xref: /qemu/migration/rdma.c (revision 3cc72cdb)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
42 
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
44 
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
48 
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
50 
51 /*
52  * This is only for non-live state being migrated.
53  * Instead of RDMA_WRITE messages, we use RDMA_SEND
54  * messages for that state, which requires a different
55  * delivery design than main memory.
56  */
57 #define RDMA_SEND_INCREMENT 32768
58 
59 /*
60  * Maximum size infiniband SEND message
61  */
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
64 
65 #define RDMA_CONTROL_VERSION_CURRENT 1
66 /*
67  * Capabilities for negotiation.
68  */
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
70 
71 /*
72  * Add the other flags above to this list of known capabilities
73  * as they are introduced.
74  */
75 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
76 
77 /*
78  * A work request ID is 64-bits and we split up these bits
79  * into 3 parts:
80  *
81  * bits 0-15 : type of control message, 2^16
82  * bits 16-29: ram block index, 2^14
83  * bits 30-63: ram block chunk number, 2^34
84  *
85  * The last two bit ranges are only used for RDMA writes,
86  * in order to track their completion and potentially
87  * also track unregistration status of the message.
88  */
89 #define RDMA_WRID_TYPE_SHIFT  0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
92 
93 #define RDMA_WRID_TYPE_MASK \
94     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
95 
96 #define RDMA_WRID_BLOCK_MASK \
97     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
98 
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
100 
101 /*
102  * RDMA migration protocol:
103  * 1. RDMA Writes (data messages, i.e. RAM)
104  * 2. IB Send/Recv (control channel messages)
105  */
106 enum {
107     RDMA_WRID_NONE = 0,
108     RDMA_WRID_RDMA_WRITE = 1,
109     RDMA_WRID_SEND_CONTROL = 2000,
110     RDMA_WRID_RECV_CONTROL = 4000,
111 };
112 
113 /*
114  * Work request IDs for IB SEND messages only (not RDMA writes).
115  * This is used by the migration protocol to transmit
116  * control messages (such as device state and registration commands)
117  *
118  * We could use more WRs, but we have enough for now.
119  */
120 enum {
121     RDMA_WRID_READY = 0,
122     RDMA_WRID_DATA,
123     RDMA_WRID_CONTROL,
124     RDMA_WRID_MAX,
125 };
126 
127 /*
128  * SEND/RECV IB Control Messages.
129  */
130 enum {
131     RDMA_CONTROL_NONE = 0,
132     RDMA_CONTROL_ERROR,
133     RDMA_CONTROL_READY,               /* ready to receive */
134     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
135     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
136     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
137     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
138     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
139     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
140     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
141     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
142     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
143 };
144 
145 
146 /*
147  * Memory and MR structures used to represent an IB Send/Recv work request.
148  * This is *not* used for RDMA writes, only IB Send/Recv.
149  */
150 typedef struct {
151     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
152     struct   ibv_mr *control_mr;               /* registration metadata */
153     size_t   control_len;                      /* length of the message */
154     uint8_t *control_curr;                     /* start of unconsumed bytes */
155 } RDMAWorkRequestData;
156 
157 /*
158  * Negotiate RDMA capabilities during connection-setup time.
159  */
160 typedef struct {
161     uint32_t version;
162     uint32_t flags;
163 } RDMACapabilities;
164 
165 static void caps_to_network(RDMACapabilities *cap)
166 {
167     cap->version = htonl(cap->version);
168     cap->flags = htonl(cap->flags);
169 }
170 
171 static void network_to_caps(RDMACapabilities *cap)
172 {
173     cap->version = ntohl(cap->version);
174     cap->flags = ntohl(cap->flags);
175 }
176 
177 /*
178  * Representation of a RAMBlock from an RDMA perspective.
179  * This is not transmitted, only local.
180  * This and subsequent structures cannot be linked lists
181  * because we're using a single IB message to transmit
182  * the information. It's small anyway, so a list is overkill.
183  */
184 typedef struct RDMALocalBlock {
185     char          *block_name;
186     uint8_t       *local_host_addr; /* local virtual address */
187     uint64_t       remote_host_addr; /* remote virtual address */
188     uint64_t       offset;
189     uint64_t       length;
190     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
191     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
192     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
193     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
194     int            index;           /* which block are we */
195     unsigned int   src_index;       /* (Only used on dest) */
196     bool           is_ram_block;
197     int            nb_chunks;
198     unsigned long *transit_bitmap;
199     unsigned long *unregister_bitmap;
200 } RDMALocalBlock;
201 
202 /*
203  * Also represents a RAMblock, but only on the dest.
204  * This gets transmitted by the dest during connection-time
205  * to the source VM and then is used to populate the
206  * corresponding RDMALocalBlock with
207  * the information needed to perform the actual RDMA.
208  */
209 typedef struct QEMU_PACKED RDMADestBlock {
210     uint64_t remote_host_addr;
211     uint64_t offset;
212     uint64_t length;
213     uint32_t remote_rkey;
214     uint32_t padding;
215 } RDMADestBlock;
216 
217 static const char *control_desc(unsigned int rdma_control)
218 {
219     static const char *strs[] = {
220         [RDMA_CONTROL_NONE] = "NONE",
221         [RDMA_CONTROL_ERROR] = "ERROR",
222         [RDMA_CONTROL_READY] = "READY",
223         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
224         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
225         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
226         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
227         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
228         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
229         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
230         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
231         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
232     };
233 
234     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
235         return "??BAD CONTROL VALUE??";
236     }
237 
238     return strs[rdma_control];
239 }
240 
241 static uint64_t htonll(uint64_t v)
242 {
243     union { uint32_t lv[2]; uint64_t llv; } u;
244     u.lv[0] = htonl(v >> 32);
245     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
246     return u.llv;
247 }
248 
249 static uint64_t ntohll(uint64_t v)
250 {
251     union { uint32_t lv[2]; uint64_t llv; } u;
252     u.llv = v;
253     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
254 }
255 
256 static void dest_block_to_network(RDMADestBlock *db)
257 {
258     db->remote_host_addr = htonll(db->remote_host_addr);
259     db->offset = htonll(db->offset);
260     db->length = htonll(db->length);
261     db->remote_rkey = htonl(db->remote_rkey);
262 }
263 
264 static void network_to_dest_block(RDMADestBlock *db)
265 {
266     db->remote_host_addr = ntohll(db->remote_host_addr);
267     db->offset = ntohll(db->offset);
268     db->length = ntohll(db->length);
269     db->remote_rkey = ntohl(db->remote_rkey);
270 }
271 
272 /*
273  * Virtual address of the above structures used for transmitting
274  * the RAMBlock descriptions at connection-time.
275  * This structure is *not* transmitted.
276  */
277 typedef struct RDMALocalBlocks {
278     int nb_blocks;
279     bool     init;             /* main memory init complete */
280     RDMALocalBlock *block;
281 } RDMALocalBlocks;
282 
283 /*
284  * Main data structure for RDMA state.
285  * While there is only one copy of this structure being allocated right now,
286  * this is the place where one would start if you wanted to consider
287  * having more than one RDMA connection open at the same time.
288  */
289 typedef struct RDMAContext {
290     char *host;
291     int port;
292     char *host_port;
293 
294     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
295 
296     /*
297      * This is used by *_exchange_send() to figure out whether or not
298      * the initial "READY" message has already been received or not.
299      * This is because other functions may potentially poll() and detect
300      * the READY message before send() does, in which case we need to
301      * know if it completed.
302      */
303     int control_ready_expected;
304 
305     /* number of outstanding writes */
306     int nb_sent;
307 
308     /* store info about current buffer so that we can
309        merge it with future sends */
310     uint64_t current_addr;
311     uint64_t current_length;
312     /* index of ram block the current buffer belongs to */
313     int current_index;
314     /* index of the chunk in the current ram block */
315     int current_chunk;
316 
317     bool pin_all;
318 
319     /*
320      * infiniband-specific variables for opening the device
321      * and maintaining connection state and so forth.
322      *
323      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
324      * cm_id->verbs, cm_id->channel, and cm_id->qp.
325      */
326     struct rdma_cm_id *cm_id;               /* connection manager ID */
327     struct rdma_cm_id *listen_id;
328     bool connected;
329 
330     struct ibv_context          *verbs;
331     struct rdma_event_channel   *channel;
332     struct ibv_qp *qp;                      /* queue pair */
333     struct ibv_comp_channel *recv_comp_channel;  /* recv completion channel */
334     struct ibv_comp_channel *send_comp_channel;  /* send completion channel */
335     struct ibv_pd *pd;                      /* protection domain */
336     struct ibv_cq *recv_cq;                 /* recvieve completion queue */
337     struct ibv_cq *send_cq;                 /* send completion queue */
338 
339     /*
340      * If a previous write failed (perhaps because of a failed
341      * memory registration, then do not attempt any future work
342      * and remember the error state.
343      */
344     bool errored;
345     bool error_reported;
346     bool received_error;
347 
348     /*
349      * Description of ram blocks used throughout the code.
350      */
351     RDMALocalBlocks local_ram_blocks;
352     RDMADestBlock  *dest_blocks;
353 
354     /* Index of the next RAMBlock received during block registration */
355     unsigned int    next_src_index;
356 
357     /*
358      * Migration on *destination* started.
359      * Then use coroutine yield function.
360      * Source runs in a thread, so we don't care.
361      */
362     int migration_started_on_destination;
363 
364     int total_registrations;
365     int total_writes;
366 
367     int unregister_current, unregister_next;
368     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
369 
370     GHashTable *blockmap;
371 
372     /* the RDMAContext for return path */
373     struct RDMAContext *return_path;
374     bool is_return_path;
375 } RDMAContext;
376 
377 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
378 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
379 
380 
381 
382 struct QIOChannelRDMA {
383     QIOChannel parent;
384     RDMAContext *rdmain;
385     RDMAContext *rdmaout;
386     QEMUFile *file;
387     bool blocking; /* XXX we don't actually honour this yet */
388 };
389 
390 /*
391  * Main structure for IB Send/Recv control messages.
392  * This gets prepended at the beginning of every Send/Recv.
393  */
394 typedef struct QEMU_PACKED {
395     uint32_t len;     /* Total length of data portion */
396     uint32_t type;    /* which control command to perform */
397     uint32_t repeat;  /* number of commands in data portion of same type */
398     uint32_t padding;
399 } RDMAControlHeader;
400 
401 static void control_to_network(RDMAControlHeader *control)
402 {
403     control->type = htonl(control->type);
404     control->len = htonl(control->len);
405     control->repeat = htonl(control->repeat);
406 }
407 
408 static void network_to_control(RDMAControlHeader *control)
409 {
410     control->type = ntohl(control->type);
411     control->len = ntohl(control->len);
412     control->repeat = ntohl(control->repeat);
413 }
414 
415 /*
416  * Register a single Chunk.
417  * Information sent by the source VM to inform the dest
418  * to register an single chunk of memory before we can perform
419  * the actual RDMA operation.
420  */
421 typedef struct QEMU_PACKED {
422     union QEMU_PACKED {
423         uint64_t current_addr;  /* offset into the ram_addr_t space */
424         uint64_t chunk;         /* chunk to lookup if unregistering */
425     } key;
426     uint32_t current_index; /* which ramblock the chunk belongs to */
427     uint32_t padding;
428     uint64_t chunks;            /* how many sequential chunks to register */
429 } RDMARegister;
430 
431 static bool rdma_errored(RDMAContext *rdma)
432 {
433     if (rdma->errored && !rdma->error_reported) {
434         error_report("RDMA is in an error state waiting migration"
435                      " to abort!");
436         rdma->error_reported = true;
437     }
438     return rdma->errored;
439 }
440 
441 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
442 {
443     RDMALocalBlock *local_block;
444     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
445 
446     if (local_block->is_ram_block) {
447         /*
448          * current_addr as passed in is an address in the local ram_addr_t
449          * space, we need to translate this for the destination
450          */
451         reg->key.current_addr -= local_block->offset;
452         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
453     }
454     reg->key.current_addr = htonll(reg->key.current_addr);
455     reg->current_index = htonl(reg->current_index);
456     reg->chunks = htonll(reg->chunks);
457 }
458 
459 static void network_to_register(RDMARegister *reg)
460 {
461     reg->key.current_addr = ntohll(reg->key.current_addr);
462     reg->current_index = ntohl(reg->current_index);
463     reg->chunks = ntohll(reg->chunks);
464 }
465 
466 typedef struct QEMU_PACKED {
467     uint32_t value;     /* if zero, we will madvise() */
468     uint32_t block_idx; /* which ram block index */
469     uint64_t offset;    /* Address in remote ram_addr_t space */
470     uint64_t length;    /* length of the chunk */
471 } RDMACompress;
472 
473 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
474 {
475     comp->value = htonl(comp->value);
476     /*
477      * comp->offset as passed in is an address in the local ram_addr_t
478      * space, we need to translate this for the destination
479      */
480     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
481     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
482     comp->block_idx = htonl(comp->block_idx);
483     comp->offset = htonll(comp->offset);
484     comp->length = htonll(comp->length);
485 }
486 
487 static void network_to_compress(RDMACompress *comp)
488 {
489     comp->value = ntohl(comp->value);
490     comp->block_idx = ntohl(comp->block_idx);
491     comp->offset = ntohll(comp->offset);
492     comp->length = ntohll(comp->length);
493 }
494 
495 /*
496  * The result of the dest's memory registration produces an "rkey"
497  * which the source VM must reference in order to perform
498  * the RDMA operation.
499  */
500 typedef struct QEMU_PACKED {
501     uint32_t rkey;
502     uint32_t padding;
503     uint64_t host_addr;
504 } RDMARegisterResult;
505 
506 static void result_to_network(RDMARegisterResult *result)
507 {
508     result->rkey = htonl(result->rkey);
509     result->host_addr = htonll(result->host_addr);
510 };
511 
512 static void network_to_result(RDMARegisterResult *result)
513 {
514     result->rkey = ntohl(result->rkey);
515     result->host_addr = ntohll(result->host_addr);
516 };
517 
518 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
519                                    uint8_t *data, RDMAControlHeader *resp,
520                                    int *resp_idx,
521                                    int (*callback)(RDMAContext *rdma,
522                                                    Error **errp),
523                                    Error **errp);
524 
525 static inline uint64_t ram_chunk_index(const uint8_t *start,
526                                        const uint8_t *host)
527 {
528     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
529 }
530 
531 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
532                                        uint64_t i)
533 {
534     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
535                                   (i << RDMA_REG_CHUNK_SHIFT));
536 }
537 
538 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
539                                      uint64_t i)
540 {
541     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
542                                          (1UL << RDMA_REG_CHUNK_SHIFT);
543 
544     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
545         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
546     }
547 
548     return result;
549 }
550 
551 static void rdma_add_block(RDMAContext *rdma, const char *block_name,
552                            void *host_addr,
553                            ram_addr_t block_offset, uint64_t length)
554 {
555     RDMALocalBlocks *local = &rdma->local_ram_blocks;
556     RDMALocalBlock *block;
557     RDMALocalBlock *old = local->block;
558 
559     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
560 
561     if (local->nb_blocks) {
562         int x;
563 
564         if (rdma->blockmap) {
565             for (x = 0; x < local->nb_blocks; x++) {
566                 g_hash_table_remove(rdma->blockmap,
567                                     (void *)(uintptr_t)old[x].offset);
568                 g_hash_table_insert(rdma->blockmap,
569                                     (void *)(uintptr_t)old[x].offset,
570                                     &local->block[x]);
571             }
572         }
573         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
574         g_free(old);
575     }
576 
577     block = &local->block[local->nb_blocks];
578 
579     block->block_name = g_strdup(block_name);
580     block->local_host_addr = host_addr;
581     block->offset = block_offset;
582     block->length = length;
583     block->index = local->nb_blocks;
584     block->src_index = ~0U; /* Filled in by the receipt of the block list */
585     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
586     block->transit_bitmap = bitmap_new(block->nb_chunks);
587     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
588     block->unregister_bitmap = bitmap_new(block->nb_chunks);
589     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
590     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
591 
592     block->is_ram_block = local->init ? false : true;
593 
594     if (rdma->blockmap) {
595         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
596     }
597 
598     trace_rdma_add_block(block_name, local->nb_blocks,
599                          (uintptr_t) block->local_host_addr,
600                          block->offset, block->length,
601                          (uintptr_t) (block->local_host_addr + block->length),
602                          BITS_TO_LONGS(block->nb_chunks) *
603                              sizeof(unsigned long) * 8,
604                          block->nb_chunks);
605 
606     local->nb_blocks++;
607 }
608 
609 /*
610  * Memory regions need to be registered with the device and queue pairs setup
611  * in advanced before the migration starts. This tells us where the RAM blocks
612  * are so that we can register them individually.
