xref: /qemu/migration/ram.c (revision da34e65c)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 #include "qemu/osdep.h"
29 #include <zlib.h>
30 #include "qapi-event.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/timer.h"
34 #include "qemu/main-loop.h"
35 #include "migration/migration.h"
36 #include "migration/postcopy-ram.h"
37 #include "exec/address-spaces.h"
38 #include "migration/page_cache.h"
39 #include "qemu/error-report.h"
40 #include "trace.h"
41 #include "exec/ram_addr.h"
42 #include "qemu/rcu_queue.h"
43 
44 #ifdef DEBUG_MIGRATION_RAM
45 #define DPRINTF(fmt, ...) \
46     do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0)
47 #else
48 #define DPRINTF(fmt, ...) \
49     do { } while (0)
50 #endif
51 
52 static int dirty_rate_high_cnt;
53 
54 static uint64_t bitmap_sync_count;
55 
56 /***********************************************************/
57 /* ram save/restore */
58 
59 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
60 #define RAM_SAVE_FLAG_COMPRESS 0x02
61 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
62 #define RAM_SAVE_FLAG_PAGE     0x08
63 #define RAM_SAVE_FLAG_EOS      0x10
64 #define RAM_SAVE_FLAG_CONTINUE 0x20
65 #define RAM_SAVE_FLAG_XBZRLE   0x40
66 /* 0x80 is reserved in migration.h start with 0x100 next */
67 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
68 
69 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
70 
71 static inline bool is_zero_range(uint8_t *p, uint64_t size)
72 {
73     return buffer_find_nonzero_offset(p, size) == size;
74 }
75 
76 /* struct contains XBZRLE cache and a static page
77    used by the compression */
78 static struct {
79     /* buffer used for XBZRLE encoding */
80     uint8_t *encoded_buf;
81     /* buffer for storing page content */
82     uint8_t *current_buf;
83     /* Cache for XBZRLE, Protected by lock. */
84     PageCache *cache;
85     QemuMutex lock;
86 } XBZRLE;
87 
88 /* buffer used for XBZRLE decoding */
89 static uint8_t *xbzrle_decoded_buf;
90 
91 static void XBZRLE_cache_lock(void)
92 {
93     if (migrate_use_xbzrle())
94         qemu_mutex_lock(&XBZRLE.lock);
95 }
96 
97 static void XBZRLE_cache_unlock(void)
98 {
99     if (migrate_use_xbzrle())
100         qemu_mutex_unlock(&XBZRLE.lock);
101 }
102 
103 /*
104  * called from qmp_migrate_set_cache_size in main thread, possibly while
105  * a migration is in progress.
106  * A running migration maybe using the cache and might finish during this
107  * call, hence changes to the cache are protected by XBZRLE.lock().
108  */
109 int64_t xbzrle_cache_resize(int64_t new_size)
110 {
111     PageCache *new_cache;
112     int64_t ret;
113 
114     if (new_size < TARGET_PAGE_SIZE) {
115         return -1;
116     }
117 
118     XBZRLE_cache_lock();
119 
120     if (XBZRLE.cache != NULL) {
121         if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
122             goto out_new_size;
123         }
124         new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
125                                         TARGET_PAGE_SIZE);
126         if (!new_cache) {
127             error_report("Error creating cache");
128             ret = -1;
129             goto out;
130         }
131 
132         cache_fini(XBZRLE.cache);
133         XBZRLE.cache = new_cache;
134     }
135 
136 out_new_size:
137     ret = pow2floor(new_size);
138 out:
139     XBZRLE_cache_unlock();
140     return ret;
141 }
142 
143 /* accounting for migration statistics */
144 typedef struct AccountingInfo {
145     uint64_t dup_pages;
146     uint64_t skipped_pages;
147     uint64_t norm_pages;
148     uint64_t iterations;
149     uint64_t xbzrle_bytes;
150     uint64_t xbzrle_pages;
151     uint64_t xbzrle_cache_miss;
152     double xbzrle_cache_miss_rate;
153     uint64_t xbzrle_overflows;
154 } AccountingInfo;
155 
156 static AccountingInfo acct_info;
157 
158 static void acct_clear(void)
159 {
160     memset(&acct_info, 0, sizeof(acct_info));
161 }
162 
163 uint64_t dup_mig_bytes_transferred(void)
164 {
165     return acct_info.dup_pages * TARGET_PAGE_SIZE;
166 }
167 
168 uint64_t dup_mig_pages_transferred(void)
169 {
170     return acct_info.dup_pages;
171 }
172 
173 uint64_t skipped_mig_bytes_transferred(void)
174 {
175     return acct_info.skipped_pages * TARGET_PAGE_SIZE;
176 }
177 
178 uint64_t skipped_mig_pages_transferred(void)
179 {
180     return acct_info.skipped_pages;
181 }
182 
183 uint64_t norm_mig_bytes_transferred(void)
184 {
185     return acct_info.norm_pages * TARGET_PAGE_SIZE;
186 }
187 
188 uint64_t norm_mig_pages_transferred(void)
189 {
190     return acct_info.norm_pages;
191 }
192 
193 uint64_t xbzrle_mig_bytes_transferred(void)
194 {
195     return acct_info.xbzrle_bytes;
196 }
197 
198 uint64_t xbzrle_mig_pages_transferred(void)
199 {
200     return acct_info.xbzrle_pages;
201 }
202 
203 uint64_t xbzrle_mig_pages_cache_miss(void)
204 {
205     return acct_info.xbzrle_cache_miss;
206 }
207 
208 double xbzrle_mig_cache_miss_rate(void)
209 {
210     return acct_info.xbzrle_cache_miss_rate;
211 }
212 
213 uint64_t xbzrle_mig_pages_overflow(void)
214 {
215     return acct_info.xbzrle_overflows;
216 }
217 
218 /* This is the last block that we have visited serching for dirty pages
219  */
220 static RAMBlock *last_seen_block;
221 /* This is the last block from where we have sent data */
222 static RAMBlock *last_sent_block;
223 static ram_addr_t last_offset;
224 static QemuMutex migration_bitmap_mutex;
225 static uint64_t migration_dirty_pages;
226 static uint32_t last_version;
227 static bool ram_bulk_stage;
228 
229 /* used by the search for pages to send */
230 struct PageSearchStatus {
231     /* Current block being searched */
232     RAMBlock    *block;
233     /* Current offset to search from */
234     ram_addr_t   offset;
235     /* Set once we wrap around */
236     bool         complete_round;
237 };
238 typedef struct PageSearchStatus PageSearchStatus;
239 
240 static struct BitmapRcu {
241     struct rcu_head rcu;
242     /* Main migration bitmap */
243     unsigned long *bmap;
244     /* bitmap of pages that haven't been sent even once
245      * only maintained and used in postcopy at the moment
246      * where it's used to send the dirtymap at the start
247      * of the postcopy phase
248      */
249     unsigned long *unsentmap;
250 } *migration_bitmap_rcu;
251 
252 struct CompressParam {
253     bool start;
254     bool done;
255     QEMUFile *file;
256     QemuMutex mutex;
257     QemuCond cond;
258     RAMBlock *block;
259     ram_addr_t offset;
260 };
261 typedef struct CompressParam CompressParam;
262 
263 struct DecompressParam {
264     bool start;
265     QemuMutex mutex;
266     QemuCond cond;
267     void *des;
268     uint8_t *compbuf;
269     int len;
270 };
271 typedef struct DecompressParam DecompressParam;
272 
273 static CompressParam *comp_param;
274 static QemuThread *compress_threads;
275 /* comp_done_cond is used to wake up the migration thread when
276  * one of the compression threads has finished the compression.
277  * comp_done_lock is used to co-work with comp_done_cond.
278  */
279 static QemuMutex *comp_done_lock;
280 static QemuCond *comp_done_cond;
281 /* The empty QEMUFileOps will be used by file in CompressParam */
282 static const QEMUFileOps empty_ops = { };
283 
284 static bool compression_switch;
285 static bool quit_comp_thread;
286 static bool quit_decomp_thread;
287 static DecompressParam *decomp_param;
288 static QemuThread *decompress_threads;
289 
290 static int do_compress_ram_page(CompressParam *param);
291 
292 static void *do_data_compress(void *opaque)
293 {
294     CompressParam *param = opaque;
295 
296     while (!quit_comp_thread) {
297         qemu_mutex_lock(&param->mutex);
298         /* Re-check the quit_comp_thread in case of
299          * terminate_compression_threads is called just before
300          * qemu_mutex_lock(&param->mutex) and after
301          * while(!quit_comp_thread), re-check it here can make
302          * sure the compression thread terminate as expected.
303          */
304         while (!param->start && !quit_comp_thread) {
305             qemu_cond_wait(&param->cond, &param->mutex);
306         }
307         if (!quit_comp_thread) {
308             do_compress_ram_page(param);
309         }
310         param->start = false;
311         qemu_mutex_unlock(&param->mutex);
312 
313         qemu_mutex_lock(comp_done_lock);
314         param->done = true;
315         qemu_cond_signal(comp_done_cond);
316         qemu_mutex_unlock(comp_done_lock);
317     }
318 
319     return NULL;
320 }
321 
322 static inline void terminate_compression_threads(void)
323 {
324     int idx, thread_count;
325 
326     thread_count = migrate_compress_threads();
327     quit_comp_thread = true;
328     for (idx = 0; idx < thread_count; idx++) {
329         qemu_mutex_lock(&comp_param[idx].mutex);
330         qemu_cond_signal(&comp_param[idx].cond);
331         qemu_mutex_unlock(&comp_param[idx].mutex);
332     }
333 }
334 
335 void migrate_compress_threads_join(void)
336 {
337     int i, thread_count;
338 
339     if (!migrate_use_compression()) {
340         return;
341     }
342     terminate_compression_threads();
343     thread_count = migrate_compress_threads();
344     for (i = 0; i < thread_count; i++) {
345         qemu_thread_join(compress_threads + i);
346         qemu_fclose(comp_param[i].file);
347         qemu_mutex_destroy(&comp_param[i].mutex);
348         qemu_cond_destroy(&comp_param[i].cond);
349     }
350     qemu_mutex_destroy(comp_done_lock);
351     qemu_cond_destroy(comp_done_cond);
352     g_free(compress_threads);
353     g_free(comp_param);
354     g_free(comp_done_cond);
355     g_free(comp_done_lock);
356     compress_threads = NULL;
357     comp_param = NULL;
358     comp_done_cond = NULL;
359     comp_done_lock = NULL;
360 }
361 
362 void migrate_compress_threads_create(void)
363 {
364     int i, thread_count;
365 
366     if (!migrate_use_compression()) {
367         return;
368     }
369     quit_comp_thread = false;
370     compression_switch = true;
371     thread_count = migrate_compress_threads();
372     compress_threads = g_new0(QemuThread, thread_count);
373     comp_param = g_new0(CompressParam, thread_count);
374     comp_done_cond = g_new0(QemuCond, 1);
375     comp_done_lock = g_new0(QemuMutex, 1);
376     qemu_cond_init(comp_done_cond);
377     qemu_mutex_init(comp_done_lock);
378     for (i = 0; i < thread_count; i++) {
379         /* com_param[i].file is just used as a dummy buffer to save data, set
380          * it's ops to empty.
