xref: /qemu/migration/ram.c (revision c8a7fc51)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
66 
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
72 
73 /***********************************************************/
74 /* ram save/restore */
75 
76 /*
77  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78  * worked for pages that were filled with the same char.  We switched
79  * it to only search for the zero value.  And to avoid confusion with
80  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
81  */
82 /*
83  * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84  */
85 #define RAM_SAVE_FLAG_FULL     0x01
86 #define RAM_SAVE_FLAG_ZERO     0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE     0x08
89 #define RAM_SAVE_FLAG_EOS      0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE   0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
95 /* We can't use any flag that is bigger than 0x200 */
96 
97 XBZRLECacheStats xbzrle_counters;
98 
99 /* used by the search for pages to send */
100 struct PageSearchStatus {
101     /* The migration channel used for a specific host page */
102     QEMUFile    *pss_channel;
103     /* Last block from where we have sent data */
104     RAMBlock *last_sent_block;
105     /* Current block being searched */
106     RAMBlock    *block;
107     /* Current page to search from */
108     unsigned long page;
109     /* Set once we wrap around */
110     bool         complete_round;
111     /* Whether we're sending a host page */
112     bool          host_page_sending;
113     /* The start/end of current host page.  Invalid if host_page_sending==false */
114     unsigned long host_page_start;
115     unsigned long host_page_end;
116 };
117 typedef struct PageSearchStatus PageSearchStatus;
118 
119 /* struct contains XBZRLE cache and a static page
120    used by the compression */
121 static struct {
122     /* buffer used for XBZRLE encoding */
123     uint8_t *encoded_buf;
124     /* buffer for storing page content */
125     uint8_t *current_buf;
126     /* Cache for XBZRLE, Protected by lock. */
127     PageCache *cache;
128     QemuMutex lock;
129     /* it will store a page full of zeros */
130     uint8_t *zero_target_page;
131     /* buffer used for XBZRLE decoding */
132     uint8_t *decoded_buf;
133 } XBZRLE;
134 
135 static void XBZRLE_cache_lock(void)
136 {
137     if (migrate_xbzrle()) {
138         qemu_mutex_lock(&XBZRLE.lock);
139     }
140 }
141 
142 static void XBZRLE_cache_unlock(void)
143 {
144     if (migrate_xbzrle()) {
145         qemu_mutex_unlock(&XBZRLE.lock);
146     }
147 }
148 
149 /**
150  * xbzrle_cache_resize: resize the xbzrle cache
151  *
152  * This function is called from migrate_params_apply in main
153  * thread, possibly while a migration is in progress.  A running
154  * migration may be using the cache and might finish during this call,
155  * hence changes to the cache are protected by XBZRLE.lock().
156  *
157  * Returns 0 for success or -1 for error
158  *
159  * @new_size: new cache size
160  * @errp: set *errp if the check failed, with reason
161  */
162 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
163 {
164     PageCache *new_cache;
165     int64_t ret = 0;
166 
167     /* Check for truncation */
168     if (new_size != (size_t)new_size) {
169         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
170                    "exceeding address space");
171         return -1;
172     }
173 
174     if (new_size == migrate_xbzrle_cache_size()) {
175         /* nothing to do */
176         return 0;
177     }
178 
179     XBZRLE_cache_lock();
180 
181     if (XBZRLE.cache != NULL) {
182         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
183         if (!new_cache) {
184             ret = -1;
185             goto out;
186         }
187 
188         cache_fini(XBZRLE.cache);
189         XBZRLE.cache = new_cache;
190     }
191 out:
192     XBZRLE_cache_unlock();
193     return ret;
194 }
195 
196 static bool postcopy_preempt_active(void)
197 {
198     return migrate_postcopy_preempt() && migration_in_postcopy();
199 }
200 
201 bool migrate_ram_is_ignored(RAMBlock *block)
202 {
203     return !qemu_ram_is_migratable(block) ||
204            (migrate_ignore_shared() && qemu_ram_is_shared(block)
205                                     && qemu_ram_is_named_file(block));
206 }
207 
208 #undef RAMBLOCK_FOREACH
209 
210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
211 {
212     RAMBlock *block;
213     int ret = 0;
214 
215     RCU_READ_LOCK_GUARD();
216 
217     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
218         ret = func(block, opaque);
219         if (ret) {
220             break;
221         }
222     }
223     return ret;
224 }
225 
226 static void ramblock_recv_map_init(void)
227 {
228     RAMBlock *rb;
229 
230     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
231         assert(!rb->receivedmap);
232         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
233     }
234 }
235 
236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
237 {
238     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
239                     rb->receivedmap);
240 }
241 
242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
243 {
244     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
245 }
246 
247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
248 {
249     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
250 }
251 
252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
253                                     size_t nr)
254 {
255     bitmap_set_atomic(rb->receivedmap,
256                       ramblock_recv_bitmap_offset(host_addr, rb),
257                       nr);
258 }
259 
260 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
261 
262 /*
263  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
264  *
265  * Returns >0 if success with sent bytes, or <0 if error.
266  */
267 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
268                                   const char *block_name)
269 {
270     RAMBlock *block = qemu_ram_block_by_name(block_name);
271     unsigned long *le_bitmap, nbits;
272     uint64_t size;
273 
274     if (!block) {
275         error_report("%s: invalid block name: %s", __func__, block_name);
276         return -1;
277     }
278 
279     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
280 
281     /*
282      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
283      * machines we may need 4 more bytes for padding (see below
284      * comment). So extend it a bit before hand.
285      */
286     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
287 
288     /*
289      * Always use little endian when sending the bitmap. This is
290      * required that when source and destination VMs are not using the
291      * same endianness. (Note: big endian won't work.)
292      */
293     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
294 
295     /* Size of the bitmap, in bytes */
296     size = DIV_ROUND_UP(nbits, 8);
297 
298     /*
299      * size is always aligned to 8 bytes for 64bit machines, but it
300      * may not be true for 32bit machines. We need this padding to
301      * make sure the migration can survive even between 32bit and
302      * 64bit machines.
303      */
304     size = ROUND_UP(size, 8);
305 
306     qemu_put_be64(file, size);
307     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
308     /*
309      * Mark as an end, in case the middle part is screwed up due to
310      * some "mysterious" reason.
311      */
312     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
313     qemu_fflush(file);
314 
315     g_free(le_bitmap);
316 
317     if (qemu_file_get_error(file)) {
318         return qemu_file_get_error(file);
319     }
320 
321     return size + sizeof(size);
322 }
323 
324 /*
325  * An outstanding page request, on the source, having been received
326  * and queued
327  */
328 struct RAMSrcPageRequest {
329     RAMBlock *rb;
330     hwaddr    offset;
331     hwaddr    len;
332 
333     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
334 };
335 
336 /* State of RAM for migration */
337 struct RAMState {
338     /*
339      * PageSearchStatus structures for the channels when send pages.
340      * Protected by the bitmap_mutex.
341      */
342     PageSearchStatus pss[RAM_CHANNEL_MAX];
343     /* UFFD file descriptor, used in 'write-tracking' migration */
344     int uffdio_fd;
345     /* total ram size in bytes */
346     uint64_t ram_bytes_total;
347     /* Last block that we have visited searching for dirty pages */
348     RAMBlock *last_seen_block;
349     /* Last dirty target page we have sent */
350     ram_addr_t last_page;
351     /* last ram version we have seen */
352     uint32_t last_version;
353     /* How many times we have dirty too many pages */
354     int dirty_rate_high_cnt;
355     /* these variables are used for bitmap sync */
356     /* last time we did a full bitmap_sync */
357     int64_t time_last_bitmap_sync;
358     /* bytes transferred at start_time */
359     uint64_t bytes_xfer_prev;
360     /* number of dirty pages since start_time */
361     uint64_t num_dirty_pages_period;
362     /* xbzrle misses since the beginning of the period */
363     uint64_t xbzrle_cache_miss_prev;
364     /* Amount of xbzrle pages since the beginning of the period */
365     uint64_t xbzrle_pages_prev;
366     /* Amount of xbzrle encoded bytes since the beginning of the period */
367     uint64_t xbzrle_bytes_prev;
368     /* Are we really using XBZRLE (e.g., after the first round). */
369     bool xbzrle_started;
370     /* Are we on the last stage of migration */
371     bool last_stage;
372     /* compression statistics since the beginning of the period */
373     /* amount of count that no free thread to compress data */
374     uint64_t compress_thread_busy_prev;
375     /* amount bytes after compression */
376     uint64_t compressed_size_prev;
377     /* amount of compressed pages */
378     uint64_t compress_pages_prev;
379 
380     /* total handled target pages at the beginning of period */
381     uint64_t target_page_count_prev;
382     /* total handled target pages since start */
383     uint64_t target_page_count;
384     /* number of dirty bits in the bitmap */
385     uint64_t migration_dirty_pages;
386     /*
387      * Protects:
388      * - dirty/clear bitmap
389      * - migration_dirty_pages
390      * - pss structures
391      */
392     QemuMutex bitmap_mutex;
393     /* The RAMBlock used in the last src_page_requests */
394     RAMBlock *last_req_rb;
395     /* Queue of outstanding page requests from the destination */
396     QemuMutex src_page_req_mutex;
397     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
398 
399     /*
400      * This is only used when postcopy is in recovery phase, to communicate
401      * between the migration thread and the return path thread on dirty
402      * bitmap synchronizations.  This field is unused in other stages of
403      * RAM migration.
404      */
405     unsigned int postcopy_bmap_sync_requested;
406 };
407 typedef struct RAMState RAMState;
408 
409 static RAMState *ram_state;
410 
411 static NotifierWithReturnList precopy_notifier_list;
412 
413 /* Whether postcopy has queued requests? */
414 static bool postcopy_has_request(RAMState *rs)
415 {
416     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
417 }
418 
419 void precopy_infrastructure_init(void)
420 {
421     notifier_with_return_list_init(&precopy_notifier_list);
422 }
423 
424 void precopy_add_notifier(NotifierWithReturn *n)
425 {
426     notifier_with_return_list_add(&precopy_notifier_list, n);
427 }
428 
429 void precopy_remove_notifier(NotifierWithReturn *n)
430 {
431     notifier_with_return_remove(n);
432 }
433 
434 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
435 {
436     PrecopyNotifyData pnd;
437     pnd.reason = reason;
438     pnd.errp = errp;
439 
440     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
441 }
442 
443 uint64_t ram_bytes_remaining(void)
444 {
445     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
446                        0;
447 }
448 
449 void ram_transferred_add(uint64_t bytes)
450 {
451     if (runstate_is_running()) {
452         stat64_add(&mig_stats.precopy_bytes, bytes);
453     } else if (migration_in_postcopy()) {
454         stat64_add(&mig_stats.postcopy_bytes, bytes);
455     } else {
456         stat64_add(&mig_stats.downtime_bytes, bytes);
457     }
458     stat64_add(&mig_stats.transferred, bytes);
459 }
460 
461 struct MigrationOps {
462     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
463 };
464 typedef struct MigrationOps MigrationOps;
465 
466 MigrationOps *migration_ops;
467 
468 static int ram_save_host_page_urgent(PageSearchStatus *pss);
469 
470 /* NOTE: page is the PFN not real ram_addr_t. */
471 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
472 {
473     pss->block = rb;
474     pss->page = page;
475     pss->complete_round = false;
476 }
477 
478 /*
479  * Check whether two PSSs are actively sending the same page.  Return true
480  * if it is, false otherwise.
481  */
482 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
483 {
484     return pss1->host_page_sending && pss2->host_page_sending &&
485         (pss1->host_page_start == pss2->host_page_start);
486 }
487 
488 /**
489  * save_page_header: write page header to wire
490  *
491  * If this is the 1st block, it also writes the block identification
492  *
493  * Returns the number of bytes written
494  *
495  * @pss: current PSS channel status
496  * @block: block that contains the page we want to send
497  * @offset: offset inside the block for the page
498  *          in the lower bits, it contains flags
499  */
500 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
501                                RAMBlock *block, ram_addr_t offset)
502 {
503     size_t size, len;
504     bool same_block = (block == pss->last_sent_block);
505 
506     if (same_block) {
507         offset |= RAM_SAVE_FLAG_CONTINUE;
508     }
509     qemu_put_be64(f, offset);
510     size = 8;
511 
512     if (!same_block) {
513         len = strlen(block->idstr);
514         qemu_put_byte(f, len);
515         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
516         size += 1 + len;
517         pss->last_sent_block = block;
518     }
519     return size;
520 }
521 
522 /**
523  * mig_throttle_guest_down: throttle down the guest
524  *
525  * Reduce amount of guest cpu execution to hopefully slow down memory
526  * writes. If guest dirty memory rate is reduced below the rate at
527  * which we can transfer pages to the destination then we should be
528  * able to complete migration. Some workloads dirty memory way too
529  * fast and will not effectively converge, even with auto-converge.
530  */
531 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
532                                     uint64_t bytes_dirty_threshold)
533 {
534     uint64_t pct_initial = migrate_cpu_throttle_initial();
535     uint64_t pct_increment = migrate_cpu_throttle_increment();
536     bool pct_tailslow = migrate_cpu_throttle_tailslow();
537     int pct_max = migrate_max_cpu_throttle();
538 
539     uint64_t throttle_now = cpu_throttle_get_percentage();
540     uint64_t cpu_now, cpu_ideal, throttle_inc;
541 
542     /* We have not started throttling yet. Let's start it. */
543     if (!cpu_throttle_active()) {
544         cpu_throttle_set(pct_initial);
545     } else {
546         /* Throttling already on, just increase the rate */
547         if (!pct_tailslow) {
548             throttle_inc = pct_increment;
549         } else {
550             /* Compute the ideal CPU percentage used by Guest, which may
551              * make the dirty rate match the dirty rate threshold. */
552             cpu_now = 100 - throttle_now;
553             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
554                         bytes_dirty_period);
555             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
556         }
557         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
558     }
559 }
560 
561 void mig_throttle_counter_reset(void)
562 {
563     RAMState *rs = ram_state;
564 
565     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
566     rs->num_dirty_pages_period = 0;
567     rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
568 }
569 
570 /**
571  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
572  *
573  * @current_addr: address for the zero page
574  *
575  * Update the xbzrle cache to reflect a page that's been sent as all 0.
576  * The important thing is that a stale (not-yet-0'd) page be replaced
577  * by the new data.
578  * As a bonus, if the page wasn't in the cache it gets added so that
579  * when a small write is made into the 0'd page it gets XBZRLE sent.
580  */
581 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
582 {
583     /* We don't care if this fails to allocate a new cache page
584      * as long as it updated an old one */
585     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
586                  stat64_get(&mig_stats.dirty_sync_count));
587 }
588 
589 #define ENCODING_FLAG_XBZRLE 0x1
590 
591 /**
592  * save_xbzrle_page: compress and send current page
593  *
594  * Returns: 1 means that we wrote the page
595  *          0 means that page is identical to the one already sent
596  *          -1 means that xbzrle would be longer than normal
597  *
598  * @rs: current RAM state
599  * @pss: current PSS channel
600  * @current_data: pointer to the address of the page contents
601  * @current_addr: addr of the page
602  * @block: block that contains the page we want to send
603  * @offset: offset inside the block for the page
604  */
605 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
606                             uint8_t **current_data, ram_addr_t current_addr,
607                             RAMBlock *block, ram_addr_t offset)
608 {
609     int encoded_len = 0, bytes_xbzrle;
610     uint8_t *prev_cached_page;
611     QEMUFile *file = pss->pss_channel;
612     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
613 
614     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
615         xbzrle_counters.cache_miss++;
616         if (!rs->last_stage) {
617             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
618                              generation) == -1) {
619                 return -1;
620             } else {
621                 /* update *current_data when the page has been
622                    inserted into cache */
623                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
624             }
625         }
626         return -1;
627     }
628 
629     /*
630      * Reaching here means the page has hit the xbzrle cache, no matter what
631      * encoding result it is (normal encoding, overflow or skipping the page),
632      * count the page as encoded. This is used to calculate the encoding rate.
