xref: /qemu/migration/qemu-file.c (revision 102d7d1f)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include <zlib.h>
26 #include "qemu/error-report.h"
27 #include "qemu/iov.h"
28 #include "migration.h"
29 #include "qemu-file.h"
30 #include "trace.h"
31 #include "qapi/error.h"
32 
33 #define IO_BUF_SIZE 32768
34 #define MAX_IOV_SIZE MIN_CONST(IOV_MAX, 64)
35 
36 struct QEMUFile {
37     const QEMUFileOps *ops;
38     const QEMUFileHooks *hooks;
39     void *opaque;
40 
41     int64_t bytes_xfer;
42     int64_t xfer_limit;
43 
44     int64_t pos; /* start of buffer when writing, end of buffer
45                     when reading */
46     int buf_index;
47     int buf_size; /* 0 when writing */
48     uint8_t buf[IO_BUF_SIZE];
49 
50     DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
51     struct iovec iov[MAX_IOV_SIZE];
52     unsigned int iovcnt;
53 
54     int last_error;
55     Error *last_error_obj;
56     /* has the file has been shutdown */
57     bool shutdown;
58 };
59 
60 /*
61  * Stop a file from being read/written - not all backing files can do this
62  * typically only sockets can.
63  */
64 int qemu_file_shutdown(QEMUFile *f)
65 {
66     int ret;
67 
68     f->shutdown = true;
69     if (!f->ops->shut_down) {
70         return -ENOSYS;
71     }
72     ret = f->ops->shut_down(f->opaque, true, true, NULL);
73 
74     if (!f->last_error) {
75         qemu_file_set_error(f, -EIO);
76     }
77     return ret;
78 }
79 
80 /*
81  * Result: QEMUFile* for a 'return path' for comms in the opposite direction
82  *         NULL if not available
83  */
84 QEMUFile *qemu_file_get_return_path(QEMUFile *f)
85 {
86     if (!f->ops->get_return_path) {
87         return NULL;
88     }
89     return f->ops->get_return_path(f->opaque);
90 }
91 
92 bool qemu_file_mode_is_not_valid(const char *mode)
93 {
94     if (mode == NULL ||
95         (mode[0] != 'r' && mode[0] != 'w') ||
96         mode[1] != 'b' || mode[2] != 0) {
97         fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
98         return true;
99     }
100 
101     return false;
102 }
103 
104 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
105 {
106     QEMUFile *f;
107 
108     f = g_new0(QEMUFile, 1);
109 
110     f->opaque = opaque;
111     f->ops = ops;
112     return f;
113 }
114 
115 
116 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
117 {
118     f->hooks = hooks;
119 }
120 
121 /*
122  * Get last error for stream f with optional Error*
123  *
124  * Return negative error value if there has been an error on previous
125  * operations, return 0 if no error happened.
126  * Optional, it returns Error* in errp, but it may be NULL even if return value
127  * is not 0.
128  *
129  */
130 int qemu_file_get_error_obj(QEMUFile *f, Error **errp)
131 {
132     if (errp) {
133         *errp = f->last_error_obj ? error_copy(f->last_error_obj) : NULL;
134     }
135     return f->last_error;
136 }
137 
138 /*
139  * Set the last error for stream f with optional Error*
140  */
141 void qemu_file_set_error_obj(QEMUFile *f, int ret, Error *err)
142 {
143     if (f->last_error == 0 && ret) {
144         f->last_error = ret;
145         error_propagate(&f->last_error_obj, err);
146     } else if (err) {
147         error_report_err(err);
148     }
149 }
150 
151 /*
152  * Get last error for stream f
153  *
154  * Return negative error value if there has been an error on previous
155  * operations, return 0 if no error happened.
156  *
157  */
158 int qemu_file_get_error(QEMUFile *f)
159 {
160     return qemu_file_get_error_obj(f, NULL);
161 }
162 
163 /*
164  * Set the last error for stream f
165  */
166 void qemu_file_set_error(QEMUFile *f, int ret)
167 {
168     qemu_file_set_error_obj(f, ret, NULL);
169 }
170 
171 bool qemu_file_is_writable(QEMUFile *f)
172 {
173     return f->ops->writev_buffer;
174 }
175 
176 static void qemu_iovec_release_ram(QEMUFile *f)
177 {
178     struct iovec iov;
179     unsigned long idx;
180 
181     /* Find and release all the contiguous memory ranges marked as may_free. */
182     idx = find_next_bit(f->may_free, f->iovcnt, 0);
183     if (idx >= f->iovcnt) {
184         return;
185     }
186     iov = f->iov[idx];
187 
188     /* The madvise() in the loop is called for iov within a continuous range and
189      * then reinitialize the iov. And in the end, madvise() is called for the
190      * last iov.
