xref: /qemu/migration/qemu-file.c (revision 7b0f97ba)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include <zlib.h>
26 #include "qemu-common.h"
27 #include "qemu/error-report.h"
28 #include "qemu/iov.h"
29 #include "migration.h"
30 #include "qemu-file.h"
31 #include "trace.h"
32 
33 #define IO_BUF_SIZE 32768
34 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
35 
36 struct QEMUFile {
37     const QEMUFileOps *ops;
38     const QEMUFileHooks *hooks;
39     void *opaque;
40 
41     int64_t bytes_xfer;
42     int64_t xfer_limit;
43 
44     int64_t pos; /* start of buffer when writing, end of buffer
45                     when reading */
46     int buf_index;
47     int buf_size; /* 0 when writing */
48     uint8_t buf[IO_BUF_SIZE];
49 
50     DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
51     struct iovec iov[MAX_IOV_SIZE];
52     unsigned int iovcnt;
53 
54     int last_error;
55 };
56 
57 /*
58  * Stop a file from being read/written - not all backing files can do this
59  * typically only sockets can.
60  */
61 int qemu_file_shutdown(QEMUFile *f)
62 {
63     if (!f->ops->shut_down) {
64         return -ENOSYS;
65     }
66     return f->ops->shut_down(f->opaque, true, true);
67 }
68 
69 /*
70  * Result: QEMUFile* for a 'return path' for comms in the opposite direction
71  *         NULL if not available
72  */
73 QEMUFile *qemu_file_get_return_path(QEMUFile *f)
74 {
75     if (!f->ops->get_return_path) {
76         return NULL;
77     }
78     return f->ops->get_return_path(f->opaque);
79 }
80 
81 bool qemu_file_mode_is_not_valid(const char *mode)
82 {
83     if (mode == NULL ||
84         (mode[0] != 'r' && mode[0] != 'w') ||
85         mode[1] != 'b' || mode[2] != 0) {
86         fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
87         return true;
88     }
89 
90     return false;
91 }
92 
93 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
94 {
95     QEMUFile *f;
96 
97     f = g_new0(QEMUFile, 1);
98 
99     f->opaque = opaque;
100     f->ops = ops;
101     return f;
102 }
103 
104 
105 void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
106 {
107     f->hooks = hooks;
108 }
109 
110 /*
111  * Get last error for stream f
112  *
113  * Return negative error value if there has been an error on previous
114  * operations, return 0 if no error happened.
115  *
116  */
117 int qemu_file_get_error(QEMUFile *f)
118 {
119     return f->last_error;
120 }
121 
122 void qemu_file_set_error(QEMUFile *f, int ret)
123 {
124     if (f->last_error == 0) {
125         f->last_error = ret;
126     }
127 }
128 
129 bool qemu_file_is_writable(QEMUFile *f)
130 {
131     return f->ops->writev_buffer;
132 }
133 
134 static void qemu_iovec_release_ram(QEMUFile *f)
135 {
136     struct iovec iov;
137     unsigned long idx;
138 
139     /* Find and release all the contiguous memory ranges marked as may_free. */
140     idx = find_next_bit(f->may_free, f->iovcnt, 0);
141     if (idx >= f->iovcnt) {
142         return;
143     }
144     iov = f->iov[idx];
145 
146     /* The madvise() in the loop is called for iov within a continuous range and
147      * then reinitialize the iov. And in the end, madvise() is called for the
148      * last iov.
149      */
150     while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
151         /* check for adjacent buffer and coalesce them */
152         if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
153             iov.iov_len += f->iov[idx].iov_len;
154             continue;
155         }
156         if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
157             error_report("migrate: madvise DONTNEED failed %p %zd: %s",
158                          iov.iov_base, iov.iov_len, strerror(errno));
159         }
160         iov = f->iov[idx];
161     }
162     if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
163             error_report("migrate: madvise DONTNEED failed %p %zd: %s",
164                          iov.iov_base, iov.iov_len, strerror(errno));
165     }
166     memset(f->may_free, 0, sizeof(f->may_free));
167 }
168 
169 /**
170  * Flushes QEMUFile buffer
171  *
172  * If there is writev_buffer QEMUFileOps it uses it otherwise uses
173  * put_buffer ops. This will flush all pending data. If data was
174  * only partially flushed, it will set an error state.