613  */
614 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
615 {
616     const char *block_name = qemu_ram_get_idstr(rb);
617     void *host_addr = qemu_ram_get_host_addr(rb);
618     ram_addr_t block_offset = qemu_ram_get_offset(rb);
619     ram_addr_t length = qemu_ram_get_used_length(rb);
620     rdma_add_block(opaque, block_name, host_addr, block_offset, length);
621     return 0;
622 }
623 
624 /*
625  * Identify the RAMBlocks and their quantity. They will be references to
626  * identify chunk boundaries inside each RAMBlock and also be referenced
627  * during dynamic page registration.
628  */
629 static void qemu_rdma_init_ram_blocks(RDMAContext *rdma)
630 {
631     RDMALocalBlocks *local = &rdma->local_ram_blocks;
632     int ret;
633 
634     assert(rdma->blockmap == NULL);
635     memset(local, 0, sizeof *local);
636     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
637     assert(!ret);
638     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
639     rdma->dest_blocks = g_new0(RDMADestBlock,
640                                rdma->local_ram_blocks.nb_blocks);
641     local->init = true;
642 }
643 
644 /*
645  * Note: If used outside of cleanup, the caller must ensure that the destination
646  * block structures are also updated
647  */
648 static void rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
649 {
650     RDMALocalBlocks *local = &rdma->local_ram_blocks;
651     RDMALocalBlock *old = local->block;
652     int x;
653 
654     if (rdma->blockmap) {
655         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
656     }
657     if (block->pmr) {
658         int j;
659 
660         for (j = 0; j < block->nb_chunks; j++) {
661             if (!block->pmr[j]) {
662                 continue;
663             }
664             ibv_dereg_mr(block->pmr[j]);
665             rdma->total_registrations--;
666         }
667         g_free(block->pmr);
668         block->pmr = NULL;
669     }
670 
671     if (block->mr) {
672         ibv_dereg_mr(block->mr);
673         rdma->total_registrations--;
674         block->mr = NULL;
675     }
676 
677     g_free(block->transit_bitmap);
678     block->transit_bitmap = NULL;
679 
680     g_free(block->unregister_bitmap);
681     block->unregister_bitmap = NULL;
682 
683     g_free(block->remote_keys);
684     block->remote_keys = NULL;
685 
686     g_free(block->block_name);
687     block->block_name = NULL;
688 
689     if (rdma->blockmap) {
690         for (x = 0; x < local->nb_blocks; x++) {
691             g_hash_table_remove(rdma->blockmap,
692                                 (void *)(uintptr_t)old[x].offset);
693         }
694     }
695 
696     if (local->nb_blocks > 1) {
697 
698         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
699 
700         if (block->index) {
701             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
702         }
703 
704         if (block->index < (local->nb_blocks - 1)) {
705             memcpy(local->block + block->index, old + (block->index + 1),
706                 sizeof(RDMALocalBlock) *
707                     (local->nb_blocks - (block->index + 1)));
708             for (x = block->index; x < local->nb_blocks - 1; x++) {
709                 local->block[x].index--;
710             }
711         }
712     } else {
713         assert(block == local->block);
714         local->block = NULL;
715     }
716 
717     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
718                            block->offset, block->length,
719                             (uintptr_t)(block->local_host_addr + block->length),
720                            BITS_TO_LONGS(block->nb_chunks) *
721                                sizeof(unsigned long) * 8, block->nb_chunks);
722 
723     g_free(old);
724 
725     local->nb_blocks--;
726 
727     if (local->nb_blocks && rdma->blockmap) {
728         for (x = 0; x < local->nb_blocks; x++) {
729             g_hash_table_insert(rdma->blockmap,
730                                 (void *)(uintptr_t)local->block[x].offset,
731                                 &local->block[x]);
732         }
733     }
734 }
735 
736 /*
737  * Trace RDMA device open, with device details.
738  */
739 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
740 {
741     struct ibv_port_attr port;
742 
743     if (ibv_query_port(verbs, 1, &port)) {
744         trace_qemu_rdma_dump_id_failed(who);
745         return;
746     }
747 
748     trace_qemu_rdma_dump_id(who,
749                 verbs->device->name,
750                 verbs->device->dev_name,
751                 verbs->device->dev_path,
752                 verbs->device->ibdev_path,
753                 port.link_layer,
754                 port.link_layer == IBV_LINK_LAYER_INFINIBAND ? "Infiniband"
755                 : port.link_layer == IBV_LINK_LAYER_ETHERNET ? "Ethernet"
756                 : "Unknown");
757 }
758 
759 /*
760  * Trace RDMA gid addressing information.
761  * Useful for understanding the RDMA device hierarchy in the kernel.
762  */
763 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
764 {
765     char sgid[33];
766     char dgid[33];
767     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
768     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
769     trace_qemu_rdma_dump_gid(who, sgid, dgid);
770 }
771 
772 /*
773  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
774  * We will try the next addrinfo struct, and fail if there are
775  * no other valid addresses to bind against.
776  *
777  * If user is listening on '[::]', then we will not have a opened a device
778  * yet and have no way of verifying if the device is RoCE or not.
779  *
780  * In this case, the source VM will throw an error for ALL types of
781  * connections (both IPv4 and IPv6) if the destination machine does not have
782  * a regular infiniband network available for use.
783  *
784  * The only way to guarantee that an error is thrown for broken kernels is
785  * for the management software to choose a *specific* interface at bind time
786  * and validate what time of hardware it is.
787  *
788  * Unfortunately, this puts the user in a fix:
789  *
790  *  If the source VM connects with an IPv4 address without knowing that the
791  *  destination has bound to '[::]' the migration will unconditionally fail
792  *  unless the management software is explicitly listening on the IPv4
793  *  address while using a RoCE-based device.
794  *
795  *  If the source VM connects with an IPv6 address, then we're OK because we can
796  *  throw an error on the source (and similarly on the destination).
797  *
798  *  But in mixed environments, this will be broken for a while until it is fixed
799  *  inside linux.
800  *
801  * We do provide a *tiny* bit of help in this function: We can list all of the
802  * devices in the system and check to see if all the devices are RoCE or
803  * Infiniband.
804  *
805  * If we detect that we have a *pure* RoCE environment, then we can safely
806  * thrown an error even if the management software has specified '[::]' as the
807  * bind address.
808  *
809  * However, if there is are multiple hetergeneous devices, then we cannot make
810  * this assumption and the user just has to be sure they know what they are
811  * doing.
812  *
813  * Patches are being reviewed on linux-rdma.
814  */
815 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
816 {
817     /* This bug only exists in linux, to our knowledge. */
818 #ifdef CONFIG_LINUX
819     struct ibv_port_attr port_attr;
820 
821     /*
822      * Verbs are only NULL if management has bound to '[::]'.
823      *
824      * Let's iterate through all the devices and see if there any pure IB
825      * devices (non-ethernet).
826      *
827      * If not, then we can safely proceed with the migration.
828      * Otherwise, there are no guarantees until the bug is fixed in linux.
829      */
830     if (!verbs) {
831         int num_devices, x;
832         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
833         bool roce_found = false;
834         bool ib_found = false;
835 
836         for (x = 0; x < num_devices; x++) {
837             verbs = ibv_open_device(dev_list[x]);
838             /*
839              * ibv_open_device() is not documented to set errno.  If
840              * it does, it's somebody else's doc bug.  If it doesn't,
841              * the use of errno below is wrong.
842              * TODO Find out whether ibv_open_device() sets errno.
843              */
844             if (!verbs) {
845                 if (errno == EPERM) {
846                     continue;
847                 } else {
848                     error_setg_errno(errp, errno,
849                                      "could not open RDMA device context");
850                     return -1;
851                 }
852             }
853 
854             if (ibv_query_port(verbs, 1, &port_attr)) {
855                 ibv_close_device(verbs);
856                 error_setg(errp,
857                            "RDMA ERROR: Could not query initial IB port");
858                 return -1;
859             }
860 
861             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
862                 ib_found = true;
863             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
864                 roce_found = true;
865             }
866 
867             ibv_close_device(verbs);
868 
869         }
870 
871         if (roce_found) {
872             if (ib_found) {
873                 warn_report("migrations may fail:"
874                             " IPv6 over RoCE / iWARP in linux"
875                             " is broken. But since you appear to have a"
876                             " mixed RoCE / IB environment, be sure to only"
877                             " migrate over the IB fabric until the kernel "
878                             " fixes the bug.");
879             } else {
880                 error_setg(errp, "RDMA ERROR: "
881                            "You only have RoCE / iWARP devices in your systems"
882                            " and your management software has specified '[::]'"
883                            ", but IPv6 over RoCE / iWARP is not supported in Linux.");
884                 return -1;
885             }
886         }
887 
888         return 0;
889     }
890 
891     /*
892      * If we have a verbs context, that means that some other than '[::]' was
893      * used by the management software for binding. In which case we can
894      * actually warn the user about a potentially broken kernel.
895      */
896 
897     /* IB ports start with 1, not 0 */
898     if (ibv_query_port(verbs, 1, &port_attr)) {
899         error_setg(errp, "RDMA ERROR: Could not query initial IB port");
900         return -1;
901     }
902 
903     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
904         error_setg(errp, "RDMA ERROR: "
905                    "Linux kernel's RoCE / iWARP does not support IPv6 "
906                    "(but patches on linux-rdma in progress)");
907         return -1;
908     }
909 
910 #endif
911 
912     return 0;
913 }
914 
915 /*
916  * Figure out which RDMA device corresponds to the requested IP hostname
917  * Also create the initial connection manager identifiers for opening
918  * the connection.
919  */
920 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
921 {
922     Error *err = NULL;
923     int ret;
924     struct rdma_addrinfo *res;
925     char port_str[16];
926     struct rdma_cm_event *cm_event;
927     char ip[40] = "unknown";
928     struct rdma_addrinfo *e;
929 
930     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
931         error_setg(errp, "RDMA ERROR: RDMA hostname has not been set");
932         return -1;
933     }
934 
935     /* create CM channel */
936     rdma->channel = rdma_create_event_channel();
937     if (!rdma->channel) {
938         error_setg(errp, "RDMA ERROR: could not create CM channel");
939         return -1;
940     }
941 
942     /* create CM id */
943     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
944     if (ret < 0) {
945         error_setg(errp, "RDMA ERROR: could not create channel id");
946         goto err_resolve_create_id;
947     }
948 
949     snprintf(port_str, 16, "%d", rdma->port);
950     port_str[15] = '\0';
951 
952     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
953     if (ret) {
954         error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
955                    rdma->host);
956         goto err_resolve_get_addr;
957     }
958 
959     /* Try all addresses, saving the first error in @err */
960     for (e = res; e != NULL; e = e->ai_next) {
961         Error **local_errp = err ? NULL : &err;
962 
963         inet_ntop(e->ai_family,
964             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
965         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
966 
967         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
968                 RDMA_RESOLVE_TIMEOUT_MS);
969         if (ret >= 0) {
970             if (e->ai_family == AF_INET6) {
971                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs,
972                                                    local_errp);
973                 if (ret < 0) {
974                     continue;
975                 }
976             }
977             error_free(err);
978             goto route;
979         }
980     }
981 
982     rdma_freeaddrinfo(res);
983     if (err) {
984         error_propagate(errp, err);
985     } else {
986         error_setg(errp, "RDMA ERROR: could not resolve address %s",
987                    rdma->host);
988     }
989     goto err_resolve_get_addr;
990 
991 route:
992     rdma_freeaddrinfo(res);
993     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
994 
995     ret = rdma_get_cm_event(rdma->channel, &cm_event);
996     if (ret < 0) {
997         error_setg(errp, "RDMA ERROR: could not perform event_addr_resolved");
998         goto err_resolve_get_addr;
999     }
1000 
1001     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1002         error_setg(errp,
1003                    "RDMA ERROR: result not equal to event_addr_resolved %s",
1004                    rdma_event_str(cm_event->event));
1005         rdma_ack_cm_event(cm_event);
1006         goto err_resolve_get_addr;
1007     }
1008     rdma_ack_cm_event(cm_event);
1009 
1010     /* resolve route */
1011     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1012     if (ret < 0) {
1013         error_setg(errp, "RDMA ERROR: could not resolve rdma route");
1014         goto err_resolve_get_addr;
1015     }
1016 
1017     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1018     if (ret < 0) {
1019         error_setg(errp, "RDMA ERROR: could not perform event_route_resolved");
1020         goto err_resolve_get_addr;
1021     }
1022     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1023         error_setg(errp, "RDMA ERROR: "
1024                    "result not equal to event_route_resolved: %s",
1025                    rdma_event_str(cm_event->event));
1026         rdma_ack_cm_event(cm_event);
1027         goto err_resolve_get_addr;
1028     }
1029     rdma_ack_cm_event(cm_event);
1030     rdma->verbs = rdma->cm_id->verbs;
1031     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1032     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1033     return 0;
1034 
1035 err_resolve_get_addr:
1036     rdma_destroy_id(rdma->cm_id);
1037     rdma->cm_id = NULL;
1038 err_resolve_create_id:
1039     rdma_destroy_event_channel(rdma->channel);
1040     rdma->channel = NULL;
1041     return -1;
1042 }
1043 
1044 /*
1045  * Create protection domain and completion queues
1046  */
1047 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma, Error **errp)
1048 {
1049     /* allocate pd */
1050     rdma->pd = ibv_alloc_pd(rdma->verbs);
1051     if (!rdma->pd) {
1052         error_setg(errp, "failed to allocate protection domain");
1053         return -1;
1054     }
1055 
1056     /* create receive completion channel */
1057     rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1058     if (!rdma->recv_comp_channel) {
1059         error_setg(errp, "failed to allocate receive completion channel");
1060         goto err_alloc_pd_cq;
1061     }
1062 
1063     /*
1064      * Completion queue can be filled by read work requests.
