It doesn't feel right to fail at this point, we have a valid
637              * VM state.
638              */
639         }
640     }
641 
642     postcopy_temp_pages_cleanup(mis);
643 
644     trace_postcopy_ram_incoming_cleanup_blocktime(
645             get_postcopy_total_blocktime());
646 
647     trace_postcopy_ram_incoming_cleanup_exit();
648     return 0;
649 }
650 
651 /*
652  * Disable huge pages on an area
653  */
654 static int nhp_range(RAMBlock *rb, void *opaque)
655 {
656     const char *block_name = qemu_ram_get_idstr(rb);
657     void *host_addr = qemu_ram_get_host_addr(rb);
658     ram_addr_t offset = qemu_ram_get_offset(rb);
659     ram_addr_t length = rb->postcopy_length;
660     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
661 
662     /*
663      * Before we do discards we need to ensure those discards really
664      * do delete areas of the page, even if THP thinks a hugepage would
665      * be a good idea, so force hugepages off.
666      */
667     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
668 
669     return 0;
670 }
671 
672 /*
673  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
674  * however leaving it until after precopy means that most of the precopy
675  * data is still THPd
676  */
677 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
678 {
679     if (foreach_not_ignored_block(nhp_range, mis)) {
680         return -1;
681     }
682 
683     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
684 
685     return 0;
686 }
687 
688 /*
689  * Mark the given area of RAM as requiring notification to unwritten areas
690  * Used as a  callback on foreach_not_ignored_block.
691  *   host_addr: Base of area to mark
692  *   offset: Offset in the whole ram arena
693  *   length: Length of the section
694  *   opaque: MigrationIncomingState pointer
695  * Returns 0 on success
696  */
697 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
698 {
699     MigrationIncomingState *mis = opaque;
700     struct uffdio_register reg_struct;
701 
702     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
703     reg_struct.range.len = rb->postcopy_length;
704     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
705 
706     /* Now tell our userfault_fd that it's responsible for this area */
707     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
708         error_report("%s userfault register: %s", __func__, strerror(errno));
709         return -1;
710     }
711     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
712         error_report("%s userfault: Region doesn't support COPY", __func__);
713         return -1;
714     }
715     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
716         qemu_ram_set_uf_zeroable(rb);
717     }
718 
719     return 0;
720 }
721 
722 int postcopy_wake_shared(struct PostCopyFD *pcfd,
723                          uint64_t client_addr,
724                          RAMBlock *rb)
725 {
726     size_t pagesize = qemu_ram_pagesize(rb);
727     struct uffdio_range range;
728     int ret;
729     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
730     range.start = ROUND_DOWN(client_addr, pagesize);
731     range.len = pagesize;
732     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
733     if (ret) {
734         error_report("%s: Failed to wake: %zx in %s (%s)",
735                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
736                      strerror(errno));
737     }
738     return ret;
739 }
740 
741 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
742                                  ram_addr_t start, uint64_t haddr)
743 {
744     void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
745 
746     /*
747      * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
748      * access, place a zeropage, which will also set the relevant bits in the
749      * recv_bitmap accordingly, so we won't try placing a zeropage twice.
750      *
751      * Checking a single bit is sufficient to handle pagesize > TPS as either
752      * all relevant bits are set or not.
753      */
754     assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
755     if (ramblock_page_is_discarded(rb, start)) {
756         bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
757 
758         return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
759     }
760 
761     return migrate_send_rp_req_pages(mis, rb, start, haddr);
762 }
763 
764 /*
765  * Callback from shared fault handlers to ask for a page,
766  * the page must be specified by a RAMBlock and an offset in that rb
767  * Note: Only for use by shared fault handlers (in fault thread)
768  */
769 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
770                                  uint64_t client_addr, uint64_t rb_offset)
771 {
772     uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
773     MigrationIncomingState *mis = migration_incoming_get_current();
774 
775     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
776                                        rb_offset);
777     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
778         trace_postcopy_request_shared_page_present(pcfd->idstr,
779                                         qemu_ram_get_idstr(rb), rb_offset);
780         return postcopy_wake_shared(pcfd, client_addr, rb);
781     }
782     postcopy_request_page(mis, rb, aligned_rbo, client_addr);
783     return 0;
784 }
785 
786 static int get_mem_fault_cpu_index(uint32_t pid)
787 {
788     CPUState *cpu_iter;
789 
790     CPU_FOREACH(cpu_iter) {
791         if (cpu_iter->thread_id == pid) {
792             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
793             return cpu_iter->cpu_index;
794         }
795     }
796     trace_get_mem_fault_cpu_index(-1, pid);
797     return -1;
798 }
799 
800 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
801 {
802     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
803                                     dc->start_time;
804     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
805 }
806 
807 /*
808  * This function is being called when pagefault occurs. It
809  * tracks down vCPU blocking time.
