xref: /qemu/migration/postcopy-ram.c (revision cc37d98b)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/madvise.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 #include "socket.h"
36 #include "yank_functions.h"
37 #include "tls.h"
38 #include "qemu/userfaultfd.h"
39 
40 /* Arbitrary limit on size of each discard command,
41  * keeps them around ~200 bytes
42  */
43 #define MAX_DISCARDS_PER_COMMAND 12
44 
45 struct PostcopyDiscardState {
46     const char *ramblock_name;
47     uint16_t cur_entry;
48     /*
49      * Start and length of a discard range (bytes)
50      */
51     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
52     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
53     unsigned int nsentwords;
54     unsigned int nsentcmds;
55 };
56 
57 static NotifierWithReturnList postcopy_notifier_list;
58 
59 void postcopy_infrastructure_init(void)
60 {
61     notifier_with_return_list_init(&postcopy_notifier_list);
62 }
63 
64 void postcopy_add_notifier(NotifierWithReturn *nn)
65 {
66     notifier_with_return_list_add(&postcopy_notifier_list, nn);
67 }
68 
69 void postcopy_remove_notifier(NotifierWithReturn *n)
70 {
71     notifier_with_return_remove(n);
72 }
73 
74 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
75 {
76     struct PostcopyNotifyData pnd;
77     pnd.reason = reason;
78     pnd.errp = errp;
79 
80     return notifier_with_return_list_notify(&postcopy_notifier_list,
81                                             &pnd);
82 }
83 
84 /*
85  * NOTE: this routine is not thread safe, we can't call it concurrently. But it
86  * should be good enough for migration's purposes.
87  */
88 void postcopy_thread_create(MigrationIncomingState *mis,
89                             QemuThread *thread, const char *name,
90                             void *(*fn)(void *), int joinable)
91 {
92     qemu_sem_init(&mis->thread_sync_sem, 0);
93     qemu_thread_create(thread, name, fn, mis, joinable);
94     qemu_sem_wait(&mis->thread_sync_sem);
95     qemu_sem_destroy(&mis->thread_sync_sem);
96 }
97 
98 /* Postcopy needs to detect accesses to pages that haven't yet been copied
99  * across, and efficiently map new pages in, the techniques for doing this
100  * are target OS specific.
101  */
102 #if defined(__linux__)
103 
104 #include <poll.h>
105 #include <sys/ioctl.h>
106 #include <sys/syscall.h>
107 #include <asm/types.h> /* for __u64 */
108 #endif
109 
110 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
111 #include <sys/eventfd.h>
112 #include <linux/userfaultfd.h>
113 
114 typedef struct PostcopyBlocktimeContext {
115     /* time when page fault initiated per vCPU */
116     uint32_t *page_fault_vcpu_time;
117     /* page address per vCPU */
118     uintptr_t *vcpu_addr;
119     uint32_t total_blocktime;
120     /* blocktime per vCPU */
121     uint32_t *vcpu_blocktime;
122     /* point in time when last page fault was initiated */
123     uint32_t last_begin;
124     /* number of vCPU are suspended */
125     int smp_cpus_down;
126     uint64_t start_time;
127 
128     /*
129      * Handler for exit event, necessary for
130      * releasing whole blocktime_ctx
131      */
132     Notifier exit_notifier;
133 } PostcopyBlocktimeContext;
134 
135 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
136 {
137     g_free(ctx->page_fault_vcpu_time);
138     g_free(ctx->vcpu_addr);
139     g_free(ctx->vcpu_blocktime);
140     g_free(ctx);
141 }
142 
143 static void migration_exit_cb(Notifier *n, void *data)
144 {
145     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
146                                                  exit_notifier);
147     destroy_blocktime_context(ctx);
148 }
149 
150 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
151 {
152     MachineState *ms = MACHINE(qdev_get_machine());
153     unsigned int smp_cpus = ms->smp.cpus;
154     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
155     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
156     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
157     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
158 
159     ctx->exit_notifier.notify = migration_exit_cb;
160     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
161     qemu_add_exit_notifier(&ctx->exit_notifier);
162     return ctx;
163 }
164 
165 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
166 {
167     MachineState *ms = MACHINE(qdev_get_machine());
168     uint32List *list = NULL;
169     int i;
170 
171     for (i = ms->smp.cpus - 1; i >= 0; i--) {
172         QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
173     }
174 
175     return list;
176 }
177 
178 /*
179  * This function just populates MigrationInfo from postcopy's
180  * blocktime context. It will not populate MigrationInfo,
181  * unless postcopy-blocktime capability was set.
182  *
183  * @info: pointer to MigrationInfo to populate
184  */
185 void fill_destination_postcopy_migration_info(MigrationInfo *info)
186 {
187     MigrationIncomingState *mis = migration_incoming_get_current();
188     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
189 
190     if (!bc) {
191         return;
192     }
193 
194     info->has_postcopy_blocktime = true;
195     info->postcopy_blocktime = bc->total_blocktime;
196     info->has_postcopy_vcpu_blocktime = true;
197     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
198 }
199 
200 static uint32_t get_postcopy_total_blocktime(void)
201 {
202     MigrationIncomingState *mis = migration_incoming_get_current();
203     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
204 
205     if (!bc) {
206         return 0;
207     }
208 
209     return bc->total_blocktime;
210 }
211 
212 /**
213  * receive_ufd_features: check userfault fd features, to request only supported
214  * features in the future.
215  *
216  * Returns: true on success
217  *
218  * __NR_userfaultfd - should be checked before
219  *  @features: out parameter will contain uffdio_api.features provided by kernel
220  *              in case of success
221  */
222 static bool receive_ufd_features(uint64_t *features)
223 {
224     struct uffdio_api api_struct = {0};
225     int ufd;
226     bool ret = true;
227 
228     ufd = uffd_open(O_CLOEXEC);
229     if (ufd == -1) {
230         error_report("%s: uffd_open() failed: %s", __func__, strerror(errno));
231         return false;
232     }
233 
234     /* ask features */
235     api_struct.api = UFFD_API;
236     api_struct.features = 0;
237     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
238         error_report("%s: UFFDIO_API failed: %s", __func__,
239                      strerror(errno));
240         ret = false;
241         goto release_ufd;
242     }
243 
244     *features = api_struct.features;
245 
246 release_ufd:
247     close(ufd);
248     return ret;
249 }
250 
251 /**
252  * request_ufd_features: this function should be called only once on a newly
253  * opened ufd, subsequent calls will lead to error.
