xref: /qemu/migration/rdma.c (revision 5f6d4f79)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
42 
43 /*
44  * Print and error on both the Monitor and the Log file.
45  */
46 #define ERROR(errp, fmt, ...) \
47     do { \
48         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
49         if (errp && (*(errp) == NULL)) { \
50             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
51         } \
52     } while (0)
53 
54 #define RDMA_RESOLVE_TIMEOUT_MS 10000
55 
56 /* Do not merge data if larger than this. */
57 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
58 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
59 
60 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
61 
62 /*
63  * This is only for non-live state being migrated.
64  * Instead of RDMA_WRITE messages, we use RDMA_SEND
65  * messages for that state, which requires a different
66  * delivery design than main memory.
67  */
68 #define RDMA_SEND_INCREMENT 32768
69 
70 /*
71  * Maximum size infiniband SEND message
72  */
73 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
74 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
75 
76 #define RDMA_CONTROL_VERSION_CURRENT 1
77 /*
78  * Capabilities for negotiation.
79  */
80 #define RDMA_CAPABILITY_PIN_ALL 0x01
81 
82 /*
83  * Add the other flags above to this list of known capabilities
84  * as they are introduced.
85  */
86 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
87 
88 #define CHECK_ERROR_STATE() \
89     do { \
90         if (rdma->error_state) { \
91             if (!rdma->error_reported) { \
92                 error_report("RDMA is in an error state waiting migration" \
93                                 " to abort!"); \
94                 rdma->error_reported = 1; \
95             } \
96             return rdma->error_state; \
97         } \
98     } while (0)
99 
100 /*
101  * A work request ID is 64-bits and we split up these bits
102  * into 3 parts:
103  *
104  * bits 0-15 : type of control message, 2^16
105  * bits 16-29: ram block index, 2^14
106  * bits 30-63: ram block chunk number, 2^34
107  *
108  * The last two bit ranges are only used for RDMA writes,
109  * in order to track their completion and potentially
110  * also track unregistration status of the message.
111  */
112 #define RDMA_WRID_TYPE_SHIFT  0UL
113 #define RDMA_WRID_BLOCK_SHIFT 16UL
114 #define RDMA_WRID_CHUNK_SHIFT 30UL
115 
116 #define RDMA_WRID_TYPE_MASK \
117     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
118 
119 #define RDMA_WRID_BLOCK_MASK \
120     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
121 
122 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
123 
124 /*
125  * RDMA migration protocol:
126  * 1. RDMA Writes (data messages, i.e. RAM)
127  * 2. IB Send/Recv (control channel messages)
128  */
129 enum {
130     RDMA_WRID_NONE = 0,
131     RDMA_WRID_RDMA_WRITE = 1,
132     RDMA_WRID_SEND_CONTROL = 2000,
133     RDMA_WRID_RECV_CONTROL = 4000,
134 };
135 
136 static const char *wrid_desc[] = {
137     [RDMA_WRID_NONE] = "NONE",
138     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
139     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
140     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
141 };
142 
143 /*
144  * Work request IDs for IB SEND messages only (not RDMA writes).
145  * This is used by the migration protocol to transmit
146  * control messages (such as device state and registration commands)
147  *
148  * We could use more WRs, but we have enough for now.
149  */
150 enum {
151     RDMA_WRID_READY = 0,
152     RDMA_WRID_DATA,
153     RDMA_WRID_CONTROL,
154     RDMA_WRID_MAX,
155 };
156 
157 /*
158  * SEND/RECV IB Control Messages.
159  */
160 enum {
161     RDMA_CONTROL_NONE = 0,
162     RDMA_CONTROL_ERROR,
163     RDMA_CONTROL_READY,               /* ready to receive */
164     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
165     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
166     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
167     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
168     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
169     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
170     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
171     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
172     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
173 };
174 
175 
176 /*
177  * Memory and MR structures used to represent an IB Send/Recv work request.
178  * This is *not* used for RDMA writes, only IB Send/Recv.
179  */
180 typedef struct {
181     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
182     struct   ibv_mr *control_mr;               /* registration metadata */
183     size_t   control_len;                      /* length of the message */
184     uint8_t *control_curr;                     /* start of unconsumed bytes */
185 } RDMAWorkRequestData;
186 
187 /*
188  * Negotiate RDMA capabilities during connection-setup time.
189  */
190 typedef struct {
191     uint32_t version;
192     uint32_t flags;
193 } RDMACapabilities;
194 
195 static void caps_to_network(RDMACapabilities *cap)
196 {
197     cap->version = htonl(cap->version);
198     cap->flags = htonl(cap->flags);
199 }
200 
201 static void network_to_caps(RDMACapabilities *cap)
202 {
203     cap->version = ntohl(cap->version);
204     cap->flags = ntohl(cap->flags);
205 }
206 
207 /*
208  * Representation of a RAMBlock from an RDMA perspective.
209  * This is not transmitted, only local.
210  * This and subsequent structures cannot be linked lists
211  * because we're using a single IB message to transmit
212  * the information. It's small anyway, so a list is overkill.
213  */
214 typedef struct RDMALocalBlock {
215     char          *block_name;
216     uint8_t       *local_host_addr; /* local virtual address */
217     uint64_t       remote_host_addr; /* remote virtual address */
218     uint64_t       offset;
219     uint64_t       length;
220     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
221     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
222     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
223     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
224     int            index;           /* which block are we */
225     unsigned int   src_index;       /* (Only used on dest) */
226     bool           is_ram_block;
227     int            nb_chunks;
228     unsigned long *transit_bitmap;
229     unsigned long *unregister_bitmap;
230 } RDMALocalBlock;
231 
232 /*
233  * Also represents a RAMblock, but only on the dest.
234  * This gets transmitted by the dest during connection-time
235  * to the source VM and then is used to populate the
236  * corresponding RDMALocalBlock with
237  * the information needed to perform the actual RDMA.
238  */
239 typedef struct QEMU_PACKED RDMADestBlock {
240     uint64_t remote_host_addr;
241     uint64_t offset;
242     uint64_t length;
243     uint32_t remote_rkey;
244     uint32_t padding;
245 } RDMADestBlock;
246 
247 static const char *control_desc(unsigned int rdma_control)
248 {
249     static const char *strs[] = {
250         [RDMA_CONTROL_NONE] = "NONE",
251         [RDMA_CONTROL_ERROR] = "ERROR",
252         [RDMA_CONTROL_READY] = "READY",
253         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
254         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
255         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
256         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
257         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
258         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
259         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
260         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
261         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
262     };
263 
264     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
265         return "??BAD CONTROL VALUE??";
266     }
267 
268     return strs[rdma_control];
269 }
270 
271 static uint64_t htonll(uint64_t v)
272 {
273     union { uint32_t lv[2]; uint64_t llv; } u;
274     u.lv[0] = htonl(v >> 32);
275     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
276     return u.llv;
277 }
278 
279 static uint64_t ntohll(uint64_t v)
280 {
281     union { uint32_t lv[2]; uint64_t llv; } u;
282     u.llv = v;
283     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
284 }
285 
286 static void dest_block_to_network(RDMADestBlock *db)
287 {
288     db->remote_host_addr = htonll(db->remote_host_addr);
289     db->offset = htonll(db->offset);
290     db->length = htonll(db->length);
291     db->remote_rkey = htonl(db->remote_rkey);
292 }
293 
294 static void network_to_dest_block(RDMADestBlock *db)
295 {
296     db->remote_host_addr = ntohll(db->remote_host_addr);
297     db->offset = ntohll(db->offset);
298     db->length = ntohll(db->length);
299     db->remote_rkey = ntohl(db->remote_rkey);
300 }
301 
302 /*
303  * Virtual address of the above structures used for transmitting
304  * the RAMBlock descriptions at connection-time.
305  * This structure is *not* transmitted.
306  */
307 typedef struct RDMALocalBlocks {
308     int nb_blocks;
309     bool     init;             /* main memory init complete */
310     RDMALocalBlock *block;
311 } RDMALocalBlocks;
312 
313 /*
314  * Main data structure for RDMA state.
315  * While there is only one copy of this structure being allocated right now,
316  * this is the place where one would start if you wanted to consider
317  * having more than one RDMA connection open at the same time.
318  */
319 typedef struct RDMAContext {
320     char *host;
321     int port;
322     char *host_port;
323 
324     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
325 
326     /*
327      * This is used by *_exchange_send() to figure out whether or not
328      * the initial "READY" message has already been received or not.
329      * This is because other functions may potentially poll() and detect
330      * the READY message before send() does, in which case we need to
331      * know if it completed.
332      */
333     int control_ready_expected;
334 
335     /* number of outstanding writes */
336     int nb_sent;
337 
338     /* store info about current buffer so that we can
339        merge it with future sends */
340     uint64_t current_addr;
341     uint64_t current_length;
342     /* index of ram block the current buffer belongs to */
343     int current_index;
344     /* index of the chunk in the current ram block */
345     int current_chunk;
346 
347     bool pin_all;
348 
349     /*
350      * infiniband-specific variables for opening the device
351      * and maintaining connection state and so forth.
352      *
353      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
354      * cm_id->verbs, cm_id->channel, and cm_id->qp.
355      */
356     struct rdma_cm_id *cm_id;               /* connection manager ID */
357     struct rdma_cm_id *listen_id;
358     bool connected;
359 
360     struct ibv_context          *verbs;
361     struct rdma_event_channel   *channel;
362     struct ibv_qp *qp;                      /* queue pair */
363     struct ibv_comp_channel *recv_comp_channel;  /* recv completion channel */
364     struct ibv_comp_channel *send_comp_channel;  /* send completion channel */
365     struct ibv_pd *pd;                      /* protection domain */
366     struct ibv_cq *recv_cq;                 /* recvieve completion queue */
367     struct ibv_cq *send_cq;                 /* send completion queue */
368 
369     /*
370      * If a previous write failed (perhaps because of a failed
371      * memory registration, then do not attempt any future work
372      * and remember the error state.