633      *
634      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
635      * 2nd page turns out to be skipped (i.e. no new bytes written to the
636      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
637      * skipped page included. In this way, the encoding rate can tell if the
638      * guest page is good for xbzrle encoding.
639      */
640     xbzrle_counters.pages++;
641     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
642 
643     /* save current buffer into memory */
644     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
645 
646     /* XBZRLE encoding (if there is no overflow) */
647     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
648                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
649                                        TARGET_PAGE_SIZE);
650 
651     /*
652      * Update the cache contents, so that it corresponds to the data
653      * sent, in all cases except where we skip the page.
654      */
655     if (!rs->last_stage && encoded_len != 0) {
656         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
657         /*
658          * In the case where we couldn't compress, ensure that the caller
659          * sends the data from the cache, since the guest might have
660          * changed the RAM since we copied it.
661          */
662         *current_data = prev_cached_page;
663     }
664 
665     if (encoded_len == 0) {
666         trace_save_xbzrle_page_skipping();
667         return 0;
668     } else if (encoded_len == -1) {
669         trace_save_xbzrle_page_overflow();
670         xbzrle_counters.overflow++;
671         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
672         return -1;
673     }
674 
675     /* Send XBZRLE based compressed page */
676     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
677                                     offset | RAM_SAVE_FLAG_XBZRLE);
678     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
679     qemu_put_be16(file, encoded_len);
680     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
681     bytes_xbzrle += encoded_len + 1 + 2;
682     /*
683      * Like compressed_size (please see update_compress_thread_counts),
684      * the xbzrle encoded bytes don't count the 8 byte header with
685      * RAM_SAVE_FLAG_CONTINUE.
686      */
687     xbzrle_counters.bytes += bytes_xbzrle - 8;
688     ram_transferred_add(bytes_xbzrle);
689 
690     return 1;
691 }
692 
693 /**
694  * pss_find_next_dirty: find the next dirty page of current ramblock
695  *
696  * This function updates pss->page to point to the next dirty page index
697  * within the ramblock to migrate, or the end of ramblock when nothing
698  * found.  Note that when pss->host_page_sending==true it means we're
699  * during sending a host page, so we won't look for dirty page that is
700  * outside the host page boundary.
701  *
702  * @pss: the current page search status
703  */
704 static void pss_find_next_dirty(PageSearchStatus *pss)
705 {
706     RAMBlock *rb = pss->block;
707     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
708     unsigned long *bitmap = rb->bmap;
709 
710     if (migrate_ram_is_ignored(rb)) {
711         /* Points directly to the end, so we know no dirty page */
712         pss->page = size;
713         return;
714     }
715 
716     /*
717      * If during sending a host page, only look for dirty pages within the
718      * current host page being send.
719      */
720     if (pss->host_page_sending) {
721         assert(pss->host_page_end);
722         size = MIN(size, pss->host_page_end);
723     }
724 
725     pss->page = find_next_bit(bitmap, size, pss->page);
726 }
727 
728 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
729                                                        unsigned long page)
730 {
731     uint8_t shift;
732     hwaddr size, start;
733 
734     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
735         return;
736     }
737 
738     shift = rb->clear_bmap_shift;
739     /*
740      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
741      * can make things easier sometimes since then start address
742      * of the small chunk will always be 64 pages aligned so the
743      * bitmap will always be aligned to unsigned long. We should
744      * even be able to remove this restriction but I'm simply
745      * keeping it.
746      */
747     assert(shift >= 6);
748 
749     size = 1ULL << (TARGET_PAGE_BITS + shift);
750     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
751     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
752     memory_region_clear_dirty_bitmap(rb->mr, start, size);
753 }
754 
755 static void
756 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
757                                                  unsigned long start,
758                                                  unsigned long npages)
759 {
760     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
761     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
762     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
763 
764     /*
765      * Clear pages from start to start + npages - 1, so the end boundary is
766      * exclusive.
767      */
768     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
769         migration_clear_memory_region_dirty_bitmap(rb, i);
770     }
771 }
772 
773 /*
774  * colo_bitmap_find_diry:find contiguous dirty pages from start
775  *
776  * Returns the page offset within memory region of the start of the contiguout
777  * dirty page
778  *
779  * @rs: current RAM state
780  * @rb: RAMBlock where to search for dirty pages
781  * @start: page where we start the search
782  * @num: the number of contiguous dirty pages
783  */
784 static inline
785 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
786                                      unsigned long start, unsigned long *num)
787 {
788     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
789     unsigned long *bitmap = rb->bmap;
790     unsigned long first, next;
791 
792     *num = 0;
793 
794     if (migrate_ram_is_ignored(rb)) {
795         return size;
796     }
797 
798     first = find_next_bit(bitmap, size, start);
799     if (first >= size) {
800         return first;
801     }
802     next = find_next_zero_bit(bitmap, size, first + 1);
803     assert(next >= first);
804     *num = next - first;
805     return first;
806 }
807 
808 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
809                                                 RAMBlock *rb,
810                                                 unsigned long page)
811 {
812     bool ret;
813 
814     /*
815      * Clear dirty bitmap if needed.  This _must_ be called before we
816      * send any of the page in the chunk because we need to make sure
817      * we can capture further page content changes when we sync dirty
818      * log the next time.  So as long as we are going to send any of
819      * the page in the chunk we clear the remote dirty bitmap for all.
820      * Clearing it earlier won't be a problem, but too late will.
821      */
822     migration_clear_memory_region_dirty_bitmap(rb, page);
823 
824     ret = test_and_clear_bit(page, rb->bmap);
825     if (ret) {
826         rs->migration_dirty_pages--;
827     }
828 
829     return ret;
830 }
831 
832 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
833                                        void *opaque)
834 {
835     const hwaddr offset = section->offset_within_region;
836     const hwaddr size = int128_get64(section->size);
837     const unsigned long start = offset >> TARGET_PAGE_BITS;
838     const unsigned long npages = size >> TARGET_PAGE_BITS;
839     RAMBlock *rb = section->mr->ram_block;
840     uint64_t *cleared_bits = opaque;
841 
842     /*
843      * We don't grab ram_state->bitmap_mutex because we expect to run
844      * only when starting migration or during postcopy recovery where
845      * we don't have concurrent access.
846      */
847     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
848         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
849     }
850     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
851     bitmap_clear(rb->bmap, start, npages);
852 }
853 
854 /*
855  * Exclude all dirty pages from migration that fall into a discarded range as
856  * managed by a RamDiscardManager responsible for the mapped memory region of
857  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
858  *
859  * Discarded pages ("logically unplugged") have undefined content and must
860  * not get migrated, because even reading these pages for migration might
861  * result in undesired behavior.
862  *
863  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
864  *
865  * Note: The result is only stable while migrating (precopy/postcopy).
866  */
867 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
868 {
869     uint64_t cleared_bits = 0;
870 
871     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
872         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
873         MemoryRegionSection section = {
874             .mr = rb->mr,
875             .offset_within_region = 0,
876             .size = int128_make64(qemu_ram_get_used_length(rb)),
877         };
878 
879         ram_discard_manager_replay_discarded(rdm, &section,
880                                              dirty_bitmap_clear_section,
881                                              &cleared_bits);
882     }
883     return cleared_bits;
884 }
885 
886 /*
887  * Check if a host-page aligned page falls into a discarded range as managed by
888  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
889  *
890  * Note: The result is only stable while migrating (precopy/postcopy).
891  */
892 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
893 {
894     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
895         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
896         MemoryRegionSection section = {
897             .mr = rb->mr,
898             .offset_within_region = start,
899             .size = int128_make64(qemu_ram_pagesize(rb)),
900         };
901 
902         return !ram_discard_manager_is_populated(rdm, &section);
903     }
904     return false;
905 }
906 
907 /* Called with RCU critical section */
908 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
909 {
910     uint64_t new_dirty_pages =
911         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
912 
913     rs->migration_dirty_pages += new_dirty_pages;
914     rs->num_dirty_pages_period += new_dirty_pages;
915 }
916 
917 /**
918  * ram_pagesize_summary: calculate all the pagesizes of a VM
919  *
920  * Returns a summary bitmap of the page sizes of all RAMBlocks
921  *
922  * For VMs with just normal pages this is equivalent to the host page
923  * size. If it's got some huge pages then it's the OR of all the
924  * different page sizes.
925  */
926 uint64_t ram_pagesize_summary(void)
927 {
928     RAMBlock *block;
929     uint64_t summary = 0;
930 
931     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
932         summary |= block->page_size;
933     }
934 
935     return summary;
936 }
937 
938 uint64_t ram_get_total_transferred_pages(void)
939 {
940     return stat64_get(&mig_stats.normal_pages) +
941         stat64_get(&mig_stats.zero_pages) +
942         ram_compressed_pages() + xbzrle_counters.pages;
943 }
944 
945 static void migration_update_rates(RAMState *rs, int64_t end_time)
946 {
947     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
948     double compressed_size;
949 
950     /* calculate period counters */
951     stat64_set(&mig_stats.dirty_pages_rate,
952                rs->num_dirty_pages_period * 1000 /
953                (end_time - rs->time_last_bitmap_sync));
954 
955     if (!page_count) {
956         return;
957     }
958 
959     if (migrate_xbzrle()) {
960         double encoded_size, unencoded_size;
961 
962         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
963             rs->xbzrle_cache_miss_prev) / page_count;
964         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
965         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
966                          TARGET_PAGE_SIZE;
967         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
968         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
969             xbzrle_counters.encoding_rate = 0;
970         } else {
971             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
972         }
973         rs->xbzrle_pages_prev = xbzrle_counters.pages;
974         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
975     }
976 
977     if (migrate_compress()) {
978         compression_counters.busy_rate = (double)(compression_counters.busy -
979             rs->compress_thread_busy_prev) / page_count;
980         rs->compress_thread_busy_prev = compression_counters.busy;
981 
982         compressed_size = compression_counters.compressed_size -
983                           rs->compressed_size_prev;
984         if (compressed_size) {
985             double uncompressed_size = (compression_counters.pages -
986                                     rs->compress_pages_prev) * TARGET_PAGE_SIZE;
987 
988             /* Compression-Ratio = Uncompressed-size / Compressed-size */
989             compression_counters.compression_rate =
990                                         uncompressed_size / compressed_size;
991 
992             rs->compress_pages_prev = compression_counters.pages;
993             rs->compressed_size_prev = compression_counters.compressed_size;
994         }
995     }
996 }
997 
998 /*
999  * Enable dirty-limit to throttle down the guest
1000  */
1001 static void migration_dirty_limit_guest(void)
1002 {
1003     /*
1004      * dirty page rate quota for all vCPUs fetched from
1005      * migration parameter 'vcpu_dirty_limit'
1006      */
1007     static int64_t quota_dirtyrate;
1008     MigrationState *s = migrate_get_current();
1009 
1010     /*
1011      * If dirty limit already enabled and migration parameter
1012      * vcpu-dirty-limit untouched.
1013      */
1014     if (dirtylimit_in_service() &&
1015         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1016         return;
1017     }
1018 
1019     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1020 
1021     /*
1022      * Set all vCPU a quota dirtyrate, note that the second
1023      * parameter will be ignored if setting all vCPU for the vm
1024      */
1025     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1026     trace_migration_dirty_limit_guest(quota_dirtyrate);
1027 }
1028 
1029 static void migration_trigger_throttle(RAMState *rs)
1030 {
1031     uint64_t threshold = migrate_throttle_trigger_threshold();
1032     uint64_t bytes_xfer_period =
1033         stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev;
1034     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1035     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1036 
1037     /* During block migration the auto-converge logic incorrectly detects
1038      * that ram migration makes no progress. Avoid this by disabling the
1039      * throttling logic during the bulk phase of block migration. */
1040     if (blk_mig_bulk_active()) {
1041         return;
1042     }
1043 
1044     /*
1045      * The following detection logic can be refined later. For now:
1046      * Check to see if the ratio between dirtied bytes and the approx.
1047      * amount of bytes that just got transferred since the last time
1048      * we were in this routine reaches the threshold. If that happens
1049      * twice, start or increase throttling.
1050      */
1051     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1052         (++rs->dirty_rate_high_cnt >= 2)) {
1053         rs->dirty_rate_high_cnt = 0;
1054         if (migrate_auto_converge()) {
1055             trace_migration_throttle();
1056             mig_throttle_guest_down(bytes_dirty_period,
1057                                     bytes_dirty_threshold);
1058         } else if (migrate_dirty_limit()) {
1059             migration_dirty_limit_guest();
1060         }
1061     }
1062 }
1063 
1064 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1065 {
1066     RAMBlock *block;
1067     int64_t end_time;
1068 
1069     stat64_add(&mig_stats.dirty_sync_count, 1);
1070 
1071     if (!rs->time_last_bitmap_sync) {
1072         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1073     }
1074 
1075     trace_migration_bitmap_sync_start();
1076     memory_global_dirty_log_sync(last_stage);
1077 
1078     qemu_mutex_lock(&rs->bitmap_mutex);
1079     WITH_RCU_READ_LOCK_GUARD() {
1080         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1081             ramblock_sync_dirty_bitmap(rs, block);
1082         }
1083         stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1084     }
1085     qemu_mutex_unlock(&rs->bitmap_mutex);
1086 
1087     memory_global_after_dirty_log_sync();
1088     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1089 
1090     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1091 
1092     /* more than 1 second = 1000 millisecons */
1093     if (end_time > rs->time_last_bitmap_sync + 1000) {
1094         migration_trigger_throttle(rs);
1095 
1096         migration_update_rates(rs, end_time);
1097 
1098         rs->target_page_count_prev = rs->target_page_count;
1099 
1100         /* reset period counters */
1101         rs->time_last_bitmap_sync = end_time;
1102         rs->num_dirty_pages_period = 0;
1103         rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
1104     }
1105     if (migrate_events()) {
1106         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1107         qapi_event_send_migration_pass(generation);
1108     }
1109 }
1110 
1111 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1112 {
1113     Error *local_err = NULL;
1114 
1115     /*
1116      * The current notifier usage is just an optimization to migration, so we
1117      * don't stop the normal migration process in the error case.
1118      */
1119     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1120         error_report_err(local_err);
1121         local_err = NULL;
1122     }
1123 
1124     migration_bitmap_sync(rs, last_stage);
1125 
1126     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1127         error_report_err(local_err);
1128     }
1129 }
1130 
1131 void ram_release_page(const char *rbname, uint64_t offset)
1132 {
1133     if (!migrate_release_ram() || !migration_in_postcopy()) {
1134         return;
1135     }
1136 
1137     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1138 }
1139 
1140 /**
1141  * save_zero_page: send the zero page to the stream
1142  *
1143  * Returns the number of pages written.
1144  *
1145  * @rs: current RAM state
1146  * @pss: current PSS channel
1147  * @offset: offset inside the block for the page
1148  */
1149 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1150                           ram_addr_t offset)
1151 {
1152     uint8_t *p = pss->block->host + offset;
1153     QEMUFile *file = pss->pss_channel;
1154     int len = 0;
1155 
1156     if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1157         return 0;
1158     }
1159 
1160     len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1161     qemu_put_byte(file, 0);
1162     len += 1;
1163     ram_release_page(pss->block->idstr, offset);
1164 
1165     stat64_add(&mig_stats.zero_pages, 1);
1166     ram_transferred_add(len);
1167 
1168     /*
1169      * Must let xbzrle know, otherwise a previous (now 0'd) cached
1170      * page would be stale.