381          */
382         comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
383         comp_param[i].done = true;
384         qemu_mutex_init(&comp_param[i].mutex);
385         qemu_cond_init(&comp_param[i].cond);
386         qemu_thread_create(compress_threads + i, "compress",
387                            do_data_compress, comp_param + i,
388                            QEMU_THREAD_JOINABLE);
389     }
390 }
391 
392 /**
393  * save_page_header: Write page header to wire
394  *
395  * If this is the 1st block, it also writes the block identification
396  *
397  * Returns: Number of bytes written
398  *
399  * @f: QEMUFile where to send the data
400  * @block: block that contains the page we want to send
401  * @offset: offset inside the block for the page
402  *          in the lower bits, it contains flags
403  */
404 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
405 {
406     size_t size, len;
407 
408     qemu_put_be64(f, offset);
409     size = 8;
410 
411     if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
412         len = strlen(block->idstr);
413         qemu_put_byte(f, len);
414         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
415         size += 1 + len;
416     }
417     return size;
418 }
419 
420 /* Reduce amount of guest cpu execution to hopefully slow down memory writes.
421  * If guest dirty memory rate is reduced below the rate at which we can
422  * transfer pages to the destination then we should be able to complete
423  * migration. Some workloads dirty memory way too fast and will not effectively
424  * converge, even with auto-converge.
425  */
426 static void mig_throttle_guest_down(void)
427 {
428     MigrationState *s = migrate_get_current();
429     uint64_t pct_initial =
430             s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INITIAL];
431     uint64_t pct_icrement =
432             s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INCREMENT];
433 
434     /* We have not started throttling yet. Let's start it. */
435     if (!cpu_throttle_active()) {
436         cpu_throttle_set(pct_initial);
437     } else {
438         /* Throttling already on, just increase the rate */
439         cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
440     }
441 }
442 
443 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
444  * The important thing is that a stale (not-yet-0'd) page be replaced
445  * by the new data.
446  * As a bonus, if the page wasn't in the cache it gets added so that
447  * when a small write is made into the 0'd page it gets XBZRLE sent
448  */
449 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
450 {
451     if (ram_bulk_stage || !migrate_use_xbzrle()) {
452         return;
453     }
454 
455     /* We don't care if this fails to allocate a new cache page
456      * as long as it updated an old one */
457     cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
458                  bitmap_sync_count);
459 }
460 
461 #define ENCODING_FLAG_XBZRLE 0x1
462 
463 /**
464  * save_xbzrle_page: compress and send current page
465  *
466  * Returns: 1 means that we wrote the page
467  *          0 means that page is identical to the one already sent
468  *          -1 means that xbzrle would be longer than normal
469  *
470  * @f: QEMUFile where to send the data
471  * @current_data:
472  * @current_addr:
473  * @block: block that contains the page we want to send
474  * @offset: offset inside the block for the page
475  * @last_stage: if we are at the completion stage
476  * @bytes_transferred: increase it with the number of transferred bytes
477  */
478 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
479                             ram_addr_t current_addr, RAMBlock *block,
480                             ram_addr_t offset, bool last_stage,
481                             uint64_t *bytes_transferred)
482 {
483     int encoded_len = 0, bytes_xbzrle;
484     uint8_t *prev_cached_page;
485 
486     if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
487         acct_info.xbzrle_cache_miss++;
488         if (!last_stage) {
489             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
490                              bitmap_sync_count) == -1) {
491                 return -1;
492             } else {
493                 /* update *current_data when the page has been
494                    inserted into cache */
495                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
496             }
497         }
498         return -1;
499     }
500 
501     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
502 
503     /* save current buffer into memory */
504     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
505 
506     /* XBZRLE encoding (if there is no overflow) */
507     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
508                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
509                                        TARGET_PAGE_SIZE);
510     if (encoded_len == 0) {
511         DPRINTF("Skipping unmodified page\n");
512         return 0;
513     } else if (encoded_len == -1) {
514         DPRINTF("Overflow\n");
515         acct_info.xbzrle_overflows++;
516         /* update data in the cache */
517         if (!last_stage) {
518             memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
519             *current_data = prev_cached_page;
520         }
521         return -1;
522     }
523 
524     /* we need to update the data in the cache, in order to get the same data */
525     if (!last_stage) {
526         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
527     }
528 
529     /* Send XBZRLE based compressed page */
530     bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
531     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
532     qemu_put_be16(f, encoded_len);
533     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
534     bytes_xbzrle += encoded_len + 1 + 2;
535     acct_info.xbzrle_pages++;
536     acct_info.xbzrle_bytes += bytes_xbzrle;
537     *bytes_transferred += bytes_xbzrle;
538 
539     return 1;
540 }
541 
542 /* Called with rcu_read_lock() to protect migration_bitmap
543  * rb: The RAMBlock  to search for dirty pages in
544  * start: Start address (typically so we can continue from previous page)
545  * ram_addr_abs: Pointer into which to store the address of the dirty page
546  *               within the global ram_addr space
547  *
548  * Returns: byte offset within memory region of the start of a dirty page
549  */
550 static inline
551 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb,
552                                        ram_addr_t start,
553                                        ram_addr_t *ram_addr_abs)
554 {
555     unsigned long base = rb->offset >> TARGET_PAGE_BITS;
556     unsigned long nr = base + (start >> TARGET_PAGE_BITS);
557     uint64_t rb_size = rb->used_length;
558     unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
559     unsigned long *bitmap;
560 
561     unsigned long next;
562 
563     bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
564     if (ram_bulk_stage && nr > base) {
565         next = nr + 1;
566     } else {
567         next = find_next_bit(bitmap, size, nr);
568     }
569 
570     *ram_addr_abs = next << TARGET_PAGE_BITS;
571     return (next - base) << TARGET_PAGE_BITS;
572 }
573 
574 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr)
575 {
576     bool ret;
577     int nr = addr >> TARGET_PAGE_BITS;
578     unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
579 
580     ret = test_and_clear_bit(nr, bitmap);
581 
582     if (ret) {
583         migration_dirty_pages--;
584     }
585     return ret;
586 }
587 
588 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
589 {
590     unsigned long *bitmap;
591     bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
592     migration_dirty_pages +=
593         cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length);
594 }
595 
596 /* Fix me: there are too many global variables used in migration process. */
597 static int64_t start_time;
598 static int64_t bytes_xfer_prev;
599 static int64_t num_dirty_pages_period;
600 static uint64_t xbzrle_cache_miss_prev;
601 static uint64_t iterations_prev;
602 
603 static void migration_bitmap_sync_init(void)
604 {
605     start_time = 0;
606     bytes_xfer_prev = 0;
607     num_dirty_pages_period = 0;
608     xbzrle_cache_miss_prev = 0;
609     iterations_prev = 0;
610 }
611 
612 static void migration_bitmap_sync(void)
613 {
614     RAMBlock *block;
615     uint64_t num_dirty_pages_init = migration_dirty_pages;
616     MigrationState *s = migrate_get_current();
617     int64_t end_time;
618     int64_t bytes_xfer_now;
619 
620     bitmap_sync_count++;
621 
622     if (!bytes_xfer_prev) {
623         bytes_xfer_prev = ram_bytes_transferred();
624     }
625 
626     if (!start_time) {
627         start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
628     }
629 
630     trace_migration_bitmap_sync_start();
631     address_space_sync_dirty_bitmap(&address_space_memory);
632 
633     qemu_mutex_lock(&migration_bitmap_mutex);
634     rcu_read_lock();
635     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
636         migration_bitmap_sync_range(block->offset, block->used_length);
637     }
638     rcu_read_unlock();
639     qemu_mutex_unlock(&migration_bitmap_mutex);
640 
641     trace_migration_bitmap_sync_end(migration_dirty_pages
642                                     - num_dirty_pages_init);
643     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
644     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
645 
646     /* more than 1 second = 1000 millisecons */
647     if (end_time > start_time + 1000) {
648         if (migrate_auto_converge()) {
649             /* The following detection logic can be refined later. For now:
650                Check to see if the dirtied bytes is 50% more than the approx.
651                amount of bytes that just got transferred since the last time we
652                were in this routine. If that happens twice, start or increase
653                throttling */
654             bytes_xfer_now = ram_bytes_transferred();
655 
656             if (s->dirty_pages_rate &&
657                (num_dirty_pages_period * TARGET_PAGE_SIZE >
658                    (bytes_xfer_now - bytes_xfer_prev)/2) &&
659                (dirty_rate_high_cnt++ >= 2)) {
660                     trace_migration_throttle();
661                     dirty_rate_high_cnt = 0;
662                     mig_throttle_guest_down();
663              }
664              bytes_xfer_prev = bytes_xfer_now;
665         }
666 
667         if (migrate_use_xbzrle()) {
668             if (iterations_prev != acct_info.iterations) {
669                 acct_info.xbzrle_cache_miss_rate =
670                    (double)(acct_info.xbzrle_cache_miss -
671                             xbzrle_cache_miss_prev) /
672                    (acct_info.iterations - iterations_prev);
673             }
674             iterations_prev = acct_info.iterations;
675             xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
676         }
677         s->dirty_pages_rate = num_dirty_pages_period * 1000
678             / (end_time - start_time);
679         s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
680         start_time = end_time;
681         num_dirty_pages_period = 0;
682     }
683     s->dirty_sync_count = bitmap_sync_count;
684     if (migrate_use_events()) {
685         qapi_event_send_migration_pass(bitmap_sync_count, NULL);
686     }
687 }
688 
689 /**
690  * save_zero_page: Send the zero page to the stream
691  *
692  * Returns: Number of pages written.
