xref: /qemu/migration/postcopy-ram.c (revision d201cf7a)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/rcu.h"
21 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "qemu-file.h"
24 #include "savevm.h"
25 #include "postcopy-ram.h"
26 #include "ram.h"
27 #include "qapi/error.h"
28 #include "qemu/notify.h"
29 #include "qemu/rcu.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
33 #include "hw/boards.h"
34 #include "exec/ramblock.h"
35 
36 /* Arbitrary limit on size of each discard command,
37  * keeps them around ~200 bytes
38  */
39 #define MAX_DISCARDS_PER_COMMAND 12
40 
41 struct PostcopyDiscardState {
42     const char *ramblock_name;
43     uint16_t cur_entry;
44     /*
45      * Start and length of a discard range (bytes)
46      */
47     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
48     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
49     unsigned int nsentwords;
50     unsigned int nsentcmds;
51 };
52 
53 static NotifierWithReturnList postcopy_notifier_list;
54 
55 void postcopy_infrastructure_init(void)
56 {
57     notifier_with_return_list_init(&postcopy_notifier_list);
58 }
59 
60 void postcopy_add_notifier(NotifierWithReturn *nn)
61 {
62     notifier_with_return_list_add(&postcopy_notifier_list, nn);
63 }
64 
65 void postcopy_remove_notifier(NotifierWithReturn *n)
66 {
67     notifier_with_return_remove(n);
68 }
69 
70 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
71 {
72     struct PostcopyNotifyData pnd;
73     pnd.reason = reason;
74     pnd.errp = errp;
75 
76     return notifier_with_return_list_notify(&postcopy_notifier_list,
77                                             &pnd);
78 }
79 
80 /* Postcopy needs to detect accesses to pages that haven't yet been copied
81  * across, and efficiently map new pages in, the techniques for doing this
82  * are target OS specific.
83  */
84 #if defined(__linux__)
85 
86 #include <poll.h>
87 #include <sys/ioctl.h>
88 #include <sys/syscall.h>
89 #include <asm/types.h> /* for __u64 */
90 #endif
91 
92 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
93 #include <sys/eventfd.h>
94 #include <linux/userfaultfd.h>
95 
96 typedef struct PostcopyBlocktimeContext {
97     /* time when page fault initiated per vCPU */
98     uint32_t *page_fault_vcpu_time;
99     /* page address per vCPU */
100     uintptr_t *vcpu_addr;
101     uint32_t total_blocktime;
102     /* blocktime per vCPU */
103     uint32_t *vcpu_blocktime;
104     /* point in time when last page fault was initiated */
105     uint32_t last_begin;
106     /* number of vCPU are suspended */
107     int smp_cpus_down;
108     uint64_t start_time;
109 
110     /*
111      * Handler for exit event, necessary for
112      * releasing whole blocktime_ctx
113      */
114     Notifier exit_notifier;
115 } PostcopyBlocktimeContext;
116 
117 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
118 {
119     g_free(ctx->page_fault_vcpu_time);
120     g_free(ctx->vcpu_addr);
121     g_free(ctx->vcpu_blocktime);
122     g_free(ctx);
123 }
124 
125 static void migration_exit_cb(Notifier *n, void *data)
126 {
127     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
128                                                  exit_notifier);
129     destroy_blocktime_context(ctx);
130 }
131 
132 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
133 {
134     MachineState *ms = MACHINE(qdev_get_machine());
135     unsigned int smp_cpus = ms->smp.cpus;
136     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
137     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
138     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
139     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
140 
141     ctx->exit_notifier.notify = migration_exit_cb;
142     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
143     qemu_add_exit_notifier(&ctx->exit_notifier);
144     return ctx;
145 }
146 
147 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
148 {
149     MachineState *ms = MACHINE(qdev_get_machine());
150     uint32List *list = NULL;
151     int i;
152 
153     for (i = ms->smp.cpus - 1; i >= 0; i--) {
154         QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
155     }
156 
157     return list;
158 }
159 
160 /*
161  * This function just populates MigrationInfo from postcopy's
162  * blocktime context. It will not populate MigrationInfo,
163  * unless postcopy-blocktime capability was set.
164  *
165  * @info: pointer to MigrationInfo to populate
166  */
167 void fill_destination_postcopy_migration_info(MigrationInfo *info)
168 {
169     MigrationIncomingState *mis = migration_incoming_get_current();
170     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
171 
172     if (!bc) {
173         return;
174     }
175 
176     info->has_postcopy_blocktime = true;
177     info->postcopy_blocktime = bc->total_blocktime;
178     info->has_postcopy_vcpu_blocktime = true;
179     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
180 }
181 
182 static uint32_t get_postcopy_total_blocktime(void)
183 {
184     MigrationIncomingState *mis = migration_incoming_get_current();
185     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
186 
187     if (!bc) {
188         return 0;
189     }
190 
191     return bc->total_blocktime;
192 }
193 
194 /**
195  * receive_ufd_features: check userfault fd features, to request only supported
196  * features in the future.