1171      */
1172     if (rs->xbzrle_started) {
1173         XBZRLE_cache_lock();
1174         xbzrle_cache_zero_page(pss->block->offset + offset);
1175         XBZRLE_cache_unlock();
1176     }
1177 
1178     return len;
1179 }
1180 
1181 /*
1182  * @pages: the number of pages written by the control path,
1183  *        < 0 - error
1184  *        > 0 - number of pages written
1185  *
1186  * Return true if the pages has been saved, otherwise false is returned.
1187  */
1188 static bool control_save_page(PageSearchStatus *pss,
1189                               ram_addr_t offset, int *pages)
1190 {
1191     int ret;
1192 
1193     ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1194                                  TARGET_PAGE_SIZE);
1195     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1196         return false;
1197     }
1198 
1199     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1200         *pages = 1;
1201         return true;
1202     }
1203     *pages = ret;
1204     return true;
1205 }
1206 
1207 /*
1208  * directly send the page to the stream
1209  *
1210  * Returns the number of pages written.
1211  *
1212  * @pss: current PSS channel
1213  * @block: block that contains the page we want to send
1214  * @offset: offset inside the block for the page
1215  * @buf: the page to be sent
1216  * @async: send to page asyncly
1217  */
1218 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1219                             ram_addr_t offset, uint8_t *buf, bool async)
1220 {
1221     QEMUFile *file = pss->pss_channel;
1222 
1223     ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1224                                          offset | RAM_SAVE_FLAG_PAGE));
1225     if (async) {
1226         qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1227                               migrate_release_ram() &&
1228                               migration_in_postcopy());
1229     } else {
1230         qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1231     }
1232     ram_transferred_add(TARGET_PAGE_SIZE);
1233     stat64_add(&mig_stats.normal_pages, 1);
1234     return 1;
1235 }
1236 
1237 /**
1238  * ram_save_page: send the given page to the stream
1239  *
1240  * Returns the number of pages written.
1241  *          < 0 - error
1242  *          >=0 - Number of pages written - this might legally be 0
1243  *                if xbzrle noticed the page was the same.
1244  *
1245  * @rs: current RAM state
1246  * @block: block that contains the page we want to send
1247  * @offset: offset inside the block for the page
1248  */
1249 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1250 {
1251     int pages = -1;
1252     uint8_t *p;
1253     bool send_async = true;
1254     RAMBlock *block = pss->block;
1255     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1256     ram_addr_t current_addr = block->offset + offset;
1257 
1258     p = block->host + offset;
1259     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1260 
1261     XBZRLE_cache_lock();
1262     if (rs->xbzrle_started && !migration_in_postcopy()) {
1263         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1264                                  block, offset);
1265         if (!rs->last_stage) {
1266             /* Can't send this cached data async, since the cache page
1267              * might get updated before it gets to the wire
1268              */
1269             send_async = false;
1270         }
1271     }
1272 
1273     /* XBZRLE overflow or normal page */
1274     if (pages == -1) {
1275         pages = save_normal_page(pss, block, offset, p, send_async);
1276     }
1277 
1278     XBZRLE_cache_unlock();
1279 
1280     return pages;
1281 }
1282 
1283 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
1284                                  ram_addr_t offset)
1285 {
1286     if (multifd_queue_page(file, block, offset) < 0) {
1287         return -1;
1288     }
1289     stat64_add(&mig_stats.normal_pages, 1);
1290 
1291     return 1;
1292 }
1293 
1294 static bool save_page_use_compression(RAMState *rs);
1295 
1296 static int send_queued_data(CompressParam *param)
1297 {
1298     PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1299     MigrationState *ms = migrate_get_current();
1300     QEMUFile *file = ms->to_dst_file;
1301     int len = 0;
1302 
1303     RAMBlock *block = param->block;
1304     ram_addr_t offset = param->offset;
1305 
1306     if (param->result == RES_NONE) {
1307         return 0;
1308     }
1309 
1310     assert(block == pss->last_sent_block);
1311 
1312     if (param->result == RES_ZEROPAGE) {
1313         assert(qemu_file_buffer_empty(param->file));
1314         len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1315         qemu_put_byte(file, 0);
1316         len += 1;
1317         ram_release_page(block->idstr, offset);
1318     } else if (param->result == RES_COMPRESS) {
1319         assert(!qemu_file_buffer_empty(param->file));
1320         len += save_page_header(pss, file, block,
1321                                 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1322         len += qemu_put_qemu_file(file, param->file);
1323     } else {
1324         abort();
1325     }
1326 
1327     update_compress_thread_counts(param, len);
1328 
1329     return len;
1330 }
1331 
1332 static void ram_flush_compressed_data(RAMState *rs)
1333 {
1334     if (!save_page_use_compression(rs)) {
1335         return;
1336     }
1337 
1338     flush_compressed_data(send_queued_data);
1339 }
1340 
1341 #define PAGE_ALL_CLEAN 0
1342 #define PAGE_TRY_AGAIN 1
1343 #define PAGE_DIRTY_FOUND 2
1344 /**
1345  * find_dirty_block: find the next dirty page and update any state
1346  * associated with the search process.
1347  *
1348  * Returns:
1349  *         <0: An error happened
1350  *         PAGE_ALL_CLEAN: no dirty page found, give up
1351  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1352  *         PAGE_DIRTY_FOUND: dirty page found
1353  *
1354  * @rs: current RAM state
1355  * @pss: data about the state of the current dirty page scan
1356  * @again: set to false if the search has scanned the whole of RAM
1357  */
1358 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1359 {
1360     /* Update pss->page for the next dirty bit in ramblock */
1361     pss_find_next_dirty(pss);
1362 
1363     if (pss->complete_round && pss->block == rs->last_seen_block &&
1364         pss->page >= rs->last_page) {
1365         /*
1366          * We've been once around the RAM and haven't found anything.
1367          * Give up.
1368          */
1369         return PAGE_ALL_CLEAN;
1370     }
1371     if (!offset_in_ramblock(pss->block,
1372                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1373         /* Didn't find anything in this RAM Block */
1374         pss->page = 0;
1375         pss->block = QLIST_NEXT_RCU(pss->block, next);
1376         if (!pss->block) {
1377             if (migrate_multifd() &&
1378                 !migrate_multifd_flush_after_each_section()) {
1379                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1380                 int ret = multifd_send_sync_main(f);
1381                 if (ret < 0) {
1382                     return ret;
1383                 }
1384                 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1385                 qemu_fflush(f);
1386             }
1387             /*
1388              * If memory migration starts over, we will meet a dirtied page
1389              * which may still exists in compression threads's ring, so we
1390              * should flush the compressed data to make sure the new page
1391              * is not overwritten by the old one in the destination.
1392              *
1393              * Also If xbzrle is on, stop using the data compression at this
1394              * point. In theory, xbzrle can do better than compression.
1395              */
1396             ram_flush_compressed_data(rs);
1397 
1398             /* Hit the end of the list */
1399             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1400             /* Flag that we've looped */
1401             pss->complete_round = true;
1402             /* After the first round, enable XBZRLE. */
1403             if (migrate_xbzrle()) {
1404                 rs->xbzrle_started = true;
1405             }
1406         }
1407         /* Didn't find anything this time, but try again on the new block */
1408         return PAGE_TRY_AGAIN;
1409     } else {
1410         /* We've found something */
1411         return PAGE_DIRTY_FOUND;
1412     }
1413 }
1414 
1415 /**
1416  * unqueue_page: gets a page of the queue
1417  *
1418  * Helper for 'get_queued_page' - gets a page off the queue
1419  *
1420  * Returns the block of the page (or NULL if none available)
1421  *
1422  * @rs: current RAM state
1423  * @offset: used to return the offset within the RAMBlock
1424  */
1425 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1426 {
1427     struct RAMSrcPageRequest *entry;
1428     RAMBlock *block = NULL;
1429 
1430     if (!postcopy_has_request(rs)) {
1431         return NULL;
1432     }
1433 
1434     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1435 
1436     /*
1437      * This should _never_ change even after we take the lock, because no one
1438      * should be taking anything off the request list other than us.
1439      */
1440     assert(postcopy_has_request(rs));
1441 
1442     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1443     block = entry->rb;
1444     *offset = entry->offset;
1445 
1446     if (entry->len > TARGET_PAGE_SIZE) {
1447         entry->len -= TARGET_PAGE_SIZE;
1448         entry->offset += TARGET_PAGE_SIZE;
1449     } else {
1450         memory_region_unref(block->mr);
1451         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1452         g_free(entry);
1453         migration_consume_urgent_request();
1454     }
1455 
1456     return block;
1457 }
1458 
1459 #if defined(__linux__)
1460 /**
1461  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1462  *   is found, return RAM block pointer and page offset
1463  *
1464  * Returns pointer to the RAMBlock containing faulting page,
1465  *   NULL if no write faults are pending
1466  *
1467  * @rs: current RAM state
1468  * @offset: page offset from the beginning of the block
1469  */
1470 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1471 {
1472     struct uffd_msg uffd_msg;
1473     void *page_address;
1474     RAMBlock *block;
1475     int res;
1476 
1477     if (!migrate_background_snapshot()) {
1478         return NULL;
1479     }
1480 
1481     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1482     if (res <= 0) {
1483         return NULL;
1484     }
1485 
1486     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1487     block = qemu_ram_block_from_host(page_address, false, offset);
1488     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1489     return block;
1490 }
1491 
1492 /**
1493  * ram_save_release_protection: release UFFD write protection after
1494  *   a range of pages has been saved
1495  *
1496  * @rs: current RAM state
1497  * @pss: page-search-status structure
1498  * @start_page: index of the first page in the range relative to pss->block
1499  *
1500  * Returns 0 on success, negative value in case of an error
1501 */
1502 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1503         unsigned long start_page)
1504 {
1505     int res = 0;
1506 
1507     /* Check if page is from UFFD-managed region. */
1508     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1509         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1510         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1511 
1512         /* Flush async buffers before un-protect. */
1513         qemu_fflush(pss->pss_channel);
1514         /* Un-protect memory range. */
1515         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1516                 false, false);
1517     }
1518 
1519     return res;
1520 }
1521 
1522 /* ram_write_tracking_available: check if kernel supports required UFFD features
1523  *
1524  * Returns true if supports, false otherwise
1525  */
1526 bool ram_write_tracking_available(void)
1527 {
1528     uint64_t uffd_features;
1529     int res;
1530 
1531     res = uffd_query_features(&uffd_features);
1532     return (res == 0 &&
1533             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1534 }
1535 
1536 /* ram_write_tracking_compatible: check if guest configuration is
1537  *   compatible with 'write-tracking'
1538  *
1539  * Returns true if compatible, false otherwise
1540  */
1541 bool ram_write_tracking_compatible(void)
1542 {
1543     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1544     int uffd_fd;
1545     RAMBlock *block;
1546     bool ret = false;
1547 
1548     /* Open UFFD file descriptor */
1549     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1550     if (uffd_fd < 0) {
1551         return false;
1552     }
1553 
1554     RCU_READ_LOCK_GUARD();
1555 
1556     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1557         uint64_t uffd_ioctls;
1558 
1559         /* Nothing to do with read-only and MMIO-writable regions */
1560         if (block->mr->readonly || block->mr->rom_device) {
1561             continue;
1562         }
1563         /* Try to register block memory via UFFD-IO to track writes */
1564         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1565                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1566             goto out;
1567         }
1568         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1569             goto out;
1570         }
1571     }
1572     ret = true;
1573 
1574 out:
1575     uffd_close_fd(uffd_fd);
1576     return ret;
1577 }
1578 
1579 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1580                                        ram_addr_t size)
1581 {
1582     const ram_addr_t end = offset + size;
1583 
1584     /*
1585      * We read one byte of each page; this will preallocate page tables if
1586      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1587      * where no page was populated yet. This might require adaption when
1588      * supporting other mappings, like shmem.
1589      */
1590     for (; offset < end; offset += block->page_size) {
1591         char tmp = *((char *)block->host + offset);
1592 
1593         /* Don't optimize the read out */
1594         asm volatile("" : "+r" (tmp));
1595     }
1596 }
1597 
1598 static inline int populate_read_section(MemoryRegionSection *section,
1599                                         void *opaque)
1600 {
1601     const hwaddr size = int128_get64(section->size);
1602     hwaddr offset = section->offset_within_region;
1603     RAMBlock *block = section->mr->ram_block;
1604 
1605     populate_read_range(block, offset, size);
1606     return 0;
1607 }
1608 
1609 /*
1610  * ram_block_populate_read: preallocate page tables and populate pages in the
1611  *   RAM block by reading a byte of each page.
1612  *
1613  * Since it's solely used for userfault_fd WP feature, here we just
1614  *   hardcode page size to qemu_real_host_page_size.
1615  *
1616  * @block: RAM block to populate
1617  */
1618 static void ram_block_populate_read(RAMBlock *rb)
1619 {
1620     /*
1621      * Skip populating all pages that fall into a discarded range as managed by
1622      * a RamDiscardManager responsible for the mapped memory region of the
1623      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1624      * must not get populated automatically. We don't have to track
1625      * modifications via userfaultfd WP reliably, because these pages will
1626      * not be part of the migration stream either way -- see
1627      * ramblock_dirty_bitmap_exclude_discarded_pages().
1628      *
1629      * Note: The result is only stable while migrating (precopy/postcopy).
1630      */
1631     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1632         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1633         MemoryRegionSection section = {
1634             .mr = rb->mr,
1635             .offset_within_region = 0,
1636             .size = rb->mr->size,
1637         };
1638 
1639         ram_discard_manager_replay_populated(rdm, &section,
1640                                              populate_read_section, NULL);
1641     } else {
1642         populate_read_range(rb, 0, rb->used_length);
1643     }
1644 }
1645 
1646 /*
1647  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1648  */
1649 void ram_write_tracking_prepare(void)
1650 {
1651     RAMBlock *block;
1652 
1653     RCU_READ_LOCK_GUARD();
1654 
1655     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1656         /* Nothing to do with read-only and MMIO-writable regions */
1657         if (block->mr->readonly || block->mr->rom_device) {
1658             continue;
1659         }
1660 
1661         /*
1662          * Populate pages of the RAM block before enabling userfault_fd
1663          * write protection.
1664          *
1665          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1666          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1667          * pages with pte_none() entries in page table.