191      */
192     while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
193         /* check for adjacent buffer and coalesce them */
194         if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
195             iov.iov_len += f->iov[idx].iov_len;
196             continue;
197         }
198         if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
199             error_report("migrate: madvise DONTNEED failed %p %zd: %s",
200                          iov.iov_base, iov.iov_len, strerror(errno));
201         }
202         iov = f->iov[idx];
203     }
204     if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
205             error_report("migrate: madvise DONTNEED failed %p %zd: %s",
206                          iov.iov_base, iov.iov_len, strerror(errno));
207     }
208     memset(f->may_free, 0, sizeof(f->may_free));
209 }
210 
211 /**
212  * Flushes QEMUFile buffer
213  *
214  * This will flush all pending data. If data was only partially flushed, it
215  * will set an error state.
216  */
217 void qemu_fflush(QEMUFile *f)
218 {
219     ssize_t ret = 0;
220     ssize_t expect = 0;
221     Error *local_error = NULL;
222 
223     if (!qemu_file_is_writable(f)) {
224         return;
225     }
226 
227     if (f->shutdown) {
228         return;
229     }
230     if (f->iovcnt > 0) {
231         expect = iov_size(f->iov, f->iovcnt);
232         ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos,
233                                     &local_error);
234 
235         qemu_iovec_release_ram(f);
236     }
237 
238     if (ret >= 0) {
239         f->pos += ret;
240     }
241     /* We expect the QEMUFile write impl to send the full
242      * data set we requested, so sanity check that.
243      */
244     if (ret != expect) {
245         qemu_file_set_error_obj(f, ret < 0 ? ret : -EIO, local_error);
246     }
247     f->buf_index = 0;
248     f->iovcnt = 0;
249 }
250 
251 void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
252 {
253     int ret = 0;
254 
255     if (f->hooks && f->hooks->before_ram_iterate) {
256         ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL);
257         if (ret < 0) {
258             qemu_file_set_error(f, ret);
259         }
260     }
261 }
262 
263 void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
264 {
265     int ret = 0;
266 
267     if (f->hooks && f->hooks->after_ram_iterate) {
268         ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL);
269         if (ret < 0) {
270             qemu_file_set_error(f, ret);
271         }
272     }
273 }
274 
275 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
276 {
277     int ret = -EINVAL;
278 
279     if (f->hooks && f->hooks->hook_ram_load) {
280         ret = f->hooks->hook_ram_load(f, f->opaque, flags, data);
281         if (ret < 0) {
282             qemu_file_set_error(f, ret);
283         }
284     } else {
285         /*
286          * Hook is a hook specifically requested by the source sending a flag
287          * that expects there to be a hook on the destination.
288          */
289         if (flags == RAM_CONTROL_HOOK) {
290             qemu_file_set_error(f, ret);
291         }
292     }
293 }
294 
295 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
296                              ram_addr_t offset, size_t size,
297                              uint64_t *bytes_sent)
298 {
299     if (f->hooks && f->hooks->save_page) {
300         int ret = f->hooks->save_page(f, f->opaque, block_offset,
301                                       offset, size, bytes_sent);
302         if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
303             f->bytes_xfer += size;
304         }
305 
306         if (ret != RAM_SAVE_CONTROL_DELAYED &&
307             ret != RAM_SAVE_CONTROL_NOT_SUPP) {
308             if (bytes_sent && *bytes_sent > 0) {
309                 qemu_update_position(f, *bytes_sent);
310             } else if (ret < 0) {
311                 qemu_file_set_error(f, ret);
312             }
313         }
314 
315         return ret;
316     }
317 
318     return RAM_SAVE_CONTROL_NOT_SUPP;
319 }
320 
321 /*
322  * Attempt to fill the buffer from the underlying file
323  * Returns the number of bytes read, or negative value for an error.
324  *
325  * Note that it can return a partially full buffer even in a not error/not EOF
326  * case if the underlying file descriptor gives a short read, and that can
327  * happen even on a blocking fd.