810  *
811  * @addr: faulted host virtual address
812  * @ptid: faulted process thread id
813  * @rb: ramblock appropriate to addr
814  */
815 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
816                                           RAMBlock *rb)
817 {
818     int cpu, already_received;
819     MigrationIncomingState *mis = migration_incoming_get_current();
820     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
821     uint32_t low_time_offset;
822 
823     if (!dc || ptid == 0) {
824         return;
825     }
826     cpu = get_mem_fault_cpu_index(ptid);
827     if (cpu < 0) {
828         return;
829     }
830 
831     low_time_offset = get_low_time_offset(dc);
832     if (dc->vcpu_addr[cpu] == 0) {
833         qatomic_inc(&dc->smp_cpus_down);
834     }
835 
836     qatomic_xchg(&dc->last_begin, low_time_offset);
837     qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
838     qatomic_xchg(&dc->vcpu_addr[cpu], addr);
839 
840     /*
841      * check it here, not at the beginning of the function,
842      * due to, check could occur early than bitmap_set in
843      * qemu_ufd_copy_ioctl
844      */
845     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
846     if (already_received) {
847         qatomic_xchg(&dc->vcpu_addr[cpu], 0);
848         qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
849         qatomic_dec(&dc->smp_cpus_down);
850     }
851     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
852                                         cpu, already_received);
853 }
854 
855 /*
856  *  This function just provide calculated blocktime per cpu and trace it.
857  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
858  *
859  *
860  * Assume we have 3 CPU
861  *
862  *      S1        E1           S1               E1
863  * -----***********------------xxx***************------------------------> CPU1
864  *
865  *             S2                E2
866  * ------------****************xxx---------------------------------------> CPU2
867  *
868  *                         S3            E3
869  * ------------------------****xxx********-------------------------------> CPU3
870  *
871  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
872  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
873  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
874  *            it's a part of total blocktime.
875  * S1 - here is last_begin
876  * Legend of the picture is following:
877  *              * - means blocktime per vCPU
878  *              x - means overlapped blocktime (total blocktime)
879  *
880  * @addr: host virtual address
881  */
882 static void mark_postcopy_blocktime_end(uintptr_t addr)
883 {
884     MigrationIncomingState *mis = migration_incoming_get_current();
885     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
886     MachineState *ms = MACHINE(qdev_get_machine());
887     unsigned int smp_cpus = ms->smp.cpus;
888     int i, affected_cpu = 0;
889     bool vcpu_total_blocktime = false;
890     uint32_t read_vcpu_time, low_time_offset;
891 
892     if (!dc) {
893         return;
894     }
895 
896     low_time_offset = get_low_time_offset(dc);
897     /* lookup cpu, to clear it,
898      * that algorithm looks straightforward, but it's not
899      * optimal, more optimal algorithm is keeping tree or hash
900      * where key is address value is a list of  */
901     for (i = 0; i < smp_cpus; i++) {
902         uint32_t vcpu_blocktime = 0;
903 
904         read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
905         if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
906             read_vcpu_time == 0) {
907             continue;
908         }
909         qatomic_xchg(&dc->vcpu_addr[i], 0);
910         vcpu_blocktime = low_time_offset - read_vcpu_time;
911         affected_cpu += 1;
912         /* we need to know is that mark_postcopy_end was due to
913          * faulted page, another possible case it's prefetched
914          * page and in that case we shouldn't be here */