693  *
694  * @f: QEMUFile where to send the data
695  * @block: block that contains the page we want to send
696  * @offset: offset inside the block for the page
697  * @p: pointer to the page
698  * @bytes_transferred: increase it with the number of transferred bytes
699  */
700 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
701                           uint8_t *p, uint64_t *bytes_transferred)
702 {
703     int pages = -1;
704 
705     if (is_zero_range(p, TARGET_PAGE_SIZE)) {
706         acct_info.dup_pages++;
707         *bytes_transferred += save_page_header(f, block,
708                                                offset | RAM_SAVE_FLAG_COMPRESS);
709         qemu_put_byte(f, 0);
710         *bytes_transferred += 1;
711         pages = 1;
712     }
713 
714     return pages;
715 }
716 
717 /**
718  * ram_save_page: Send the given page to the stream
719  *
720  * Returns: Number of pages written.
721  *          < 0 - error
722  *          >=0 - Number of pages written - this might legally be 0
723  *                if xbzrle noticed the page was the same.
724  *
725  * @f: QEMUFile where to send the data
726  * @block: block that contains the page we want to send
727  * @offset: offset inside the block for the page
728  * @last_stage: if we are at the completion stage
729  * @bytes_transferred: increase it with the number of transferred bytes
730  */
731 static int ram_save_page(QEMUFile *f, PageSearchStatus *pss,
732                          bool last_stage, uint64_t *bytes_transferred)
733 {
734     int pages = -1;
735     uint64_t bytes_xmit;
736     ram_addr_t current_addr;
737     uint8_t *p;
738     int ret;
739     bool send_async = true;
740     RAMBlock *block = pss->block;
741     ram_addr_t offset = pss->offset;
742 
743     p = block->host + offset;
744 
745     /* In doubt sent page as normal */
746     bytes_xmit = 0;
747     ret = ram_control_save_page(f, block->offset,
748                            offset, TARGET_PAGE_SIZE, &bytes_xmit);
749     if (bytes_xmit) {
750         *bytes_transferred += bytes_xmit;
751         pages = 1;
752     }
753 
754     XBZRLE_cache_lock();
755 
756     current_addr = block->offset + offset;
757 
758     if (block == last_sent_block) {
759         offset |= RAM_SAVE_FLAG_CONTINUE;
760     }
761     if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
762         if (ret != RAM_SAVE_CONTROL_DELAYED) {
763             if (bytes_xmit > 0) {
764                 acct_info.norm_pages++;
765             } else if (bytes_xmit == 0) {
766                 acct_info.dup_pages++;
767             }
768         }
769     } else {
770         pages = save_zero_page(f, block, offset, p, bytes_transferred);
771         if (pages > 0) {
772             /* Must let xbzrle know, otherwise a previous (now 0'd) cached
773              * page would be stale
774              */
775             xbzrle_cache_zero_page(current_addr);
776         } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
777             pages = save_xbzrle_page(f, &p, current_addr, block,
778                                      offset, last_stage, bytes_transferred);
779             if (!last_stage) {
780                 /* Can't send this cached data async, since the cache page
781                  * might get updated before it gets to the wire
782                  */
783                 send_async = false;
784             }
785         }
786     }
787 
788     /* XBZRLE overflow or normal page */
789     if (pages == -1) {
790         *bytes_transferred += save_page_header(f, block,
791                                                offset | RAM_SAVE_FLAG_PAGE);
792         if (send_async) {
793             qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
794         } else {
795             qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
796         }
797         *bytes_transferred += TARGET_PAGE_SIZE;
798         pages = 1;
799         acct_info.norm_pages++;
800     }
801 
802     XBZRLE_cache_unlock();
803 
804     return pages;
805 }
806 
807 static int do_compress_ram_page(CompressParam *param)
808 {
809     int bytes_sent, blen;
810     uint8_t *p;
811     RAMBlock *block = param->block;
812     ram_addr_t offset = param->offset;
813 
814     p = block->host + (offset & TARGET_PAGE_MASK);
815 
816     bytes_sent = save_page_header(param->file, block, offset |
817                                   RAM_SAVE_FLAG_COMPRESS_PAGE);
818     blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE,
819                                      migrate_compress_level());
820     bytes_sent += blen;
821 
822     return bytes_sent;
823 }
824 
825 static inline void start_compression(CompressParam *param)
826 {
827     param->done = false;
828     qemu_mutex_lock(&param->mutex);
829     param->start = true;
830     qemu_cond_signal(&param->cond);
831     qemu_mutex_unlock(&param->mutex);
832 }
833 
834 static inline void start_decompression(DecompressParam *param)
835 {
836     qemu_mutex_lock(&param->mutex);
837     param->start = true;
838     qemu_cond_signal(&param->cond);
839     qemu_mutex_unlock(&param->mutex);
840 }
841 
842 static uint64_t bytes_transferred;
843 
844 static void flush_compressed_data(QEMUFile *f)
845 {
846     int idx, len, thread_count;
847 
848     if (!migrate_use_compression()) {
849         return;
850     }
851     thread_count = migrate_compress_threads();
852     for (idx = 0; idx < thread_count; idx++) {
853         if (!comp_param[idx].done) {
854             qemu_mutex_lock(comp_done_lock);
855             while (!comp_param[idx].done && !quit_comp_thread) {
856                 qemu_cond_wait(comp_done_cond, comp_done_lock);
857             }
858             qemu_mutex_unlock(comp_done_lock);
859         }
860         if (!quit_comp_thread) {
861             len = qemu_put_qemu_file(f, comp_param[idx].file);
862             bytes_transferred += len;
863         }
864     }
865 }
866 
867 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
868                                        ram_addr_t offset)
869 {
870     param->block = block;
871     param->offset = offset;
872 }
873 
874 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
875                                            ram_addr_t offset,
876                                            uint64_t *bytes_transferred)
877 {
878     int idx, thread_count, bytes_xmit = -1, pages = -1;
879 
880     thread_count = migrate_compress_threads();
881     qemu_mutex_lock(comp_done_lock);
882     while (true) {
883         for (idx = 0; idx < thread_count; idx++) {
884             if (comp_param[idx].done) {
885                 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
886                 set_compress_params(&comp_param[idx], block, offset);
887                 start_compression(&comp_param[idx]);
888                 pages = 1;
889                 acct_info.norm_pages++;
890                 *bytes_transferred += bytes_xmit;
891                 break;
892             }
893         }
894         if (pages > 0) {
895             break;
896         } else {
897             qemu_cond_wait(comp_done_cond, comp_done_lock);
898         }
899     }
900     qemu_mutex_unlock(comp_done_lock);
901 
902     return pages;
903 }
904 
905 /**
906  * ram_save_compressed_page: compress the given page and send it to the stream
907  *
908  * Returns: Number of pages written.
909  *
910  * @f: QEMUFile where to send the data
911  * @block: block that contains the page we want to send
912  * @offset: offset inside the block for the page
913  * @last_stage: if we are at the completion stage
914  * @bytes_transferred: increase it with the number of transferred bytes
915  */
916 static int ram_save_compressed_page(QEMUFile *f, PageSearchStatus *pss,
917                                     bool last_stage,
918                                     uint64_t *bytes_transferred)
919 {
920     int pages = -1;
921     uint64_t bytes_xmit;
922     uint8_t *p;
923     int ret;
924     RAMBlock *block = pss->block;
925     ram_addr_t offset = pss->offset;
926 
927     p = block->host + offset;
928 
929     bytes_xmit = 0;
930     ret = ram_control_save_page(f, block->offset,
931                                 offset, TARGET_PAGE_SIZE, &bytes_xmit);
932     if (bytes_xmit) {
933         *bytes_transferred += bytes_xmit;
934         pages = 1;
935     }
936     if (block == last_sent_block) {
937         offset |= RAM_SAVE_FLAG_CONTINUE;
938     }
939     if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
940         if (ret != RAM_SAVE_CONTROL_DELAYED) {
941             if (bytes_xmit > 0) {
942                 acct_info.norm_pages++;
943             } else if (bytes_xmit == 0) {
944                 acct_info.dup_pages++;
945             }
946         }
947     } else {
948         /* When starting the process of a new block, the first page of
949          * the block should be sent out before other pages in the same
950          * block, and all the pages in last block should have been sent
951          * out, keeping this order is important, because the 'cont' flag
952          * is used to avoid resending the block name.
953          */
954         if (block != last_sent_block) {
955             flush_compressed_data(f);
956             pages = save_zero_page(f, block, offset, p, bytes_transferred);
957             if (pages == -1) {
958                 set_compress_params(&comp_param[0], block, offset);
959                 /* Use the qemu thread to compress the data to make sure the
960                  * first page is sent out before other pages
961                  */
962                 bytes_xmit = do_compress_ram_page(&comp_param[0]);
963                 acct_info.norm_pages++;
964                 qemu_put_qemu_file(f, comp_param[0].file);
965                 *bytes_transferred += bytes_xmit;
966                 pages = 1;
967             }
968         } else {
969             pages = save_zero_page(f, block, offset, p, bytes_transferred);
970             if (pages == -1) {
971                 pages = compress_page_with_multi_thread(f, block, offset,
972                                                         bytes_transferred);
973             }
974         }
975     }
976 
977     return pages;
978 }
979 
980 /*
981  * Find the next dirty page and update any state associated with
982  * the search process.
983  *
984  * Returns: True if a page is found
985  *
986  * @f: Current migration stream.
