xref: /qemu/migration/postcopy-ram.c (revision f917eed3)
1 /*
2  * Postcopy migration for RAM
3  *
4  * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Dave Gilbert  <dgilbert@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * Postcopy is a migration technique where the execution flips from the
16  * source to the destination before all the data has been copied.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "qapi/error.h"
27 #include "qemu/notify.h"
28 #include "qemu/rcu.h"
29 #include "sysemu/sysemu.h"
30 #include "qemu/error-report.h"
31 #include "trace.h"
32 #include "hw/boards.h"
33 
34 /* Arbitrary limit on size of each discard command,
35  * keeps them around ~200 bytes
36  */
37 #define MAX_DISCARDS_PER_COMMAND 12
38 
39 struct PostcopyDiscardState {
40     const char *ramblock_name;
41     uint16_t cur_entry;
42     /*
43      * Start and length of a discard range (bytes)
44      */
45     uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
46     uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
47     unsigned int nsentwords;
48     unsigned int nsentcmds;
49 };
50 
51 static NotifierWithReturnList postcopy_notifier_list;
52 
53 void postcopy_infrastructure_init(void)
54 {
55     notifier_with_return_list_init(&postcopy_notifier_list);
56 }
57 
58 void postcopy_add_notifier(NotifierWithReturn *nn)
59 {
60     notifier_with_return_list_add(&postcopy_notifier_list, nn);
61 }
62 
63 void postcopy_remove_notifier(NotifierWithReturn *n)
64 {
65     notifier_with_return_remove(n);
66 }
67 
68 int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
69 {
70     struct PostcopyNotifyData pnd;
71     pnd.reason = reason;
72     pnd.errp = errp;
73 
74     return notifier_with_return_list_notify(&postcopy_notifier_list,
75                                             &pnd);
76 }
77 
78 /* Postcopy needs to detect accesses to pages that haven't yet been copied
79  * across, and efficiently map new pages in, the techniques for doing this
80  * are target OS specific.
81  */
82 #if defined(__linux__)
83 
84 #include <poll.h>
85 #include <sys/ioctl.h>
86 #include <sys/syscall.h>
87 #include <asm/types.h> /* for __u64 */
88 #endif
89 
90 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
91 #include <sys/eventfd.h>
92 #include <linux/userfaultfd.h>
93 
94 typedef struct PostcopyBlocktimeContext {
95     /* time when page fault initiated per vCPU */
96     uint32_t *page_fault_vcpu_time;
97     /* page address per vCPU */
98     uintptr_t *vcpu_addr;
99     uint32_t total_blocktime;
100     /* blocktime per vCPU */
101     uint32_t *vcpu_blocktime;
102     /* point in time when last page fault was initiated */
103     uint32_t last_begin;
104     /* number of vCPU are suspended */
105     int smp_cpus_down;
106     uint64_t start_time;
107 
108     /*
109      * Handler for exit event, necessary for
110      * releasing whole blocktime_ctx
111      */
112     Notifier exit_notifier;
113 } PostcopyBlocktimeContext;
114 
115 static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
116 {
117     g_free(ctx->page_fault_vcpu_time);
118     g_free(ctx->vcpu_addr);
119     g_free(ctx->vcpu_blocktime);
120     g_free(ctx);
121 }
122 
123 static void migration_exit_cb(Notifier *n, void *data)
124 {
125     PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
126                                                  exit_notifier);
127     destroy_blocktime_context(ctx);
128 }
129 
130 static struct PostcopyBlocktimeContext *blocktime_context_new(void)
131 {
132     MachineState *ms = MACHINE(qdev_get_machine());
133     unsigned int smp_cpus = ms->smp.cpus;
134     PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
135     ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
136     ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
137     ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
138 
139     ctx->exit_notifier.notify = migration_exit_cb;
140     ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
141     qemu_add_exit_notifier(&ctx->exit_notifier);
142     return ctx;
143 }
144 
145 static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
146 {
147     MachineState *ms = MACHINE(qdev_get_machine());
148     uint32List *list = NULL;
149     int i;
150 
151     for (i = ms->smp.cpus - 1; i >= 0; i--) {
152         QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
153     }
154 
155     return list;
156 }
157 
158 /*
159  * This function just populates MigrationInfo from postcopy's
160  * blocktime context. It will not populate MigrationInfo,
161  * unless postcopy-blocktime capability was set.
162  *
163  * @info: pointer to MigrationInfo to populate
164  */
165 void fill_destination_postcopy_migration_info(MigrationInfo *info)
166 {
167     MigrationIncomingState *mis = migration_incoming_get_current();
168     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
169 
170     if (!bc) {
171         return;
172     }
173 
174     info->has_postcopy_blocktime = true;
175     info->postcopy_blocktime = bc->total_blocktime;
176     info->has_postcopy_vcpu_blocktime = true;
177     info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
178 }
179 
180 static uint32_t get_postcopy_total_blocktime(void)
181 {
182     MigrationIncomingState *mis = migration_incoming_get_current();
183     PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
184 
185     if (!bc) {
186         return 0;
187     }
188 
189     return bc->total_blocktime;
190 }
191 
192 /**
193  * receive_ufd_features: check userfault fd features, to request only supported
194  * features in the future.