254  *
255  * Returns: true on success
256  *
257  * @ufd: fd obtained from userfaultfd syscall
258  * @features: bit mask see UFFD_API_FEATURES
259  */
260 static bool request_ufd_features(int ufd, uint64_t features)
261 {
262     struct uffdio_api api_struct = {0};
263     uint64_t ioctl_mask;
264 
265     api_struct.api = UFFD_API;
266     api_struct.features = features;
267     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
268         error_report("%s failed: UFFDIO_API failed: %s", __func__,
269                      strerror(errno));
270         return false;
271     }
272 
273     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
274                  (__u64)1 << _UFFDIO_UNREGISTER;
275     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
276         error_report("Missing userfault features: %" PRIx64,
277                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
278         return false;
279     }
280 
281     return true;
282 }
283 
284 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
285 {
286     uint64_t asked_features = 0;
287     static uint64_t supported_features;
288 
289     /*
290      * it's not possible to
291      * request UFFD_API twice per one fd
292      * userfault fd features is persistent
293      */
294     if (!supported_features) {
295         if (!receive_ufd_features(&supported_features)) {
296             error_report("%s failed", __func__);
297             return false;
298         }
299     }
300 
301 #ifdef UFFD_FEATURE_THREAD_ID
302     if (UFFD_FEATURE_THREAD_ID & supported_features) {
303         asked_features |= UFFD_FEATURE_THREAD_ID;
304         if (migrate_postcopy_blocktime()) {
305             if (!mis->blocktime_ctx) {
306                 mis->blocktime_ctx = blocktime_context_new();
307             }
308         }
309     }
310 #endif
311 
312     /*
313      * request features, even if asked_features is 0, due to
314      * kernel expects UFFD_API before UFFDIO_REGISTER, per
315      * userfault file descriptor
316      */
317     if (!request_ufd_features(ufd, asked_features)) {
318         error_report("%s failed: features %" PRIu64, __func__,
319                      asked_features);
320         return false;
321     }
322 
323     if (qemu_real_host_page_size() != ram_pagesize_summary()) {
324         bool have_hp = false;
325         /* We've got a huge page */
326 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
327         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
328 #endif
329         if (!have_hp) {
330             error_report("Userfault on this host does not support huge pages");
331             return false;
332         }
333     }
334     return true;
335 }
336 
337 /* Callback from postcopy_ram_supported_by_host block iterator.
338  */
339 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
340 {
341     const char *block_name = qemu_ram_get_idstr(rb);
342     ram_addr_t length = qemu_ram_get_used_length(rb);
343     size_t pagesize = qemu_ram_pagesize(rb);
344 
345     if (length % pagesize) {
346         error_report("Postcopy requires RAM blocks to be a page size multiple,"
347                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
348                      "page size of 0x%zx", block_name, length, pagesize);
349         return 1;
350     }
351     return 0;
352 }
353 
354 /*
355  * Note: This has the side effect of munlock'ing all of RAM, that's
356  * normally fine since if the postcopy succeeds it gets turned back on at the
357  * end.
358  */
359 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
360 {
361     long pagesize = qemu_real_host_page_size();
362     int ufd = -1;
363     bool ret = false; /* Error unless we change it */
364     void *testarea = NULL;
365     struct uffdio_register reg_struct;
366     struct uffdio_range range_struct;
367     uint64_t feature_mask;
368     Error *local_err = NULL;
369 
370     if (qemu_target_page_size() > pagesize) {
371         error_report("Target page size bigger than host page size");
372         goto out;
373     }
374 
375     ufd = uffd_open(O_CLOEXEC);
376     if (ufd == -1) {
377         error_report("%s: userfaultfd not available: %s", __func__,
378                      strerror(errno));
379         goto out;
380     }
381 
382     /* Give devices a chance to object */
383     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
384         error_report_err(local_err);
385         goto out;
386     }
387 
388     /* Version and features check */
389     if (!ufd_check_and_apply(ufd, mis)) {
390         goto out;
391     }
392 
393     /* We don't support postcopy with shared RAM yet */
394     if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
395         goto out;
396     }
397 
398     /*
399      * userfault and mlock don't go together; we'll put it back later if
400      * it was enabled.
401      */
402     if (munlockall()) {
403         error_report("%s: munlockall: %s", __func__,  strerror(errno));
404         goto out;
405     }
406 
407     /*
408      *  We need to check that the ops we need are supported on anon memory
409      *  To do that we need to register a chunk and see the flags that
410      *  are returned.
411      */
412     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
413                                     MAP_ANONYMOUS, -1, 0);
414     if (testarea == MAP_FAILED) {
415         error_report("%s: Failed to map test area: %s", __func__,
416                      strerror(errno));
417         goto out;
418     }
419     g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
420 
421     reg_struct.range.start = (uintptr_t)testarea;
422     reg_struct.range.len = pagesize;
423     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
424 
425     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
426         error_report("%s userfault register: %s", __func__, strerror(errno));
427         goto out;
428     }
429 
430     range_struct.start = (uintptr_t)testarea;
431     range_struct.len = pagesize;
432     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
433         error_report("%s userfault unregister: %s", __func__, strerror(errno));
434         goto out;
435     }
436 
437     feature_mask = (__u64)1 << _UFFDIO_WAKE |
438                    (__u64)1 << _UFFDIO_COPY |
439                    (__u64)1 << _UFFDIO_ZEROPAGE;
440     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
441         error_report("Missing userfault map features: %" PRIx64,
442                      (uint64_t)(~reg_struct.ioctls & feature_mask));
443         goto out;
444     }
445 
446     /* Success! */
447     ret = true;
448 out:
449     if (testarea) {
450         munmap(testarea, pagesize);
451     }
452     if (ufd != -1) {
453         close(ufd);
454     }
455     return ret;
456 }
457 
458 /*
459  * Setup an area of RAM so that it *can* be used for postcopy later; this
460  * must be done right at the start prior to pre-copy.