987  * @pss: Data about the state of the current dirty page scan.
988  * @*again: Set to false if the search has scanned the whole of RAM
989  * *ram_addr_abs: Pointer into which to store the address of the dirty page
990  *               within the global ram_addr space
991  */
992 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss,
993                              bool *again, ram_addr_t *ram_addr_abs)
994 {
995     pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset,
996                                               ram_addr_abs);
997     if (pss->complete_round && pss->block == last_seen_block &&
998         pss->offset >= last_offset) {
999         /*
1000          * We've been once around the RAM and haven't found anything.
1001          * Give up.
1002          */
1003         *again = false;
1004         return false;
1005     }
1006     if (pss->offset >= pss->block->used_length) {
1007         /* Didn't find anything in this RAM Block */
1008         pss->offset = 0;
1009         pss->block = QLIST_NEXT_RCU(pss->block, next);
1010         if (!pss->block) {
1011             /* Hit the end of the list */
1012             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1013             /* Flag that we've looped */
1014             pss->complete_round = true;
1015             ram_bulk_stage = false;
1016             if (migrate_use_xbzrle()) {
1017                 /* If xbzrle is on, stop using the data compression at this
1018                  * point. In theory, xbzrle can do better than compression.
1019                  */
1020                 flush_compressed_data(f);
1021                 compression_switch = false;
1022             }
1023         }
1024         /* Didn't find anything this time, but try again on the new block */
1025         *again = true;
1026         return false;
1027     } else {
1028         /* Can go around again, but... */
1029         *again = true;
1030         /* We've found something so probably don't need to */
1031         return true;
1032     }
1033 }
1034 
1035 /*
1036  * Helper for 'get_queued_page' - gets a page off the queue
1037  *      ms:      MigrationState in
1038  * *offset:      Used to return the offset within the RAMBlock
1039  * ram_addr_abs: global offset in the dirty/sent bitmaps
1040  *
1041  * Returns:      block (or NULL if none available)
1042  */
1043 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset,
1044                               ram_addr_t *ram_addr_abs)
1045 {
1046     RAMBlock *block = NULL;
1047 
1048     qemu_mutex_lock(&ms->src_page_req_mutex);
1049     if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) {
1050         struct MigrationSrcPageRequest *entry =
1051                                 QSIMPLEQ_FIRST(&ms->src_page_requests);
1052         block = entry->rb;
1053         *offset = entry->offset;
1054         *ram_addr_abs = (entry->offset + entry->rb->offset) &
1055                         TARGET_PAGE_MASK;
1056 
1057         if (entry->len > TARGET_PAGE_SIZE) {
1058             entry->len -= TARGET_PAGE_SIZE;
1059             entry->offset += TARGET_PAGE_SIZE;
1060         } else {
1061             memory_region_unref(block->mr);
1062             QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1063             g_free(entry);
1064         }
1065     }
1066     qemu_mutex_unlock(&ms->src_page_req_mutex);
1067 
1068     return block;
1069 }
1070 
1071 /*
1072  * Unqueue a page from the queue fed by postcopy page requests; skips pages
1073  * that are already sent (!dirty)
1074  *
1075  *      ms:      MigrationState in
1076  *     pss:      PageSearchStatus structure updated with found block/offset
1077  * ram_addr_abs: global offset in the dirty/sent bitmaps
1078  *
1079  * Returns:      true if a queued page is found
1080  */
1081 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss,
1082                             ram_addr_t *ram_addr_abs)
1083 {
1084     RAMBlock  *block;
1085     ram_addr_t offset;
1086     bool dirty;
1087 
1088     do {
1089         block = unqueue_page(ms, &offset, ram_addr_abs);
1090         /*
1091          * We're sending this page, and since it's postcopy nothing else
1092          * will dirty it, and we must make sure it doesn't get sent again
1093          * even if this queue request was received after the background
1094          * search already sent it.
1095          */
1096         if (block) {
1097             unsigned long *bitmap;
1098             bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1099             dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap);
1100             if (!dirty) {
1101                 trace_get_queued_page_not_dirty(
1102                     block->idstr, (uint64_t)offset,
1103                     (uint64_t)*ram_addr_abs,
1104                     test_bit(*ram_addr_abs >> TARGET_PAGE_BITS,
1105                          atomic_rcu_read(&migration_bitmap_rcu)->unsentmap));
1106             } else {
1107                 trace_get_queued_page(block->idstr,
1108                                       (uint64_t)offset,
1109                                       (uint64_t)*ram_addr_abs);
1110             }
1111         }
1112 
1113     } while (block && !dirty);
1114 
1115     if (block) {
1116         /*
1117          * As soon as we start servicing pages out of order, then we have
1118          * to kill the bulk stage, since the bulk stage assumes
1119          * in (migration_bitmap_find_and_reset_dirty) that every page is
1120          * dirty, that's no longer true.
1121          */
1122         ram_bulk_stage = false;
1123 
1124         /*
1125          * We want the background search to continue from the queued page
1126          * since the guest is likely to want other pages near to the page
1127          * it just requested.
1128          */
1129         pss->block = block;
1130         pss->offset = offset;
1131     }
1132 
1133     return !!block;
1134 }
1135 
1136 /**
1137  * flush_page_queue: Flush any remaining pages in the ram request queue
1138  *    it should be empty at the end anyway, but in error cases there may be
1139  *    some left.
1140  *
1141  * ms: MigrationState
1142  */
1143 void flush_page_queue(MigrationState *ms)
1144 {
1145     struct MigrationSrcPageRequest *mspr, *next_mspr;
1146     /* This queue generally should be empty - but in the case of a failed
1147      * migration might have some droppings in.
1148      */
1149     rcu_read_lock();
1150     QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) {
1151         memory_region_unref(mspr->rb->mr);
1152         QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1153         g_free(mspr);
1154     }
1155     rcu_read_unlock();
1156 }
1157 
1158 /**
1159  * Queue the pages for transmission, e.g. a request from postcopy destination
1160  *   ms: MigrationStatus in which the queue is held
1161  *   rbname: The RAMBlock the request is for - may be NULL (to mean reuse last)
1162  *   start: Offset from the start of the RAMBlock
1163  *   len: Length (in bytes) to send
1164  *   Return: 0 on success
1165  */
1166 int ram_save_queue_pages(MigrationState *ms, const char *rbname,
1167                          ram_addr_t start, ram_addr_t len)
1168 {
1169     RAMBlock *ramblock;
1170 
1171     rcu_read_lock();
1172     if (!rbname) {
1173         /* Reuse last RAMBlock */
1174         ramblock = ms->last_req_rb;
1175 
1176         if (!ramblock) {
1177             /*
1178              * Shouldn't happen, we can't reuse the last RAMBlock if
1179              * it's the 1st request.
1180              */
1181             error_report("ram_save_queue_pages no previous block");
1182             goto err;
1183         }
1184     } else {
1185         ramblock = qemu_ram_block_by_name(rbname);
1186 
1187         if (!ramblock) {
1188             /* We shouldn't be asked for a non-existent RAMBlock */
1189             error_report("ram_save_queue_pages no block '%s'", rbname);
1190             goto err;
1191         }
1192         ms->last_req_rb = ramblock;
1193     }
1194     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1195     if (start+len > ramblock->used_length) {
1196         error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1197                      RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1198                      __func__, start, len, ramblock->used_length);
1199         goto err;
1200     }
1201 
1202     struct MigrationSrcPageRequest *new_entry =
1203         g_malloc0(sizeof(struct MigrationSrcPageRequest));
1204     new_entry->rb = ramblock;
1205     new_entry->offset = start;
1206     new_entry->len = len;
1207 
1208     memory_region_ref(ramblock->mr);
1209     qemu_mutex_lock(&ms->src_page_req_mutex);
1210     QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req);
1211     qemu_mutex_unlock(&ms->src_page_req_mutex);
1212     rcu_read_unlock();
1213 
1214     return 0;
1215 
1216 err:
1217     rcu_read_unlock();
1218     return -1;
1219 }
1220 
1221 /**
1222  * ram_save_target_page: Save one target page
1223  *
1224  *
1225  * @f: QEMUFile where to send the data
1226  * @block: pointer to block that contains the page we want to send
1227  * @offset: offset inside the block for the page;
1228  * @last_stage: if we are at the completion stage
1229  * @bytes_transferred: increase it with the number of transferred bytes
1230  * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1231  *
1232  * Returns: Number of pages written.
1233  */
1234 static int ram_save_target_page(MigrationState *ms, QEMUFile *f,
1235                                 PageSearchStatus *pss,
1236                                 bool last_stage,
1237                                 uint64_t *bytes_transferred,
1238                                 ram_addr_t dirty_ram_abs)
1239 {
1240     int res = 0;
1241 
1242     /* Check the pages is dirty and if it is send it */
1243     if (migration_bitmap_clear_dirty(dirty_ram_abs)) {
1244         unsigned long *unsentmap;
1245         if (compression_switch && migrate_use_compression()) {
1246             res = ram_save_compressed_page(f, pss,
1247                                            last_stage,
1248                                            bytes_transferred);
1249         } else {
1250             res = ram_save_page(f, pss, last_stage,
1251                                 bytes_transferred);
1252         }
1253 
1254         if (res < 0) {
1255             return res;
1256         }
1257         unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1258         if (unsentmap) {
1259             clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap);
1260         }
1261         /* Only update last_sent_block if a block was actually sent; xbzrle
1262          * might have decided the page was identical so didn't bother writing
1263          * to the stream.
1264          */
1265         if (res > 0) {
1266             last_sent_block = pss->block;
1267         }
1268     }
1269 
1270     return res;
1271 }
1272 
1273 /**
1274  * ram_save_host_page: Starting at *offset send pages upto the end
1275  *                     of the current host page.  It's valid for the initial
1276  *                     offset to point into the middle of a host page
1277  *                     in which case the remainder of the hostpage is sent.
1278  *                     Only dirty target pages are sent.
1279  *
1280  * Returns: Number of pages written.