328  */
329 static ssize_t qemu_fill_buffer(QEMUFile *f)
330 {
331     int len;
332     int pending;
333     Error *local_error = NULL;
334 
335     assert(!qemu_file_is_writable(f));
336 
337     pending = f->buf_size - f->buf_index;
338     if (pending > 0) {
339         memmove(f->buf, f->buf + f->buf_index, pending);
340     }
341     f->buf_index = 0;
342     f->buf_size = pending;
343 
344     if (f->shutdown) {
345         return 0;
346     }
347 
348     len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
349                              IO_BUF_SIZE - pending, &local_error);
350     if (len > 0) {
351         f->buf_size += len;
352         f->pos += len;
353     } else if (len == 0) {
354         qemu_file_set_error_obj(f, -EIO, local_error);
355     } else if (len != -EAGAIN) {
356         qemu_file_set_error_obj(f, len, local_error);
357     } else {
358         error_free(local_error);
359     }
360 
361     return len;
362 }
363 
364 void qemu_update_position(QEMUFile *f, size_t size)
365 {
366     f->pos += size;
367 }
368 
369 /** Closes the file
370  *
371  * Returns negative error value if any error happened on previous operations or
372  * while closing the file. Returns 0 or positive number on success.
373  *
374  * The meaning of return value on success depends on the specific backend
375  * being used.
376  */
377 int qemu_fclose(QEMUFile *f)
378 {
379     int ret;
380     qemu_fflush(f);
381     ret = qemu_file_get_error(f);
382 
383     if (f->ops->close) {
384         int ret2 = f->ops->close(f->opaque, NULL);
385         if (ret >= 0) {
386             ret = ret2;
387         }
388     }
389     /* If any error was spotted before closing, we should report it
390      * instead of the close() return value.
391      */
392     if (f->last_error) {
393         ret = f->last_error;
394     }
395     error_free(f->last_error_obj);
396     g_free(f);
397     trace_qemu_file_fclose();
398     return ret;
399 }
400 
401 /*
402  * Add buf to iovec. Do flush if iovec is full.
403  *
404  * Return values:
405  * 1 iovec is full and flushed
406  * 0 iovec is not flushed
407  *
408  */
409 static int add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
410                         bool may_free)
411 {
412     /* check for adjacent buffer and coalesce them */
413     if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
414         f->iov[f->iovcnt - 1].iov_len &&
415         may_free == test_bit(f->iovcnt - 1, f->may_free))
416     {
417         f->iov[f->iovcnt - 1].iov_len += size;
418     } else {
419         if (f->iovcnt >= MAX_IOV_SIZE) {
420             /* Should only happen if a previous fflush failed */
421             assert(f->shutdown || !qemu_file_is_writable(f));
422             return 1;
423         }
424         if (may_free) {
425             set_bit(f->iovcnt, f->may_free);
426         }
427         f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
428         f->iov[f->iovcnt++].iov_len = size;
429     }
430 
431     if (f->iovcnt >= MAX_IOV_SIZE) {
432         qemu_fflush(f);
433         return 1;
434     }
435 
436     return 0;
437 }
438 
439 static void add_buf_to_iovec(QEMUFile *f, size_t len)
440 {
441     if (!add_to_iovec(f, f->buf + f->buf_index, len, false)) {
442         f->buf_index += len;
443         if (f->buf_index == IO_BUF_SIZE) {
444             qemu_fflush(f);
445         }
446     }
447 }
448 
449 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
450                            bool may_free)
451 {
452     if (f->last_error) {
453         return;
454     }
455 
456     f->bytes_xfer += size;
457     add_to_iovec(f, buf, size, may_free);
458 }
459 
460 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
461 {
462     size_t l;
463 
464     if (f->last_error) {
465         return;
466     }
467 
468     while (size > 0) {
469         l = IO_BUF_SIZE - f->buf_index;
470         if (l > size) {
471             l = size;
472         }
473         memcpy(f->buf + f->buf_index, buf, l);
474         f->bytes_xfer += l;
475         add_buf_to_iovec(f, l);
476         if (qemu_file_get_error(f)) {
477             break;
478         }
479         buf += l;
480         size -= l;
481     }
482 }
483 
484 void qemu_put_byte(QEMUFile *f, int v)
485 {
486     if (f->last_error) {
487         return;
488     }
489 
490     f->buf[f->buf_index] = v;
491     f->bytes_xfer++;
492     add_buf_to_iovec(f, 1);
493 }
494 
495 void qemu_file_skip(QEMUFile *f, int size)
496 {
497     if (f->buf_index + size <= f->buf_size) {
498         f->buf_index += size;
499     }
500 }
501 
502 /*
503  * Read 'size' bytes from file (at 'offset') without moving the
504  * pointer and set 'buf' to point to that data.