373      */
374     int error_state;
375     int error_reported;
376     int received_error;
377 
378     /*
379      * Description of ram blocks used throughout the code.
380      */
381     RDMALocalBlocks local_ram_blocks;
382     RDMADestBlock  *dest_blocks;
383 
384     /* Index of the next RAMBlock received during block registration */
385     unsigned int    next_src_index;
386 
387     /*
388      * Migration on *destination* started.
389      * Then use coroutine yield function.
390      * Source runs in a thread, so we don't care.
391      */
392     int migration_started_on_destination;
393 
394     int total_registrations;
395     int total_writes;
396 
397     int unregister_current, unregister_next;
398     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
399 
400     GHashTable *blockmap;
401 
402     /* the RDMAContext for return path */
403     struct RDMAContext *return_path;
404     bool is_return_path;
405 } RDMAContext;
406 
407 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
408 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
409 
410 
411 
412 struct QIOChannelRDMA {
413     QIOChannel parent;
414     RDMAContext *rdmain;
415     RDMAContext *rdmaout;
416     QEMUFile *file;
417     bool blocking; /* XXX we don't actually honour this yet */
418 };
419 
420 /*
421  * Main structure for IB Send/Recv control messages.
422  * This gets prepended at the beginning of every Send/Recv.
423  */
424 typedef struct QEMU_PACKED {
425     uint32_t len;     /* Total length of data portion */
426     uint32_t type;    /* which control command to perform */
427     uint32_t repeat;  /* number of commands in data portion of same type */
428     uint32_t padding;
429 } RDMAControlHeader;
430 
431 static void control_to_network(RDMAControlHeader *control)
432 {
433     control->type = htonl(control->type);
434     control->len = htonl(control->len);
435     control->repeat = htonl(control->repeat);
436 }
437 
438 static void network_to_control(RDMAControlHeader *control)
439 {
440     control->type = ntohl(control->type);
441     control->len = ntohl(control->len);
442     control->repeat = ntohl(control->repeat);
443 }
444 
445 /*
446  * Register a single Chunk.
447  * Information sent by the source VM to inform the dest
448  * to register an single chunk of memory before we can perform
449  * the actual RDMA operation.
450  */
451 typedef struct QEMU_PACKED {
452     union QEMU_PACKED {
453         uint64_t current_addr;  /* offset into the ram_addr_t space */
454         uint64_t chunk;         /* chunk to lookup if unregistering */
455     } key;
456     uint32_t current_index; /* which ramblock the chunk belongs to */
457     uint32_t padding;
458     uint64_t chunks;            /* how many sequential chunks to register */
459 } RDMARegister;
460 
461 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
462 {
463     RDMALocalBlock *local_block;
464     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
465 
466     if (local_block->is_ram_block) {
467         /*
468          * current_addr as passed in is an address in the local ram_addr_t
469          * space, we need to translate this for the destination
470          */
471         reg->key.current_addr -= local_block->offset;
472         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
473     }
474     reg->key.current_addr = htonll(reg->key.current_addr);
475     reg->current_index = htonl(reg->current_index);
476     reg->chunks = htonll(reg->chunks);
477 }
478 
479 static void network_to_register(RDMARegister *reg)
480 {
481     reg->key.current_addr = ntohll(reg->key.current_addr);
482     reg->current_index = ntohl(reg->current_index);
483     reg->chunks = ntohll(reg->chunks);
484 }
485 
486 typedef struct QEMU_PACKED {
487     uint32_t value;     /* if zero, we will madvise() */
488     uint32_t block_idx; /* which ram block index */
489     uint64_t offset;    /* Address in remote ram_addr_t space */
490     uint64_t length;    /* length of the chunk */
491 } RDMACompress;
492 
493 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
494 {
495     comp->value = htonl(comp->value);
496     /*
497      * comp->offset as passed in is an address in the local ram_addr_t
498      * space, we need to translate this for the destination
499      */
500     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
501     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
502     comp->block_idx = htonl(comp->block_idx);
503     comp->offset = htonll(comp->offset);
504     comp->length = htonll(comp->length);
505 }
506 
507 static void network_to_compress(RDMACompress *comp)
508 {
509     comp->value = ntohl(comp->value);
510     comp->block_idx = ntohl(comp->block_idx);
511     comp->offset = ntohll(comp->offset);
512     comp->length = ntohll(comp->length);
513 }
514 
515 /*
516  * The result of the dest's memory registration produces an "rkey"
517  * which the source VM must reference in order to perform
518  * the RDMA operation.
519  */
520 typedef struct QEMU_PACKED {
521     uint32_t rkey;
522     uint32_t padding;
523     uint64_t host_addr;
524 } RDMARegisterResult;
525 
526 static void result_to_network(RDMARegisterResult *result)
527 {
528     result->rkey = htonl(result->rkey);
529     result->host_addr = htonll(result->host_addr);
530 };
531 
532 static void network_to_result(RDMARegisterResult *result)
533 {
534     result->rkey = ntohl(result->rkey);
535     result->host_addr = ntohll(result->host_addr);
536 };
537 
538 const char *print_wrid(int wrid);
539 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
540                                    uint8_t *data, RDMAControlHeader *resp,
541                                    int *resp_idx,
542                                    int (*callback)(RDMAContext *rdma));
543 
544 static inline uint64_t ram_chunk_index(const uint8_t *start,
545                                        const uint8_t *host)
546 {
547     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
548 }
549 
550 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
551                                        uint64_t i)
552 {
553     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
554                                   (i << RDMA_REG_CHUNK_SHIFT));
555 }
556 
557 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
558                                      uint64_t i)
559 {
560     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
561                                          (1UL << RDMA_REG_CHUNK_SHIFT);
562 
563     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
564         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
565     }
566 
567     return result;
568 }
569 
570 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
571                          void *host_addr,
572                          ram_addr_t block_offset, uint64_t length)
573 {
574     RDMALocalBlocks *local = &rdma->local_ram_blocks;
575     RDMALocalBlock *block;
576     RDMALocalBlock *old = local->block;
577 
578     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
579 
580     if (local->nb_blocks) {
581         int x;
582 
583         if (rdma->blockmap) {
584             for (x = 0; x < local->nb_blocks; x++) {
585                 g_hash_table_remove(rdma->blockmap,
586                                     (void *)(uintptr_t)old[x].offset);
587                 g_hash_table_insert(rdma->blockmap,
588                                     (void *)(uintptr_t)old[x].offset,
589                                     &local->block[x]);
590             }
591         }
592         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
593         g_free(old);
594     }
595 
596     block = &local->block[local->nb_blocks];
597 
598     block->block_name = g_strdup(block_name);
599     block->local_host_addr = host_addr;
600     block->offset = block_offset;
601     block->length = length;
602     block->index = local->nb_blocks;
603     block->src_index = ~0U; /* Filled in by the receipt of the block list */
604     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
605     block->transit_bitmap = bitmap_new(block->nb_chunks);
606     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
607     block->unregister_bitmap = bitmap_new(block->nb_chunks);
608     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
609     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
610 
611     block->is_ram_block = local->init ? false : true;
612 
613     if (rdma->blockmap) {
614         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
615     }
616 
617     trace_rdma_add_block(block_name, local->nb_blocks,
618                          (uintptr_t) block->local_host_addr,
619                          block->offset, block->length,
620                          (uintptr_t) (block->local_host_addr + block->length),
621                          BITS_TO_LONGS(block->nb_chunks) *
622                              sizeof(unsigned long) * 8,
623                          block->nb_chunks);
624 
625     local->nb_blocks++;
626 
627     return 0;
628 }
629 
630 /*
631  * Memory regions need to be registered with the device and queue pairs setup
632  * in advanced before the migration starts. This tells us where the RAM blocks
633  * are so that we can register them individually.
634  */
635 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
636 {
637     const char *block_name = qemu_ram_get_idstr(rb);
638     void *host_addr = qemu_ram_get_host_addr(rb);
639     ram_addr_t block_offset = qemu_ram_get_offset(rb);
640     ram_addr_t length = qemu_ram_get_used_length(rb);
641     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
642 }
643 
644 /*
645  * Identify the RAMBlocks and their quantity. They will be references to
646  * identify chunk boundaries inside each RAMBlock and also be referenced
647  * during dynamic page registration.