175  */
176 void qemu_fflush(QEMUFile *f)
177 {
178     ssize_t ret = 0;
179     ssize_t expect = 0;
180 
181     if (!qemu_file_is_writable(f)) {
182         return;
183     }
184 
185     if (f->iovcnt > 0) {
186         expect = iov_size(f->iov, f->iovcnt);
187         ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos);
188 
189         qemu_iovec_release_ram(f);
190     }
191 
192     if (ret >= 0) {
193         f->pos += ret;
194     }
195     /* We expect the QEMUFile write impl to send the full
196      * data set we requested, so sanity check that.
197      */
198     if (ret != expect) {
199         qemu_file_set_error(f, ret < 0 ? ret : -EIO);
200     }
201     f->buf_index = 0;
202     f->iovcnt = 0;
203 }
204 
205 void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
206 {
207     int ret = 0;
208 
209     if (f->hooks && f->hooks->before_ram_iterate) {
210         ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL);
211         if (ret < 0) {
212             qemu_file_set_error(f, ret);
213         }
214     }
215 }
216 
217 void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
218 {
219     int ret = 0;
220 
221     if (f->hooks && f->hooks->after_ram_iterate) {
222         ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL);
223         if (ret < 0) {
224             qemu_file_set_error(f, ret);
225         }
226     }
227 }
228 
229 void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
230 {
231     int ret = -EINVAL;
232 
233     if (f->hooks && f->hooks->hook_ram_load) {
234         ret = f->hooks->hook_ram_load(f, f->opaque, flags, data);
235         if (ret < 0) {
236             qemu_file_set_error(f, ret);
237         }
238     } else {
239         /*
240          * Hook is a hook specifically requested by the source sending a flag
241          * that expects there to be a hook on the destination.
242          */
243         if (flags == RAM_CONTROL_HOOK) {
244             qemu_file_set_error(f, ret);
245         }
246     }
247 }
248 
249 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
250                              ram_addr_t offset, size_t size,
251                              uint64_t *bytes_sent)
252 {
253     if (f->hooks && f->hooks->save_page) {
254         int ret = f->hooks->save_page(f, f->opaque, block_offset,
255                                       offset, size, bytes_sent);
256         if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
257             f->bytes_xfer += size;
258         }
259 
260         if (ret != RAM_SAVE_CONTROL_DELAYED &&
261             ret != RAM_SAVE_CONTROL_NOT_SUPP) {
262             if (bytes_sent && *bytes_sent > 0) {
263                 qemu_update_position(f, *bytes_sent);
264             } else if (ret < 0) {
265                 qemu_file_set_error(f, ret);
266             }
267         }
268 
269         return ret;
270     }
271 
272     return RAM_SAVE_CONTROL_NOT_SUPP;
273 }
274 
275 /*
276  * Attempt to fill the buffer from the underlying file
277  * Returns the number of bytes read, or negative value for an error.
278  *
279  * Note that it can return a partially full buffer even in a not error/not EOF
280  * case if the underlying file descriptor gives a short read, and that can
281  * happen even on a blocking fd.
282  */
283 static ssize_t qemu_fill_buffer(QEMUFile *f)
284 {
285     int len;
286     int pending;
287 
288     assert(!qemu_file_is_writable(f));
289 
290     pending = f->buf_size - f->buf_index;
291     if (pending > 0) {
292         memmove(f->buf, f->buf + f->buf_index, pending);
293     }
294     f->buf_index = 0;
295     f->buf_size = pending;
296 
297     len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
298                         IO_BUF_SIZE - pending);
299     if (len > 0) {
300         f->buf_size += len;
301         f->pos += len;
302     } else if (len == 0) {
303         qemu_file_set_error(f, -EIO);
304     } else if (len != -EAGAIN) {
305         qemu_file_set_error(f, len);
306     }
307 
308     return len;
309 }
310 
311 void qemu_update_position(QEMUFile *f, size_t size)
312 {
313     f->pos += size;
314 }
315 
316 /** Closes the file
317  *
318  * Returns negative error value if any error happened on previous operations or
319  * while closing the file. Returns 0 or positive number on success.
320  *
321  * The meaning of return value on success depends on the specific backend
322  * being used.