915         if (!vcpu_total_blocktime &&
916             qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
917             vcpu_total_blocktime = true;
918         }
919         /* continue cycle, due to one page could affect several vCPUs */
920         dc->vcpu_blocktime[i] += vcpu_blocktime;
921     }
922 
923     qatomic_sub(&dc->smp_cpus_down, affected_cpu);
924     if (vcpu_total_blocktime) {
925         dc->total_blocktime += low_time_offset - qatomic_fetch_add(
926                 &dc->last_begin, 0);
927     }
928     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
929                                       affected_cpu);
930 }
931 
932 static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
933 {
934     trace_postcopy_pause_fault_thread();
935     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
936     trace_postcopy_pause_fault_thread_continued();
937 }
938 
939 /*
940  * Handle faults detected by the USERFAULT markings
941  */
942 static void *postcopy_ram_fault_thread(void *opaque)
943 {
944     MigrationIncomingState *mis = opaque;
945     struct uffd_msg msg;
946     int ret;
947     size_t index;
948     RAMBlock *rb = NULL;
949 
950     trace_postcopy_ram_fault_thread_entry();
951     rcu_register_thread();
952     mis->last_rb = NULL; /* last RAMBlock we sent part of */
953     qemu_sem_post(&mis->thread_sync_sem);
954 
955     struct pollfd *pfd;
956     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
957 
958     pfd = g_new0(struct pollfd, pfd_len);
959 
960     pfd[0].fd = mis->userfault_fd;
961     pfd[0].events = POLLIN;
962     pfd[1].fd = mis->userfault_event_fd;
963     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
964     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
965     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
966         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
967                                                  struct PostCopyFD, index);
968         pfd[2 + index].fd = pcfd->fd;
969         pfd[2 + index].events = POLLIN;
970         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
971                                                   pcfd->fd);
972     }
973 
974     while (true) {
975         ram_addr_t rb_offset;
976         int poll_result;
977 
978         /*
979          * We're mainly waiting for the kernel to give us a faulting HVA,
980          * however we can be told to quit via userfault_quit_fd which is
981          * an eventfd
982          */
983 
984         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
985         if (poll_result == -1) {
986             error_report("%s: userfault poll: %s", __func__, strerror(errno));
987             break;
988         }
989 
990         if (!mis->to_src_file) {
991             /*
992              * Possibly someone tells us that the return path is
993              * broken already using the event. We should hold until
994              * the channel is rebuilt.
995              */
996             postcopy_pause_fault_thread(mis);
997         }
998 
999         if (pfd[1].revents) {
1000             uint64_t tmp64 = 0;
1001 
1002             /* Consume the signal */
1003             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
1004                 /* Nothing obviously nicer than posting this error. */
1005                 error_report("%s: read() failed", __func__);
1006             }
1007 
1008             if (qatomic_read(&mis->fault_thread_quit)) {
1009                 trace_postcopy_ram_fault_thread_quit();
1010                 break;
1011             }
1012         }
1013 
1014         if (pfd[0].revents) {
1015             poll_result--;
1016             ret = read(mis->userfault_fd, &msg, sizeof(msg));
1017             if (ret != sizeof(msg)) {
1018                 if (errno == EAGAIN) {
1019                     /*
1020                      * if a wake up happens on the other thread just after
1021                      * the poll, there is nothing to read.