197  *
198  * Returns: true on success
199  *
200  * __NR_userfaultfd - should be checked before
201  *  @features: out parameter will contain uffdio_api.features provided by kernel
202  *              in case of success
203  */
204 static bool receive_ufd_features(uint64_t *features)
205 {
206     struct uffdio_api api_struct = {0};
207     int ufd;
208     bool ret = true;
209 
210     /* if we are here __NR_userfaultfd should exists */
211     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
212     if (ufd == -1) {
213         error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
214                      strerror(errno));
215         return false;
216     }
217 
218     /* ask features */
219     api_struct.api = UFFD_API;
220     api_struct.features = 0;
221     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
222         error_report("%s: UFFDIO_API failed: %s", __func__,
223                      strerror(errno));
224         ret = false;
225         goto release_ufd;
226     }
227 
228     *features = api_struct.features;
229 
230 release_ufd:
231     close(ufd);
232     return ret;
233 }
234 
235 /**
236  * request_ufd_features: this function should be called only once on a newly
237  * opened ufd, subsequent calls will lead to error.
238  *
239  * Returns: true on success
240  *
241  * @ufd: fd obtained from userfaultfd syscall
242  * @features: bit mask see UFFD_API_FEATURES
243  */
244 static bool request_ufd_features(int ufd, uint64_t features)
245 {
246     struct uffdio_api api_struct = {0};
247     uint64_t ioctl_mask;
248 
249     api_struct.api = UFFD_API;
250     api_struct.features = features;
251     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
252         error_report("%s failed: UFFDIO_API failed: %s", __func__,
253                      strerror(errno));
254         return false;
255     }
256 
257     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
258                  (__u64)1 << _UFFDIO_UNREGISTER;
259     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
260         error_report("Missing userfault features: %" PRIx64,
261                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
262         return false;
263     }
264 
265     return true;
266 }
267 
268 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
269 {
270     uint64_t asked_features = 0;
271     static uint64_t supported_features;
272 
273     /*
274      * it's not possible to
275      * request UFFD_API twice per one fd
276      * userfault fd features is persistent
277      */
278     if (!supported_features) {
279         if (!receive_ufd_features(&supported_features)) {
280             error_report("%s failed", __func__);
281             return false;
282         }
283     }
284 
285 #ifdef UFFD_FEATURE_THREAD_ID
286     if (UFFD_FEATURE_THREAD_ID & supported_features) {
287         asked_features |= UFFD_FEATURE_THREAD_ID;
288         if (migrate_postcopy_blocktime()) {
289             if (!mis->blocktime_ctx) {
290                 mis->blocktime_ctx = blocktime_context_new();
291             }
292         }
293     }
294 #endif
295 
296     /*
297      * request features, even if asked_features is 0, due to
298      * kernel expects UFFD_API before UFFDIO_REGISTER, per
299      * userfault file descriptor
300      */
301     if (!request_ufd_features(ufd, asked_features)) {
302         error_report("%s failed: features %" PRIu64, __func__,
303                      asked_features);
304         return false;
305     }
306 
307     if (qemu_real_host_page_size != ram_pagesize_summary()) {
308         bool have_hp = false;
309         /* We've got a huge page */
310 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
311         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
312 #endif
313         if (!have_hp) {
314             error_report("Userfault on this host does not support huge pages");
315             return false;
316         }
317     }
318     return true;
319 }
320 
321 /* Callback from postcopy_ram_supported_by_host block iterator.
322  */
323 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
324 {
325     const char *block_name = qemu_ram_get_idstr(rb);
326     ram_addr_t length = qemu_ram_get_used_length(rb);
327     size_t pagesize = qemu_ram_pagesize(rb);
328 
329     if (length % pagesize) {
330         error_report("Postcopy requires RAM blocks to be a page size multiple,"
331                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
332                      "page size of 0x%zx", block_name, length, pagesize);
333         return 1;
334     }
335     return 0;
336 }
337 
338 /*
339  * Note: This has the side effect of munlock'ing all of RAM, that's
340  * normally fine since if the postcopy succeeds it gets turned back on at the
341  * end.
342  */
343 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
344 {
345     long pagesize = qemu_real_host_page_size;
346     int ufd = -1;
347     bool ret = false; /* Error unless we change it */
348     void *testarea = NULL;
349     struct uffdio_register reg_struct;
350     struct uffdio_range range_struct;
351     uint64_t feature_mask;
352     Error *local_err = NULL;
353 
354     if (qemu_target_page_size() > pagesize) {
355         error_report("Target page size bigger than host page size");
356         goto out;
357     }
358 
359     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
360     if (ufd == -1) {
361         error_report("%s: userfaultfd not available: %s", __func__,
362                      strerror(errno));
363         goto out;
364     }
365 
366     /* Give devices a chance to object */
367     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
368         error_report_err(local_err);
369         goto out;
370     }
371 
372     /* Version and features check */
373     if (!ufd_check_and_apply(ufd, mis)) {
374         goto out;
375     }
376 
377     /* We don't support postcopy with shared RAM yet */
378     if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
379         goto out;
380     }
381 
382     /*
383      * userfault and mlock don't go together; we'll put it back later if
384      * it was enabled.
385      */
386     if (munlockall()) {
387         error_report("%s: munlockall: %s", __func__,  strerror(errno));
388         goto out;
389     }
390 
391     /*
392      *  We need to check that the ops we need are supported on anon memory
393      *  To do that we need to register a chunk and see the flags that
394      *  are returned.