1668          */
1669         ram_block_populate_read(block);
1670     }
1671 }
1672 
1673 static inline int uffd_protect_section(MemoryRegionSection *section,
1674                                        void *opaque)
1675 {
1676     const hwaddr size = int128_get64(section->size);
1677     const hwaddr offset = section->offset_within_region;
1678     RAMBlock *rb = section->mr->ram_block;
1679     int uffd_fd = (uintptr_t)opaque;
1680 
1681     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1682                                   false);
1683 }
1684 
1685 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1686 {
1687     assert(rb->flags & RAM_UF_WRITEPROTECT);
1688 
1689     /* See ram_block_populate_read() */
1690     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1691         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1692         MemoryRegionSection section = {
1693             .mr = rb->mr,
1694             .offset_within_region = 0,
1695             .size = rb->mr->size,
1696         };
1697 
1698         return ram_discard_manager_replay_populated(rdm, &section,
1699                                                     uffd_protect_section,
1700                                                     (void *)(uintptr_t)uffd_fd);
1701     }
1702     return uffd_change_protection(uffd_fd, rb->host,
1703                                   rb->used_length, true, false);
1704 }
1705 
1706 /*
1707  * ram_write_tracking_start: start UFFD-WP memory tracking
1708  *
1709  * Returns 0 for success or negative value in case of error
1710  */
1711 int ram_write_tracking_start(void)
1712 {
1713     int uffd_fd;
1714     RAMState *rs = ram_state;
1715     RAMBlock *block;
1716 
1717     /* Open UFFD file descriptor */
1718     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1719     if (uffd_fd < 0) {
1720         return uffd_fd;
1721     }
1722     rs->uffdio_fd = uffd_fd;
1723 
1724     RCU_READ_LOCK_GUARD();
1725 
1726     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1727         /* Nothing to do with read-only and MMIO-writable regions */
1728         if (block->mr->readonly || block->mr->rom_device) {
1729             continue;
1730         }
1731 
1732         /* Register block memory with UFFD to track writes */
1733         if (uffd_register_memory(rs->uffdio_fd, block->host,
1734                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1735             goto fail;
1736         }
1737         block->flags |= RAM_UF_WRITEPROTECT;
1738         memory_region_ref(block->mr);
1739 
1740         /* Apply UFFD write protection to the block memory range */
1741         if (ram_block_uffd_protect(block, uffd_fd)) {
1742             goto fail;
1743         }
1744 
1745         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1746                 block->host, block->max_length);
1747     }
1748 
1749     return 0;
1750 
1751 fail:
1752     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1753 
1754     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1755         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1756             continue;
1757         }
1758         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1759         /* Cleanup flags and remove reference */
1760         block->flags &= ~RAM_UF_WRITEPROTECT;
1761         memory_region_unref(block->mr);
1762     }
1763 
1764     uffd_close_fd(uffd_fd);
1765     rs->uffdio_fd = -1;
1766     return -1;
1767 }
1768 
1769 /**
1770  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1771  */
1772 void ram_write_tracking_stop(void)
1773 {
1774     RAMState *rs = ram_state;
1775     RAMBlock *block;
1776 
1777     RCU_READ_LOCK_GUARD();
1778 
1779     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1780         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1781             continue;
1782         }
1783         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1784 
1785         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1786                 block->host, block->max_length);
1787 
1788         /* Cleanup flags and remove reference */
1789         block->flags &= ~RAM_UF_WRITEPROTECT;
1790         memory_region_unref(block->mr);
1791     }
1792 
1793     /* Finally close UFFD file descriptor */
1794     uffd_close_fd(rs->uffdio_fd);
1795     rs->uffdio_fd = -1;
1796 }
1797 
1798 #else
1799 /* No target OS support, stubs just fail or ignore */
1800 
1801 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1802 {
1803     (void) rs;
1804     (void) offset;
1805 
1806     return NULL;
1807 }
1808 
1809 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1810         unsigned long start_page)
1811 {
1812     (void) rs;
1813     (void) pss;
1814     (void) start_page;
1815 
1816     return 0;
1817 }
1818 
1819 bool ram_write_tracking_available(void)
1820 {
1821     return false;
1822 }
1823 
1824 bool ram_write_tracking_compatible(void)
1825 {
1826     assert(0);
1827     return false;
1828 }
1829 
1830 int ram_write_tracking_start(void)
1831 {
1832     assert(0);
1833     return -1;
1834 }
1835 
1836 void ram_write_tracking_stop(void)
1837 {
1838     assert(0);
1839 }
1840 #endif /* defined(__linux__) */
1841 
1842 /**
1843  * get_queued_page: unqueue a page from the postcopy requests
1844  *
1845  * Skips pages that are already sent (!dirty)
1846  *
1847  * Returns true if a queued page is found
1848  *
1849  * @rs: current RAM state
1850  * @pss: data about the state of the current dirty page scan
1851  */
1852 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1853 {
1854     RAMBlock  *block;
1855     ram_addr_t offset;
1856     bool dirty;
1857 
1858     do {
1859         block = unqueue_page(rs, &offset);
1860         /*
1861          * We're sending this page, and since it's postcopy nothing else
1862          * will dirty it, and we must make sure it doesn't get sent again
1863          * even if this queue request was received after the background
1864          * search already sent it.
1865          */
1866         if (block) {
1867             unsigned long page;
1868 
1869             page = offset >> TARGET_PAGE_BITS;
1870             dirty = test_bit(page, block->bmap);
1871             if (!dirty) {
1872                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1873                                                 page);
1874             } else {
1875                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1876             }
1877         }
1878 
1879     } while (block && !dirty);
1880 
1881     if (!block) {
1882         /*
1883          * Poll write faults too if background snapshot is enabled; that's
1884          * when we have vcpus got blocked by the write protected pages.
1885          */
1886         block = poll_fault_page(rs, &offset);
1887     }
1888 
1889     if (block) {
1890         /*
1891          * We want the background search to continue from the queued page
1892          * since the guest is likely to want other pages near to the page
1893          * it just requested.
1894          */
1895         pss->block = block;
1896         pss->page = offset >> TARGET_PAGE_BITS;
1897 
1898         /*
1899          * This unqueued page would break the "one round" check, even is
1900          * really rare.
1901          */
1902         pss->complete_round = false;
1903     }
1904 
1905     return !!block;
1906 }
1907 
1908 /**
1909  * migration_page_queue_free: drop any remaining pages in the ram
1910  * request queue
1911  *
1912  * It should be empty at the end anyway, but in error cases there may
1913  * be some left.  in case that there is any page left, we drop it.
1914  *
1915  */
1916 static void migration_page_queue_free(RAMState *rs)
1917 {
1918     struct RAMSrcPageRequest *mspr, *next_mspr;
1919     /* This queue generally should be empty - but in the case of a failed
1920      * migration might have some droppings in.
1921      */
1922     RCU_READ_LOCK_GUARD();
1923     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1924         memory_region_unref(mspr->rb->mr);
1925         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1926         g_free(mspr);
1927     }
1928 }
1929 
1930 /**
1931  * ram_save_queue_pages: queue the page for transmission
1932  *
1933  * A request from postcopy destination for example.
1934  *
1935  * Returns zero on success or negative on error
1936  *
1937  * @rbname: Name of the RAMBLock of the request. NULL means the
1938  *          same that last one.
1939  * @start: starting address from the start of the RAMBlock
1940  * @len: length (in bytes) to send
1941  */
1942 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1943 {
1944     RAMBlock *ramblock;
1945     RAMState *rs = ram_state;
1946 
1947     stat64_add(&mig_stats.postcopy_requests, 1);
1948     RCU_READ_LOCK_GUARD();
1949 
1950     if (!rbname) {
1951         /* Reuse last RAMBlock */
1952         ramblock = rs->last_req_rb;
1953 
1954         if (!ramblock) {
1955             /*
1956              * Shouldn't happen, we can't reuse the last RAMBlock if
1957              * it's the 1st request.
1958              */
1959             error_report("ram_save_queue_pages no previous block");
1960             return -1;
1961         }
1962     } else {
1963         ramblock = qemu_ram_block_by_name(rbname);
1964 
1965         if (!ramblock) {
1966             /* We shouldn't be asked for a non-existent RAMBlock */
1967             error_report("ram_save_queue_pages no block '%s'", rbname);
1968             return -1;
1969         }
1970         rs->last_req_rb = ramblock;
1971     }
1972     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1973     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1974         error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1975                      RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1976                      __func__, start, len, ramblock->used_length);
1977         return -1;
1978     }
1979 
1980     /*
1981      * When with postcopy preempt, we send back the page directly in the
1982      * rp-return thread.
1983      */
1984     if (postcopy_preempt_active()) {
1985         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1986         size_t page_size = qemu_ram_pagesize(ramblock);
1987         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1988         int ret = 0;
1989 
1990         qemu_mutex_lock(&rs->bitmap_mutex);
1991 
1992         pss_init(pss, ramblock, page_start);
1993         /*
1994          * Always use the preempt channel, and make sure it's there.  It's
1995          * safe to access without lock, because when rp-thread is running
1996          * we should be the only one who operates on the qemufile
1997          */
1998         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1999         assert(pss->pss_channel);
2000 
2001         /*
2002          * It must be either one or multiple of host page size.  Just
2003          * assert; if something wrong we're mostly split brain anyway.
2004          */
2005         assert(len % page_size == 0);
2006         while (len) {
2007             if (ram_save_host_page_urgent(pss)) {
2008                 error_report("%s: ram_save_host_page_urgent() failed: "
2009                              "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2010                              __func__, ramblock->idstr, start);
2011                 ret = -1;
2012                 break;
2013             }
2014             /*
2015              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2016              * will automatically be moved and point to the next host page
2017              * we're going to send, so no need to update here.
2018              *
2019              * Normally QEMU never sends >1 host page in requests, so
2020              * logically we don't even need that as the loop should only
2021              * run once, but just to be consistent.
2022              */
2023             len -= page_size;
2024         };
2025         qemu_mutex_unlock(&rs->bitmap_mutex);
2026 
2027         return ret;
2028     }
2029 
2030     struct RAMSrcPageRequest *new_entry =
2031         g_new0(struct RAMSrcPageRequest, 1);
2032     new_entry->rb = ramblock;
2033     new_entry->offset = start;
2034     new_entry->len = len;
2035 
2036     memory_region_ref(ramblock->mr);
2037     qemu_mutex_lock(&rs->src_page_req_mutex);
2038     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2039     migration_make_urgent_request();
2040     qemu_mutex_unlock(&rs->src_page_req_mutex);
2041 
2042     return 0;
2043 }
2044 
2045 static bool save_page_use_compression(RAMState *rs)
2046 {
2047     if (!migrate_compress()) {
2048         return false;
2049     }
2050 
2051     /*
2052      * If xbzrle is enabled (e.g., after first round of migration), stop
2053      * using the data compression. In theory, xbzrle can do better than
2054      * compression.
2055      */
2056     if (rs->xbzrle_started) {
2057         return false;
2058     }
2059 
2060     return true;
2061 }
2062 
2063 /*
2064  * try to compress the page before posting it out, return true if the page
2065  * has been properly handled by compression, otherwise needs other
2066  * paths to handle it
2067  */
2068 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2069                                ram_addr_t offset)
2070 {
2071     if (!save_page_use_compression(rs)) {
2072         return false;
2073     }
2074 
2075     /*
2076      * When starting the process of a new block, the first page of
2077      * the block should be sent out before other pages in the same
2078      * block, and all the pages in last block should have been sent
2079      * out, keeping this order is important, because the 'cont' flag
2080      * is used to avoid resending the block name.
2081      *
2082      * We post the fist page as normal page as compression will take
2083      * much CPU resource.
2084      */
2085     if (pss->block != pss->last_sent_block) {
2086         ram_flush_compressed_data(rs);
2087         return false;
2088     }
2089 
2090     if (compress_page_with_multi_thread(pss->block, offset,
2091                                         send_queued_data) > 0) {
2092         return true;
2093     }
2094 
2095     compression_counters.busy++;
2096     return false;
2097 }
2098 
2099 /**
2100  * ram_save_target_page_legacy: save one target page
2101  *
2102  * Returns the number of pages written
2103  *
2104  * @rs: current RAM state
2105  * @pss: data about the page we want to send
2106  */
2107 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2108 {
2109     RAMBlock *block = pss->block;
2110     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2111     int res;
2112 
2113     if (control_save_page(pss, offset, &res)) {
2114         return res;
2115     }
2116 
2117     if (save_compress_page(rs, pss, offset)) {
2118         return 1;
2119     }
2120 
2121     if (save_zero_page(rs, pss, offset)) {
2122         return 1;
2123     }
2124 
2125     /*
2126      * Do not use multifd in postcopy as one whole host page should be
2127      * placed.  Meanwhile postcopy requires atomic update of pages, so even
2128      * if host page size == guest page size the dest guest during run may
2129      * still see partially copied pages which is data corruption.
2130      */
2131     if (migrate_multifd() && !migration_in_postcopy()) {
2132         return ram_save_multifd_page(pss->pss_channel, block, offset);
2133     }
2134 
2135     return ram_save_page(rs, pss);
2136 }
2137 
2138 /* Should be called before sending a host page */
2139 static void pss_host_page_prepare(PageSearchStatus *pss)
2140 {
2141     /* How many guest pages are there in one host page? */
2142     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2143 
2144     pss->host_page_sending = true;
2145     if (guest_pfns <= 1) {
2146         /*
2147          * This covers both when guest psize == host psize, or when guest
2148          * has larger psize than the host (guest_pfns==0).
2149          *
2150          * For the latter, we always send one whole guest page per
2151          * iteration of the host page (example: an Alpha VM on x86 host
2152          * will have guest psize 8K while host psize 4K).
2153          */
2154         pss->host_page_start = pss->page;
2155         pss->host_page_end = pss->page + 1;
2156     } else {
2157         /*
2158          * The host page spans over multiple guest pages, we send them
2159          * within the same host page iteration.
2160          */
2161         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2162         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2163     }
2164 }
2165 
2166 /*
2167  * Whether the page pointed by PSS is within the host page being sent.
2168  * Must be called after a previous pss_host_page_prepare().
2169  */
2170 static bool pss_within_range(PageSearchStatus *pss)
2171 {
2172     ram_addr_t ram_addr;
2173 
2174     assert(pss->host_page_sending);
2175 
2176     /* Over host-page boundary? */
2177     if (pss->page >= pss->host_page_end) {
2178         return false;
2179     }
2180 
2181     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2182 
2183     return offset_in_ramblock(pss->block, ram_addr);
2184 }
2185 
2186 static void pss_host_page_finish(PageSearchStatus *pss)
2187 {
2188     pss->host_page_sending = false;
2189     /* This is not needed, but just to reset it */
2190     pss->host_page_start = pss->host_page_end = 0;
2191 }
2192 
2193 /*
2194  * Send an urgent host page specified by `pss'.  Need to be called with
2195  * bitmap_mutex held.
2196  *
2197  * Returns 0 if save host page succeeded, false otherwise.
2198  */
2199 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2200 {
2201     bool page_dirty, sent = false;
2202     RAMState *rs = ram_state;
2203     int ret = 0;
2204 
2205     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2206     pss_host_page_prepare(pss);
2207 
2208     /*
2209      * If precopy is sending the same page, let it be done in precopy, or
2210      * we could send the same page in two channels and none of them will
2211      * receive the whole page.
2212      */
2213     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2214         trace_postcopy_preempt_hit(pss->block->idstr,
2215                                    pss->page << TARGET_PAGE_BITS);
2216         return 0;
2217     }
2218 
2219     do {
2220         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2221 
2222         if (page_dirty) {
2223             /* Be strict to return code; it must be 1, or what else? */
2224             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2225                 error_report_once("%s: ram_save_target_page failed", __func__);
2226                 ret = -1;
2227                 goto out;
2228             }
2229             sent = true;
2230         }
2231         pss_find_next_dirty(pss);
2232     } while (pss_within_range(pss));
2233 out:
2234     pss_host_page_finish(pss);
2235     /* For urgent requests, flush immediately if sent */
2236     if (sent) {
2237         qemu_fflush(pss->pss_channel);
2238     }
2239     return ret;
2240 }
2241 
2242 /**
2243  * ram_save_host_page: save a whole host page
2244  *
2245  * Starting at *offset send pages up to the end of the current host
2246  * page. It's valid for the initial offset to point into the middle of
2247  * a host page in which case the remainder of the hostpage is sent.
2248  * Only dirty target pages are sent. Note that the host page size may
2249  * be a huge page for this block.
2250  *
2251  * The saving stops at the boundary of the used_length of the block
2252  * if the RAMBlock isn't a multiple of the host page size.
2253  *
2254  * The caller must be with ram_state.bitmap_mutex held to call this
2255  * function.  Note that this function can temporarily release the lock, but
2256  * when the function is returned it'll make sure the lock is still held.