461  * opaque should be the MIS.
462  */
463 static int init_range(RAMBlock *rb, void *opaque)
464 {
465     const char *block_name = qemu_ram_get_idstr(rb);
466     void *host_addr = qemu_ram_get_host_addr(rb);
467     ram_addr_t offset = qemu_ram_get_offset(rb);
468     ram_addr_t length = qemu_ram_get_used_length(rb);
469     trace_postcopy_init_range(block_name, host_addr, offset, length);
470 
471     /*
472      * Save the used_length before running the guest. In case we have to
473      * resize RAM blocks when syncing RAM block sizes from the source during
474      * precopy, we'll update it manually via the ram block notifier.
475      */
476     rb->postcopy_length = length;
477 
478     /*
479      * We need the whole of RAM to be truly empty for postcopy, so things
480      * like ROMs and any data tables built during init must be zero'd
481      * - we're going to get the copy from the source anyway.
482      * (Precopy will just overwrite this data, so doesn't need the discard)
483      */
484     if (ram_discard_range(block_name, 0, length)) {
485         return -1;
486     }
487 
488     return 0;
489 }
490 
491 /*
492  * At the end of migration, undo the effects of init_range
493  * opaque should be the MIS.
494  */
495 static int cleanup_range(RAMBlock *rb, void *opaque)
496 {
497     const char *block_name = qemu_ram_get_idstr(rb);
498     void *host_addr = qemu_ram_get_host_addr(rb);
499     ram_addr_t offset = qemu_ram_get_offset(rb);
500     ram_addr_t length = rb->postcopy_length;
501     MigrationIncomingState *mis = opaque;
502     struct uffdio_range range_struct;
503     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
504 
505     /*
506      * We turned off hugepage for the precopy stage with postcopy enabled
507      * we can turn it back on now.
508      */
509     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
510 
511     /*
512      * We can also turn off userfault now since we should have all the
513      * pages.   It can be useful to leave it on to debug postcopy
514      * if you're not sure it's always getting every page.
515      */
516     range_struct.start = (uintptr_t)host_addr;
517     range_struct.len = length;
518 
519     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
520         error_report("%s: userfault unregister %s", __func__, strerror(errno));
521 
522         return -1;
523     }
524 
525     return 0;
526 }
527 
528 /*
529  * Initialise postcopy-ram, setting the RAM to a state where we can go into
530  * postcopy later; must be called prior to any precopy.
531  * called from arch_init's similarly named ram_postcopy_incoming_init
532  */
533 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
534 {
535     if (foreach_not_ignored_block(init_range, NULL)) {
536         return -1;
537     }
538 
539     return 0;
540 }
541 
542 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
543 {
544     int i;
545 
546     if (mis->postcopy_tmp_pages) {
547         for (i = 0; i < mis->postcopy_channels; i++) {
548             if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
549                 munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
550                        mis->largest_page_size);
551                 mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
552             }
553         }
554         g_free(mis->postcopy_tmp_pages);
555         mis->postcopy_tmp_pages = NULL;
556     }
557 
558     if (mis->postcopy_tmp_zero_page) {
559         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
560         mis->postcopy_tmp_zero_page = NULL;
561     }
562 }
563 
564 /*
565  * At the end of a migration where postcopy_ram_incoming_init was called.
566  */
567 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
568 {
569     trace_postcopy_ram_incoming_cleanup_entry();
570 
571     if (mis->postcopy_prio_thread_created) {
572         qemu_thread_join(&mis->postcopy_prio_thread);
573         mis->postcopy_prio_thread_created = false;
574     }
575 
576     if (mis->have_fault_thread) {
577         Error *local_err = NULL;
578 
579         /* Let the fault thread quit */
580         qatomic_set(&mis->fault_thread_quit, 1);
581         postcopy_fault_thread_notify(mis);
582         trace_postcopy_ram_incoming_cleanup_join();
583         qemu_thread_join(&mis->fault_thread);
584 
585         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
586             error_report_err(local_err);
587             return -1;
588         }
589 
590         if (foreach_not_ignored_block(cleanup_range, mis)) {
591             return -1;
592         }
593 
594         trace_postcopy_ram_incoming_cleanup_closeuf();
595         close(mis->userfault_fd);
596         close(mis->userfault_event_fd);
597         mis->have_fault_thread = false;
598     }
599 
600     if (enable_mlock) {
601         if (os_mlock() < 0) {
602             error_report("mlock: %s", strerror(errno));
603             /*
604              * It doesn't feel right to fail at this point, we have a valid
605              * VM state.
606              */
607         }
608     }
609 
610     postcopy_temp_pages_cleanup(mis);
611 
612     trace_postcopy_ram_incoming_cleanup_blocktime(
613             get_postcopy_total_blocktime());
614 
615     trace_postcopy_ram_incoming_cleanup_exit();
616     return 0;
617 }
618 
619 /*
620  * Disable huge pages on an area
621  */
622 static int nhp_range(RAMBlock *rb, void *opaque)
623 {
624     const char *block_name = qemu_ram_get_idstr(rb);
625     void *host_addr = qemu_ram_get_host_addr(rb);
626     ram_addr_t offset = qemu_ram_get_offset(rb);
627     ram_addr_t length = rb->postcopy_length;
628     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
629 
630     /*
631      * Before we do discards we need to ensure those discards really
632      * do delete areas of the page, even if THP thinks a hugepage would
633      * be a good idea, so force hugepages off.
634      */
635     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
636 
637     return 0;
638 }
639 
640 /*
641  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
642  * however leaving it until after precopy means that most of the precopy
643  * data is still THPd
644  */
645 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
646 {
647     if (foreach_not_ignored_block(nhp_range, mis)) {
648         return -1;
649     }
650 
651     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
652 
653     return 0;
654 }
655 
656 /*
657  * Mark the given area of RAM as requiring notification to unwritten areas
658  * Used as a  callback on foreach_not_ignored_block.