1281  *
1282  * @f: QEMUFile where to send the data
1283  * @block: pointer to block that contains the page we want to send
1284  * @offset: offset inside the block for the page; updated to last target page
1285  *          sent
1286  * @last_stage: if we are at the completion stage
1287  * @bytes_transferred: increase it with the number of transferred bytes
1288  * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1289  */
1290 static int ram_save_host_page(MigrationState *ms, QEMUFile *f,
1291                               PageSearchStatus *pss,
1292                               bool last_stage,
1293                               uint64_t *bytes_transferred,
1294                               ram_addr_t dirty_ram_abs)
1295 {
1296     int tmppages, pages = 0;
1297     do {
1298         tmppages = ram_save_target_page(ms, f, pss, last_stage,
1299                                         bytes_transferred, dirty_ram_abs);
1300         if (tmppages < 0) {
1301             return tmppages;
1302         }
1303 
1304         pages += tmppages;
1305         pss->offset += TARGET_PAGE_SIZE;
1306         dirty_ram_abs += TARGET_PAGE_SIZE;
1307     } while (pss->offset & (qemu_host_page_size - 1));
1308 
1309     /* The offset we leave with is the last one we looked at */
1310     pss->offset -= TARGET_PAGE_SIZE;
1311     return pages;
1312 }
1313 
1314 /**
1315  * ram_find_and_save_block: Finds a dirty page and sends it to f
1316  *
1317  * Called within an RCU critical section.
1318  *
1319  * Returns:  The number of pages written
1320  *           0 means no dirty pages
1321  *
1322  * @f: QEMUFile where to send the data
1323  * @last_stage: if we are at the completion stage
1324  * @bytes_transferred: increase it with the number of transferred bytes
1325  *
1326  * On systems where host-page-size > target-page-size it will send all the
1327  * pages in a host page that are dirty.
1328  */
1329 
1330 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1331                                    uint64_t *bytes_transferred)
1332 {
1333     PageSearchStatus pss;
1334     MigrationState *ms = migrate_get_current();
1335     int pages = 0;
1336     bool again, found;
1337     ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in
1338                                  ram_addr_t space */
1339 
1340     pss.block = last_seen_block;
1341     pss.offset = last_offset;
1342     pss.complete_round = false;
1343 
1344     if (!pss.block) {
1345         pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1346     }
1347 
1348     do {
1349         again = true;
1350         found = get_queued_page(ms, &pss, &dirty_ram_abs);
1351 
1352         if (!found) {
1353             /* priority queue empty, so just search for something dirty */
1354             found = find_dirty_block(f, &pss, &again, &dirty_ram_abs);
1355         }
1356 
1357         if (found) {
1358             pages = ram_save_host_page(ms, f, &pss,
1359                                        last_stage, bytes_transferred,
1360                                        dirty_ram_abs);
1361         }
1362     } while (!pages && again);
1363 
1364     last_seen_block = pss.block;
1365     last_offset = pss.offset;
1366 
1367     return pages;
1368 }
1369 
1370 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1371 {
1372     uint64_t pages = size / TARGET_PAGE_SIZE;
1373     if (zero) {
1374         acct_info.dup_pages += pages;
1375     } else {
1376         acct_info.norm_pages += pages;
1377         bytes_transferred += size;
1378         qemu_update_position(f, size);
1379     }
1380 }
1381 
1382 static ram_addr_t ram_save_remaining(void)
1383 {
1384     return migration_dirty_pages;
1385 }
1386 
1387 uint64_t ram_bytes_remaining(void)
1388 {
1389     return ram_save_remaining() * TARGET_PAGE_SIZE;
1390 }
1391 
1392 uint64_t ram_bytes_transferred(void)
1393 {
1394     return bytes_transferred;
1395 }
1396 
1397 uint64_t ram_bytes_total(void)
1398 {
1399     RAMBlock *block;
1400     uint64_t total = 0;
1401 
1402     rcu_read_lock();
1403     QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1404         total += block->used_length;
1405     rcu_read_unlock();
1406     return total;
1407 }
1408 
1409 void free_xbzrle_decoded_buf(void)
1410 {
1411     g_free(xbzrle_decoded_buf);
1412     xbzrle_decoded_buf = NULL;
1413 }
1414 
1415 static void migration_bitmap_free(struct BitmapRcu *bmap)
1416 {
1417     g_free(bmap->bmap);
1418     g_free(bmap->unsentmap);
1419     g_free(bmap);
1420 }
1421 
1422 static void ram_migration_cleanup(void *opaque)
1423 {
1424     /* caller have hold iothread lock or is in a bh, so there is
1425      * no writing race against this migration_bitmap
1426      */
1427     struct BitmapRcu *bitmap = migration_bitmap_rcu;
1428     atomic_rcu_set(&migration_bitmap_rcu, NULL);
1429     if (bitmap) {
1430         memory_global_dirty_log_stop();
1431         call_rcu(bitmap, migration_bitmap_free, rcu);
1432     }
1433 
1434     XBZRLE_cache_lock();
1435     if (XBZRLE.cache) {
1436         cache_fini(XBZRLE.cache);
1437         g_free(XBZRLE.encoded_buf);
1438         g_free(XBZRLE.current_buf);
1439         XBZRLE.cache = NULL;
1440         XBZRLE.encoded_buf = NULL;
1441         XBZRLE.current_buf = NULL;
1442     }
1443     XBZRLE_cache_unlock();
1444 }
1445 
1446 static void reset_ram_globals(void)
1447 {
1448     last_seen_block = NULL;
1449     last_sent_block = NULL;
1450     last_offset = 0;
1451     last_version = ram_list.version;
1452     ram_bulk_stage = true;
1453 }
1454 
1455 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1456 
1457 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1458 {
1459     /* called in qemu main thread, so there is
1460      * no writing race against this migration_bitmap
1461      */
1462     if (migration_bitmap_rcu) {
1463         struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap;
1464         bitmap = g_new(struct BitmapRcu, 1);
1465         bitmap->bmap = bitmap_new(new);
1466 
1467         /* prevent migration_bitmap content from being set bit
1468          * by migration_bitmap_sync_range() at the same time.
1469          * it is safe to migration if migration_bitmap is cleared bit
1470          * at the same time.
1471          */
1472         qemu_mutex_lock(&migration_bitmap_mutex);
1473         bitmap_copy(bitmap->bmap, old_bitmap->bmap, old);
1474         bitmap_set(bitmap->bmap, old, new - old);
1475 
1476         /* We don't have a way to safely extend the sentmap
1477          * with RCU; so mark it as missing, entry to postcopy
1478          * will fail.
1479          */
1480         bitmap->unsentmap = NULL;
1481 
1482         atomic_rcu_set(&migration_bitmap_rcu, bitmap);
1483         qemu_mutex_unlock(&migration_bitmap_mutex);
1484         migration_dirty_pages += new - old;
1485         call_rcu(old_bitmap, migration_bitmap_free, rcu);
1486     }
1487 }
1488 
1489 /*
1490  * 'expected' is the value you expect the bitmap mostly to be full
1491  * of; it won't bother printing lines that are all this value.
1492  * If 'todump' is null the migration bitmap is dumped.
1493  */
1494 void ram_debug_dump_bitmap(unsigned long *todump, bool expected)
1495 {
1496     int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1497 
1498     int64_t cur;
1499     int64_t linelen = 128;
1500     char linebuf[129];
1501 
1502     if (!todump) {
1503         todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1504     }
1505 
1506     for (cur = 0; cur < ram_pages; cur += linelen) {
1507         int64_t curb;
1508         bool found = false;
1509         /*
1510          * Last line; catch the case where the line length
1511          * is longer than remaining ram
1512          */
1513         if (cur + linelen > ram_pages) {
1514             linelen = ram_pages - cur;
1515         }
1516         for (curb = 0; curb < linelen; curb++) {
1517             bool thisbit = test_bit(cur + curb, todump);
1518             linebuf[curb] = thisbit ? '1' : '.';
1519             found = found || (thisbit != expected);
1520         }
1521         if (found) {
1522             linebuf[curb] = '\0';
1523             fprintf(stderr,  "0x%08" PRIx64 " : %s\n", cur, linebuf);
1524         }
1525     }
1526 }
1527 
1528 /* **** functions for postcopy ***** */
1529 
1530 /*
1531  * Callback from postcopy_each_ram_send_discard for each RAMBlock
1532  * Note: At this point the 'unsentmap' is the processed bitmap combined
1533  *       with the dirtymap; so a '1' means it's either dirty or unsent.
1534  * start,length: Indexes into the bitmap for the first bit
1535  *            representing the named block and length in target-pages
1536  */
1537 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1538                                         PostcopyDiscardState *pds,
1539                                         unsigned long start,
1540                                         unsigned long length)
1541 {
1542     unsigned long end = start + length; /* one after the end */
1543     unsigned long current;
1544     unsigned long *unsentmap;
1545 
1546     unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1547     for (current = start; current < end; ) {
1548         unsigned long one = find_next_bit(unsentmap, end, current);
1549 
1550         if (one <= end) {
1551             unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1552             unsigned long discard_length;
1553 
1554             if (zero >= end) {
1555                 discard_length = end - one;
1556             } else {
1557                 discard_length = zero - one;
1558             }
1559             postcopy_discard_send_range(ms, pds, one, discard_length);
1560             current = one + discard_length;
1561         } else {
1562             current = one;
1563         }
1564     }
1565 
1566     return 0;
1567 }
1568 
1569 /*
1570  * Utility for the outgoing postcopy code.
1571  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
1572  *   passing it bitmap indexes and name.
1573  * Returns: 0 on success
1574  * (qemu_ram_foreach_block ends up passing unscaled lengths
1575  *  which would mean postcopy code would have to deal with target page)
1576  */
1577 static int postcopy_each_ram_send_discard(MigrationState *ms)
1578 {
1579     struct RAMBlock *block;
1580     int ret;
1581 
1582     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1583         unsigned long first = block->offset >> TARGET_PAGE_BITS;
1584         PostcopyDiscardState *pds = postcopy_discard_send_init(ms,
1585                                                                first,
1586                                                                block->idstr);
1587 
1588         /*
1589          * Postcopy sends chunks of bitmap over the wire, but it
1590          * just needs indexes at this point, avoids it having
1591          * target page specific code.