2257  *
2258  * Returns the number of pages written or negative on error
2259  *
2260  * @rs: current RAM state
2261  * @pss: data about the page we want to send
2262  */
2263 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2264 {
2265     bool page_dirty, preempt_active = postcopy_preempt_active();
2266     int tmppages, pages = 0;
2267     size_t pagesize_bits =
2268         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2269     unsigned long start_page = pss->page;
2270     int res;
2271 
2272     if (migrate_ram_is_ignored(pss->block)) {
2273         error_report("block %s should not be migrated !", pss->block->idstr);
2274         return 0;
2275     }
2276 
2277     /* Update host page boundary information */
2278     pss_host_page_prepare(pss);
2279 
2280     do {
2281         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2282 
2283         /* Check the pages is dirty and if it is send it */
2284         if (page_dirty) {
2285             /*
2286              * Properly yield the lock only in postcopy preempt mode
2287              * because both migration thread and rp-return thread can
2288              * operate on the bitmaps.
2289              */
2290             if (preempt_active) {
2291                 qemu_mutex_unlock(&rs->bitmap_mutex);
2292             }
2293             tmppages = migration_ops->ram_save_target_page(rs, pss);
2294             if (tmppages >= 0) {
2295                 pages += tmppages;
2296                 /*
2297                  * Allow rate limiting to happen in the middle of huge pages if
2298                  * something is sent in the current iteration.
2299                  */
2300                 if (pagesize_bits > 1 && tmppages > 0) {
2301                     migration_rate_limit();
2302                 }
2303             }
2304             if (preempt_active) {
2305                 qemu_mutex_lock(&rs->bitmap_mutex);
2306             }
2307         } else {
2308             tmppages = 0;
2309         }
2310 
2311         if (tmppages < 0) {
2312             pss_host_page_finish(pss);
2313             return tmppages;
2314         }
2315 
2316         pss_find_next_dirty(pss);
2317     } while (pss_within_range(pss));
2318 
2319     pss_host_page_finish(pss);
2320 
2321     res = ram_save_release_protection(rs, pss, start_page);
2322     return (res < 0 ? res : pages);
2323 }
2324 
2325 /**
2326  * ram_find_and_save_block: finds a dirty page and sends it to f
2327  *
2328  * Called within an RCU critical section.
2329  *
2330  * Returns the number of pages written where zero means no dirty pages,
2331  * or negative on error
2332  *
2333  * @rs: current RAM state
2334  *
2335  * On systems where host-page-size > target-page-size it will send all the
2336  * pages in a host page that are dirty.
2337  */
2338 static int ram_find_and_save_block(RAMState *rs)
2339 {
2340     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2341     int pages = 0;
2342 
2343     /* No dirty page as there is zero RAM */
2344     if (!rs->ram_bytes_total) {
2345         return pages;
2346     }
2347 
2348     /*
2349      * Always keep last_seen_block/last_page valid during this procedure,
2350      * because find_dirty_block() relies on these values (e.g., we compare
2351      * last_seen_block with pss.block to see whether we searched all the
2352      * ramblocks) to detect the completion of migration.  Having NULL value
2353      * of last_seen_block can conditionally cause below loop to run forever.
2354      */
2355     if (!rs->last_seen_block) {
2356         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2357         rs->last_page = 0;
2358     }
2359 
2360     pss_init(pss, rs->last_seen_block, rs->last_page);
2361 
2362     while (true){
2363         if (!get_queued_page(rs, pss)) {
2364             /* priority queue empty, so just search for something dirty */
2365             int res = find_dirty_block(rs, pss);
2366             if (res != PAGE_DIRTY_FOUND) {
2367                 if (res == PAGE_ALL_CLEAN) {
2368                     break;
2369                 } else if (res == PAGE_TRY_AGAIN) {
2370                     continue;
2371                 } else if (res < 0) {
2372                     pages = res;
2373                     break;
2374                 }
2375             }
2376         }
2377         pages = ram_save_host_page(rs, pss);
2378         if (pages) {
2379             break;
2380         }
2381     }
2382 
2383     rs->last_seen_block = pss->block;
2384     rs->last_page = pss->page;
2385 
2386     return pages;
2387 }
2388 
2389 static uint64_t ram_bytes_total_with_ignored(void)
2390 {
2391     RAMBlock *block;
2392     uint64_t total = 0;
2393 
2394     RCU_READ_LOCK_GUARD();
2395 
2396     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2397         total += block->used_length;
2398     }
2399     return total;
2400 }
2401 
2402 uint64_t ram_bytes_total(void)
2403 {
2404     RAMBlock *block;
2405     uint64_t total = 0;
2406 
2407     RCU_READ_LOCK_GUARD();
2408 
2409     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2410         total += block->used_length;
2411     }
2412     return total;
2413 }
2414 
2415 static void xbzrle_load_setup(void)
2416 {
2417     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2418 }
2419 
2420 static void xbzrle_load_cleanup(void)
2421 {
2422     g_free(XBZRLE.decoded_buf);
2423     XBZRLE.decoded_buf = NULL;
2424 }
2425 
2426 static void ram_state_cleanup(RAMState **rsp)
2427 {
2428     if (*rsp) {
2429         migration_page_queue_free(*rsp);
2430         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2431         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2432         g_free(*rsp);
2433         *rsp = NULL;
2434     }
2435 }
2436 
2437 static void xbzrle_cleanup(void)
2438 {
2439     XBZRLE_cache_lock();
2440     if (XBZRLE.cache) {
2441         cache_fini(XBZRLE.cache);
2442         g_free(XBZRLE.encoded_buf);
2443         g_free(XBZRLE.current_buf);
2444         g_free(XBZRLE.zero_target_page);
2445         XBZRLE.cache = NULL;
2446         XBZRLE.encoded_buf = NULL;
2447         XBZRLE.current_buf = NULL;
2448         XBZRLE.zero_target_page = NULL;
2449     }
2450     XBZRLE_cache_unlock();
2451 }
2452 
2453 static void ram_save_cleanup(void *opaque)
2454 {
2455     RAMState **rsp = opaque;
2456     RAMBlock *block;
2457 
2458     /* We don't use dirty log with background snapshots */
2459     if (!migrate_background_snapshot()) {
2460         /* caller have hold iothread lock or is in a bh, so there is
2461          * no writing race against the migration bitmap
2462          */
2463         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2464             /*
2465              * do not stop dirty log without starting it, since
2466              * memory_global_dirty_log_stop will assert that
2467              * memory_global_dirty_log_start/stop used in pairs
2468              */
2469             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2470         }
2471     }
2472 
2473     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2474         g_free(block->clear_bmap);
2475         block->clear_bmap = NULL;
2476         g_free(block->bmap);
2477         block->bmap = NULL;
2478     }
2479 
2480     xbzrle_cleanup();
2481     compress_threads_save_cleanup();
2482     ram_state_cleanup(rsp);
2483     g_free(migration_ops);
2484     migration_ops = NULL;
2485 }
2486 
2487 static void ram_state_reset(RAMState *rs)
2488 {
2489     int i;
2490 
2491     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2492         rs->pss[i].last_sent_block = NULL;
2493     }
2494 
2495     rs->last_seen_block = NULL;
2496     rs->last_page = 0;
2497     rs->last_version = ram_list.version;
2498     rs->xbzrle_started = false;
2499 }
2500 
2501 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2502 
2503 /* **** functions for postcopy ***** */
2504 
2505 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2506 {
2507     struct RAMBlock *block;
2508 
2509     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2510         unsigned long *bitmap = block->bmap;
2511         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2512         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2513 
2514         while (run_start < range) {
2515             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2516             ram_discard_range(block->idstr,
2517                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2518                               ((ram_addr_t)(run_end - run_start))
2519                                 << TARGET_PAGE_BITS);
2520             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2521         }
2522     }
2523 }
2524 
2525 /**
2526  * postcopy_send_discard_bm_ram: discard a RAMBlock
2527  *
2528  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2529  *
2530  * @ms: current migration state
2531  * @block: RAMBlock to discard
2532  */
2533 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2534 {
2535     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2536     unsigned long current;
2537     unsigned long *bitmap = block->bmap;
2538 
2539     for (current = 0; current < end; ) {
2540         unsigned long one = find_next_bit(bitmap, end, current);
2541         unsigned long zero, discard_length;
2542 
2543         if (one >= end) {
2544             break;
2545         }
2546 
2547         zero = find_next_zero_bit(bitmap, end, one + 1);
2548 
2549         if (zero >= end) {
2550             discard_length = end - one;
2551         } else {
2552             discard_length = zero - one;
2553         }
2554         postcopy_discard_send_range(ms, one, discard_length);
2555         current = one + discard_length;
2556     }
2557 }
2558 
2559 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2560 
2561 /**
2562  * postcopy_each_ram_send_discard: discard all RAMBlocks
2563  *
2564  * Utility for the outgoing postcopy code.
2565  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2566  *   passing it bitmap indexes and name.
2567  * (qemu_ram_foreach_block ends up passing unscaled lengths
2568  *  which would mean postcopy code would have to deal with target page)
2569  *
2570  * @ms: current migration state
2571  */
2572 static void postcopy_each_ram_send_discard(MigrationState *ms)
2573 {
2574     struct RAMBlock *block;
2575 
2576     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2577         postcopy_discard_send_init(ms, block->idstr);
2578 
2579         /*
2580          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2581          * host-page size chunks, mark any partially dirty host-page size
2582          * chunks as all dirty.  In this case the host-page is the host-page
2583          * for the particular RAMBlock, i.e. it might be a huge page.
2584          */
2585         postcopy_chunk_hostpages_pass(ms, block);
2586 
2587         /*
2588          * Postcopy sends chunks of bitmap over the wire, but it
2589          * just needs indexes at this point, avoids it having
2590          * target page specific code.
2591          */
2592         postcopy_send_discard_bm_ram(ms, block);
2593         postcopy_discard_send_finish(ms);
2594     }
2595 }
2596 
2597 /**
2598  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2599  *
2600  * Helper for postcopy_chunk_hostpages; it's called twice to
2601  * canonicalize the two bitmaps, that are similar, but one is
2602  * inverted.
2603  *
2604  * Postcopy requires that all target pages in a hostpage are dirty or
2605  * clean, not a mix.  This function canonicalizes the bitmaps.
2606  *
2607  * @ms: current migration state
2608  * @block: block that contains the page we want to canonicalize
2609  */
2610 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2611 {
2612     RAMState *rs = ram_state;
2613     unsigned long *bitmap = block->bmap;
2614     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2615     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2616     unsigned long run_start;
2617 
2618     if (block->page_size == TARGET_PAGE_SIZE) {
2619         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2620         return;
2621     }
2622 
2623     /* Find a dirty page */
2624     run_start = find_next_bit(bitmap, pages, 0);
2625 
2626     while (run_start < pages) {
2627 
2628         /*
2629          * If the start of this run of pages is in the middle of a host
2630          * page, then we need to fixup this host page.
2631          */
2632         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2633             /* Find the end of this run */
2634             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2635             /*
2636              * If the end isn't at the start of a host page, then the
2637              * run doesn't finish at the end of a host page
2638              * and we need to discard.
2639              */
2640         }
2641 
2642         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2643             unsigned long page;
2644             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2645                                                              host_ratio);
2646             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2647 
2648             /* Clean up the bitmap */
2649             for (page = fixup_start_addr;
2650                  page < fixup_start_addr + host_ratio; page++) {
2651                 /*
2652                  * Remark them as dirty, updating the count for any pages
2653                  * that weren't previously dirty.
2654                  */
2655                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2656             }
2657         }
2658 
2659         /* Find the next dirty page for the next iteration */
2660         run_start = find_next_bit(bitmap, pages, run_start);
2661     }
2662 }
2663 
2664 /**
2665  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2666  *
2667  * Transmit the set of pages to be discarded after precopy to the target
2668  * these are pages that:
2669  *     a) Have been previously transmitted but are now dirty again
2670  *     b) Pages that have never been transmitted, this ensures that
2671  *        any pages on the destination that have been mapped by background
2672  *        tasks get discarded (transparent huge pages is the specific concern)
2673  * Hopefully this is pretty sparse
2674  *
2675  * @ms: current migration state
2676  */
2677 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2678 {
2679     RAMState *rs = ram_state;
2680 
2681     RCU_READ_LOCK_GUARD();
2682 
2683     /* This should be our last sync, the src is now paused */
2684     migration_bitmap_sync(rs, false);
2685 
2686     /* Easiest way to make sure we don't resume in the middle of a host-page */
2687     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2688     rs->last_seen_block = NULL;
2689     rs->last_page = 0;
2690 
2691     postcopy_each_ram_send_discard(ms);
2692 
2693     trace_ram_postcopy_send_discard_bitmap();
2694 }
2695 
2696 /**
2697  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2698  *
2699  * Returns zero on success
2700  *
2701  * @rbname: name of the RAMBlock of the request. NULL means the
2702  *          same that last one.
2703  * @start: RAMBlock starting page
2704  * @length: RAMBlock size
2705  */
2706 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2707 {
2708     trace_ram_discard_range(rbname, start, length);
2709 
2710     RCU_READ_LOCK_GUARD();
2711     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2712 
2713     if (!rb) {
2714         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2715         return -1;
2716     }
2717 
2718     /*
2719      * On source VM, we don't need to update the received bitmap since
2720      * we don't even have one.
2721      */
2722     if (rb->receivedmap) {
2723         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2724                      length >> qemu_target_page_bits());
2725     }
2726 
2727     return ram_block_discard_range(rb, start, length);
2728 }
2729 
2730 /*
2731  * For every allocation, we will try not to crash the VM if the
2732  * allocation failed.
2733  */
2734 static int xbzrle_init(void)
2735 {
2736     Error *local_err = NULL;
2737 
2738     if (!migrate_xbzrle()) {
2739         return 0;
2740     }
2741 
2742     XBZRLE_cache_lock();
2743 
2744     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2745     if (!XBZRLE.zero_target_page) {
2746         error_report("%s: Error allocating zero page", __func__);
2747         goto err_out;
2748     }
2749 
2750     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2751                               TARGET_PAGE_SIZE, &local_err);
2752     if (!XBZRLE.cache) {
2753         error_report_err(local_err);
2754         goto free_zero_page;
2755     }
2756 
2757     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2758     if (!XBZRLE.encoded_buf) {
2759         error_report("%s: Error allocating encoded_buf", __func__);
2760         goto free_cache;
2761     }
2762 
2763     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2764     if (!XBZRLE.current_buf) {
2765         error_report("%s: Error allocating current_buf", __func__);
2766         goto free_encoded_buf;
2767     }
2768 
2769     /* We are all good */
2770     XBZRLE_cache_unlock();
2771     return 0;
2772 
2773 free_encoded_buf:
2774     g_free(XBZRLE.encoded_buf);
2775     XBZRLE.encoded_buf = NULL;
2776 free_cache:
2777     cache_fini(XBZRLE.cache);
2778     XBZRLE.cache = NULL;
2779 free_zero_page:
2780     g_free(XBZRLE.zero_target_page);
2781     XBZRLE.zero_target_page = NULL;
2782 err_out:
2783     XBZRLE_cache_unlock();
2784     return -ENOMEM;
2785 }
2786 
2787 static int ram_state_init(RAMState **rsp)
2788 {
2789     *rsp = g_try_new0(RAMState, 1);
2790 
2791     if (!*rsp) {
2792         error_report("%s: Init ramstate fail", __func__);
2793         return -1;
2794     }
2795 
2796     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2797     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2798     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2799     (*rsp)->ram_bytes_total = ram_bytes_total();
2800 
2801     /*
2802      * Count the total number of pages used by ram blocks not including any
2803      * gaps due to alignment or unplugs.