1065      */
1066     rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1067                                   NULL, rdma->recv_comp_channel, 0);
1068     if (!rdma->recv_cq) {
1069         error_setg(errp, "failed to allocate receive completion queue");
1070         goto err_alloc_pd_cq;
1071     }
1072 
1073     /* create send completion channel */
1074     rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1075     if (!rdma->send_comp_channel) {
1076         error_setg(errp, "failed to allocate send completion channel");
1077         goto err_alloc_pd_cq;
1078     }
1079 
1080     rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1081                                   NULL, rdma->send_comp_channel, 0);
1082     if (!rdma->send_cq) {
1083         error_setg(errp, "failed to allocate send completion queue");
1084         goto err_alloc_pd_cq;
1085     }
1086 
1087     return 0;
1088 
1089 err_alloc_pd_cq:
1090     if (rdma->pd) {
1091         ibv_dealloc_pd(rdma->pd);
1092     }
1093     if (rdma->recv_comp_channel) {
1094         ibv_destroy_comp_channel(rdma->recv_comp_channel);
1095     }
1096     if (rdma->send_comp_channel) {
1097         ibv_destroy_comp_channel(rdma->send_comp_channel);
1098     }
1099     if (rdma->recv_cq) {
1100         ibv_destroy_cq(rdma->recv_cq);
1101         rdma->recv_cq = NULL;
1102     }
1103     rdma->pd = NULL;
1104     rdma->recv_comp_channel = NULL;
1105     rdma->send_comp_channel = NULL;
1106     return -1;
1107 
1108 }
1109 
1110 /*
1111  * Create queue pairs.
1112  */
1113 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1114 {
1115     struct ibv_qp_init_attr attr = { 0 };
1116     int ret;
1117 
1118     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1119     attr.cap.max_recv_wr = 3;
1120     attr.cap.max_send_sge = 1;
1121     attr.cap.max_recv_sge = 1;
1122     attr.send_cq = rdma->send_cq;
1123     attr.recv_cq = rdma->recv_cq;
1124     attr.qp_type = IBV_QPT_RC;
1125 
1126     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1127     if (ret < 0) {
1128         return -1;
1129     }
1130 
1131     rdma->qp = rdma->cm_id->qp;
1132     return 0;
1133 }
1134 
1135 /* Check whether On-Demand Paging is supported by RDAM device */
1136 static bool rdma_support_odp(struct ibv_context *dev)
1137 {
1138     struct ibv_device_attr_ex attr = {0};
1139     int ret = ibv_query_device_ex(dev, NULL, &attr);
1140     if (ret) {
1141         return false;
1142     }
1143 
1144     if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1145         return true;
1146     }
1147 
1148     return false;
1149 }
1150 
1151 /*
1152  * ibv_advise_mr to avoid RNR NAK error as far as possible.
1153  * The responder mr registering with ODP will sent RNR NAK back to
1154  * the requester in the face of the page fault.
1155  */
1156 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1157                                          uint32_t len,  uint32_t lkey,
1158                                          const char *name, bool wr)
1159 {
1160 #ifdef HAVE_IBV_ADVISE_MR
1161     int ret;
1162     int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1163                  IBV_ADVISE_MR_ADVICE_PREFETCH;
1164     struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1165 
1166     ret = ibv_advise_mr(pd, advice,
1167                         IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1168     /* ignore the error */
1169     trace_qemu_rdma_advise_mr(name, len, addr, strerror(ret));
1170 #endif
1171 }
1172 
1173 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma, Error **errp)
1174 {
1175     int i;
1176     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1177 
1178     for (i = 0; i < local->nb_blocks; i++) {
1179         int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1180 
1181         local->block[i].mr =
1182             ibv_reg_mr(rdma->pd,
1183                     local->block[i].local_host_addr,
1184                     local->block[i].length, access
1185                     );
1186         /*
1187          * ibv_reg_mr() is not documented to set errno.  If it does,
1188          * it's somebody else's doc bug.  If it doesn't, the use of
1189          * errno below is wrong.
1190          * TODO Find out whether ibv_reg_mr() sets errno.
1191          */
1192         if (!local->block[i].mr &&
1193             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1194                 access |= IBV_ACCESS_ON_DEMAND;
1195                 /* register ODP mr */
1196                 local->block[i].mr =
1197                     ibv_reg_mr(rdma->pd,
1198                                local->block[i].local_host_addr,
1199                                local->block[i].length, access);
1200                 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1201 
1202                 if (local->block[i].mr) {
1203                     qemu_rdma_advise_prefetch_mr(rdma->pd,
1204                                     (uintptr_t)local->block[i].local_host_addr,
1205                                     local->block[i].length,
1206                                     local->block[i].mr->lkey,
1207                                     local->block[i].block_name,
1208                                     true);
1209                 }
1210         }
1211 
1212         if (!local->block[i].mr) {
1213             error_setg_errno(errp, errno,
1214                              "Failed to register local dest ram block!");
1215             goto err;
1216         }
1217         rdma->total_registrations++;
1218     }
1219 
1220     return 0;
1221 
1222 err:
1223     for (i--; i >= 0; i--) {
1224         ibv_dereg_mr(local->block[i].mr);
1225         local->block[i].mr = NULL;
1226         rdma->total_registrations--;
1227     }
1228 
1229     return -1;
1230 
1231 }
1232 
1233 /*
1234  * Find the ram block that corresponds to the page requested to be
1235  * transmitted by QEMU.
1236  *
1237  * Once the block is found, also identify which 'chunk' within that
1238  * block that the page belongs to.
1239  */
1240 static void qemu_rdma_search_ram_block(RDMAContext *rdma,
1241                                        uintptr_t block_offset,
1242                                        uint64_t offset,
1243                                        uint64_t length,
1244                                        uint64_t *block_index,
1245                                        uint64_t *chunk_index)
1246 {
1247     uint64_t current_addr = block_offset + offset;
1248     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1249                                                 (void *) block_offset);
1250     assert(block);
1251     assert(current_addr >= block->offset);
1252     assert((current_addr + length) <= (block->offset + block->length));
1253 
1254     *block_index = block->index;
1255     *chunk_index = ram_chunk_index(block->local_host_addr,
1256                 block->local_host_addr + (current_addr - block->offset));
1257 }
1258 
1259 /*
1260  * Register a chunk with IB. If the chunk was already registered
1261  * previously, then skip.
1262  *
1263  * Also return the keys associated with the registration needed
1264  * to perform the actual RDMA operation.
1265  */
1266 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1267         RDMALocalBlock *block, uintptr_t host_addr,
1268         uint32_t *lkey, uint32_t *rkey, int chunk,
1269         uint8_t *chunk_start, uint8_t *chunk_end)
1270 {
1271     if (block->mr) {
1272         if (lkey) {
1273             *lkey = block->mr->lkey;
1274         }
1275         if (rkey) {
1276             *rkey = block->mr->rkey;
1277         }
1278         return 0;
1279     }
1280 
1281     /* allocate memory to store chunk MRs */
1282     if (!block->pmr) {
1283         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1284     }
1285 
1286     /*
1287      * If 'rkey', then we're the destination, so grant access to the source.
1288      *
1289      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1290      */
1291     if (!block->pmr[chunk]) {
1292         uint64_t len = chunk_end - chunk_start;
1293         int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1294                      0;
1295 
1296         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1297 
1298         block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1299         /*
1300          * ibv_reg_mr() is not documented to set errno.  If it does,
1301          * it's somebody else's doc bug.  If it doesn't, the use of
1302          * errno below is wrong.
1303          * TODO Find out whether ibv_reg_mr() sets errno.
1304          */
1305         if (!block->pmr[chunk] &&
1306             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1307             access |= IBV_ACCESS_ON_DEMAND;
1308             /* register ODP mr */
1309             block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1310             trace_qemu_rdma_register_odp_mr(block->block_name);
1311 
1312             if (block->pmr[chunk]) {
1313                 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1314                                             len, block->pmr[chunk]->lkey,
1315                                             block->block_name, rkey);
1316 
1317             }
1318         }
1319     }
1320     if (!block->pmr[chunk]) {
1321         return -1;
1322     }
1323     rdma->total_registrations++;
1324 
1325     if (lkey) {
1326         *lkey = block->pmr[chunk]->lkey;
1327     }
1328     if (rkey) {
1329         *rkey = block->pmr[chunk]->rkey;
1330     }
1331     return 0;
1332 }
1333 
1334 /*
1335  * Register (at connection time) the memory used for control
1336  * channel messages.
1337  */
1338 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1339 {
1340     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1341             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1342             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1343     if (rdma->wr_data[idx].control_mr) {
1344         rdma->total_registrations++;
1345         return 0;
1346     }
1347     return -1;
1348 }
1349 
1350 /*
1351  * Perform a non-optimized memory unregistration after every transfer
1352  * for demonstration purposes, only if pin-all is not requested.
1353  *
1354  * Potential optimizations:
1355  * 1. Start a new thread to run this function continuously
1356         - for bit clearing
1357         - and for receipt of unregister messages
1358  * 2. Use an LRU.
1359  * 3. Use workload hints.
1360  */
1361 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1362 {
1363     Error *err = NULL;
1364 
1365     while (rdma->unregistrations[rdma->unregister_current]) {
1366         int ret;
1367         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1368         uint64_t chunk =
1369             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1370         uint64_t index =
1371             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1372         RDMALocalBlock *block =
1373             &(rdma->local_ram_blocks.block[index]);
1374         RDMARegister reg = { .current_index = index };
1375         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1376                                  };
1377         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1378                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1379                                    .repeat = 1,
1380                                  };
1381 
1382         trace_qemu_rdma_unregister_waiting_proc(chunk,
1383                                                 rdma->unregister_current);
1384 
1385         rdma->unregistrations[rdma->unregister_current] = 0;
1386         rdma->unregister_current++;
1387 
1388         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1389             rdma->unregister_current = 0;
1390         }
1391 
1392 
1393         /*
1394          * Unregistration is speculative (because migration is single-threaded
1395          * and we cannot break the protocol's inifinband message ordering).
1396          * Thus, if the memory is currently being used for transmission,
1397          * then abort the attempt to unregister and try again
1398          * later the next time a completion is received for this memory.
1399          */
1400         clear_bit(chunk, block->unregister_bitmap);
1401 
1402         if (test_bit(chunk, block->transit_bitmap)) {
1403             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1404             continue;
1405         }
1406 
1407         trace_qemu_rdma_unregister_waiting_send(chunk);
1408 
1409         ret = ibv_dereg_mr(block->pmr[chunk]);
1410         block->pmr[chunk] = NULL;
1411         block->remote_keys[chunk] = 0;
1412 
1413         if (ret != 0) {
1414             error_report("unregistration chunk failed: %s",
1415                          strerror(ret));
1416             return -1;
1417         }
1418         rdma->total_registrations--;
1419 
1420         reg.key.chunk = chunk;
1421         register_to_network(rdma, &reg);
1422         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1423                                       &resp, NULL, NULL, &err);
1424         if (ret < 0) {
1425             error_report_err(err);
1426             return -1;
1427         }
1428 
1429         trace_qemu_rdma_unregister_waiting_complete(chunk);
1430     }
1431 
1432     return 0;
1433 }
1434 
1435 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1436                                          uint64_t chunk)
1437 {
1438     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1439 
1440     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1441     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1442 
1443     return result;
1444 }
1445 
1446 /*
1447  * Consult the connection manager to see a work request
1448  * (of any kind) has completed.
1449  * Return the work request ID that completed.
1450  */
1451 static int qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1452                           uint64_t *wr_id_out, uint32_t *byte_len)
1453 {
1454     int ret;
1455     struct ibv_wc wc;
1456     uint64_t wr_id;
1457 
1458     ret = ibv_poll_cq(cq, 1, &wc);
1459 
1460     if (!ret) {
1461         *wr_id_out = RDMA_WRID_NONE;
1462         return 0;
1463     }
1464 
1465     if (ret < 0) {
1466         return -1;
1467     }
1468 
1469     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1470 
1471     if (wc.status != IBV_WC_SUCCESS) {
1472         return -1;
1473     }
1474 
1475     if (rdma->control_ready_expected &&
1476         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1477         trace_qemu_rdma_poll_recv(wr_id - RDMA_WRID_RECV_CONTROL, wr_id,
1478                                   rdma->nb_sent);
1479         rdma->control_ready_expected = 0;
1480     }
1481 
1482     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1483         uint64_t chunk =
1484             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1485         uint64_t index =
1486             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1487         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1488 
1489         trace_qemu_rdma_poll_write(wr_id, rdma->nb_sent,
1490                                    index, chunk, block->local_host_addr,
1491                                    (void *)(uintptr_t)block->remote_host_addr);
1492 
1493         clear_bit(chunk, block->transit_bitmap);
1494 
1495         if (rdma->nb_sent > 0) {
1496             rdma->nb_sent--;
1497         }
1498     } else {
1499         trace_qemu_rdma_poll_other(wr_id, rdma->nb_sent);
1500     }
1501 
1502     *wr_id_out = wc.wr_id;
1503     if (byte_len) {
1504         *byte_len = wc.byte_len;
1505     }
1506 
1507     return  0;
1508 }
1509 
1510 /* Wait for activity on the completion channel.
1511  * Returns 0 on success, none-0 on error.
1512  */
1513 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1514                                        struct ibv_comp_channel *comp_channel)
1515 {
1516     struct rdma_cm_event *cm_event;
1517     int ret;
1518 
1519     /*
1520      * Coroutine doesn't start until migration_fd_process_incoming()
1521      * so don't yield unless we know we're running inside of a coroutine.
1522      */
1523     if (rdma->migration_started_on_destination &&
1524         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1525         yield_until_fd_readable(comp_channel->fd);
1526     } else {
1527         /* This is the source side, we're in a separate thread
1528          * or destination prior to migration_fd_process_incoming()
1529          * after postcopy, the destination also in a separate thread.
1530          * we can't yield; so we have to poll the fd.
1531          * But we need to be able to handle 'cancel' or an error
1532          * without hanging forever.
1533          */
1534         while (!rdma->errored && !rdma->received_error) {
1535             GPollFD pfds[2];
1536             pfds[0].fd = comp_channel->fd;
1537             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1538             pfds[0].revents = 0;
1539 
1540             pfds[1].fd = rdma->channel->fd;
1541             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1542             pfds[1].revents = 0;
1543 
1544             /* 0.1s timeout, should be fine for a 'cancel' */
1545             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1546             case 2:
1547             case 1: /* fd active */
1548                 if (pfds[0].revents) {
1549                     return 0;
1550                 }
1551 
1552                 if (pfds[1].revents) {
1553                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1554                     if (ret < 0) {
1555                         return -1;
1556                     }
1557 
1558                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1559                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1560                         rdma_ack_cm_event(cm_event);
1561                         return -1;
1562                     }
1563                     rdma_ack_cm_event(cm_event);
1564                 }
1565                 break;
1566 
1567             case 0: /* Timeout, go around again */
1568                 break;
1569 
1570             default: /* Error of some type -
1571                       * I don't trust errno from qemu_poll_ns
1572                      */
1573                 return -1;
1574             }
1575 
1576             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1577                 /* Bail out and let the cancellation happen */
1578                 return -1;
1579             }
1580         }
1581     }
1582 
1583     if (rdma->received_error) {
1584         return -1;
1585     }
1586     return -rdma->errored;
1587 }
1588 
1589 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, uint64_t wrid)
1590 {
1591     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1592            rdma->recv_comp_channel;
1593 }
1594 
1595 static struct ibv_cq *to_cq(RDMAContext *rdma, uint64_t wrid)
1596 {
1597     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1598 }
1599 
1600 /*
1601  * Block until the next work request has completed.
1602  *
1603  * First poll to see if a work request has already completed,
1604  * otherwise block.