1592          */
1593         ret = postcopy_send_discard_bm_ram(ms, pds, first,
1594                                     block->used_length >> TARGET_PAGE_BITS);
1595         postcopy_discard_send_finish(ms, pds);
1596         if (ret) {
1597             return ret;
1598         }
1599     }
1600 
1601     return 0;
1602 }
1603 
1604 /*
1605  * Helper for postcopy_chunk_hostpages; it's called twice to cleanup
1606  *   the two bitmaps, that are similar, but one is inverted.
1607  *
1608  * We search for runs of target-pages that don't start or end on a
1609  * host page boundary;
1610  * unsent_pass=true: Cleans up partially unsent host pages by searching
1611  *                 the unsentmap
1612  * unsent_pass=false: Cleans up partially dirty host pages by searching
1613  *                 the main migration bitmap
1614  *
1615  */
1616 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1617                                           RAMBlock *block,
1618                                           PostcopyDiscardState *pds)
1619 {
1620     unsigned long *bitmap;
1621     unsigned long *unsentmap;
1622     unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE;
1623     unsigned long first = block->offset >> TARGET_PAGE_BITS;
1624     unsigned long len = block->used_length >> TARGET_PAGE_BITS;
1625     unsigned long last = first + (len - 1);
1626     unsigned long run_start;
1627 
1628     bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1629     unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1630 
1631     if (unsent_pass) {
1632         /* Find a sent page */
1633         run_start = find_next_zero_bit(unsentmap, last + 1, first);
1634     } else {
1635         /* Find a dirty page */
1636         run_start = find_next_bit(bitmap, last + 1, first);
1637     }
1638 
1639     while (run_start <= last) {
1640         bool do_fixup = false;
1641         unsigned long fixup_start_addr;
1642         unsigned long host_offset;
1643 
1644         /*
1645          * If the start of this run of pages is in the middle of a host
1646          * page, then we need to fixup this host page.
1647          */
1648         host_offset = run_start % host_ratio;
1649         if (host_offset) {
1650             do_fixup = true;
1651             run_start -= host_offset;
1652             fixup_start_addr = run_start;
1653             /* For the next pass */
1654             run_start = run_start + host_ratio;
1655         } else {
1656             /* Find the end of this run */
1657             unsigned long run_end;
1658             if (unsent_pass) {
1659                 run_end = find_next_bit(unsentmap, last + 1, run_start + 1);
1660             } else {
1661                 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1);
1662             }
1663             /*
1664              * If the end isn't at the start of a host page, then the
1665              * run doesn't finish at the end of a host page
1666              * and we need to discard.
1667              */
1668             host_offset = run_end % host_ratio;
1669             if (host_offset) {
1670                 do_fixup = true;
1671                 fixup_start_addr = run_end - host_offset;
1672                 /*
1673                  * This host page has gone, the next loop iteration starts
1674                  * from after the fixup
1675                  */
1676                 run_start = fixup_start_addr + host_ratio;
1677             } else {
1678                 /*
1679                  * No discards on this iteration, next loop starts from
1680                  * next sent/dirty page
1681                  */
1682                 run_start = run_end + 1;
1683             }
1684         }
1685 
1686         if (do_fixup) {
1687             unsigned long page;
1688 
1689             /* Tell the destination to discard this page */
1690             if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1691                 /* For the unsent_pass we:
1692                  *     discard partially sent pages
1693                  * For the !unsent_pass (dirty) we:
1694                  *     discard partially dirty pages that were sent
1695                  *     (any partially sent pages were already discarded
1696                  *     by the previous unsent_pass)
1697                  */
1698                 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1699                                             host_ratio);
1700             }
1701 
1702             /* Clean up the bitmap */
1703             for (page = fixup_start_addr;
1704                  page < fixup_start_addr + host_ratio; page++) {
1705                 /* All pages in this host page are now not sent */
1706                 set_bit(page, unsentmap);
1707 
1708                 /*
1709                  * Remark them as dirty, updating the count for any pages
1710                  * that weren't previously dirty.
1711                  */
1712                 migration_dirty_pages += !test_and_set_bit(page, bitmap);
1713             }
1714         }
1715 
1716         if (unsent_pass) {
1717             /* Find the next sent page for the next iteration */
1718             run_start = find_next_zero_bit(unsentmap, last + 1,
1719                                            run_start);
1720         } else {
1721             /* Find the next dirty page for the next iteration */
1722             run_start = find_next_bit(bitmap, last + 1, run_start);
1723         }
1724     }
1725 }
1726 
1727 /*
1728  * Utility for the outgoing postcopy code.
1729  *
1730  * Discard any partially sent host-page size chunks, mark any partially
1731  * dirty host-page size chunks as all dirty.
1732  *
1733  * Returns: 0 on success
1734  */
1735 static int postcopy_chunk_hostpages(MigrationState *ms)
1736 {
1737     struct RAMBlock *block;
1738 
1739     if (qemu_host_page_size == TARGET_PAGE_SIZE) {
1740         /* Easy case - TPS==HPS - nothing to be done */
1741         return 0;
1742     }
1743 
1744     /* Easiest way to make sure we don't resume in the middle of a host-page */
1745     last_seen_block = NULL;
1746     last_sent_block = NULL;
1747     last_offset     = 0;
1748 
1749     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1750         unsigned long first = block->offset >> TARGET_PAGE_BITS;
1751 
1752         PostcopyDiscardState *pds =
1753                          postcopy_discard_send_init(ms, first, block->idstr);
1754 
1755         /* First pass: Discard all partially sent host pages */
1756         postcopy_chunk_hostpages_pass(ms, true, block, pds);
1757         /*
1758          * Second pass: Ensure that all partially dirty host pages are made
1759          * fully dirty.
1760          */
1761         postcopy_chunk_hostpages_pass(ms, false, block, pds);
1762 
1763         postcopy_discard_send_finish(ms, pds);
1764     } /* ram_list loop */
1765 
1766     return 0;
1767 }
1768 
1769 /*
1770  * Transmit the set of pages to be discarded after precopy to the target
1771  * these are pages that:
1772  *     a) Have been previously transmitted but are now dirty again
1773  *     b) Pages that have never been transmitted, this ensures that
1774  *        any pages on the destination that have been mapped by background
1775  *        tasks get discarded (transparent huge pages is the specific concern)
1776  * Hopefully this is pretty sparse
1777  */
1778 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1779 {
1780     int ret;
1781     unsigned long *bitmap, *unsentmap;
1782 
1783     rcu_read_lock();
1784 
1785     /* This should be our last sync, the src is now paused */
1786     migration_bitmap_sync();
1787 
1788     unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1789     if (!unsentmap) {
1790         /* We don't have a safe way to resize the sentmap, so
1791          * if the bitmap was resized it will be NULL at this
1792          * point.
1793          */
1794         error_report("migration ram resized during precopy phase");
1795         rcu_read_unlock();
1796         return -EINVAL;
1797     }
1798 
1799     /* Deal with TPS != HPS */
1800     ret = postcopy_chunk_hostpages(ms);
1801     if (ret) {
1802         rcu_read_unlock();
1803         return ret;
1804     }
1805 
1806     /*
1807      * Update the unsentmap to be unsentmap = unsentmap | dirty
1808      */
1809     bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1810     bitmap_or(unsentmap, unsentmap, bitmap,
1811                last_ram_offset() >> TARGET_PAGE_BITS);
1812 
1813 
1814     trace_ram_postcopy_send_discard_bitmap();
1815 #ifdef DEBUG_POSTCOPY
1816     ram_debug_dump_bitmap(unsentmap, true);
1817 #endif
1818 
1819     ret = postcopy_each_ram_send_discard(ms);
1820     rcu_read_unlock();
1821 
1822     return ret;
1823 }
1824 
1825 /*
1826  * At the start of the postcopy phase of migration, any now-dirty
1827  * precopied pages are discarded.
1828  *
1829  * start, length describe a byte address range within the RAMBlock
1830  *
1831  * Returns 0 on success.
1832  */
1833 int ram_discard_range(MigrationIncomingState *mis,
1834                       const char *block_name,
1835                       uint64_t start, size_t length)
1836 {
1837     int ret = -1;
1838 
1839     rcu_read_lock();
1840     RAMBlock *rb = qemu_ram_block_by_name(block_name);
1841 
1842     if (!rb) {
1843         error_report("ram_discard_range: Failed to find block '%s'",
1844                      block_name);
1845         goto err;
1846     }
1847 
1848     uint8_t *host_startaddr = rb->host + start;
1849 
1850     if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) {
1851         error_report("ram_discard_range: Unaligned start address: %p",
1852                      host_startaddr);
1853         goto err;
1854     }
1855 
1856     if ((start + length) <= rb->used_length) {
1857         uint8_t *host_endaddr = host_startaddr + length;
1858         if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) {
1859             error_report("ram_discard_range: Unaligned end address: %p",
1860                          host_endaddr);
1861             goto err;
1862         }
1863         ret = postcopy_ram_discard_range(mis, host_startaddr, length);
1864     } else {
1865         error_report("ram_discard_range: Overrun block '%s' (%" PRIu64
1866                      "/%zx/" RAM_ADDR_FMT")",
1867                      block_name, start, length, rb->used_length);
1868     }
1869 
1870 err:
1871     rcu_read_unlock();
1872 
1873     return ret;
1874 }
1875 
1876 
1877 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1878  * long-running RCU critical section.  When rcu-reclaims in the code
1879  * start to become numerous it will be necessary to reduce the
1880  * granularity of these critical sections.