2804      * This must match with the initial values of dirty bitmap.
2805      */
2806     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2807     ram_state_reset(*rsp);
2808 
2809     return 0;
2810 }
2811 
2812 static void ram_list_init_bitmaps(void)
2813 {
2814     MigrationState *ms = migrate_get_current();
2815     RAMBlock *block;
2816     unsigned long pages;
2817     uint8_t shift;
2818 
2819     /* Skip setting bitmap if there is no RAM */
2820     if (ram_bytes_total()) {
2821         shift = ms->clear_bitmap_shift;
2822         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2823             error_report("clear_bitmap_shift (%u) too big, using "
2824                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2825             shift = CLEAR_BITMAP_SHIFT_MAX;
2826         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2827             error_report("clear_bitmap_shift (%u) too small, using "
2828                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2829             shift = CLEAR_BITMAP_SHIFT_MIN;
2830         }
2831 
2832         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2833             pages = block->max_length >> TARGET_PAGE_BITS;
2834             /*
2835              * The initial dirty bitmap for migration must be set with all
2836              * ones to make sure we'll migrate every guest RAM page to
2837              * destination.
2838              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2839              * new migration after a failed migration, ram_list.
2840              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2841              * guest memory.
2842              */
2843             block->bmap = bitmap_new(pages);
2844             bitmap_set(block->bmap, 0, pages);
2845             block->clear_bmap_shift = shift;
2846             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2847         }
2848     }
2849 }
2850 
2851 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2852 {
2853     unsigned long pages;
2854     RAMBlock *rb;
2855 
2856     RCU_READ_LOCK_GUARD();
2857 
2858     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2859             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2860             rs->migration_dirty_pages -= pages;
2861     }
2862 }
2863 
2864 static void ram_init_bitmaps(RAMState *rs)
2865 {
2866     qemu_mutex_lock_ramlist();
2867 
2868     WITH_RCU_READ_LOCK_GUARD() {
2869         ram_list_init_bitmaps();
2870         /* We don't use dirty log with background snapshots */
2871         if (!migrate_background_snapshot()) {
2872             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2873             migration_bitmap_sync_precopy(rs, false);
2874         }
2875     }
2876     qemu_mutex_unlock_ramlist();
2877 
2878     /*
2879      * After an eventual first bitmap sync, fixup the initial bitmap
2880      * containing all 1s to exclude any discarded pages from migration.
2881      */
2882     migration_bitmap_clear_discarded_pages(rs);
2883 }
2884 
2885 static int ram_init_all(RAMState **rsp)
2886 {
2887     if (ram_state_init(rsp)) {
2888         return -1;
2889     }
2890 
2891     if (xbzrle_init()) {
2892         ram_state_cleanup(rsp);
2893         return -1;
2894     }
2895 
2896     ram_init_bitmaps(*rsp);
2897 
2898     return 0;
2899 }
2900 
2901 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2902 {
2903     RAMBlock *block;
2904     uint64_t pages = 0;
2905 
2906     /*
2907      * Postcopy is not using xbzrle/compression, so no need for that.
2908      * Also, since source are already halted, we don't need to care
2909      * about dirty page logging as well.
2910      */
2911 
2912     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2913         pages += bitmap_count_one(block->bmap,
2914                                   block->used_length >> TARGET_PAGE_BITS);
2915     }
2916 
2917     /* This may not be aligned with current bitmaps. Recalculate. */
2918     rs->migration_dirty_pages = pages;
2919 
2920     ram_state_reset(rs);
2921 
2922     /* Update RAMState cache of output QEMUFile */
2923     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2924 
2925     trace_ram_state_resume_prepare(pages);
2926 }
2927 
2928 /*
2929  * This function clears bits of the free pages reported by the caller from the
2930  * migration dirty bitmap. @addr is the host address corresponding to the
2931  * start of the continuous guest free pages, and @len is the total bytes of
2932  * those pages.
2933  */
2934 void qemu_guest_free_page_hint(void *addr, size_t len)
2935 {
2936     RAMBlock *block;
2937     ram_addr_t offset;
2938     size_t used_len, start, npages;
2939     MigrationState *s = migrate_get_current();
2940 
2941     /* This function is currently expected to be used during live migration */
2942     if (!migration_is_setup_or_active(s->state)) {
2943         return;
2944     }
2945 
2946     for (; len > 0; len -= used_len, addr += used_len) {
2947         block = qemu_ram_block_from_host(addr, false, &offset);
2948         if (unlikely(!block || offset >= block->used_length)) {
2949             /*
2950              * The implementation might not support RAMBlock resize during
2951              * live migration, but it could happen in theory with future
2952              * updates. So we add a check here to capture that case.
2953              */
2954             error_report_once("%s unexpected error", __func__);
2955             return;
2956         }
2957 
2958         if (len <= block->used_length - offset) {
2959             used_len = len;
2960         } else {
2961             used_len = block->used_length - offset;
2962         }
2963 
2964         start = offset >> TARGET_PAGE_BITS;
2965         npages = used_len >> TARGET_PAGE_BITS;
2966 
2967         qemu_mutex_lock(&ram_state->bitmap_mutex);
2968         /*
2969          * The skipped free pages are equavalent to be sent from clear_bmap's
2970          * perspective, so clear the bits from the memory region bitmap which
2971          * are initially set. Otherwise those skipped pages will be sent in
2972          * the next round after syncing from the memory region bitmap.
2973          */
2974         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2975         ram_state->migration_dirty_pages -=
2976                       bitmap_count_one_with_offset(block->bmap, start, npages);
2977         bitmap_clear(block->bmap, start, npages);
2978         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2979     }
2980 }
2981 
2982 /*
2983  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2984  * long-running RCU critical section.  When rcu-reclaims in the code
2985  * start to become numerous it will be necessary to reduce the
2986  * granularity of these critical sections.
2987  */
2988 
2989 /**
2990  * ram_save_setup: Setup RAM for migration
2991  *
2992  * Returns zero to indicate success and negative for error
2993  *
2994  * @f: QEMUFile where to send the data
2995  * @opaque: RAMState pointer
2996  */
2997 static int ram_save_setup(QEMUFile *f, void *opaque)
2998 {
2999     RAMState **rsp = opaque;
3000     RAMBlock *block;
3001     int ret;
3002 
3003     if (compress_threads_save_setup()) {
3004         return -1;
3005     }
3006 
3007     /* migration has already setup the bitmap, reuse it. */
3008     if (!migration_in_colo_state()) {
3009         if (ram_init_all(rsp) != 0) {
3010             compress_threads_save_cleanup();
3011             return -1;
3012         }
3013     }
3014     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3015 
3016     WITH_RCU_READ_LOCK_GUARD() {
3017         qemu_put_be64(f, ram_bytes_total_with_ignored()
3018                          | RAM_SAVE_FLAG_MEM_SIZE);
3019 
3020         RAMBLOCK_FOREACH_MIGRATABLE(block) {
3021             qemu_put_byte(f, strlen(block->idstr));
3022             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3023             qemu_put_be64(f, block->used_length);
3024             if (migrate_postcopy_ram() && block->page_size !=
3025                                           qemu_host_page_size) {
3026                 qemu_put_be64(f, block->page_size);
3027             }
3028             if (migrate_ignore_shared()) {
3029                 qemu_put_be64(f, block->mr->addr);
3030             }
3031         }
3032     }
3033 
3034     ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3035     if (ret < 0) {
3036         qemu_file_set_error(f, ret);
3037     }
3038 
3039     ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3040     if (ret < 0) {
3041         qemu_file_set_error(f, ret);
3042     }
3043 
3044     migration_ops = g_malloc0(sizeof(MigrationOps));
3045     migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3046 
3047     qemu_mutex_unlock_iothread();
3048     ret = multifd_send_sync_main(f);
3049     qemu_mutex_lock_iothread();
3050     if (ret < 0) {
3051         return ret;
3052     }
3053 
3054     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
3055         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3056     }
3057 
3058     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3059     qemu_fflush(f);
3060 
3061     return 0;
3062 }
3063 
3064 /**
3065  * ram_save_iterate: iterative stage for migration
3066  *
3067  * Returns zero to indicate success and negative for error
3068  *
3069  * @f: QEMUFile where to send the data
3070  * @opaque: RAMState pointer
3071  */
3072 static int ram_save_iterate(QEMUFile *f, void *opaque)
3073 {
3074     RAMState **temp = opaque;
3075     RAMState *rs = *temp;
3076     int ret = 0;
3077     int i;
3078     int64_t t0;
3079     int done = 0;
3080 
3081     if (blk_mig_bulk_active()) {
3082         /* Avoid transferring ram during bulk phase of block migration as
3083          * the bulk phase will usually take a long time and transferring
3084          * ram updates during that time is pointless. */
3085         goto out;
3086     }
3087 
3088     /*
3089      * We'll take this lock a little bit long, but it's okay for two reasons.
3090      * Firstly, the only possible other thread to take it is who calls
3091      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3092      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3093      * guarantees that we'll at least released it in a regular basis.
3094      */
3095     qemu_mutex_lock(&rs->bitmap_mutex);
3096     WITH_RCU_READ_LOCK_GUARD() {
3097         if (ram_list.version != rs->last_version) {
3098             ram_state_reset(rs);
3099         }
3100 
3101         /* Read version before ram_list.blocks */
3102         smp_rmb();
3103 
3104         ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3105         if (ret < 0) {
3106             qemu_file_set_error(f, ret);
3107         }
3108 
3109         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3110         i = 0;
3111         while ((ret = migration_rate_exceeded(f)) == 0 ||
3112                postcopy_has_request(rs)) {
3113             int pages;
3114 
3115             if (qemu_file_get_error(f)) {
3116                 break;
3117             }
3118 
3119             pages = ram_find_and_save_block(rs);
3120             /* no more pages to sent */
3121             if (pages == 0) {
3122                 done = 1;
3123                 break;
3124             }
3125 
3126             if (pages < 0) {
3127                 qemu_file_set_error(f, pages);
3128                 break;
3129             }
3130 
3131             rs->target_page_count += pages;
3132 
3133             /*
3134              * During postcopy, it is necessary to make sure one whole host
3135              * page is sent in one chunk.
3136              */
3137             if (migrate_postcopy_ram()) {
3138                 ram_flush_compressed_data(rs);
3139             }
3140 
3141             /*
3142              * we want to check in the 1st loop, just in case it was the 1st
3143              * time and we had to sync the dirty bitmap.
3144              * qemu_clock_get_ns() is a bit expensive, so we only check each
3145              * some iterations
3146              */
3147             if ((i & 63) == 0) {
3148                 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3149                               1000000;
3150                 if (t1 > MAX_WAIT) {
3151                     trace_ram_save_iterate_big_wait(t1, i);
3152                     break;
3153                 }
3154             }
3155             i++;
3156         }
3157     }
3158     qemu_mutex_unlock(&rs->bitmap_mutex);
3159 
3160     /*
3161      * Must occur before EOS (or any QEMUFile operation)
3162      * because of RDMA protocol.
3163      */
3164     ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3165     if (ret < 0) {
3166         qemu_file_set_error(f, ret);
3167     }
3168 
3169 out:
3170     if (ret >= 0
3171         && migration_is_setup_or_active(migrate_get_current()->state)) {
3172         if (migrate_multifd() && migrate_multifd_flush_after_each_section()) {
3173             ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3174             if (ret < 0) {
3175                 return ret;
3176             }
3177         }
3178 
3179         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3180         qemu_fflush(f);
3181         ram_transferred_add(8);
3182 
3183         ret = qemu_file_get_error(f);
3184     }
3185     if (ret < 0) {
3186         return ret;
3187     }
3188 
3189     return done;
3190 }
3191 
3192 /**
3193  * ram_save_complete: function called to send the remaining amount of ram
3194  *
3195  * Returns zero to indicate success or negative on error
3196  *
3197  * Called with iothread lock
3198  *
3199  * @f: QEMUFile where to send the data
3200  * @opaque: RAMState pointer
3201  */
3202 static int ram_save_complete(QEMUFile *f, void *opaque)
3203 {
3204     RAMState **temp = opaque;
3205     RAMState *rs = *temp;
3206     int ret = 0;
3207 
3208     rs->last_stage = !migration_in_colo_state();
3209 
3210     WITH_RCU_READ_LOCK_GUARD() {
3211         if (!migration_in_postcopy()) {
3212             migration_bitmap_sync_precopy(rs, true);
3213         }
3214 
3215         ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3216         if (ret < 0) {
3217             qemu_file_set_error(f, ret);
3218         }
3219 
3220         /* try transferring iterative blocks of memory */
3221 
3222         /* flush all remaining blocks regardless of rate limiting */
3223         qemu_mutex_lock(&rs->bitmap_mutex);
3224         while (true) {
3225             int pages;
3226 
3227             pages = ram_find_and_save_block(rs);
3228             /* no more blocks to sent */
3229             if (pages == 0) {
3230                 break;
3231             }
3232             if (pages < 0) {
3233                 ret = pages;
3234                 break;
3235             }
3236         }
3237         qemu_mutex_unlock(&rs->bitmap_mutex);
3238 
3239         ram_flush_compressed_data(rs);
3240 
3241         int ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3242         if (ret < 0) {
3243             qemu_file_set_error(f, ret);
3244         }
3245     }
3246 
3247     if (ret < 0) {
3248         return ret;
3249     }
3250 
3251     ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3252     if (ret < 0) {
3253         return ret;
3254     }
3255 
3256     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
3257         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3258     }
3259     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3260     qemu_fflush(f);
3261 
3262     return 0;
3263 }
3264 
3265 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3266                                        uint64_t *can_postcopy)
3267 {
3268     RAMState **temp = opaque;
3269     RAMState *rs = *temp;
3270 
3271     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3272 
3273     if (migrate_postcopy_ram()) {
3274         /* We can do postcopy, and all the data is postcopiable */
3275         *can_postcopy += remaining_size;
3276     } else {
3277         *must_precopy += remaining_size;
3278     }
3279 }
3280 
3281 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3282                                     uint64_t *can_postcopy)
3283 {
3284     MigrationState *s = migrate_get_current();
3285     RAMState **temp = opaque;
3286     RAMState *rs = *temp;
3287 
3288     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3289 
3290     if (!migration_in_postcopy() && remaining_size < s->threshold_size) {
3291         qemu_mutex_lock_iothread();
3292         WITH_RCU_READ_LOCK_GUARD() {
3293             migration_bitmap_sync_precopy(rs, false);
3294         }
3295         qemu_mutex_unlock_iothread();
3296         remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3297     }
3298 
3299     if (migrate_postcopy_ram()) {
3300         /* We can do postcopy, and all the data is postcopiable */
3301         *can_postcopy += remaining_size;
3302     } else {
3303         *must_precopy += remaining_size;
3304     }
3305 }
3306 
3307 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3308 {
3309     unsigned int xh_len;
3310     int xh_flags;
3311     uint8_t *loaded_data;
3312 
3313     /* extract RLE header */
3314     xh_flags = qemu_get_byte(f);
3315     xh_len = qemu_get_be16(f);
3316 
3317     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3318         error_report("Failed to load XBZRLE page - wrong compression!");
3319         return -1;
3320     }
3321 
3322     if (xh_len > TARGET_PAGE_SIZE) {
3323         error_report("Failed to load XBZRLE page - len overflow!");
3324         return -1;
3325     }
3326     loaded_data = XBZRLE.decoded_buf;
3327     /* load data and decode */
3328     /* it can change loaded_data to point to an internal buffer */
3329     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3330 
3331     /* decode RLE */
3332     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3333                              TARGET_PAGE_SIZE) == -1) {
3334         error_report("Failed to load XBZRLE page - decode error!");
3335         return -1;
3336     }
3337 
3338     return 0;
3339 }
3340 
3341 /**
3342  * ram_block_from_stream: read a RAMBlock id from the migration stream
3343  *
3344  * Must be called from within a rcu critical section.