1605  *
1606  * If we encounter completed work requests for IDs other than
1607  * the one we're interested in, then that's generally an error.
1608  *
1609  * The only exception is actual RDMA Write completions. These
1610  * completions only need to be recorded, but do not actually
1611  * need further processing.
1612  */
1613 static int qemu_rdma_block_for_wrid(RDMAContext *rdma,
1614                                     uint64_t wrid_requested,
1615                                     uint32_t *byte_len)
1616 {
1617     int num_cq_events = 0, ret;
1618     struct ibv_cq *cq;
1619     void *cq_ctx;
1620     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1621     struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1622     struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1623 
1624     if (ibv_req_notify_cq(poll_cq, 0)) {
1625         return -1;
1626     }
1627     /* poll cq first */
1628     while (wr_id != wrid_requested) {
1629         ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1630         if (ret < 0) {
1631             return -1;
1632         }
1633 
1634         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1635 
1636         if (wr_id == RDMA_WRID_NONE) {
1637             break;
1638         }
1639         if (wr_id != wrid_requested) {
1640             trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1641         }
1642     }
1643 
1644     if (wr_id == wrid_requested) {
1645         return 0;
1646     }
1647 
1648     while (1) {
1649         ret = qemu_rdma_wait_comp_channel(rdma, ch);
1650         if (ret < 0) {
1651             goto err_block_for_wrid;
1652         }
1653 
1654         ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1655         if (ret < 0) {
1656             goto err_block_for_wrid;
1657         }
1658 
1659         num_cq_events++;
1660 
1661         if (ibv_req_notify_cq(cq, 0)) {
1662             goto err_block_for_wrid;
1663         }
1664 
1665         while (wr_id != wrid_requested) {
1666             ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1667             if (ret < 0) {
1668                 goto err_block_for_wrid;
1669             }
1670 
1671             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1672 
1673             if (wr_id == RDMA_WRID_NONE) {
1674                 break;
1675             }
1676             if (wr_id != wrid_requested) {
1677                 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1678             }
1679         }
1680 
1681         if (wr_id == wrid_requested) {
1682             goto success_block_for_wrid;
1683         }
1684     }
1685 
1686 success_block_for_wrid:
1687     if (num_cq_events) {
1688         ibv_ack_cq_events(cq, num_cq_events);
1689     }
1690     return 0;
1691 
1692 err_block_for_wrid:
1693     if (num_cq_events) {
1694         ibv_ack_cq_events(cq, num_cq_events);
1695     }
1696 
1697     rdma->errored = true;
1698     return -1;
1699 }
1700 
1701 /*
1702  * Post a SEND message work request for the control channel
1703  * containing some data and block until the post completes.
1704  */
1705 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1706                                        RDMAControlHeader *head,
1707                                        Error **errp)
1708 {
1709     int ret;
1710     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1711     struct ibv_send_wr *bad_wr;
1712     struct ibv_sge sge = {
1713                            .addr = (uintptr_t)(wr->control),
1714                            .length = head->len + sizeof(RDMAControlHeader),
1715                            .lkey = wr->control_mr->lkey,
1716                          };
1717     struct ibv_send_wr send_wr = {
1718                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1719                                    .opcode = IBV_WR_SEND,
1720                                    .send_flags = IBV_SEND_SIGNALED,
1721                                    .sg_list = &sge,
1722                                    .num_sge = 1,
1723                                 };
1724 
1725     trace_qemu_rdma_post_send_control(control_desc(head->type));
1726 
1727     /*
1728      * We don't actually need to do a memcpy() in here if we used
1729      * the "sge" properly, but since we're only sending control messages
1730      * (not RAM in a performance-critical path), then its OK for now.
1731      *
1732      * The copy makes the RDMAControlHeader simpler to manipulate
1733      * for the time being.
1734      */
1735     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1736     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1737     control_to_network((void *) wr->control);
1738 
1739     if (buf) {
1740         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1741     }
1742 
1743 
1744     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1745 
1746     if (ret > 0) {
1747         error_setg(errp, "Failed to use post IB SEND for control");
1748         return -1;
1749     }
1750 
1751     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1752     if (ret < 0) {
1753         error_setg(errp, "rdma migration: send polling control error");
1754         return -1;
1755     }
1756 
1757     return 0;
1758 }
1759 
1760 /*
1761  * Post a RECV work request in anticipation of some future receipt
1762  * of data on the control channel.
1763  */
1764 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx,
1765                                        Error **errp)
1766 {
1767     struct ibv_recv_wr *bad_wr;
1768     struct ibv_sge sge = {
1769                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1770                             .length = RDMA_CONTROL_MAX_BUFFER,
1771                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1772                          };
1773 
1774     struct ibv_recv_wr recv_wr = {
1775                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1776                                     .sg_list = &sge,
1777                                     .num_sge = 1,
1778                                  };
1779 
1780 
1781     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1782         error_setg(errp, "error posting control recv");
1783         return -1;
1784     }
1785 
1786     return 0;
1787 }
1788 
1789 /*
1790  * Block and wait for a RECV control channel message to arrive.
1791  */
1792 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1793                 RDMAControlHeader *head, uint32_t expecting, int idx,
1794                 Error **errp)
1795 {
1796     uint32_t byte_len;
1797     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1798                                        &byte_len);
1799 
1800     if (ret < 0) {
1801         error_setg(errp, "rdma migration: recv polling control error!");
1802         return -1;
1803     }
1804 
1805     network_to_control((void *) rdma->wr_data[idx].control);
1806     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1807 
1808     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1809 
1810     if (expecting == RDMA_CONTROL_NONE) {
1811         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1812                                              head->type);
1813     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1814         error_setg(errp, "Was expecting a %s (%d) control message"
1815                 ", but got: %s (%d), length: %d",
1816                 control_desc(expecting), expecting,
1817                 control_desc(head->type), head->type, head->len);
1818         if (head->type == RDMA_CONTROL_ERROR) {
1819             rdma->received_error = true;
1820         }
1821         return -1;
1822     }
1823     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1824         error_setg(errp, "too long length: %d", head->len);
1825         return -1;
1826     }
1827     if (sizeof(*head) + head->len != byte_len) {
1828         error_setg(errp, "Malformed length: %d byte_len %d",
1829                    head->len, byte_len);
1830         return -1;
1831     }
1832 
1833     return 0;
1834 }
1835 
1836 /*
1837  * When a RECV work request has completed, the work request's
1838  * buffer is pointed at the header.
1839  *
1840  * This will advance the pointer to the data portion
1841  * of the control message of the work request's buffer that
1842  * was populated after the work request finished.
1843  */
1844 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1845                                   RDMAControlHeader *head)
1846 {
1847     rdma->wr_data[idx].control_len = head->len;
1848     rdma->wr_data[idx].control_curr =
1849         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1850 }
1851 
1852 /*
1853  * This is an 'atomic' high-level operation to deliver a single, unified
1854  * control-channel message.
1855  *
1856  * Additionally, if the user is expecting some kind of reply to this message,
1857  * they can request a 'resp' response message be filled in by posting an
1858  * additional work request on behalf of the user and waiting for an additional
1859  * completion.
1860  *
1861  * The extra (optional) response is used during registration to us from having
1862  * to perform an *additional* exchange of message just to provide a response by
1863  * instead piggy-backing on the acknowledgement.
1864  */
1865 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1866                                    uint8_t *data, RDMAControlHeader *resp,
1867                                    int *resp_idx,
1868                                    int (*callback)(RDMAContext *rdma,
1869                                                    Error **errp),
1870                                    Error **errp)
1871 {
1872     int ret;
1873 
1874     /*
1875      * Wait until the dest is ready before attempting to deliver the message
1876      * by waiting for a READY message.
1877      */
1878     if (rdma->control_ready_expected) {
1879         RDMAControlHeader resp_ignored;
1880 
1881         ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1882                                               RDMA_CONTROL_READY,
1883                                               RDMA_WRID_READY, errp);
1884         if (ret < 0) {
1885             return -1;
1886         }
1887     }
1888 
1889     /*
1890      * If the user is expecting a response, post a WR in anticipation of it.
1891      */
1892     if (resp) {
1893         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA, errp);
1894         if (ret < 0) {
1895             return -1;
1896         }
1897     }
1898 
1899     /*
1900      * Post a WR to replace the one we just consumed for the READY message.
1901      */
1902     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1903     if (ret < 0) {
1904         return -1;
1905     }
1906 
1907     /*
1908      * Deliver the control message that was requested.
1909      */
1910     ret = qemu_rdma_post_send_control(rdma, data, head, errp);
1911 
1912     if (ret < 0) {
1913         return -1;
1914     }
1915 
1916     /*
1917      * If we're expecting a response, block and wait for it.
1918      */
1919     if (resp) {
1920         if (callback) {
1921             trace_qemu_rdma_exchange_send_issue_callback();
1922             ret = callback(rdma, errp);
1923             if (ret < 0) {
1924                 return -1;
1925             }
1926         }
1927 
1928         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1929         ret = qemu_rdma_exchange_get_response(rdma, resp,
1930                                               resp->type, RDMA_WRID_DATA,
1931                                               errp);
1932 
1933         if (ret < 0) {
1934             return -1;
1935         }
1936 
1937         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1938         if (resp_idx) {
1939             *resp_idx = RDMA_WRID_DATA;
1940         }
1941         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1942     }
1943 
1944     rdma->control_ready_expected = 1;
1945 
1946     return 0;
1947 }
1948 
1949 /*
1950  * This is an 'atomic' high-level operation to receive a single, unified
1951  * control-channel message.
1952  */
1953 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1954                                    uint32_t expecting, Error **errp)
1955 {
1956     RDMAControlHeader ready = {
1957                                 .len = 0,
1958                                 .type = RDMA_CONTROL_READY,
1959                                 .repeat = 1,
1960                               };
1961     int ret;
1962 
1963     /*
1964      * Inform the source that we're ready to receive a message.
1965      */
1966     ret = qemu_rdma_post_send_control(rdma, NULL, &ready, errp);
1967 
1968     if (ret < 0) {
1969         return -1;
1970     }
1971 
1972     /*
1973      * Block and wait for the message.
1974      */
1975     ret = qemu_rdma_exchange_get_response(rdma, head,
1976                                           expecting, RDMA_WRID_READY, errp);
1977 
1978     if (ret < 0) {
1979         return -1;
1980     }
1981 
1982     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1983 
1984     /*
1985      * Post a new RECV work request to replace the one we just consumed.
1986      */
1987     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1988     if (ret < 0) {
1989         return -1;
1990     }
1991 
1992     return 0;
1993 }
1994 
1995 /*
1996  * Write an actual chunk of memory using RDMA.
1997  *
1998  * If we're using dynamic registration on the dest-side, we have to
1999  * send a registration command first.
2000  */
2001 static int qemu_rdma_write_one(RDMAContext *rdma,
2002                                int current_index, uint64_t current_addr,
2003                                uint64_t length, Error **errp)
2004 {
2005     struct ibv_sge sge;
2006     struct ibv_send_wr send_wr = { 0 };
2007     struct ibv_send_wr *bad_wr;
2008     int reg_result_idx, ret, count = 0;
2009     uint64_t chunk, chunks;
2010     uint8_t *chunk_start, *chunk_end;
2011     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2012     RDMARegister reg;
2013     RDMARegisterResult *reg_result;
2014     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2015     RDMAControlHeader head = { .len = sizeof(RDMARegister),
2016                                .type = RDMA_CONTROL_REGISTER_REQUEST,
2017                                .repeat = 1,
2018                              };
2019 
2020 retry:
2021     sge.addr = (uintptr_t)(block->local_host_addr +
2022                             (current_addr - block->offset));
2023     sge.length = length;
2024 
2025     chunk = ram_chunk_index(block->local_host_addr,
2026                             (uint8_t *)(uintptr_t)sge.addr);
2027     chunk_start = ram_chunk_start(block, chunk);
2028 
2029     if (block->is_ram_block) {
2030         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2031 
2032         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2033             chunks--;
2034         }
2035     } else {
2036         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2037 
2038         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2039             chunks--;
2040         }
2041     }
2042 
2043     trace_qemu_rdma_write_one_top(chunks + 1,
2044                                   (chunks + 1) *
2045                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2046 
2047     chunk_end = ram_chunk_end(block, chunk + chunks);
2048 
2049 
2050     while (test_bit(chunk, block->transit_bitmap)) {
2051         (void)count;
2052         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2053                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2054 
2055         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2056 
2057         if (ret < 0) {
2058             error_setg(errp, "Failed to Wait for previous write to complete "
2059                     "block %d chunk %" PRIu64
2060                     " current %" PRIu64 " len %" PRIu64 " %d",
2061                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2062             return -1;
2063         }
2064     }
2065 
2066     if (!rdma->pin_all || !block->is_ram_block) {
2067         if (!block->remote_keys[chunk]) {
2068             /*
2069              * This chunk has not yet been registered, so first check to see
2070              * if the entire chunk is zero. If so, tell the other size to
2071              * memset() + madvise() the entire chunk without RDMA.
2072              */
2073 
2074             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2075                 RDMACompress comp = {
2076                                         .offset = current_addr,
2077                                         .value = 0,
2078                                         .block_idx = current_index,
2079                                         .length = length,
2080                                     };
2081 
2082                 head.len = sizeof(comp);
2083                 head.type = RDMA_CONTROL_COMPRESS;
2084 
2085                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2086                                                current_index, current_addr);
2087 
2088                 compress_to_network(rdma, &comp);
2089                 ret = qemu_rdma_exchange_send(rdma, &head,
2090                                 (uint8_t *) &comp, NULL, NULL, NULL, errp);
2091 
2092                 if (ret < 0) {
2093                     return -1;
2094                 }
2095 
2096                 /*
2097                  * TODO: Here we are sending something, but we are not
2098                  * accounting for anything transferred.  The following is wrong:
2099                  *
2100                  * stat64_add(&mig_stats.rdma_bytes, sge.length);
2101                  *
2102                  * because we are using some kind of compression.  I
2103                  * would think that head.len would be the more similar
2104                  * thing to a correct value.
2105                  */
2106                 stat64_add(&mig_stats.zero_pages,
2107                            sge.length / qemu_target_page_size());
2108                 return 1;
2109             }
2110 
2111             /*
2112              * Otherwise, tell other side to register.
2113              */
2114             reg.current_index = current_index;
2115             if (block->is_ram_block) {
2116                 reg.key.current_addr = current_addr;
2117             } else {
2118                 reg.key.chunk = chunk;
2119             }
2120             reg.chunks = chunks;
2121 
2122             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2123                                               current_addr);
2124 
2125             register_to_network(rdma, &reg);
2126             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2127                                     &resp, &reg_result_idx, NULL, errp);
2128             if (ret < 0) {
2129                 return -1;
2130             }
2131 
2132             /* try to overlap this single registration with the one we sent. */
2133             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2134                                                 &sge.lkey, NULL, chunk,
2135                                                 chunk_start, chunk_end)) {
2136                 error_setg(errp, "cannot get lkey");
2137                 return -1;
2138             }
2139 
2140             reg_result = (RDMARegisterResult *)
2141                     rdma->wr_data[reg_result_idx].control_curr;
2142 
2143             network_to_result(reg_result);
2144 
2145             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2146                                                  reg_result->rkey, chunk);
2147 
2148             block->remote_keys[chunk] = reg_result->rkey;
2149             block->remote_host_addr = reg_result->host_addr;
2150         } else {
2151             /* already registered before */
2152             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2153                                                 &sge.lkey, NULL, chunk,
2154                                                 chunk_start, chunk_end)) {
2155                 error_setg(errp, "cannot get lkey!");
2156                 return -1;
2157             }
2158         }
2159 
2160         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2161     } else {
2162         send_wr.wr.rdma.rkey = block->remote_rkey;
2163 
2164         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2165                                                      &sge.lkey, NULL, chunk,
2166                                                      chunk_start, chunk_end)) {
2167             error_setg(errp, "cannot get lkey!");
2168             return -1;
2169         }
2170     }
2171 
2172     /*
2173      * Encode the ram block index and chunk within this wrid.