659  *   host_addr: Base of area to mark
660  *   offset: Offset in the whole ram arena
661  *   length: Length of the section
662  *   opaque: MigrationIncomingState pointer
663  * Returns 0 on success
664  */
665 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
666 {
667     MigrationIncomingState *mis = opaque;
668     struct uffdio_register reg_struct;
669 
670     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
671     reg_struct.range.len = rb->postcopy_length;
672     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
673 
674     /* Now tell our userfault_fd that it's responsible for this area */
675     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
676         error_report("%s userfault register: %s", __func__, strerror(errno));
677         return -1;
678     }
679     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
680         error_report("%s userfault: Region doesn't support COPY", __func__);
681         return -1;
682     }
683     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
684         qemu_ram_set_uf_zeroable(rb);
685     }
686 
687     return 0;
688 }
689 
690 int postcopy_wake_shared(struct PostCopyFD *pcfd,
691                          uint64_t client_addr,
692                          RAMBlock *rb)
693 {
694     size_t pagesize = qemu_ram_pagesize(rb);
695     struct uffdio_range range;
696     int ret;
697     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
698     range.start = ROUND_DOWN(client_addr, pagesize);
699     range.len = pagesize;
700     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
701     if (ret) {
702         error_report("%s: Failed to wake: %zx in %s (%s)",
703                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
704                      strerror(errno));
705     }
706     return ret;
707 }
708 
709 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
710                                  ram_addr_t start, uint64_t haddr)
711 {
712     void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
713 
714     /*
715      * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
716      * access, place a zeropage, which will also set the relevant bits in the
717      * recv_bitmap accordingly, so we won't try placing a zeropage twice.
718      *
719      * Checking a single bit is sufficient to handle pagesize > TPS as either
720      * all relevant bits are set or not.
721      */
722     assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
723     if (ramblock_page_is_discarded(rb, start)) {
724         bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
725 
726         return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
727     }
728 
729     return migrate_send_rp_req_pages(mis, rb, start, haddr);
730 }
731 
732 /*
733  * Callback from shared fault handlers to ask for a page,
734  * the page must be specified by a RAMBlock and an offset in that rb
735  * Note: Only for use by shared fault handlers (in fault thread)
736  */
737 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
738                                  uint64_t client_addr, uint64_t rb_offset)
739 {
740     uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
741     MigrationIncomingState *mis = migration_incoming_get_current();
742 
743     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
744                                        rb_offset);
745     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
746         trace_postcopy_request_shared_page_present(pcfd->idstr,
747                                         qemu_ram_get_idstr(rb), rb_offset);
748         return postcopy_wake_shared(pcfd, client_addr, rb);
749     }
750     postcopy_request_page(mis, rb, aligned_rbo, client_addr);
751     return 0;
752 }
753 
754 static int get_mem_fault_cpu_index(uint32_t pid)
755 {
756     CPUState *cpu_iter;
757 
758     CPU_FOREACH(cpu_iter) {
759         if (cpu_iter->thread_id == pid) {
760             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
761             return cpu_iter->cpu_index;
762         }
763     }
764     trace_get_mem_fault_cpu_index(-1, pid);
765     return -1;
766 }
767 
768 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
769 {
770     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
771                                     dc->start_time;
772     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
773 }
774 
775 /*
776  * This function is being called when pagefault occurs. It
777  * tracks down vCPU blocking time.
778  *
779  * @addr: faulted host virtual address
780  * @ptid: faulted process thread id
781  * @rb: ramblock appropriate to addr
782  */
783 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
784                                           RAMBlock *rb)
785 {
786     int cpu, already_received;
787     MigrationIncomingState *mis = migration_incoming_get_current();
788     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
789     uint32_t low_time_offset;
790 
791     if (!dc || ptid == 0) {
792         return;
793     }
794     cpu = get_mem_fault_cpu_index(ptid);
795     if (cpu < 0) {
796         return;
797     }
798 
799     low_time_offset = get_low_time_offset(dc);
800     if (dc->vcpu_addr[cpu] == 0) {
801         qatomic_inc(&dc->smp_cpus_down);
802     }
803 
804     qatomic_xchg(&dc->last_begin, low_time_offset);
805     qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
806     qatomic_xchg(&dc->vcpu_addr[cpu], addr);
807 
808     /*
809      * check it here, not at the beginning of the function,
810      * due to, check could occur early than bitmap_set in
811      * qemu_ufd_copy_ioctl
812      */
813     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
814     if (already_received) {
815         qatomic_xchg(&dc->vcpu_addr[cpu], 0);
816         qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
817         qatomic_dec(&dc->smp_cpus_down);
818     }
819     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
820                                         cpu, already_received);
821 }
822 
823 /*
824  *  This function just provide calculated blocktime per cpu and trace it.
825  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
826  *
827  *
828  * Assume we have 3 CPU
829  *
830  *      S1        E1           S1               E1
831  * -----***********------------xxx***************------------------------> CPU1
832  *
833  *             S2                E2
834  * ------------****************xxx---------------------------------------> CPU2
835  *
836  *                         S3            E3
837  * ------------------------****xxx********-------------------------------> CPU3
838  *
839  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
840  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
841  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
842  *            it's a part of total blocktime.