3345  *
3346  * Returns a pointer from within the RCU-protected ram_list.
3347  *
3348  * @mis: the migration incoming state pointer
3349  * @f: QEMUFile where to read the data from
3350  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3351  * @channel: the channel we're using
3352  */
3353 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3354                                               QEMUFile *f, int flags,
3355                                               int channel)
3356 {
3357     RAMBlock *block = mis->last_recv_block[channel];
3358     char id[256];
3359     uint8_t len;
3360 
3361     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3362         if (!block) {
3363             error_report("Ack, bad migration stream!");
3364             return NULL;
3365         }
3366         return block;
3367     }
3368 
3369     len = qemu_get_byte(f);
3370     qemu_get_buffer(f, (uint8_t *)id, len);
3371     id[len] = 0;
3372 
3373     block = qemu_ram_block_by_name(id);
3374     if (!block) {
3375         error_report("Can't find block %s", id);
3376         return NULL;
3377     }
3378 
3379     if (migrate_ram_is_ignored(block)) {
3380         error_report("block %s should not be migrated !", id);
3381         return NULL;
3382     }
3383 
3384     mis->last_recv_block[channel] = block;
3385 
3386     return block;
3387 }
3388 
3389 static inline void *host_from_ram_block_offset(RAMBlock *block,
3390                                                ram_addr_t offset)
3391 {
3392     if (!offset_in_ramblock(block, offset)) {
3393         return NULL;
3394     }
3395 
3396     return block->host + offset;
3397 }
3398 
3399 static void *host_page_from_ram_block_offset(RAMBlock *block,
3400                                              ram_addr_t offset)
3401 {
3402     /* Note: Explicitly no check against offset_in_ramblock(). */
3403     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3404                                    block->page_size);
3405 }
3406 
3407 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3408                                                          ram_addr_t offset)
3409 {
3410     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3411 }
3412 
3413 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3414 {
3415     qemu_mutex_lock(&ram_state->bitmap_mutex);
3416     for (int i = 0; i < pages; i++) {
3417         ram_addr_t offset = normal[i];
3418         ram_state->migration_dirty_pages += !test_and_set_bit(
3419                                                 offset >> TARGET_PAGE_BITS,
3420                                                 block->bmap);
3421     }
3422     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3423 }
3424 
3425 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3426                              ram_addr_t offset, bool record_bitmap)
3427 {
3428     if (!offset_in_ramblock(block, offset)) {
3429         return NULL;
3430     }
3431     if (!block->colo_cache) {
3432         error_report("%s: colo_cache is NULL in block :%s",
3433                      __func__, block->idstr);
3434         return NULL;
3435     }
3436 
3437     /*
3438     * During colo checkpoint, we need bitmap of these migrated pages.
3439     * It help us to decide which pages in ram cache should be flushed
3440     * into VM's RAM later.
3441     */
3442     if (record_bitmap) {
3443         colo_record_bitmap(block, &offset, 1);
3444     }
3445     return block->colo_cache + offset;
3446 }
3447 
3448 /**
3449  * ram_handle_compressed: handle the zero page case
3450  *
3451  * If a page (or a whole RDMA chunk) has been
3452  * determined to be zero, then zap it.
3453  *
3454  * @host: host address for the zero page
3455  * @ch: what the page is filled from.  We only support zero
3456  * @size: size of the zero page
3457  */
3458 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3459 {
3460     if (ch != 0 || !buffer_is_zero(host, size)) {
3461         memset(host, ch, size);
3462     }
3463 }
3464 
3465 static void colo_init_ram_state(void)
3466 {
3467     ram_state_init(&ram_state);
3468 }
3469 
3470 /*
3471  * colo cache: this is for secondary VM, we cache the whole
3472  * memory of the secondary VM, it is need to hold the global lock
3473  * to call this helper.
3474  */
3475 int colo_init_ram_cache(void)
3476 {
3477     RAMBlock *block;
3478 
3479     WITH_RCU_READ_LOCK_GUARD() {
3480         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3481             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3482                                                     NULL, false, false);
3483             if (!block->colo_cache) {
3484                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3485                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3486                              block->used_length);
3487                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3488                     if (block->colo_cache) {
3489                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3490                         block->colo_cache = NULL;
3491                     }
3492                 }
3493                 return -errno;
3494             }
3495             if (!machine_dump_guest_core(current_machine)) {
3496                 qemu_madvise(block->colo_cache, block->used_length,
3497                              QEMU_MADV_DONTDUMP);
3498             }
3499         }
3500     }
3501 
3502     /*
3503     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3504     * with to decide which page in cache should be flushed into SVM's RAM. Here
3505     * we use the same name 'ram_bitmap' as for migration.
3506     */
3507     if (ram_bytes_total()) {
3508         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3509             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3510             block->bmap = bitmap_new(pages);
3511         }
3512     }
3513 
3514     colo_init_ram_state();
3515     return 0;
3516 }
3517 
3518 /* TODO: duplicated with ram_init_bitmaps */
3519 void colo_incoming_start_dirty_log(void)
3520 {
3521     RAMBlock *block = NULL;
3522     /* For memory_global_dirty_log_start below. */
3523     qemu_mutex_lock_iothread();
3524     qemu_mutex_lock_ramlist();
3525 
3526     memory_global_dirty_log_sync(false);
3527     WITH_RCU_READ_LOCK_GUARD() {
3528         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3529             ramblock_sync_dirty_bitmap(ram_state, block);
3530             /* Discard this dirty bitmap record */
3531             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3532         }
3533         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3534     }
3535     ram_state->migration_dirty_pages = 0;
3536     qemu_mutex_unlock_ramlist();
3537     qemu_mutex_unlock_iothread();
3538 }
3539 
3540 /* It is need to hold the global lock to call this helper */
3541 void colo_release_ram_cache(void)
3542 {
3543     RAMBlock *block;
3544 
3545     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3546     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3547         g_free(block->bmap);
3548         block->bmap = NULL;
3549     }
3550 
3551     WITH_RCU_READ_LOCK_GUARD() {
3552         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3553             if (block->colo_cache) {
3554                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3555                 block->colo_cache = NULL;
3556             }
3557         }
3558     }
3559     ram_state_cleanup(&ram_state);
3560 }
3561 
3562 /**
3563  * ram_load_setup: Setup RAM for migration incoming side
3564  *
3565  * Returns zero to indicate success and negative for error
3566  *
3567  * @f: QEMUFile where to receive the data
3568  * @opaque: RAMState pointer
3569  */
3570 static int ram_load_setup(QEMUFile *f, void *opaque)
3571 {
3572     xbzrle_load_setup();
3573     ramblock_recv_map_init();
3574 
3575     return 0;
3576 }
3577 
3578 static int ram_load_cleanup(void *opaque)
3579 {
3580     RAMBlock *rb;
3581 
3582     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3583         qemu_ram_block_writeback(rb);
3584     }
3585 
3586     xbzrle_load_cleanup();
3587 
3588     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3589         g_free(rb->receivedmap);
3590         rb->receivedmap = NULL;
3591     }
3592 
3593     return 0;
3594 }
3595 
3596 /**
3597  * ram_postcopy_incoming_init: allocate postcopy data structures
3598  *
3599  * Returns 0 for success and negative if there was one error
3600  *
3601  * @mis: current migration incoming state
3602  *
3603  * Allocate data structures etc needed by incoming migration with
3604  * postcopy-ram. postcopy-ram's similarly names
3605  * postcopy_ram_incoming_init does the work.
3606  */
3607 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3608 {
3609     return postcopy_ram_incoming_init(mis);
3610 }
3611 
3612 /**
3613  * ram_load_postcopy: load a page in postcopy case
3614  *
3615  * Returns 0 for success or -errno in case of error
3616  *
3617  * Called in postcopy mode by ram_load().
3618  * rcu_read_lock is taken prior to this being called.
3619  *
3620  * @f: QEMUFile where to send the data
3621  * @channel: the channel to use for loading
3622  */
3623 int ram_load_postcopy(QEMUFile *f, int channel)
3624 {
3625     int flags = 0, ret = 0;
3626     bool place_needed = false;
3627     bool matches_target_page_size = false;
3628     MigrationIncomingState *mis = migration_incoming_get_current();
3629     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3630 
3631     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3632         ram_addr_t addr;
3633         void *page_buffer = NULL;
3634         void *place_source = NULL;
3635         RAMBlock *block = NULL;
3636         uint8_t ch;
3637         int len;
3638 
3639         addr = qemu_get_be64(f);
3640 
3641         /*
3642          * If qemu file error, we should stop here, and then "addr"
3643          * may be invalid
3644          */
3645         ret = qemu_file_get_error(f);
3646         if (ret) {
3647             break;
3648         }
3649 
3650         flags = addr & ~TARGET_PAGE_MASK;
3651         addr &= TARGET_PAGE_MASK;
3652 
3653         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3654         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3655                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3656             block = ram_block_from_stream(mis, f, flags, channel);
3657             if (!block) {
3658                 ret = -EINVAL;
3659                 break;
3660             }
3661 
3662             /*
3663              * Relying on used_length is racy and can result in false positives.
3664              * We might place pages beyond used_length in case RAM was shrunk
3665              * while in postcopy, which is fine - trying to place via
3666              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3667              */
3668             if (!block->host || addr >= block->postcopy_length) {
3669                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3670                 ret = -EINVAL;
3671                 break;
3672             }
3673             tmp_page->target_pages++;
3674             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3675             /*
3676              * Postcopy requires that we place whole host pages atomically;
3677              * these may be huge pages for RAMBlocks that are backed by
3678              * hugetlbfs.
3679              * To make it atomic, the data is read into a temporary page
3680              * that's moved into place later.
3681              * The migration protocol uses,  possibly smaller, target-pages
3682              * however the source ensures it always sends all the components
3683              * of a host page in one chunk.
3684              */
3685             page_buffer = tmp_page->tmp_huge_page +
3686                           host_page_offset_from_ram_block_offset(block, addr);
3687             /* If all TP are zero then we can optimise the place */
3688             if (tmp_page->target_pages == 1) {
3689                 tmp_page->host_addr =
3690                     host_page_from_ram_block_offset(block, addr);
3691             } else if (tmp_page->host_addr !=
3692                        host_page_from_ram_block_offset(block, addr)) {
3693                 /* not the 1st TP within the HP */
3694                 error_report("Non-same host page detected on channel %d: "
3695                              "Target host page %p, received host page %p "
3696                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3697                              channel, tmp_page->host_addr,
3698                              host_page_from_ram_block_offset(block, addr),
3699                              block->idstr, addr, tmp_page->target_pages);
3700                 ret = -EINVAL;
3701                 break;
3702             }
3703 
3704             /*
3705              * If it's the last part of a host page then we place the host
3706              * page
3707              */
3708             if (tmp_page->target_pages ==
3709                 (block->page_size / TARGET_PAGE_SIZE)) {
3710                 place_needed = true;
3711             }
3712             place_source = tmp_page->tmp_huge_page;
3713         }
3714 
3715         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3716         case RAM_SAVE_FLAG_ZERO:
3717             ch = qemu_get_byte(f);
3718             /*
3719              * Can skip to set page_buffer when
3720              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3721              */
3722             if (ch || !matches_target_page_size) {
3723                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3724             }
3725             if (ch) {
3726                 tmp_page->all_zero = false;
3727             }
3728             break;
3729 
3730         case RAM_SAVE_FLAG_PAGE:
3731             tmp_page->all_zero = false;
3732             if (!matches_target_page_size) {
3733                 /* For huge pages, we always use temporary buffer */
3734                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3735             } else {
3736                 /*
3737                  * For small pages that matches target page size, we
3738                  * avoid the qemu_file copy.  Instead we directly use
3739                  * the buffer of QEMUFile to place the page.  Note: we
3740                  * cannot do any QEMUFile operation before using that
3741                  * buffer to make sure the buffer is valid when
3742                  * placing the page.
3743                  */
3744                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3745                                          TARGET_PAGE_SIZE);
3746             }
3747             break;
3748         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3749             tmp_page->all_zero = false;
3750             len = qemu_get_be32(f);
3751             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3752                 error_report("Invalid compressed data length: %d", len);
3753                 ret = -EINVAL;
3754                 break;
3755             }
3756             decompress_data_with_multi_threads(f, page_buffer, len);
3757             break;
3758         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3759             multifd_recv_sync_main();
3760             break;
3761         case RAM_SAVE_FLAG_EOS:
3762             /* normal exit */
3763             if (migrate_multifd() &&
3764                 migrate_multifd_flush_after_each_section()) {
3765                 multifd_recv_sync_main();
3766             }
3767             break;
3768         default:
3769             error_report("Unknown combination of migration flags: 0x%x"
3770                          " (postcopy mode)", flags);
3771             ret = -EINVAL;
3772             break;
3773         }
3774 
3775         /* Got the whole host page, wait for decompress before placing. */
3776         if (place_needed) {
3777             ret |= wait_for_decompress_done();
3778         }
3779 
3780         /* Detect for any possible file errors */
3781         if (!ret && qemu_file_get_error(f)) {
3782             ret = qemu_file_get_error(f);
3783         }
3784 
3785         if (!ret && place_needed) {
3786             if (tmp_page->all_zero) {
3787                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3788             } else {
3789                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3790                                           place_source, block);
3791             }
3792             place_needed = false;
3793             postcopy_temp_page_reset(tmp_page);
3794         }
3795     }
3796 
3797     return ret;
3798 }
3799 
3800 static bool postcopy_is_running(void)
3801 {
3802     PostcopyState ps = postcopy_state_get();
3803     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3804 }
3805 
3806 /*
3807  * Flush content of RAM cache into SVM's memory.
3808  * Only flush the pages that be dirtied by PVM or SVM or both.