195  *
196  * Returns: true on success
197  *
198  * __NR_userfaultfd - should be checked before
199  *  @features: out parameter will contain uffdio_api.features provided by kernel
200  *              in case of success
201  */
202 static bool receive_ufd_features(uint64_t *features)
203 {
204     struct uffdio_api api_struct = {0};
205     int ufd;
206     bool ret = true;
207 
208     /* if we are here __NR_userfaultfd should exists */
209     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
210     if (ufd == -1) {
211         error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
212                      strerror(errno));
213         return false;
214     }
215 
216     /* ask features */
217     api_struct.api = UFFD_API;
218     api_struct.features = 0;
219     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
220         error_report("%s: UFFDIO_API failed: %s", __func__,
221                      strerror(errno));
222         ret = false;
223         goto release_ufd;
224     }
225 
226     *features = api_struct.features;
227 
228 release_ufd:
229     close(ufd);
230     return ret;
231 }
232 
233 /**
234  * request_ufd_features: this function should be called only once on a newly
235  * opened ufd, subsequent calls will lead to error.
236  *
237  * Returns: true on success
238  *
239  * @ufd: fd obtained from userfaultfd syscall
240  * @features: bit mask see UFFD_API_FEATURES
241  */
242 static bool request_ufd_features(int ufd, uint64_t features)
243 {
244     struct uffdio_api api_struct = {0};
245     uint64_t ioctl_mask;
246 
247     api_struct.api = UFFD_API;
248     api_struct.features = features;
249     if (ioctl(ufd, UFFDIO_API, &api_struct)) {
250         error_report("%s failed: UFFDIO_API failed: %s", __func__,
251                      strerror(errno));
252         return false;
253     }
254 
255     ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
256                  (__u64)1 << _UFFDIO_UNREGISTER;
257     if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
258         error_report("Missing userfault features: %" PRIx64,
259                      (uint64_t)(~api_struct.ioctls & ioctl_mask));
260         return false;
261     }
262 
263     return true;
264 }
265 
266 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
267 {
268     uint64_t asked_features = 0;
269     static uint64_t supported_features;
270 
271     /*
272      * it's not possible to
273      * request UFFD_API twice per one fd
274      * userfault fd features is persistent
275      */
276     if (!supported_features) {
277         if (!receive_ufd_features(&supported_features)) {
278             error_report("%s failed", __func__);
279             return false;
280         }
281     }
282 
283 #ifdef UFFD_FEATURE_THREAD_ID
284     if (migrate_postcopy_blocktime() && mis &&
285         UFFD_FEATURE_THREAD_ID & supported_features) {
286         /* kernel supports that feature */
287         /* don't create blocktime_context if it exists */
288         if (!mis->blocktime_ctx) {
289             mis->blocktime_ctx = blocktime_context_new();
290         }
291 
292         asked_features |= UFFD_FEATURE_THREAD_ID;
293     }
294 #endif
295 
296     /*
297      * request features, even if asked_features is 0, due to
298      * kernel expects UFFD_API before UFFDIO_REGISTER, per
299      * userfault file descriptor
300      */
301     if (!request_ufd_features(ufd, asked_features)) {
302         error_report("%s failed: features %" PRIu64, __func__,
303                      asked_features);
304         return false;
305     }
306 
307     if (qemu_real_host_page_size != ram_pagesize_summary()) {
308         bool have_hp = false;
309         /* We've got a huge page */
310 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
311         have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
312 #endif
313         if (!have_hp) {
314             error_report("Userfault on this host does not support huge pages");
315             return false;
316         }
317     }
318     return true;
319 }
320 
321 /* Callback from postcopy_ram_supported_by_host block iterator.
322  */
323 static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
324 {
325     const char *block_name = qemu_ram_get_idstr(rb);
326     ram_addr_t length = qemu_ram_get_used_length(rb);
327     size_t pagesize = qemu_ram_pagesize(rb);
328 
329     if (length % pagesize) {
330         error_report("Postcopy requires RAM blocks to be a page size multiple,"
331                      " block %s is 0x" RAM_ADDR_FMT " bytes with a "
332                      "page size of 0x%zx", block_name, length, pagesize);
333         return 1;
334     }
335     return 0;
336 }
337 
338 /*
339  * Note: This has the side effect of munlock'ing all of RAM, that's
340  * normally fine since if the postcopy succeeds it gets turned back on at the
341  * end.
342  */
343 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
344 {
345     long pagesize = qemu_real_host_page_size;
346     int ufd = -1;
347     bool ret = false; /* Error unless we change it */
348     void *testarea = NULL;
349     struct uffdio_register reg_struct;
350     struct uffdio_range range_struct;
351     uint64_t feature_mask;
352     Error *local_err = NULL;
353 
354     if (qemu_target_page_size() > pagesize) {
355         error_report("Target page size bigger than host page size");
356         goto out;
357     }
358 
359     ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
360     if (ufd == -1) {
361         error_report("%s: userfaultfd not available: %s", __func__,
362                      strerror(errno));
363         goto out;
364     }
365 
366     /* Give devices a chance to object */
367     if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
368         error_report_err(local_err);
369         goto out;
370     }
371 
372     /* Version and features check */
373     if (!ufd_check_and_apply(ufd, mis)) {
374         goto out;
375     }
376 
377     /* We don't support postcopy with shared RAM yet */
378     if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
379         goto out;
380     }
381 
382     /*
383      * userfault and mlock don't go together; we'll put it back later if
384      * it was enabled.
385      */
386     if (munlockall()) {
387         error_report("%s: munlockall: %s", __func__,  strerror(errno));
388         goto out;
389     }
390 
391     /*
392      *  We need to check that the ops we need are supported on anon memory
393      *  To do that we need to register a chunk and see the flags that
394      *  are returned.