505  *
506  * It will return size bytes unless there was an error, in which case it will
507  * return as many as it managed to read (assuming blocking fd's which
508  * all current QEMUFile are)
509  */
510 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
511 {
512     ssize_t pending;
513     size_t index;
514 
515     assert(!qemu_file_is_writable(f));
516     assert(offset < IO_BUF_SIZE);
517     assert(size <= IO_BUF_SIZE - offset);
518 
519     /* The 1st byte to read from */
520     index = f->buf_index + offset;
521     /* The number of available bytes starting at index */
522     pending = f->buf_size - index;
523 
524     /*
525      * qemu_fill_buffer might return just a few bytes, even when there isn't
526      * an error, so loop collecting them until we get enough.
527      */
528     while (pending < size) {
529         int received = qemu_fill_buffer(f);
530 
531         if (received <= 0) {
532             break;
533         }
534 
535         index = f->buf_index + offset;
536         pending = f->buf_size - index;
537     }
538 
539     if (pending <= 0) {
540         return 0;
541     }
542     if (size > pending) {
543         size = pending;
544     }
545 
546     *buf = f->buf + index;
547     return size;
548 }
549 
550 /*
551  * Read 'size' bytes of data from the file into buf.
552  * 'size' can be larger than the internal buffer.
553  *
554  * It will return size bytes unless there was an error, in which case it will
555  * return as many as it managed to read (assuming blocking fd's which
556  * all current QEMUFile are)
557  */
558 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
559 {
560     size_t pending = size;
561     size_t done = 0;
562 
563     while (pending > 0) {
564         size_t res;
565         uint8_t *src;
566 
567         res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
568         if (res == 0) {
569             return done;
570         }
571         memcpy(buf, src, res);
572         qemu_file_skip(f, res);
573         buf += res;
574         pending -= res;
575         done += res;
576     }
577     return done;
578 }
579 
580 /*
581  * Read 'size' bytes of data from the file.
582  * 'size' can be larger than the internal buffer.
583  *
584  * The data:
585  *   may be held on an internal buffer (in which case *buf is updated
586  *     to point to it) that is valid until the next qemu_file operation.
587  * OR
588  *   will be copied to the *buf that was passed in.
589  *
590  * The code tries to avoid the copy if possible.
591  *
592  * It will return size bytes unless there was an error, in which case it will
593  * return as many as it managed to read (assuming blocking fd's which
594  * all current QEMUFile are)
595  *
596  * Note: Since **buf may get changed, the caller should take care to
597  *       keep a pointer to the original buffer if it needs to deallocate it.
598  */
599 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
600 {
601     if (size < IO_BUF_SIZE) {
602         size_t res;
603         uint8_t *src = NULL;
604 
605         res = qemu_peek_buffer(f, &src, size, 0);
606 
607         if (res == size) {
608             qemu_file_skip(f, res);
609             *buf = src;
610             return res;
611         }
612     }
613 
614     return qemu_get_buffer(f, *buf, size);
615 }
616 
617 /*
618  * Peeks a single byte from the buffer; this isn't guaranteed to work if
619  * offset leaves a gap after the previous read/peeked data.
620  */
621 int qemu_peek_byte(QEMUFile *f, int offset)
622 {
623     int index = f->buf_index + offset;
624 
625     assert(!qemu_file_is_writable(f));
626     assert(offset < IO_BUF_SIZE);
627 
628     if (index >= f->buf_size) {
629         qemu_fill_buffer(f);
630         index = f->buf_index + offset;
631         if (index >= f->buf_size) {
632             return 0;
633         }
634     }
635     return f->buf[index];
636 }
637 
638 int qemu_get_byte(QEMUFile *f)
639 {
640     int result;
641 
642     result = qemu_peek_byte(f, 0);
643     qemu_file_skip(f, 1);
644     return result;
645 }
646 
647 int64_t qemu_ftell_fast(QEMUFile *f)
648 {
649     int64_t ret = f->pos;
650     int i;
651 
652     for (i = 0; i < f->iovcnt; i++) {
653         ret += f->iov[i].iov_len;
654     }
655 
656     return ret;
657 }
658 
659 int64_t qemu_ftell(QEMUFile *f)
660 {
661     qemu_fflush(f);
662     return f->pos;
663 }
664 
665 int qemu_file_rate_limit(QEMUFile *f)
666 {
667     if (f->shutdown) {
668         return 1;
669     }
670     if (qemu_file_get_error(f)) {
671         return 1;
672     }
673     if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
674         return 1;
675     }
676     return 0;
677 }
678 
679 int64_t qemu_file_get_rate_limit(QEMUFile *f)