1022                      */
1023                     continue;
1024                 }
1025                 if (ret < 0) {
1026                     error_report("%s: Failed to read full userfault "
1027                                  "message: %s",
1028                                  __func__, strerror(errno));
1029                     break;
1030                 } else {
1031                     error_report("%s: Read %d bytes from userfaultfd "
1032                                  "expected %zd",
1033                                  __func__, ret, sizeof(msg));
1034                     break; /* Lost alignment, don't know what we'd read next */
1035                 }
1036             }
1037             if (msg.event != UFFD_EVENT_PAGEFAULT) {
1038                 error_report("%s: Read unexpected event %ud from userfaultfd",
1039                              __func__, msg.event);
1040                 continue; /* It's not a page fault, shouldn't happen */
1041             }
1042 
1043             rb = qemu_ram_block_from_host(
1044                      (void *)(uintptr_t)msg.arg.pagefault.address,
1045                      true, &rb_offset);
1046             if (!rb) {
1047                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1048                              PRIx64, (uint64_t)msg.arg.pagefault.address);
1049                 break;
1050             }
1051 
1052             rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1053             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1054                                                 qemu_ram_get_idstr(rb),
1055                                                 rb_offset,
1056                                                 msg.arg.pagefault.feat.ptid);
1057             mark_postcopy_blocktime_begin(
1058                     (uintptr_t)(msg.arg.pagefault.address),
1059                                 msg.arg.pagefault.feat.ptid, rb);
1060 
1061 retry:
1062             /*
1063              * Send the request to the source - we want to request one
1064              * of our host page sizes (which is >= TPS)
1065              */
1066             ret = postcopy_request_page(mis, rb, rb_offset,
1067                                         msg.arg.pagefault.address);
1068             if (ret) {
1069                 /* May be network failure, try to wait for recovery */
1070                 postcopy_pause_fault_thread(mis);
1071                 goto retry;
1072             }
1073         }
1074 
1075         /* Now handle any requests from external processes on shared memory */
1076         /* TODO: May need to handle devices deregistering during postcopy */
1077         for (index = 2; index < pfd_len && poll_result; index++) {
1078             if (pfd[index].revents) {
1079                 struct PostCopyFD *pcfd =
1080                     &g_array_index(mis->postcopy_remote_fds,
1081                                    struct PostCopyFD, index - 2);
1082 
1083                 poll_result--;
1084                 if (pfd[index].revents & POLLERR) {
1085                     error_report("%s: POLLERR on poll %zd fd=%d",
1086                                  __func__, index, pcfd->fd);
1087                     pfd[index].events = 0;
1088                     continue;
1089                 }
1090 
1091                 ret = read(pcfd->fd, &msg, sizeof(msg));
1092                 if (ret != sizeof(msg)) {
1093                     if (errno == EAGAIN) {
1094                         /*
1095                          * if a wake up happens on the other thread just after
1096                          * the poll, there is nothing to read.
1097                          */
1098                         continue;
1099                     }
1100                     if (ret < 0) {
1101                         error_report("%s: Failed to read full userfault "
1102                                      "message: %s (shared) revents=%d",
1103                                      __func__, strerror(errno),
1104                                      pfd[index].revents);
1105                         /*TODO: Could just disable this sharer */
1106                         break;
1107                     } else {
1108                         error_report("%s: Read %d bytes from userfaultfd "
1109                                      "expected %zd (shared)",
1110                                      __func__, ret, sizeof(msg));
1111                         /*TODO: Could just disable this sharer */
1112                         break; /*Lost alignment,don't know what we'd read next*/
1113                     }
1114                 }
1115                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1116                     error_report("%s: Read unexpected event %ud "
1117                                  "from userfaultfd (shared)",
1118                                  __func__, msg.event);
1119                     continue; /* It's not a page fault, shouldn't happen */
1120                 }
1121                 /* Call the device handler registered with us */
1122                 ret = pcfd->handler(pcfd, &msg);
1123                 if (ret) {
1124                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1125                                  __func__, index, pcfd->idstr);
1126                     /* TODO: Fail? Disable this sharer? */
1127                 }
1128             }
1129         }
1130     }
1131     rcu_unregister_thread();
1132     trace_postcopy_ram_fault_thread_exit();
1133     g_free(pfd);
1134     return NULL;
1135 }
1136 
1137 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1138 {
1139     PostcopyTmpPage *tmp_page;
1140     int err, i, channels;
1141     void *temp_page;
1142 
1143     if (migrate_postcopy_preempt()) {
1144         /* If preemption enabled, need extra channel for urgent requests */
1145         mis->postcopy_channels = RAM_CHANNEL_MAX;
1146     } else {
1147         /* Both precopy/postcopy on the same channel */
1148         mis->postcopy_channels = 1;
1149     }
1150 
1151     channels = mis->postcopy_channels;
1152     mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1153 
1154     for (i = 0; i < channels; i++) {
1155         tmp_page = &mis->postcopy_tmp_pages[i];
1156         temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1157                          MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1158         if (temp_page == MAP_FAILED) {
1159             err = errno;
1160             error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1161                          __func__, i, strerror(err));
1162             /* Clean up will be done later */
1163             return -err;
1164         }
1165         tmp_page->tmp_huge_page = temp_page;
1166         /* Initialize default states for each tmp page */
1167         postcopy_temp_page_reset(tmp_page);
1168     }
1169 
1170     /*
1171      * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1172      */
1173     mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1174                                        PROT_READ | PROT_WRITE,
1175                                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1176     if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1177         err = errno;
1178         mis->postcopy_tmp_zero_page = NULL;
1179         error_report("%s: Failed to map large zero page %s",
1180                      __func__, strerror(err));
1181         return -err;
1182     }
1183 
1184     memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1185 
1186     return 0;
1187 }
1188 
1189 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1190 {
1191     /* Open the fd for the kernel to give us userfaults */
1192     mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK);
1193     if (mis->userfault_fd == -1) {
1194         error_report("%s: Failed to open userfault fd: %s", __func__,
1195                      strerror(errno));
1196         return -1;
1197     }
1198 
1199     /*
1200      * Although the host check already tested the API, we need to
1201      * do the check again as an ABI handshake on the new fd.