323  */
324 int qemu_fclose(QEMUFile *f)
325 {
326     int ret;
327     qemu_fflush(f);
328     ret = qemu_file_get_error(f);
329 
330     if (f->ops->close) {
331         int ret2 = f->ops->close(f->opaque);
332         if (ret >= 0) {
333             ret = ret2;
334         }
335     }
336     /* If any error was spotted before closing, we should report it
337      * instead of the close() return value.
338      */
339     if (f->last_error) {
340         ret = f->last_error;
341     }
342     g_free(f);
343     trace_qemu_file_fclose();
344     return ret;
345 }
346 
347 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
348                          bool may_free)
349 {
350     /* check for adjacent buffer and coalesce them */
351     if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
352         f->iov[f->iovcnt - 1].iov_len &&
353         may_free == test_bit(f->iovcnt - 1, f->may_free))
354     {
355         f->iov[f->iovcnt - 1].iov_len += size;
356     } else {
357         if (may_free) {
358             set_bit(f->iovcnt, f->may_free);
359         }
360         f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
361         f->iov[f->iovcnt++].iov_len = size;
362     }
363 
364     if (f->iovcnt >= MAX_IOV_SIZE) {
365         qemu_fflush(f);
366     }
367 }
368 
369 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
370                            bool may_free)
371 {
372     if (f->last_error) {
373         return;
374     }
375 
376     f->bytes_xfer += size;
377     add_to_iovec(f, buf, size, may_free);
378 }
379 
380 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
381 {
382     size_t l;
383 
384     if (f->last_error) {
385         return;
386     }
387 
388     while (size > 0) {
389         l = IO_BUF_SIZE - f->buf_index;
390         if (l > size) {
391             l = size;
392         }
393         memcpy(f->buf + f->buf_index, buf, l);
394         f->bytes_xfer += l;
395         add_to_iovec(f, f->buf + f->buf_index, l, false);
396         f->buf_index += l;
397         if (f->buf_index == IO_BUF_SIZE) {
398             qemu_fflush(f);
399         }
400         if (qemu_file_get_error(f)) {
401             break;
402         }
403         buf += l;
404         size -= l;
405     }
406 }
407 
408 void qemu_put_byte(QEMUFile *f, int v)
409 {
410     if (f->last_error) {
411         return;
412     }
413 
414     f->buf[f->buf_index] = v;
415     f->bytes_xfer++;
416     add_to_iovec(f, f->buf + f->buf_index, 1, false);
417     f->buf_index++;
418     if (f->buf_index == IO_BUF_SIZE) {
419         qemu_fflush(f);
420     }
421 }
422 
423 void qemu_file_skip(QEMUFile *f, int size)
424 {
425     if (f->buf_index + size <= f->buf_size) {
426         f->buf_index += size;
427     }
428 }
429 
430 /*
431  * Read 'size' bytes from file (at 'offset') without moving the
432  * pointer and set 'buf' to point to that data.
433  *
434  * It will return size bytes unless there was an error, in which case it will
435  * return as many as it managed to read (assuming blocking fd's which
436  * all current QEMUFile are)
437  */
438 size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
439 {
440     ssize_t pending;
441     size_t index;
442 
443     assert(!qemu_file_is_writable(f));
444     assert(offset < IO_BUF_SIZE);
445     assert(size <= IO_BUF_SIZE - offset);
446 
447     /* The 1st byte to read from */
448     index = f->buf_index + offset;
449     /* The number of available bytes starting at index */
450     pending = f->buf_size - index;
451 
452     /*
453      * qemu_fill_buffer might return just a few bytes, even when there isn't
454      * an error, so loop collecting them until we get enough.
455      */
456     while (pending < size) {
457         int received = qemu_fill_buffer(f);
458 
459         if (received <= 0) {
460             break;
461         }
462 
463         index = f->buf_index + offset;
464         pending = f->buf_size - index;
465     }
466 
467     if (pending <= 0) {
468         return 0;
469     }
470     if (size > pending) {
471         size = pending;
472     }
473 
474     *buf = f->buf + index;
475     return size;
476 }
477 
478 /*
479  * Read 'size' bytes of data from the file into buf.
480  * 'size' can be larger than the internal buffer.