395      */
396     testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
397                                     MAP_ANONYMOUS, -1, 0);
398     if (testarea == MAP_FAILED) {
399         error_report("%s: Failed to map test area: %s", __func__,
400                      strerror(errno));
401         goto out;
402     }
403     g_assert(((size_t)testarea & (pagesize - 1)) == 0);
404 
405     reg_struct.range.start = (uintptr_t)testarea;
406     reg_struct.range.len = pagesize;
407     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
408 
409     if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
410         error_report("%s userfault register: %s", __func__, strerror(errno));
411         goto out;
412     }
413 
414     range_struct.start = (uintptr_t)testarea;
415     range_struct.len = pagesize;
416     if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
417         error_report("%s userfault unregister: %s", __func__, strerror(errno));
418         goto out;
419     }
420 
421     feature_mask = (__u64)1 << _UFFDIO_WAKE |
422                    (__u64)1 << _UFFDIO_COPY |
423                    (__u64)1 << _UFFDIO_ZEROPAGE;
424     if ((reg_struct.ioctls & feature_mask) != feature_mask) {
425         error_report("Missing userfault map features: %" PRIx64,
426                      (uint64_t)(~reg_struct.ioctls & feature_mask));
427         goto out;
428     }
429 
430     /* Success! */
431     ret = true;
432 out:
433     if (testarea) {
434         munmap(testarea, pagesize);
435     }
436     if (ufd != -1) {
437         close(ufd);
438     }
439     return ret;
440 }
441 
442 /*
443  * Setup an area of RAM so that it *can* be used for postcopy later; this
444  * must be done right at the start prior to pre-copy.
445  * opaque should be the MIS.
446  */
447 static int init_range(RAMBlock *rb, void *opaque)
448 {
449     const char *block_name = qemu_ram_get_idstr(rb);
450     void *host_addr = qemu_ram_get_host_addr(rb);
451     ram_addr_t offset = qemu_ram_get_offset(rb);
452     ram_addr_t length = qemu_ram_get_used_length(rb);
453     trace_postcopy_init_range(block_name, host_addr, offset, length);
454 
455     /*
456      * We need the whole of RAM to be truly empty for postcopy, so things
457      * like ROMs and any data tables built during init must be zero'd
458      * - we're going to get the copy from the source anyway.
459      * (Precopy will just overwrite this data, so doesn't need the discard)
460      */
461     if (ram_discard_range(block_name, 0, length)) {
462         return -1;
463     }
464 
465     return 0;
466 }
467 
468 /*
469  * At the end of migration, undo the effects of init_range
470  * opaque should be the MIS.
471  */
472 static int cleanup_range(RAMBlock *rb, void *opaque)
473 {
474     const char *block_name = qemu_ram_get_idstr(rb);
475     void *host_addr = qemu_ram_get_host_addr(rb);
476     ram_addr_t offset = qemu_ram_get_offset(rb);
477     ram_addr_t length = qemu_ram_get_used_length(rb);
478     MigrationIncomingState *mis = opaque;
479     struct uffdio_range range_struct;
480     trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
481 
482     /*
483      * We turned off hugepage for the precopy stage with postcopy enabled
484      * we can turn it back on now.
485      */
486     qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
487 
488     /*
489      * We can also turn off userfault now since we should have all the
490      * pages.   It can be useful to leave it on to debug postcopy
491      * if you're not sure it's always getting every page.
492      */
493     range_struct.start = (uintptr_t)host_addr;
494     range_struct.len = length;
495 
496     if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
497         error_report("%s: userfault unregister %s", __func__, strerror(errno));
498 
499         return -1;
500     }
501 
502     return 0;
503 }
504 
505 /*
506  * Initialise postcopy-ram, setting the RAM to a state where we can go into
507  * postcopy later; must be called prior to any precopy.
508  * called from arch_init's similarly named ram_postcopy_incoming_init
509  */
510 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
511 {
512     if (foreach_not_ignored_block(init_range, NULL)) {
513         return -1;
514     }
515 
516     return 0;
517 }
518 
519 /*
520  * At the end of a migration where postcopy_ram_incoming_init was called.
521  */
522 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
523 {
524     trace_postcopy_ram_incoming_cleanup_entry();
525 
526     if (mis->have_fault_thread) {
527         Error *local_err = NULL;
528 
529         /* Let the fault thread quit */
530         qatomic_set(&mis->fault_thread_quit, 1);
531         postcopy_fault_thread_notify(mis);
532         trace_postcopy_ram_incoming_cleanup_join();
533         qemu_thread_join(&mis->fault_thread);
534 
535         if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
536             error_report_err(local_err);
537             return -1;
538         }
539 
540         if (foreach_not_ignored_block(cleanup_range, mis)) {
541             return -1;
542         }
543 
544         trace_postcopy_ram_incoming_cleanup_closeuf();
545         close(mis->userfault_fd);
546         close(mis->userfault_event_fd);
547         mis->have_fault_thread = false;
548     }
549 
550     if (enable_mlock) {
551         if (os_mlock() < 0) {
552             error_report("mlock: %s", strerror(errno));
553             /*
554              * It doesn't feel right to fail at this point, we have a valid
555              * VM state.
