xref: /qemu/migration/ram.c (revision 3dd5fc53)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
66 
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
72 
73 /***********************************************************/
74 /* ram save/restore */
75 
76 /*
77  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78  * worked for pages that were filled with the same char.  We switched
79  * it to only search for the zero value.  And to avoid confusion with
80  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
81  */
82 /*
83  * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84  */
85 #define RAM_SAVE_FLAG_FULL     0x01
86 #define RAM_SAVE_FLAG_ZERO     0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE     0x08
89 #define RAM_SAVE_FLAG_EOS      0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE   0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
95 /* We can't use any flag that is bigger than 0x200 */
96 
97 /*
98  * mapped-ram migration supports O_DIRECT, so we need to make sure the
99  * userspace buffer, the IO operation size and the file offset are
100  * aligned according to the underlying device's block size. The first
101  * two are already aligned to page size, but we need to add padding to
102  * the file to align the offset.  We cannot read the block size
103  * dynamically because the migration file can be moved between
104  * different systems, so use 1M to cover most block sizes and to keep
105  * the file offset aligned at page size as well.
106  */
107 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
108 
109 /*
110  * When doing mapped-ram migration, this is the amount we read from
111  * the pages region in the migration file at a time.
112  */
113 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
114 
115 XBZRLECacheStats xbzrle_counters;
116 
117 /* used by the search for pages to send */
118 struct PageSearchStatus {
119     /* The migration channel used for a specific host page */
120     QEMUFile    *pss_channel;
121     /* Last block from where we have sent data */
122     RAMBlock *last_sent_block;
123     /* Current block being searched */
124     RAMBlock    *block;
125     /* Current page to search from */
126     unsigned long page;
127     /* Set once we wrap around */
128     bool         complete_round;
129     /* Whether we're sending a host page */
130     bool          host_page_sending;
131     /* The start/end of current host page.  Invalid if host_page_sending==false */
132     unsigned long host_page_start;
133     unsigned long host_page_end;
134 };
135 typedef struct PageSearchStatus PageSearchStatus;
136 
137 /* struct contains XBZRLE cache and a static page
138    used by the compression */
139 static struct {
140     /* buffer used for XBZRLE encoding */
141     uint8_t *encoded_buf;
142     /* buffer for storing page content */
143     uint8_t *current_buf;
144     /* Cache for XBZRLE, Protected by lock. */
145     PageCache *cache;
146     QemuMutex lock;
147     /* it will store a page full of zeros */
148     uint8_t *zero_target_page;
149     /* buffer used for XBZRLE decoding */
150     uint8_t *decoded_buf;
151 } XBZRLE;
152 
153 static void XBZRLE_cache_lock(void)
154 {
155     if (migrate_xbzrle()) {
156         qemu_mutex_lock(&XBZRLE.lock);
157     }
158 }
159 
160 static void XBZRLE_cache_unlock(void)
161 {
162     if (migrate_xbzrle()) {
163         qemu_mutex_unlock(&XBZRLE.lock);
164     }
165 }
166 
167 /**
168  * xbzrle_cache_resize: resize the xbzrle cache
169  *
170  * This function is called from migrate_params_apply in main
171  * thread, possibly while a migration is in progress.  A running
172  * migration may be using the cache and might finish during this call,
173  * hence changes to the cache are protected by XBZRLE.lock().
174  *
175  * Returns 0 for success or -1 for error
176  *
177  * @new_size: new cache size
178  * @errp: set *errp if the check failed, with reason
179  */
180 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
181 {
182     PageCache *new_cache;
183     int64_t ret = 0;
184 
185     /* Check for truncation */
186     if (new_size != (size_t)new_size) {
187         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
188                    "exceeding address space");
189         return -1;
190     }
191 
192     if (new_size == migrate_xbzrle_cache_size()) {
193         /* nothing to do */
194         return 0;
195     }
196 
197     XBZRLE_cache_lock();
198 
199     if (XBZRLE.cache != NULL) {
200         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
201         if (!new_cache) {
202             ret = -1;
203             goto out;
204         }
205 
206         cache_fini(XBZRLE.cache);
207         XBZRLE.cache = new_cache;
208     }
209 out:
210     XBZRLE_cache_unlock();
211     return ret;
212 }
213 
214 static bool postcopy_preempt_active(void)
215 {
216     return migrate_postcopy_preempt() && migration_in_postcopy();
217 }
218 
219 bool migrate_ram_is_ignored(RAMBlock *block)
220 {
221     return !qemu_ram_is_migratable(block) ||
222            (migrate_ignore_shared() && qemu_ram_is_shared(block)
223                                     && qemu_ram_is_named_file(block));
224 }
225 
226 #undef RAMBLOCK_FOREACH
227 
228 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
229 {
230     RAMBlock *block;
231     int ret = 0;
232 
233     RCU_READ_LOCK_GUARD();
234 
235     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
236         ret = func(block, opaque);
237         if (ret) {
238             break;
239         }
240     }
241     return ret;
242 }
243 
244 static void ramblock_recv_map_init(void)
245 {
246     RAMBlock *rb;
247 
248     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
249         assert(!rb->receivedmap);
250         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
251     }
252 }
253 
254 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
255 {
256     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
257                     rb->receivedmap);
258 }
259 
260 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
261 {
262     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
263 }
264 
265 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
266 {
267     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
268 }
269 
270 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
271                                     size_t nr)
272 {
273     bitmap_set_atomic(rb->receivedmap,
274                       ramblock_recv_bitmap_offset(host_addr, rb),
275                       nr);
276 }
277 
278 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
279 
280 /*
281  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
282  *
283  * Returns >0 if success with sent bytes, or <0 if error.
284  */
285 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
286                                   const char *block_name)
287 {
288     RAMBlock *block = qemu_ram_block_by_name(block_name);
289     unsigned long *le_bitmap, nbits;
290     uint64_t size;
291 
292     if (!block) {
293         error_report("%s: invalid block name: %s", __func__, block_name);
294         return -1;
295     }
296 
297     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
298 
299     /*
300      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
301      * machines we may need 4 more bytes for padding (see below
302      * comment). So extend it a bit before hand.
303      */
304     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
305 
306     /*
307      * Always use little endian when sending the bitmap. This is
308      * required that when source and destination VMs are not using the
309      * same endianness. (Note: big endian won't work.)
310      */
311     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
312 
313     /* Size of the bitmap, in bytes */
314     size = DIV_ROUND_UP(nbits, 8);
315 
316     /*
317      * size is always aligned to 8 bytes for 64bit machines, but it
318      * may not be true for 32bit machines. We need this padding to
319      * make sure the migration can survive even between 32bit and
320      * 64bit machines.
321      */
322     size = ROUND_UP(size, 8);
323 
324     qemu_put_be64(file, size);
325     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
326     g_free(le_bitmap);
327     /*
328      * Mark as an end, in case the middle part is screwed up due to
329      * some "mysterious" reason.
330      */
331     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
332     int ret = qemu_fflush(file);
333     if (ret) {
334         return ret;
335     }
336 
337     return size + sizeof(size);
338 }
339 
340 /*
341  * An outstanding page request, on the source, having been received
342  * and queued
343  */
344 struct RAMSrcPageRequest {
345     RAMBlock *rb;
346     hwaddr    offset;
347     hwaddr    len;
348 
349     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
350 };
351 
352 /* State of RAM for migration */
353 struct RAMState {
354     /*
355      * PageSearchStatus structures for the channels when send pages.
356      * Protected by the bitmap_mutex.
357      */
358     PageSearchStatus pss[RAM_CHANNEL_MAX];
359     /* UFFD file descriptor, used in 'write-tracking' migration */
360     int uffdio_fd;
361     /* total ram size in bytes */
362     uint64_t ram_bytes_total;
363     /* Last block that we have visited searching for dirty pages */
364     RAMBlock *last_seen_block;
365     /* Last dirty target page we have sent */
366     ram_addr_t last_page;
367     /* last ram version we have seen */
368     uint32_t last_version;
369     /* How many times we have dirty too many pages */
370     int dirty_rate_high_cnt;
371     /* these variables are used for bitmap sync */
372     /* last time we did a full bitmap_sync */
373     int64_t time_last_bitmap_sync;
374     /* bytes transferred at start_time */
375     uint64_t bytes_xfer_prev;
376     /* number of dirty pages since start_time */
377     uint64_t num_dirty_pages_period;
378     /* xbzrle misses since the beginning of the period */
379     uint64_t xbzrle_cache_miss_prev;
380     /* Amount of xbzrle pages since the beginning of the period */
381     uint64_t xbzrle_pages_prev;
382     /* Amount of xbzrle encoded bytes since the beginning of the period */
383     uint64_t xbzrle_bytes_prev;
384     /* Are we really using XBZRLE (e.g., after the first round). */
385     bool xbzrle_started;
386     /* Are we on the last stage of migration */
387     bool last_stage;
388 
389     /* total handled target pages at the beginning of period */
390     uint64_t target_page_count_prev;
391     /* total handled target pages since start */
392     uint64_t target_page_count;
393     /* number of dirty bits in the bitmap */
394     uint64_t migration_dirty_pages;
395     /*
396      * Protects:
397      * - dirty/clear bitmap
398      * - migration_dirty_pages
399      * - pss structures
400      */
401     QemuMutex bitmap_mutex;
402     /* The RAMBlock used in the last src_page_requests */
403     RAMBlock *last_req_rb;
404     /* Queue of outstanding page requests from the destination */
405     QemuMutex src_page_req_mutex;
406     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
407 
408     /*
409      * This is only used when postcopy is in recovery phase, to communicate
410      * between the migration thread and the return path thread on dirty
411      * bitmap synchronizations.  This field is unused in other stages of
412      * RAM migration.
413      */
414     unsigned int postcopy_bmap_sync_requested;
415 };
416 typedef struct RAMState RAMState;
417 
418 static RAMState *ram_state;
419 
420 static NotifierWithReturnList precopy_notifier_list;
421 
422 /* Whether postcopy has queued requests? */
423 static bool postcopy_has_request(RAMState *rs)
424 {
425     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
426 }
427 
428 void precopy_infrastructure_init(void)
429 {
430     notifier_with_return_list_init(&precopy_notifier_list);
431 }
432 
433 void precopy_add_notifier(NotifierWithReturn *n)
434 {
435     notifier_with_return_list_add(&precopy_notifier_list, n);
436 }
437 
438 void precopy_remove_notifier(NotifierWithReturn *n)
439 {
440     notifier_with_return_remove(n);
441 }
442 
443 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
444 {
445     PrecopyNotifyData pnd;
446     pnd.reason = reason;
447 
448     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
449 }
450 
451 uint64_t ram_bytes_remaining(void)
452 {
453     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
454                        0;
455 }
456 
457 void ram_transferred_add(uint64_t bytes)
458 {
459     if (runstate_is_running()) {
460         stat64_add(&mig_stats.precopy_bytes, bytes);
461     } else if (migration_in_postcopy()) {
462         stat64_add(&mig_stats.postcopy_bytes, bytes);
463     } else {
464         stat64_add(&mig_stats.downtime_bytes, bytes);
465     }
466 }
467 
468 struct MigrationOps {
469     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
470 };
471 typedef struct MigrationOps MigrationOps;
472 
473 MigrationOps *migration_ops;
474 
475 static int ram_save_host_page_urgent(PageSearchStatus *pss);
476 
477 /* NOTE: page is the PFN not real ram_addr_t. */
478 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
479 {
480     pss->block = rb;
481     pss->page = page;
482     pss->complete_round = false;
483 }
484 
485 /*
486  * Check whether two PSSs are actively sending the same page.  Return true
487  * if it is, false otherwise.
488  */
489 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
490 {
491     return pss1->host_page_sending && pss2->host_page_sending &&
492         (pss1->host_page_start == pss2->host_page_start);
493 }
494 
495 /**
496  * save_page_header: write page header to wire
497  *
498  * If this is the 1st block, it also writes the block identification
499  *
500  * Returns the number of bytes written
501  *
502  * @pss: current PSS channel status
503  * @block: block that contains the page we want to send
504  * @offset: offset inside the block for the page
505  *          in the lower bits, it contains flags
506  */
507 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
508                                RAMBlock *block, ram_addr_t offset)
509 {
510     size_t size, len;
511     bool same_block = (block == pss->last_sent_block);
512 
513     if (same_block) {
514         offset |= RAM_SAVE_FLAG_CONTINUE;
515     }
516     qemu_put_be64(f, offset);
517     size = 8;
518 
519     if (!same_block) {
520         len = strlen(block->idstr);
521         qemu_put_byte(f, len);
522         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
523         size += 1 + len;
524         pss->last_sent_block = block;
525     }
526     return size;
527 }
528 
529 /**
530  * mig_throttle_guest_down: throttle down the guest
531  *
532  * Reduce amount of guest cpu execution to hopefully slow down memory
533  * writes. If guest dirty memory rate is reduced below the rate at
534  * which we can transfer pages to the destination then we should be
535  * able to complete migration. Some workloads dirty memory way too
536  * fast and will not effectively converge, even with auto-converge.
537  */
538 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
539                                     uint64_t bytes_dirty_threshold)
540 {
541     uint64_t pct_initial = migrate_cpu_throttle_initial();
542     uint64_t pct_increment = migrate_cpu_throttle_increment();
543     bool pct_tailslow = migrate_cpu_throttle_tailslow();
544     int pct_max = migrate_max_cpu_throttle();
545 
546     uint64_t throttle_now = cpu_throttle_get_percentage();
547     uint64_t cpu_now, cpu_ideal, throttle_inc;
548 
549     /* We have not started throttling yet. Let's start it. */
550     if (!cpu_throttle_active()) {
551         cpu_throttle_set(pct_initial);
552     } else {
553         /* Throttling already on, just increase the rate */
554         if (!pct_tailslow) {
555             throttle_inc = pct_increment;
556         } else {
557             /* Compute the ideal CPU percentage used by Guest, which may
558              * make the dirty rate match the dirty rate threshold. */
559             cpu_now = 100 - throttle_now;
560             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
561                         bytes_dirty_period);
562             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
563         }
564         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
565     }
566 }
567 
568 void mig_throttle_counter_reset(void)
569 {
570     RAMState *rs = ram_state;
571 
572     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
573     rs->num_dirty_pages_period = 0;
574     rs->bytes_xfer_prev = migration_transferred_bytes();
575 }
576 
577 /**
578  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
579  *
580  * @current_addr: address for the zero page
581  *
582  * Update the xbzrle cache to reflect a page that's been sent as all 0.
583  * The important thing is that a stale (not-yet-0'd) page be replaced
584  * by the new data.
585  * As a bonus, if the page wasn't in the cache it gets added so that
586  * when a small write is made into the 0'd page it gets XBZRLE sent.
587  */
588 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
589 {
590     /* We don't care if this fails to allocate a new cache page
591      * as long as it updated an old one */
592     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
593                  stat64_get(&mig_stats.dirty_sync_count));
594 }
595 
596 #define ENCODING_FLAG_XBZRLE 0x1
597 
598 /**
599  * save_xbzrle_page: compress and send current page
600  *
601  * Returns: 1 means that we wrote the page
602  *          0 means that page is identical to the one already sent
603  *          -1 means that xbzrle would be longer than normal
604  *
605  * @rs: current RAM state
606  * @pss: current PSS channel
607  * @current_data: pointer to the address of the page contents
608  * @current_addr: addr of the page
609  * @block: block that contains the page we want to send
610  * @offset: offset inside the block for the page
611  */
612 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
613                             uint8_t **current_data, ram_addr_t current_addr,
614                             RAMBlock *block, ram_addr_t offset)
615 {
616     int encoded_len = 0, bytes_xbzrle;
617     uint8_t *prev_cached_page;
618     QEMUFile *file = pss->pss_channel;
619     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
620 
621     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
622         xbzrle_counters.cache_miss++;
623         if (!rs->last_stage) {
624             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
625                              generation) == -1) {
626                 return -1;
627             } else {
628                 /* update *current_data when the page has been
629                    inserted into cache */
630                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
631             }
632         }
633         return -1;
634     }
635 
636     /*
637      * Reaching here means the page has hit the xbzrle cache, no matter what
638      * encoding result it is (normal encoding, overflow or skipping the page),
639      * count the page as encoded. This is used to calculate the encoding rate.
640      *
641      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
642      * 2nd page turns out to be skipped (i.e. no new bytes written to the
643      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
644      * skipped page included. In this way, the encoding rate can tell if the
645      * guest page is good for xbzrle encoding.