481  *
482  * It will return size bytes unless there was an error, in which case it will
483  * return as many as it managed to read (assuming blocking fd's which
484  * all current QEMUFile are)
485  */
486 size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
487 {
488     size_t pending = size;
489     size_t done = 0;
490 
491     while (pending > 0) {
492         size_t res;
493         uint8_t *src;
494 
495         res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
496         if (res == 0) {
497             return done;
498         }
499         memcpy(buf, src, res);
500         qemu_file_skip(f, res);
501         buf += res;
502         pending -= res;
503         done += res;
504     }
505     return done;
506 }
507 
508 /*
509  * Read 'size' bytes of data from the file.
510  * 'size' can be larger than the internal buffer.
511  *
512  * The data:
513  *   may be held on an internal buffer (in which case *buf is updated
514  *     to point to it) that is valid until the next qemu_file operation.
515  * OR
516  *   will be copied to the *buf that was passed in.
517  *
518  * The code tries to avoid the copy if possible.
519  *
520  * It will return size bytes unless there was an error, in which case it will
521  * return as many as it managed to read (assuming blocking fd's which
522  * all current QEMUFile are)
523  *
524  * Note: Since **buf may get changed, the caller should take care to
525  *       keep a pointer to the original buffer if it needs to deallocate it.
526  */
527 size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
528 {
529     if (size < IO_BUF_SIZE) {
530         size_t res;
531         uint8_t *src;
532 
533         res = qemu_peek_buffer(f, &src, size, 0);
534 
535         if (res == size) {
536             qemu_file_skip(f, res);
537             *buf = src;
538             return res;
539         }
540     }
541 
542     return qemu_get_buffer(f, *buf, size);
543 }
544 
545 /*
546  * Peeks a single byte from the buffer; this isn't guaranteed to work if
547  * offset leaves a gap after the previous read/peeked data.
548  */
549 int qemu_peek_byte(QEMUFile *f, int offset)
550 {
551     int index = f->buf_index + offset;
552 
553     assert(!qemu_file_is_writable(f));
554     assert(offset < IO_BUF_SIZE);
555 
556     if (index >= f->buf_size) {
557         qemu_fill_buffer(f);
558         index = f->buf_index + offset;
559         if (index >= f->buf_size) {
560             return 0;
561         }
562     }
563     return f->buf[index];
564 }
565 
566 int qemu_get_byte(QEMUFile *f)
567 {
568     int result;
569 
570     result = qemu_peek_byte(f, 0);
571     qemu_file_skip(f, 1);
572     return result;
573 }
574 
575 int64_t qemu_ftell_fast(QEMUFile *f)
576 {
577     int64_t ret = f->pos;
578     int i;
579 
580     for (i = 0; i < f->iovcnt; i++) {
581         ret += f->iov[i].iov_len;
582     }
583 
584     return ret;
585 }
586 
587 int64_t qemu_ftell(QEMUFile *f)
588 {
589     qemu_fflush(f);
590     return f->pos;
591 }
592 
593 int qemu_file_rate_limit(QEMUFile *f)
594 {
595     if (qemu_file_get_error(f)) {
596         return 1;
597     }
598     if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
599         return 1;
600     }
601     return 0;
602 }
603 
604 int64_t qemu_file_get_rate_limit(QEMUFile *f)
605 {
606     return f->xfer_limit;
607 }
608 
609 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
610 {
611     f->xfer_limit = limit;
612 }
613 
614 void qemu_file_reset_rate_limit(QEMUFile *f)
615 {
616     f->bytes_xfer = 0;
617 }
618 
619 void qemu_put_be16(QEMUFile *f, unsigned int v)
620 {
621     qemu_put_byte(f, v >> 8);
622     qemu_put_byte(f, v);
623 }
624 
625 void qemu_put_be32(QEMUFile *f, unsigned int v)
626 {
627     qemu_put_byte(f, v >> 24);
628     qemu_put_byte(f, v >> 16);
629     qemu_put_byte(f, v >> 8);
630     qemu_put_byte(f, v);
631 }
632 
633 void qemu_put_be64(QEMUFile *f, uint64_t v)
634 {
635     qemu_put_be32(f, v >> 32);
636     qemu_put_be32(f, v);
637 }
638 
639 unsigned int qemu_get_be16(QEMUFile *f)
640 {
641     unsigned int v;
642     v = qemu_get_byte(f) << 8;
643     v |= qemu_get_byte(f);
644     return v;
645 }
646 
647 unsigned int qemu_get_be32(QEMUFile *f)
648 {