843  * S1 - here is last_begin
844  * Legend of the picture is following:
845  *              * - means blocktime per vCPU
846  *              x - means overlapped blocktime (total blocktime)
847  *
848  * @addr: host virtual address
849  */
850 static void mark_postcopy_blocktime_end(uintptr_t addr)
851 {
852     MigrationIncomingState *mis = migration_incoming_get_current();
853     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
854     MachineState *ms = MACHINE(qdev_get_machine());
855     unsigned int smp_cpus = ms->smp.cpus;
856     int i, affected_cpu = 0;
857     bool vcpu_total_blocktime = false;
858     uint32_t read_vcpu_time, low_time_offset;
859 
860     if (!dc) {
861         return;
862     }
863 
864     low_time_offset = get_low_time_offset(dc);
865     /* lookup cpu, to clear it,
866      * that algorithm looks straightforward, but it's not
867      * optimal, more optimal algorithm is keeping tree or hash
868      * where key is address value is a list of  */
869     for (i = 0; i < smp_cpus; i++) {
870         uint32_t vcpu_blocktime = 0;
871 
872         read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
873         if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
874             read_vcpu_time == 0) {
875             continue;
876         }
877         qatomic_xchg(&dc->vcpu_addr[i], 0);
878         vcpu_blocktime = low_time_offset - read_vcpu_time;
879         affected_cpu += 1;
880         /* we need to know is that mark_postcopy_end was due to
881          * faulted page, another possible case it's prefetched
882          * page and in that case we shouldn't be here */
883         if (!vcpu_total_blocktime &&
884             qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
885             vcpu_total_blocktime = true;
886         }
887         /* continue cycle, due to one page could affect several vCPUs */
888         dc->vcpu_blocktime[i] += vcpu_blocktime;
889     }
890 
891     qatomic_sub(&dc->smp_cpus_down, affected_cpu);
892     if (vcpu_total_blocktime) {
893         dc->total_blocktime += low_time_offset - qatomic_fetch_add(
894                 &dc->last_begin, 0);
895     }
896     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
897                                       affected_cpu);
898 }
899 
900 static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
901 {
902     trace_postcopy_pause_fault_thread();
903     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
904     trace_postcopy_pause_fault_thread_continued();
905 }
906 
907 /*
908  * Handle faults detected by the USERFAULT markings
909  */
910 static void *postcopy_ram_fault_thread(void *opaque)
911 {
912     MigrationIncomingState *mis = opaque;
913     struct uffd_msg msg;
914     int ret;
915     size_t index;
916     RAMBlock *rb = NULL;
917 
918     trace_postcopy_ram_fault_thread_entry();
919     rcu_register_thread();
920     mis->last_rb = NULL; /* last RAMBlock we sent part of */
921     qemu_sem_post(&mis->thread_sync_sem);
922 
923     struct pollfd *pfd;
924     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
925 
926     pfd = g_new0(struct pollfd, pfd_len);
927 
928     pfd[0].fd = mis->userfault_fd;
929     pfd[0].events = POLLIN;
930     pfd[1].fd = mis->userfault_event_fd;
931     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
932     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
933     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
934         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
935                                                  struct PostCopyFD, index);
936         pfd[2 + index].fd = pcfd->fd;
937         pfd[2 + index].events = POLLIN;
938         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
939                                                   pcfd->fd);
940     }
941 
942     while (true) {
943         ram_addr_t rb_offset;
944         int poll_result;
945 
946         /*
947          * We're mainly waiting for the kernel to give us a faulting HVA,
948          * however we can be told to quit via userfault_quit_fd which is
949          * an eventfd
950          */
951 
952         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
953         if (poll_result == -1) {
954             error_report("%s: userfault poll: %s", __func__, strerror(errno));
955             break;
956         }
957 
958         if (!mis->to_src_file) {
959             /*
960              * Possibly someone tells us that the return path is
961              * broken already using the event. We should hold until
962              * the channel is rebuilt.
963              */
964             postcopy_pause_fault_thread(mis);
965         }
966 
967         if (pfd[1].revents) {
968             uint64_t tmp64 = 0;
969 
970             /* Consume the signal */
971             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
972                 /* Nothing obviously nicer than posting this error. */
973                 error_report("%s: read() failed", __func__);
974             }
975 
976             if (qatomic_read(&mis->fault_thread_quit)) {
977                 trace_postcopy_ram_fault_thread_quit();
978                 break;
979             }
980         }
981 
982         if (pfd[0].revents) {
983             poll_result--;
984             ret = read(mis->userfault_fd, &msg, sizeof(msg));
985             if (ret != sizeof(msg)) {
986                 if (errno == EAGAIN) {
987                     /*
988                      * if a wake up happens on the other thread just after
989                      * the poll, there is nothing to read.
990                      */
991                     continue;
992                 }
993                 if (ret < 0) {
994                     error_report("%s: Failed to read full userfault "
995                                  "message: %s",
996                                  __func__, strerror(errno));
997                     break;
998                 } else {
999                     error_report("%s: Read %d bytes from userfaultfd "
1000                                  "expected %zd",
1001                                  __func__, ret, sizeof(msg));
1002                     break; /* Lost alignment, don't know what we'd read next */
1003                 }
1004             }
1005             if (msg.event != UFFD_EVENT_PAGEFAULT) {
1006                 error_report("%s: Read unexpected event %ud from userfaultfd",
1007                              __func__, msg.event);
1008                 continue; /* It's not a page fault, shouldn't happen */
1009             }
1010 
1011             rb = qemu_ram_block_from_host(
1012                      (void *)(uintptr_t)msg.arg.pagefault.address,
1013                      true, &rb_offset);
1014             if (!rb) {
1015                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1016                              PRIx64, (uint64_t)msg.arg.pagefault.address);
1017                 break;
1018             }
1019 
1020             rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1021             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1022                                                 qemu_ram_get_idstr(rb),
1023                                                 rb_offset,
1024                                                 msg.arg.pagefault.feat.ptid);
1025             mark_postcopy_blocktime_begin(
1026                     (uintptr_t)(msg.arg.pagefault.address),
1027                                 msg.arg.pagefault.feat.ptid, rb);
1028 
1029 retry:
1030             /*
1031              * Send the request to the source - we want to request one
1032              * of our host page sizes (which is >= TPS)
1033              */
1034             ret = postcopy_request_page(mis, rb, rb_offset,
1035                                         msg.arg.pagefault.address);
1036             if (ret) {
1037                 /* May be network failure, try to wait for recovery */
1038                 postcopy_pause_fault_thread(mis);
1039                 goto retry;
1040             }
1041         }
1042 
1043         /* Now handle any requests from external processes on shared memory */
1044         /* TODO: May need to handle devices deregistering during postcopy */
1045         for (index = 2; index < pfd_len && poll_result; index++) {
1046             if (pfd[index].revents) {
1047                 struct PostCopyFD *pcfd =
1048                     &g_array_index(mis->postcopy_remote_fds,
1049                                    struct PostCopyFD, index - 2);
1050 
1051                 poll_result--;
1052                 if (pfd[index].revents & POLLERR) {
1053                     error_report("%s: POLLERR on poll %zd fd=%d",
1054                                  __func__, index, pcfd->fd);
1055                     pfd[index].events = 0;
1056                     continue;
1057                 }
1058 
1059                 ret = read(pcfd->fd, &msg, sizeof(msg));
1060                 if (ret != sizeof(msg)) {
1061                     if (errno == EAGAIN) {
1062                         /*
1063                          * if a wake up happens on the other thread just after
1064                          * the poll, there is nothing to read.