680 {
681     return f->xfer_limit;
682 }
683 
684 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
685 {
686     f->xfer_limit = limit;
687 }
688 
689 void qemu_file_reset_rate_limit(QEMUFile *f)
690 {
691     f->bytes_xfer = 0;
692 }
693 
694 void qemu_file_update_transfer(QEMUFile *f, int64_t len)
695 {
696     f->bytes_xfer += len;
697 }
698 
699 void qemu_put_be16(QEMUFile *f, unsigned int v)
700 {
701     qemu_put_byte(f, v >> 8);
702     qemu_put_byte(f, v);
703 }
704 
705 void qemu_put_be32(QEMUFile *f, unsigned int v)
706 {
707     qemu_put_byte(f, v >> 24);
708     qemu_put_byte(f, v >> 16);
709     qemu_put_byte(f, v >> 8);
710     qemu_put_byte(f, v);
711 }
712 
713 void qemu_put_be64(QEMUFile *f, uint64_t v)
714 {
715     qemu_put_be32(f, v >> 32);
716     qemu_put_be32(f, v);
717 }
718 
719 unsigned int qemu_get_be16(QEMUFile *f)
720 {
721     unsigned int v;
722     v = qemu_get_byte(f) << 8;
723     v |= qemu_get_byte(f);
724     return v;
725 }
726 
727 unsigned int qemu_get_be32(QEMUFile *f)
728 {
729     unsigned int v;
730     v = (unsigned int)qemu_get_byte(f) << 24;
731     v |= qemu_get_byte(f) << 16;
732     v |= qemu_get_byte(f) << 8;
733     v |= qemu_get_byte(f);
734     return v;
735 }
736 
737 uint64_t qemu_get_be64(QEMUFile *f)
738 {
739     uint64_t v;
740     v = (uint64_t)qemu_get_be32(f) << 32;
741     v |= qemu_get_be32(f);
742     return v;
743 }
744 
745 /* return the size after compression, or negative value on error */
746 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
747                               const uint8_t *source, size_t source_len)
748 {
749     int err;
750 
751     err = deflateReset(stream);
752     if (err != Z_OK) {
753         return -1;
754     }
755 
756     stream->avail_in = source_len;
757     stream->next_in = (uint8_t *)source;
758     stream->avail_out = dest_len;
759     stream->next_out = dest;
760 
761     err = deflate(stream, Z_FINISH);
762     if (err != Z_STREAM_END) {
763         return -1;
764     }
765 
766     return stream->next_out - dest;
767 }
768 
769 /* Compress size bytes of data start at p and store the compressed
770  * data to the buffer of f.
771  *
772  * Since the file is dummy file with empty_ops, return -1 if f has no space to
773  * save the compressed data.
774  */
775 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
776                                   const uint8_t *p, size_t size)
777 {
778     ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
779 
780     if (blen < compressBound(size)) {
781         return -1;
782     }
783 
784     blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
785                               blen, p, size);
786     if (blen < 0) {
787         return -1;
788     }
789 
790     qemu_put_be32(f, blen);
791     add_buf_to_iovec(f, blen);
792     return blen + sizeof(int32_t);
793 }
794 
795 /* Put the data in the buffer of f_src to the buffer of f_des, and
796  * then reset the buf_index of f_src to 0.
797  */
798 
799 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
800 {
801     int len = 0;
802 
803     if (f_src->buf_index > 0) {
804         len = f_src->buf_index;
805         qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
806         f_src->buf_index = 0;
807         f_src->iovcnt = 0;
808     }
809     return len;
810 }
811 
812 /*
813  * Get a string whose length is determined by a single preceding byte
814  * A preallocated 256 byte buffer must be passed in.
815  * Returns: len on success and a 0 terminated string in the buffer
816  *          else 0
817  *          (Note a 0 length string will return 0 either way)
818  */
819 size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
820 {
821     size_t len = qemu_get_byte(f);
822     size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
823 
824     buf[res] = 0;
825 
826     return res == len ? res : 0;
827 }
828 
829 /*
830  * Put a string with one preceding byte containing its length. The length of
831  * the string should be less than 256.
832  */
833 void qemu_put_counted_string(QEMUFile *f, const char *str)
834 {
835     size_t len = strlen(str);
836 
837     assert(len < 256);
838     qemu_put_byte(f, len);
839     qemu_put_buffer(f, (const uint8_t *)str, len);
840 }
841 
842 /*
843  * Set the blocking state of the QEMUFile.
844  * Note: On some transports the OS only keeps a single blocking state for
845  *       both directions, and thus changing the blocking on the main
846  *       QEMUFile can also affect the return path.
847  */
848 void qemu_file_set_blocking(QEMUFile *f, bool block)
849 {
850     if (f->ops->set_blocking) {
851         f->ops->set_blocking(f->opaque, block, NULL);
852     }
853 }
854