648  */
649 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
650 {
651     RDMALocalBlocks *local = &rdma->local_ram_blocks;
652     int ret;
653 
654     assert(rdma->blockmap == NULL);
655     memset(local, 0, sizeof *local);
656     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
657     if (ret) {
658         return ret;
659     }
660     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
661     rdma->dest_blocks = g_new0(RDMADestBlock,
662                                rdma->local_ram_blocks.nb_blocks);
663     local->init = true;
664     return 0;
665 }
666 
667 /*
668  * Note: If used outside of cleanup, the caller must ensure that the destination
669  * block structures are also updated
670  */
671 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
672 {
673     RDMALocalBlocks *local = &rdma->local_ram_blocks;
674     RDMALocalBlock *old = local->block;
675     int x;
676 
677     if (rdma->blockmap) {
678         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
679     }
680     if (block->pmr) {
681         int j;
682 
683         for (j = 0; j < block->nb_chunks; j++) {
684             if (!block->pmr[j]) {
685                 continue;
686             }
687             ibv_dereg_mr(block->pmr[j]);
688             rdma->total_registrations--;
689         }
690         g_free(block->pmr);
691         block->pmr = NULL;
692     }
693 
694     if (block->mr) {
695         ibv_dereg_mr(block->mr);
696         rdma->total_registrations--;
697         block->mr = NULL;
698     }
699 
700     g_free(block->transit_bitmap);
701     block->transit_bitmap = NULL;
702 
703     g_free(block->unregister_bitmap);
704     block->unregister_bitmap = NULL;
705 
706     g_free(block->remote_keys);
707     block->remote_keys = NULL;
708 
709     g_free(block->block_name);
710     block->block_name = NULL;
711 
712     if (rdma->blockmap) {
713         for (x = 0; x < local->nb_blocks; x++) {
714             g_hash_table_remove(rdma->blockmap,
715                                 (void *)(uintptr_t)old[x].offset);
716         }
717     }
718 
719     if (local->nb_blocks > 1) {
720 
721         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
722 
723         if (block->index) {
724             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
725         }
726 
727         if (block->index < (local->nb_blocks - 1)) {
728             memcpy(local->block + block->index, old + (block->index + 1),
729                 sizeof(RDMALocalBlock) *
730                     (local->nb_blocks - (block->index + 1)));
731             for (x = block->index; x < local->nb_blocks - 1; x++) {
732                 local->block[x].index--;
733             }
734         }
735     } else {
736         assert(block == local->block);
737         local->block = NULL;
738     }
739 
740     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
741                            block->offset, block->length,
742                             (uintptr_t)(block->local_host_addr + block->length),
743                            BITS_TO_LONGS(block->nb_chunks) *
744                                sizeof(unsigned long) * 8, block->nb_chunks);
745 
746     g_free(old);
747 
748     local->nb_blocks--;
749 
750     if (local->nb_blocks && rdma->blockmap) {
751         for (x = 0; x < local->nb_blocks; x++) {
752             g_hash_table_insert(rdma->blockmap,
753                                 (void *)(uintptr_t)local->block[x].offset,
754                                 &local->block[x]);
755         }
756     }
757 
758     return 0;
759 }
760 
761 /*
762  * Put in the log file which RDMA device was opened and the details
763  * associated with that device.
764  */
765 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
766 {
767     struct ibv_port_attr port;
768 
769     if (ibv_query_port(verbs, 1, &port)) {
770         error_report("Failed to query port information");
771         return;
772     }
773 
774     printf("%s RDMA Device opened: kernel name %s "
775            "uverbs device name %s, "
776            "infiniband_verbs class device path %s, "
777            "infiniband class device path %s, "
778            "transport: (%d) %s\n",
779                 who,
780                 verbs->device->name,
781                 verbs->device->dev_name,
782                 verbs->device->dev_path,
783                 verbs->device->ibdev_path,
784                 port.link_layer,
785                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
786                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
787                     ? "Ethernet" : "Unknown"));
788 }
789 
790 /*
791  * Put in the log file the RDMA gid addressing information,
792  * useful for folks who have trouble understanding the
793  * RDMA device hierarchy in the kernel.
794  */
795 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
796 {
797     char sgid[33];
798     char dgid[33];
799     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
800     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
801     trace_qemu_rdma_dump_gid(who, sgid, dgid);
802 }
803 
804 /*
805  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
806  * We will try the next addrinfo struct, and fail if there are
807  * no other valid addresses to bind against.
808  *
809  * If user is listening on '[::]', then we will not have a opened a device
810  * yet and have no way of verifying if the device is RoCE or not.
811  *
812  * In this case, the source VM will throw an error for ALL types of
813  * connections (both IPv4 and IPv6) if the destination machine does not have
814  * a regular infiniband network available for use.
815  *
816  * The only way to guarantee that an error is thrown for broken kernels is
817  * for the management software to choose a *specific* interface at bind time
818  * and validate what time of hardware it is.
819  *
820  * Unfortunately, this puts the user in a fix:
821  *
822  *  If the source VM connects with an IPv4 address without knowing that the
823  *  destination has bound to '[::]' the migration will unconditionally fail
824  *  unless the management software is explicitly listening on the IPv4
825  *  address while using a RoCE-based device.
826  *
827  *  If the source VM connects with an IPv6 address, then we're OK because we can
828  *  throw an error on the source (and similarly on the destination).
829  *
830  *  But in mixed environments, this will be broken for a while until it is fixed
831  *  inside linux.
832  *
833  * We do provide a *tiny* bit of help in this function: We can list all of the
834  * devices in the system and check to see if all the devices are RoCE or
835  * Infiniband.
836  *
837  * If we detect that we have a *pure* RoCE environment, then we can safely
838  * thrown an error even if the management software has specified '[::]' as the
839  * bind address.
840  *
841  * However, if there is are multiple hetergeneous devices, then we cannot make
842  * this assumption and the user just has to be sure they know what they are
843  * doing.
844  *
845  * Patches are being reviewed on linux-rdma.
846  */
847 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
848 {
849     /* This bug only exists in linux, to our knowledge. */
850 #ifdef CONFIG_LINUX
851     struct ibv_port_attr port_attr;
852 
853     /*
854      * Verbs are only NULL if management has bound to '[::]'.
855      *
856      * Let's iterate through all the devices and see if there any pure IB
857      * devices (non-ethernet).
858      *
859      * If not, then we can safely proceed with the migration.
860      * Otherwise, there are no guarantees until the bug is fixed in linux.
861      */
862     if (!verbs) {
863         int num_devices, x;
864         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
865         bool roce_found = false;
866         bool ib_found = false;
867 
868         for (x = 0; x < num_devices; x++) {
869             verbs = ibv_open_device(dev_list[x]);
870             if (!verbs) {
871                 if (errno == EPERM) {
872                     continue;
873                 } else {
874                     return -EINVAL;
875                 }
876             }
877 
878             if (ibv_query_port(verbs, 1, &port_attr)) {
879                 ibv_close_device(verbs);
880                 ERROR(errp, "Could not query initial IB port");
881                 return -EINVAL;
882             }
883 
884             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
885                 ib_found = true;
886             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
887                 roce_found = true;
888             }
889 
890             ibv_close_device(verbs);
891 
892         }
893 
894         if (roce_found) {
895             if (ib_found) {
896                 fprintf(stderr, "WARN: migrations may fail:"
897                                 " IPv6 over RoCE / iWARP in linux"
898                                 " is broken. But since you appear to have a"
899                                 " mixed RoCE / IB environment, be sure to only"
900                                 " migrate over the IB fabric until the kernel "
901                                 " fixes the bug.\n");
902             } else {
903                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
904                             " and your management software has specified '[::]'"
905                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
906                 return -ENONET;
907             }
908         }
909 
910         return 0;
911     }
912 
913     /*
914      * If we have a verbs context, that means that some other than '[::]' was
915      * used by the management software for binding. In which case we can
916      * actually warn the user about a potentially broken kernel.
917      */
918 
919     /* IB ports start with 1, not 0 */
920     if (ibv_query_port(verbs, 1, &port_attr)) {
921         ERROR(errp, "Could not query initial IB port");
922         return -EINVAL;
923     }
924 
925     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
926         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
927                     "(but patches on linux-rdma in progress)");
928         return -ENONET;
929     }
930 
931 #endif
932 
933     return 0;
934 }
935 
936 /*
937  * Figure out which RDMA device corresponds to the requested IP hostname
938  * Also create the initial connection manager identifiers for opening
939  * the connection.
940  */
941 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
942 {
943     int ret;
944     struct rdma_addrinfo *res;
945     char port_str[16];
946     struct rdma_cm_event *cm_event;
947     char ip[40] = "unknown";
948     struct rdma_addrinfo *e;
949 
950     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
951         ERROR(errp, "RDMA hostname has not been set");
952         return -EINVAL;
953     }
954 
955     /* create CM channel */
956     rdma->channel = rdma_create_event_channel();
957     if (!rdma->channel) {
958         ERROR(errp, "could not create CM channel");
959         return -EINVAL;
960     }
961 
962     /* create CM id */
963     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
964     if (ret) {
965         ERROR(errp, "could not create channel id");
966         goto err_resolve_create_id;
967     }
968 
969     snprintf(port_str, 16, "%d", rdma->port);
970     port_str[15] = '\0';
971 
972     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
973     if (ret < 0) {
974         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
975         goto err_resolve_get_addr;
976     }
977 
978     for (e = res; e != NULL; e = e->ai_next) {
979         inet_ntop(e->ai_family,
980             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
981         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
982 
983         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
984                 RDMA_RESOLVE_TIMEOUT_MS);
985         if (!ret) {
986             if (e->ai_family == AF_INET6) {
987                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
988                 if (ret) {
989                     continue;
990                 }
991             }
992             goto route;
993         }
994     }
995 
996     rdma_freeaddrinfo(res);
997     ERROR(errp, "could not resolve address %s", rdma->host);
998     goto err_resolve_get_addr;
999 
1000 route:
1001     rdma_freeaddrinfo(res);
1002     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1003 
1004     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1005     if (ret) {
1006         ERROR(errp, "could not perform event_addr_resolved");
1007         goto err_resolve_get_addr;
1008     }
1009 
1010     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1011         ERROR(errp, "result not equal to event_addr_resolved %s",
1012                 rdma_event_str(cm_event->event));
1013         error_report("rdma_resolve_addr");
1014         rdma_ack_cm_event(cm_event);
1015         ret = -EINVAL;
1016         goto err_resolve_get_addr;
1017     }
1018     rdma_ack_cm_event(cm_event);
1019 
1020     /* resolve route */
1021     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1022     if (ret) {
1023         ERROR(errp, "could not resolve rdma route");
1024         goto err_resolve_get_addr;
1025     }
1026 
1027     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1028     if (ret) {
1029         ERROR(errp, "could not perform event_route_resolved");
1030         goto err_resolve_get_addr;
1031     }
1032     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1033         ERROR(errp, "result not equal to event_route_resolved: %s",
1034                         rdma_event_str(cm_event->event));
1035         rdma_ack_cm_event(cm_event);
1036         ret = -EINVAL;
1037         goto err_resolve_get_addr;
1038     }
1039     rdma_ack_cm_event(cm_event);
1040     rdma->verbs = rdma->cm_id->verbs;
1041     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1042     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1043     return 0;
1044 
1045 err_resolve_get_addr:
1046     rdma_destroy_id(rdma->cm_id);
1047     rdma->cm_id = NULL;
1048 err_resolve_create_id:
1049     rdma_destroy_event_channel(rdma->channel);
1050     rdma->channel = NULL;
1051     return ret;
1052 }
1053 
1054 /*
1055  * Create protection domain and completion queues
1056  */
1057 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1058 {
1059     /* allocate pd */
1060     rdma->pd = ibv_alloc_pd(rdma->verbs);
1061     if (!rdma->pd) {
1062         error_report("failed to allocate protection domain");
1063         return -1;
1064     }
1065 
1066     /* create receive completion channel */
1067     rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1068     if (!rdma->recv_comp_channel) {
1069         error_report("failed to allocate receive completion channel");
1070         goto err_alloc_pd_cq;
1071     }
1072 
1073     /*
1074      * Completion queue can be filled by read work requests.