2174      * We will use this information at the time of completion
2175      * to figure out which bitmap to check against and then which
2176      * chunk in the bitmap to look for.
2177      */
2178     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2179                                         current_index, chunk);
2180 
2181     send_wr.opcode = IBV_WR_RDMA_WRITE;
2182     send_wr.send_flags = IBV_SEND_SIGNALED;
2183     send_wr.sg_list = &sge;
2184     send_wr.num_sge = 1;
2185     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2186                                 (current_addr - block->offset);
2187 
2188     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2189                                    sge.length);
2190 
2191     /*
2192      * ibv_post_send() does not return negative error numbers,
2193      * per the specification they are positive - no idea why.
2194      */
2195     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2196 
2197     if (ret == ENOMEM) {
2198         trace_qemu_rdma_write_one_queue_full();
2199         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2200         if (ret < 0) {
2201             error_setg(errp, "rdma migration: failed to make "
2202                          "room in full send queue!");
2203             return -1;
2204         }
2205 
2206         goto retry;
2207 
2208     } else if (ret > 0) {
2209         error_setg_errno(errp, ret,
2210                          "rdma migration: post rdma write failed");
2211         return -1;
2212     }
2213 
2214     set_bit(chunk, block->transit_bitmap);
2215     stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2216     /*
2217      * We are adding to transferred the amount of data written, but no
2218      * overhead at all.  I will asume that RDMA is magicaly and don't
2219      * need to transfer (at least) the addresses where it wants to
2220      * write the pages.  Here it looks like it should be something
2221      * like:
2222      *     sizeof(send_wr) + sge.length
2223      * but this being RDMA, who knows.
2224      */
2225     stat64_add(&mig_stats.rdma_bytes, sge.length);
2226     ram_transferred_add(sge.length);
2227     rdma->total_writes++;
2228 
2229     return 0;
2230 }
2231 
2232 /*
2233  * Push out any unwritten RDMA operations.
2234  *
2235  * We support sending out multiple chunks at the same time.
2236  * Not all of them need to get signaled in the completion queue.
2237  */
2238 static int qemu_rdma_write_flush(RDMAContext *rdma, Error **errp)
2239 {
2240     int ret;
2241 
2242     if (!rdma->current_length) {
2243         return 0;
2244     }
2245 
2246     ret = qemu_rdma_write_one(rdma, rdma->current_index, rdma->current_addr,
2247                               rdma->current_length, errp);
2248 
2249     if (ret < 0) {
2250         return -1;
2251     }
2252 
2253     if (ret == 0) {
2254         rdma->nb_sent++;
2255         trace_qemu_rdma_write_flush(rdma->nb_sent);
2256     }
2257 
2258     rdma->current_length = 0;
2259     rdma->current_addr = 0;
2260 
2261     return 0;
2262 }
2263 
2264 static inline bool qemu_rdma_buffer_mergeable(RDMAContext *rdma,
2265                     uint64_t offset, uint64_t len)
2266 {
2267     RDMALocalBlock *block;
2268     uint8_t *host_addr;
2269     uint8_t *chunk_end;
2270 
2271     if (rdma->current_index < 0) {
2272         return false;
2273     }
2274 
2275     if (rdma->current_chunk < 0) {
2276         return false;
2277     }
2278 
2279     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2280     host_addr = block->local_host_addr + (offset - block->offset);
2281     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2282 
2283     if (rdma->current_length == 0) {
2284         return false;
2285     }
2286 
2287     /*
2288      * Only merge into chunk sequentially.
2289      */
2290     if (offset != (rdma->current_addr + rdma->current_length)) {
2291         return false;
2292     }
2293 
2294     if (offset < block->offset) {
2295         return false;
2296     }
2297 
2298     if ((offset + len) > (block->offset + block->length)) {
2299         return false;
2300     }
2301 
2302     if ((host_addr + len) > chunk_end) {
2303         return false;
2304     }
2305 
2306     return true;
2307 }
2308 
2309 /*
2310  * We're not actually writing here, but doing three things:
2311  *
2312  * 1. Identify the chunk the buffer belongs to.
2313  * 2. If the chunk is full or the buffer doesn't belong to the current
2314  *    chunk, then start a new chunk and flush() the old chunk.
2315  * 3. To keep the hardware busy, we also group chunks into batches
2316  *    and only require that a batch gets acknowledged in the completion
2317  *    queue instead of each individual chunk.
2318  */
2319 static int qemu_rdma_write(RDMAContext *rdma,
2320                            uint64_t block_offset, uint64_t offset,
2321                            uint64_t len, Error **errp)
2322 {
2323     uint64_t current_addr = block_offset + offset;
2324     uint64_t index = rdma->current_index;
2325     uint64_t chunk = rdma->current_chunk;
2326     int ret;
2327 
2328     /* If we cannot merge it, we flush the current buffer first. */
2329     if (!qemu_rdma_buffer_mergeable(rdma, current_addr, len)) {
2330         ret = qemu_rdma_write_flush(rdma, errp);
2331         if (ret < 0) {
2332             return -1;
2333         }
2334         rdma->current_length = 0;
2335         rdma->current_addr = current_addr;
2336 
2337         qemu_rdma_search_ram_block(rdma, block_offset,
2338                                    offset, len, &index, &chunk);
2339         rdma->current_index = index;
2340         rdma->current_chunk = chunk;
2341     }
2342 
2343     /* merge it */
2344     rdma->current_length += len;
2345 
2346     /* flush it if buffer is too large */
2347     if (rdma->current_length >= RDMA_MERGE_MAX) {
2348         return qemu_rdma_write_flush(rdma, errp);
2349     }
2350 
2351     return 0;
2352 }
2353 
2354 static void qemu_rdma_cleanup(RDMAContext *rdma)
2355 {
2356     Error *err = NULL;
2357     int idx;
2358 
2359     if (rdma->cm_id && rdma->connected) {
2360         if ((rdma->errored ||
2361              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2362             !rdma->received_error) {
2363             RDMAControlHeader head = { .len = 0,
2364                                        .type = RDMA_CONTROL_ERROR,
2365                                        .repeat = 1,
2366                                      };
2367             warn_report("Early error. Sending error.");
2368             if (qemu_rdma_post_send_control(rdma, NULL, &head, &err) < 0) {
2369                 warn_report_err(err);
2370             }
2371         }
2372 
2373         rdma_disconnect(rdma->cm_id);
2374         trace_qemu_rdma_cleanup_disconnect();
2375         rdma->connected = false;
2376     }
2377 
2378     if (rdma->channel) {
2379         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2380     }
2381     g_free(rdma->dest_blocks);
2382     rdma->dest_blocks = NULL;
2383 
2384     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2385         if (rdma->wr_data[idx].control_mr) {
2386             rdma->total_registrations--;
2387             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2388         }
2389         rdma->wr_data[idx].control_mr = NULL;
2390     }
2391 
2392     if (rdma->local_ram_blocks.block) {
2393         while (rdma->local_ram_blocks.nb_blocks) {
2394             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2395         }
2396     }
2397 
2398     if (rdma->qp) {
2399         rdma_destroy_qp(rdma->cm_id);
2400         rdma->qp = NULL;
2401     }
2402     if (rdma->recv_cq) {
2403         ibv_destroy_cq(rdma->recv_cq);
2404         rdma->recv_cq = NULL;
2405     }
2406     if (rdma->send_cq) {
2407         ibv_destroy_cq(rdma->send_cq);
2408         rdma->send_cq = NULL;
2409     }
2410     if (rdma->recv_comp_channel) {
2411         ibv_destroy_comp_channel(rdma->recv_comp_channel);
2412         rdma->recv_comp_channel = NULL;
2413     }
2414     if (rdma->send_comp_channel) {
2415         ibv_destroy_comp_channel(rdma->send_comp_channel);
2416         rdma->send_comp_channel = NULL;
2417     }
2418     if (rdma->pd) {
2419         ibv_dealloc_pd(rdma->pd);
2420         rdma->pd = NULL;
2421     }
2422     if (rdma->cm_id) {
2423         rdma_destroy_id(rdma->cm_id);
2424         rdma->cm_id = NULL;
2425     }
2426 
2427     /* the destination side, listen_id and channel is shared */
2428     if (rdma->listen_id) {
2429         if (!rdma->is_return_path) {
2430             rdma_destroy_id(rdma->listen_id);
2431         }
2432         rdma->listen_id = NULL;
2433 
2434         if (rdma->channel) {
2435             if (!rdma->is_return_path) {
2436                 rdma_destroy_event_channel(rdma->channel);
2437             }
2438             rdma->channel = NULL;
2439         }
2440     }
2441 
2442     if (rdma->channel) {
2443         rdma_destroy_event_channel(rdma->channel);
2444         rdma->channel = NULL;
2445     }
2446     g_free(rdma->host);
2447     g_free(rdma->host_port);
2448     rdma->host = NULL;
2449     rdma->host_port = NULL;
2450 }
2451 
2452 
2453 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2454 {
2455     int ret, idx;
2456 
2457     /*
2458      * Will be validated against destination's actual capabilities
2459      * after the connect() completes.
2460      */
2461     rdma->pin_all = pin_all;
2462 
2463     ret = qemu_rdma_resolve_host(rdma, errp);
2464     if (ret < 0) {
2465         goto err_rdma_source_init;
2466     }
2467 
2468     ret = qemu_rdma_alloc_pd_cq(rdma, errp);
2469     if (ret < 0) {
2470         goto err_rdma_source_init;
2471     }
2472 
2473     ret = qemu_rdma_alloc_qp(rdma);
2474     if (ret < 0) {
2475         error_setg(errp, "RDMA ERROR: rdma migration: error allocating qp!");
2476         goto err_rdma_source_init;
2477     }
2478 
2479     qemu_rdma_init_ram_blocks(rdma);
2480 
2481     /* Build the hash that maps from offset to RAMBlock */
2482     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2483     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2484         g_hash_table_insert(rdma->blockmap,
2485                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2486                 &rdma->local_ram_blocks.block[idx]);
2487     }
2488 
2489     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2490         ret = qemu_rdma_reg_control(rdma, idx);
2491         if (ret < 0) {
2492             error_setg(errp,
2493                        "RDMA ERROR: rdma migration: error registering %d control!",
2494                        idx);
2495             goto err_rdma_source_init;
2496         }
2497     }
2498 
2499     return 0;
2500 
2501 err_rdma_source_init:
2502     qemu_rdma_cleanup(rdma);
2503     return -1;
2504 }
2505 
2506 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2507                                      struct rdma_cm_event **cm_event,
2508                                      long msec, Error **errp)
2509 {
2510     int ret;
2511     struct pollfd poll_fd = {
2512                                 .fd = rdma->channel->fd,
2513                                 .events = POLLIN,
2514                                 .revents = 0
2515                             };
2516 
2517     do {
2518         ret = poll(&poll_fd, 1, msec);
2519     } while (ret < 0 && errno == EINTR);
2520 
2521     if (ret == 0) {
2522         error_setg(errp, "RDMA ERROR: poll cm event timeout");
2523         return -1;
2524     } else if (ret < 0) {
2525         error_setg(errp, "RDMA ERROR: failed to poll cm event, errno=%i",
2526                    errno);
2527         return -1;
2528     } else if (poll_fd.revents & POLLIN) {
2529         if (rdma_get_cm_event(rdma->channel, cm_event) < 0) {
2530             error_setg(errp, "RDMA ERROR: failed to get cm event");
2531             return -1;
2532         }
2533         return 0;
2534     } else {
2535         error_setg(errp, "RDMA ERROR: no POLLIN event, revent=%x",
2536                    poll_fd.revents);
2537         return -1;
2538     }
2539 }
2540 
2541 static int qemu_rdma_connect(RDMAContext *rdma, bool return_path,
2542                              Error **errp)
2543 {
2544     RDMACapabilities cap = {
2545                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2546                                 .flags = 0,
2547                            };
2548     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2549                                           .retry_count = 5,
2550                                           .private_data = &cap,
2551                                           .private_data_len = sizeof(cap),
2552                                         };
2553     struct rdma_cm_event *cm_event;
2554     int ret;
2555 
2556     /*
2557      * Only negotiate the capability with destination if the user
2558      * on the source first requested the capability.
2559      */
2560     if (rdma->pin_all) {
2561         trace_qemu_rdma_connect_pin_all_requested();
2562         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2563     }
2564 
2565     caps_to_network(&cap);
2566 
2567     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
2568     if (ret < 0) {
2569         goto err_rdma_source_connect;
2570     }
2571 
2572     ret = rdma_connect(rdma->cm_id, &conn_param);
2573     if (ret < 0) {
2574         error_setg_errno(errp, errno,
2575                          "RDMA ERROR: connecting to destination!");
2576         goto err_rdma_source_connect;
2577     }
2578 
2579     if (return_path) {
2580         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2581     } else {
2582         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2583         if (ret < 0) {
2584             error_setg_errno(errp, errno,
2585                              "RDMA ERROR: failed to get cm event");
2586         }
2587     }
2588     if (ret < 0) {
2589         goto err_rdma_source_connect;
2590     }
2591 
2592     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2593         error_setg(errp, "RDMA ERROR: connecting to destination!");
2594         rdma_ack_cm_event(cm_event);
2595         goto err_rdma_source_connect;
2596     }
2597     rdma->connected = true;
2598 
2599     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2600     network_to_caps(&cap);
2601 
2602     /*
2603      * Verify that the *requested* capabilities are supported by the destination
2604      * and disable them otherwise.