1065                          */
1066                         continue;
1067                     }
1068                     if (ret < 0) {
1069                         error_report("%s: Failed to read full userfault "
1070                                      "message: %s (shared) revents=%d",
1071                                      __func__, strerror(errno),
1072                                      pfd[index].revents);
1073                         /*TODO: Could just disable this sharer */
1074                         break;
1075                     } else {
1076                         error_report("%s: Read %d bytes from userfaultfd "
1077                                      "expected %zd (shared)",
1078                                      __func__, ret, sizeof(msg));
1079                         /*TODO: Could just disable this sharer */
1080                         break; /*Lost alignment,don't know what we'd read next*/
1081                     }
1082                 }
1083                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1084                     error_report("%s: Read unexpected event %ud "
1085                                  "from userfaultfd (shared)",
1086                                  __func__, msg.event);
1087                     continue; /* It's not a page fault, shouldn't happen */
1088                 }
1089                 /* Call the device handler registered with us */
1090                 ret = pcfd->handler(pcfd, &msg);
1091                 if (ret) {
1092                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1093                                  __func__, index, pcfd->idstr);
1094                     /* TODO: Fail? Disable this sharer? */
1095                 }
1096             }
1097         }
1098     }
1099     rcu_unregister_thread();
1100     trace_postcopy_ram_fault_thread_exit();
1101     g_free(pfd);
1102     return NULL;
1103 }
1104 
1105 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1106 {
1107     PostcopyTmpPage *tmp_page;
1108     int err, i, channels;
1109     void *temp_page;
1110 
1111     if (migrate_postcopy_preempt()) {
1112         /* If preemption enabled, need extra channel for urgent requests */
1113         mis->postcopy_channels = RAM_CHANNEL_MAX;
1114     } else {
1115         /* Both precopy/postcopy on the same channel */
1116         mis->postcopy_channels = 1;
1117     }
1118 
1119     channels = mis->postcopy_channels;
1120     mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1121 
1122     for (i = 0; i < channels; i++) {
1123         tmp_page = &mis->postcopy_tmp_pages[i];
1124         temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1125                          MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1126         if (temp_page == MAP_FAILED) {
1127             err = errno;
1128             error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1129                          __func__, i, strerror(err));
1130             /* Clean up will be done later */
1131             return -err;
1132         }
1133         tmp_page->tmp_huge_page = temp_page;
1134         /* Initialize default states for each tmp page */
1135         postcopy_temp_page_reset(tmp_page);
1136     }
1137 
1138     /*
1139      * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1140      */
1141     mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1142                                        PROT_READ | PROT_WRITE,
1143                                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1144     if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1145         err = errno;
1146         mis->postcopy_tmp_zero_page = NULL;
1147         error_report("%s: Failed to map large zero page %s",
1148                      __func__, strerror(err));
1149         return -err;
1150     }
1151 
1152     memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1153 
1154     return 0;
1155 }
1156 
1157 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1158 {
1159     /* Open the fd for the kernel to give us userfaults */
1160     mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK);
1161     if (mis->userfault_fd == -1) {
1162         error_report("%s: Failed to open userfault fd: %s", __func__,
1163                      strerror(errno));
1164         return -1;
1165     }
1166 
1167     /*
1168      * Although the host check already tested the API, we need to
1169      * do the check again as an ABI handshake on the new fd.
1170      */
1171     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1172         return -1;
1173     }
1174 
1175     /* Now an eventfd we use to tell the fault-thread to quit */
1176     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1177     if (mis->userfault_event_fd == -1) {
1178         error_report("%s: Opening userfault_event_fd: %s", __func__,
1179                      strerror(errno));
1180         close(mis->userfault_fd);
1181         return -1;
1182     }
1183 
1184     postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
1185                            postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1186     mis->have_fault_thread = true;
1187 
1188     /* Mark so that we get notified of accesses to unwritten areas */
1189     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1190         error_report("ram_block_enable_notify failed");
1191         return -1;
1192     }
1193 
1194     if (postcopy_temp_pages_setup(mis)) {
1195         /* Error dumped in the sub-function */
1196         return -1;
1197     }
1198 
1199     if (migrate_postcopy_preempt()) {
1200         /*
1201          * This thread needs to be created after the temp pages because
1202          * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1203          */
1204         postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
1205                                postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
1206         mis->postcopy_prio_thread_created = true;
1207     }
1208 
1209     trace_postcopy_ram_enable_notify();
1210 
1211     return 0;
1212 }
1213 
1214 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1215                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1216 {
1217     int userfault_fd = mis->userfault_fd;
1218     int ret;
1219 
1220     if (from_addr) {
1221         struct uffdio_copy copy_struct;
1222         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1223         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1224         copy_struct.len = pagesize;
1225         copy_struct.mode = 0;
1226         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1227     } else {
1228         struct uffdio_zeropage zero_struct;
1229         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1230         zero_struct.range.len = pagesize;
1231         zero_struct.mode = 0;
1232         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1233     }
1234     if (!ret) {
1235         qemu_mutex_lock(&mis->page_request_mutex);
1236         ramblock_recv_bitmap_set_range(rb, host_addr,
1237                                        pagesize / qemu_target_page_size());
1238         /*
1239          * If this page resolves a page fault for a previous recorded faulted
1240          * address, take a special note to maintain the requested page list.