1075      */
1076     rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1077                                   NULL, rdma->recv_comp_channel, 0);
1078     if (!rdma->recv_cq) {
1079         error_report("failed to allocate receive completion queue");
1080         goto err_alloc_pd_cq;
1081     }
1082 
1083     /* create send completion channel */
1084     rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1085     if (!rdma->send_comp_channel) {
1086         error_report("failed to allocate send completion channel");
1087         goto err_alloc_pd_cq;
1088     }
1089 
1090     rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1091                                   NULL, rdma->send_comp_channel, 0);
1092     if (!rdma->send_cq) {
1093         error_report("failed to allocate send completion queue");
1094         goto err_alloc_pd_cq;
1095     }
1096 
1097     return 0;
1098 
1099 err_alloc_pd_cq:
1100     if (rdma->pd) {
1101         ibv_dealloc_pd(rdma->pd);
1102     }
1103     if (rdma->recv_comp_channel) {
1104         ibv_destroy_comp_channel(rdma->recv_comp_channel);
1105     }
1106     if (rdma->send_comp_channel) {
1107         ibv_destroy_comp_channel(rdma->send_comp_channel);
1108     }
1109     if (rdma->recv_cq) {
1110         ibv_destroy_cq(rdma->recv_cq);
1111         rdma->recv_cq = NULL;
1112     }
1113     rdma->pd = NULL;
1114     rdma->recv_comp_channel = NULL;
1115     rdma->send_comp_channel = NULL;
1116     return -1;
1117 
1118 }
1119 
1120 /*
1121  * Create queue pairs.
1122  */
1123 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1124 {
1125     struct ibv_qp_init_attr attr = { 0 };
1126     int ret;
1127 
1128     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1129     attr.cap.max_recv_wr = 3;
1130     attr.cap.max_send_sge = 1;
1131     attr.cap.max_recv_sge = 1;
1132     attr.send_cq = rdma->send_cq;
1133     attr.recv_cq = rdma->recv_cq;
1134     attr.qp_type = IBV_QPT_RC;
1135 
1136     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1137     if (ret) {
1138         return -1;
1139     }
1140 
1141     rdma->qp = rdma->cm_id->qp;
1142     return 0;
1143 }
1144 
1145 /* Check whether On-Demand Paging is supported by RDAM device */
1146 static bool rdma_support_odp(struct ibv_context *dev)
1147 {
1148     struct ibv_device_attr_ex attr = {0};
1149     int ret = ibv_query_device_ex(dev, NULL, &attr);
1150     if (ret) {
1151         return false;
1152     }
1153 
1154     if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1155         return true;
1156     }
1157 
1158     return false;
1159 }
1160 
1161 /*
1162  * ibv_advise_mr to avoid RNR NAK error as far as possible.
1163  * The responder mr registering with ODP will sent RNR NAK back to
1164  * the requester in the face of the page fault.
1165  */
1166 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1167                                          uint32_t len,  uint32_t lkey,
1168                                          const char *name, bool wr)
1169 {
1170 #ifdef HAVE_IBV_ADVISE_MR
1171     int ret;
1172     int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1173                  IBV_ADVISE_MR_ADVICE_PREFETCH;
1174     struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1175 
1176     ret = ibv_advise_mr(pd, advice,
1177                         IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1178     /* ignore the error */
1179     if (ret) {
1180         trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1181     } else {
1182         trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1183     }
1184 #endif
1185 }
1186 
1187 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1188 {
1189     int i;
1190     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1191 
1192     for (i = 0; i < local->nb_blocks; i++) {
1193         int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1194 
1195         local->block[i].mr =
1196             ibv_reg_mr(rdma->pd,
1197                     local->block[i].local_host_addr,
1198                     local->block[i].length, access
1199                     );
1200 
1201         if (!local->block[i].mr &&
1202             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1203                 access |= IBV_ACCESS_ON_DEMAND;
1204                 /* register ODP mr */
1205                 local->block[i].mr =
1206                     ibv_reg_mr(rdma->pd,
1207                                local->block[i].local_host_addr,
1208                                local->block[i].length, access);
1209                 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1210 
1211                 if (local->block[i].mr) {
1212                     qemu_rdma_advise_prefetch_mr(rdma->pd,
1213                                     (uintptr_t)local->block[i].local_host_addr,
1214                                     local->block[i].length,
1215                                     local->block[i].mr->lkey,
1216                                     local->block[i].block_name,
1217                                     true);
1218                 }
1219         }
1220 
1221         if (!local->block[i].mr) {
1222             perror("Failed to register local dest ram block!");
1223             break;
1224         }
1225         rdma->total_registrations++;
1226     }
1227 
1228     if (i >= local->nb_blocks) {
1229         return 0;
1230     }
1231 
1232     for (i--; i >= 0; i--) {
1233         ibv_dereg_mr(local->block[i].mr);
1234         local->block[i].mr = NULL;
1235         rdma->total_registrations--;
1236     }
1237 
1238     return -1;
1239 
1240 }
1241 
1242 /*
1243  * Find the ram block that corresponds to the page requested to be
1244  * transmitted by QEMU.
1245  *
1246  * Once the block is found, also identify which 'chunk' within that
1247  * block that the page belongs to.
1248  *
1249  * This search cannot fail or the migration will fail.
1250  */
1251 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1252                                       uintptr_t block_offset,
1253                                       uint64_t offset,
1254                                       uint64_t length,
1255                                       uint64_t *block_index,
1256                                       uint64_t *chunk_index)
1257 {
1258     uint64_t current_addr = block_offset + offset;
1259     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1260                                                 (void *) block_offset);
1261     assert(block);
1262     assert(current_addr >= block->offset);
1263     assert((current_addr + length) <= (block->offset + block->length));
1264 
1265     *block_index = block->index;
1266     *chunk_index = ram_chunk_index(block->local_host_addr,
1267                 block->local_host_addr + (current_addr - block->offset));
1268 
1269     return 0;
1270 }
1271 
1272 /*
1273  * Register a chunk with IB. If the chunk was already registered
1274  * previously, then skip.
1275  *
1276  * Also return the keys associated with the registration needed
1277  * to perform the actual RDMA operation.
1278  */
1279 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1280         RDMALocalBlock *block, uintptr_t host_addr,
1281         uint32_t *lkey, uint32_t *rkey, int chunk,
1282         uint8_t *chunk_start, uint8_t *chunk_end)
1283 {
1284     if (block->mr) {
1285         if (lkey) {
1286             *lkey = block->mr->lkey;
1287         }
1288         if (rkey) {
1289             *rkey = block->mr->rkey;
1290         }
1291         return 0;
1292     }
1293 
1294     /* allocate memory to store chunk MRs */
1295     if (!block->pmr) {
1296         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1297     }
1298 
1299     /*
1300      * If 'rkey', then we're the destination, so grant access to the source.
1301      *
1302      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1303      */
1304     if (!block->pmr[chunk]) {
1305         uint64_t len = chunk_end - chunk_start;
1306         int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1307                      0;
1308 
1309         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1310 
1311         block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1312         if (!block->pmr[chunk] &&
1313             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1314             access |= IBV_ACCESS_ON_DEMAND;
1315             /* register ODP mr */
1316             block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1317             trace_qemu_rdma_register_odp_mr(block->block_name);
1318 
1319             if (block->pmr[chunk]) {
1320                 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1321                                             len, block->pmr[chunk]->lkey,
1322                                             block->block_name, rkey);
1323 
1324             }
1325         }
1326     }
1327     if (!block->pmr[chunk]) {
1328         perror("Failed to register chunk!");
1329         fprintf(stderr, "Chunk details: block: %d chunk index %d"
1330                         " start %" PRIuPTR " end %" PRIuPTR
1331                         " host %" PRIuPTR
1332                         " local %" PRIuPTR " registrations: %d\n",
1333                         block->index, chunk, (uintptr_t)chunk_start,
1334                         (uintptr_t)chunk_end, host_addr,
1335                         (uintptr_t)block->local_host_addr,
1336                         rdma->total_registrations);
1337         return -1;
1338     }
1339     rdma->total_registrations++;
1340 
1341     if (lkey) {
1342         *lkey = block->pmr[chunk]->lkey;
1343     }
1344     if (rkey) {
1345         *rkey = block->pmr[chunk]->rkey;
1346     }
1347     return 0;
1348 }
1349 
1350 /*
1351  * Register (at connection time) the memory used for control
1352  * channel messages.