649     unsigned int v;
650     v = (unsigned int)qemu_get_byte(f) << 24;
651     v |= qemu_get_byte(f) << 16;
652     v |= qemu_get_byte(f) << 8;
653     v |= qemu_get_byte(f);
654     return v;
655 }
656 
657 uint64_t qemu_get_be64(QEMUFile *f)
658 {
659     uint64_t v;
660     v = (uint64_t)qemu_get_be32(f) << 32;
661     v |= qemu_get_be32(f);
662     return v;
663 }
664 
665 /* return the size after compression, or negative value on error */
666 static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
667                               const uint8_t *source, size_t source_len)
668 {
669     int err;
670 
671     err = deflateReset(stream);
672     if (err != Z_OK) {
673         return -1;
674     }
675 
676     stream->avail_in = source_len;
677     stream->next_in = (uint8_t *)source;
678     stream->avail_out = dest_len;
679     stream->next_out = dest;
680 
681     err = deflate(stream, Z_FINISH);
682     if (err != Z_STREAM_END) {
683         return -1;
684     }
685 
686     return stream->next_out - dest;
687 }
688 
689 /* Compress size bytes of data start at p and store the compressed
690  * data to the buffer of f.
691  *
692  * When f is not writable, return -1 if f has no space to save the
693  * compressed data.
694  * When f is wirtable and it has no space to save the compressed data,
695  * do fflush first, if f still has no space to save the compressed
696  * data, return -1.
697  */
698 ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
699                                   const uint8_t *p, size_t size)
700 {
701     ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
702 
703     if (blen < compressBound(size)) {
704         if (!qemu_file_is_writable(f)) {
705             return -1;
706         }
707         qemu_fflush(f);
708         blen = IO_BUF_SIZE - sizeof(int32_t);
709         if (blen < compressBound(size)) {
710             return -1;
711         }
712     }
713 
714     blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
715                               blen, p, size);
716     if (blen < 0) {
717         return -1;
718     }
719 
720     qemu_put_be32(f, blen);
721     if (f->ops->writev_buffer) {
722         add_to_iovec(f, f->buf + f->buf_index, blen, false);
723     }
724     f->buf_index += blen;
725     if (f->buf_index == IO_BUF_SIZE) {
726         qemu_fflush(f);
727     }
728     return blen + sizeof(int32_t);
729 }
730 
731 /* Put the data in the buffer of f_src to the buffer of f_des, and
732  * then reset the buf_index of f_src to 0.
733  */
734 
735 int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
736 {
737     int len = 0;
738 
739     if (f_src->buf_index > 0) {
740         len = f_src->buf_index;
741         qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
742         f_src->buf_index = 0;
743         f_src->iovcnt = 0;
744     }
745     return len;
746 }
747 
748 /*
749  * Get a string whose length is determined by a single preceding byte
750  * A preallocated 256 byte buffer must be passed in.
751  * Returns: len on success and a 0 terminated string in the buffer
752  *          else 0
753  *          (Note a 0 length string will return 0 either way)
754  */
755 size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
756 {
757     size_t len = qemu_get_byte(f);
758     size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
759 
760     buf[res] = 0;
761 
762     return res == len ? res : 0;
763 }
764 
765 /*
766  * Put a string with one preceding byte containing its length. The length of
767  * the string should be less than 256.
768  */
769 void qemu_put_counted_string(QEMUFile *f, const char *str)
770 {
771     size_t len = strlen(str);
772 
773     assert(len < 256);
774     qemu_put_byte(f, len);
775     qemu_put_buffer(f, (const uint8_t *)str, len);
776 }
777 
778 /*
779  * Set the blocking state of the QEMUFile.
780  * Note: On some transports the OS only keeps a single blocking state for
781  *       both directions, and thus changing the blocking on the main
782  *       QEMUFile can also affect the return path.
783  */
784 void qemu_file_set_blocking(QEMUFile *f, bool block)
785 {
786     if (f->ops->set_blocking) {
787         f->ops->set_blocking(f->opaque, block);
788     }
789 }
790