646      */
647     xbzrle_counters.pages++;
648     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
649 
650     /* save current buffer into memory */
651     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
652 
653     /* XBZRLE encoding (if there is no overflow) */
654     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
655                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
656                                        TARGET_PAGE_SIZE);
657 
658     /*
659      * Update the cache contents, so that it corresponds to the data
660      * sent, in all cases except where we skip the page.
661      */
662     if (!rs->last_stage && encoded_len != 0) {
663         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
664         /*
665          * In the case where we couldn't compress, ensure that the caller
666          * sends the data from the cache, since the guest might have
667          * changed the RAM since we copied it.
668          */
669         *current_data = prev_cached_page;
670     }
671 
672     if (encoded_len == 0) {
673         trace_save_xbzrle_page_skipping();
674         return 0;
675     } else if (encoded_len == -1) {
676         trace_save_xbzrle_page_overflow();
677         xbzrle_counters.overflow++;
678         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
679         return -1;
680     }
681 
682     /* Send XBZRLE based compressed page */
683     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
684                                     offset | RAM_SAVE_FLAG_XBZRLE);
685     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
686     qemu_put_be16(file, encoded_len);
687     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
688     bytes_xbzrle += encoded_len + 1 + 2;
689     /*
690      * Like compressed_size (please see update_compress_thread_counts),
691      * the xbzrle encoded bytes don't count the 8 byte header with
692      * RAM_SAVE_FLAG_CONTINUE.
693      */
694     xbzrle_counters.bytes += bytes_xbzrle - 8;
695     ram_transferred_add(bytes_xbzrle);
696 
697     return 1;
698 }
699 
700 /**
701  * pss_find_next_dirty: find the next dirty page of current ramblock
702  *
703  * This function updates pss->page to point to the next dirty page index
704  * within the ramblock to migrate, or the end of ramblock when nothing
705  * found.  Note that when pss->host_page_sending==true it means we're
706  * during sending a host page, so we won't look for dirty page that is
707  * outside the host page boundary.
708  *
709  * @pss: the current page search status
710  */
711 static void pss_find_next_dirty(PageSearchStatus *pss)
712 {
713     RAMBlock *rb = pss->block;
714     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
715     unsigned long *bitmap = rb->bmap;
716 
717     if (migrate_ram_is_ignored(rb)) {
718         /* Points directly to the end, so we know no dirty page */
719         pss->page = size;
720         return;
721     }
722 
723     /*
724      * If during sending a host page, only look for dirty pages within the
725      * current host page being send.
726      */
727     if (pss->host_page_sending) {
728         assert(pss->host_page_end);
729         size = MIN(size, pss->host_page_end);
730     }
731 
732     pss->page = find_next_bit(bitmap, size, pss->page);
733 }
734 
735 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
736                                                        unsigned long page)
737 {
738     uint8_t shift;
739     hwaddr size, start;
740 
741     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
742         return;
743     }
744 
745     shift = rb->clear_bmap_shift;
746     /*
747      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
748      * can make things easier sometimes since then start address
749      * of the small chunk will always be 64 pages aligned so the
750      * bitmap will always be aligned to unsigned long. We should
751      * even be able to remove this restriction but I'm simply
752      * keeping it.
753      */
754     assert(shift >= 6);
755 
756     size = 1ULL << (TARGET_PAGE_BITS + shift);
757     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
758     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
759     memory_region_clear_dirty_bitmap(rb->mr, start, size);
760 }
761 
762 static void
763 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
764                                                  unsigned long start,
765                                                  unsigned long npages)
766 {
767     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
768     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
769     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
770 
771     /*
772      * Clear pages from start to start + npages - 1, so the end boundary is
773      * exclusive.
774      */
775     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
776         migration_clear_memory_region_dirty_bitmap(rb, i);
777     }
778 }
779 
780 /*
781  * colo_bitmap_find_diry:find contiguous dirty pages from start
782  *
783  * Returns the page offset within memory region of the start of the contiguout
784  * dirty page
785  *
786  * @rs: current RAM state
787  * @rb: RAMBlock where to search for dirty pages
788  * @start: page where we start the search
789  * @num: the number of contiguous dirty pages
790  */
791 static inline
792 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
793                                      unsigned long start, unsigned long *num)
794 {
795     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
796     unsigned long *bitmap = rb->bmap;
797     unsigned long first, next;
798 
799     *num = 0;
800 
801     if (migrate_ram_is_ignored(rb)) {
802         return size;
803     }
804 
805     first = find_next_bit(bitmap, size, start);
806     if (first >= size) {
807         return first;
808     }
809     next = find_next_zero_bit(bitmap, size, first + 1);
810     assert(next >= first);
811     *num = next - first;
812     return first;
813 }
814 
815 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
816                                                 RAMBlock *rb,
817                                                 unsigned long page)
818 {
819     bool ret;
820 
821     /*
822      * Clear dirty bitmap if needed.  This _must_ be called before we
823      * send any of the page in the chunk because we need to make sure
824      * we can capture further page content changes when we sync dirty
825      * log the next time.  So as long as we are going to send any of
826      * the page in the chunk we clear the remote dirty bitmap for all.
827      * Clearing it earlier won't be a problem, but too late will.
828      */
829     migration_clear_memory_region_dirty_bitmap(rb, page);
830 
831     ret = test_and_clear_bit(page, rb->bmap);
832     if (ret) {
833         rs->migration_dirty_pages--;
834     }
835 
836     return ret;
837 }
838 
839 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
840                                        void *opaque)
841 {
842     const hwaddr offset = section->offset_within_region;
843     const hwaddr size = int128_get64(section->size);
844     const unsigned long start = offset >> TARGET_PAGE_BITS;
845     const unsigned long npages = size >> TARGET_PAGE_BITS;
846     RAMBlock *rb = section->mr->ram_block;
847     uint64_t *cleared_bits = opaque;
848 
849     /*
850      * We don't grab ram_state->bitmap_mutex because we expect to run
851      * only when starting migration or during postcopy recovery where
852      * we don't have concurrent access.
853      */
854     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
855         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
856     }
857     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
858     bitmap_clear(rb->bmap, start, npages);
859 }
860 
861 /*
862  * Exclude all dirty pages from migration that fall into a discarded range as
863  * managed by a RamDiscardManager responsible for the mapped memory region of
864  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
865  *
866  * Discarded pages ("logically unplugged") have undefined content and must
867  * not get migrated, because even reading these pages for migration might
868  * result in undesired behavior.
869  *
870  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
871  *
872  * Note: The result is only stable while migrating (precopy/postcopy).
873  */
874 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
875 {
876     uint64_t cleared_bits = 0;
877 
878     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
879         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
880         MemoryRegionSection section = {
881             .mr = rb->mr,
882             .offset_within_region = 0,
883             .size = int128_make64(qemu_ram_get_used_length(rb)),
884         };
885 
886         ram_discard_manager_replay_discarded(rdm, &section,
887                                              dirty_bitmap_clear_section,
888                                              &cleared_bits);
889     }
890     return cleared_bits;
891 }
892 
893 /*
894  * Check if a host-page aligned page falls into a discarded range as managed by
895  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
896  *
897  * Note: The result is only stable while migrating (precopy/postcopy).
898  */
899 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
900 {
901     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
902         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
903         MemoryRegionSection section = {
904             .mr = rb->mr,
905             .offset_within_region = start,
906             .size = int128_make64(qemu_ram_pagesize(rb)),
907         };
908 
909         return !ram_discard_manager_is_populated(rdm, &section);
910     }
911     return false;
912 }
913 
914 /* Called with RCU critical section */
915 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
916 {
917     uint64_t new_dirty_pages =
918         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
919 
920     rs->migration_dirty_pages += new_dirty_pages;
921     rs->num_dirty_pages_period += new_dirty_pages;
922 }
923 
924 /**
925  * ram_pagesize_summary: calculate all the pagesizes of a VM
926  *
927  * Returns a summary bitmap of the page sizes of all RAMBlocks
928  *
929  * For VMs with just normal pages this is equivalent to the host page
930  * size. If it's got some huge pages then it's the OR of all the
931  * different page sizes.
932  */
933 uint64_t ram_pagesize_summary(void)
934 {
935     RAMBlock *block;
936     uint64_t summary = 0;
937 
938     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
939         summary |= block->page_size;
940     }
941 
942     return summary;
943 }
944 
945 uint64_t ram_get_total_transferred_pages(void)
946 {
947     return stat64_get(&mig_stats.normal_pages) +
948         stat64_get(&mig_stats.zero_pages) +
949         compress_ram_pages() + xbzrle_counters.pages;
950 }
951 
952 static void migration_update_rates(RAMState *rs, int64_t end_time)
953 {
954     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
955 
956     /* calculate period counters */
957     stat64_set(&mig_stats.dirty_pages_rate,
958                rs->num_dirty_pages_period * 1000 /
959                (end_time - rs->time_last_bitmap_sync));
960 
961     if (!page_count) {
962         return;
963     }
964 
965     if (migrate_xbzrle()) {
966         double encoded_size, unencoded_size;
967 
968         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
969             rs->xbzrle_cache_miss_prev) / page_count;
970         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
971         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
972                          TARGET_PAGE_SIZE;
973         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
974         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
975             xbzrle_counters.encoding_rate = 0;
976         } else {
977             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
978         }
979         rs->xbzrle_pages_prev = xbzrle_counters.pages;
980         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
981     }
982     compress_update_rates(page_count);
983 }
984 
985 /*
986  * Enable dirty-limit to throttle down the guest
987  */
988 static void migration_dirty_limit_guest(void)
989 {
990     /*
991      * dirty page rate quota for all vCPUs fetched from
992      * migration parameter 'vcpu_dirty_limit'
993      */
994     static int64_t quota_dirtyrate;
995     MigrationState *s = migrate_get_current();
996 
997     /*
998      * If dirty limit already enabled and migration parameter
999      * vcpu-dirty-limit untouched.
1000      */
1001     if (dirtylimit_in_service() &&
1002         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1003         return;
1004     }
1005 
1006     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1007 
1008     /*
1009      * Set all vCPU a quota dirtyrate, note that the second
1010      * parameter will be ignored if setting all vCPU for the vm
1011      */
1012     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1013     trace_migration_dirty_limit_guest(quota_dirtyrate);
1014 }
1015 
1016 static void migration_trigger_throttle(RAMState *rs)
1017 {
1018     uint64_t threshold = migrate_throttle_trigger_threshold();
1019     uint64_t bytes_xfer_period =
1020         migration_transferred_bytes() - rs->bytes_xfer_prev;
1021     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1022     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1023 
1024     /* During block migration the auto-converge logic incorrectly detects
1025      * that ram migration makes no progress. Avoid this by disabling the
1026      * throttling logic during the bulk phase of block migration. */
1027     if (blk_mig_bulk_active()) {
1028         return;
1029     }
1030 
1031     /*
1032      * The following detection logic can be refined later. For now:
1033      * Check to see if the ratio between dirtied bytes and the approx.
1034      * amount of bytes that just got transferred since the last time
1035      * we were in this routine reaches the threshold. If that happens
1036      * twice, start or increase throttling.
1037      */
1038     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1039         (++rs->dirty_rate_high_cnt >= 2)) {
1040         rs->dirty_rate_high_cnt = 0;
1041         if (migrate_auto_converge()) {
1042             trace_migration_throttle();
1043             mig_throttle_guest_down(bytes_dirty_period,
1044                                     bytes_dirty_threshold);
1045         } else if (migrate_dirty_limit()) {
1046             migration_dirty_limit_guest();
1047         }
1048     }
1049 }
1050 
1051 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1052 {
1053     RAMBlock *block;
1054     int64_t end_time;
1055 
1056     stat64_add(&mig_stats.dirty_sync_count, 1);
1057 
1058     if (!rs->time_last_bitmap_sync) {
1059         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1060     }
1061 
1062     trace_migration_bitmap_sync_start();
1063     memory_global_dirty_log_sync(last_stage);
1064 
1065     qemu_mutex_lock(&rs->bitmap_mutex);
1066     WITH_RCU_READ_LOCK_GUARD() {
1067         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1068             ramblock_sync_dirty_bitmap(rs, block);
1069         }
1070         stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1071     }
1072     qemu_mutex_unlock(&rs->bitmap_mutex);
1073 
1074     memory_global_after_dirty_log_sync();
1075     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1076 
1077     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1078 
1079     /* more than 1 second = 1000 millisecons */
1080     if (end_time > rs->time_last_bitmap_sync + 1000) {
1081         migration_trigger_throttle(rs);
1082 
1083         migration_update_rates(rs, end_time);
1084 
1085         rs->target_page_count_prev = rs->target_page_count;
1086 
1087         /* reset period counters */
1088         rs->time_last_bitmap_sync = end_time;
1089         rs->num_dirty_pages_period = 0;
1090         rs->bytes_xfer_prev = migration_transferred_bytes();
1091     }
1092     if (migrate_events()) {
1093         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1094         qapi_event_send_migration_pass(generation);
1095     }
1096 }
1097 
1098 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1099 {
1100     Error *local_err = NULL;
1101 
1102     /*
1103      * The current notifier usage is just an optimization to migration, so we
1104      * don't stop the normal migration process in the error case.
1105      */
1106     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1107         error_report_err(local_err);
1108         local_err = NULL;
1109     }
1110 
1111     migration_bitmap_sync(rs, last_stage);
1112 
1113     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1114         error_report_err(local_err);
1115     }
1116 }
1117 
1118 void ram_release_page(const char *rbname, uint64_t offset)
1119 {
1120     if (!migrate_release_ram() || !migration_in_postcopy()) {
1121         return;
1122     }
1123 
1124     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1125 }
1126 
1127 /**
1128  * save_zero_page: send the zero page to the stream
1129  *
1130  * Returns the number of pages written.
1131  *
1132  * @rs: current RAM state
1133  * @pss: current PSS channel
1134  * @offset: offset inside the block for the page
1135  */
1136 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1137                           ram_addr_t offset)
1138 {
1139     uint8_t *p = pss->block->host + offset;
1140     QEMUFile *file = pss->pss_channel;
1141     int len = 0;
1142 
1143     if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1144         return 0;
1145     }
1146 
1147     stat64_add(&mig_stats.zero_pages, 1);
1148 
1149     if (migrate_mapped_ram()) {
1150         /* zero pages are not transferred with mapped-ram */
1151         clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1152         return 1;
1153     }
1154 
1155     len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1156     qemu_put_byte(file, 0);
1157     len += 1;
1158     ram_release_page(pss->block->idstr, offset);
1159     ram_transferred_add(len);
1160 
1161     /*
1162      * Must let xbzrle know, otherwise a previous (now 0'd) cached
1163      * page would be stale.
1164      */
1165     if (rs->xbzrle_started) {
1166         XBZRLE_cache_lock();
1167         xbzrle_cache_zero_page(pss->block->offset + offset);
1168         XBZRLE_cache_unlock();
1169     }
1170 
1171     return len;
1172 }
1173 
1174 /*
1175  * @pages: the number of pages written by the control path,
1176  *        < 0 - error
1177  *        > 0 - number of pages written
1178  *
1179  * Return true if the pages has been saved, otherwise false is returned.
1180  */
1181 static bool control_save_page(PageSearchStatus *pss,
1182                               ram_addr_t offset, int *pages)
1183 {
1184     int ret;
1185 
1186     ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1187                                  TARGET_PAGE_SIZE);
1188     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1189         return false;
1190     }
1191 
1192     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1193         *pages = 1;
1194         return true;
1195     }
1196     *pages = ret;
1197     return true;
1198 }
1199 
1200 /*
1201  * directly send the page to the stream
1202  *
1203  * Returns the number of pages written.
1204  *
1205  * @pss: current PSS channel
1206  * @block: block that contains the page we want to send
1207  * @offset: offset inside the block for the page
1208  * @buf: the page to be sent
1209  * @async: send to page asyncly
1210  */
1211 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1212                             ram_addr_t offset, uint8_t *buf, bool async)
1213 {
1214     QEMUFile *file = pss->pss_channel;
1215 
1216     if (migrate_mapped_ram()) {
1217         qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1218                            block->pages_offset + offset);
1219         set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1220     } else {
1221         ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1222                                              offset | RAM_SAVE_FLAG_PAGE));
1223         if (async) {
1224             qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1225                                   migrate_release_ram() &&
1226                                   migration_in_postcopy());
1227         } else {
1228             qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1229         }
1230     }
1231     ram_transferred_add(TARGET_PAGE_SIZE);
1232     stat64_add(&mig_stats.normal_pages, 1);
1233     return 1;
1234 }
1235 
1236 /**
1237  * ram_save_page: send the given page to the stream
1238  *
1239  * Returns the number of pages written.