1202      */
1203     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1204         return -1;
1205     }
1206 
1207     /* Now an eventfd we use to tell the fault-thread to quit */
1208     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1209     if (mis->userfault_event_fd == -1) {
1210         error_report("%s: Opening userfault_event_fd: %s", __func__,
1211                      strerror(errno));
1212         close(mis->userfault_fd);
1213         return -1;
1214     }
1215 
1216     postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
1217                            postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1218     mis->have_fault_thread = true;
1219 
1220     /* Mark so that we get notified of accesses to unwritten areas */
1221     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1222         error_report("ram_block_enable_notify failed");
1223         return -1;
1224     }
1225 
1226     if (postcopy_temp_pages_setup(mis)) {
1227         /* Error dumped in the sub-function */
1228         return -1;
1229     }
1230 
1231     if (migrate_postcopy_preempt()) {
1232         /*
1233          * This thread needs to be created after the temp pages because
1234          * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1235          */
1236         postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
1237                                postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
1238         mis->preempt_thread_status = PREEMPT_THREAD_CREATED;
1239     }
1240 
1241     trace_postcopy_ram_enable_notify();
1242 
1243     return 0;
1244 }
1245 
1246 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1247                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1248 {
1249     int userfault_fd = mis->userfault_fd;
1250     int ret;
1251 
1252     if (from_addr) {
1253         struct uffdio_copy copy_struct;
1254         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1255         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1256         copy_struct.len = pagesize;
1257         copy_struct.mode = 0;
1258         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1259     } else {
1260         struct uffdio_zeropage zero_struct;
1261         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1262         zero_struct.range.len = pagesize;
1263         zero_struct.mode = 0;
1264         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1265     }
1266     if (!ret) {
1267         qemu_mutex_lock(&mis->page_request_mutex);
1268         ramblock_recv_bitmap_set_range(rb, host_addr,
1269                                        pagesize / qemu_target_page_size());
1270         /*
1271          * If this page resolves a page fault for a previous recorded faulted
1272          * address, take a special note to maintain the requested page list.
1273          */
1274         if (g_tree_lookup(mis->page_requested, host_addr)) {
1275             g_tree_remove(mis->page_requested, host_addr);
1276             mis->page_requested_count--;
1277             trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1278         }
1279         qemu_mutex_unlock(&mis->page_request_mutex);
1280         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1281     }
1282     return ret;
1283 }
1284 
1285 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1286 {
1287     int i;
1288     MigrationIncomingState *mis = migration_incoming_get_current();
1289     GArray *pcrfds = mis->postcopy_remote_fds;
1290 
1291     for (i = 0; i < pcrfds->len; i++) {
1292         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1293         int ret = cur->waker(cur, rb, offset);
1294         if (ret) {
1295             return ret;
1296         }
1297     }
1298     return 0;
1299 }
1300 
1301 /*
1302  * Place a host page (from) at (host) atomically
1303  * returns 0 on success
1304  */
1305 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1306                         RAMBlock *rb)
1307 {
1308     size_t pagesize = qemu_ram_pagesize(rb);
1309 
1310     /* copy also acks to the kernel waking the stalled thread up
1311      * TODO: We can inhibit that ack and only do it if it was requested
1312      * which would be slightly cheaper, but we'd have to be careful
1313      * of the order of updating our page state.