1353  */
1354 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1355 {
1356     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1357             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1358             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1359     if (rdma->wr_data[idx].control_mr) {
1360         rdma->total_registrations++;
1361         return 0;
1362     }
1363     error_report("qemu_rdma_reg_control failed");
1364     return -1;
1365 }
1366 
1367 const char *print_wrid(int wrid)
1368 {
1369     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1370         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1371     }
1372     return wrid_desc[wrid];
1373 }
1374 
1375 /*
1376  * Perform a non-optimized memory unregistration after every transfer
1377  * for demonstration purposes, only if pin-all is not requested.
1378  *
1379  * Potential optimizations:
1380  * 1. Start a new thread to run this function continuously
1381         - for bit clearing
1382         - and for receipt of unregister messages
1383  * 2. Use an LRU.
1384  * 3. Use workload hints.
1385  */
1386 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1387 {
1388     while (rdma->unregistrations[rdma->unregister_current]) {
1389         int ret;
1390         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1391         uint64_t chunk =
1392             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1393         uint64_t index =
1394             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1395         RDMALocalBlock *block =
1396             &(rdma->local_ram_blocks.block[index]);
1397         RDMARegister reg = { .current_index = index };
1398         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1399                                  };
1400         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1401                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1402                                    .repeat = 1,
1403                                  };
1404 
1405         trace_qemu_rdma_unregister_waiting_proc(chunk,
1406                                                 rdma->unregister_current);
1407 
1408         rdma->unregistrations[rdma->unregister_current] = 0;
1409         rdma->unregister_current++;
1410 
1411         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1412             rdma->unregister_current = 0;
1413         }
1414 
1415 
1416         /*
1417          * Unregistration is speculative (because migration is single-threaded
1418          * and we cannot break the protocol's inifinband message ordering).
1419          * Thus, if the memory is currently being used for transmission,
1420          * then abort the attempt to unregister and try again
1421          * later the next time a completion is received for this memory.
1422          */
1423         clear_bit(chunk, block->unregister_bitmap);
1424 
1425         if (test_bit(chunk, block->transit_bitmap)) {
1426             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1427             continue;
1428         }
1429 
1430         trace_qemu_rdma_unregister_waiting_send(chunk);
1431 
1432         ret = ibv_dereg_mr(block->pmr[chunk]);
1433         block->pmr[chunk] = NULL;
1434         block->remote_keys[chunk] = 0;
1435 
1436         if (ret != 0) {
1437             perror("unregistration chunk failed");
1438             return -ret;
1439         }
1440         rdma->total_registrations--;
1441 
1442         reg.key.chunk = chunk;
1443         register_to_network(rdma, &reg);
1444         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1445                                 &resp, NULL, NULL);
1446         if (ret < 0) {
1447             return ret;
1448         }
1449 
1450         trace_qemu_rdma_unregister_waiting_complete(chunk);
1451     }
1452 
1453     return 0;
1454 }
1455 
1456 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1457                                          uint64_t chunk)
1458 {
1459     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1460 
1461     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1462     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1463 
1464     return result;
1465 }
1466 
1467 /*
1468  * Consult the connection manager to see a work request
1469  * (of any kind) has completed.
1470  * Return the work request ID that completed.
1471  */
1472 static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1473                                uint64_t *wr_id_out, uint32_t *byte_len)
1474 {
1475     int ret;
1476     struct ibv_wc wc;
1477     uint64_t wr_id;
1478 
1479     ret = ibv_poll_cq(cq, 1, &wc);
1480 
1481     if (!ret) {
1482         *wr_id_out = RDMA_WRID_NONE;
1483         return 0;
1484     }
1485 
1486     if (ret < 0) {
1487         error_report("ibv_poll_cq return %d", ret);
1488         return ret;
1489     }
1490 
1491     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1492 
1493     if (wc.status != IBV_WC_SUCCESS) {
1494         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1495                         wc.status, ibv_wc_status_str(wc.status));
1496         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1497 
1498         return -1;
1499     }
1500 
1501     if (rdma->control_ready_expected &&
1502         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1503         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1504                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1505         rdma->control_ready_expected = 0;
1506     }
1507 
1508     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1509         uint64_t chunk =
1510             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1511         uint64_t index =
1512             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1513         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1514 
1515         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1516                                    index, chunk, block->local_host_addr,
1517                                    (void *)(uintptr_t)block->remote_host_addr);
1518 
1519         clear_bit(chunk, block->transit_bitmap);
1520 
1521         if (rdma->nb_sent > 0) {
1522             rdma->nb_sent--;
1523         }
1524     } else {
1525         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1526     }
1527 
1528     *wr_id_out = wc.wr_id;
1529     if (byte_len) {
1530         *byte_len = wc.byte_len;
1531     }
1532 
1533     return  0;
1534 }
1535 
1536 /* Wait for activity on the completion channel.
1537  * Returns 0 on success, none-0 on error.
1538  */
1539 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1540                                        struct ibv_comp_channel *comp_channel)
1541 {
1542     struct rdma_cm_event *cm_event;
1543     int ret = -1;
1544 
1545     /*
1546      * Coroutine doesn't start until migration_fd_process_incoming()
1547      * so don't yield unless we know we're running inside of a coroutine.
1548      */
1549     if (rdma->migration_started_on_destination &&
1550         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1551         yield_until_fd_readable(comp_channel->fd);
1552     } else {
1553         /* This is the source side, we're in a separate thread
1554          * or destination prior to migration_fd_process_incoming()
1555          * after postcopy, the destination also in a separate thread.
1556          * we can't yield; so we have to poll the fd.
1557          * But we need to be able to handle 'cancel' or an error
1558          * without hanging forever.
1559          */
1560         while (!rdma->error_state  && !rdma->received_error) {
1561             GPollFD pfds[2];
1562             pfds[0].fd = comp_channel->fd;
1563             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1564             pfds[0].revents = 0;
1565 
1566             pfds[1].fd = rdma->channel->fd;
1567             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1568             pfds[1].revents = 0;
1569 
1570             /* 0.1s timeout, should be fine for a 'cancel' */
1571             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1572             case 2:
1573             case 1: /* fd active */
1574                 if (pfds[0].revents) {
1575                     return 0;
1576                 }
1577 
1578                 if (pfds[1].revents) {
1579                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1580                     if (ret) {
1581                         error_report("failed to get cm event while wait "
1582                                      "completion channel");
1583                         return -EPIPE;
1584                     }
1585 
1586                     error_report("receive cm event while wait comp channel,"
1587                                  "cm event is %d", cm_event->event);
1588                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1589                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1590                         rdma_ack_cm_event(cm_event);
1591                         return -EPIPE;
1592                     }
1593                     rdma_ack_cm_event(cm_event);
1594                 }
1595                 break;
1596 
1597             case 0: /* Timeout, go around again */
1598                 break;
1599 
1600             default: /* Error of some type -
1601                       * I don't trust errno from qemu_poll_ns
1602                      */
1603                 error_report("%s: poll failed", __func__);
1604                 return -EPIPE;
1605             }
1606 
1607             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1608                 /* Bail out and let the cancellation happen */
1609                 return -EPIPE;
1610             }
1611         }
1612     }
1613 
1614     if (rdma->received_error) {
1615         return -EPIPE;
1616     }
1617     return rdma->error_state;
1618 }
1619 
1620 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid)
1621 {
1622     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1623            rdma->recv_comp_channel;
1624 }
1625 
1626 static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid)
1627 {
1628     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1629 }
1630 
1631 /*
1632  * Block until the next work request has completed.
1633  *
1634  * First poll to see if a work request has already completed,
1635  * otherwise block.
1636  *
1637  * If we encounter completed work requests for IDs other than
1638  * the one we're interested in, then that's generally an error.
1639  *
1640  * The only exception is actual RDMA Write completions. These
1641  * completions only need to be recorded, but do not actually
1642  * need further processing.
1643  */
1644 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1645                                     uint32_t *byte_len)
1646 {
1647     int num_cq_events = 0, ret = 0;
1648     struct ibv_cq *cq;
1649     void *cq_ctx;
1650     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1651     struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1652     struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1653 
1654     if (ibv_req_notify_cq(poll_cq, 0)) {
1655         return -1;
1656     }
1657     /* poll cq first */
1658     while (wr_id != wrid_requested) {
1659         ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1660         if (ret < 0) {
1661             return ret;
1662         }
1663 
1664         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1665 
1666         if (wr_id == RDMA_WRID_NONE) {
1667             break;
1668         }
1669         if (wr_id != wrid_requested) {
1670             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1671                        wrid_requested, print_wrid(wr_id), wr_id);
1672         }
1673     }
1674 
1675     if (wr_id == wrid_requested) {
1676         return 0;
1677     }
1678 
1679     while (1) {
1680         ret = qemu_rdma_wait_comp_channel(rdma, ch);
1681         if (ret) {
1682             goto err_block_for_wrid;
1683         }
1684 
1685         ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1686         if (ret) {
1687             perror("ibv_get_cq_event");
1688             goto err_block_for_wrid;
1689         }
1690 
1691         num_cq_events++;
1692 
1693         ret = -ibv_req_notify_cq(cq, 0);
1694         if (ret) {
1695             goto err_block_for_wrid;
1696         }
1697 
1698         while (wr_id != wrid_requested) {
1699             ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1700             if (ret < 0) {
1701                 goto err_block_for_wrid;
1702             }
1703 
1704             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1705 
1706             if (wr_id == RDMA_WRID_NONE) {
1707                 break;
1708             }
1709             if (wr_id != wrid_requested) {
1710                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1711                                    wrid_requested, print_wrid(wr_id), wr_id);
1712             }
1713         }
1714 
1715         if (wr_id == wrid_requested) {
1716             goto success_block_for_wrid;
1717         }
1718     }
1719 
1720 success_block_for_wrid:
1721     if (num_cq_events) {
1722         ibv_ack_cq_events(cq, num_cq_events);
1723     }
1724     return 0;
1725 
1726 err_block_for_wrid:
1727     if (num_cq_events) {
1728         ibv_ack_cq_events(cq, num_cq_events);
1729     }
1730 
1731     rdma->error_state = ret;
1732     return ret;
1733 }
1734 
1735 /*
1736  * Post a SEND message work request for the control channel
1737  * containing some data and block until the post completes.