1240  *          < 0 - error
1241  *          >=0 - Number of pages written - this might legally be 0
1242  *                if xbzrle noticed the page was the same.
1243  *
1244  * @rs: current RAM state
1245  * @block: block that contains the page we want to send
1246  * @offset: offset inside the block for the page
1247  */
1248 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1249 {
1250     int pages = -1;
1251     uint8_t *p;
1252     bool send_async = true;
1253     RAMBlock *block = pss->block;
1254     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1255     ram_addr_t current_addr = block->offset + offset;
1256 
1257     p = block->host + offset;
1258     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1259 
1260     XBZRLE_cache_lock();
1261     if (rs->xbzrle_started && !migration_in_postcopy()) {
1262         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1263                                  block, offset);
1264         if (!rs->last_stage) {
1265             /* Can't send this cached data async, since the cache page
1266              * might get updated before it gets to the wire
1267              */
1268             send_async = false;
1269         }
1270     }
1271 
1272     /* XBZRLE overflow or normal page */
1273     if (pages == -1) {
1274         pages = save_normal_page(pss, block, offset, p, send_async);
1275     }
1276 
1277     XBZRLE_cache_unlock();
1278 
1279     return pages;
1280 }
1281 
1282 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1283 {
1284     if (!multifd_queue_page(block, offset)) {
1285         return -1;
1286     }
1287     stat64_add(&mig_stats.normal_pages, 1);
1288 
1289     return 1;
1290 }
1291 
1292 int compress_send_queued_data(CompressParam *param)
1293 {
1294     PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1295     MigrationState *ms = migrate_get_current();
1296     QEMUFile *file = ms->to_dst_file;
1297     int len = 0;
1298 
1299     RAMBlock *block = param->block;
1300     ram_addr_t offset = param->offset;
1301 
1302     if (param->result == RES_NONE) {
1303         return 0;
1304     }
1305 
1306     assert(block == pss->last_sent_block);
1307 
1308     if (param->result == RES_ZEROPAGE) {
1309         assert(qemu_file_buffer_empty(param->file));
1310         len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1311         qemu_put_byte(file, 0);
1312         len += 1;
1313         ram_release_page(block->idstr, offset);
1314     } else if (param->result == RES_COMPRESS) {
1315         assert(!qemu_file_buffer_empty(param->file));
1316         len += save_page_header(pss, file, block,
1317                                 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1318         len += qemu_put_qemu_file(file, param->file);
1319     } else {
1320         abort();
1321     }
1322 
1323     update_compress_thread_counts(param, len);
1324 
1325     return len;
1326 }
1327 
1328 #define PAGE_ALL_CLEAN 0
1329 #define PAGE_TRY_AGAIN 1
1330 #define PAGE_DIRTY_FOUND 2
1331 /**
1332  * find_dirty_block: find the next dirty page and update any state
1333  * associated with the search process.
1334  *
1335  * Returns:
1336  *         <0: An error happened
1337  *         PAGE_ALL_CLEAN: no dirty page found, give up
1338  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1339  *         PAGE_DIRTY_FOUND: dirty page found
1340  *
1341  * @rs: current RAM state
1342  * @pss: data about the state of the current dirty page scan
1343  * @again: set to false if the search has scanned the whole of RAM
1344  */
1345 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1346 {
1347     /* Update pss->page for the next dirty bit in ramblock */
1348     pss_find_next_dirty(pss);
1349 
1350     if (pss->complete_round && pss->block == rs->last_seen_block &&
1351         pss->page >= rs->last_page) {
1352         /*
1353          * We've been once around the RAM and haven't found anything.
1354          * Give up.
1355          */
1356         return PAGE_ALL_CLEAN;
1357     }
1358     if (!offset_in_ramblock(pss->block,
1359                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1360         /* Didn't find anything in this RAM Block */
1361         pss->page = 0;
1362         pss->block = QLIST_NEXT_RCU(pss->block, next);
1363         if (!pss->block) {
1364             if (migrate_multifd() &&
1365                 (!migrate_multifd_flush_after_each_section() ||
1366                  migrate_mapped_ram())) {
1367                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1368                 int ret = multifd_send_sync_main();
1369                 if (ret < 0) {
1370                     return ret;
1371                 }
1372 
1373                 if (!migrate_mapped_ram()) {
1374                     qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1375                     qemu_fflush(f);
1376                 }
1377             }
1378             /*
1379              * If memory migration starts over, we will meet a dirtied page
1380              * which may still exists in compression threads's ring, so we
1381              * should flush the compressed data to make sure the new page
1382              * is not overwritten by the old one in the destination.
1383              *
1384              * Also If xbzrle is on, stop using the data compression at this
1385              * point. In theory, xbzrle can do better than compression.
1386              */
1387             compress_flush_data();
1388 
1389             /* Hit the end of the list */
1390             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1391             /* Flag that we've looped */
1392             pss->complete_round = true;
1393             /* After the first round, enable XBZRLE. */
1394             if (migrate_xbzrle()) {
1395                 rs->xbzrle_started = true;
1396             }
1397         }
1398         /* Didn't find anything this time, but try again on the new block */
1399         return PAGE_TRY_AGAIN;
1400     } else {
1401         /* We've found something */
1402         return PAGE_DIRTY_FOUND;
1403     }
1404 }
1405 
1406 /**
1407  * unqueue_page: gets a page of the queue
1408  *
1409  * Helper for 'get_queued_page' - gets a page off the queue
1410  *
1411  * Returns the block of the page (or NULL if none available)
1412  *
1413  * @rs: current RAM state
1414  * @offset: used to return the offset within the RAMBlock
1415  */
1416 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1417 {
1418     struct RAMSrcPageRequest *entry;
1419     RAMBlock *block = NULL;
1420 
1421     if (!postcopy_has_request(rs)) {
1422         return NULL;
1423     }
1424 
1425     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1426 
1427     /*
1428      * This should _never_ change even after we take the lock, because no one
1429      * should be taking anything off the request list other than us.
1430      */
1431     assert(postcopy_has_request(rs));
1432 
1433     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1434     block = entry->rb;
1435     *offset = entry->offset;
1436 
1437     if (entry->len > TARGET_PAGE_SIZE) {
1438         entry->len -= TARGET_PAGE_SIZE;
1439         entry->offset += TARGET_PAGE_SIZE;
1440     } else {
1441         memory_region_unref(block->mr);
1442         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1443         g_free(entry);
1444         migration_consume_urgent_request();
1445     }
1446 
1447     return block;
1448 }
1449 
1450 #if defined(__linux__)
1451 /**
1452  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1453  *   is found, return RAM block pointer and page offset
1454  *
1455  * Returns pointer to the RAMBlock containing faulting page,
1456  *   NULL if no write faults are pending
1457  *
1458  * @rs: current RAM state
1459  * @offset: page offset from the beginning of the block
1460  */
1461 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1462 {
1463     struct uffd_msg uffd_msg;
1464     void *page_address;
1465     RAMBlock *block;
1466     int res;
1467 
1468     if (!migrate_background_snapshot()) {
1469         return NULL;
1470     }
1471 
1472     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1473     if (res <= 0) {
1474         return NULL;
1475     }
1476 
1477     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1478     block = qemu_ram_block_from_host(page_address, false, offset);
1479     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1480     return block;
1481 }
1482 
1483 /**
1484  * ram_save_release_protection: release UFFD write protection after
1485  *   a range of pages has been saved
1486  *
1487  * @rs: current RAM state
1488  * @pss: page-search-status structure
1489  * @start_page: index of the first page in the range relative to pss->block
1490  *
1491  * Returns 0 on success, negative value in case of an error
1492 */
1493 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1494         unsigned long start_page)
1495 {
1496     int res = 0;
1497 
1498     /* Check if page is from UFFD-managed region. */
1499     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1500         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1501         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1502 
1503         /* Flush async buffers before un-protect. */
1504         qemu_fflush(pss->pss_channel);
1505         /* Un-protect memory range. */
1506         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1507                 false, false);
1508     }
1509 
1510     return res;
1511 }
1512 
1513 /* ram_write_tracking_available: check if kernel supports required UFFD features
1514  *
1515  * Returns true if supports, false otherwise
1516  */
1517 bool ram_write_tracking_available(void)
1518 {
1519     uint64_t uffd_features;
1520     int res;
1521 
1522     res = uffd_query_features(&uffd_features);
1523     return (res == 0 &&
1524             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1525 }
1526 
1527 /* ram_write_tracking_compatible: check if guest configuration is
1528  *   compatible with 'write-tracking'
1529  *
1530  * Returns true if compatible, false otherwise
1531  */
1532 bool ram_write_tracking_compatible(void)
1533 {
1534     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1535     int uffd_fd;
1536     RAMBlock *block;
1537     bool ret = false;
1538 
1539     /* Open UFFD file descriptor */
1540     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1541     if (uffd_fd < 0) {
1542         return false;
1543     }
1544 
1545     RCU_READ_LOCK_GUARD();
1546 
1547     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1548         uint64_t uffd_ioctls;
1549 
1550         /* Nothing to do with read-only and MMIO-writable regions */
1551         if (block->mr->readonly || block->mr->rom_device) {
1552             continue;
1553         }
1554         /* Try to register block memory via UFFD-IO to track writes */
1555         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1556                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1557             goto out;
1558         }
1559         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1560             goto out;
1561         }
1562     }
1563     ret = true;
1564 
1565 out:
1566     uffd_close_fd(uffd_fd);
1567     return ret;
1568 }
1569 
1570 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1571                                        ram_addr_t size)
1572 {
1573     const ram_addr_t end = offset + size;
1574 
1575     /*
1576      * We read one byte of each page; this will preallocate page tables if
1577      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1578      * where no page was populated yet. This might require adaption when
1579      * supporting other mappings, like shmem.
1580      */
1581     for (; offset < end; offset += block->page_size) {
1582         char tmp = *((char *)block->host + offset);
1583 
1584         /* Don't optimize the read out */
1585         asm volatile("" : "+r" (tmp));
1586     }
1587 }
1588 
1589 static inline int populate_read_section(MemoryRegionSection *section,
1590                                         void *opaque)
1591 {
1592     const hwaddr size = int128_get64(section->size);
1593     hwaddr offset = section->offset_within_region;
1594     RAMBlock *block = section->mr->ram_block;
1595 
1596     populate_read_range(block, offset, size);
1597     return 0;
1598 }
1599 
1600 /*
1601  * ram_block_populate_read: preallocate page tables and populate pages in the
1602  *   RAM block by reading a byte of each page.
1603  *
1604  * Since it's solely used for userfault_fd WP feature, here we just
1605  *   hardcode page size to qemu_real_host_page_size.
1606  *
1607  * @block: RAM block to populate
1608  */
1609 static void ram_block_populate_read(RAMBlock *rb)
1610 {
1611     /*
1612      * Skip populating all pages that fall into a discarded range as managed by
1613      * a RamDiscardManager responsible for the mapped memory region of the
1614      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1615      * must not get populated automatically. We don't have to track
1616      * modifications via userfaultfd WP reliably, because these pages will
1617      * not be part of the migration stream either way -- see
1618      * ramblock_dirty_bitmap_exclude_discarded_pages().
1619      *
1620      * Note: The result is only stable while migrating (precopy/postcopy).
1621      */
1622     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1623         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1624         MemoryRegionSection section = {
1625             .mr = rb->mr,
1626             .offset_within_region = 0,
1627             .size = rb->mr->size,
1628         };
1629 
1630         ram_discard_manager_replay_populated(rdm, &section,
1631                                              populate_read_section, NULL);
1632     } else {
1633         populate_read_range(rb, 0, rb->used_length);
1634     }
1635 }
1636 
1637 /*
1638  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1639  */
1640 void ram_write_tracking_prepare(void)
1641 {
1642     RAMBlock *block;
1643 
1644     RCU_READ_LOCK_GUARD();
1645 
1646     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1647         /* Nothing to do with read-only and MMIO-writable regions */
1648         if (block->mr->readonly || block->mr->rom_device) {
1649             continue;
1650         }
1651 
1652         /*
1653          * Populate pages of the RAM block before enabling userfault_fd
1654          * write protection.
1655          *
1656          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1657          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1658          * pages with pte_none() entries in page table.
1659          */
1660         ram_block_populate_read(block);
1661     }
1662 }
1663 
1664 static inline int uffd_protect_section(MemoryRegionSection *section,
1665                                        void *opaque)
1666 {
1667     const hwaddr size = int128_get64(section->size);
1668     const hwaddr offset = section->offset_within_region;
1669     RAMBlock *rb = section->mr->ram_block;
1670     int uffd_fd = (uintptr_t)opaque;
1671 
1672     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1673                                   false);
1674 }
1675 
1676 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1677 {
1678     assert(rb->flags & RAM_UF_WRITEPROTECT);
1679 
1680     /* See ram_block_populate_read() */
1681     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1682         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1683         MemoryRegionSection section = {
1684             .mr = rb->mr,
1685             .offset_within_region = 0,
1686             .size = rb->mr->size,
1687         };
1688 
1689         return ram_discard_manager_replay_populated(rdm, &section,
1690                                                     uffd_protect_section,
1691                                                     (void *)(uintptr_t)uffd_fd);
1692     }
1693     return uffd_change_protection(uffd_fd, rb->host,
1694                                   rb->used_length, true, false);
1695 }
1696 
1697 /*
1698  * ram_write_tracking_start: start UFFD-WP memory tracking
1699  *
1700  * Returns 0 for success or negative value in case of error
1701  */
1702 int ram_write_tracking_start(void)
1703 {
1704     int uffd_fd;
1705     RAMState *rs = ram_state;
1706     RAMBlock *block;
1707 
1708     /* Open UFFD file descriptor */
1709     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1710     if (uffd_fd < 0) {
1711         return uffd_fd;
1712     }
1713     rs->uffdio_fd = uffd_fd;
1714 
1715     RCU_READ_LOCK_GUARD();
1716 
1717     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1718         /* Nothing to do with read-only and MMIO-writable regions */
1719         if (block->mr->readonly || block->mr->rom_device) {
1720             continue;
1721         }
1722 
1723         /* Register block memory with UFFD to track writes */
1724         if (uffd_register_memory(rs->uffdio_fd, block->host,
1725                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1726             goto fail;
1727         }
1728         block->flags |= RAM_UF_WRITEPROTECT;
1729         memory_region_ref(block->mr);
1730 
1731         /* Apply UFFD write protection to the block memory range */
1732         if (ram_block_uffd_protect(block, uffd_fd)) {
1733             goto fail;
1734         }
1735 
1736         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1737                 block->host, block->max_length);
1738     }
1739 
1740     return 0;
1741 
1742 fail:
1743     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1744 
1745     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1746         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1747             continue;
1748         }
1749         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1750         /* Cleanup flags and remove reference */
1751         block->flags &= ~RAM_UF_WRITEPROTECT;
1752         memory_region_unref(block->mr);
1753     }
1754 
1755     uffd_close_fd(uffd_fd);
1756     rs->uffdio_fd = -1;
1757     return -1;
1758 }
1759 
1760 /**
1761  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1762  */
1763 void ram_write_tracking_stop(void)
1764 {
1765     RAMState *rs = ram_state;
1766     RAMBlock *block;
1767 
1768     RCU_READ_LOCK_GUARD();
1769 
1770     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1771         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1772             continue;
1773         }
1774         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1775 
1776         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1777                 block->host, block->max_length);
1778 
1779         /* Cleanup flags and remove reference */
1780         block->flags &= ~RAM_UF_WRITEPROTECT;
1781         memory_region_unref(block->mr);
1782     }
1783 
1784     /* Finally close UFFD file descriptor */
1785     uffd_close_fd(rs->uffdio_fd);
1786     rs->uffdio_fd = -1;
1787 }
1788 
1789 #else
1790 /* No target OS support, stubs just fail or ignore */
1791 
1792 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1793 {
1794     (void) rs;
1795     (void) offset;
1796 
1797     return NULL;
1798 }
1799 
1800 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1801         unsigned long start_page)
1802 {
1803     (void) rs;
1804     (void) pss;
1805     (void) start_page;
1806 
1807     return 0;
1808 }
1809 
1810 bool ram_write_tracking_available(void)
1811 {
1812     return false;
1813 }
1814 
1815 bool ram_write_tracking_compatible(void)
1816 {
1817     assert(0);
1818     return false;
1819 }
1820 
1821 int ram_write_tracking_start(void)
1822 {
1823     assert(0);
1824     return -1;
1825 }
1826 
1827 void ram_write_tracking_stop(void)
1828 {
1829     assert(0);
1830 }
1831 #endif /* defined(__linux__) */
1832 
1833 /**
1834  * get_queued_page: unqueue a page from the postcopy requests
1835  *
1836  * Skips pages that are already sent (!dirty)
1837  *
1838  * Returns true if a queued page is found
1839  *
1840  * @rs: current RAM state
1841  * @pss: data about the state of the current dirty page scan
1842  */
1843 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1844 {
1845     RAMBlock  *block;
1846     ram_addr_t offset;
1847     bool dirty;
1848 
1849     do {
1850         block = unqueue_page(rs, &offset);
1851         /*
1852          * We're sending this page, and since it's postcopy nothing else
1853          * will dirty it, and we must make sure it doesn't get sent again
1854          * even if this queue request was received after the background
1855          * search already sent it.