1881  */
1882 
1883 static int ram_save_setup(QEMUFile *f, void *opaque)
1884 {
1885     RAMBlock *block;
1886     int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1887 
1888     dirty_rate_high_cnt = 0;
1889     bitmap_sync_count = 0;
1890     migration_bitmap_sync_init();
1891     qemu_mutex_init(&migration_bitmap_mutex);
1892 
1893     if (migrate_use_xbzrle()) {
1894         XBZRLE_cache_lock();
1895         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1896                                   TARGET_PAGE_SIZE,
1897                                   TARGET_PAGE_SIZE);
1898         if (!XBZRLE.cache) {
1899             XBZRLE_cache_unlock();
1900             error_report("Error creating cache");
1901             return -1;
1902         }
1903         XBZRLE_cache_unlock();
1904 
1905         /* We prefer not to abort if there is no memory */
1906         XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1907         if (!XBZRLE.encoded_buf) {
1908             error_report("Error allocating encoded_buf");
1909             return -1;
1910         }
1911 
1912         XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1913         if (!XBZRLE.current_buf) {
1914             error_report("Error allocating current_buf");
1915             g_free(XBZRLE.encoded_buf);
1916             XBZRLE.encoded_buf = NULL;
1917             return -1;
1918         }
1919 
1920         acct_clear();
1921     }
1922 
1923     /* For memory_global_dirty_log_start below.  */
1924     qemu_mutex_lock_iothread();
1925 
1926     qemu_mutex_lock_ramlist();
1927     rcu_read_lock();
1928     bytes_transferred = 0;
1929     reset_ram_globals();
1930 
1931     ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1932     migration_bitmap_rcu = g_new0(struct BitmapRcu, 1);
1933     migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages);
1934     bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages);
1935 
1936     if (migrate_postcopy_ram()) {
1937         migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages);
1938         bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages);
1939     }
1940 
1941     /*
1942      * Count the total number of pages used by ram blocks not including any
1943      * gaps due to alignment or unplugs.
1944      */
1945     migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1946 
1947     memory_global_dirty_log_start();
1948     migration_bitmap_sync();
1949     qemu_mutex_unlock_ramlist();
1950     qemu_mutex_unlock_iothread();
1951 
1952     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1953 
1954     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1955         qemu_put_byte(f, strlen(block->idstr));
1956         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1957         qemu_put_be64(f, block->used_length);
1958     }
1959 
1960     rcu_read_unlock();
1961 
1962     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1963     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1964 
1965     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1966 
1967     return 0;
1968 }
1969 
1970 static int ram_save_iterate(QEMUFile *f, void *opaque)
1971 {
1972     int ret;
1973     int i;
1974     int64_t t0;
1975     int pages_sent = 0;
1976 
1977     rcu_read_lock();
1978     if (ram_list.version != last_version) {
1979         reset_ram_globals();
1980     }
1981 
1982     /* Read version before ram_list.blocks */
1983     smp_rmb();
1984 
1985     ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1986 
1987     t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1988     i = 0;
1989     while ((ret = qemu_file_rate_limit(f)) == 0) {
1990         int pages;
1991 
1992         pages = ram_find_and_save_block(f, false, &bytes_transferred);
1993         /* no more pages to sent */
1994         if (pages == 0) {
1995             break;
1996         }
1997         pages_sent += pages;
1998         acct_info.iterations++;
1999 
2000         /* we want to check in the 1st loop, just in case it was the 1st time
2001            and we had to sync the dirty bitmap.
2002            qemu_get_clock_ns() is a bit expensive, so we only check each some
2003            iterations
2004         */
2005         if ((i & 63) == 0) {
2006             uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2007             if (t1 > MAX_WAIT) {
2008                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
2009                         t1, i);
2010                 break;
2011             }
2012         }
2013         i++;
2014     }
2015     flush_compressed_data(f);
2016     rcu_read_unlock();
2017 
2018     /*
2019      * Must occur before EOS (or any QEMUFile operation)
2020      * because of RDMA protocol.
2021      */
2022     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2023 
2024     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2025     bytes_transferred += 8;
2026 
2027     ret = qemu_file_get_error(f);
2028     if (ret < 0) {
2029         return ret;
2030     }
2031 
2032     return pages_sent;
2033 }
2034 
2035 /* Called with iothread lock */
2036 static int ram_save_complete(QEMUFile *f, void *opaque)
2037 {
2038     rcu_read_lock();
2039 
2040     if (!migration_in_postcopy(migrate_get_current())) {
2041         migration_bitmap_sync();
2042     }
2043 
2044     ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2045 
2046     /* try transferring iterative blocks of memory */
2047 
2048     /* flush all remaining blocks regardless of rate limiting */
2049     while (true) {
2050         int pages;
2051 
2052         pages = ram_find_and_save_block(f, true, &bytes_transferred);
2053         /* no more blocks to sent */
2054         if (pages == 0) {
2055             break;
2056         }
2057     }
2058 
2059     flush_compressed_data(f);
2060     ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2061 
2062     rcu_read_unlock();
2063 
2064     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2065 
2066     return 0;
2067 }
2068 
2069 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2070                              uint64_t *non_postcopiable_pending,
2071                              uint64_t *postcopiable_pending)
2072 {
2073     uint64_t remaining_size;
2074 
2075     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2076 
2077     if (!migration_in_postcopy(migrate_get_current()) &&
2078         remaining_size < max_size) {
2079         qemu_mutex_lock_iothread();
2080         rcu_read_lock();
2081         migration_bitmap_sync();
2082         rcu_read_unlock();
2083         qemu_mutex_unlock_iothread();
2084         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2085     }
2086 
2087     /* We can do postcopy, and all the data is postcopiable */
2088     *postcopiable_pending += remaining_size;
2089 }
2090 
2091 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2092 {
2093     unsigned int xh_len;
2094     int xh_flags;
2095     uint8_t *loaded_data;
2096 
2097     if (!xbzrle_decoded_buf) {
2098         xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2099     }
2100     loaded_data = xbzrle_decoded_buf;
2101 
2102     /* extract RLE header */
2103     xh_flags = qemu_get_byte(f);
2104     xh_len = qemu_get_be16(f);
2105 
2106     if (xh_flags != ENCODING_FLAG_XBZRLE) {
2107         error_report("Failed to load XBZRLE page - wrong compression!");
2108         return -1;
2109     }
2110 
2111     if (xh_len > TARGET_PAGE_SIZE) {
2112         error_report("Failed to load XBZRLE page - len overflow!");
2113         return -1;
2114     }
2115     /* load data and decode */
2116     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2117 
2118     /* decode RLE */
2119     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2120                              TARGET_PAGE_SIZE) == -1) {
2121         error_report("Failed to load XBZRLE page - decode error!");
2122         return -1;
2123     }
2124 
2125     return 0;
2126 }
2127 
2128 /* Must be called from within a rcu critical section.
2129  * Returns a pointer from within the RCU-protected ram_list.
2130  */
2131 /*
2132  * Read a RAMBlock ID from the stream f.
2133  *
2134  * f: Stream to read from
2135  * flags: Page flags (mostly to see if it's a continuation of previous block)
2136  */
2137 static inline RAMBlock *ram_block_from_stream(QEMUFile *f,
2138                                               int flags)
2139 {
2140     static RAMBlock *block = NULL;
2141     char id[256];
2142     uint8_t len;
2143 
2144     if (flags & RAM_SAVE_FLAG_CONTINUE) {
2145         if (!block) {
2146             error_report("Ack, bad migration stream!");
2147             return NULL;
2148         }
2149         return block;
2150     }
2151 
2152     len = qemu_get_byte(f);
2153     qemu_get_buffer(f, (uint8_t *)id, len);
2154     id[len] = 0;
2155 
2156     block = qemu_ram_block_by_name(id);
2157     if (!block) {
2158         error_report("Can't find block %s", id);
2159         return NULL;
2160     }
2161 
2162     return block;
2163 }
2164 
2165 static inline void *host_from_ram_block_offset(RAMBlock *block,
2166                                                ram_addr_t offset)
2167 {
2168     if (!offset_in_ramblock(block, offset)) {
2169         return NULL;
2170     }
2171 
2172     return block->host + offset;
2173 }
2174 
2175 /*
2176  * If a page (or a whole RDMA chunk) has been
2177  * determined to be zero, then zap it.
2178  */
2179 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2180 {
2181     if (ch != 0 || !is_zero_range(host, size)) {
2182         memset(host, ch, size);
2183     }
2184 }
2185 
2186 static void *do_data_decompress(void *opaque)
2187 {
2188     DecompressParam *param = opaque;
2189     unsigned long pagesize;
2190 
2191     while (!quit_decomp_thread) {
2192         qemu_mutex_lock(&param->mutex);
2193         while (!param->start && !quit_decomp_thread) {
2194             qemu_cond_wait(&param->cond, &param->mutex);
2195             pagesize = TARGET_PAGE_SIZE;
2196             if (!quit_decomp_thread) {
2197                 /* uncompress() will return failed in some case, especially
2198                  * when the page is dirted when doing the compression, it's
2199                  * not a problem because the dirty page will be retransferred
2200                  * and uncompress() won't break the data in other pages.