1314      */
1315     if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1316         int e = errno;
1317         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1318                      __func__, strerror(e), host, from, pagesize);
1319 
1320         return -e;
1321     }
1322 
1323     trace_postcopy_place_page(host);
1324     return postcopy_notify_shared_wake(rb,
1325                                        qemu_ram_block_host_offset(rb, host));
1326 }
1327 
1328 /*
1329  * Place a zero page at (host) atomically
1330  * returns 0 on success
1331  */
1332 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1333                              RAMBlock *rb)
1334 {
1335     size_t pagesize = qemu_ram_pagesize(rb);
1336     trace_postcopy_place_page_zero(host);
1337 
1338     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1339      * but it's not available for everything (e.g. hugetlbpages)
1340      */
1341     if (qemu_ram_is_uf_zeroable(rb)) {
1342         if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1343             int e = errno;
1344             error_report("%s: %s zero host: %p",
1345                          __func__, strerror(e), host);
1346 
1347             return -e;
1348         }
1349         return postcopy_notify_shared_wake(rb,
1350                                            qemu_ram_block_host_offset(rb,
1351                                                                       host));
1352     } else {
1353         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1354     }
1355 }
1356 
1357 #else
1358 /* No target OS support, stubs just fail */
1359 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1360 {
1361 }
1362 
1363 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1364 {
1365     error_report("%s: No OS support", __func__);
1366     return false;
1367 }
1368 
1369 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1370 {
1371     error_report("postcopy_ram_incoming_init: No OS support");
1372     return -1;
1373 }
1374 
1375 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1376 {
1377     assert(0);
1378     return -1;
1379 }
1380 
1381 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1382 {
1383     assert(0);
1384     return -1;
1385 }
1386 
1387 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1388                                  uint64_t client_addr, uint64_t rb_offset)
1389 {
1390     assert(0);
1391     return -1;
1392 }
1393 
1394 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1395 {
1396     assert(0);
1397     return -1;
1398 }
1399 
1400 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1401                         RAMBlock *rb)
1402 {
1403     assert(0);
1404     return -1;
1405 }
1406 
1407 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1408                         RAMBlock *rb)
1409 {
1410     assert(0);
1411     return -1;
1412 }
1413 
1414 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1415                          uint64_t client_addr,
1416                          RAMBlock *rb)
1417 {
1418     assert(0);
1419     return -1;
1420 }
1421 #endif
1422 
1423 /* ------------------------------------------------------------------------- */
1424 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1425 {
1426     tmp_page->target_pages = 0;
1427     tmp_page->host_addr = NULL;
1428     /*
1429      * This is set to true when reset, and cleared as long as we received any
1430      * of the non-zero small page within this huge page.
1431      */
1432     tmp_page->all_zero = true;
1433 }
1434 
1435 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1436 {
1437     uint64_t tmp64 = 1;
1438 
1439     /*
1440      * Wakeup the fault_thread.  It's an eventfd that should currently
1441      * be at 0, we're going to increment it to 1
1442      */
1443     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1444         /* Not much we can do here, but may as well report it */
1445         error_report("%s: incrementing failed: %s", __func__,
1446                      strerror(errno));
1447     }
1448 }
1449 
1450 /**
1451  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1452  *   asking to discard individual ranges.
1453  *
1454  * @ms: The current migration state.
1455  * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1456  * @name: RAMBlock that discards will operate on.
1457  */
1458 static PostcopyDiscardState pds = {0};
1459 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1460 {
1461     pds.ramblock_name = name;
1462     pds.cur_entry = 0;
1463     pds.nsentwords = 0;
1464     pds.nsentcmds = 0;
1465 }
1466 
1467 /**
1468  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1469  *   discard. May send a discard message, may just leave it queued to
1470  *   be sent later.