1856          */
1857         if (block) {
1858             unsigned long page;
1859 
1860             page = offset >> TARGET_PAGE_BITS;
1861             dirty = test_bit(page, block->bmap);
1862             if (!dirty) {
1863                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1864                                                 page);
1865             } else {
1866                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1867             }
1868         }
1869 
1870     } while (block && !dirty);
1871 
1872     if (!block) {
1873         /*
1874          * Poll write faults too if background snapshot is enabled; that's
1875          * when we have vcpus got blocked by the write protected pages.
1876          */
1877         block = poll_fault_page(rs, &offset);
1878     }
1879 
1880     if (block) {
1881         /*
1882          * We want the background search to continue from the queued page
1883          * since the guest is likely to want other pages near to the page
1884          * it just requested.
1885          */
1886         pss->block = block;
1887         pss->page = offset >> TARGET_PAGE_BITS;
1888 
1889         /*
1890          * This unqueued page would break the "one round" check, even is
1891          * really rare.
1892          */
1893         pss->complete_round = false;
1894     }
1895 
1896     return !!block;
1897 }
1898 
1899 /**
1900  * migration_page_queue_free: drop any remaining pages in the ram
1901  * request queue
1902  *
1903  * It should be empty at the end anyway, but in error cases there may
1904  * be some left.  in case that there is any page left, we drop it.
1905  *
1906  */
1907 static void migration_page_queue_free(RAMState *rs)
1908 {
1909     struct RAMSrcPageRequest *mspr, *next_mspr;
1910     /* This queue generally should be empty - but in the case of a failed
1911      * migration might have some droppings in.
1912      */
1913     RCU_READ_LOCK_GUARD();
1914     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1915         memory_region_unref(mspr->rb->mr);
1916         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1917         g_free(mspr);
1918     }
1919 }
1920 
1921 /**
1922  * ram_save_queue_pages: queue the page for transmission
1923  *
1924  * A request from postcopy destination for example.
1925  *
1926  * Returns zero on success or negative on error
1927  *
1928  * @rbname: Name of the RAMBLock of the request. NULL means the
1929  *          same that last one.
1930  * @start: starting address from the start of the RAMBlock
1931  * @len: length (in bytes) to send
1932  */
1933 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1934                          Error **errp)
1935 {
1936     RAMBlock *ramblock;
1937     RAMState *rs = ram_state;
1938 
1939     stat64_add(&mig_stats.postcopy_requests, 1);
1940     RCU_READ_LOCK_GUARD();
1941 
1942     if (!rbname) {
1943         /* Reuse last RAMBlock */
1944         ramblock = rs->last_req_rb;
1945 
1946         if (!ramblock) {
1947             /*
1948              * Shouldn't happen, we can't reuse the last RAMBlock if
1949              * it's the 1st request.
1950              */
1951             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1952             return -1;
1953         }
1954     } else {
1955         ramblock = qemu_ram_block_by_name(rbname);
1956 
1957         if (!ramblock) {
1958             /* We shouldn't be asked for a non-existent RAMBlock */
1959             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1960             return -1;
1961         }
1962         rs->last_req_rb = ramblock;
1963     }
1964     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1965     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1966         error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1967                    "start=" RAM_ADDR_FMT " len="
1968                    RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1969                    start, len, ramblock->used_length);
1970         return -1;
1971     }
1972 
1973     /*
1974      * When with postcopy preempt, we send back the page directly in the
1975      * rp-return thread.
1976      */
1977     if (postcopy_preempt_active()) {
1978         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1979         size_t page_size = qemu_ram_pagesize(ramblock);
1980         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1981         int ret = 0;
1982 
1983         qemu_mutex_lock(&rs->bitmap_mutex);
1984 
1985         pss_init(pss, ramblock, page_start);
1986         /*
1987          * Always use the preempt channel, and make sure it's there.  It's
1988          * safe to access without lock, because when rp-thread is running
1989          * we should be the only one who operates on the qemufile
1990          */
1991         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1992         assert(pss->pss_channel);
1993 
1994         /*
1995          * It must be either one or multiple of host page size.  Just
1996          * assert; if something wrong we're mostly split brain anyway.
1997          */
1998         assert(len % page_size == 0);
1999         while (len) {
2000             if (ram_save_host_page_urgent(pss)) {
2001                 error_setg(errp, "ram_save_host_page_urgent() failed: "
2002                            "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2003                            ramblock->idstr, start);
2004                 ret = -1;
2005                 break;
2006             }
2007             /*
2008              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2009              * will automatically be moved and point to the next host page
2010              * we're going to send, so no need to update here.
2011              *
2012              * Normally QEMU never sends >1 host page in requests, so
2013              * logically we don't even need that as the loop should only
2014              * run once, but just to be consistent.
2015              */
2016             len -= page_size;
2017         };
2018         qemu_mutex_unlock(&rs->bitmap_mutex);
2019 
2020         return ret;
2021     }
2022 
2023     struct RAMSrcPageRequest *new_entry =
2024         g_new0(struct RAMSrcPageRequest, 1);
2025     new_entry->rb = ramblock;
2026     new_entry->offset = start;
2027     new_entry->len = len;
2028 
2029     memory_region_ref(ramblock->mr);
2030     qemu_mutex_lock(&rs->src_page_req_mutex);
2031     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2032     migration_make_urgent_request();
2033     qemu_mutex_unlock(&rs->src_page_req_mutex);
2034 
2035     return 0;
2036 }
2037 
2038 /*
2039  * try to compress the page before posting it out, return true if the page
2040  * has been properly handled by compression, otherwise needs other
2041  * paths to handle it
2042  */
2043 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2044                                ram_addr_t offset)
2045 {
2046     if (!migrate_compress()) {
2047         return false;
2048     }
2049 
2050     /*
2051      * When starting the process of a new block, the first page of
2052      * the block should be sent out before other pages in the same
2053      * block, and all the pages in last block should have been sent
2054      * out, keeping this order is important, because the 'cont' flag
2055      * is used to avoid resending the block name.
2056      *
2057      * We post the fist page as normal page as compression will take
2058      * much CPU resource.
2059      */
2060     if (pss->block != pss->last_sent_block) {
2061         compress_flush_data();
2062         return false;
2063     }
2064 
2065     return compress_page_with_multi_thread(pss->block, offset,
2066                                            compress_send_queued_data);
2067 }
2068 
2069 /**
2070  * ram_save_target_page_legacy: save one target page
2071  *
2072  * Returns the number of pages written
2073  *
2074  * @rs: current RAM state
2075  * @pss: data about the page we want to send
2076  */
2077 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2078 {
2079     RAMBlock *block = pss->block;
2080     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2081     int res;
2082 
2083     if (control_save_page(pss, offset, &res)) {
2084         return res;
2085     }
2086 
2087     if (save_compress_page(rs, pss, offset)) {
2088         return 1;
2089     }
2090 
2091     if (save_zero_page(rs, pss, offset)) {
2092         return 1;
2093     }
2094 
2095     /*
2096      * Do not use multifd in postcopy as one whole host page should be
2097      * placed.  Meanwhile postcopy requires atomic update of pages, so even
2098      * if host page size == guest page size the dest guest during run may
2099      * still see partially copied pages which is data corruption.
2100      */
2101     if (migrate_multifd() && !migration_in_postcopy()) {
2102         return ram_save_multifd_page(block, offset);
2103     }
2104 
2105     return ram_save_page(rs, pss);
2106 }
2107 
2108 /* Should be called before sending a host page */
2109 static void pss_host_page_prepare(PageSearchStatus *pss)
2110 {
2111     /* How many guest pages are there in one host page? */
2112     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2113 
2114     pss->host_page_sending = true;
2115     if (guest_pfns <= 1) {
2116         /*
2117          * This covers both when guest psize == host psize, or when guest
2118          * has larger psize than the host (guest_pfns==0).
2119          *
2120          * For the latter, we always send one whole guest page per
2121          * iteration of the host page (example: an Alpha VM on x86 host
2122          * will have guest psize 8K while host psize 4K).
2123          */
2124         pss->host_page_start = pss->page;
2125         pss->host_page_end = pss->page + 1;
2126     } else {
2127         /*
2128          * The host page spans over multiple guest pages, we send them
2129          * within the same host page iteration.
2130          */
2131         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2132         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2133     }
2134 }
2135 
2136 /*
2137  * Whether the page pointed by PSS is within the host page being sent.
2138  * Must be called after a previous pss_host_page_prepare().
2139  */
2140 static bool pss_within_range(PageSearchStatus *pss)
2141 {
2142     ram_addr_t ram_addr;
2143 
2144     assert(pss->host_page_sending);
2145 
2146     /* Over host-page boundary? */
2147     if (pss->page >= pss->host_page_end) {
2148         return false;
2149     }
2150 
2151     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2152 
2153     return offset_in_ramblock(pss->block, ram_addr);
2154 }
2155 
2156 static void pss_host_page_finish(PageSearchStatus *pss)
2157 {
2158     pss->host_page_sending = false;
2159     /* This is not needed, but just to reset it */
2160     pss->host_page_start = pss->host_page_end = 0;
2161 }
2162 
2163 /*
2164  * Send an urgent host page specified by `pss'.  Need to be called with
2165  * bitmap_mutex held.
2166  *
2167  * Returns 0 if save host page succeeded, false otherwise.
2168  */
2169 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2170 {
2171     bool page_dirty, sent = false;
2172     RAMState *rs = ram_state;
2173     int ret = 0;
2174 
2175     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2176     pss_host_page_prepare(pss);
2177 
2178     /*
2179      * If precopy is sending the same page, let it be done in precopy, or
2180      * we could send the same page in two channels and none of them will
2181      * receive the whole page.
2182      */
2183     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2184         trace_postcopy_preempt_hit(pss->block->idstr,
2185                                    pss->page << TARGET_PAGE_BITS);
2186         return 0;
2187     }
2188 
2189     do {
2190         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2191 
2192         if (page_dirty) {
2193             /* Be strict to return code; it must be 1, or what else? */
2194             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2195                 error_report_once("%s: ram_save_target_page failed", __func__);
2196                 ret = -1;
2197                 goto out;
2198             }
2199             sent = true;
2200         }
2201         pss_find_next_dirty(pss);
2202     } while (pss_within_range(pss));
2203 out:
2204     pss_host_page_finish(pss);
2205     /* For urgent requests, flush immediately if sent */
2206     if (sent) {
2207         qemu_fflush(pss->pss_channel);
2208     }
2209     return ret;
2210 }
2211 
2212 /**
2213  * ram_save_host_page: save a whole host page
2214  *
2215  * Starting at *offset send pages up to the end of the current host
2216  * page. It's valid for the initial offset to point into the middle of
2217  * a host page in which case the remainder of the hostpage is sent.
2218  * Only dirty target pages are sent. Note that the host page size may
2219  * be a huge page for this block.
2220  *
2221  * The saving stops at the boundary of the used_length of the block
2222  * if the RAMBlock isn't a multiple of the host page size.
2223  *
2224  * The caller must be with ram_state.bitmap_mutex held to call this
2225  * function.  Note that this function can temporarily release the lock, but
2226  * when the function is returned it'll make sure the lock is still held.
2227  *
2228  * Returns the number of pages written or negative on error
2229  *
2230  * @rs: current RAM state
2231  * @pss: data about the page we want to send
2232  */
2233 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2234 {
2235     bool page_dirty, preempt_active = postcopy_preempt_active();
2236     int tmppages, pages = 0;
2237     size_t pagesize_bits =
2238         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2239     unsigned long start_page = pss->page;
2240     int res;
2241 
2242     if (migrate_ram_is_ignored(pss->block)) {
2243         error_report("block %s should not be migrated !", pss->block->idstr);
2244         return 0;
2245     }
2246 
2247     /* Update host page boundary information */
2248     pss_host_page_prepare(pss);
2249 
2250     do {
2251         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2252 
2253         /* Check the pages is dirty and if it is send it */
2254         if (page_dirty) {
2255             /*
2256              * Properly yield the lock only in postcopy preempt mode
2257              * because both migration thread and rp-return thread can
2258              * operate on the bitmaps.
2259              */
2260             if (preempt_active) {
2261                 qemu_mutex_unlock(&rs->bitmap_mutex);
2262             }
2263             tmppages = migration_ops->ram_save_target_page(rs, pss);
2264             if (tmppages >= 0) {
2265                 pages += tmppages;
2266                 /*
2267                  * Allow rate limiting to happen in the middle of huge pages if
2268                  * something is sent in the current iteration.
2269                  */
2270                 if (pagesize_bits > 1 && tmppages > 0) {
2271                     migration_rate_limit();
2272                 }
2273             }
2274             if (preempt_active) {
2275                 qemu_mutex_lock(&rs->bitmap_mutex);
2276             }
2277         } else {
2278             tmppages = 0;
2279         }
2280 
2281         if (tmppages < 0) {
2282             pss_host_page_finish(pss);
2283             return tmppages;
2284         }
2285 
2286         pss_find_next_dirty(pss);
2287     } while (pss_within_range(pss));
2288 
2289     pss_host_page_finish(pss);
2290 
2291     res = ram_save_release_protection(rs, pss, start_page);
2292     return (res < 0 ? res : pages);
2293 }
2294 
2295 /**
2296  * ram_find_and_save_block: finds a dirty page and sends it to f
2297  *
2298  * Called within an RCU critical section.
2299  *
2300  * Returns the number of pages written where zero means no dirty pages,
2301  * or negative on error
2302  *
2303  * @rs: current RAM state
2304  *
2305  * On systems where host-page-size > target-page-size it will send all the
2306  * pages in a host page that are dirty.
2307  */
2308 static int ram_find_and_save_block(RAMState *rs)
2309 {
2310     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2311     int pages = 0;
2312 
2313     /* No dirty page as there is zero RAM */
2314     if (!rs->ram_bytes_total) {
2315         return pages;
2316     }
2317 
2318     /*
2319      * Always keep last_seen_block/last_page valid during this procedure,
2320      * because find_dirty_block() relies on these values (e.g., we compare
2321      * last_seen_block with pss.block to see whether we searched all the
2322      * ramblocks) to detect the completion of migration.  Having NULL value
2323      * of last_seen_block can conditionally cause below loop to run forever.