556              */
557         }
558     }
559 
560     if (mis->postcopy_tmp_page) {
561         munmap(mis->postcopy_tmp_page, mis->largest_page_size);
562         mis->postcopy_tmp_page = NULL;
563     }
564     if (mis->postcopy_tmp_zero_page) {
565         munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
566         mis->postcopy_tmp_zero_page = NULL;
567     }
568     trace_postcopy_ram_incoming_cleanup_blocktime(
569             get_postcopy_total_blocktime());
570 
571     trace_postcopy_ram_incoming_cleanup_exit();
572     return 0;
573 }
574 
575 /*
576  * Disable huge pages on an area
577  */
578 static int nhp_range(RAMBlock *rb, void *opaque)
579 {
580     const char *block_name = qemu_ram_get_idstr(rb);
581     void *host_addr = qemu_ram_get_host_addr(rb);
582     ram_addr_t offset = qemu_ram_get_offset(rb);
583     ram_addr_t length = qemu_ram_get_used_length(rb);
584     trace_postcopy_nhp_range(block_name, host_addr, offset, length);
585 
586     /*
587      * Before we do discards we need to ensure those discards really
588      * do delete areas of the page, even if THP thinks a hugepage would
589      * be a good idea, so force hugepages off.
590      */
591     qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
592 
593     return 0;
594 }
595 
596 /*
597  * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
598  * however leaving it until after precopy means that most of the precopy
599  * data is still THPd
600  */
601 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
602 {
603     if (foreach_not_ignored_block(nhp_range, mis)) {
604         return -1;
605     }
606 
607     postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
608 
609     return 0;
610 }
611 
612 /*
613  * Mark the given area of RAM as requiring notification to unwritten areas
614  * Used as a  callback on foreach_not_ignored_block.
615  *   host_addr: Base of area to mark
616  *   offset: Offset in the whole ram arena
617  *   length: Length of the section
618  *   opaque: MigrationIncomingState pointer
619  * Returns 0 on success
620  */
621 static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
622 {
623     MigrationIncomingState *mis = opaque;
624     struct uffdio_register reg_struct;
625 
626     reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
627     reg_struct.range.len = qemu_ram_get_used_length(rb);
628     reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
629 
630     /* Now tell our userfault_fd that it's responsible for this area */
631     if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
632         error_report("%s userfault register: %s", __func__, strerror(errno));
633         return -1;
634     }
635     if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
636         error_report("%s userfault: Region doesn't support COPY", __func__);
637         return -1;
638     }
639     if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
640         qemu_ram_set_uf_zeroable(rb);
641     }
642 
643     return 0;
644 }
645 
646 int postcopy_wake_shared(struct PostCopyFD *pcfd,
647                          uint64_t client_addr,
648                          RAMBlock *rb)
649 {
650     size_t pagesize = qemu_ram_pagesize(rb);
651     struct uffdio_range range;
652     int ret;
653     trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
654     range.start = client_addr & ~(pagesize - 1);
655     range.len = pagesize;
656     ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
657     if (ret) {
658         error_report("%s: Failed to wake: %zx in %s (%s)",
659                      __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
660                      strerror(errno));
661     }
662     return ret;
663 }
664 
665 /*
666  * Callback from shared fault handlers to ask for a page,
667  * the page must be specified by a RAMBlock and an offset in that rb
668  * Note: Only for use by shared fault handlers (in fault thread)
669  */
670 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
671                                  uint64_t client_addr, uint64_t rb_offset)
672 {
673     size_t pagesize = qemu_ram_pagesize(rb);
674     uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
675     MigrationIncomingState *mis = migration_incoming_get_current();
676 
677     trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
678                                        rb_offset);
679     if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
680         trace_postcopy_request_shared_page_present(pcfd->idstr,
681                                         qemu_ram_get_idstr(rb), rb_offset);
682         return postcopy_wake_shared(pcfd, client_addr, rb);
683     }
684     migrate_send_rp_req_pages(mis, rb, aligned_rbo, client_addr);
685     return 0;
686 }
687 
688 static int get_mem_fault_cpu_index(uint32_t pid)
689 {
690     CPUState *cpu_iter;
691 
692     CPU_FOREACH(cpu_iter) {
693         if (cpu_iter->thread_id == pid) {
694             trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
695             return cpu_iter->cpu_index;
696         }
697     }
698     trace_get_mem_fault_cpu_index(-1, pid);
699     return -1;
700 }
701 
702 static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
703 {
704     int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
705                                     dc->start_time;
706     return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
707 }
708 
709 /*
710  * This function is being called when pagefault occurs. It
711  * tracks down vCPU blocking time.
712  *
713  * @addr: faulted host virtual address
714  * @ptid: faulted process thread id
715  * @rb: ramblock appropriate to addr
716  */
717 static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
718                                           RAMBlock *rb)
719 {
720     int cpu, already_received;
721     MigrationIncomingState *mis = migration_incoming_get_current();
722     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
723     uint32_t low_time_offset;
724 
725     if (!dc || ptid == 0) {
726         return;
727     }
728     cpu = get_mem_fault_cpu_index(ptid);
729     if (cpu < 0) {
730         return;
731     }
732 
733     low_time_offset = get_low_time_offset(dc);
734     if (dc->vcpu_addr[cpu] == 0) {
735         qatomic_inc(&dc->smp_cpus_down);
736     }
737 
738     qatomic_xchg(&dc->last_begin, low_time_offset);
739     qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
740     qatomic_xchg(&dc->vcpu_addr[cpu], addr);
741 
742     /*
743      * check it here, not at the beginning of the function,
744      * due to, check could occur early than bitmap_set in
745      * qemu_ufd_copy_ioctl
746      */
747     already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
748     if (already_received) {
749         qatomic_xchg(&dc->vcpu_addr[cpu], 0);
750         qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
751         qatomic_dec(&dc->smp_cpus_down);
752     }
753     trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
754                                         cpu, already_received);
755 }
756 
757 /*
758  *  This function just provide calculated blocktime per cpu and trace it.