395      */
396     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
397                                     MAP_ANONYMOUS, -1, 0);
398     if (testarea == MAP_FAILED) {
399         error_report("%s: Failed to map test area: %s", __func__,
400                      strerror(errno));
401         goto out;
402     }
403     g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
404 
405     reg_struct.range.start = (uintptr_t)testarea;
406     reg_struct.range.len = pagesize;
407     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
408 
409     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
410         error_report("%s userfault register: %s", __func__, strerror(errno));
411         goto out;
412     }
413 
414     range_struct.start = (uintptr_t)testarea;
415     range_struct.len = pagesize;
416     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
417         error_report("%s userfault unregister: %s", __func__, strerror(errno));
418         goto out;
419     }
420 
421     feature_mask = (__u64)1 << _UFFDIO_WAKE |
422                    (__u64)1 << _UFFDIO_COPY |
423                    (__u64)1 << _UFFDIO_ZEROPAGE;
424     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
425         error_report("Missing userfault map features: %" PRIx64,
426                      (uint64_t)(~reg_struct.ioctls & feature_mask));
427         goto out;
428     }
429 
430     /* Success! */
431     ret = true;
432 out:
433     if (testarea) {
434         munmap(testarea, pagesize);
435     }
436     if (ufd != -1) {
437         close(ufd);
438     }
439     return ret;
440 }
441 
442 /*
443  * Setup an area of RAM so that it *can* be used for postcopy later; this
444  * must be done right at the start prior to pre-copy.
445  * opaque should be the MIS.
446  */
447 static int init_range(RAMBlock *rb, void *opaque)
448 {
449     const char *block_name = qemu_ram_get_idstr(rb);
450     void *host_addr = qemu_ram_get_host_addr(rb);
451     ram_addr_t offset = qemu_ram_get_offset(rb);
452     ram_addr_t length = qemu_ram_get_used_length(rb);
453     trace_postcopy_init_range(block_name, host_addr, offset, length);
454 
455     /*
456      * Save the used_length before running the guest. In case we have to
457      * resize RAM blocks when syncing RAM block sizes from the source during
458      * precopy, we'll update it manually via the ram block notifier.
459      */
460     rb->postcopy_length = length;
461 
462     /*
463      * We need the whole of RAM to be truly empty for postcopy, so things
464      * like ROMs and any data tables built during init must be zero'd
465      * - we're going to get the copy from the source anyway.
466      * (Precopy will just overwrite this data, so doesn't need the discard)
467      */
468     if (ram_discard_range(block_name, 0, length)) {
469         return -1;
470     }
471 
472     return 0;
473 }
474 
475 /*
476  * At the end of migration, undo the effects of init_range
477  * opaque should be the MIS.
478  */
479 static int cleanup_range(RAMBlock *rb, void *opaque)
480 {
481     const char *block_name = qemu_ram_get_idstr(rb);
482     void *host_addr = qemu_ram_get_host_addr(rb);
483     ram_addr_t offset = qemu_ram_get_offset(rb);
484     ram_addr_t length = rb->postcopy_length;
485     MigrationIncomingState *mis = opaque;
486     struct uffdio_range range_struct;
487     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
488 
489     /*
490      * We turned off hugepage for the precopy stage with postcopy enabled
491      * we can turn it back on now.
492      */
493     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
494 
495     /*
496      * We can also turn off userfault now since we should have all the
497      * pages.   It can be useful to leave it on to debug postcopy
498      * if you're not sure it's always getting every page.
499      */
500     range_struct.start = (uintptr_t)host_addr;
501     range_struct.len = length;
502 
503     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
504         error_report("%s: userfault unregister %s", __func__, strerror(errno));
505 
506         return -1;
507     }
508 
509     return 0;
510 }
511 
512 /*
513  * Initialise postcopy-ram, setting the RAM to a state where we can go into
514  * postcopy later; must be called prior to any precopy.
515  * called from arch_init's similarly named ram_postcopy_incoming_init
516  */
517 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
518 {
519     if (foreach_not_ignored_block(init_range, NULL)) {
520         return -1;
521     }
522 
523     return 0;
524 }
525 
526 static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
527 {
528     if (mis->postcopy_tmp_page) {
529         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
530         mis->postcopy_tmp_page = NULL;
531     }
532 
533     if (mis->postcopy_tmp_zero_page) {
534         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
535         mis->postcopy_tmp_zero_page = NULL;
536     }
537 }
538 
539 /*
540  * At the end of a migration where postcopy_ram_incoming_init was called.
541  */
542 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
543 {
544     trace_postcopy_ram_incoming_cleanup_entry();
545 
546     if (mis->have_fault_thread) {
547         Error *local_err = NULL;
548 
549         /* Let the fault thread quit */
550         qatomic_set(&mis->fault_thread_quit, 1);
551         postcopy_fault_thread_notify(mis);
552         trace_postcopy_ram_incoming_cleanup_join();
553         qemu_thread_join(&mis->fault_thread);
554 
555         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
556             error_report_err(local_err);
557             return -1;
558         }
559 
560         if (foreach_not_ignored_block(cleanup_range, mis)) {
561             return -1;
562         }
563 
564         trace_postcopy_ram_incoming_cleanup_closeuf();
565         close(mis->userfault_fd);
566         close(mis->userfault_event_fd);
567         mis->have_fault_thread = false;
568     }
569 
570     if (enable_mlock) {
571         if (os_mlock() < 0) {
572             error_report("mlock: %s", strerror(errno));
573             /*
574              * It doesn't feel right to fail at this point, we have a valid
575              * VM state.