1471  *
1472  * @ms: Current migration state.
1473  * @start,@length: a range of pages in the migration bitmap in the
1474  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1475  */
1476 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1477                                  unsigned long length)
1478 {
1479     size_t tp_size = qemu_target_page_size();
1480     /* Convert to byte offsets within the RAM block */
1481     pds.start_list[pds.cur_entry] = start  * tp_size;
1482     pds.length_list[pds.cur_entry] = length * tp_size;
1483     trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1484     pds.cur_entry++;
1485     pds.nsentwords++;
1486 
1487     if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1488         /* Full set, ship it! */
1489         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1490                                               pds.ramblock_name,
1491                                               pds.cur_entry,
1492                                               pds.start_list,
1493                                               pds.length_list);
1494         pds.nsentcmds++;
1495         pds.cur_entry = 0;
1496     }
1497 }
1498 
1499 /**
1500  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1501  * bitmap code. Sends any outstanding discard messages, frees the PDS
1502  *
1503  * @ms: Current migration state.
1504  */
1505 void postcopy_discard_send_finish(MigrationState *ms)
1506 {
1507     /* Anything unsent? */
1508     if (pds.cur_entry) {
1509         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1510                                               pds.ramblock_name,
1511                                               pds.cur_entry,
1512                                               pds.start_list,
1513                                               pds.length_list);
1514         pds.nsentcmds++;
1515     }
1516 
1517     trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1518                                        pds.nsentcmds);
1519 }
1520 
1521 /*
1522  * Current state of incoming postcopy; note this is not part of
1523  * MigrationIncomingState since it's state is used during cleanup
1524  * at the end as MIS is being freed.
1525  */
1526 static PostcopyState incoming_postcopy_state;
1527 
1528 PostcopyState  postcopy_state_get(void)
1529 {
1530     return qatomic_load_acquire(&incoming_postcopy_state);
1531 }
1532 
1533 /* Set the state and return the old state */
1534 PostcopyState postcopy_state_set(PostcopyState new_state)
1535 {
1536     return qatomic_xchg(&incoming_postcopy_state, new_state);
1537 }
1538 
1539 /* Register a handler for external shared memory postcopy
1540  * called on the destination.
1541  */
1542 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1543 {
1544     MigrationIncomingState *mis = migration_incoming_get_current();
1545 
1546     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1547                                                   *pcfd);
1548 }
1549 
1550 /* Unregister a handler for external shared memory postcopy
1551  */
1552 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1553 {
1554     guint i;
1555     MigrationIncomingState *mis = migration_incoming_get_current();
1556     GArray *pcrfds = mis->postcopy_remote_fds;
1557 
1558     if (!pcrfds) {
1559         /* migration has already finished and freed the array */
1560         return;
1561     }
1562     for (i = 0; i < pcrfds->len; i++) {
1563         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1564         if (cur->fd == pcfd->fd) {
1565             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1566             return;
1567         }
1568     }
1569 }
1570 
1571 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
1572 {
1573     /*
1574      * The new loading channel has its own threads, so it needs to be
1575      * blocked too.  It's by default true, just be explicit.
1576      */
1577     qemu_file_set_blocking(file, true);
1578     mis->postcopy_qemufile_dst = file;
1579     qemu_sem_post(&mis->postcopy_qemufile_dst_done);
1580     trace_postcopy_preempt_new_channel();
1581 }
1582 
1583 /*
1584  * Setup the postcopy preempt channel with the IOC.  If ERROR is specified,
1585  * setup the error instead.  This helper will free the ERROR if specified.
1586  */
1587 static void
1588 postcopy_preempt_send_channel_done(MigrationState *s,
1589                                    QIOChannel *ioc, Error *local_err)
1590 {
1591     if (local_err) {
1592         migrate_set_error(s, local_err);
1593         error_free(local_err);
1594     } else {
1595         migration_ioc_register_yank(ioc);
1596         s->postcopy_qemufile_src = qemu_file_new_output(ioc);
1597         trace_postcopy_preempt_new_channel();
1598     }
1599 
1600     /*
1601      * Kick the waiter in all cases.  The waiter should check upon
1602      * postcopy_qemufile_src to know whether it failed or not.