2324      */
2325     if (!rs->last_seen_block) {
2326         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2327         rs->last_page = 0;
2328     }
2329 
2330     pss_init(pss, rs->last_seen_block, rs->last_page);
2331 
2332     while (true){
2333         if (!get_queued_page(rs, pss)) {
2334             /* priority queue empty, so just search for something dirty */
2335             int res = find_dirty_block(rs, pss);
2336             if (res != PAGE_DIRTY_FOUND) {
2337                 if (res == PAGE_ALL_CLEAN) {
2338                     break;
2339                 } else if (res == PAGE_TRY_AGAIN) {
2340                     continue;
2341                 } else if (res < 0) {
2342                     pages = res;
2343                     break;
2344                 }
2345             }
2346         }
2347         pages = ram_save_host_page(rs, pss);
2348         if (pages) {
2349             break;
2350         }
2351     }
2352 
2353     rs->last_seen_block = pss->block;
2354     rs->last_page = pss->page;
2355 
2356     return pages;
2357 }
2358 
2359 static uint64_t ram_bytes_total_with_ignored(void)
2360 {
2361     RAMBlock *block;
2362     uint64_t total = 0;
2363 
2364     RCU_READ_LOCK_GUARD();
2365 
2366     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2367         total += block->used_length;
2368     }
2369     return total;
2370 }
2371 
2372 uint64_t ram_bytes_total(void)
2373 {
2374     RAMBlock *block;
2375     uint64_t total = 0;
2376 
2377     RCU_READ_LOCK_GUARD();
2378 
2379     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2380         total += block->used_length;
2381     }
2382     return total;
2383 }
2384 
2385 static void xbzrle_load_setup(void)
2386 {
2387     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2388 }
2389 
2390 static void xbzrle_load_cleanup(void)
2391 {
2392     g_free(XBZRLE.decoded_buf);
2393     XBZRLE.decoded_buf = NULL;
2394 }
2395 
2396 static void ram_state_cleanup(RAMState **rsp)
2397 {
2398     if (*rsp) {
2399         migration_page_queue_free(*rsp);
2400         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2401         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2402         g_free(*rsp);
2403         *rsp = NULL;
2404     }
2405 }
2406 
2407 static void xbzrle_cleanup(void)
2408 {
2409     XBZRLE_cache_lock();
2410     if (XBZRLE.cache) {
2411         cache_fini(XBZRLE.cache);
2412         g_free(XBZRLE.encoded_buf);
2413         g_free(XBZRLE.current_buf);
2414         g_free(XBZRLE.zero_target_page);
2415         XBZRLE.cache = NULL;
2416         XBZRLE.encoded_buf = NULL;
2417         XBZRLE.current_buf = NULL;
2418         XBZRLE.zero_target_page = NULL;
2419     }
2420     XBZRLE_cache_unlock();
2421 }
2422 
2423 static void ram_save_cleanup(void *opaque)
2424 {
2425     RAMState **rsp = opaque;
2426     RAMBlock *block;
2427 
2428     /* We don't use dirty log with background snapshots */
2429     if (!migrate_background_snapshot()) {
2430         /* caller have hold BQL or is in a bh, so there is
2431          * no writing race against the migration bitmap
2432          */
2433         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2434             /*
2435              * do not stop dirty log without starting it, since
2436              * memory_global_dirty_log_stop will assert that
2437              * memory_global_dirty_log_start/stop used in pairs
2438              */
2439             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2440         }
2441     }
2442 
2443     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2444         g_free(block->clear_bmap);
2445         block->clear_bmap = NULL;
2446         g_free(block->bmap);
2447         block->bmap = NULL;
2448     }
2449 
2450     xbzrle_cleanup();
2451     compress_threads_save_cleanup();
2452     ram_state_cleanup(rsp);
2453     g_free(migration_ops);
2454     migration_ops = NULL;
2455 }
2456 
2457 static void ram_state_reset(RAMState *rs)
2458 {
2459     int i;
2460 
2461     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2462         rs->pss[i].last_sent_block = NULL;
2463     }
2464 
2465     rs->last_seen_block = NULL;
2466     rs->last_page = 0;
2467     rs->last_version = ram_list.version;
2468     rs->xbzrle_started = false;
2469 }
2470 
2471 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2472 
2473 /* **** functions for postcopy ***** */
2474 
2475 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2476 {
2477     struct RAMBlock *block;
2478 
2479     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2480         unsigned long *bitmap = block->bmap;
2481         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2482         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2483 
2484         while (run_start < range) {
2485             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2486             ram_discard_range(block->idstr,
2487                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2488                               ((ram_addr_t)(run_end - run_start))
2489                                 << TARGET_PAGE_BITS);
2490             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2491         }
2492     }
2493 }
2494 
2495 /**
2496  * postcopy_send_discard_bm_ram: discard a RAMBlock
2497  *
2498  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2499  *
2500  * @ms: current migration state
2501  * @block: RAMBlock to discard
2502  */
2503 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2504 {
2505     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2506     unsigned long current;
2507     unsigned long *bitmap = block->bmap;
2508 
2509     for (current = 0; current < end; ) {
2510         unsigned long one = find_next_bit(bitmap, end, current);
2511         unsigned long zero, discard_length;
2512 
2513         if (one >= end) {
2514             break;
2515         }
2516 
2517         zero = find_next_zero_bit(bitmap, end, one + 1);
2518 
2519         if (zero >= end) {
2520             discard_length = end - one;
2521         } else {
2522             discard_length = zero - one;
2523         }
2524         postcopy_discard_send_range(ms, one, discard_length);
2525         current = one + discard_length;
2526     }
2527 }
2528 
2529 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2530 
2531 /**
2532  * postcopy_each_ram_send_discard: discard all RAMBlocks
2533  *
2534  * Utility for the outgoing postcopy code.
2535  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2536  *   passing it bitmap indexes and name.
2537  * (qemu_ram_foreach_block ends up passing unscaled lengths
2538  *  which would mean postcopy code would have to deal with target page)
2539  *
2540  * @ms: current migration state
2541  */
2542 static void postcopy_each_ram_send_discard(MigrationState *ms)
2543 {
2544     struct RAMBlock *block;
2545 
2546     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2547         postcopy_discard_send_init(ms, block->idstr);
2548 
2549         /*
2550          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2551          * host-page size chunks, mark any partially dirty host-page size
2552          * chunks as all dirty.  In this case the host-page is the host-page
2553          * for the particular RAMBlock, i.e. it might be a huge page.
2554          */
2555         postcopy_chunk_hostpages_pass(ms, block);
2556 
2557         /*
2558          * Postcopy sends chunks of bitmap over the wire, but it
2559          * just needs indexes at this point, avoids it having
2560          * target page specific code.
2561          */
2562         postcopy_send_discard_bm_ram(ms, block);
2563         postcopy_discard_send_finish(ms);
2564     }
2565 }
2566 
2567 /**
2568  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2569  *
2570  * Helper for postcopy_chunk_hostpages; it's called twice to
2571  * canonicalize the two bitmaps, that are similar, but one is
2572  * inverted.
2573  *
2574  * Postcopy requires that all target pages in a hostpage are dirty or
2575  * clean, not a mix.  This function canonicalizes the bitmaps.
2576  *
2577  * @ms: current migration state
2578  * @block: block that contains the page we want to canonicalize
2579  */
2580 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2581 {
2582     RAMState *rs = ram_state;
2583     unsigned long *bitmap = block->bmap;
2584     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2585     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2586     unsigned long run_start;
2587 
2588     if (block->page_size == TARGET_PAGE_SIZE) {
2589         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2590         return;
2591     }
2592 
2593     /* Find a dirty page */
2594     run_start = find_next_bit(bitmap, pages, 0);
2595 
2596     while (run_start < pages) {
2597 
2598         /*
2599          * If the start of this run of pages is in the middle of a host
2600          * page, then we need to fixup this host page.
2601          */
2602         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2603             /* Find the end of this run */
2604             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2605             /*
2606              * If the end isn't at the start of a host page, then the
2607              * run doesn't finish at the end of a host page
2608              * and we need to discard.
2609              */
2610         }
2611 
2612         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2613             unsigned long page;
2614             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2615                                                              host_ratio);
2616             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2617 
2618             /* Clean up the bitmap */
2619             for (page = fixup_start_addr;
2620                  page < fixup_start_addr + host_ratio; page++) {
2621                 /*
2622                  * Remark them as dirty, updating the count for any pages
2623                  * that weren't previously dirty.
2624                  */
2625                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2626             }
2627         }
2628 
2629         /* Find the next dirty page for the next iteration */
2630         run_start = find_next_bit(bitmap, pages, run_start);
2631     }
2632 }
2633 
2634 /**
2635  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2636  *
2637  * Transmit the set of pages to be discarded after precopy to the target
2638  * these are pages that:
2639  *     a) Have been previously transmitted but are now dirty again
2640  *     b) Pages that have never been transmitted, this ensures that
2641  *        any pages on the destination that have been mapped by background
2642  *        tasks get discarded (transparent huge pages is the specific concern)
2643  * Hopefully this is pretty sparse
2644  *
2645  * @ms: current migration state
2646  */
2647 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2648 {
2649     RAMState *rs = ram_state;
2650 
2651     RCU_READ_LOCK_GUARD();
2652 
2653     /* This should be our last sync, the src is now paused */
2654     migration_bitmap_sync(rs, false);
2655 
2656     /* Easiest way to make sure we don't resume in the middle of a host-page */
2657     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2658     rs->last_seen_block = NULL;
2659     rs->last_page = 0;
2660 
2661     postcopy_each_ram_send_discard(ms);
2662 
2663     trace_ram_postcopy_send_discard_bitmap();
2664 }
2665 
2666 /**
2667  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2668  *
2669  * Returns zero on success
2670  *
2671  * @rbname: name of the RAMBlock of the request. NULL means the
2672  *          same that last one.
2673  * @start: RAMBlock starting page
2674  * @length: RAMBlock size
2675  */
2676 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2677 {
2678     trace_ram_discard_range(rbname, start, length);
2679 
2680     RCU_READ_LOCK_GUARD();
2681     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2682 
2683     if (!rb) {
2684         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2685         return -1;
2686     }
2687 
2688     /*
2689      * On source VM, we don't need to update the received bitmap since
2690      * we don't even have one.
2691      */
2692     if (rb->receivedmap) {
2693         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2694                      length >> qemu_target_page_bits());
2695     }
2696 
2697     return ram_block_discard_range(rb, start, length);
2698 }
2699 
2700 /*
2701  * For every allocation, we will try not to crash the VM if the
2702  * allocation failed.
2703  */
2704 static int xbzrle_init(void)
2705 {
2706     Error *local_err = NULL;
2707 
2708     if (!migrate_xbzrle()) {
2709         return 0;
2710     }
2711 
2712     XBZRLE_cache_lock();
2713 
2714     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2715     if (!XBZRLE.zero_target_page) {
2716         error_report("%s: Error allocating zero page", __func__);
2717         goto err_out;
2718     }
2719 
2720     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2721                               TARGET_PAGE_SIZE, &local_err);
2722     if (!XBZRLE.cache) {
2723         error_report_err(local_err);
2724         goto free_zero_page;
2725     }
2726 
2727     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2728     if (!XBZRLE.encoded_buf) {
2729         error_report("%s: Error allocating encoded_buf", __func__);
2730         goto free_cache;
2731     }
2732 
2733     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2734     if (!XBZRLE.current_buf) {
2735         error_report("%s: Error allocating current_buf", __func__);
2736         goto free_encoded_buf;
2737     }
2738 
2739     /* We are all good */
2740     XBZRLE_cache_unlock();
2741     return 0;
2742 
2743 free_encoded_buf:
2744     g_free(XBZRLE.encoded_buf);
2745     XBZRLE.encoded_buf = NULL;
2746 free_cache:
2747     cache_fini(XBZRLE.cache);
2748     XBZRLE.cache = NULL;
2749 free_zero_page:
2750     g_free(XBZRLE.zero_target_page);
2751     XBZRLE.zero_target_page = NULL;
2752 err_out:
2753     XBZRLE_cache_unlock();
2754     return -ENOMEM;
2755 }
2756 
2757 static int ram_state_init(RAMState **rsp)
2758 {
2759     *rsp = g_try_new0(RAMState, 1);
2760 
2761     if (!*rsp) {
2762         error_report("%s: Init ramstate fail", __func__);
2763         return -1;
2764     }
2765 
2766     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2767     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2768     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2769     (*rsp)->ram_bytes_total = ram_bytes_total();
2770 
2771     /*
2772      * Count the total number of pages used by ram blocks not including any
2773      * gaps due to alignment or unplugs.
2774      * This must match with the initial values of dirty bitmap.
2775      */
2776     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2777     ram_state_reset(*rsp);
2778 
2779     return 0;
2780 }
2781 
2782 static void ram_list_init_bitmaps(void)
2783 {
2784     MigrationState *ms = migrate_get_current();
2785     RAMBlock *block;
2786     unsigned long pages;
2787     uint8_t shift;
2788 
2789     /* Skip setting bitmap if there is no RAM */
2790     if (ram_bytes_total()) {
2791         shift = ms->clear_bitmap_shift;
2792         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2793             error_report("clear_bitmap_shift (%u) too big, using "
2794                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2795             shift = CLEAR_BITMAP_SHIFT_MAX;
2796         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2797             error_report("clear_bitmap_shift (%u) too small, using "
2798                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2799             shift = CLEAR_BITMAP_SHIFT_MIN;
2800         }
2801 
2802         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2803             pages = block->max_length >> TARGET_PAGE_BITS;
2804             /*
2805              * The initial dirty bitmap for migration must be set with all
2806              * ones to make sure we'll migrate every guest RAM page to
2807              * destination.
2808              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2809              * new migration after a failed migration, ram_list.
2810              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2811              * guest memory.
2812              */
2813             block->bmap = bitmap_new(pages);
2814             bitmap_set(block->bmap, 0, pages);
2815             if (migrate_mapped_ram()) {
2816                 block->file_bmap = bitmap_new(pages);
2817             }
2818             block->clear_bmap_shift = shift;
2819             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2820         }
2821     }
2822 }
2823 
2824 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2825 {
2826     unsigned long pages;
2827     RAMBlock *rb;
2828 
2829     RCU_READ_LOCK_GUARD();
2830 
2831     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2832             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2833             rs->migration_dirty_pages -= pages;
2834     }
2835 }
2836 
2837 static void ram_init_bitmaps(RAMState *rs)
2838 {
2839     qemu_mutex_lock_ramlist();
2840 
2841     WITH_RCU_READ_LOCK_GUARD() {
2842         ram_list_init_bitmaps();
2843         /* We don't use dirty log with background snapshots */
2844         if (!migrate_background_snapshot()) {
2845             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2846             migration_bitmap_sync_precopy(rs, false);
2847         }
2848     }
2849     qemu_mutex_unlock_ramlist();
2850 
2851     /*
2852      * After an eventual first bitmap sync, fixup the initial bitmap
2853      * containing all 1s to exclude any discarded pages from migration.
2854      */
2855     migration_bitmap_clear_discarded_pages(rs);
2856 }
2857 
2858 static int ram_init_all(RAMState **rsp)
2859 {
2860     if (ram_state_init(rsp)) {
2861         return -1;
2862     }
2863 
2864     if (xbzrle_init()) {
2865         ram_state_cleanup(rsp);
2866         return -1;
2867     }
2868 
2869     ram_init_bitmaps(*rsp);
2870 
2871     return 0;
2872 }
2873 
2874 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2875 {
2876     RAMBlock *block;
2877     uint64_t pages = 0;
2878 
2879     /*
2880      * Postcopy is not using xbzrle/compression, so no need for that.
2881      * Also, since source are already halted, we don't need to care
2882      * about dirty page logging as well.
2883      */
2884 
2885     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2886         pages += bitmap_count_one(block->bmap,
2887                                   block->used_length >> TARGET_PAGE_BITS);
2888     }
2889 
2890     /* This may not be aligned with current bitmaps. Recalculate. */
2891     rs->migration_dirty_pages = pages;
2892 
2893     ram_state_reset(rs);
2894 
2895     /* Update RAMState cache of output QEMUFile */
2896     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2897 
2898     trace_ram_state_resume_prepare(pages);
2899 }
2900 
2901 /*
2902  * This function clears bits of the free pages reported by the caller from the
2903  * migration dirty bitmap. @addr is the host address corresponding to the
2904  * start of the continuous guest free pages, and @len is the total bytes of
2905  * those pages.
2906  */
2907 void qemu_guest_free_page_hint(void *addr, size_t len)
2908 {
2909     RAMBlock *block;
2910     ram_addr_t offset;
2911     size_t used_len, start, npages;
2912     MigrationState *s = migrate_get_current();
2913 
2914     /* This function is currently expected to be used during live migration */
2915     if (!migration_is_setup_or_active(s->state)) {
2916         return;
2917     }
2918 
2919     for (; len > 0; len -= used_len, addr += used_len) {
2920         block = qemu_ram_block_from_host(addr, false, &offset);
2921         if (unlikely(!block || offset >= block->used_length)) {
2922             /*
2923              * The implementation might not support RAMBlock resize during
2924              * live migration, but it could happen in theory with future
2925              * updates. So we add a check here to capture that case.
2926              */
2927             error_report_once("%s unexpected error", __func__);
2928             return;
2929         }
2930 
2931         if (len <= block->used_length - offset) {
2932             used_len = len;
2933         } else {
2934             used_len = block->used_length - offset;
2935         }
2936 
2937         start = offset >> TARGET_PAGE_BITS;
2938         npages = used_len >> TARGET_PAGE_BITS;
2939 
2940         qemu_mutex_lock(&ram_state->bitmap_mutex);
2941         /*
2942          * The skipped free pages are equavalent to be sent from clear_bmap's
2943          * perspective, so clear the bits from the memory region bitmap which
2944          * are initially set. Otherwise those skipped pages will be sent in
2945          * the next round after syncing from the memory region bitmap.
2946          */
2947         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2948         ram_state->migration_dirty_pages -=
2949                       bitmap_count_one_with_offset(block->bmap, start, npages);
2950         bitmap_clear(block->bmap, start, npages);
2951         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2952     }
2953 }
2954 
2955 #define MAPPED_RAM_HDR_VERSION 1
2956 struct MappedRamHeader {
2957     uint32_t version;
2958     /*
2959      * The target's page size, so we know how many pages are in the
2960      * bitmap.