3809  */
3810 void colo_flush_ram_cache(void)
3811 {
3812     RAMBlock *block = NULL;
3813     void *dst_host;
3814     void *src_host;
3815     unsigned long offset = 0;
3816 
3817     memory_global_dirty_log_sync(false);
3818     qemu_mutex_lock(&ram_state->bitmap_mutex);
3819     WITH_RCU_READ_LOCK_GUARD() {
3820         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3821             ramblock_sync_dirty_bitmap(ram_state, block);
3822         }
3823     }
3824 
3825     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3826     WITH_RCU_READ_LOCK_GUARD() {
3827         block = QLIST_FIRST_RCU(&ram_list.blocks);
3828 
3829         while (block) {
3830             unsigned long num = 0;
3831 
3832             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3833             if (!offset_in_ramblock(block,
3834                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3835                 offset = 0;
3836                 num = 0;
3837                 block = QLIST_NEXT_RCU(block, next);
3838             } else {
3839                 unsigned long i = 0;
3840 
3841                 for (i = 0; i < num; i++) {
3842                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3843                 }
3844                 dst_host = block->host
3845                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3846                 src_host = block->colo_cache
3847                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3848                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3849                 offset += num;
3850             }
3851         }
3852     }
3853     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3854     trace_colo_flush_ram_cache_end();
3855 }
3856 
3857 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
3858 {
3859     int ret = 0;
3860     /* ADVISE is earlier, it shows the source has the postcopy capability on */
3861     bool postcopy_advised = migration_incoming_postcopy_advised();
3862 
3863     assert(block);
3864 
3865     if (!qemu_ram_is_migratable(block)) {
3866         error_report("block %s should not be migrated !", block->idstr);
3867         return -EINVAL;
3868     }
3869 
3870     if (length != block->used_length) {
3871         Error *local_err = NULL;
3872 
3873         ret = qemu_ram_resize(block, length, &local_err);
3874         if (local_err) {
3875             error_report_err(local_err);
3876         }
3877     }
3878     /* For postcopy we need to check hugepage sizes match */
3879     if (postcopy_advised && migrate_postcopy_ram() &&
3880         block->page_size != qemu_host_page_size) {
3881         uint64_t remote_page_size = qemu_get_be64(f);
3882         if (remote_page_size != block->page_size) {
3883             error_report("Mismatched RAM page size %s "
3884                          "(local) %zd != %" PRId64, block->idstr,
3885                          block->page_size, remote_page_size);
3886             ret = -EINVAL;
3887         }
3888     }
3889     if (migrate_ignore_shared()) {
3890         hwaddr addr = qemu_get_be64(f);
3891         if (migrate_ram_is_ignored(block) &&
3892             block->mr->addr != addr) {
3893             error_report("Mismatched GPAs for block %s "
3894                          "%" PRId64 "!= %" PRId64, block->idstr,
3895                          (uint64_t)addr, (uint64_t)block->mr->addr);
3896             ret = -EINVAL;
3897         }
3898     }
3899     ret = rdma_block_notification_handle(f, block->idstr);
3900     if (ret < 0) {
3901         qemu_file_set_error(f, ret);
3902     }
3903 
3904     return ret;
3905 }
3906 
3907 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
3908 {
3909     int ret = 0;
3910 
3911     /* Synchronize RAM block list */
3912     while (!ret && total_ram_bytes) {
3913         RAMBlock *block;
3914         char id[256];
3915         ram_addr_t length;
3916         int len = qemu_get_byte(f);
3917 
3918         qemu_get_buffer(f, (uint8_t *)id, len);
3919         id[len] = 0;
3920         length = qemu_get_be64(f);
3921 
3922         block = qemu_ram_block_by_name(id);
3923         if (block) {
3924             ret = parse_ramblock(f, block, length);
3925         } else {
3926             error_report("Unknown ramblock \"%s\", cannot accept "
3927                          "migration", id);
3928             ret = -EINVAL;
3929         }
3930         total_ram_bytes -= length;
3931     }
3932 
3933     return ret;
3934 }
3935 
3936 /**
3937  * ram_load_precopy: load pages in precopy case
3938  *
3939  * Returns 0 for success or -errno in case of error
3940  *
3941  * Called in precopy mode by ram_load().
3942  * rcu_read_lock is taken prior to this being called.
3943  *
3944  * @f: QEMUFile where to send the data
3945  */
3946 static int ram_load_precopy(QEMUFile *f)
3947 {
3948     MigrationIncomingState *mis = migration_incoming_get_current();
3949     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3950 
3951     if (!migrate_compress()) {
3952         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3953     }
3954 
3955     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3956         ram_addr_t addr;
3957         void *host = NULL, *host_bak = NULL;
3958         uint8_t ch;
3959 
3960         /*
3961          * Yield periodically to let main loop run, but an iteration of
3962          * the main loop is expensive, so do it each some iterations
3963          */
3964         if ((i & 32767) == 0 && qemu_in_coroutine()) {
3965             aio_co_schedule(qemu_get_current_aio_context(),
3966                             qemu_coroutine_self());
3967             qemu_coroutine_yield();
3968         }
3969         i++;
3970 
3971         addr = qemu_get_be64(f);
3972         flags = addr & ~TARGET_PAGE_MASK;
3973         addr &= TARGET_PAGE_MASK;
3974 
3975         if (flags & invalid_flags) {
3976             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3977                 error_report("Received an unexpected compressed page");
3978             }
3979 
3980             ret = -EINVAL;
3981             break;
3982         }
3983 
3984         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3985                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3986             RAMBlock *block = ram_block_from_stream(mis, f, flags,
3987                                                     RAM_CHANNEL_PRECOPY);
3988 
3989             host = host_from_ram_block_offset(block, addr);
3990             /*
3991              * After going into COLO stage, we should not load the page
3992              * into SVM's memory directly, we put them into colo_cache firstly.
3993              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3994              * Previously, we copied all these memory in preparing stage of COLO
3995              * while we need to stop VM, which is a time-consuming process.
3996              * Here we optimize it by a trick, back-up every page while in
3997              * migration process while COLO is enabled, though it affects the
3998              * speed of the migration, but it obviously reduce the downtime of
3999              * back-up all SVM'S memory in COLO preparing stage.
4000              */
4001             if (migration_incoming_colo_enabled()) {
4002                 if (migration_incoming_in_colo_state()) {
4003                     /* In COLO stage, put all pages into cache temporarily */
4004                     host = colo_cache_from_block_offset(block, addr, true);
4005                 } else {
4006                    /*
4007                     * In migration stage but before COLO stage,
4008                     * Put all pages into both cache and SVM's memory.
4009                     */
4010                     host_bak = colo_cache_from_block_offset(block, addr, false);
4011                 }
4012             }
4013             if (!host) {
4014                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4015                 ret = -EINVAL;
4016                 break;
4017             }
4018             if (!migration_incoming_in_colo_state()) {
4019                 ramblock_recv_bitmap_set(block, host);
4020             }
4021 
4022             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4023         }
4024 
4025         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4026         case RAM_SAVE_FLAG_MEM_SIZE:
4027             ret = parse_ramblocks(f, addr);
4028             break;
4029 
4030         case RAM_SAVE_FLAG_ZERO:
4031             ch = qemu_get_byte(f);
4032             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4033             break;
4034 
4035         case RAM_SAVE_FLAG_PAGE:
4036             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4037             break;
4038 
4039         case RAM_SAVE_FLAG_COMPRESS_PAGE:
4040             len = qemu_get_be32(f);
4041             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4042                 error_report("Invalid compressed data length: %d", len);
4043                 ret = -EINVAL;
4044                 break;
4045             }
4046             decompress_data_with_multi_threads(f, host, len);
4047             break;
4048 
4049         case RAM_SAVE_FLAG_XBZRLE:
4050             if (load_xbzrle(f, addr, host) < 0) {
4051                 error_report("Failed to decompress XBZRLE page at "
4052                              RAM_ADDR_FMT, addr);
4053                 ret = -EINVAL;
4054                 break;
4055             }
4056             break;
4057         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4058             multifd_recv_sync_main();
4059             break;
4060         case RAM_SAVE_FLAG_EOS:
4061             /* normal exit */
4062             if (migrate_multifd() &&
4063                 migrate_multifd_flush_after_each_section()) {
4064                 multifd_recv_sync_main();
4065             }
4066             break;
4067         case RAM_SAVE_FLAG_HOOK:
4068             ret = rdma_registration_handle(f);
4069             if (ret < 0) {
4070                 qemu_file_set_error(f, ret);
4071             }
4072             break;
4073         default:
4074             error_report("Unknown combination of migration flags: 0x%x", flags);
4075             ret = -EINVAL;
4076         }
4077         if (!ret) {
4078             ret = qemu_file_get_error(f);
4079         }
4080         if (!ret && host_bak) {
4081             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4082         }
4083     }
4084 
4085     ret |= wait_for_decompress_done();
4086     return ret;
4087 }
4088 
4089 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4090 {
4091     int ret = 0;
4092     static uint64_t seq_iter;
4093     /*
4094      * If system is running in postcopy mode, page inserts to host memory must
4095      * be atomic
4096      */
4097     bool postcopy_running = postcopy_is_running();
4098 
4099     seq_iter++;
4100 
4101     if (version_id != 4) {
4102         return -EINVAL;
4103     }
4104 
4105     /*
4106      * This RCU critical section can be very long running.
4107      * When RCU reclaims in the code start to become numerous,
4108      * it will be necessary to reduce the granularity of this
4109      * critical section.
4110      */
4111     WITH_RCU_READ_LOCK_GUARD() {
4112         if (postcopy_running) {
4113             /*
4114              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4115              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4116              * service fast page faults.
4117              */
4118             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4119         } else {
4120             ret = ram_load_precopy(f);
4121         }
4122     }
4123     trace_ram_load_complete(ret, seq_iter);
4124 
4125     return ret;
4126 }
4127 
4128 static bool ram_has_postcopy(void *opaque)
4129 {
4130     RAMBlock *rb;
4131     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4132         if (ramblock_is_pmem(rb)) {
4133             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4134                          "is not supported now!", rb->idstr, rb->host);
4135             return false;
4136         }
4137     }
4138 
4139     return migrate_postcopy_ram();
4140 }
4141 
4142 /* Sync all the dirty bitmap with destination VM.  */
4143 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4144 {
4145     RAMBlock *block;
4146     QEMUFile *file = s->to_dst_file;
4147 
4148     trace_ram_dirty_bitmap_sync_start();
4149 
4150     qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4151     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4152         qemu_savevm_send_recv_bitmap(file, block->idstr);
4153         trace_ram_dirty_bitmap_request(block->idstr);
4154         qatomic_inc(&rs->postcopy_bmap_sync_requested);
4155     }
4156 
4157     trace_ram_dirty_bitmap_sync_wait();
4158 
4159     /* Wait until all the ramblocks' dirty bitmap synced */
4160     while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4161         migration_rp_wait(s);
4162     }
4163 
4164     trace_ram_dirty_bitmap_sync_complete();
4165 
4166     return 0;
4167 }
4168 
4169 /*
4170  * Read the received bitmap, revert it as the initial dirty bitmap.
4171  * This is only used when the postcopy migration is paused but wants
4172  * to resume from a middle point.
4173  */
4174 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4175 {
4176     int ret = -EINVAL;
4177     /* from_dst_file is always valid because we're within rp_thread */
4178     QEMUFile *file = s->rp_state.from_dst_file;
4179     g_autofree unsigned long *le_bitmap = NULL;
4180     unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4181     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4182     uint64_t size, end_mark;
4183     RAMState *rs = ram_state;
4184 
4185     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4186 
4187     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4188         error_report("%s: incorrect state %s", __func__,
4189                      MigrationStatus_str(s->state));
4190         return -EINVAL;
4191     }
4192 
4193     /*
4194      * Note: see comments in ramblock_recv_bitmap_send() on why we
4195      * need the endianness conversion, and the paddings.
4196      */
4197     local_size = ROUND_UP(local_size, 8);
4198 
4199     /* Add paddings */
4200     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4201 
4202     size = qemu_get_be64(file);
4203 
4204     /* The size of the bitmap should match with our ramblock */
4205     if (size != local_size) {
4206         error_report("%s: ramblock '%s' bitmap size mismatch "
4207                      "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4208                      block->idstr, size, local_size);
4209         return -EINVAL;
4210     }
4211 
4212     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4213     end_mark = qemu_get_be64(file);
4214 
4215     ret = qemu_file_get_error(file);
4216     if (ret || size != local_size) {
4217         error_report("%s: read bitmap failed for ramblock '%s': %d"
4218                      " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4219                      __func__, block->idstr, ret, local_size, size);
4220         return -EIO;
4221     }
4222 
4223     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4224         error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4225                      __func__, block->idstr, end_mark);
4226         return -EINVAL;
4227     }
4228 
4229     /*
4230      * Endianness conversion. We are during postcopy (though paused).
4231      * The dirty bitmap won't change. We can directly modify it.
4232      */
4233     bitmap_from_le(block->bmap, le_bitmap, nbits);
4234 
4235     /*
4236      * What we received is "received bitmap". Revert it as the initial
4237      * dirty bitmap for this ramblock.
4238      */
4239     bitmap_complement(block->bmap, block->bmap, nbits);
4240 
4241     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4242     ramblock_dirty_bitmap_clear_discarded_pages(block);
4243 
4244     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4245     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4246 
4247     qatomic_dec(&rs->postcopy_bmap_sync_requested);
4248 
4249     /*
4250      * We succeeded to sync bitmap for current ramblock. Always kick the
4251      * migration thread to check whether all requested bitmaps are
4252      * reloaded.  NOTE: it's racy to only kick when requested==0, because
4253      * we don't know whether the migration thread may still be increasing
4254      * it.
4255      */
4256     migration_rp_kick(s);
4257 
4258     return 0;
4259 }
4260 
4261 static int ram_resume_prepare(MigrationState *s, void *opaque)
4262 {
4263     RAMState *rs = *(RAMState **)opaque;
4264     int ret;
4265 
4266     ret = ram_dirty_bitmap_sync_all(s, rs);
4267     if (ret) {
4268         return ret;
4269     }
4270 
4271     ram_state_resume_prepare(rs, s->to_dst_file);
4272 
4273     return 0;
4274 }
4275 
4276 void postcopy_preempt_shutdown_file(MigrationState *s)
4277 {
4278     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4279     qemu_fflush(s->postcopy_qemufile_src);
4280 }
4281 
4282 static SaveVMHandlers savevm_ram_handlers = {
4283     .save_setup = ram_save_setup,
4284     .save_live_iterate = ram_save_iterate,
4285     .save_live_complete_postcopy = ram_save_complete,
4286     .save_live_complete_precopy = ram_save_complete,
4287     .has_postcopy = ram_has_postcopy,
4288     .state_pending_exact = ram_state_pending_exact,
4289     .state_pending_estimate = ram_state_pending_estimate,
4290     .load_state = ram_load,
4291     .save_cleanup = ram_save_cleanup,
4292     .load_setup = ram_load_setup,
4293     .load_cleanup = ram_load_cleanup,
4294     .resume_prepare = ram_resume_prepare,
4295 };
4296 
4297 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4298                                       size_t old_size, size_t new_size)
4299 {
4300     PostcopyState ps = postcopy_state_get();
4301     ram_addr_t offset;
4302     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4303     Error *err = NULL;
4304 
4305     if (!rb) {
4306         error_report("RAM block not found");
4307         return;
4308     }
4309 
4310     if (migrate_ram_is_ignored(rb)) {
4311         return;
4312     }
4313 
4314     if (!migration_is_idle()) {
4315         /*
4316          * Precopy code on the source cannot deal with the size of RAM blocks
4317          * changing at random points in time - especially after sending the
4318          * RAM block sizes in the migration stream, they must no longer change.
4319          * Abort and indicate a proper reason.
4320          */
4321         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4322         migration_cancel(err);
4323         error_free(err);
4324     }
4325 
4326     switch (ps) {
4327     case POSTCOPY_INCOMING_ADVISE:
4328         /*
4329          * Update what ram_postcopy_incoming_init()->init_range() does at the
4330          * time postcopy was advised. Syncing RAM blocks with the source will
4331          * result in RAM resizes.
4332          */
4333         if (old_size < new_size) {
4334             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4335                 error_report("RAM block '%s' discard of resized RAM failed",
4336                              rb->idstr);
4337             }
4338         }
4339         rb->postcopy_length = new_size;
4340         break;
4341     case POSTCOPY_INCOMING_NONE:
4342     case POSTCOPY_INCOMING_RUNNING:
4343     case POSTCOPY_INCOMING_END:
4344         /*
4345          * Once our guest is running, postcopy does no longer care about
4346          * resizes. When growing, the new memory was not available on the
4347          * source, no handler needed.
4348          */
4349         break;
4350     default:
4351         error_report("RAM block '%s' resized during postcopy state: %d",
4352                      rb->idstr, ps);
4353         exit(-1);
4354     }
4355 }
4356 
4357 static RAMBlockNotifier ram_mig_ram_notifier = {
4358     .ram_block_resized = ram_mig_ram_block_resized,
4359 };
4360 
4361 void ram_mig_init(void)
4362 {
4363     qemu_mutex_init(&XBZRLE.lock);
4364     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4365     ram_block_notifier_add(&ram_mig_ram_notifier);
4366 }
4367