2201                  */
2202                 uncompress((Bytef *)param->des, &pagesize,
2203                            (const Bytef *)param->compbuf, param->len);
2204             }
2205             param->start = false;
2206         }
2207         qemu_mutex_unlock(&param->mutex);
2208     }
2209 
2210     return NULL;
2211 }
2212 
2213 void migrate_decompress_threads_create(void)
2214 {
2215     int i, thread_count;
2216 
2217     thread_count = migrate_decompress_threads();
2218     decompress_threads = g_new0(QemuThread, thread_count);
2219     decomp_param = g_new0(DecompressParam, thread_count);
2220     quit_decomp_thread = false;
2221     for (i = 0; i < thread_count; i++) {
2222         qemu_mutex_init(&decomp_param[i].mutex);
2223         qemu_cond_init(&decomp_param[i].cond);
2224         decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2225         qemu_thread_create(decompress_threads + i, "decompress",
2226                            do_data_decompress, decomp_param + i,
2227                            QEMU_THREAD_JOINABLE);
2228     }
2229 }
2230 
2231 void migrate_decompress_threads_join(void)
2232 {
2233     int i, thread_count;
2234 
2235     quit_decomp_thread = true;
2236     thread_count = migrate_decompress_threads();
2237     for (i = 0; i < thread_count; i++) {
2238         qemu_mutex_lock(&decomp_param[i].mutex);
2239         qemu_cond_signal(&decomp_param[i].cond);
2240         qemu_mutex_unlock(&decomp_param[i].mutex);
2241     }
2242     for (i = 0; i < thread_count; i++) {
2243         qemu_thread_join(decompress_threads + i);
2244         qemu_mutex_destroy(&decomp_param[i].mutex);
2245         qemu_cond_destroy(&decomp_param[i].cond);
2246         g_free(decomp_param[i].compbuf);
2247     }
2248     g_free(decompress_threads);
2249     g_free(decomp_param);
2250     decompress_threads = NULL;
2251     decomp_param = NULL;
2252 }
2253 
2254 static void decompress_data_with_multi_threads(QEMUFile *f,
2255                                                void *host, int len)
2256 {
2257     int idx, thread_count;
2258 
2259     thread_count = migrate_decompress_threads();
2260     while (true) {
2261         for (idx = 0; idx < thread_count; idx++) {
2262             if (!decomp_param[idx].start) {
2263                 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2264                 decomp_param[idx].des = host;
2265                 decomp_param[idx].len = len;
2266                 start_decompression(&decomp_param[idx]);
2267                 break;
2268             }
2269         }
2270         if (idx < thread_count) {
2271             break;
2272         }
2273     }
2274 }
2275 
2276 /*
2277  * Allocate data structures etc needed by incoming migration with postcopy-ram
2278  * postcopy-ram's similarly names postcopy_ram_incoming_init does the work
2279  */
2280 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2281 {
2282     size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2283 
2284     return postcopy_ram_incoming_init(mis, ram_pages);
2285 }
2286 
2287 /*
2288  * Called in postcopy mode by ram_load().
2289  * rcu_read_lock is taken prior to this being called.
2290  */
2291 static int ram_load_postcopy(QEMUFile *f)
2292 {
2293     int flags = 0, ret = 0;
2294     bool place_needed = false;
2295     bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE;
2296     MigrationIncomingState *mis = migration_incoming_get_current();
2297     /* Temporary page that is later 'placed' */
2298     void *postcopy_host_page = postcopy_get_tmp_page(mis);
2299     void *last_host = NULL;
2300     bool all_zero = false;
2301 
2302     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2303         ram_addr_t addr;
2304         void *host = NULL;
2305         void *page_buffer = NULL;
2306         void *place_source = NULL;
2307         uint8_t ch;
2308 
2309         addr = qemu_get_be64(f);
2310         flags = addr & ~TARGET_PAGE_MASK;
2311         addr &= TARGET_PAGE_MASK;
2312 
2313         trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2314         place_needed = false;
2315         if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
2316             RAMBlock *block = ram_block_from_stream(f, flags);
2317 
2318             host = host_from_ram_block_offset(block, addr);
2319             if (!host) {
2320                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2321                 ret = -EINVAL;
2322                 break;
2323             }
2324             page_buffer = host;
2325             /*
2326              * Postcopy requires that we place whole host pages atomically.
2327              * To make it atomic, the data is read into a temporary page
2328              * that's moved into place later.
2329              * The migration protocol uses,  possibly smaller, target-pages
2330              * however the source ensures it always sends all the components
2331              * of a host page in order.
2332              */
2333             page_buffer = postcopy_host_page +
2334                           ((uintptr_t)host & ~qemu_host_page_mask);
2335             /* If all TP are zero then we can optimise the place */
2336             if (!((uintptr_t)host & ~qemu_host_page_mask)) {
2337                 all_zero = true;
2338             } else {
2339                 /* not the 1st TP within the HP */
2340                 if (host != (last_host + TARGET_PAGE_SIZE)) {
2341                     error_report("Non-sequential target page %p/%p",
2342                                   host, last_host);
2343                     ret = -EINVAL;
2344                     break;
2345                 }
2346             }
2347 
2348 
2349             /*
2350              * If it's the last part of a host page then we place the host
2351              * page
2352              */
2353             place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2354                                      ~qemu_host_page_mask) == 0;
2355             place_source = postcopy_host_page;
2356         }
2357         last_host = host;
2358 
2359         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2360         case RAM_SAVE_FLAG_COMPRESS:
2361             ch = qemu_get_byte(f);
2362             memset(page_buffer, ch, TARGET_PAGE_SIZE);
2363             if (ch) {
2364                 all_zero = false;
2365             }
2366             break;
2367 
2368         case RAM_SAVE_FLAG_PAGE:
2369             all_zero = false;
2370             if (!place_needed || !matching_page_sizes) {
2371                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2372             } else {
2373                 /* Avoids the qemu_file copy during postcopy, which is
2374                  * going to do a copy later; can only do it when we
2375                  * do this read in one go (matching page sizes)
2376                  */
2377                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2378                                          TARGET_PAGE_SIZE);
2379             }
2380             break;
2381         case RAM_SAVE_FLAG_EOS:
2382             /* normal exit */
2383             break;
2384         default:
2385             error_report("Unknown combination of migration flags: %#x"
2386                          " (postcopy mode)", flags);
2387             ret = -EINVAL;
2388         }
2389 
2390         if (place_needed) {
2391             /* This gets called at the last target page in the host page */
2392             if (all_zero) {
2393                 ret = postcopy_place_page_zero(mis,
2394                                                host + TARGET_PAGE_SIZE -
2395                                                qemu_host_page_size);
2396             } else {
2397                 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE -
2398                                                qemu_host_page_size,
2399                                                place_source);
2400             }
2401         }
2402         if (!ret) {
2403             ret = qemu_file_get_error(f);
2404         }
2405     }
2406 
2407     return ret;
2408 }
2409 
2410 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2411 {
2412     int flags = 0, ret = 0;
2413     static uint64_t seq_iter;
2414     int len = 0;
2415     /*
2416      * If system is running in postcopy mode, page inserts to host memory must
2417      * be atomic
2418      */
2419     bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2420 
2421     seq_iter++;
2422 
2423     if (version_id != 4) {
2424         ret = -EINVAL;
2425     }
2426 
2427     /* This RCU critical section can be very long running.
2428      * When RCU reclaims in the code start to become numerous,
2429      * it will be necessary to reduce the granularity of this
2430      * critical section.
2431      */
2432     rcu_read_lock();
2433 
2434     if (postcopy_running) {
2435         ret = ram_load_postcopy(f);
2436     }
2437 
2438     while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2439         ram_addr_t addr, total_ram_bytes;
2440         void *host = NULL;
2441         uint8_t ch;
2442 
2443         addr = qemu_get_be64(f);
2444         flags = addr & ~TARGET_PAGE_MASK;
2445         addr &= TARGET_PAGE_MASK;
2446 
2447         if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2448                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2449             RAMBlock *block = ram_block_from_stream(f, flags);
2450 
2451             host = host_from_ram_block_offset(block, addr);
2452             if (!host) {
2453                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2454                 ret = -EINVAL;
2455                 break;
2456             }
2457         }
2458 
2459         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2460         case RAM_SAVE_FLAG_MEM_SIZE:
2461             /* Synchronize RAM block list */
2462             total_ram_bytes = addr;
2463             while (!ret && total_ram_bytes) {
2464                 RAMBlock *block;
2465                 char id[256];
2466                 ram_addr_t length;
2467 
2468                 len = qemu_get_byte(f);
2469                 qemu_get_buffer(f, (uint8_t *)id, len);
2470                 id[len] = 0;
2471                 length = qemu_get_be64(f);
2472 
2473                 block = qemu_ram_block_by_name(id);
2474                 if (block) {
2475                     if (length != block->used_length) {
2476                         Error *local_err = NULL;
2477 
2478                         ret = qemu_ram_resize(block->offset, length,
2479                                               &local_err);
2480                         if (local_err) {
2481                             error_report_err(local_err);
2482                         }
2483                     }
2484                     ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2485                                           block->idstr);
2486                 } else {
2487                     error_report("Unknown ramblock \"%s\", cannot "
2488                                  "accept migration", id);
2489                     ret = -EINVAL;
2490                 }
2491 
2492                 total_ram_bytes -= length;
2493             }
2494             break;
2495 
2496         case RAM_SAVE_FLAG_COMPRESS:
2497             ch = qemu_get_byte(f);
2498             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2499             break;
2500 
2501         case RAM_SAVE_FLAG_PAGE:
2502             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2503             break;
2504 
2505         case RAM_SAVE_FLAG_COMPRESS_PAGE:
2506             len = qemu_get_be32(f);
2507             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2508                 error_report("Invalid compressed data length: %d", len);
2509                 ret = -EINVAL;
2510                 break;
2511             }
2512             decompress_data_with_multi_threads(f, host, len);
2513             break;
2514 
2515         case RAM_SAVE_FLAG_XBZRLE:
2516             if (load_xbzrle(f, addr, host) < 0) {
2517                 error_report("Failed to decompress XBZRLE page at "
2518                              RAM_ADDR_FMT, addr);
2519                 ret = -EINVAL;
2520                 break;
2521             }
2522             break;
2523         case RAM_SAVE_FLAG_EOS:
2524             /* normal exit */
2525             break;
2526         default:
2527             if (flags & RAM_SAVE_FLAG_HOOK) {
2528                 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2529             } else {
2530                 error_report("Unknown combination of migration flags: %#x",
2531                              flags);
2532                 ret = -EINVAL;
2533             }
2534         }
2535         if (!ret) {
2536             ret = qemu_file_get_error(f);
2537         }
2538     }
2539 
2540     rcu_read_unlock();
2541     DPRINTF("Completed load of VM with exit code %d seq iteration "
2542             "%" PRIu64 "\n", ret, seq_iter);
2543     return ret;
2544 }
2545 
2546 static SaveVMHandlers savevm_ram_handlers = {
2547     .save_live_setup = ram_save_setup,
2548     .save_live_iterate = ram_save_iterate,
2549     .save_live_complete_postcopy = ram_save_complete,
2550     .save_live_complete_precopy = ram_save_complete,
2551     .save_live_pending = ram_save_pending,
2552     .load_state = ram_load,
2553     .cleanup = ram_migration_cleanup,
2554 };
2555 
2556 void ram_mig_init(void)
2557 {
2558     qemu_mutex_init(&XBZRLE.lock);
2559     register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
2560 }
2561