2961      */
2962     uint64_t page_size;
2963     /*
2964      * The offset in the migration file where the pages bitmap is
2965      * stored.
2966      */
2967     uint64_t bitmap_offset;
2968     /*
2969      * The offset in the migration file where the actual pages (data)
2970      * are stored.
2971      */
2972     uint64_t pages_offset;
2973 } QEMU_PACKED;
2974 typedef struct MappedRamHeader MappedRamHeader;
2975 
2976 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2977 {
2978     g_autofree MappedRamHeader *header = NULL;
2979     size_t header_size, bitmap_size;
2980     long num_pages;
2981 
2982     header = g_new0(MappedRamHeader, 1);
2983     header_size = sizeof(MappedRamHeader);
2984 
2985     num_pages = block->used_length >> TARGET_PAGE_BITS;
2986     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2987 
2988     /*
2989      * Save the file offsets of where the bitmap and the pages should
2990      * go as they are written at the end of migration and during the
2991      * iterative phase, respectively.
2992      */
2993     block->bitmap_offset = qemu_get_offset(file) + header_size;
2994     block->pages_offset = ROUND_UP(block->bitmap_offset +
2995                                    bitmap_size,
2996                                    MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2997 
2998     header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
2999     header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
3000     header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
3001     header->pages_offset = cpu_to_be64(block->pages_offset);
3002 
3003     qemu_put_buffer(file, (uint8_t *) header, header_size);
3004 
3005     /* prepare offset for next ramblock */
3006     qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
3007 }
3008 
3009 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
3010                                    Error **errp)
3011 {
3012     size_t ret, header_size = sizeof(MappedRamHeader);
3013 
3014     ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
3015     if (ret != header_size) {
3016         error_setg(errp, "Could not read whole mapped-ram migration header "
3017                    "(expected %zd, got %zd bytes)", header_size, ret);
3018         return false;
3019     }
3020 
3021     /* migration stream is big-endian */
3022     header->version = be32_to_cpu(header->version);
3023 
3024     if (header->version > MAPPED_RAM_HDR_VERSION) {
3025         error_setg(errp, "Migration mapped-ram capability version not "
3026                    "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3027                    header->version);
3028         return false;
3029     }
3030 
3031     header->page_size = be64_to_cpu(header->page_size);
3032     header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3033     header->pages_offset = be64_to_cpu(header->pages_offset);
3034 
3035     return true;
3036 }
3037 
3038 /*
3039  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3040  * long-running RCU critical section.  When rcu-reclaims in the code
3041  * start to become numerous it will be necessary to reduce the
3042  * granularity of these critical sections.
3043  */
3044 
3045 /**
3046  * ram_save_setup: Setup RAM for migration
3047  *
3048  * Returns zero to indicate success and negative for error
3049  *
3050  * @f: QEMUFile where to send the data
3051  * @opaque: RAMState pointer
3052  */
3053 static int ram_save_setup(QEMUFile *f, void *opaque)
3054 {
3055     RAMState **rsp = opaque;
3056     RAMBlock *block;
3057     int ret, max_hg_page_size;
3058 
3059     if (compress_threads_save_setup()) {
3060         return -1;
3061     }
3062 
3063     /* migration has already setup the bitmap, reuse it. */
3064     if (!migration_in_colo_state()) {
3065         if (ram_init_all(rsp) != 0) {
3066             compress_threads_save_cleanup();
3067             return -1;
3068         }
3069     }
3070     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3071 
3072     /*
3073      * ??? Mirrors the previous value of qemu_host_page_size,
3074      * but is this really what was intended for the migration?
3075      */
3076     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3077 
3078     WITH_RCU_READ_LOCK_GUARD() {
3079         qemu_put_be64(f, ram_bytes_total_with_ignored()
3080                          | RAM_SAVE_FLAG_MEM_SIZE);
3081 
3082         RAMBLOCK_FOREACH_MIGRATABLE(block) {
3083             qemu_put_byte(f, strlen(block->idstr));
3084             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3085             qemu_put_be64(f, block->used_length);
3086             if (migrate_postcopy_ram() &&
3087                 block->page_size != max_hg_page_size) {
3088                 qemu_put_be64(f, block->page_size);
3089             }
3090             if (migrate_ignore_shared()) {
3091                 qemu_put_be64(f, block->mr->addr);
3092             }
3093 
3094             if (migrate_mapped_ram()) {
3095                 mapped_ram_setup_ramblock(f, block);
3096             }
3097         }
3098     }
3099 
3100     ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3101     if (ret < 0) {
3102         qemu_file_set_error(f, ret);
3103         return ret;
3104     }
3105 
3106     ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3107     if (ret < 0) {
3108         qemu_file_set_error(f, ret);
3109         return ret;
3110     }
3111 
3112     migration_ops = g_malloc0(sizeof(MigrationOps));
3113     migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3114 
3115     bql_unlock();
3116     ret = multifd_send_sync_main();
3117     bql_lock();
3118     if (ret < 0) {
3119         return ret;
3120     }
3121 
3122     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3123         && !migrate_mapped_ram()) {
3124         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3125     }
3126 
3127     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3128     return qemu_fflush(f);
3129 }
3130 
3131 static void ram_save_file_bmap(QEMUFile *f)
3132 {
3133     RAMBlock *block;
3134 
3135     RAMBLOCK_FOREACH_MIGRATABLE(block) {
3136         long num_pages = block->used_length >> TARGET_PAGE_BITS;
3137         long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3138 
3139         qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3140                            block->bitmap_offset);
3141         ram_transferred_add(bitmap_size);
3142 
3143         /*
3144          * Free the bitmap here to catch any synchronization issues
3145          * with multifd channels. No channels should be sending pages
3146          * after we've written the bitmap to file.
3147          */
3148         g_free(block->file_bmap);
3149         block->file_bmap = NULL;
3150     }
3151 }
3152 
3153 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset)
3154 {
3155     set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3156 }
3157 
3158 /**
3159  * ram_save_iterate: iterative stage for migration
3160  *
3161  * Returns zero to indicate success and negative for error
3162  *
3163  * @f: QEMUFile where to send the data
3164  * @opaque: RAMState pointer
3165  */
3166 static int ram_save_iterate(QEMUFile *f, void *opaque)
3167 {
3168     RAMState **temp = opaque;
3169     RAMState *rs = *temp;
3170     int ret = 0;
3171     int i;
3172     int64_t t0;
3173     int done = 0;
3174 
3175     if (blk_mig_bulk_active()) {
3176         /* Avoid transferring ram during bulk phase of block migration as
3177          * the bulk phase will usually take a long time and transferring
3178          * ram updates during that time is pointless. */
3179         goto out;
3180     }
3181 
3182     /*
3183      * We'll take this lock a little bit long, but it's okay for two reasons.
3184      * Firstly, the only possible other thread to take it is who calls
3185      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3186      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3187      * guarantees that we'll at least released it in a regular basis.
3188      */
3189     WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3190         WITH_RCU_READ_LOCK_GUARD() {
3191             if (ram_list.version != rs->last_version) {
3192                 ram_state_reset(rs);
3193             }
3194 
3195             /* Read version before ram_list.blocks */
3196             smp_rmb();
3197 
3198             ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3199             if (ret < 0) {
3200                 qemu_file_set_error(f, ret);
3201                 goto out;
3202             }
3203 
3204             t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3205             i = 0;
3206             while ((ret = migration_rate_exceeded(f)) == 0 ||
3207                    postcopy_has_request(rs)) {
3208                 int pages;
3209 
3210                 if (qemu_file_get_error(f)) {
3211                     break;
3212                 }
3213 
3214                 pages = ram_find_and_save_block(rs);
3215                 /* no more pages to sent */
3216                 if (pages == 0) {
3217                     done = 1;
3218                     break;
3219                 }
3220 
3221                 if (pages < 0) {
3222                     qemu_file_set_error(f, pages);
3223                     break;
3224                 }
3225 
3226                 rs->target_page_count += pages;
3227 
3228                 /*
3229                  * During postcopy, it is necessary to make sure one whole host
3230                  * page is sent in one chunk.
3231                  */
3232                 if (migrate_postcopy_ram()) {
3233                     compress_flush_data();
3234                 }
3235 
3236                 /*
3237                  * we want to check in the 1st loop, just in case it was the 1st
3238                  * time and we had to sync the dirty bitmap.
3239                  * qemu_clock_get_ns() is a bit expensive, so we only check each
3240                  * some iterations
3241                  */
3242                 if ((i & 63) == 0) {
3243                     uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3244                         1000000;
3245                     if (t1 > MAX_WAIT) {
3246                         trace_ram_save_iterate_big_wait(t1, i);
3247                         break;
3248                     }
3249                 }
3250                 i++;
3251             }
3252         }
3253     }
3254 
3255     /*
3256      * Must occur before EOS (or any QEMUFile operation)
3257      * because of RDMA protocol.
3258      */
3259     ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3260     if (ret < 0) {
3261         qemu_file_set_error(f, ret);
3262     }
3263 
3264 out:
3265     if (ret >= 0
3266         && migration_is_setup_or_active(migrate_get_current()->state)) {
3267         if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3268             !migrate_mapped_ram()) {
3269             ret = multifd_send_sync_main();
3270             if (ret < 0) {
3271                 return ret;
3272             }
3273         }
3274 
3275         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3276         ram_transferred_add(8);
3277         ret = qemu_fflush(f);
3278     }
3279     if (ret < 0) {
3280         return ret;
3281     }
3282 
3283     return done;
3284 }
3285 
3286 /**
3287  * ram_save_complete: function called to send the remaining amount of ram
3288  *
3289  * Returns zero to indicate success or negative on error
3290  *
3291  * Called with the BQL
3292  *
3293  * @f: QEMUFile where to send the data
3294  * @opaque: RAMState pointer
3295  */
3296 static int ram_save_complete(QEMUFile *f, void *opaque)
3297 {
3298     RAMState **temp = opaque;
3299     RAMState *rs = *temp;
3300     int ret = 0;
3301 
3302     rs->last_stage = !migration_in_colo_state();
3303 
3304     WITH_RCU_READ_LOCK_GUARD() {
3305         if (!migration_in_postcopy()) {
3306             migration_bitmap_sync_precopy(rs, true);
3307         }
3308 
3309         ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3310         if (ret < 0) {
3311             qemu_file_set_error(f, ret);
3312             return ret;
3313         }
3314 
3315         /* try transferring iterative blocks of memory */
3316 
3317         /* flush all remaining blocks regardless of rate limiting */
3318         qemu_mutex_lock(&rs->bitmap_mutex);
3319         while (true) {
3320             int pages;
3321 
3322             pages = ram_find_and_save_block(rs);
3323             /* no more blocks to sent */
3324             if (pages == 0) {
3325                 break;
3326             }
3327             if (pages < 0) {
3328                 qemu_mutex_unlock(&rs->bitmap_mutex);
3329                 return pages;
3330             }
3331         }
3332         qemu_mutex_unlock(&rs->bitmap_mutex);
3333 
3334         compress_flush_data();
3335 
3336         ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3337         if (ret < 0) {
3338             qemu_file_set_error(f, ret);
3339             return ret;
3340         }
3341     }
3342 
3343     ret = multifd_send_sync_main();
3344     if (ret < 0) {
3345         return ret;
3346     }
3347 
3348     if (migrate_mapped_ram()) {
3349         ram_save_file_bmap(f);
3350 
3351         if (qemu_file_get_error(f)) {
3352             Error *local_err = NULL;
3353             int err = qemu_file_get_error_obj(f, &local_err);
3354 
3355             error_reportf_err(local_err, "Failed to write bitmap to file: ");
3356             return -err;
3357         }
3358     }
3359 
3360     if (migrate_multifd() && !migrate_multifd_flush_after_each_section() &&
3361         !migrate_mapped_ram()) {
3362         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3363     }
3364     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3365     return qemu_fflush(f);
3366 }
3367 
3368 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3369                                        uint64_t *can_postcopy)
3370 {
3371     RAMState **temp = opaque;
3372     RAMState *rs = *temp;
3373 
3374     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3375 
3376     if (migrate_postcopy_ram()) {
3377         /* We can do postcopy, and all the data is postcopiable */
3378         *can_postcopy += remaining_size;
3379     } else {
3380         *must_precopy += remaining_size;
3381     }
3382 }
3383 
3384 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3385                                     uint64_t *can_postcopy)
3386 {
3387     RAMState **temp = opaque;
3388     RAMState *rs = *temp;
3389     uint64_t remaining_size;
3390 
3391     if (!migration_in_postcopy()) {
3392         bql_lock();
3393         WITH_RCU_READ_LOCK_GUARD() {
3394             migration_bitmap_sync_precopy(rs, false);
3395         }
3396         bql_unlock();
3397     }
3398 
3399     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3400 
3401     if (migrate_postcopy_ram()) {
3402         /* We can do postcopy, and all the data is postcopiable */
3403         *can_postcopy += remaining_size;
3404     } else {
3405         *must_precopy += remaining_size;
3406     }
3407 }
3408 
3409 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3410 {
3411     unsigned int xh_len;
3412     int xh_flags;
3413     uint8_t *loaded_data;
3414 
3415     /* extract RLE header */
3416     xh_flags = qemu_get_byte(f);
3417     xh_len = qemu_get_be16(f);
3418 
3419     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3420         error_report("Failed to load XBZRLE page - wrong compression!");
3421         return -1;
3422     }
3423 
3424     if (xh_len > TARGET_PAGE_SIZE) {
3425         error_report("Failed to load XBZRLE page - len overflow!");
3426         return -1;
3427     }
3428     loaded_data = XBZRLE.decoded_buf;
3429     /* load data and decode */
3430     /* it can change loaded_data to point to an internal buffer */
3431     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3432 
3433     /* decode RLE */
3434     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3435                              TARGET_PAGE_SIZE) == -1) {
3436         error_report("Failed to load XBZRLE page - decode error!");
3437         return -1;
3438     }
3439 
3440     return 0;
3441 }
3442 
3443 /**
3444  * ram_block_from_stream: read a RAMBlock id from the migration stream
3445  *
3446  * Must be called from within a rcu critical section.
3447  *
3448  * Returns a pointer from within the RCU-protected ram_list.
3449  *
3450  * @mis: the migration incoming state pointer
3451  * @f: QEMUFile where to read the data from
3452  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3453  * @channel: the channel we're using
3454  */
3455 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3456                                               QEMUFile *f, int flags,
3457                                               int channel)
3458 {
3459     RAMBlock *block = mis->last_recv_block[channel];
3460     char id[256];
3461     uint8_t len;
3462 
3463     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3464         if (!block) {
3465             error_report("Ack, bad migration stream!");
3466             return NULL;
3467         }
3468         return block;
3469     }
3470 
3471     len = qemu_get_byte(f);
3472     qemu_get_buffer(f, (uint8_t *)id, len);
3473     id[len] = 0;
3474 
3475     block = qemu_ram_block_by_name(id);
3476     if (!block) {
3477         error_report("Can't find block %s", id);
3478         return NULL;
3479     }
3480 
3481     if (migrate_ram_is_ignored(block)) {
3482         error_report("block %s should not be migrated !", id);
3483         return NULL;
3484     }
3485 
3486     mis->last_recv_block[channel] = block;
3487 
3488     return block;
3489 }
3490 
3491 static inline void *host_from_ram_block_offset(RAMBlock *block,
3492                                                ram_addr_t offset)
3493 {
3494     if (!offset_in_ramblock(block, offset)) {
3495         return NULL;
3496     }
3497 
3498     return block->host + offset;
3499 }
3500 
3501 static void *host_page_from_ram_block_offset(RAMBlock *block,
3502                                              ram_addr_t offset)
3503 {
3504     /* Note: Explicitly no check against offset_in_ramblock(). */
3505     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3506                                    block->page_size);
3507 }
3508 
3509 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3510                                                          ram_addr_t offset)
3511 {
3512     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3513 }
3514 
3515 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3516 {
3517     qemu_mutex_lock(&ram_state->bitmap_mutex);
3518     for (int i = 0; i < pages; i++) {
3519         ram_addr_t offset = normal[i];
3520         ram_state->migration_dirty_pages += !test_and_set_bit(
3521                                                 offset >> TARGET_PAGE_BITS,
3522                                                 block->bmap);
3523     }
3524     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3525 }
3526 
3527 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3528                              ram_addr_t offset, bool record_bitmap)
3529 {
3530     if (!offset_in_ramblock(block, offset)) {
3531         return NULL;
3532     }
3533     if (!block->colo_cache) {
3534         error_report("%s: colo_cache is NULL in block :%s",
3535                      __func__, block->idstr);
3536         return NULL;
3537     }
3538 
3539     /*
3540     * During colo checkpoint, we need bitmap of these migrated pages.