2605      */
2606     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2607         warn_report("RDMA: Server cannot support pinning all memory. "
2608                     "Will register memory dynamically.");
2609         rdma->pin_all = false;
2610     }
2611 
2612     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2613 
2614     rdma_ack_cm_event(cm_event);
2615 
2616     rdma->control_ready_expected = 1;
2617     rdma->nb_sent = 0;
2618     return 0;
2619 
2620 err_rdma_source_connect:
2621     qemu_rdma_cleanup(rdma);
2622     return -1;
2623 }
2624 
2625 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2626 {
2627     Error *err = NULL;
2628     int ret, idx;
2629     struct rdma_cm_id *listen_id;
2630     char ip[40] = "unknown";
2631     struct rdma_addrinfo *res, *e;
2632     char port_str[16];
2633     int reuse = 1;
2634 
2635     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2636         rdma->wr_data[idx].control_len = 0;
2637         rdma->wr_data[idx].control_curr = NULL;
2638     }
2639 
2640     if (!rdma->host || !rdma->host[0]) {
2641         error_setg(errp, "RDMA ERROR: RDMA host is not set!");
2642         rdma->errored = true;
2643         return -1;
2644     }
2645     /* create CM channel */
2646     rdma->channel = rdma_create_event_channel();
2647     if (!rdma->channel) {
2648         error_setg(errp, "RDMA ERROR: could not create rdma event channel");
2649         rdma->errored = true;
2650         return -1;
2651     }
2652 
2653     /* create CM id */
2654     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2655     if (ret < 0) {
2656         error_setg(errp, "RDMA ERROR: could not create cm_id!");
2657         goto err_dest_init_create_listen_id;
2658     }
2659 
2660     snprintf(port_str, 16, "%d", rdma->port);
2661     port_str[15] = '\0';
2662 
2663     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2664     if (ret) {
2665         error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2666                    rdma->host);
2667         goto err_dest_init_bind_addr;
2668     }
2669 
2670     ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2671                           &reuse, sizeof reuse);
2672     if (ret < 0) {
2673         error_setg(errp, "RDMA ERROR: Error: could not set REUSEADDR option");
2674         goto err_dest_init_bind_addr;
2675     }
2676 
2677     /* Try all addresses, saving the first error in @err */
2678     for (e = res; e != NULL; e = e->ai_next) {
2679         Error **local_errp = err ? NULL : &err;
2680 
2681         inet_ntop(e->ai_family,
2682             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2683         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2684         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2685         if (ret < 0) {
2686             continue;
2687         }
2688         if (e->ai_family == AF_INET6) {
2689             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs,
2690                                                local_errp);
2691             if (ret < 0) {
2692                 continue;
2693             }
2694         }
2695         error_free(err);
2696         break;
2697     }
2698 
2699     rdma_freeaddrinfo(res);
2700     if (!e) {
2701         if (err) {
2702             error_propagate(errp, err);
2703         } else {
2704             error_setg(errp, "RDMA ERROR: Error: could not rdma_bind_addr!");
2705         }
2706         goto err_dest_init_bind_addr;
2707     }
2708 
2709     rdma->listen_id = listen_id;
2710     qemu_rdma_dump_gid("dest_init", listen_id);
2711     return 0;
2712 
2713 err_dest_init_bind_addr:
2714     rdma_destroy_id(listen_id);
2715 err_dest_init_create_listen_id:
2716     rdma_destroy_event_channel(rdma->channel);
2717     rdma->channel = NULL;
2718     rdma->errored = true;
2719     return -1;
2720 
2721 }
2722 
2723 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2724                                             RDMAContext *rdma)
2725 {
2726     int idx;
2727 
2728     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2729         rdma_return_path->wr_data[idx].control_len = 0;
2730         rdma_return_path->wr_data[idx].control_curr = NULL;
2731     }
2732 
2733     /*the CM channel and CM id is shared*/
2734     rdma_return_path->channel = rdma->channel;
2735     rdma_return_path->listen_id = rdma->listen_id;
2736 
2737     rdma->return_path = rdma_return_path;
2738     rdma_return_path->return_path = rdma;
2739     rdma_return_path->is_return_path = true;
2740 }
2741 
2742 static RDMAContext *qemu_rdma_data_init(const char *host_port, Error **errp)
2743 {
2744     RDMAContext *rdma = NULL;
2745     InetSocketAddress *addr;
2746 
2747     rdma = g_new0(RDMAContext, 1);
2748     rdma->current_index = -1;
2749     rdma->current_chunk = -1;
2750 
2751     addr = g_new(InetSocketAddress, 1);
2752     if (!inet_parse(addr, host_port, NULL)) {
2753         rdma->port = atoi(addr->port);
2754         rdma->host = g_strdup(addr->host);
2755         rdma->host_port = g_strdup(host_port);
2756     } else {
2757         error_setg(errp, "RDMA ERROR: bad RDMA migration address '%s'",
2758                    host_port);
2759         g_free(rdma);
2760         rdma = NULL;
2761     }
2762 
2763     qapi_free_InetSocketAddress(addr);
2764     return rdma;
2765 }
2766 
2767 /*
2768  * QEMUFile interface to the control channel.
2769  * SEND messages for control only.
2770  * VM's ram is handled with regular RDMA messages.
2771  */
2772 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2773                                        const struct iovec *iov,
2774                                        size_t niov,
2775                                        int *fds,
2776                                        size_t nfds,
2777                                        int flags,
2778                                        Error **errp)
2779 {
2780     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2781     RDMAContext *rdma;
2782     int ret;
2783     ssize_t done = 0;
2784     size_t i, len;
2785 
2786     RCU_READ_LOCK_GUARD();
2787     rdma = qatomic_rcu_read(&rioc->rdmaout);
2788 
2789     if (!rdma) {
2790         error_setg(errp, "RDMA control channel output is not set");
2791         return -1;
2792     }
2793 
2794     if (rdma->errored) {
2795         error_setg(errp,
2796                    "RDMA is in an error state waiting migration to abort!");
2797         return -1;
2798     }
2799 
2800     /*
2801      * Push out any writes that
2802      * we're queued up for VM's ram.
2803      */
2804     ret = qemu_rdma_write_flush(rdma, errp);
2805     if (ret < 0) {
2806         rdma->errored = true;
2807         return -1;
2808     }
2809 
2810     for (i = 0; i < niov; i++) {
2811         size_t remaining = iov[i].iov_len;
2812         uint8_t * data = (void *)iov[i].iov_base;
2813         while (remaining) {
2814             RDMAControlHeader head = {};
2815 
2816             len = MIN(remaining, RDMA_SEND_INCREMENT);
2817             remaining -= len;
2818 
2819             head.len = len;
2820             head.type = RDMA_CONTROL_QEMU_FILE;
2821 
2822             ret = qemu_rdma_exchange_send(rdma, &head,
2823                                           data, NULL, NULL, NULL, errp);
2824 
2825             if (ret < 0) {
2826                 rdma->errored = true;
2827                 return -1;
2828             }
2829 
2830             data += len;
2831             done += len;
2832         }
2833     }
2834 
2835     return done;
2836 }
2837 
2838 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2839                              size_t size, int idx)
2840 {
2841     size_t len = 0;
2842 
2843     if (rdma->wr_data[idx].control_len) {
2844         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2845 
2846         len = MIN(size, rdma->wr_data[idx].control_len);
2847         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2848         rdma->wr_data[idx].control_curr += len;
2849         rdma->wr_data[idx].control_len -= len;
2850     }
2851 
2852     return len;
2853 }
2854 
2855 /*
2856  * QEMUFile interface to the control channel.
2857  * RDMA links don't use bytestreams, so we have to
2858  * return bytes to QEMUFile opportunistically.
2859  */
2860 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2861                                       const struct iovec *iov,
2862                                       size_t niov,
2863                                       int **fds,
2864                                       size_t *nfds,
2865                                       int flags,
2866                                       Error **errp)
2867 {
2868     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2869     RDMAContext *rdma;
2870     RDMAControlHeader head;
2871     int ret;
2872     ssize_t done = 0;
2873     size_t i, len;
2874 
2875     RCU_READ_LOCK_GUARD();
2876     rdma = qatomic_rcu_read(&rioc->rdmain);
2877 
2878     if (!rdma) {
2879         error_setg(errp, "RDMA control channel input is not set");
2880         return -1;
2881     }
2882 
2883     if (rdma->errored) {
2884         error_setg(errp,
2885                    "RDMA is in an error state waiting migration to abort!");
2886         return -1;
2887     }
2888 
2889     for (i = 0; i < niov; i++) {
2890         size_t want = iov[i].iov_len;
2891         uint8_t *data = (void *)iov[i].iov_base;
2892 
2893         /*
2894          * First, we hold on to the last SEND message we
2895          * were given and dish out the bytes until we run
2896          * out of bytes.
2897          */
2898         len = qemu_rdma_fill(rdma, data, want, 0);
2899         done += len;
2900         want -= len;
2901         /* Got what we needed, so go to next iovec */
2902         if (want == 0) {
2903             continue;
2904         }
2905 
2906         /* If we got any data so far, then don't wait
2907          * for more, just return what we have */
2908         if (done > 0) {
2909             break;
2910         }
2911 
2912 
2913         /* We've got nothing at all, so lets wait for
2914          * more to arrive
2915          */
2916         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE,
2917                                       errp);
2918 
2919         if (ret < 0) {
2920             rdma->errored = true;
2921             return -1;
2922         }
2923 
2924         /*
2925          * SEND was received with new bytes, now try again.
2926          */
2927         len = qemu_rdma_fill(rdma, data, want, 0);
2928         done += len;
2929         want -= len;
2930 
2931         /* Still didn't get enough, so lets just return */
2932         if (want) {
2933             if (done == 0) {
2934                 return QIO_CHANNEL_ERR_BLOCK;
2935             } else {
2936                 break;
2937             }
2938         }
2939     }
2940     return done;
2941 }
2942 
2943 /*
2944  * Block until all the outstanding chunks have been delivered by the hardware.
2945  */
2946 static int qemu_rdma_drain_cq(RDMAContext *rdma)
2947 {
2948     Error *err = NULL;
2949     int ret;
2950 
2951     if (qemu_rdma_write_flush(rdma, &err) < 0) {
2952         error_report_err(err);
2953         return -1;
2954     }
2955 
2956     while (rdma->nb_sent) {
2957         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2958         if (ret < 0) {
2959             error_report("rdma migration: complete polling error!");
2960             return -1;
2961         }
2962     }
2963 
2964     qemu_rdma_unregister_waiting(rdma);
2965 
2966     return 0;
2967 }
2968 
2969 
2970 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2971                                          bool blocking,
2972                                          Error **errp)
2973 {
2974     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2975     /* XXX we should make readv/writev actually honour this :-) */
2976     rioc->blocking = blocking;
2977     return 0;
2978 }
2979 
2980 
2981 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2982 struct QIOChannelRDMASource {
2983     GSource parent;
2984     QIOChannelRDMA *rioc;
2985     GIOCondition condition;
2986 };
2987 
2988 static gboolean
2989 qio_channel_rdma_source_prepare(GSource *source,
2990                                 gint *timeout)
2991 {
2992     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2993     RDMAContext *rdma;
2994     GIOCondition cond = 0;
2995     *timeout = -1;
2996 
2997     RCU_READ_LOCK_GUARD();
2998     if (rsource->condition == G_IO_IN) {
2999         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3000     } else {
3001         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3002     }
3003 
3004     if (!rdma) {
3005         error_report("RDMAContext is NULL when prepare Gsource");
3006         return FALSE;
3007     }
3008 
3009     if (rdma->wr_data[0].control_len) {
3010         cond |= G_IO_IN;
3011     }
3012     cond |= G_IO_OUT;
3013 
3014     return cond & rsource->condition;
3015 }
3016 
3017 static gboolean
3018 qio_channel_rdma_source_check(GSource *source)
3019 {
3020     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3021     RDMAContext *rdma;
3022     GIOCondition cond = 0;
3023 
3024     RCU_READ_LOCK_GUARD();
3025     if (rsource->condition == G_IO_IN) {
3026         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3027     } else {
3028         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3029     }
3030 
3031     if (!rdma) {
3032         error_report("RDMAContext is NULL when check Gsource");
3033         return FALSE;
3034     }
3035 
3036     if (rdma->wr_data[0].control_len) {
3037         cond |= G_IO_IN;
3038     }
3039     cond |= G_IO_OUT;
3040 
3041     return cond & rsource->condition;
3042 }
3043 
3044 static gboolean
3045 qio_channel_rdma_source_dispatch(GSource *source,
3046                                  GSourceFunc callback,
3047                                  gpointer user_data)
3048 {
3049     QIOChannelFunc func = (QIOChannelFunc)callback;
3050     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3051     RDMAContext *rdma;
3052     GIOCondition cond = 0;
3053 
3054     RCU_READ_LOCK_GUARD();
3055     if (rsource->condition == G_IO_IN) {
3056         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3057     } else {
3058         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3059     }
3060 
3061     if (!rdma) {
3062         error_report("RDMAContext is NULL when dispatch Gsource");
3063         return FALSE;
3064     }
3065 
3066     if (rdma->wr_data[0].control_len) {
3067         cond |= G_IO_IN;
3068     }
3069     cond |= G_IO_OUT;
3070 
3071     return (*func)(QIO_CHANNEL(rsource->rioc),
3072                    (cond & rsource->condition),
3073                    user_data);
3074 }
3075 
3076 static void
3077 qio_channel_rdma_source_finalize(GSource *source)
3078 {
3079     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3080 
3081     object_unref(OBJECT(ssource->rioc));
3082 }
3083 
3084 static GSourceFuncs qio_channel_rdma_source_funcs = {
3085     qio_channel_rdma_source_prepare,
3086     qio_channel_rdma_source_check,
3087     qio_channel_rdma_source_dispatch,
3088     qio_channel_rdma_source_finalize
3089 };
3090 
3091 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3092                                               GIOCondition condition)
3093 {
3094     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3095     QIOChannelRDMASource *ssource;
3096     GSource *source;
3097 
3098     source = g_source_new(&qio_channel_rdma_source_funcs,
3099                           sizeof(QIOChannelRDMASource));
3100     ssource = (QIOChannelRDMASource *)source;
3101 
3102     ssource->rioc = rioc;
3103     object_ref(OBJECT(rioc));
3104 
3105     ssource->condition = condition;
3106 
3107     return source;
3108 }
3109 
3110 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3111                                                 AioContext *read_ctx,
3112                                                 IOHandler *io_read,
3113                                                 AioContext *write_ctx,
3114                                                 IOHandler *io_write,
3115                                                 void *opaque)
3116 {
3117     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3118     if (io_read) {
3119         aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3120                            io_read, io_write, NULL, NULL, opaque);
3121         aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3122                            io_read, io_write, NULL, NULL, opaque);
3123     } else {
3124         aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3125                            io_read, io_write, NULL, NULL, opaque);
3126         aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3127                            io_read, io_write, NULL, NULL, opaque);
3128     }
3129 }
3130 
3131 struct rdma_close_rcu {
3132     struct rcu_head rcu;
3133     RDMAContext *rdmain;
3134     RDMAContext *rdmaout;
3135 };
3136 
3137 /* callback from qio_channel_rdma_close via call_rcu */
3138 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3139 {
3140     if (rcu->rdmain) {
3141         qemu_rdma_cleanup(rcu->rdmain);
3142     }
3143 
3144     if (rcu->rdmaout) {
3145         qemu_rdma_cleanup(rcu->rdmaout);
3146     }
3147 
3148     g_free(rcu->rdmain);
3149     g_free(rcu->rdmaout);
3150     g_free(rcu);
3151 }
3152 
3153 static int qio_channel_rdma_close(QIOChannel *ioc,
3154                                   Error **errp)
3155 {
3156     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3157     RDMAContext *rdmain, *rdmaout;
3158     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3159 
3160     trace_qemu_rdma_close();
3161 
3162     rdmain = rioc->rdmain;
3163     if (rdmain) {
3164         qatomic_rcu_set(&rioc->rdmain, NULL);
3165     }
3166 
3167     rdmaout = rioc->rdmaout;
3168     if (rdmaout) {
3169         qatomic_rcu_set(&rioc->rdmaout, NULL);
3170     }
3171 
3172     rcu->rdmain = rdmain;
3173     rcu->rdmaout = rdmaout;
3174     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3175 
3176     return 0;
3177 }
3178 
3179 static int
3180 qio_channel_rdma_shutdown(QIOChannel *ioc,
3181                             QIOChannelShutdown how,
3182                             Error **errp)
3183 {
3184     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3185     RDMAContext *rdmain, *rdmaout;
3186 
3187     RCU_READ_LOCK_GUARD();
3188 
3189     rdmain = qatomic_rcu_read(&rioc->rdmain);
3190     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3191 
3192     switch (how) {
3193     case QIO_CHANNEL_SHUTDOWN_READ:
3194         if (rdmain) {
3195             rdmain->errored = true;
3196         }
3197         break;
3198     case QIO_CHANNEL_SHUTDOWN_WRITE:
3199         if (rdmaout) {
3200             rdmaout->errored = true;
3201         }
3202         break;
3203     case QIO_CHANNEL_SHUTDOWN_BOTH:
3204     default:
3205         if (rdmain) {
3206             rdmain->errored = true;
3207         }
3208         if (rdmaout) {
3209             rdmaout->errored = true;
3210         }
3211         break;
3212     }
3213 
3214     return 0;
3215 }
3216 
3217 /*
3218  * Parameters:
3219  *    @offset == 0 :
3220  *        This means that 'block_offset' is a full virtual address that does not
3221  *        belong to a RAMBlock of the virtual machine and instead
3222  *        represents a private malloc'd memory area that the caller wishes to
3223  *        transfer.