576              */
577         }
578     }
579 
580     postcopy_temp_pages_cleanup(mis);
581 
582     trace_postcopy_ram_incoming_cleanup_blocktime(
583             get_postcopy_total_blocktime());
584 
585     trace_postcopy_ram_incoming_cleanup_exit();
586     return 0;
587 }
588 
589 /*
590  * Disable huge pages on an area
591  */
592 static int nhp_range(RAMBlock *rb, void *opaque)
593 {
594     const char *block_name = qemu_ram_get_idstr(rb);
595     void *host_addr = qemu_ram_get_host_addr(rb);
596     ram_addr_t offset = qemu_ram_get_offset(rb);
597     ram_addr_t length = rb->postcopy_length;
598     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
599 
600     /*
601      * Before we do discards we need to ensure those discards really
602      * do delete areas of the page, even if THP thinks a hugepage would
603      * be a good idea, so force hugepages off.
604      */
605     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
606 
607     return 0;
608 }
609 
610 /*
611  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
612  * however leaving it until after precopy means that most of the precopy
613  * data is still THPd
614  */
615 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
616 {
617     if (foreach_not_ignored_block(nhp_range, mis)) {
618         return -1;
619     }
620 
621     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
622 
623     return 0;
624 }
625 
626 /*
627  * Mark the given area of RAM as requiring notification to unwritten areas
628  * Used as a  callback on foreach_not_ignored_block.
629  *   host_addr: Base of area to mark
630  *   offset: Offset in the whole ram arena
631  *   length: Length of the section
632  *   opaque: MigrationIncomingState pointer
633  * Returns 0 on success
634  */
635 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
636 {
637     MigrationIncomingState *mis = opaque;
638     struct uffdio_register reg_struct;
639 
640     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
641     reg_struct.range.len = rb->postcopy_length;
642     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
643 
644     /* Now tell our userfault_fd that it's responsible for this area */
645     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
646         error_report("%s userfault register: %s", __func__, strerror(errno));
647         return -1;
648     }
649     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
650         error_report("%s userfault: Region doesn't support COPY", __func__);
651         return -1;
652     }
653     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
654         qemu_ram_set_uf_zeroable(rb);
655     }
656 
657     return 0;
658 }
659 
660 int postcopy_wake_shared(struct PostCopyFD *pcfd,
661                          uint64_t client_addr,
662                          RAMBlock *rb)
663 {
664     size_t pagesize = qemu_ram_pagesize(rb);
665     struct uffdio_range range;
666     int ret;
667     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
668     range.start = ROUND_DOWN(client_addr, pagesize);
669     range.len = pagesize;
670     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
671     if (ret) {
672         error_report("%s: Failed to wake: %zx in %s (%s)",
673                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
674                      strerror(errno));
675     }
676     return ret;
677 }
678 
679 static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
680                                  ram_addr_t start, uint64_t haddr)
681 {
682     void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
683 
684     /*
685      * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
686      * access, place a zeropage, which will also set the relevant bits in the
687      * recv_bitmap accordingly, so we won't try placing a zeropage twice.
688      *
689      * Checking a single bit is sufficient to handle pagesize > TPS as either
690      * all relevant bits are set or not.
691      */
692     assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
693     if (ramblock_page_is_discarded(rb, start)) {
694         bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
695 
696         return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
697     }
698 
699     return migrate_send_rp_req_pages(mis, rb, start, haddr);
700 }
701 
702 /*
703  * Callback from shared fault handlers to ask for a page,
704  * the page must be specified by a RAMBlock and an offset in that rb
705  * Note: Only for use by shared fault handlers (in fault thread)
706  */
707 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
708                                  uint64_t client_addr, uint64_t rb_offset)
709 {
710     uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
711     MigrationIncomingState *mis = migration_incoming_get_current();
712 
713     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
714                                        rb_offset);
715     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
716         trace_postcopy_request_shared_page_present(pcfd->idstr,
717                                         qemu_ram_get_idstr(rb), rb_offset);
718         return postcopy_wake_shared(pcfd, client_addr, rb);
719     }
720     postcopy_request_page(mis, rb, aligned_rbo, client_addr);
721     return 0;
722 }
723 
724 static int get_mem_fault_cpu_index(uint32_t pid)
725 {
726     CPUState *cpu_iter;
727 
728     CPU_FOREACH(cpu_iter) {
729         if (cpu_iter->thread_id == pid) {
730             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
731             return cpu_iter->cpu_index;
732         }
733     }
734     trace_get_mem_fault_cpu_index(-1, pid);
735     return -1;
736 }
737 
738 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
739 {
740     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
741                                     dc->start_time;
742     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
743 }
744 
745 /*
746  * This function is being called when pagefault occurs. It
747  * tracks down vCPU blocking time.