1241          */
1242         if (g_tree_lookup(mis->page_requested, host_addr)) {
1243             g_tree_remove(mis->page_requested, host_addr);
1244             mis->page_requested_count--;
1245             trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1246         }
1247         qemu_mutex_unlock(&mis->page_request_mutex);
1248         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1249     }
1250     return ret;
1251 }
1252 
1253 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1254 {
1255     int i;
1256     MigrationIncomingState *mis = migration_incoming_get_current();
1257     GArray *pcrfds = mis->postcopy_remote_fds;
1258 
1259     for (i = 0; i < pcrfds->len; i++) {
1260         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1261         int ret = cur->waker(cur, rb, offset);
1262         if (ret) {
1263             return ret;
1264         }
1265     }
1266     return 0;
1267 }
1268 
1269 /*
1270  * Place a host page (from) at (host) atomically
1271  * returns 0 on success
1272  */
1273 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1274                         RAMBlock *rb)
1275 {
1276     size_t pagesize = qemu_ram_pagesize(rb);
1277 
1278     /* copy also acks to the kernel waking the stalled thread up
1279      * TODO: We can inhibit that ack and only do it if it was requested
1280      * which would be slightly cheaper, but we'd have to be careful
1281      * of the order of updating our page state.
1282      */
1283     if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1284         int e = errno;
1285         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1286                      __func__, strerror(e), host, from, pagesize);
1287 
1288         return -e;
1289     }
1290 
1291     trace_postcopy_place_page(host);
1292     return postcopy_notify_shared_wake(rb,
1293                                        qemu_ram_block_host_offset(rb, host));
1294 }
1295 
1296 /*
1297  * Place a zero page at (host) atomically
1298  * returns 0 on success
1299  */
1300 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1301                              RAMBlock *rb)
1302 {
1303     size_t pagesize = qemu_ram_pagesize(rb);
1304     trace_postcopy_place_page_zero(host);
1305 
1306     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1307      * but it's not available for everything (e.g. hugetlbpages)
1308      */
1309     if (qemu_ram_is_uf_zeroable(rb)) {
1310         if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1311             int e = errno;
1312             error_report("%s: %s zero host: %p",
1313                          __func__, strerror(e), host);
1314 
1315             return -e;
1316         }
1317         return postcopy_notify_shared_wake(rb,
1318                                            qemu_ram_block_host_offset(rb,
1319                                                                       host));
1320     } else {
1321         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1322     }
1323 }
1324 
1325 #else
1326 /* No target OS support, stubs just fail */
1327 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1328 {
1329 }
1330 
1331 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1332 {
1333     error_report("%s: No OS support", __func__);
1334     return false;
1335 }
1336 
1337 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1338 {
1339     error_report("postcopy_ram_incoming_init: No OS support");
1340     return -1;
1341 }
1342 
1343 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1344 {
1345     assert(0);
1346     return -1;
1347 }
1348 
1349 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1350 {
1351     assert(0);
1352     return -1;
1353 }
1354 
1355 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1356                                  uint64_t client_addr, uint64_t rb_offset)
1357 {
1358     assert(0);
1359     return -1;
1360 }
1361 
1362 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1363 {
1364     assert(0);
1365     return -1;
1366 }
1367 
1368 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1369                         RAMBlock *rb)
1370 {
1371     assert(0);
1372     return -1;
1373 }
1374 
1375 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1376                         RAMBlock *rb)
1377 {
1378     assert(0);
1379     return -1;
1380 }
1381 
1382 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1383                          uint64_t client_addr,
1384                          RAMBlock *rb)
1385 {
1386     assert(0);
1387     return -1;
1388 }
1389 #endif
1390 
1391 /* ------------------------------------------------------------------------- */
1392 void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1393 {
1394     tmp_page->target_pages = 0;
1395     tmp_page->host_addr = NULL;
1396     /*
1397      * This is set to true when reset, and cleared as long as we received any
1398      * of the non-zero small page within this huge page.
1399      */
1400     tmp_page->all_zero = true;
1401 }
1402 
1403 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1404 {
1405     uint64_t tmp64 = 1;
1406 
1407     /*
1408      * Wakeup the fault_thread.  It's an eventfd that should currently
1409      * be at 0, we're going to increment it to 1
1410      */
1411     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1412         /* Not much we can do here, but may as well report it */
1413         error_report("%s: incrementing failed: %s", __func__,
1414                      strerror(errno));
1415     }
1416 }
1417 
1418 /**
1419  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1420  *   asking to discard individual ranges.
1421  *
1422  * @ms: The current migration state.
1423  * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1424  * @name: RAMBlock that discards will operate on.
1425  */
1426 static PostcopyDiscardState pds = {0};
1427 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1428 {
1429     pds.ramblock_name = name;
1430     pds.cur_entry = 0;
1431     pds.nsentwords = 0;
1432     pds.nsentcmds = 0;
1433 }
1434 
1435 /**
1436  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1437  *   discard. May send a discard message, may just leave it queued to
1438  *   be sent later.
1439  *
1440  * @ms: Current migration state.
1441  * @start,@length: a range of pages in the migration bitmap in the
1442  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1443  */
1444 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1445                                  unsigned long length)
1446 {
1447     size_t tp_size = qemu_target_page_size();
1448     /* Convert to byte offsets within the RAM block */
1449     pds.start_list[pds.cur_entry] = start  * tp_size;
1450     pds.length_list[pds.cur_entry] = length * tp_size;
1451     trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1452     pds.cur_entry++;
1453     pds.nsentwords++;
1454 
1455     if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1456         /* Full set, ship it! */
1457         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1458                                               pds.ramblock_name,
1459                                               pds.cur_entry,
1460                                               pds.start_list,
1461                                               pds.length_list);
1462         pds.nsentcmds++;
1463         pds.cur_entry = 0;
1464     }
1465 }
1466 
1467 /**
1468  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1469  * bitmap code. Sends any outstanding discard messages, frees the PDS
1470  *
1471  * @ms: Current migration state.
1472  */
1473 void postcopy_discard_send_finish(MigrationState *ms)
1474 {
1475     /* Anything unsent? */
1476     if (pds.cur_entry) {
1477         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1478                                               pds.ramblock_name,
1479                                               pds.cur_entry,
1480                                               pds.start_list,
1481                                               pds.length_list);
1482         pds.nsentcmds++;
1483     }
1484 
1485     trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1486                                        pds.nsentcmds);
1487 }
1488 
1489 /*
1490  * Current state of incoming postcopy; note this is not part of
1491  * MigrationIncomingState since it's state is used during cleanup
1492  * at the end as MIS is being freed.