1738  */
1739 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1740                                        RDMAControlHeader *head)
1741 {
1742     int ret = 0;
1743     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1744     struct ibv_send_wr *bad_wr;
1745     struct ibv_sge sge = {
1746                            .addr = (uintptr_t)(wr->control),
1747                            .length = head->len + sizeof(RDMAControlHeader),
1748                            .lkey = wr->control_mr->lkey,
1749                          };
1750     struct ibv_send_wr send_wr = {
1751                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1752                                    .opcode = IBV_WR_SEND,
1753                                    .send_flags = IBV_SEND_SIGNALED,
1754                                    .sg_list = &sge,
1755                                    .num_sge = 1,
1756                                 };
1757 
1758     trace_qemu_rdma_post_send_control(control_desc(head->type));
1759 
1760     /*
1761      * We don't actually need to do a memcpy() in here if we used
1762      * the "sge" properly, but since we're only sending control messages
1763      * (not RAM in a performance-critical path), then its OK for now.
1764      *
1765      * The copy makes the RDMAControlHeader simpler to manipulate
1766      * for the time being.
1767      */
1768     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1769     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1770     control_to_network((void *) wr->control);
1771 
1772     if (buf) {
1773         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1774     }
1775 
1776 
1777     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1778 
1779     if (ret > 0) {
1780         error_report("Failed to use post IB SEND for control");
1781         return -ret;
1782     }
1783 
1784     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1785     if (ret < 0) {
1786         error_report("rdma migration: send polling control error");
1787     }
1788 
1789     return ret;
1790 }
1791 
1792 /*
1793  * Post a RECV work request in anticipation of some future receipt
1794  * of data on the control channel.
1795  */
1796 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1797 {
1798     struct ibv_recv_wr *bad_wr;
1799     struct ibv_sge sge = {
1800                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1801                             .length = RDMA_CONTROL_MAX_BUFFER,
1802                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1803                          };
1804 
1805     struct ibv_recv_wr recv_wr = {
1806                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1807                                     .sg_list = &sge,
1808                                     .num_sge = 1,
1809                                  };
1810 
1811 
1812     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1813         return -1;
1814     }
1815 
1816     return 0;
1817 }
1818 
1819 /*
1820  * Block and wait for a RECV control channel message to arrive.
1821  */
1822 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1823                 RDMAControlHeader *head, int expecting, int idx)
1824 {
1825     uint32_t byte_len;
1826     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1827                                        &byte_len);
1828 
1829     if (ret < 0) {
1830         error_report("rdma migration: recv polling control error!");
1831         return ret;
1832     }
1833 
1834     network_to_control((void *) rdma->wr_data[idx].control);
1835     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1836 
1837     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1838 
1839     if (expecting == RDMA_CONTROL_NONE) {
1840         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1841                                              head->type);
1842     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1843         error_report("Was expecting a %s (%d) control message"
1844                 ", but got: %s (%d), length: %d",
1845                 control_desc(expecting), expecting,
1846                 control_desc(head->type), head->type, head->len);
1847         if (head->type == RDMA_CONTROL_ERROR) {
1848             rdma->received_error = true;
1849         }
1850         return -EIO;
1851     }
1852     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1853         error_report("too long length: %d", head->len);
1854         return -EINVAL;
1855     }
1856     if (sizeof(*head) + head->len != byte_len) {
1857         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1858         return -EINVAL;
1859     }
1860 
1861     return 0;
1862 }
1863 
1864 /*
1865  * When a RECV work request has completed, the work request's
1866  * buffer is pointed at the header.
1867  *
1868  * This will advance the pointer to the data portion
1869  * of the control message of the work request's buffer that
1870  * was populated after the work request finished.
1871  */
1872 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1873                                   RDMAControlHeader *head)
1874 {
1875     rdma->wr_data[idx].control_len = head->len;
1876     rdma->wr_data[idx].control_curr =
1877         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1878 }
1879 
1880 /*
1881  * This is an 'atomic' high-level operation to deliver a single, unified
1882  * control-channel message.
1883  *
1884  * Additionally, if the user is expecting some kind of reply to this message,
1885  * they can request a 'resp' response message be filled in by posting an
1886  * additional work request on behalf of the user and waiting for an additional
1887  * completion.
1888  *
1889  * The extra (optional) response is used during registration to us from having
1890  * to perform an *additional* exchange of message just to provide a response by
1891  * instead piggy-backing on the acknowledgement.
1892  */
1893 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1894                                    uint8_t *data, RDMAControlHeader *resp,
1895                                    int *resp_idx,
1896                                    int (*callback)(RDMAContext *rdma))
1897 {
1898     int ret = 0;
1899 
1900     /*
1901      * Wait until the dest is ready before attempting to deliver the message
1902      * by waiting for a READY message.
1903      */
1904     if (rdma->control_ready_expected) {
1905         RDMAControlHeader resp_ignored;
1906 
1907         ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1908                                               RDMA_CONTROL_READY,
1909                                               RDMA_WRID_READY);
1910         if (ret < 0) {
1911             return ret;
1912         }
1913     }
1914 
1915     /*
1916      * If the user is expecting a response, post a WR in anticipation of it.
1917      */
1918     if (resp) {
1919         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1920         if (ret) {
1921             error_report("rdma migration: error posting"
1922                     " extra control recv for anticipated result!");
1923             return ret;
1924         }
1925     }
1926 
1927     /*
1928      * Post a WR to replace the one we just consumed for the READY message.
1929      */
1930     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1931     if (ret) {
1932         error_report("rdma migration: error posting first control recv!");
1933         return ret;
1934     }
1935 
1936     /*
1937      * Deliver the control message that was requested.
1938      */
1939     ret = qemu_rdma_post_send_control(rdma, data, head);
1940 
1941     if (ret < 0) {
1942         error_report("Failed to send control buffer!");
1943         return ret;
1944     }
1945 
1946     /*
1947      * If we're expecting a response, block and wait for it.
1948      */
1949     if (resp) {
1950         if (callback) {
1951             trace_qemu_rdma_exchange_send_issue_callback();
1952             ret = callback(rdma);
1953             if (ret < 0) {
1954                 return ret;
1955             }
1956         }
1957 
1958         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1959         ret = qemu_rdma_exchange_get_response(rdma, resp,
1960                                               resp->type, RDMA_WRID_DATA);
1961 
1962         if (ret < 0) {
1963             return ret;
1964         }
1965 
1966         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1967         if (resp_idx) {
1968             *resp_idx = RDMA_WRID_DATA;
1969         }
1970         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1971     }
1972 
1973     rdma->control_ready_expected = 1;
1974 
1975     return 0;
1976 }
1977 
1978 /*
1979  * This is an 'atomic' high-level operation to receive a single, unified
1980  * control-channel message.
1981  */
1982 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1983                                 int expecting)
1984 {
1985     RDMAControlHeader ready = {
1986                                 .len = 0,
1987                                 .type = RDMA_CONTROL_READY,
1988                                 .repeat = 1,
1989                               };
1990     int ret;
1991 
1992     /*
1993      * Inform the source that we're ready to receive a message.
1994      */
1995     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1996 
1997     if (ret < 0) {
1998         error_report("Failed to send control buffer!");
1999         return ret;
2000     }
2001 
2002     /*
2003      * Block and wait for the message.
2004      */
2005     ret = qemu_rdma_exchange_get_response(rdma, head,
2006                                           expecting, RDMA_WRID_READY);
2007 
2008     if (ret < 0) {
2009         return ret;
2010     }
2011 
2012     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2013 
2014     /*
2015      * Post a new RECV work request to replace the one we just consumed.
2016      */
2017     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2018     if (ret) {
2019         error_report("rdma migration: error posting second control recv!");
2020         return ret;
2021     }
2022 
2023     return 0;
2024 }
2025 
2026 /*
2027  * Write an actual chunk of memory using RDMA.
2028  *
2029  * If we're using dynamic registration on the dest-side, we have to
2030  * send a registration command first.