3541     * It help us to decide which pages in ram cache should be flushed
3542     * into VM's RAM later.
3543     */
3544     if (record_bitmap) {
3545         colo_record_bitmap(block, &offset, 1);
3546     }
3547     return block->colo_cache + offset;
3548 }
3549 
3550 /**
3551  * ram_handle_zero: handle the zero page case
3552  *
3553  * If a page (or a whole RDMA chunk) has been
3554  * determined to be zero, then zap it.
3555  *
3556  * @host: host address for the zero page
3557  * @ch: what the page is filled from.  We only support zero
3558  * @size: size of the zero page
3559  */
3560 void ram_handle_zero(void *host, uint64_t size)
3561 {
3562     if (!buffer_is_zero(host, size)) {
3563         memset(host, 0, size);
3564     }
3565 }
3566 
3567 static void colo_init_ram_state(void)
3568 {
3569     ram_state_init(&ram_state);
3570 }
3571 
3572 /*
3573  * colo cache: this is for secondary VM, we cache the whole
3574  * memory of the secondary VM, it is need to hold the global lock
3575  * to call this helper.
3576  */
3577 int colo_init_ram_cache(void)
3578 {
3579     RAMBlock *block;
3580 
3581     WITH_RCU_READ_LOCK_GUARD() {
3582         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3583             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3584                                                     NULL, false, false);
3585             if (!block->colo_cache) {
3586                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3587                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3588                              block->used_length);
3589                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3590                     if (block->colo_cache) {
3591                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3592                         block->colo_cache = NULL;
3593                     }
3594                 }
3595                 return -errno;
3596             }
3597             if (!machine_dump_guest_core(current_machine)) {
3598                 qemu_madvise(block->colo_cache, block->used_length,
3599                              QEMU_MADV_DONTDUMP);
3600             }
3601         }
3602     }
3603 
3604     /*
3605     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3606     * with to decide which page in cache should be flushed into SVM's RAM. Here
3607     * we use the same name 'ram_bitmap' as for migration.
3608     */
3609     if (ram_bytes_total()) {
3610         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3611             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3612             block->bmap = bitmap_new(pages);
3613         }
3614     }
3615 
3616     colo_init_ram_state();
3617     return 0;
3618 }
3619 
3620 /* TODO: duplicated with ram_init_bitmaps */
3621 void colo_incoming_start_dirty_log(void)
3622 {
3623     RAMBlock *block = NULL;
3624     /* For memory_global_dirty_log_start below. */
3625     bql_lock();
3626     qemu_mutex_lock_ramlist();
3627 
3628     memory_global_dirty_log_sync(false);
3629     WITH_RCU_READ_LOCK_GUARD() {
3630         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3631             ramblock_sync_dirty_bitmap(ram_state, block);
3632             /* Discard this dirty bitmap record */
3633             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3634         }
3635         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3636     }
3637     ram_state->migration_dirty_pages = 0;
3638     qemu_mutex_unlock_ramlist();
3639     bql_unlock();
3640 }
3641 
3642 /* It is need to hold the global lock to call this helper */
3643 void colo_release_ram_cache(void)
3644 {
3645     RAMBlock *block;
3646 
3647     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3648     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3649         g_free(block->bmap);
3650         block->bmap = NULL;
3651     }
3652 
3653     WITH_RCU_READ_LOCK_GUARD() {
3654         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3655             if (block->colo_cache) {
3656                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3657                 block->colo_cache = NULL;
3658             }
3659         }
3660     }
3661     ram_state_cleanup(&ram_state);
3662 }
3663 
3664 /**
3665  * ram_load_setup: Setup RAM for migration incoming side
3666  *
3667  * Returns zero to indicate success and negative for error
3668  *
3669  * @f: QEMUFile where to receive the data
3670  * @opaque: RAMState pointer
3671  */
3672 static int ram_load_setup(QEMUFile *f, void *opaque)
3673 {
3674     xbzrle_load_setup();
3675     ramblock_recv_map_init();
3676 
3677     return 0;
3678 }
3679 
3680 static int ram_load_cleanup(void *opaque)
3681 {
3682     RAMBlock *rb;
3683 
3684     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3685         qemu_ram_block_writeback(rb);
3686     }
3687 
3688     xbzrle_load_cleanup();
3689 
3690     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3691         g_free(rb->receivedmap);
3692         rb->receivedmap = NULL;
3693     }
3694 
3695     return 0;
3696 }
3697 
3698 /**
3699  * ram_postcopy_incoming_init: allocate postcopy data structures
3700  *
3701  * Returns 0 for success and negative if there was one error
3702  *
3703  * @mis: current migration incoming state
3704  *
3705  * Allocate data structures etc needed by incoming migration with
3706  * postcopy-ram. postcopy-ram's similarly names
3707  * postcopy_ram_incoming_init does the work.
3708  */
3709 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3710 {
3711     return postcopy_ram_incoming_init(mis);
3712 }
3713 
3714 /**
3715  * ram_load_postcopy: load a page in postcopy case
3716  *
3717  * Returns 0 for success or -errno in case of error
3718  *
3719  * Called in postcopy mode by ram_load().
3720  * rcu_read_lock is taken prior to this being called.
3721  *
3722  * @f: QEMUFile where to send the data
3723  * @channel: the channel to use for loading
3724  */
3725 int ram_load_postcopy(QEMUFile *f, int channel)
3726 {
3727     int flags = 0, ret = 0;
3728     bool place_needed = false;
3729     bool matches_target_page_size = false;
3730     MigrationIncomingState *mis = migration_incoming_get_current();
3731     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3732 
3733     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3734         ram_addr_t addr;
3735         void *page_buffer = NULL;
3736         void *place_source = NULL;
3737         RAMBlock *block = NULL;
3738         uint8_t ch;
3739         int len;
3740 
3741         addr = qemu_get_be64(f);
3742 
3743         /*
3744          * If qemu file error, we should stop here, and then "addr"
3745          * may be invalid
3746          */
3747         ret = qemu_file_get_error(f);
3748         if (ret) {
3749             break;
3750         }
3751 
3752         flags = addr & ~TARGET_PAGE_MASK;
3753         addr &= TARGET_PAGE_MASK;
3754 
3755         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3756         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3757                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3758             block = ram_block_from_stream(mis, f, flags, channel);
3759             if (!block) {
3760                 ret = -EINVAL;
3761                 break;
3762             }
3763 
3764             /*
3765              * Relying on used_length is racy and can result in false positives.
3766              * We might place pages beyond used_length in case RAM was shrunk
3767              * while in postcopy, which is fine - trying to place via
3768              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3769              */
3770             if (!block->host || addr >= block->postcopy_length) {
3771                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3772                 ret = -EINVAL;
3773                 break;
3774             }
3775             tmp_page->target_pages++;
3776             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3777             /*
3778              * Postcopy requires that we place whole host pages atomically;
3779              * these may be huge pages for RAMBlocks that are backed by
3780              * hugetlbfs.
3781              * To make it atomic, the data is read into a temporary page
3782              * that's moved into place later.
3783              * The migration protocol uses,  possibly smaller, target-pages
3784              * however the source ensures it always sends all the components
3785              * of a host page in one chunk.
3786              */
3787             page_buffer = tmp_page->tmp_huge_page +
3788                           host_page_offset_from_ram_block_offset(block, addr);
3789             /* If all TP are zero then we can optimise the place */
3790             if (tmp_page->target_pages == 1) {
3791                 tmp_page->host_addr =
3792                     host_page_from_ram_block_offset(block, addr);
3793             } else if (tmp_page->host_addr !=
3794                        host_page_from_ram_block_offset(block, addr)) {
3795                 /* not the 1st TP within the HP */
3796                 error_report("Non-same host page detected on channel %d: "
3797                              "Target host page %p, received host page %p "
3798                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3799                              channel, tmp_page->host_addr,
3800                              host_page_from_ram_block_offset(block, addr),
3801                              block->idstr, addr, tmp_page->target_pages);
3802                 ret = -EINVAL;
3803                 break;
3804             }
3805 
3806             /*
3807              * If it's the last part of a host page then we place the host
3808              * page
3809              */
3810             if (tmp_page->target_pages ==
3811                 (block->page_size / TARGET_PAGE_SIZE)) {
3812                 place_needed = true;
3813             }
3814             place_source = tmp_page->tmp_huge_page;
3815         }
3816 
3817         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3818         case RAM_SAVE_FLAG_ZERO:
3819             ch = qemu_get_byte(f);
3820             if (ch != 0) {
3821                 error_report("Found a zero page with value %d", ch);
3822                 ret = -EINVAL;
3823                 break;
3824             }
3825             /*
3826              * Can skip to set page_buffer when
3827              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3828              */
3829             if (!matches_target_page_size) {
3830                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3831             }
3832             break;
3833 
3834         case RAM_SAVE_FLAG_PAGE:
3835             tmp_page->all_zero = false;
3836             if (!matches_target_page_size) {
3837                 /* For huge pages, we always use temporary buffer */
3838                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3839             } else {
3840                 /*
3841                  * For small pages that matches target page size, we
3842                  * avoid the qemu_file copy.  Instead we directly use
3843                  * the buffer of QEMUFile to place the page.  Note: we
3844                  * cannot do any QEMUFile operation before using that
3845                  * buffer to make sure the buffer is valid when
3846                  * placing the page.
3847                  */
3848                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3849                                          TARGET_PAGE_SIZE);
3850             }
3851             break;
3852         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3853             tmp_page->all_zero = false;
3854             len = qemu_get_be32(f);
3855             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3856                 error_report("Invalid compressed data length: %d", len);
3857                 ret = -EINVAL;
3858                 break;
3859             }
3860             decompress_data_with_multi_threads(f, page_buffer, len);
3861             break;
3862         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3863             multifd_recv_sync_main();
3864             break;
3865         case RAM_SAVE_FLAG_EOS:
3866             /* normal exit */
3867             if (migrate_multifd() &&
3868                 migrate_multifd_flush_after_each_section()) {
3869                 multifd_recv_sync_main();
3870             }
3871             break;
3872         default:
3873             error_report("Unknown combination of migration flags: 0x%x"
3874                          " (postcopy mode)", flags);
3875             ret = -EINVAL;
3876             break;
3877         }
3878 
3879         /* Got the whole host page, wait for decompress before placing. */
3880         if (place_needed) {
3881             ret |= wait_for_decompress_done();
3882         }
3883 
3884         /* Detect for any possible file errors */
3885         if (!ret && qemu_file_get_error(f)) {
3886             ret = qemu_file_get_error(f);
3887         }
3888 
3889         if (!ret && place_needed) {
3890             if (tmp_page->all_zero) {
3891                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3892             } else {
3893                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3894                                           place_source, block);
3895             }
3896             place_needed = false;
3897             postcopy_temp_page_reset(tmp_page);
3898         }
3899     }
3900 
3901     return ret;
3902 }
3903 
3904 static bool postcopy_is_running(void)
3905 {
3906     PostcopyState ps = postcopy_state_get();
3907     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3908 }
3909 
3910 /*
3911  * Flush content of RAM cache into SVM's memory.
3912  * Only flush the pages that be dirtied by PVM or SVM or both.
3913  */
3914 void colo_flush_ram_cache(void)
3915 {
3916     RAMBlock *block = NULL;
3917     void *dst_host;
3918     void *src_host;
3919     unsigned long offset = 0;
3920 
3921     memory_global_dirty_log_sync(false);
3922     qemu_mutex_lock(&ram_state->bitmap_mutex);
3923     WITH_RCU_READ_LOCK_GUARD() {
3924         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3925             ramblock_sync_dirty_bitmap(ram_state, block);
3926         }
3927     }
3928 
3929     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3930     WITH_RCU_READ_LOCK_GUARD() {
3931         block = QLIST_FIRST_RCU(&ram_list.blocks);
3932 
3933         while (block) {
3934             unsigned long num = 0;
3935 
3936             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3937             if (!offset_in_ramblock(block,
3938                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3939                 offset = 0;
3940                 num = 0;
3941                 block = QLIST_NEXT_RCU(block, next);
3942             } else {
3943                 unsigned long i = 0;
3944 
3945                 for (i = 0; i < num; i++) {
3946                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3947                 }
3948                 dst_host = block->host
3949                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3950                 src_host = block->colo_cache
3951                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3952                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3953                 offset += num;
3954             }
3955         }
3956     }
3957     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3958     trace_colo_flush_ram_cache_end();
3959 }
3960 
3961 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3962                                      uint64_t offset)
3963 {
3964     MultiFDRecvData *data = multifd_get_recv_data();
3965 
3966     data->opaque = host_addr;
3967     data->file_offset = offset;
3968     data->size = size;
3969 
3970     if (!multifd_recv()) {
3971         return 0;
3972     }
3973 
3974     return size;
3975 }
3976 
3977 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3978                                      long num_pages, unsigned long *bitmap,
3979                                      Error **errp)
3980 {
3981     ERRP_GUARD();
3982     unsigned long set_bit_idx, clear_bit_idx;
3983     ram_addr_t offset;
3984     void *host;
3985     size_t read, unread, size;
3986 
3987     for (set_bit_idx = find_first_bit(bitmap, num_pages);
3988          set_bit_idx < num_pages;
3989          set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3990 
3991         clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3992 
3993         unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
3994         offset = set_bit_idx << TARGET_PAGE_BITS;
3995 
3996         while (unread > 0) {
3997             host = host_from_ram_block_offset(block, offset);
3998             if (!host) {
3999                 error_setg(errp, "page outside of ramblock %s range",
4000                            block->idstr);
4001                 return false;
4002             }
4003 
4004             size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
4005 
4006             if (migrate_multifd()) {
4007                 read = ram_load_multifd_pages(host, size,
4008                                               block->pages_offset + offset);
4009             } else {
4010                 read = qemu_get_buffer_at(f, host, size,
4011                                           block->pages_offset + offset);
4012             }
4013 
4014             if (!read) {
4015                 goto err;
4016             }
4017             offset += read;
4018             unread -= read;
4019         }
4020     }
4021 
4022     return true;
4023 
4024 err:
4025     qemu_file_get_error_obj(f, errp);
4026     error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4027                   "from file offset %" PRIx64 ": ", block->idstr, offset,
4028                   block->pages_offset + offset);
4029     return false;
4030 }
4031 
4032 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4033                                       ram_addr_t length, Error **errp)
4034 {
4035     g_autofree unsigned long *bitmap = NULL;
4036     MappedRamHeader header;
4037     size_t bitmap_size;
4038     long num_pages;
4039 
4040     if (!mapped_ram_read_header(f, &header, errp)) {
4041         return;
4042     }
4043 
4044     block->pages_offset = header.pages_offset;
4045 
4046     /*
4047      * Check the alignment of the file region that contains pages. We
4048      * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4049      * value to change in the future. Do only a sanity check with page
4050      * size alignment.
4051      */
4052     if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4053         error_setg(errp,
4054                    "Error reading ramblock %s pages, region has bad alignment",
4055                    block->idstr);
4056         return;
4057     }
4058 
4059     num_pages = length / header.page_size;
4060     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4061 
4062     bitmap = g_malloc0(bitmap_size);
4063     if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4064                            header.bitmap_offset) != bitmap_size) {
4065         error_setg(errp, "Error reading dirty bitmap");
4066         return;
4067     }
4068 
4069     if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4070         return;
4071     }
4072 
4073     /* Skip pages array */
4074     qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4075 
4076     return;
4077 }
4078 
4079 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4080 {
4081     int ret = 0;
4082     /* ADVISE is earlier, it shows the source has the postcopy capability on */
4083     bool postcopy_advised = migration_incoming_postcopy_advised();
4084     int max_hg_page_size;
4085     Error *local_err = NULL;
4086 
4087     assert(block);
4088 
4089     if (migrate_mapped_ram()) {
4090         parse_ramblock_mapped_ram(f, block, length, &local_err);
4091         if (local_err) {
4092             error_report_err(local_err);
4093             return -EINVAL;
4094         }
4095         return 0;
4096     }
4097 
4098     if (!qemu_ram_is_migratable(block)) {
4099         error_report("block %s should not be migrated !", block->idstr);
4100         return -EINVAL;
4101     }
4102 
4103     if (length != block->used_length) {
4104         ret = qemu_ram_resize(block, length, &local_err);
4105         if (local_err) {
4106             error_report_err(local_err);
4107             return ret;
4108         }
4109     }
4110 
4111     /*
4112      * ??? Mirrors the previous value of qemu_host_page_size,
4113      * but is this really what was intended for the migration?