3224  *
3225  *    @offset != 0 :
3226  *        Offset is an offset to be added to block_offset and used
3227  *        to also lookup the corresponding RAMBlock.
3228  *
3229  *    @size : Number of bytes to transfer
3230  *
3231  *    @pages_sent : User-specificed pointer to indicate how many pages were
3232  *                  sent. Usually, this will not be more than a few bytes of
3233  *                  the protocol because most transfers are sent asynchronously.
3234  */
3235 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3236                                ram_addr_t offset, size_t size)
3237 {
3238     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3239     Error *err = NULL;
3240     RDMAContext *rdma;
3241     int ret;
3242 
3243     if (migration_in_postcopy()) {
3244         return RAM_SAVE_CONTROL_NOT_SUPP;
3245     }
3246 
3247     RCU_READ_LOCK_GUARD();
3248     rdma = qatomic_rcu_read(&rioc->rdmaout);
3249 
3250     if (!rdma) {
3251         return -1;
3252     }
3253 
3254     if (rdma_errored(rdma)) {
3255         return -1;
3256     }
3257 
3258     qemu_fflush(f);
3259 
3260     /*
3261      * Add this page to the current 'chunk'. If the chunk
3262      * is full, or the page doesn't belong to the current chunk,
3263      * an actual RDMA write will occur and a new chunk will be formed.
3264      */
3265     ret = qemu_rdma_write(rdma, block_offset, offset, size, &err);
3266     if (ret < 0) {
3267         error_report_err(err);
3268         goto err;
3269     }
3270 
3271     /*
3272      * Drain the Completion Queue if possible, but do not block,
3273      * just poll.
3274      *
3275      * If nothing to poll, the end of the iteration will do this
3276      * again to make sure we don't overflow the request queue.
3277      */
3278     while (1) {
3279         uint64_t wr_id, wr_id_in;
3280         ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3281 
3282         if (ret < 0) {
3283             error_report("rdma migration: polling error");
3284             goto err;
3285         }
3286 
3287         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3288 
3289         if (wr_id == RDMA_WRID_NONE) {
3290             break;
3291         }
3292     }
3293 
3294     while (1) {
3295         uint64_t wr_id, wr_id_in;
3296         ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3297 
3298         if (ret < 0) {
3299             error_report("rdma migration: polling error");
3300             goto err;
3301         }
3302 
3303         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3304 
3305         if (wr_id == RDMA_WRID_NONE) {
3306             break;
3307         }
3308     }
3309 
3310     return RAM_SAVE_CONTROL_DELAYED;
3311 
3312 err:
3313     rdma->errored = true;
3314     return -1;
3315 }
3316 
3317 static void rdma_accept_incoming_migration(void *opaque);
3318 
3319 static void rdma_cm_poll_handler(void *opaque)
3320 {
3321     RDMAContext *rdma = opaque;
3322     int ret;
3323     struct rdma_cm_event *cm_event;
3324     MigrationIncomingState *mis = migration_incoming_get_current();
3325 
3326     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3327     if (ret < 0) {
3328         error_report("get_cm_event failed %d", errno);
3329         return;
3330     }
3331 
3332     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3333         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3334         if (!rdma->errored &&
3335             migration_incoming_get_current()->state !=
3336               MIGRATION_STATUS_COMPLETED) {
3337             error_report("receive cm event, cm event is %d", cm_event->event);
3338             rdma->errored = true;
3339             if (rdma->return_path) {
3340                 rdma->return_path->errored = true;
3341             }
3342         }
3343         rdma_ack_cm_event(cm_event);
3344         if (mis->loadvm_co) {
3345             qemu_coroutine_enter(mis->loadvm_co);
3346         }
3347         return;
3348     }
3349     rdma_ack_cm_event(cm_event);
3350 }
3351 
3352 static int qemu_rdma_accept(RDMAContext *rdma)
3353 {
3354     Error *err = NULL;
3355     RDMACapabilities cap;
3356     struct rdma_conn_param conn_param = {
3357                                             .responder_resources = 2,
3358                                             .private_data = &cap,
3359                                             .private_data_len = sizeof(cap),
3360                                          };
3361     RDMAContext *rdma_return_path = NULL;
3362     struct rdma_cm_event *cm_event;
3363     struct ibv_context *verbs;
3364     int ret;
3365     int idx;
3366 
3367     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3368     if (ret < 0) {
3369         goto err_rdma_dest_wait;
3370     }
3371 
3372     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3373         rdma_ack_cm_event(cm_event);
3374         goto err_rdma_dest_wait;
3375     }
3376 
3377     /*
3378      * initialize the RDMAContext for return path for postcopy after first
3379      * connection request reached.
3380      */
3381     if ((migrate_postcopy() || migrate_return_path())
3382         && !rdma->is_return_path) {
3383         rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3384         if (rdma_return_path == NULL) {
3385             rdma_ack_cm_event(cm_event);
3386             goto err_rdma_dest_wait;
3387         }
3388 
3389         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3390     }
3391 
3392     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3393 
3394     network_to_caps(&cap);
3395 
3396     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3397         error_report("Unknown source RDMA version: %d, bailing...",
3398                      cap.version);
3399         rdma_ack_cm_event(cm_event);
3400         goto err_rdma_dest_wait;
3401     }
3402 
3403     /*
3404      * Respond with only the capabilities this version of QEMU knows about.
3405      */
3406     cap.flags &= known_capabilities;
3407 
3408     /*
3409      * Enable the ones that we do know about.
3410      * Add other checks here as new ones are introduced.
3411      */
3412     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3413         rdma->pin_all = true;
3414     }
3415 
3416     rdma->cm_id = cm_event->id;
3417     verbs = cm_event->id->verbs;
3418 
3419     rdma_ack_cm_event(cm_event);
3420 
3421     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3422 
3423     caps_to_network(&cap);
3424 
3425     trace_qemu_rdma_accept_pin_verbsc(verbs);
3426 
3427     if (!rdma->verbs) {
3428         rdma->verbs = verbs;
3429     } else if (rdma->verbs != verbs) {
3430         error_report("ibv context not matching %p, %p!", rdma->verbs,
3431                      verbs);
3432         goto err_rdma_dest_wait;
3433     }
3434 
3435     qemu_rdma_dump_id("dest_init", verbs);
3436 
3437     ret = qemu_rdma_alloc_pd_cq(rdma, &err);
3438     if (ret < 0) {
3439         error_report_err(err);
3440         goto err_rdma_dest_wait;
3441     }
3442 
3443     ret = qemu_rdma_alloc_qp(rdma);
3444     if (ret < 0) {
3445         error_report("rdma migration: error allocating qp!");
3446         goto err_rdma_dest_wait;
3447     }
3448 
3449     qemu_rdma_init_ram_blocks(rdma);
3450 
3451     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3452         ret = qemu_rdma_reg_control(rdma, idx);
3453         if (ret < 0) {
3454             error_report("rdma: error registering %d control", idx);
3455             goto err_rdma_dest_wait;
3456         }
3457     }
3458 
3459     /* Accept the second connection request for return path */
3460     if ((migrate_postcopy() || migrate_return_path())
3461         && !rdma->is_return_path) {
3462         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3463                             NULL,
3464                             (void *)(intptr_t)rdma->return_path);
3465     } else {
3466         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3467                             NULL, rdma);
3468     }
3469 
3470     ret = rdma_accept(rdma->cm_id, &conn_param);
3471     if (ret < 0) {
3472         error_report("rdma_accept failed");
3473         goto err_rdma_dest_wait;
3474     }
3475 
3476     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3477     if (ret < 0) {
3478         error_report("rdma_accept get_cm_event failed");
3479         goto err_rdma_dest_wait;
3480     }
3481 
3482     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3483         error_report("rdma_accept not event established");
3484         rdma_ack_cm_event(cm_event);
3485         goto err_rdma_dest_wait;
3486     }
3487 
3488     rdma_ack_cm_event(cm_event);
3489     rdma->connected = true;
3490 
3491     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, &err);
3492     if (ret < 0) {
3493         error_report_err(err);
3494         goto err_rdma_dest_wait;
3495     }
3496 
3497     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3498 
3499     return 0;
3500 
3501 err_rdma_dest_wait:
3502     rdma->errored = true;
3503     qemu_rdma_cleanup(rdma);
3504     g_free(rdma_return_path);
3505     return -1;
3506 }
3507 
3508 static int dest_ram_sort_func(const void *a, const void *b)
3509 {
3510     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3511     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3512 
3513     return (a_index < b_index) ? -1 : (a_index != b_index);
3514 }
3515 
3516 /*
3517  * During each iteration of the migration, we listen for instructions
3518  * by the source VM to perform dynamic page registrations before they
3519  * can perform RDMA operations.
3520  *
3521  * We respond with the 'rkey'.
3522  *
3523  * Keep doing this until the source tells us to stop.
3524  */
3525 static int qemu_rdma_registration_handle(QEMUFile *f)
3526 {
3527     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3528                                .type = RDMA_CONTROL_REGISTER_RESULT,
3529                                .repeat = 0,
3530                              };
3531     RDMAControlHeader unreg_resp = { .len = 0,
3532                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3533                                .repeat = 0,
3534                              };
3535     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3536                                  .repeat = 1 };
3537     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3538     Error *err = NULL;
3539     RDMAContext *rdma;
3540     RDMALocalBlocks *local;
3541     RDMAControlHeader head;
3542     RDMARegister *reg, *registers;
3543     RDMACompress *comp;
3544     RDMARegisterResult *reg_result;
3545     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3546     RDMALocalBlock *block;
3547     void *host_addr;
3548     int ret;
3549     int idx = 0;
3550     int count = 0;
3551     int i = 0;
3552 
3553     RCU_READ_LOCK_GUARD();
3554     rdma = qatomic_rcu_read(&rioc->rdmain);
3555 
3556     if (!rdma) {
3557         return -1;
3558     }
3559 
3560     if (rdma_errored(rdma)) {
3561         return -1;
3562     }
3563 
3564     local = &rdma->local_ram_blocks;
3565     do {
3566         trace_qemu_rdma_registration_handle_wait();
3567 
3568         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE, &err);
3569 
3570         if (ret < 0) {
3571             error_report_err(err);
3572             break;
3573         }
3574 
3575         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3576             error_report("rdma: Too many requests in this message (%d)."
3577                             "Bailing.", head.repeat);
3578             break;
3579         }
3580 
3581         switch (head.type) {
3582         case RDMA_CONTROL_COMPRESS:
3583             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3584             network_to_compress(comp);
3585 
3586             trace_qemu_rdma_registration_handle_compress(comp->length,
3587                                                          comp->block_idx,
3588                                                          comp->offset);
3589             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3590                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3591                              (unsigned int)comp->block_idx,
3592                              rdma->local_ram_blocks.nb_blocks);
3593                 goto err;
3594             }
3595             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3596 
3597             host_addr = block->local_host_addr +
3598                             (comp->offset - block->offset);
3599 
3600             ram_handle_compressed(host_addr, comp->value, comp->length);
3601             break;
3602 
3603         case RDMA_CONTROL_REGISTER_FINISHED:
3604             trace_qemu_rdma_registration_handle_finished();
3605             return 0;
3606 
3607         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3608             trace_qemu_rdma_registration_handle_ram_blocks();
3609 
3610             /* Sort our local RAM Block list so it's the same as the source,
3611              * we can do this since we've filled in a src_index in the list
3612              * as we received the RAMBlock list earlier.
3613              */
3614             qsort(rdma->local_ram_blocks.block,
3615                   rdma->local_ram_blocks.nb_blocks,
3616                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3617             for (i = 0; i < local->nb_blocks; i++) {
3618                 local->block[i].index = i;
3619             }
3620 
3621             if (rdma->pin_all) {
3622                 ret = qemu_rdma_reg_whole_ram_blocks(rdma, &err);
3623                 if (ret < 0) {
3624                     error_report_err(err);
3625                     goto err;
3626                 }
3627             }
3628 
3629             /*
3630              * Dest uses this to prepare to transmit the RAMBlock descriptions
3631              * to the source VM after connection setup.
3632              * Both sides use the "remote" structure to communicate and update
3633              * their "local" descriptions with what was sent.