748  *
749  * @addr: faulted host virtual address
750  * @ptid: faulted process thread id
751  * @rb: ramblock appropriate to addr
752  */
753 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
754                                           RAMBlock *rb)
755 {
756     int cpu, already_received;
757     MigrationIncomingState *mis = migration_incoming_get_current();
758     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
759     uint32_t low_time_offset;
760 
761     if (!dc || ptid == 0) {
762         return;
763     }
764     cpu = get_mem_fault_cpu_index(ptid);
765     if (cpu < 0) {
766         return;
767     }
768 
769     low_time_offset = get_low_time_offset(dc);
770     if (dc->vcpu_addr[cpu] == 0) {
771         qatomic_inc(&dc->smp_cpus_down);
772     }
773 
774     qatomic_xchg(&dc->last_begin, low_time_offset);
775     qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
776     qatomic_xchg(&dc->vcpu_addr[cpu], addr);
777 
778     /*
779      * check it here, not at the beginning of the function,
780      * due to, check could occur early than bitmap_set in
781      * qemu_ufd_copy_ioctl
782      */
783     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
784     if (already_received) {
785         qatomic_xchg(&dc->vcpu_addr[cpu], 0);
786         qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
787         qatomic_dec(&dc->smp_cpus_down);
788     }
789     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
790                                         cpu, already_received);
791 }
792 
793 /*
794  *  This function just provide calculated blocktime per cpu and trace it.
795  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
796  *
797  *
798  * Assume we have 3 CPU
799  *
800  *      S1        E1           S1               E1
801  * -----***********------------xxx***************------------------------> CPU1
802  *
803  *             S2                E2
804  * ------------****************xxx---------------------------------------> CPU2
805  *
806  *                         S3            E3
807  * ------------------------****xxx********-------------------------------> CPU3
808  *
809  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
810  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
811  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
812  *            it's a part of total blocktime.
813  * S1 - here is last_begin
814  * Legend of the picture is following:
815  *              * - means blocktime per vCPU
816  *              x - means overlapped blocktime (total blocktime)
817  *
818  * @addr: host virtual address
819  */
820 static void mark_postcopy_blocktime_end(uintptr_t addr)
821 {
822     MigrationIncomingState *mis = migration_incoming_get_current();
823     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
824     MachineState *ms = MACHINE(qdev_get_machine());
825     unsigned int smp_cpus = ms->smp.cpus;
826     int i, affected_cpu = 0;
827     bool vcpu_total_blocktime = false;
828     uint32_t read_vcpu_time, low_time_offset;
829 
830     if (!dc) {
831         return;
832     }
833 
834     low_time_offset = get_low_time_offset(dc);
835     /* lookup cpu, to clear it,
836      * that algorithm looks straightforward, but it's not
837      * optimal, more optimal algorithm is keeping tree or hash
838      * where key is address value is a list of  */
839     for (i = 0; i < smp_cpus; i++) {
840         uint32_t vcpu_blocktime = 0;
841 
842         read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
843         if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
844             read_vcpu_time == 0) {
845             continue;
846         }
847         qatomic_xchg(&dc->vcpu_addr[i], 0);
848         vcpu_blocktime = low_time_offset - read_vcpu_time;
849         affected_cpu += 1;
850         /* we need to know is that mark_postcopy_end was due to
851          * faulted page, another possible case it's prefetched
852          * page and in that case we shouldn't be here */
853         if (!vcpu_total_blocktime &&
854             qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
855             vcpu_total_blocktime = true;
856         }
857         /* continue cycle, due to one page could affect several vCPUs */
858         dc->vcpu_blocktime[i] += vcpu_blocktime;
859     }
860 
861     qatomic_sub(&dc->smp_cpus_down, affected_cpu);
862     if (vcpu_total_blocktime) {
863         dc->total_blocktime += low_time_offset - qatomic_fetch_add(
864                 &dc->last_begin, 0);
865     }
866     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
867                                       affected_cpu);
868 }
869 
870 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
871 {
872     trace_postcopy_pause_fault_thread();
873 
874     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
875 
876     trace_postcopy_pause_fault_thread_continued();
877 
878     return true;
879 }
880 
881 /*
882  * Handle faults detected by the USERFAULT markings
883  */
884 static void *postcopy_ram_fault_thread(void *opaque)
885 {
886     MigrationIncomingState *mis = opaque;
887     struct uffd_msg msg;
888     int ret;
889     size_t index;
890     RAMBlock *rb = NULL;
891 
892     trace_postcopy_ram_fault_thread_entry();
893     rcu_register_thread();
894     mis->last_rb = NULL; /* last RAMBlock we sent part of */
895     qemu_sem_post(&mis->fault_thread_sem);
896 
897     struct pollfd *pfd;
898     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
899 
900     pfd = g_new0(struct pollfd, pfd_len);
901 
902     pfd[0].fd = mis->userfault_fd;
903     pfd[0].events = POLLIN;
904     pfd[1].fd = mis->userfault_event_fd;
905     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
906     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
907     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
908         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
909                                                  struct PostCopyFD, index);
910         pfd[2 + index].fd = pcfd->fd;
911         pfd[2 + index].events = POLLIN;
912         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
913                                                   pcfd->fd);
914     }
915 
916     while (true) {
917         ram_addr_t rb_offset;
918         int poll_result;
919 
920         /*
921          * We're mainly waiting for the kernel to give us a faulting HVA,
922          * however we can be told to quit via userfault_quit_fd which is
923          * an eventfd
924          */
925 
926         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
927         if (poll_result == -1) {
928             error_report("%s: userfault poll: %s", __func__, strerror(errno));
929             break;
930         }
931 
932         if (!mis->to_src_file) {
933             /*
934              * Possibly someone tells us that the return path is
935              * broken already using the event. We should hold until
936              * the channel is rebuilt.