759  *  Total blocktime is calculated in mark_postcopy_blocktime_end.
760  *
761  *
762  * Assume we have 3 CPU
763  *
764  *      S1        E1           S1               E1
765  * -----***********------------xxx***************------------------------> CPU1
766  *
767  *             S2                E2
768  * ------------****************xxx---------------------------------------> CPU2
769  *
770  *                         S3            E3
771  * ------------------------****xxx********-------------------------------> CPU3
772  *
773  * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
774  * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
775  * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
776  *            it's a part of total blocktime.
777  * S1 - here is last_begin
778  * Legend of the picture is following:
779  *              * - means blocktime per vCPU
780  *              x - means overlapped blocktime (total blocktime)
781  *
782  * @addr: host virtual address
783  */
784 static void mark_postcopy_blocktime_end(uintptr_t addr)
785 {
786     MigrationIncomingState *mis = migration_incoming_get_current();
787     PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
788     MachineState *ms = MACHINE(qdev_get_machine());
789     unsigned int smp_cpus = ms->smp.cpus;
790     int i, affected_cpu = 0;
791     bool vcpu_total_blocktime = false;
792     uint32_t read_vcpu_time, low_time_offset;
793 
794     if (!dc) {
795         return;
796     }
797 
798     low_time_offset = get_low_time_offset(dc);
799     /* lookup cpu, to clear it,
800      * that algorithm looks straightforward, but it's not
801      * optimal, more optimal algorithm is keeping tree or hash
802      * where key is address value is a list of  */
803     for (i = 0; i < smp_cpus; i++) {
804         uint32_t vcpu_blocktime = 0;
805 
806         read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
807         if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
808             read_vcpu_time == 0) {
809             continue;
810         }
811         qatomic_xchg(&dc->vcpu_addr[i], 0);
812         vcpu_blocktime = low_time_offset - read_vcpu_time;
813         affected_cpu += 1;
814         /* we need to know is that mark_postcopy_end was due to
815          * faulted page, another possible case it's prefetched
816          * page and in that case we shouldn't be here */
817         if (!vcpu_total_blocktime &&
818             qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
819             vcpu_total_blocktime = true;
820         }
821         /* continue cycle, due to one page could affect several vCPUs */
822         dc->vcpu_blocktime[i] += vcpu_blocktime;
823     }
824 
825     qatomic_sub(&dc->smp_cpus_down, affected_cpu);
826     if (vcpu_total_blocktime) {
827         dc->total_blocktime += low_time_offset - qatomic_fetch_add(
828                 &dc->last_begin, 0);
829     }
830     trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
831                                       affected_cpu);
832 }
833 
834 static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
835 {
836     trace_postcopy_pause_fault_thread();
837 
838     qemu_sem_wait(&mis->postcopy_pause_sem_fault);
839 
840     trace_postcopy_pause_fault_thread_continued();
841 
842     return true;
843 }
844 
845 /*
846  * Handle faults detected by the USERFAULT markings
847  */
848 static void *postcopy_ram_fault_thread(void *opaque)
849 {
850     MigrationIncomingState *mis = opaque;
851     struct uffd_msg msg;
852     int ret;
853     size_t index;
854     RAMBlock *rb = NULL;
855 
856     trace_postcopy_ram_fault_thread_entry();
857     rcu_register_thread();
858     mis->last_rb = NULL; /* last RAMBlock we sent part of */
859     qemu_sem_post(&mis->fault_thread_sem);
860 
861     struct pollfd *pfd;
862     size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
863 
864     pfd = g_new0(struct pollfd, pfd_len);
865 
866     pfd[0].fd = mis->userfault_fd;
867     pfd[0].events = POLLIN;
868     pfd[1].fd = mis->userfault_event_fd;
869     pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
870     trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
871     for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
872         struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
873                                                  struct PostCopyFD, index);
874         pfd[2 + index].fd = pcfd->fd;
875         pfd[2 + index].events = POLLIN;
876         trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
877                                                   pcfd->fd);
878     }
879 
880     while (true) {
881         ram_addr_t rb_offset;
882         int poll_result;
883 
884         /*
885          * We're mainly waiting for the kernel to give us a faulting HVA,
886          * however we can be told to quit via userfault_quit_fd which is
887          * an eventfd
888          */
889 
890         poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
891         if (poll_result == -1) {
892             error_report("%s: userfault poll: %s", __func__, strerror(errno));
893             break;
894         }
895 
896         if (!mis->to_src_file) {
897             /*
898              * Possibly someone tells us that the return path is
899              * broken already using the event. We should hold until
900              * the channel is rebuilt.