3634              */
3635             for (i = 0; i < local->nb_blocks; i++) {
3636                 rdma->dest_blocks[i].remote_host_addr =
3637                     (uintptr_t)(local->block[i].local_host_addr);
3638 
3639                 if (rdma->pin_all) {
3640                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3641                 }
3642 
3643                 rdma->dest_blocks[i].offset = local->block[i].offset;
3644                 rdma->dest_blocks[i].length = local->block[i].length;
3645 
3646                 dest_block_to_network(&rdma->dest_blocks[i]);
3647                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3648                     local->block[i].block_name,
3649                     local->block[i].offset,
3650                     local->block[i].length,
3651                     local->block[i].local_host_addr,
3652                     local->block[i].src_index);
3653             }
3654 
3655             blocks.len = rdma->local_ram_blocks.nb_blocks
3656                                                 * sizeof(RDMADestBlock);
3657 
3658 
3659             ret = qemu_rdma_post_send_control(rdma,
3660                                     (uint8_t *) rdma->dest_blocks, &blocks,
3661                                     &err);
3662 
3663             if (ret < 0) {
3664                 error_report_err(err);
3665                 goto err;
3666             }
3667 
3668             break;
3669         case RDMA_CONTROL_REGISTER_REQUEST:
3670             trace_qemu_rdma_registration_handle_register(head.repeat);
3671 
3672             reg_resp.repeat = head.repeat;
3673             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3674 
3675             for (count = 0; count < head.repeat; count++) {
3676                 uint64_t chunk;
3677                 uint8_t *chunk_start, *chunk_end;
3678 
3679                 reg = &registers[count];
3680                 network_to_register(reg);
3681 
3682                 reg_result = &results[count];
3683 
3684                 trace_qemu_rdma_registration_handle_register_loop(count,
3685                          reg->current_index, reg->key.current_addr, reg->chunks);
3686 
3687                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3688                     error_report("rdma: 'register' bad block index %u (vs %d)",
3689                                  (unsigned int)reg->current_index,
3690                                  rdma->local_ram_blocks.nb_blocks);
3691                     goto err;
3692                 }
3693                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3694                 if (block->is_ram_block) {
3695                     if (block->offset > reg->key.current_addr) {
3696                         error_report("rdma: bad register address for block %s"
3697                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3698                             block->block_name, block->offset,
3699                             reg->key.current_addr);
3700                         goto err;
3701                     }
3702                     host_addr = (block->local_host_addr +
3703                                 (reg->key.current_addr - block->offset));
3704                     chunk = ram_chunk_index(block->local_host_addr,
3705                                             (uint8_t *) host_addr);
3706                 } else {
3707                     chunk = reg->key.chunk;
3708                     host_addr = block->local_host_addr +
3709                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3710                     /* Check for particularly bad chunk value */
3711                     if (host_addr < (void *)block->local_host_addr) {
3712                         error_report("rdma: bad chunk for block %s"
3713                             " chunk: %" PRIx64,
3714                             block->block_name, reg->key.chunk);
3715                         goto err;
3716                     }
3717                 }
3718                 chunk_start = ram_chunk_start(block, chunk);
3719                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3720                 /* avoid "-Waddress-of-packed-member" warning */
3721                 uint32_t tmp_rkey = 0;
3722                 if (qemu_rdma_register_and_get_keys(rdma, block,
3723                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3724                             chunk, chunk_start, chunk_end)) {
3725                     error_report("cannot get rkey");
3726                     goto err;
3727                 }
3728                 reg_result->rkey = tmp_rkey;
3729 
3730                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3731 
3732                 trace_qemu_rdma_registration_handle_register_rkey(
3733                                                            reg_result->rkey);
3734 
3735                 result_to_network(reg_result);
3736             }
3737 
3738             ret = qemu_rdma_post_send_control(rdma,
3739                             (uint8_t *) results, &reg_resp, &err);
3740 
3741             if (ret < 0) {
3742                 error_report_err(err);
3743                 goto err;
3744             }
3745             break;
3746         case RDMA_CONTROL_UNREGISTER_REQUEST:
3747             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3748             unreg_resp.repeat = head.repeat;
3749             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3750 
3751             for (count = 0; count < head.repeat; count++) {
3752                 reg = &registers[count];
3753                 network_to_register(reg);
3754 
3755                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3756                            reg->current_index, reg->key.chunk);
3757 
3758                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3759 
3760                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3761                 block->pmr[reg->key.chunk] = NULL;
3762 
3763                 if (ret != 0) {
3764                     error_report("rdma unregistration chunk failed: %s",
3765                                  strerror(errno));
3766                     goto err;
3767                 }
3768 
3769                 rdma->total_registrations--;
3770 
3771                 trace_qemu_rdma_registration_handle_unregister_success(
3772                                                        reg->key.chunk);
3773             }
3774 
3775             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp, &err);
3776 
3777             if (ret < 0) {
3778                 error_report_err(err);
3779                 goto err;
3780             }
3781             break;
3782         case RDMA_CONTROL_REGISTER_RESULT:
3783             error_report("Invalid RESULT message at dest.");
3784             goto err;
3785         default:
3786             error_report("Unknown control message %s", control_desc(head.type));
3787             goto err;
3788         }
3789     } while (1);
3790 
3791 err:
3792     rdma->errored = true;
3793     return -1;
3794 }
3795 
3796 /* Destination:
3797  * Called via a ram_control_load_hook during the initial RAM load section which
3798  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3799  * on the source.
3800  * We've already built our local RAMBlock list, but not yet sent the list to
3801  * the source.
3802  */
3803 static int
3804 rdma_block_notification_handle(QEMUFile *f, const char *name)
3805 {
3806     RDMAContext *rdma;
3807     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3808     int curr;
3809     int found = -1;
3810 
3811     RCU_READ_LOCK_GUARD();
3812     rdma = qatomic_rcu_read(&rioc->rdmain);
3813 
3814     if (!rdma) {
3815         return -1;
3816     }
3817 
3818     /* Find the matching RAMBlock in our local list */
3819     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3820         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3821             found = curr;
3822             break;
3823         }
3824     }
3825 
3826     if (found == -1) {
3827         error_report("RAMBlock '%s' not found on destination", name);
3828         return -1;
3829     }
3830 
3831     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3832     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3833     rdma->next_src_index++;
3834 
3835     return 0;
3836 }
3837 
3838 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3839 {
3840     switch (flags) {
3841     case RAM_CONTROL_BLOCK_REG:
3842         return rdma_block_notification_handle(f, data);
3843 
3844     case RAM_CONTROL_HOOK:
3845         return qemu_rdma_registration_handle(f);
3846 
3847     default:
3848         /* Shouldn't be called with any other values */
3849         abort();
3850     }
3851 }
3852 
3853 static int qemu_rdma_registration_start(QEMUFile *f,
3854                                         uint64_t flags, void *data)
3855 {
3856     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3857     RDMAContext *rdma;
3858 
3859     if (migration_in_postcopy()) {
3860         return 0;
3861     }
3862 
3863     RCU_READ_LOCK_GUARD();
3864     rdma = qatomic_rcu_read(&rioc->rdmaout);
3865     if (!rdma) {
3866         return -1;
3867     }
3868 
3869     if (rdma_errored(rdma)) {
3870         return -1;
3871     }
3872 
3873     trace_qemu_rdma_registration_start(flags);
3874     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3875     qemu_fflush(f);
3876 
3877     return 0;
3878 }
3879 
3880 /*
3881  * Inform dest that dynamic registrations are done for now.
3882  * First, flush writes, if any.
3883  */
3884 static int qemu_rdma_registration_stop(QEMUFile *f,
3885                                        uint64_t flags, void *data)
3886 {
3887     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3888     Error *err = NULL;
3889     RDMAContext *rdma;
3890     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3891     int ret;
3892 
3893     if (migration_in_postcopy()) {
3894         return 0;
3895     }
3896 
3897     RCU_READ_LOCK_GUARD();
3898     rdma = qatomic_rcu_read(&rioc->rdmaout);
3899     if (!rdma) {
3900         return -1;
3901     }
3902 
3903     if (rdma_errored(rdma)) {
3904         return -1;
3905     }
3906 
3907     qemu_fflush(f);
3908     ret = qemu_rdma_drain_cq(rdma);
3909 
3910     if (ret < 0) {
3911         goto err;
3912     }
3913 
3914     if (flags == RAM_CONTROL_SETUP) {
3915         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3916         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3917         int reg_result_idx, i, nb_dest_blocks;
3918 
3919         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3920         trace_qemu_rdma_registration_stop_ram();
3921 
3922         /*
3923          * Make sure that we parallelize the pinning on both sides.
3924          * For very large guests, doing this serially takes a really
3925          * long time, so we have to 'interleave' the pinning locally
3926          * with the control messages by performing the pinning on this
3927          * side before we receive the control response from the other
3928          * side that the pinning has completed.
3929          */
3930         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3931                     &reg_result_idx, rdma->pin_all ?
3932                     qemu_rdma_reg_whole_ram_blocks : NULL,
3933                     &err);
3934         if (ret < 0) {
3935             error_report_err(err);
3936             return -1;
3937         }
3938 
3939         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3940 
3941         /*
3942          * The protocol uses two different sets of rkeys (mutually exclusive):
3943          * 1. One key to represent the virtual address of the entire ram block.
3944          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3945          * 2. One to represent individual chunks within a ram block.
3946          *    (dynamic chunk registration enabled - pin individual chunks.)
3947          *
3948          * Once the capability is successfully negotiated, the destination transmits
3949          * the keys to use (or sends them later) including the virtual addresses
3950          * and then propagates the remote ram block descriptions to his local copy.
3951          */
3952 
3953         if (local->nb_blocks != nb_dest_blocks) {
3954             error_report("ram blocks mismatch (Number of blocks %d vs %d)",
3955                          local->nb_blocks, nb_dest_blocks);
3956             error_printf("Your QEMU command line parameters are probably "
3957                          "not identical on both the source and destination.");
3958             rdma->errored = true;
3959             return -1;
3960         }
3961 
3962         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3963         memcpy(rdma->dest_blocks,
3964             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3965         for (i = 0; i < nb_dest_blocks; i++) {
3966             network_to_dest_block(&rdma->dest_blocks[i]);
3967 
3968             /* We require that the blocks are in the same order */
3969             if (rdma->dest_blocks[i].length != local->block[i].length) {
3970                 error_report("Block %s/%d has a different length %" PRIu64
3971                              "vs %" PRIu64,
3972                              local->block[i].block_name, i,
3973                              local->block[i].length,
3974                              rdma->dest_blocks[i].length);
3975                 rdma->errored = true;
3976                 return -1;
3977             }
3978             local->block[i].remote_host_addr =
3979                     rdma->dest_blocks[i].remote_host_addr;
3980             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3981         }
3982     }
3983 
3984     trace_qemu_rdma_registration_stop(flags);
3985 
3986     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3987     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL, &err);
3988 
3989     if (ret < 0) {
3990         error_report_err(err);
3991         goto err;
3992     }
3993 
3994     return 0;
3995 err:
3996     rdma->errored = true;
3997     return -1;
3998 }
3999 
4000 static const QEMUFileHooks rdma_read_hooks = {
4001     .hook_ram_load = rdma_load_hook,
4002 };
4003 
4004 static const QEMUFileHooks rdma_write_hooks = {
4005     .before_ram_iterate = qemu_rdma_registration_start,
4006     .after_ram_iterate  = qemu_rdma_registration_stop,
4007     .save_page          = qemu_rdma_save_page,
4008 };
4009 
4010 
4011 static void qio_channel_rdma_finalize(Object *obj)
4012 {
4013     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4014     if (rioc->rdmain) {
4015         qemu_rdma_cleanup(rioc->rdmain);
4016         g_free(rioc->rdmain);
4017         rioc->rdmain = NULL;
4018     }
4019     if (rioc->rdmaout) {
4020         qemu_rdma_cleanup(rioc->rdmaout);
4021         g_free(rioc->rdmaout);
4022         rioc->rdmaout = NULL;
4023     }
4024 }
4025 
4026 static void qio_channel_rdma_class_init(ObjectClass *klass,
4027                                         void *class_data G_GNUC_UNUSED)
4028 {
4029     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4030 
4031     ioc_klass->io_writev = qio_channel_rdma_writev;
4032     ioc_klass->io_readv = qio_channel_rdma_readv;
4033     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4034     ioc_klass->io_close = qio_channel_rdma_close;
4035     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4036     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4037     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4038 }
4039 
4040 static const TypeInfo qio_channel_rdma_info = {
4041     .parent = TYPE_QIO_CHANNEL,
4042     .name = TYPE_QIO_CHANNEL_RDMA,
4043     .instance_size = sizeof(QIOChannelRDMA),
4044     .instance_finalize = qio_channel_rdma_finalize,
4045     .class_init = qio_channel_rdma_class_init,
4046 };
4047 
4048 static void qio_channel_rdma_register_types(void)
4049 {
4050     type_register_static(&qio_channel_rdma_info);
4051 }
4052 
4053 type_init(qio_channel_rdma_register_types);
4054 
4055 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4056 {
4057     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4058 
4059     rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4060     rioc->rdmain = rdma;
4061     rioc->rdmaout = rdma->return_path;
4062     qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4063 
4064     return rioc->file;
4065 }
4066 
4067 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4068 {
4069     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4070 
4071     rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4072     rioc->rdmaout = rdma;
4073     rioc->rdmain = rdma->return_path;
4074     qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4075 
4076     return rioc->file;
4077 }
4078 
4079 static void rdma_accept_incoming_migration(void *opaque)
4080 {
4081     RDMAContext *rdma = opaque;
4082     int ret;
4083     QEMUFile *f;
4084     Error *local_err = NULL;
4085 
4086     trace_qemu_rdma_accept_incoming_migration();
4087     ret = qemu_rdma_accept(rdma);
4088 
4089     if (ret < 0) {
4090         error_report("RDMA ERROR: Migration initialization failed");
4091         return;
4092     }
4093 
4094     trace_qemu_rdma_accept_incoming_migration_accepted();
4095 
4096     if (rdma->is_return_path) {
4097         return;
4098     }
4099 
4100     f = rdma_new_input(rdma);
4101     if (f == NULL) {
4102         error_report("RDMA ERROR: could not open RDMA for input");
4103         qemu_rdma_cleanup(rdma);
4104         return;
4105     }
4106 
4107     rdma->migration_started_on_destination = 1;
4108     migration_fd_process_incoming(f, &local_err);
4109     if (local_err) {
4110         error_reportf_err(local_err, "RDMA ERROR:");
4111     }
4112 }
4113 
4114 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4115 {
4116     int ret;
4117     RDMAContext *rdma;
4118 
4119     trace_rdma_start_incoming_migration();
4120 
4121     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4122     if (ram_block_discard_is_required()) {
4123         error_setg(errp, "RDMA: cannot disable RAM discard");
4124         return;
4125     }
4126 
4127     rdma = qemu_rdma_data_init(host_port, errp);
4128     if (rdma == NULL) {
4129         goto err;
4130     }
4131 
4132     ret = qemu_rdma_dest_init(rdma, errp);
4133     if (ret < 0) {
4134         goto err;
4135     }
4136 
4137     trace_rdma_start_incoming_migration_after_dest_init();
4138 
4139     ret = rdma_listen(rdma->listen_id, 5);
4140 
4141     if (ret < 0) {
4142         error_setg(errp, "RDMA ERROR: listening on socket!");
4143         goto cleanup_rdma;
4144     }
4145 
4146     trace_rdma_start_incoming_migration_after_rdma_listen();
4147 
4148     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4149                         NULL, (void *)(intptr_t)rdma);
4150     return;
4151 
4152 cleanup_rdma:
4153     qemu_rdma_cleanup(rdma);
4154 err:
4155     if (rdma) {
4156         g_free(rdma->host);
4157         g_free(rdma->host_port);
4158     }
4159     g_free(rdma);
4160 }
4161 
4162 void rdma_start_outgoing_migration(void *opaque,
4163                             const char *host_port, Error **errp)
4164 {
4165     MigrationState *s = opaque;
4166     RDMAContext *rdma_return_path = NULL;
4167     RDMAContext *rdma;
4168     int ret;
4169 
4170     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4171     if (ram_block_discard_is_required()) {
4172         error_setg(errp, "RDMA: cannot disable RAM discard");
4173         return;
4174     }
4175 
4176     rdma = qemu_rdma_data_init(host_port, errp);
4177     if (rdma == NULL) {
4178         goto err;
4179     }
4180 
4181     ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4182 
4183     if (ret < 0) {
4184         goto err;
4185     }
4186 
4187     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4188     ret = qemu_rdma_connect(rdma, false, errp);
4189 
4190     if (ret < 0) {
4191         goto err;
4192     }
4193 
4194     /* RDMA postcopy need a separate queue pair for return path */
4195     if (migrate_postcopy() || migrate_return_path()) {
4196         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4197 
4198         if (rdma_return_path == NULL) {
4199             goto return_path_err;
4200         }
4201 
4202         ret = qemu_rdma_source_init(rdma_return_path,
4203                                     migrate_rdma_pin_all(), errp);
4204 
4205         if (ret < 0) {
4206             goto return_path_err;
4207         }
4208 
4209         ret = qemu_rdma_connect(rdma_return_path, true, errp);
4210 
4211         if (ret < 0) {
4212             goto return_path_err;
4213         }
4214 
4215         rdma->return_path = rdma_return_path;
4216         rdma_return_path->return_path = rdma;
4217         rdma_return_path->is_return_path = true;
4218     }
4219 
4220     trace_rdma_start_outgoing_migration_after_rdma_connect();
4221 
4222     s->to_dst_file = rdma_new_output(rdma);
4223     migrate_fd_connect(s, NULL);
4224     return;
4225 return_path_err:
4226     qemu_rdma_cleanup(rdma);
4227 err:
4228     g_free(rdma);
4229     g_free(rdma_return_path);
4230 }
4231