1493  */
1494 static PostcopyState incoming_postcopy_state;
1495 
1496 PostcopyState  postcopy_state_get(void)
1497 {
1498     return qatomic_mb_read(&incoming_postcopy_state);
1499 }
1500 
1501 /* Set the state and return the old state */
1502 PostcopyState postcopy_state_set(PostcopyState new_state)
1503 {
1504     return qatomic_xchg(&incoming_postcopy_state, new_state);
1505 }
1506 
1507 /* Register a handler for external shared memory postcopy
1508  * called on the destination.
1509  */
1510 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1511 {
1512     MigrationIncomingState *mis = migration_incoming_get_current();
1513 
1514     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1515                                                   *pcfd);
1516 }
1517 
1518 /* Unregister a handler for external shared memory postcopy
1519  */
1520 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1521 {
1522     guint i;
1523     MigrationIncomingState *mis = migration_incoming_get_current();
1524     GArray *pcrfds = mis->postcopy_remote_fds;
1525 
1526     if (!pcrfds) {
1527         /* migration has already finished and freed the array */
1528         return;
1529     }
1530     for (i = 0; i < pcrfds->len; i++) {
1531         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1532         if (cur->fd == pcfd->fd) {
1533             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1534             return;
1535         }
1536     }
1537 }
1538 
1539 void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
1540 {
1541     /*
1542      * The new loading channel has its own threads, so it needs to be
1543      * blocked too.  It's by default true, just be explicit.
1544      */
1545     qemu_file_set_blocking(file, true);
1546     mis->postcopy_qemufile_dst = file;
1547     qemu_sem_post(&mis->postcopy_qemufile_dst_done);
1548     trace_postcopy_preempt_new_channel();
1549 }
1550 
1551 /*
1552  * Setup the postcopy preempt channel with the IOC.  If ERROR is specified,
1553  * setup the error instead.  This helper will free the ERROR if specified.
1554  */
1555 static void
1556 postcopy_preempt_send_channel_done(MigrationState *s,
1557                                    QIOChannel *ioc, Error *local_err)
1558 {
1559     if (local_err) {
1560         migrate_set_error(s, local_err);
1561         error_free(local_err);
1562     } else {
1563         migration_ioc_register_yank(ioc);
1564         s->postcopy_qemufile_src = qemu_file_new_output(ioc);
1565         trace_postcopy_preempt_new_channel();
1566     }
1567 
1568     /*
1569      * Kick the waiter in all cases.  The waiter should check upon
1570      * postcopy_qemufile_src to know whether it failed or not.
1571      */
1572     qemu_sem_post(&s->postcopy_qemufile_src_sem);
1573 }
1574 
1575 static void
1576 postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
1577 {
1578     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1579     MigrationState *s = opaque;
1580     Error *local_err = NULL;
1581 
1582     qio_task_propagate_error(task, &local_err);
1583     postcopy_preempt_send_channel_done(s, ioc, local_err);
1584 }
1585 
1586 static void
1587 postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
1588 {
1589     g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1590     MigrationState *s = opaque;
1591     QIOChannelTLS *tioc;
1592     Error *local_err = NULL;
1593 
1594     if (qio_task_propagate_error(task, &local_err)) {
1595         goto out;
1596     }
1597 
1598     if (migrate_channel_requires_tls_upgrade(ioc)) {
1599         tioc = migration_tls_client_create(s, ioc, s->hostname, &local_err);
1600         if (!tioc) {
1601             goto out;
1602         }
1603         trace_postcopy_preempt_tls_handshake();
1604         qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
1605         qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
1606                                   s, NULL, NULL);
1607         /* Setup the channel until TLS handshake finished */
1608         return;
1609     }
1610 
1611 out:
1612     /* This handles both good and error cases */
1613     postcopy_preempt_send_channel_done(s, ioc, local_err);
1614 }
1615 
1616 /*
1617  * This function will kick off an async task to establish the preempt
1618  * channel, and wait until the connection setup completed.  Returns 0 if
1619  * channel established, -1 for error.
1620  */
1621 int postcopy_preempt_establish_channel(MigrationState *s)
1622 {
1623     /* If preempt not enabled, no need to wait */
1624     if (!migrate_postcopy_preempt()) {
1625         return 0;
1626     }
1627 
1628     /* Kick off async task to establish preempt channel */
1629     postcopy_preempt_setup(s);
1630 
1631     /*
1632      * We need the postcopy preempt channel to be established before
1633      * starting doing anything.
1634      */
1635     qemu_sem_wait(&s->postcopy_qemufile_src_sem);
1636 
1637     return s->postcopy_qemufile_src ? 0 : -1;
1638 }
1639 
1640 void postcopy_preempt_setup(MigrationState *s)
1641 {
1642     /* Kick an async task to connect */
1643     socket_send_channel_create(postcopy_preempt_send_channel_new, s);
1644 }
1645 
1646 static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
1647 {
1648     trace_postcopy_pause_fast_load();
1649     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1650     qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
1651     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1652     trace_postcopy_pause_fast_load_continued();
1653 }
1654 
1655 void *postcopy_preempt_thread(void *opaque)
1656 {
1657     MigrationIncomingState *mis = opaque;
1658     int ret;
1659 
1660     trace_postcopy_preempt_thread_entry();
1661 
1662     rcu_register_thread();
1663 
1664     qemu_sem_post(&mis->thread_sync_sem);
1665 
1666     /*
1667      * The preempt channel is established in asynchronous way.  Wait
1668      * for its completion.
1669      */
1670     qemu_sem_wait(&mis->postcopy_qemufile_dst_done);
1671 
1672     /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1673     qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1674     while (1) {
1675         ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
1676                                 RAM_CHANNEL_POSTCOPY);
1677         /* If error happened, go into recovery routine */
1678         if (ret) {
1679             postcopy_pause_ram_fast_load(mis);
1680         } else {
1681             /* We're done */
1682             break;
1683         }
1684     }
1685     qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1686 
1687     rcu_unregister_thread();
1688 
1689     trace_postcopy_preempt_thread_exit();
1690 
1691     return NULL;
1692 }
1693