2031  */
2032 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2033                                int current_index, uint64_t current_addr,
2034                                uint64_t length)
2035 {
2036     struct ibv_sge sge;
2037     struct ibv_send_wr send_wr = { 0 };
2038     struct ibv_send_wr *bad_wr;
2039     int reg_result_idx, ret, count = 0;
2040     uint64_t chunk, chunks;
2041     uint8_t *chunk_start, *chunk_end;
2042     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2043     RDMARegister reg;
2044     RDMARegisterResult *reg_result;
2045     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2046     RDMAControlHeader head = { .len = sizeof(RDMARegister),
2047                                .type = RDMA_CONTROL_REGISTER_REQUEST,
2048                                .repeat = 1,
2049                              };
2050 
2051 retry:
2052     sge.addr = (uintptr_t)(block->local_host_addr +
2053                             (current_addr - block->offset));
2054     sge.length = length;
2055 
2056     chunk = ram_chunk_index(block->local_host_addr,
2057                             (uint8_t *)(uintptr_t)sge.addr);
2058     chunk_start = ram_chunk_start(block, chunk);
2059 
2060     if (block->is_ram_block) {
2061         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2062 
2063         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2064             chunks--;
2065         }
2066     } else {
2067         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2068 
2069         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2070             chunks--;
2071         }
2072     }
2073 
2074     trace_qemu_rdma_write_one_top(chunks + 1,
2075                                   (chunks + 1) *
2076                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2077 
2078     chunk_end = ram_chunk_end(block, chunk + chunks);
2079 
2080 
2081     while (test_bit(chunk, block->transit_bitmap)) {
2082         (void)count;
2083         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2084                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2085 
2086         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2087 
2088         if (ret < 0) {
2089             error_report("Failed to Wait for previous write to complete "
2090                     "block %d chunk %" PRIu64
2091                     " current %" PRIu64 " len %" PRIu64 " %d",
2092                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2093             return ret;
2094         }
2095     }
2096 
2097     if (!rdma->pin_all || !block->is_ram_block) {
2098         if (!block->remote_keys[chunk]) {
2099             /*
2100              * This chunk has not yet been registered, so first check to see
2101              * if the entire chunk is zero. If so, tell the other size to
2102              * memset() + madvise() the entire chunk without RDMA.
2103              */
2104 
2105             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2106                 RDMACompress comp = {
2107                                         .offset = current_addr,
2108                                         .value = 0,
2109                                         .block_idx = current_index,
2110                                         .length = length,
2111                                     };
2112 
2113                 head.len = sizeof(comp);
2114                 head.type = RDMA_CONTROL_COMPRESS;
2115 
2116                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2117                                                current_index, current_addr);
2118 
2119                 compress_to_network(rdma, &comp);
2120                 ret = qemu_rdma_exchange_send(rdma, &head,
2121                                 (uint8_t *) &comp, NULL, NULL, NULL);
2122 
2123                 if (ret < 0) {
2124                     return -EIO;
2125                 }
2126 
2127                 stat64_add(&mig_stats.zero_pages,
2128                            sge.length / qemu_target_page_size());
2129 
2130                 return 1;
2131             }
2132 
2133             /*
2134              * Otherwise, tell other side to register.
2135              */
2136             reg.current_index = current_index;
2137             if (block->is_ram_block) {
2138                 reg.key.current_addr = current_addr;
2139             } else {
2140                 reg.key.chunk = chunk;
2141             }
2142             reg.chunks = chunks;
2143 
2144             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2145                                               current_addr);
2146 
2147             register_to_network(rdma, &reg);
2148             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2149                                     &resp, &reg_result_idx, NULL);
2150             if (ret < 0) {
2151                 return ret;
2152             }
2153 
2154             /* try to overlap this single registration with the one we sent. */
2155             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2156                                                 &sge.lkey, NULL, chunk,
2157                                                 chunk_start, chunk_end)) {
2158                 error_report("cannot get lkey");
2159                 return -EINVAL;
2160             }
2161 
2162             reg_result = (RDMARegisterResult *)
2163                     rdma->wr_data[reg_result_idx].control_curr;
2164 
2165             network_to_result(reg_result);
2166 
2167             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2168                                                  reg_result->rkey, chunk);
2169 
2170             block->remote_keys[chunk] = reg_result->rkey;
2171             block->remote_host_addr = reg_result->host_addr;
2172         } else {
2173             /* already registered before */
2174             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2175                                                 &sge.lkey, NULL, chunk,
2176                                                 chunk_start, chunk_end)) {
2177                 error_report("cannot get lkey!");
2178                 return -EINVAL;
2179             }
2180         }
2181 
2182         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2183     } else {
2184         send_wr.wr.rdma.rkey = block->remote_rkey;
2185 
2186         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2187                                                      &sge.lkey, NULL, chunk,
2188                                                      chunk_start, chunk_end)) {
2189             error_report("cannot get lkey!");
2190             return -EINVAL;
2191         }
2192     }
2193 
2194     /*
2195      * Encode the ram block index and chunk within this wrid.
2196      * We will use this information at the time of completion
2197      * to figure out which bitmap to check against and then which
2198      * chunk in the bitmap to look for.
2199      */
2200     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2201                                         current_index, chunk);
2202 
2203     send_wr.opcode = IBV_WR_RDMA_WRITE;
2204     send_wr.send_flags = IBV_SEND_SIGNALED;
2205     send_wr.sg_list = &sge;
2206     send_wr.num_sge = 1;
2207     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2208                                 (current_addr - block->offset);
2209 
2210     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2211                                    sge.length);
2212 
2213     /*
2214      * ibv_post_send() does not return negative error numbers,
2215      * per the specification they are positive - no idea why.
2216      */
2217     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2218 
2219     if (ret == ENOMEM) {
2220         trace_qemu_rdma_write_one_queue_full();
2221         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2222         if (ret < 0) {
2223             error_report("rdma migration: failed to make "
2224                          "room in full send queue! %d", ret);
2225             return ret;
2226         }
2227 
2228         goto retry;
2229 
2230     } else if (ret > 0) {
2231         perror("rdma migration: post rdma write failed");
2232         return -ret;
2233     }
2234 
2235     set_bit(chunk, block->transit_bitmap);
2236     stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2237     ram_transferred_add(sge.length);
2238     qemu_file_credit_transfer(f, sge.length);
2239     rdma->total_writes++;
2240 
2241     return 0;
2242 }
2243 
2244 /*
2245  * Push out any unwritten RDMA operations.
2246  *
2247  * We support sending out multiple chunks at the same time.
2248  * Not all of them need to get signaled in the completion queue.
2249  */
2250 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2251 {
2252     int ret;
2253 
2254     if (!rdma->current_length) {
2255         return 0;
2256     }
2257 
2258     ret = qemu_rdma_write_one(f, rdma,
2259             rdma->current_index, rdma->current_addr, rdma->current_length);
2260 
2261     if (ret < 0) {
2262         return ret;
2263     }
2264 
2265     if (ret == 0) {
2266         rdma->nb_sent++;
2267         trace_qemu_rdma_write_flush(rdma->nb_sent);
2268     }
2269 
2270     rdma->current_length = 0;
2271     rdma->current_addr = 0;
2272 
2273     return 0;
2274 }
2275 
2276 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2277                     uint64_t offset, uint64_t len)
2278 {
2279     RDMALocalBlock *block;
2280     uint8_t *host_addr;
2281     uint8_t *chunk_end;
2282 
2283     if (rdma->current_index < 0) {
2284         return 0;
2285     }
2286 
2287     if (rdma->current_chunk < 0) {
2288         return 0;
2289     }
2290 
2291     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2292     host_addr = block->local_host_addr + (offset - block->offset);
2293     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2294 
2295     if (rdma->current_length == 0) {
2296         return 0;
2297     }
2298 
2299     /*
2300      * Only merge into chunk sequentially.
2301      */
2302     if (offset != (rdma->current_addr + rdma->current_length)) {
2303         return 0;
2304     }
2305 
2306     if (offset < block->offset) {
2307         return 0;
2308     }
2309 
2310     if ((offset + len) > (block->offset + block->length)) {
2311         return 0;
2312     }
2313 
2314     if ((host_addr + len) > chunk_end) {
2315         return 0;
2316     }
2317 
2318     return 1;
2319 }
2320 
2321 /*
2322  * We're not actually writing here, but doing three things:
2323  *
2324  * 1. Identify the chunk the buffer belongs to.
2325  * 2. If the chunk is full or the buffer doesn't belong to the current
2326  *    chunk, then start a new chunk and flush() the old chunk.
2327  * 3. To keep the hardware busy, we also group chunks into batches
2328  *    and only require that a batch gets acknowledged in the completion
2329  *    queue instead of each individual chunk.