937              */
938             if (postcopy_pause_fault_thread(mis)) {
939                 /* Continue to read the userfaultfd */
940             } else {
941                 error_report("%s: paused but don't allow to continue",
942                              __func__);
943                 break;
944             }
945         }
946 
947         if (pfd[1].revents) {
948             uint64_t tmp64 = 0;
949 
950             /* Consume the signal */
951             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
952                 /* Nothing obviously nicer than posting this error. */
953                 error_report("%s: read() failed", __func__);
954             }
955 
956             if (qatomic_read(&mis->fault_thread_quit)) {
957                 trace_postcopy_ram_fault_thread_quit();
958                 break;
959             }
960         }
961 
962         if (pfd[0].revents) {
963             poll_result--;
964             ret = read(mis->userfault_fd, &msg, sizeof(msg));
965             if (ret != sizeof(msg)) {
966                 if (errno == EAGAIN) {
967                     /*
968                      * if a wake up happens on the other thread just after
969                      * the poll, there is nothing to read.
970                      */
971                     continue;
972                 }
973                 if (ret < 0) {
974                     error_report("%s: Failed to read full userfault "
975                                  "message: %s",
976                                  __func__, strerror(errno));
977                     break;
978                 } else {
979                     error_report("%s: Read %d bytes from userfaultfd "
980                                  "expected %zd",
981                                  __func__, ret, sizeof(msg));
982                     break; /* Lost alignment, don't know what we'd read next */
983                 }
984             }
985             if (msg.event != UFFD_EVENT_PAGEFAULT) {
986                 error_report("%s: Read unexpected event %ud from userfaultfd",
987                              __func__, msg.event);
988                 continue; /* It's not a page fault, shouldn't happen */
989             }
990 
991             rb = qemu_ram_block_from_host(
992                      (void *)(uintptr_t)msg.arg.pagefault.address,
993                      true, &rb_offset);
994             if (!rb) {
995                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
996                              PRIx64, (uint64_t)msg.arg.pagefault.address);
997                 break;
998             }
999 
1000             rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1001             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1002                                                 qemu_ram_get_idstr(rb),
1003                                                 rb_offset,
1004                                                 msg.arg.pagefault.feat.ptid);
1005             mark_postcopy_blocktime_begin(
1006                     (uintptr_t)(msg.arg.pagefault.address),
1007                                 msg.arg.pagefault.feat.ptid, rb);
1008 
1009 retry:
1010             /*
1011              * Send the request to the source - we want to request one
1012              * of our host page sizes (which is >= TPS)
1013              */
1014             ret = postcopy_request_page(mis, rb, rb_offset,
1015                                         msg.arg.pagefault.address);
1016             if (ret) {
1017                 /* May be network failure, try to wait for recovery */
1018                 if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
1019                     /* We got reconnected somehow, try to continue */
1020                     goto retry;
1021                 } else {
1022                     /* This is a unavoidable fault */
1023                     error_report("%s: postcopy_request_page() get %d",
1024                                  __func__, ret);
1025                     break;
1026                 }
1027             }
1028         }
1029 
1030         /* Now handle any requests from external processes on shared memory */
1031         /* TODO: May need to handle devices deregistering during postcopy */
1032         for (index = 2; index < pfd_len && poll_result; index++) {
1033             if (pfd[index].revents) {
1034                 struct PostCopyFD *pcfd =
1035                     &g_array_index(mis->postcopy_remote_fds,
1036                                    struct PostCopyFD, index - 2);
1037 
1038                 poll_result--;
1039                 if (pfd[index].revents & POLLERR) {
1040                     error_report("%s: POLLERR on poll %zd fd=%d",
1041                                  __func__, index, pcfd->fd);
1042                     pfd[index].events = 0;
1043                     continue;
1044                 }
1045 
1046                 ret = read(pcfd->fd, &msg, sizeof(msg));
1047                 if (ret != sizeof(msg)) {
1048                     if (errno == EAGAIN) {
1049                         /*
1050                          * if a wake up happens on the other thread just after
1051                          * the poll, there is nothing to read.
1052                          */
1053                         continue;
1054                     }
1055                     if (ret < 0) {
1056                         error_report("%s: Failed to read full userfault "
1057                                      "message: %s (shared) revents=%d",
1058                                      __func__, strerror(errno),
1059                                      pfd[index].revents);
1060                         /*TODO: Could just disable this sharer */
1061                         break;
1062                     } else {
1063                         error_report("%s: Read %d bytes from userfaultfd "
1064                                      "expected %zd (shared)",
1065                                      __func__, ret, sizeof(msg));
1066                         /*TODO: Could just disable this sharer */
1067                         break; /*Lost alignment,don't know what we'd read next*/
1068                     }
1069                 }
1070                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1071                     error_report("%s: Read unexpected event %ud "
1072                                  "from userfaultfd (shared)",
1073                                  __func__, msg.event);
1074                     continue; /* It's not a page fault, shouldn't happen */
1075                 }
1076                 /* Call the device handler registered with us */
1077                 ret = pcfd->handler(pcfd, &msg);
1078                 if (ret) {
1079                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1080                                  __func__, index, pcfd->idstr);
1081                     /* TODO: Fail? Disable this sharer? */
1082                 }
1083             }
1084         }
1085     }
1086     rcu_unregister_thread();
1087     trace_postcopy_ram_fault_thread_exit();
1088     g_free(pfd);
1089     return NULL;
1090 }
1091 
1092 static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1093 {
1094     int err;
1095 
1096     mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1097                                   PROT_READ | PROT_WRITE,
1098                                   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1099     if (mis->postcopy_tmp_page == MAP_FAILED) {
1100         err = errno;
1101         mis->postcopy_tmp_page = NULL;
1102         error_report("%s: Failed to map postcopy_tmp_page %s",
1103                      __func__, strerror(err));
1104         return -err;
1105     }
1106 
1107     /*
1108      * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1109      */
1110     mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1111                                        PROT_READ | PROT_WRITE,
1112                                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1113     if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1114         err = errno;
1115         mis->postcopy_tmp_zero_page = NULL;
1116         error_report("%s: Failed to map large zero page %s",
1117                      __func__, strerror(err));
1118         return -err;
1119     }
1120 
1121     memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1122 
1123     return 0;
1124 }
1125 
1126 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1127 {
1128     /* Open the fd for the kernel to give us userfaults */
1129     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1130     if (mis->userfault_fd == -1) {
1131         error_report("%s: Failed to open userfault fd: %s", __func__,
1132                      strerror(errno));
1133         return -1;
1134     }
1135 
1136     /*
1137      * Although the host check already tested the API, we need to
1138      * do the check again as an ABI handshake on the new fd.