901              */
902             if (postcopy_pause_fault_thread(mis)) {
903                 /* Continue to read the userfaultfd */
904             } else {
905                 error_report("%s: paused but don't allow to continue",
906                              __func__);
907                 break;
908             }
909         }
910 
911         if (pfd[1].revents) {
912             uint64_t tmp64 = 0;
913 
914             /* Consume the signal */
915             if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
916                 /* Nothing obviously nicer than posting this error. */
917                 error_report("%s: read() failed", __func__);
918             }
919 
920             if (qatomic_read(&mis->fault_thread_quit)) {
921                 trace_postcopy_ram_fault_thread_quit();
922                 break;
923             }
924         }
925 
926         if (pfd[0].revents) {
927             poll_result--;
928             ret = read(mis->userfault_fd, &msg, sizeof(msg));
929             if (ret != sizeof(msg)) {
930                 if (errno == EAGAIN) {
931                     /*
932                      * if a wake up happens on the other thread just after
933                      * the poll, there is nothing to read.
934                      */
935                     continue;
936                 }
937                 if (ret < 0) {
938                     error_report("%s: Failed to read full userfault "
939                                  "message: %s",
940                                  __func__, strerror(errno));
941                     break;
942                 } else {
943                     error_report("%s: Read %d bytes from userfaultfd "
944                                  "expected %zd",
945                                  __func__, ret, sizeof(msg));
946                     break; /* Lost alignment, don't know what we'd read next */
947                 }
948             }
949             if (msg.event != UFFD_EVENT_PAGEFAULT) {
950                 error_report("%s: Read unexpected event %ud from userfaultfd",
951                              __func__, msg.event);
952                 continue; /* It's not a page fault, shouldn't happen */
953             }
954 
955             rb = qemu_ram_block_from_host(
956                      (void *)(uintptr_t)msg.arg.pagefault.address,
957                      true, &rb_offset);
958             if (!rb) {
959                 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
960                              PRIx64, (uint64_t)msg.arg.pagefault.address);
961                 break;
962             }
963 
964             rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
965             trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
966                                                 qemu_ram_get_idstr(rb),
967                                                 rb_offset,
968                                                 msg.arg.pagefault.feat.ptid);
969             mark_postcopy_blocktime_begin(
970                     (uintptr_t)(msg.arg.pagefault.address),
971                                 msg.arg.pagefault.feat.ptid, rb);
972 
973 retry:
974             /*
975              * Send the request to the source - we want to request one
976              * of our host page sizes (which is >= TPS)
977              */
978             ret = migrate_send_rp_req_pages(mis, rb, rb_offset,
979                                             msg.arg.pagefault.address);
980             if (ret) {
981                 /* May be network failure, try to wait for recovery */
982                 if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
983                     /* We got reconnected somehow, try to continue */
984                     goto retry;
985                 } else {
986                     /* This is a unavoidable fault */
987                     error_report("%s: migrate_send_rp_req_pages() get %d",
988                                  __func__, ret);
989                     break;
990                 }
991             }
992         }
993 
994         /* Now handle any requests from external processes on shared memory */
995         /* TODO: May need to handle devices deregistering during postcopy */
996         for (index = 2; index < pfd_len && poll_result; index++) {
997             if (pfd[index].revents) {
998                 struct PostCopyFD *pcfd =
999                     &g_array_index(mis->postcopy_remote_fds,
1000                                    struct PostCopyFD, index - 2);
1001 
1002                 poll_result--;
1003                 if (pfd[index].revents & POLLERR) {
1004                     error_report("%s: POLLERR on poll %zd fd=%d",
1005                                  __func__, index, pcfd->fd);
1006                     pfd[index].events = 0;
1007                     continue;
1008                 }
1009 
1010                 ret = read(pcfd->fd, &msg, sizeof(msg));
1011                 if (ret != sizeof(msg)) {
1012                     if (errno == EAGAIN) {
1013                         /*
1014                          * if a wake up happens on the other thread just after
1015                          * the poll, there is nothing to read.
1016                          */
1017                         continue;
1018                     }
1019                     if (ret < 0) {
1020                         error_report("%s: Failed to read full userfault "
1021                                      "message: %s (shared) revents=%d",
1022                                      __func__, strerror(errno),
1023                                      pfd[index].revents);
1024                         /*TODO: Could just disable this sharer */
1025                         break;
1026                     } else {
1027                         error_report("%s: Read %d bytes from userfaultfd "
1028                                      "expected %zd (shared)",
1029                                      __func__, ret, sizeof(msg));
1030                         /*TODO: Could just disable this sharer */
1031                         break; /*Lost alignment,don't know what we'd read next*/
1032                     }
1033                 }
1034                 if (msg.event != UFFD_EVENT_PAGEFAULT) {
1035                     error_report("%s: Read unexpected event %ud "
1036                                  "from userfaultfd (shared)",
1037                                  __func__, msg.event);
1038                     continue; /* It's not a page fault, shouldn't happen */
1039                 }
1040                 /* Call the device handler registered with us */
1041                 ret = pcfd->handler(pcfd, &msg);
1042                 if (ret) {
1043                     error_report("%s: Failed to resolve shared fault on %zd/%s",
1044                                  __func__, index, pcfd->idstr);
1045                     /* TODO: Fail? Disable this sharer? */
1046                 }
1047             }
1048         }
1049     }
1050     rcu_unregister_thread();
1051     trace_postcopy_ram_fault_thread_exit();
1052     g_free(pfd);
1053     return NULL;
1054 }
1055 
1056 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1057 {
1058     /* Open the fd for the kernel to give us userfaults */
1059     mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1060     if (mis->userfault_fd == -1) {
1061         error_report("%s: Failed to open userfault fd: %s", __func__,
1062                      strerror(errno));
1063         return -1;
1064     }
1065 
1066     /*
1067      * Although the host check already tested the API, we need to
1068      * do the check again as an ABI handshake on the new fd.