4114      */
4115     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4116 
4117     /* For postcopy we need to check hugepage sizes match */
4118     if (postcopy_advised && migrate_postcopy_ram() &&
4119         block->page_size != max_hg_page_size) {
4120         uint64_t remote_page_size = qemu_get_be64(f);
4121         if (remote_page_size != block->page_size) {
4122             error_report("Mismatched RAM page size %s "
4123                          "(local) %zd != %" PRId64, block->idstr,
4124                          block->page_size, remote_page_size);
4125             return -EINVAL;
4126         }
4127     }
4128     if (migrate_ignore_shared()) {
4129         hwaddr addr = qemu_get_be64(f);
4130         if (migrate_ram_is_ignored(block) &&
4131             block->mr->addr != addr) {
4132             error_report("Mismatched GPAs for block %s "
4133                          "%" PRId64 "!= %" PRId64, block->idstr,
4134                          (uint64_t)addr, (uint64_t)block->mr->addr);
4135             return -EINVAL;
4136         }
4137     }
4138     ret = rdma_block_notification_handle(f, block->idstr);
4139     if (ret < 0) {
4140         qemu_file_set_error(f, ret);
4141     }
4142 
4143     return ret;
4144 }
4145 
4146 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4147 {
4148     int ret = 0;
4149 
4150     /* Synchronize RAM block list */
4151     while (!ret && total_ram_bytes) {
4152         RAMBlock *block;
4153         char id[256];
4154         ram_addr_t length;
4155         int len = qemu_get_byte(f);
4156 
4157         qemu_get_buffer(f, (uint8_t *)id, len);
4158         id[len] = 0;
4159         length = qemu_get_be64(f);
4160 
4161         block = qemu_ram_block_by_name(id);
4162         if (block) {
4163             ret = parse_ramblock(f, block, length);
4164         } else {
4165             error_report("Unknown ramblock \"%s\", cannot accept "
4166                          "migration", id);
4167             ret = -EINVAL;
4168         }
4169         total_ram_bytes -= length;
4170     }
4171 
4172     return ret;
4173 }
4174 
4175 /**
4176  * ram_load_precopy: load pages in precopy case
4177  *
4178  * Returns 0 for success or -errno in case of error
4179  *
4180  * Called in precopy mode by ram_load().
4181  * rcu_read_lock is taken prior to this being called.
4182  *
4183  * @f: QEMUFile where to send the data
4184  */
4185 static int ram_load_precopy(QEMUFile *f)
4186 {
4187     MigrationIncomingState *mis = migration_incoming_get_current();
4188     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4189 
4190     if (!migrate_compress()) {
4191         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4192     }
4193 
4194     if (migrate_mapped_ram()) {
4195         invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4196                           RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4197                           RAM_SAVE_FLAG_ZERO);
4198     }
4199 
4200     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4201         ram_addr_t addr;
4202         void *host = NULL, *host_bak = NULL;
4203         uint8_t ch;
4204 
4205         /*
4206          * Yield periodically to let main loop run, but an iteration of
4207          * the main loop is expensive, so do it each some iterations
4208          */
4209         if ((i & 32767) == 0 && qemu_in_coroutine()) {
4210             aio_co_schedule(qemu_get_current_aio_context(),
4211                             qemu_coroutine_self());
4212             qemu_coroutine_yield();
4213         }
4214         i++;
4215 
4216         addr = qemu_get_be64(f);
4217         flags = addr & ~TARGET_PAGE_MASK;
4218         addr &= TARGET_PAGE_MASK;
4219 
4220         if (flags & invalid_flags) {
4221             error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4222 
4223             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4224                 error_report("Received an unexpected compressed page");
4225             }
4226 
4227             ret = -EINVAL;
4228             break;
4229         }
4230 
4231         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4232                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4233             RAMBlock *block = ram_block_from_stream(mis, f, flags,
4234                                                     RAM_CHANNEL_PRECOPY);
4235 
4236             host = host_from_ram_block_offset(block, addr);
4237             /*
4238              * After going into COLO stage, we should not load the page
4239              * into SVM's memory directly, we put them into colo_cache firstly.
4240              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4241              * Previously, we copied all these memory in preparing stage of COLO
4242              * while we need to stop VM, which is a time-consuming process.
4243              * Here we optimize it by a trick, back-up every page while in
4244              * migration process while COLO is enabled, though it affects the
4245              * speed of the migration, but it obviously reduce the downtime of
4246              * back-up all SVM'S memory in COLO preparing stage.
4247              */
4248             if (migration_incoming_colo_enabled()) {
4249                 if (migration_incoming_in_colo_state()) {
4250                     /* In COLO stage, put all pages into cache temporarily */
4251                     host = colo_cache_from_block_offset(block, addr, true);
4252                 } else {
4253                    /*
4254                     * In migration stage but before COLO stage,
4255                     * Put all pages into both cache and SVM's memory.
4256                     */
4257                     host_bak = colo_cache_from_block_offset(block, addr, false);
4258                 }
4259             }
4260             if (!host) {
4261                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4262                 ret = -EINVAL;
4263                 break;
4264             }
4265             if (!migration_incoming_in_colo_state()) {
4266                 ramblock_recv_bitmap_set(block, host);
4267             }
4268 
4269             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4270         }
4271 
4272         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4273         case RAM_SAVE_FLAG_MEM_SIZE:
4274             ret = parse_ramblocks(f, addr);
4275             /*
4276              * For mapped-ram migration (to a file) using multifd, we sync
4277              * once and for all here to make sure all tasks we queued to
4278              * multifd threads are completed, so that all the ramblocks
4279              * (including all the guest memory pages within) are fully
4280              * loaded after this sync returns.
4281              */
4282             if (migrate_mapped_ram()) {
4283                 multifd_recv_sync_main();
4284             }
4285             break;
4286 
4287         case RAM_SAVE_FLAG_ZERO:
4288             ch = qemu_get_byte(f);
4289             if (ch != 0) {
4290                 error_report("Found a zero page with value %d", ch);
4291                 ret = -EINVAL;
4292                 break;
4293             }
4294             ram_handle_zero(host, TARGET_PAGE_SIZE);
4295             break;
4296 
4297         case RAM_SAVE_FLAG_PAGE:
4298             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4299             break;
4300 
4301         case RAM_SAVE_FLAG_COMPRESS_PAGE:
4302             len = qemu_get_be32(f);
4303             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4304                 error_report("Invalid compressed data length: %d", len);
4305                 ret = -EINVAL;
4306                 break;
4307             }
4308             decompress_data_with_multi_threads(f, host, len);
4309             break;
4310 
4311         case RAM_SAVE_FLAG_XBZRLE:
4312             if (load_xbzrle(f, addr, host) < 0) {
4313                 error_report("Failed to decompress XBZRLE page at "
4314                              RAM_ADDR_FMT, addr);
4315                 ret = -EINVAL;
4316                 break;
4317             }
4318             break;
4319         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4320             multifd_recv_sync_main();
4321             break;
4322         case RAM_SAVE_FLAG_EOS:
4323             /* normal exit */
4324             if (migrate_multifd() &&
4325                 migrate_multifd_flush_after_each_section() &&
4326                 /*
4327                  * Mapped-ram migration flushes once and for all after
4328                  * parsing ramblocks. Always ignore EOS for it.
4329                  */
4330                 !migrate_mapped_ram()) {
4331                 multifd_recv_sync_main();
4332             }
4333             break;
4334         case RAM_SAVE_FLAG_HOOK:
4335             ret = rdma_registration_handle(f);
4336             if (ret < 0) {
4337                 qemu_file_set_error(f, ret);
4338             }
4339             break;
4340         default:
4341             error_report("Unknown combination of migration flags: 0x%x", flags);
4342             ret = -EINVAL;
4343         }
4344         if (!ret) {
4345             ret = qemu_file_get_error(f);
4346         }
4347         if (!ret && host_bak) {
4348             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4349         }
4350     }
4351 
4352     ret |= wait_for_decompress_done();
4353     return ret;
4354 }
4355 
4356 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4357 {
4358     int ret = 0;
4359     static uint64_t seq_iter;
4360     /*
4361      * If system is running in postcopy mode, page inserts to host memory must
4362      * be atomic
4363      */
4364     bool postcopy_running = postcopy_is_running();
4365 
4366     seq_iter++;
4367 
4368     if (version_id != 4) {
4369         return -EINVAL;
4370     }
4371 
4372     /*
4373      * This RCU critical section can be very long running.
4374      * When RCU reclaims in the code start to become numerous,
4375      * it will be necessary to reduce the granularity of this
4376      * critical section.
4377      */
4378     WITH_RCU_READ_LOCK_GUARD() {
4379         if (postcopy_running) {
4380             /*
4381              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4382              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4383              * service fast page faults.
4384              */
4385             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4386         } else {
4387             ret = ram_load_precopy(f);
4388         }
4389     }
4390     trace_ram_load_complete(ret, seq_iter);
4391 
4392     return ret;
4393 }
4394 
4395 static bool ram_has_postcopy(void *opaque)
4396 {
4397     RAMBlock *rb;
4398     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4399         if (ramblock_is_pmem(rb)) {
4400             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4401                          "is not supported now!", rb->idstr, rb->host);
4402             return false;
4403         }
4404     }
4405 
4406     return migrate_postcopy_ram();
4407 }
4408 
4409 /* Sync all the dirty bitmap with destination VM.  */
4410 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4411 {
4412     RAMBlock *block;
4413     QEMUFile *file = s->to_dst_file;
4414 
4415     trace_ram_dirty_bitmap_sync_start();
4416 
4417     qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4418     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4419         qemu_savevm_send_recv_bitmap(file, block->idstr);
4420         trace_ram_dirty_bitmap_request(block->idstr);
4421         qatomic_inc(&rs->postcopy_bmap_sync_requested);
4422     }
4423 
4424     trace_ram_dirty_bitmap_sync_wait();
4425 
4426     /* Wait until all the ramblocks' dirty bitmap synced */
4427     while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4428         if (migration_rp_wait(s)) {
4429             return -1;
4430         }
4431     }
4432 
4433     trace_ram_dirty_bitmap_sync_complete();
4434 
4435     return 0;
4436 }
4437 
4438 /*
4439  * Read the received bitmap, revert it as the initial dirty bitmap.
4440  * This is only used when the postcopy migration is paused but wants
4441  * to resume from a middle point.
4442  *
4443  * Returns true if succeeded, false for errors.
4444  */
4445 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4446 {
4447     /* from_dst_file is always valid because we're within rp_thread */
4448     QEMUFile *file = s->rp_state.from_dst_file;
4449     g_autofree unsigned long *le_bitmap = NULL;
4450     unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4451     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4452     uint64_t size, end_mark;
4453     RAMState *rs = ram_state;
4454 
4455     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4456 
4457     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4458         error_setg(errp, "Reload bitmap in incorrect state %s",
4459                    MigrationStatus_str(s->state));
4460         return false;
4461     }
4462 
4463     /*
4464      * Note: see comments in ramblock_recv_bitmap_send() on why we
4465      * need the endianness conversion, and the paddings.
4466      */
4467     local_size = ROUND_UP(local_size, 8);
4468 
4469     /* Add paddings */
4470     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4471 
4472     size = qemu_get_be64(file);
4473 
4474     /* The size of the bitmap should match with our ramblock */
4475     if (size != local_size) {
4476         error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4477                    " != 0x%"PRIx64")", block->idstr, size, local_size);
4478         return false;
4479     }
4480 
4481     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4482     end_mark = qemu_get_be64(file);
4483 
4484     if (qemu_file_get_error(file) || size != local_size) {
4485         error_setg(errp, "read bitmap failed for ramblock '%s': "
4486                    "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4487                    block->idstr, local_size, size);
4488         return false;
4489     }
4490 
4491     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4492         error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4493                    block->idstr, end_mark);
4494         return false;
4495     }
4496 
4497     /*
4498      * Endianness conversion. We are during postcopy (though paused).
4499      * The dirty bitmap won't change. We can directly modify it.
4500      */
4501     bitmap_from_le(block->bmap, le_bitmap, nbits);
4502 
4503     /*
4504      * What we received is "received bitmap". Revert it as the initial
4505      * dirty bitmap for this ramblock.
4506      */
4507     bitmap_complement(block->bmap, block->bmap, nbits);
4508 
4509     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4510     ramblock_dirty_bitmap_clear_discarded_pages(block);
4511 
4512     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4513     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4514 
4515     qatomic_dec(&rs->postcopy_bmap_sync_requested);
4516 
4517     /*
4518      * We succeeded to sync bitmap for current ramblock. Always kick the
4519      * migration thread to check whether all requested bitmaps are
4520      * reloaded.  NOTE: it's racy to only kick when requested==0, because
4521      * we don't know whether the migration thread may still be increasing
4522      * it.
4523      */
4524     migration_rp_kick(s);
4525 
4526     return true;
4527 }
4528 
4529 static int ram_resume_prepare(MigrationState *s, void *opaque)
4530 {
4531     RAMState *rs = *(RAMState **)opaque;
4532     int ret;
4533 
4534     ret = ram_dirty_bitmap_sync_all(s, rs);
4535     if (ret) {
4536         return ret;
4537     }
4538 
4539     ram_state_resume_prepare(rs, s->to_dst_file);
4540 
4541     return 0;
4542 }
4543 
4544 void postcopy_preempt_shutdown_file(MigrationState *s)
4545 {
4546     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4547     qemu_fflush(s->postcopy_qemufile_src);
4548 }
4549 
4550 static SaveVMHandlers savevm_ram_handlers = {
4551     .save_setup = ram_save_setup,
4552     .save_live_iterate = ram_save_iterate,
4553     .save_live_complete_postcopy = ram_save_complete,
4554     .save_live_complete_precopy = ram_save_complete,
4555     .has_postcopy = ram_has_postcopy,
4556     .state_pending_exact = ram_state_pending_exact,
4557     .state_pending_estimate = ram_state_pending_estimate,
4558     .load_state = ram_load,
4559     .save_cleanup = ram_save_cleanup,
4560     .load_setup = ram_load_setup,
4561     .load_cleanup = ram_load_cleanup,
4562     .resume_prepare = ram_resume_prepare,
4563 };
4564 
4565 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4566                                       size_t old_size, size_t new_size)
4567 {
4568     PostcopyState ps = postcopy_state_get();
4569     ram_addr_t offset;
4570     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4571     Error *err = NULL;
4572 
4573     if (!rb) {
4574         error_report("RAM block not found");
4575         return;
4576     }
4577 
4578     if (migrate_ram_is_ignored(rb)) {
4579         return;
4580     }
4581 
4582     if (!migration_is_idle()) {
4583         /*
4584          * Precopy code on the source cannot deal with the size of RAM blocks
4585          * changing at random points in time - especially after sending the
4586          * RAM block sizes in the migration stream, they must no longer change.
4587          * Abort and indicate a proper reason.
4588          */
4589         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4590         migration_cancel(err);
4591         error_free(err);
4592     }
4593 
4594     switch (ps) {
4595     case POSTCOPY_INCOMING_ADVISE:
4596         /*
4597          * Update what ram_postcopy_incoming_init()->init_range() does at the
4598          * time postcopy was advised. Syncing RAM blocks with the source will
4599          * result in RAM resizes.
4600          */
4601         if (old_size < new_size) {
4602             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4603                 error_report("RAM block '%s' discard of resized RAM failed",
4604                              rb->idstr);
4605             }
4606         }
4607         rb->postcopy_length = new_size;
4608         break;
4609     case POSTCOPY_INCOMING_NONE:
4610     case POSTCOPY_INCOMING_RUNNING:
4611     case POSTCOPY_INCOMING_END:
4612         /*
4613          * Once our guest is running, postcopy does no longer care about
4614          * resizes. When growing, the new memory was not available on the
4615          * source, no handler needed.
4616          */
4617         break;
4618     default:
4619         error_report("RAM block '%s' resized during postcopy state: %d",
4620                      rb->idstr, ps);
4621         exit(-1);
4622     }
4623 }
4624 
4625 static RAMBlockNotifier ram_mig_ram_notifier = {
4626     .ram_block_resized = ram_mig_ram_block_resized,
4627 };
4628 
4629 void ram_mig_init(void)
4630 {
4631     qemu_mutex_init(&XBZRLE.lock);
4632     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4633     ram_block_notifier_add(&ram_mig_ram_notifier);
4634 }
4635