1603      */
1604     qemu_sem_post(&s->postcopy_qemufile_src_sem);
1605 }
1606 
1607 static void
1608 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
1609 {
1610     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1611     MigrationState *s = opaque;
1612     Error *local_err = NULL;
1613 
1614     qio_task_propagate_error(task, &local_err);
1615     postcopy_preempt_send_channel_done(s, ioc, local_err);
1616 }
1617 
1618 static void
1619 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
1620 {
1621     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1622     MigrationState *s = opaque;
1623     QIOChannelTLS *tioc;
1624     Error *local_err = NULL;
1625 
1626     if (qio_task_propagate_error(task, &local_err)) {
1627         goto out;
1628     }
1629 
1630     if (migrate_channel_requires_tls_upgrade(ioc)) {
1631         tioc = migration_tls_client_create(s, ioc, s->hostname, &local_err);
1632         if (!tioc) {
1633             goto out;
1634         }
1635         trace_postcopy_preempt_tls_handshake();
1636         qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
1637         qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
1638                                   s, NULL, NULL);
1639         /* Setup the channel until TLS handshake finished */
1640         return;
1641     }
1642 
1643 out:
1644     /* This handles both good and error cases */
1645     postcopy_preempt_send_channel_done(s, ioc, local_err);
1646 }
1647 
1648 /*
1649  * This function will kick off an async task to establish the preempt
1650  * channel, and wait until the connection setup completed.  Returns 0 if
1651  * channel established, -1 for error.
1652  */
1653 int postcopy_preempt_establish_channel(MigrationState *s)
1654 {
1655     /* If preempt not enabled, no need to wait */
1656     if (!migrate_postcopy_preempt()) {
1657         return 0;
1658     }
1659 
1660     /*
1661      * Kick off async task to establish preempt channel.  Only do so with
1662      * 8.0+ machines, because 7.1/7.2 require the channel to be created in
1663      * setup phase of migration (even if racy in an unreliable network).
1664      */
1665     if (!s->preempt_pre_7_2) {
1666         postcopy_preempt_setup(s);
1667     }
1668 
1669     /*
1670      * We need the postcopy preempt channel to be established before
1671      * starting doing anything.
1672      */
1673     qemu_sem_wait(&s->postcopy_qemufile_src_sem);
1674 
1675     return s->postcopy_qemufile_src ? 0 : -1;
1676 }
1677 
1678 void postcopy_preempt_setup(MigrationState *s)
1679 {
1680     /* Kick an async task to connect */
1681     socket_send_channel_create(postcopy_preempt_send_channel_new, s);
1682 }
1683 
1684 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
1685 {
1686     trace_postcopy_pause_fast_load();
1687     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1688     qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
1689     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1690     trace_postcopy_pause_fast_load_continued();
1691 }
1692 
1693 static bool preempt_thread_should_run(MigrationIncomingState *mis)
1694 {
1695     return mis->preempt_thread_status != PREEMPT_THREAD_QUIT;
1696 }
1697 
1698 void *postcopy_preempt_thread(void *opaque)
1699 {
1700     MigrationIncomingState *mis = opaque;
1701     int ret;
1702 
1703     trace_postcopy_preempt_thread_entry();
1704 
1705     rcu_register_thread();
1706 
1707     qemu_sem_post(&mis->thread_sync_sem);
1708 
1709     /*
1710      * The preempt channel is established in asynchronous way.  Wait
1711      * for its completion.
1712      */
1713     qemu_sem_wait(&mis->postcopy_qemufile_dst_done);
1714 
1715     /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1716     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1717     while (preempt_thread_should_run(mis)) {
1718         ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
1719                                 RAM_CHANNEL_POSTCOPY);
1720         /* If error happened, go into recovery routine */
1721         if (ret && preempt_thread_should_run(mis)) {
1722             postcopy_pause_ram_fast_load(mis);
1723         } else {
1724             /* We're done */
1725             break;
1726         }
1727     }
1728     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1729 
1730     rcu_unregister_thread();
1731 
1732     trace_postcopy_preempt_thread_exit();
1733 
1734     return NULL;
1735 }
1736