1139      */
1140     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1141         return -1;
1142     }
1143 
1144     /* Now an eventfd we use to tell the fault-thread to quit */
1145     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1146     if (mis->userfault_event_fd == -1) {
1147         error_report("%s: Opening userfault_event_fd: %s", __func__,
1148                      strerror(errno));
1149         close(mis->userfault_fd);
1150         return -1;
1151     }
1152 
1153     qemu_sem_init(&mis->fault_thread_sem, 0);
1154     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1155                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1156     qemu_sem_wait(&mis->fault_thread_sem);
1157     qemu_sem_destroy(&mis->fault_thread_sem);
1158     mis->have_fault_thread = true;
1159 
1160     /* Mark so that we get notified of accesses to unwritten areas */
1161     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1162         error_report("ram_block_enable_notify failed");
1163         return -1;
1164     }
1165 
1166     if (postcopy_temp_pages_setup(mis)) {
1167         /* Error dumped in the sub-function */
1168         return -1;
1169     }
1170 
1171     trace_postcopy_ram_enable_notify();
1172 
1173     return 0;
1174 }
1175 
1176 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1177                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1178 {
1179     int userfault_fd = mis->userfault_fd;
1180     int ret;
1181 
1182     if (from_addr) {
1183         struct uffdio_copy copy_struct;
1184         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1185         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1186         copy_struct.len = pagesize;
1187         copy_struct.mode = 0;
1188         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1189     } else {
1190         struct uffdio_zeropage zero_struct;
1191         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1192         zero_struct.range.len = pagesize;
1193         zero_struct.mode = 0;
1194         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1195     }
1196     if (!ret) {
1197         qemu_mutex_lock(&mis->page_request_mutex);
1198         ramblock_recv_bitmap_set_range(rb, host_addr,
1199                                        pagesize / qemu_target_page_size());
1200         /*
1201          * If this page resolves a page fault for a previous recorded faulted
1202          * address, take a special note to maintain the requested page list.
1203          */
1204         if (g_tree_lookup(mis->page_requested, host_addr)) {
1205             g_tree_remove(mis->page_requested, host_addr);
1206             mis->page_requested_count--;
1207             trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1208         }
1209         qemu_mutex_unlock(&mis->page_request_mutex);
1210         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1211     }
1212     return ret;
1213 }
1214 
1215 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1216 {
1217     int i;
1218     MigrationIncomingState *mis = migration_incoming_get_current();
1219     GArray *pcrfds = mis->postcopy_remote_fds;
1220 
1221     for (i = 0; i < pcrfds->len; i++) {
1222         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1223         int ret = cur->waker(cur, rb, offset);
1224         if (ret) {
1225             return ret;
1226         }
1227     }
1228     return 0;
1229 }
1230 
1231 /*
1232  * Place a host page (from) at (host) atomically
1233  * returns 0 on success
1234  */
1235 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1236                         RAMBlock *rb)
1237 {
1238     size_t pagesize = qemu_ram_pagesize(rb);
1239 
1240     /* copy also acks to the kernel waking the stalled thread up
1241      * TODO: We can inhibit that ack and only do it if it was requested
1242      * which would be slightly cheaper, but we'd have to be careful
1243      * of the order of updating our page state.