1069      */
1070     if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1071         return -1;
1072     }
1073 
1074     /* Now an eventfd we use to tell the fault-thread to quit */
1075     mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1076     if (mis->userfault_event_fd == -1) {
1077         error_report("%s: Opening userfault_event_fd: %s", __func__,
1078                      strerror(errno));
1079         close(mis->userfault_fd);
1080         return -1;
1081     }
1082 
1083     qemu_sem_init(&mis->fault_thread_sem, 0);
1084     qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1085                        postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1086     qemu_sem_wait(&mis->fault_thread_sem);
1087     qemu_sem_destroy(&mis->fault_thread_sem);
1088     mis->have_fault_thread = true;
1089 
1090     /* Mark so that we get notified of accesses to unwritten areas */
1091     if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1092         error_report("ram_block_enable_notify failed");
1093         return -1;
1094     }
1095 
1096     mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1097                                   PROT_READ | PROT_WRITE, MAP_PRIVATE |
1098                                   MAP_ANONYMOUS, -1, 0);
1099     if (mis->postcopy_tmp_page == MAP_FAILED) {
1100         mis->postcopy_tmp_page = NULL;
1101         error_report("%s: Failed to map postcopy_tmp_page %s",
1102                      __func__, strerror(errno));
1103         return -1;
1104     }
1105 
1106     /*
1107      * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1108      */
1109     mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1110                                        PROT_READ | PROT_WRITE,
1111                                        MAP_PRIVATE | MAP_ANONYMOUS,
1112                                        -1, 0);
1113     if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1114         int e = errno;
1115         mis->postcopy_tmp_zero_page = NULL;
1116         error_report("%s: Failed to map large zero page %s",
1117                      __func__, strerror(e));
1118         return -e;
1119     }
1120     memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1121 
1122     trace_postcopy_ram_enable_notify();
1123 
1124     return 0;
1125 }
1126 
1127 static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1128                                void *from_addr, uint64_t pagesize, RAMBlock *rb)
1129 {
1130     int userfault_fd = mis->userfault_fd;
1131     int ret;
1132 
1133     if (from_addr) {
1134         struct uffdio_copy copy_struct;
1135         copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1136         copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1137         copy_struct.len = pagesize;
1138         copy_struct.mode = 0;
1139         ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1140     } else {
1141         struct uffdio_zeropage zero_struct;
1142         zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1143         zero_struct.range.len = pagesize;
1144         zero_struct.mode = 0;
1145         ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1146     }
1147     if (!ret) {
1148         qemu_mutex_lock(&mis->page_request_mutex);
1149         ramblock_recv_bitmap_set_range(rb, host_addr,
1150                                        pagesize / qemu_target_page_size());
1151         /*
1152          * If this page resolves a page fault for a previous recorded faulted
1153          * address, take a special note to maintain the requested page list.
1154          */
1155         if (g_tree_lookup(mis->page_requested, host_addr)) {
1156             g_tree_remove(mis->page_requested, host_addr);
1157             mis->page_requested_count--;
1158             trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1159         }
1160         qemu_mutex_unlock(&mis->page_request_mutex);
1161         mark_postcopy_blocktime_end((uintptr_t)host_addr);
1162     }
1163     return ret;
1164 }
1165 
1166 int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1167 {
1168     int i;
1169     MigrationIncomingState *mis = migration_incoming_get_current();
1170     GArray *pcrfds = mis->postcopy_remote_fds;
1171 
1172     for (i = 0; i < pcrfds->len; i++) {
1173         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1174         int ret = cur->waker(cur, rb, offset);
1175         if (ret) {
1176             return ret;
1177         }
1178     }
1179     return 0;
1180 }
1181 
1182 /*
1183  * Place a host page (from) at (host) atomically
1184  * returns 0 on success
1185  */
1186 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1187                         RAMBlock *rb)
1188 {
1189     size_t pagesize = qemu_ram_pagesize(rb);
1190 
1191     /* copy also acks to the kernel waking the stalled thread up
1192      * TODO: We can inhibit that ack and only do it if it was requested
1193      * which would be slightly cheaper, but we'd have to be careful
1194      * of the order of updating our page state.
1195      */
1196     if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1197         int e = errno;
1198         error_report("%s: %s copy host: %p from: %p (size: %zd)",
1199                      __func__, strerror(e), host, from, pagesize);
1200 
1201         return -e;
1202     }
1203 
1204     trace_postcopy_place_page(host);
1205     return postcopy_notify_shared_wake(rb,
1206                                        qemu_ram_block_host_offset(rb, host));
1207 }
1208 
1209 /*
1210  * Place a zero page at (host) atomically
1211  * returns 0 on success
1212  */
1213 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1214                              RAMBlock *rb)
1215 {
1216     size_t pagesize = qemu_ram_pagesize(rb);
1217     trace_postcopy_place_page_zero(host);
1218 
1219     /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1220      * but it's not available for everything (e.g. hugetlbpages)
1221      */
1222     if (qemu_ram_is_uf_zeroable(rb)) {
1223         if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1224             int e = errno;
1225             error_report("%s: %s zero host: %p",
1226                          __func__, strerror(e), host);
1227 
1228             return -e;
1229         }
1230         return postcopy_notify_shared_wake(rb,
1231                                            qemu_ram_block_host_offset(rb,
1232                                                                       host));
1233     } else {
1234         return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1235     }
1236 }
1237 
1238 #else
1239 /* No target OS support, stubs just fail */
1240 void fill_destination_postcopy_migration_info(MigrationInfo *info)
1241 {
1242 }
1243 
1244 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1245 {
1246     error_report("%s: No OS support", __func__);
1247     return false;
1248 }
1249 
1250 int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1251 {
1252     error_report("postcopy_ram_incoming_init: No OS support");
1253     return -1;
1254 }
1255 
1256 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1257 {
1258     assert(0);
1259     return -1;
1260 }
1261 
1262 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1263 {
1264     assert(0);
1265     return -1;
1266 }
1267 
1268 int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1269                                  uint64_t client_addr, uint64_t rb_offset)
1270 {
1271     assert(0);
1272     return -1;
1273 }
1274 
1275 int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1276 {
1277     assert(0);
1278     return -1;
1279 }
1280 
1281 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1282                         RAMBlock *rb)
1283 {
1284     assert(0);
1285     return -1;
1286 }
1287 
1288 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1289                         RAMBlock *rb)
1290 {
1291     assert(0);
1292     return -1;
1293 }
1294 
1295 int postcopy_wake_shared(struct PostCopyFD *pcfd,
1296                          uint64_t client_addr,
1297                          RAMBlock *rb)
1298 {
1299     assert(0);
1300     return -1;
1301 }
1302 #endif
1303 
1304 /* ------------------------------------------------------------------------- */
1305 
1306 void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1307 {
1308     uint64_t tmp64 = 1;
1309 
1310     /*
1311      * Wakeup the fault_thread.  It's an eventfd that should currently
1312      * be at 0, we're going to increment it to 1
1313      */
1314     if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1315         /* Not much we can do here, but may as well report it */
1316         error_report("%s: incrementing failed: %s", __func__,
1317                      strerror(errno));
1318     }
1319 }
1320 
1321 /**
1322  * postcopy_discard_send_init: Called at the start of each RAMBlock before
1323  *   asking to discard individual ranges.
1324  *
1325  * @ms: The current migration state.
1326  * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1327  * @name: RAMBlock that discards will operate on.
1328  */
1329 static PostcopyDiscardState pds = {0};
1330 void postcopy_discard_send_init(MigrationState *ms, const char *name)
1331 {
1332     pds.ramblock_name = name;
1333     pds.cur_entry = 0;
1334     pds.nsentwords = 0;
1335     pds.nsentcmds = 0;
1336 }
1337 
1338 /**
1339  * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1340  *   discard. May send a discard message, may just leave it queued to
1341  *   be sent later.
1342  *
1343  * @ms: Current migration state.
1344  * @start,@length: a range of pages in the migration bitmap in the
1345  *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1346  */
1347 void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1348                                  unsigned long length)
1349 {
1350     size_t tp_size = qemu_target_page_size();
1351     /* Convert to byte offsets within the RAM block */
1352     pds.start_list[pds.cur_entry] = start  * tp_size;
1353     pds.length_list[pds.cur_entry] = length * tp_size;
1354     trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1355     pds.cur_entry++;
1356     pds.nsentwords++;
1357 
1358     if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1359         /* Full set, ship it! */
1360         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1361                                               pds.ramblock_name,
1362                                               pds.cur_entry,
1363                                               pds.start_list,
1364                                               pds.length_list);
1365         pds.nsentcmds++;
1366         pds.cur_entry = 0;
1367     }
1368 }
1369 
1370 /**
1371  * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1372  * bitmap code. Sends any outstanding discard messages, frees the PDS
1373  *
1374  * @ms: Current migration state.
1375  */
1376 void postcopy_discard_send_finish(MigrationState *ms)
1377 {
1378     /* Anything unsent? */
1379     if (pds.cur_entry) {
1380         qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1381                                               pds.ramblock_name,
1382                                               pds.cur_entry,
1383                                               pds.start_list,
1384                                               pds.length_list);
1385         pds.nsentcmds++;
1386     }
1387 
1388     trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1389                                        pds.nsentcmds);
1390 }
1391 
1392 /*
1393  * Current state of incoming postcopy; note this is not part of
1394  * MigrationIncomingState since it's state is used during cleanup
1395  * at the end as MIS is being freed.
1396  */
1397 static PostcopyState incoming_postcopy_state;
1398 
1399 PostcopyState  postcopy_state_get(void)
1400 {
1401     return qatomic_mb_read(&incoming_postcopy_state);
1402 }
1403 
1404 /* Set the state and return the old state */
1405 PostcopyState postcopy_state_set(PostcopyState new_state)
1406 {
1407     return qatomic_xchg(&incoming_postcopy_state, new_state);
1408 }
1409 
1410 /* Register a handler for external shared memory postcopy
1411  * called on the destination.
1412  */
1413 void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1414 {
1415     MigrationIncomingState *mis = migration_incoming_get_current();
1416 
1417     mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1418                                                   *pcfd);
1419 }
1420 
1421 /* Unregister a handler for external shared memory postcopy
1422  */
1423 void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1424 {
1425     guint i;
1426     MigrationIncomingState *mis = migration_incoming_get_current();
1427     GArray *pcrfds = mis->postcopy_remote_fds;
1428 
1429     for (i = 0; i < pcrfds->len; i++) {
1430         struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1431         if (cur->fd == pcfd->fd) {
1432             mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1433             return;
1434         }
1435     }
1436 }
1437