1244      */
1245     if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1246         int e = errno;
1247         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1248                      __func__, strerror(e), host, from, pagesize);
1249 
1250         return -e;
1251     }
1252 
1253     trace_postcopy_place_page(host);
1254     return postcopy_notify_shared_wake(rb,
1255                                        qemu_ram_block_host_offset(rb, host));
1256 }
1257 
1258 /*
1259  * Place a zero page at (host) atomically
1260  * returns 0 on success
1261  */
1262 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1263                              RAMBlock *rb)
1264 {
1265     size_t pagesize = qemu_ram_pagesize(rb);
1266     trace_postcopy_place_page_zero(host);
1267 
1268     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1269      * but it's not available for everything (e.g. hugetlbpages)
1270      */
1271     if (qemu_ram_is_uf_zeroable(rb)) {
1272         if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1273             int e = errno;
1274             error_report("%s: %s zero host: %p",
1275                          __func__, strerror(e), host);
1276 
1277             return -e;
1278         }
1279         return postcopy_notify_shared_wake(rb,
1280                                            qemu_ram_block_host_offset(rb,
1281                                                                       host));
1282     } else {
1283         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1284     }
1285 }
1286 
1287 #else
1288 /* No target OS support, stubs just fail */
1289 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1290 {
1291 }
1292 
1293 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1294 {
1295     error_report("%s: No OS support", __func__);
1296     return false;
1297 }
1298 
1299 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1300 {
1301     error_report("postcopy_ram_incoming_init: No OS support");
1302     return -1;
1303 }
1304 
1305 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1306 {
1307     assert(0);
1308     return -1;
1309 }
1310 
1311 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1312 {
1313     assert(0);
1314     return -1;
1315 }
1316 
1317 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1318                                  uint64_t client_addr, uint64_t rb_offset)
1319 {
1320     assert(0);
1321     return -1;
1322 }
1323 
1324 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1325 {
1326     assert(0);
1327     return -1;
1328 }
1329 
1330 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1331                         RAMBlock *rb)
1332 {
1333     assert(0);
1334     return -1;
1335 }
1336 
1337 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1338                         RAMBlock *rb)
1339 {
1340     assert(0);
1341     return -1;
1342 }
1343 
1344 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1345                          uint64_t client_addr,
1346                          RAMBlock *rb)
1347 {
1348     assert(0);
1349     return -1;
1350 }
1351 #endif
1352 
1353 /* ------------------------------------------------------------------------- */
1354 
1355 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1356 {
1357     uint64_t tmp64 = 1;
1358 
1359     /*
1360      * Wakeup the fault_thread.  It's an eventfd that should currently
1361      * be at 0, we're going to increment it to 1
1362      */
1363     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1364         /* Not much we can do here, but may as well report it */
1365         error_report("%s: incrementing failed: %s", __func__,
1366                      strerror(errno));
1367     }
1368 }
1369 
1370 /**
1371  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1372  *   asking to discard individual ranges.
1373  *
1374  * @ms: The current migration state.
1375  * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1376  * @name: RAMBlock that discards will operate on.
1377  */
1378 static PostcopyDiscardState pds = {0};
1379 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1380 {
1381     pds.ramblock_name = name;
1382     pds.cur_entry = 0;
1383     pds.nsentwords = 0;
1384     pds.nsentcmds = 0;
1385 }
1386 
1387 /**
1388  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1389  *   discard. May send a discard message, may just leave it queued to
1390  *   be sent later.
1391  *
1392  * @ms: Current migration state.
1393  * @start,@length: a range of pages in the migration bitmap in the
1394  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1395  */
1396 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1397                                  unsigned long length)
1398 {
1399     size_t tp_size = qemu_target_page_size();
1400     /* Convert to byte offsets within the RAM block */
1401     pds.start_list[pds.cur_entry] = start  * tp_size;
1402     pds.length_list[pds.cur_entry] = length * tp_size;
1403     trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1404     pds.cur_entry++;
1405     pds.nsentwords++;
1406 
1407     if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1408         /* Full set, ship it! */
1409         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1410                                               pds.ramblock_name,
1411                                               pds.cur_entry,
1412                                               pds.start_list,
1413                                               pds.length_list);
1414         pds.nsentcmds++;
1415         pds.cur_entry = 0;
1416     }
1417 }
1418 
1419 /**
1420  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1421  * bitmap code. Sends any outstanding discard messages, frees the PDS
1422  *
1423  * @ms: Current migration state.
1424  */
1425 void postcopy_discard_send_finish(MigrationState *ms)
1426 {
1427     /* Anything unsent? */
1428     if (pds.cur_entry) {
1429         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1430                                               pds.ramblock_name,
1431                                               pds.cur_entry,
1432                                               pds.start_list,
1433                                               pds.length_list);
1434         pds.nsentcmds++;
1435     }
1436 
1437     trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1438                                        pds.nsentcmds);
1439 }
1440 
1441 /*
1442  * Current state of incoming postcopy; note this is not part of
1443  * MigrationIncomingState since it's state is used during cleanup
1444  * at the end as MIS is being freed.
1445  */
1446 static PostcopyState incoming_postcopy_state;
1447 
1448 PostcopyState  postcopy_state_get(void)
1449 {
1450     return qatomic_mb_read(&incoming_postcopy_state);
1451 }
1452 
1453 /* Set the state and return the old state */
1454 PostcopyState postcopy_state_set(PostcopyState new_state)
1455 {
1456     return qatomic_xchg(&incoming_postcopy_state, new_state);
1457 }
1458 
1459 /* Register a handler for external shared memory postcopy
1460  * called on the destination.
1461  */
1462 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1463 {
1464     MigrationIncomingState *mis = migration_incoming_get_current();
1465 
1466     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1467                                                   *pcfd);
1468 }
1469 
1470 /* Unregister a handler for external shared memory postcopy
1471  */
1472 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1473 {
1474     guint i;
1475     MigrationIncomingState *mis = migration_incoming_get_current();
1476     GArray *pcrfds = mis->postcopy_remote_fds;
1477 
1478     if (!pcrfds) {
1479         /* migration has already finished and freed the array */
1480         return;
1481     }
1482     for (i = 0; i < pcrfds->len; i++) {
1483         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1484         if (cur->fd == pcfd->fd) {
1485             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1486             return;
1487         }
1488     }
1489 }
1490