2330  */
2331 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2332                            uint64_t block_offset, uint64_t offset,
2333                            uint64_t len)
2334 {
2335     uint64_t current_addr = block_offset + offset;
2336     uint64_t index = rdma->current_index;
2337     uint64_t chunk = rdma->current_chunk;
2338     int ret;
2339 
2340     /* If we cannot merge it, we flush the current buffer first. */
2341     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2342         ret = qemu_rdma_write_flush(f, rdma);
2343         if (ret) {
2344             return ret;
2345         }
2346         rdma->current_length = 0;
2347         rdma->current_addr = current_addr;
2348 
2349         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2350                                          offset, len, &index, &chunk);
2351         if (ret) {
2352             error_report("ram block search failed");
2353             return ret;
2354         }
2355         rdma->current_index = index;
2356         rdma->current_chunk = chunk;
2357     }
2358 
2359     /* merge it */
2360     rdma->current_length += len;
2361 
2362     /* flush it if buffer is too large */
2363     if (rdma->current_length >= RDMA_MERGE_MAX) {
2364         return qemu_rdma_write_flush(f, rdma);
2365     }
2366 
2367     return 0;
2368 }
2369 
2370 static void qemu_rdma_cleanup(RDMAContext *rdma)
2371 {
2372     int idx;
2373 
2374     if (rdma->cm_id && rdma->connected) {
2375         if ((rdma->error_state ||
2376              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2377             !rdma->received_error) {
2378             RDMAControlHeader head = { .len = 0,
2379                                        .type = RDMA_CONTROL_ERROR,
2380                                        .repeat = 1,
2381                                      };
2382             error_report("Early error. Sending error.");
2383             qemu_rdma_post_send_control(rdma, NULL, &head);
2384         }
2385 
2386         rdma_disconnect(rdma->cm_id);
2387         trace_qemu_rdma_cleanup_disconnect();
2388         rdma->connected = false;
2389     }
2390 
2391     if (rdma->channel) {
2392         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2393     }
2394     g_free(rdma->dest_blocks);
2395     rdma->dest_blocks = NULL;
2396 
2397     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2398         if (rdma->wr_data[idx].control_mr) {
2399             rdma->total_registrations--;
2400             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2401         }
2402         rdma->wr_data[idx].control_mr = NULL;
2403     }
2404 
2405     if (rdma->local_ram_blocks.block) {
2406         while (rdma->local_ram_blocks.nb_blocks) {
2407             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2408         }
2409     }
2410 
2411     if (rdma->qp) {
2412         rdma_destroy_qp(rdma->cm_id);
2413         rdma->qp = NULL;
2414     }
2415     if (rdma->recv_cq) {
2416         ibv_destroy_cq(rdma->recv_cq);
2417         rdma->recv_cq = NULL;
2418     }
2419     if (rdma->send_cq) {
2420         ibv_destroy_cq(rdma->send_cq);
2421         rdma->send_cq = NULL;
2422     }
2423     if (rdma->recv_comp_channel) {
2424         ibv_destroy_comp_channel(rdma->recv_comp_channel);
2425         rdma->recv_comp_channel = NULL;
2426     }
2427     if (rdma->send_comp_channel) {
2428         ibv_destroy_comp_channel(rdma->send_comp_channel);
2429         rdma->send_comp_channel = NULL;
2430     }
2431     if (rdma->pd) {
2432         ibv_dealloc_pd(rdma->pd);
2433         rdma->pd = NULL;
2434     }
2435     if (rdma->cm_id) {
2436         rdma_destroy_id(rdma->cm_id);
2437         rdma->cm_id = NULL;
2438     }
2439 
2440     /* the destination side, listen_id and channel is shared */
2441     if (rdma->listen_id) {
2442         if (!rdma->is_return_path) {
2443             rdma_destroy_id(rdma->listen_id);
2444         }
2445         rdma->listen_id = NULL;
2446 
2447         if (rdma->channel) {
2448             if (!rdma->is_return_path) {
2449                 rdma_destroy_event_channel(rdma->channel);
2450             }
2451             rdma->channel = NULL;
2452         }
2453     }
2454 
2455     if (rdma->channel) {
2456         rdma_destroy_event_channel(rdma->channel);
2457         rdma->channel = NULL;
2458     }
2459     g_free(rdma->host);
2460     g_free(rdma->host_port);
2461     rdma->host = NULL;
2462     rdma->host_port = NULL;
2463 }
2464 
2465 
2466 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2467 {
2468     int ret, idx;
2469     Error *local_err = NULL, **temp = &local_err;
2470 
2471     /*
2472      * Will be validated against destination's actual capabilities
2473      * after the connect() completes.
2474      */
2475     rdma->pin_all = pin_all;
2476 
2477     ret = qemu_rdma_resolve_host(rdma, temp);
2478     if (ret) {
2479         goto err_rdma_source_init;
2480     }
2481 
2482     ret = qemu_rdma_alloc_pd_cq(rdma);
2483     if (ret) {
2484         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2485                     " limits may be too low. Please check $ ulimit -a # and "
2486                     "search for 'ulimit -l' in the output");
2487         goto err_rdma_source_init;
2488     }
2489 
2490     ret = qemu_rdma_alloc_qp(rdma);
2491     if (ret) {
2492         ERROR(temp, "rdma migration: error allocating qp!");
2493         goto err_rdma_source_init;
2494     }
2495 
2496     ret = qemu_rdma_init_ram_blocks(rdma);
2497     if (ret) {
2498         ERROR(temp, "rdma migration: error initializing ram blocks!");
2499         goto err_rdma_source_init;
2500     }
2501 
2502     /* Build the hash that maps from offset to RAMBlock */
2503     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2504     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2505         g_hash_table_insert(rdma->blockmap,
2506                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2507                 &rdma->local_ram_blocks.block[idx]);
2508     }
2509 
2510     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2511         ret = qemu_rdma_reg_control(rdma, idx);
2512         if (ret) {
2513             ERROR(temp, "rdma migration: error registering %d control!",
2514                                                             idx);
2515             goto err_rdma_source_init;
2516         }
2517     }
2518 
2519     return 0;
2520 
2521 err_rdma_source_init:
2522     error_propagate(errp, local_err);
2523     qemu_rdma_cleanup(rdma);
2524     return -1;
2525 }
2526 
2527 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2528                                      struct rdma_cm_event **cm_event,
2529                                      long msec, Error **errp)
2530 {
2531     int ret;
2532     struct pollfd poll_fd = {
2533                                 .fd = rdma->channel->fd,
2534                                 .events = POLLIN,
2535                                 .revents = 0
2536                             };
2537 
2538     do {
2539         ret = poll(&poll_fd, 1, msec);
2540     } while (ret < 0 && errno == EINTR);
2541 
2542     if (ret == 0) {
2543         ERROR(errp, "poll cm event timeout");
2544         return -1;
2545     } else if (ret < 0) {
2546         ERROR(errp, "failed to poll cm event, errno=%i", errno);
2547         return -1;
2548     } else if (poll_fd.revents & POLLIN) {
2549         return rdma_get_cm_event(rdma->channel, cm_event);
2550     } else {
2551         ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2552         return -1;
2553     }
2554 }
2555 
2556 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2557 {
2558     RDMACapabilities cap = {
2559                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2560                                 .flags = 0,
2561                            };
2562     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2563                                           .retry_count = 5,
2564                                           .private_data = &cap,
2565                                           .private_data_len = sizeof(cap),
2566                                         };
2567     struct rdma_cm_event *cm_event;
2568     int ret;
2569 
2570     /*
2571      * Only negotiate the capability with destination if the user
2572      * on the source first requested the capability.
2573      */
2574     if (rdma->pin_all) {
2575         trace_qemu_rdma_connect_pin_all_requested();
2576         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2577     }
2578 
2579     caps_to_network(&cap);
2580 
2581     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2582     if (ret) {
2583         ERROR(errp, "posting second control recv");
2584         goto err_rdma_source_connect;
2585     }
2586 
2587     ret = rdma_connect(rdma->cm_id, &conn_param);
2588     if (ret) {
2589         perror("rdma_connect");
2590         ERROR(errp, "connecting to destination!");
2591         goto err_rdma_source_connect;
2592     }
2593 
2594     if (return_path) {
2595         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2596     } else {
2597         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2598     }
2599     if (ret) {
2600         perror("rdma_get_cm_event after rdma_connect");
2601         ERROR(errp, "connecting to destination!");
2602         goto err_rdma_source_connect;
2603     }
2604 
2605     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2606         error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2607         ERROR(errp, "connecting to destination!");
2608         rdma_ack_cm_event(cm_event);
2609         goto err_rdma_source_connect;
2610     }
2611     rdma->connected = true;
2612 
2613     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2614     network_to_caps(&cap);
2615 
2616     /*
2617      * Verify that the *requested* capabilities are supported by the destination
2618      * and disable them otherwise.
2619      */
2620     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2621         ERROR(errp, "Server cannot support pinning all memory. "
2622                         "Will register memory dynamically.");
2623         rdma->pin_all = false;
2624     }
2625 
2626     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2627 
2628     rdma_ack_cm_event(cm_event);
2629 
2630     rdma->control_ready_expected = 1;
2631     rdma->nb_sent = 0;
2632     return 0;
2633 
2634 err_rdma_source_connect:
2635     qemu_rdma_cleanup(rdma);
2636     return -1;
2637 }
2638 
2639 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2640 {
2641     int ret, idx;
2642     struct rdma_cm_id *listen_id;
2643     char ip[40] = "unknown";
2644     struct rdma_addrinfo *res, *e;
2645     char port_str[16];
2646     int reuse = 1;
2647 
2648     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2649         rdma->wr_data[idx].control_len = 0;
2650         rdma->wr_data[idx].control_curr = NULL;
2651     }
2652 
2653     if (!rdma->host || !rdma->host[0]) {
2654         ERROR(errp, "RDMA host is not set!");
2655         rdma->error_state = -EINVAL;
2656         return -1;
2657     }
2658     /* create CM channel */
2659     rdma->channel = rdma_create_event_channel();
2660     if (!rdma->channel) {
2661         ERROR(errp, "could not create rdma event channel");
2662         rdma->error_state = -EINVAL;
2663         return -1;
2664     }
2665 
2666     /* create CM id */
2667     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2668     if (ret) {
2669         ERROR(errp, "could not create cm_id!");
2670         goto err_dest_init_create_listen_id;
2671     }
2672 
2673     snprintf(port_str, 16, "%d", rdma->port);
2674     port_str[15] = '\0';
2675 
2676     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2677     if (ret < 0) {
2678         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2679         goto err_dest_init_bind_addr;
2680     }
2681 
2682     ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2683                           &reuse, sizeof reuse);
2684     if (ret) {
2685         ERROR(errp, "Error: could not set REUSEADDR option");
2686         goto err_dest_init_bind_addr;
2687     }
2688     for (e = res; e != NULL; e = e->ai_next) {
2689         inet_ntop(e->ai_family,
2690             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2691         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2692         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2693         if (ret) {
2694             continue;
2695         }
2696         if (e->ai_family == AF_INET6) {
2697             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2698             if (ret) {
2699                 continue;
2700             }
2701         }
2702         break;
2703     }
2704 
2705     rdma_freeaddrinfo(res);
2706     if (!e) {
2707         ERROR(errp, "Error: could not rdma_bind_addr!");
2708         goto err_dest_init_bind_addr;
2709     }
2710 
2711     rdma->listen_id = listen_id;
2712     qemu_rdma_dump_gid("dest_init", listen_id);
2713     return 0;
2714 
2715 err_dest_init_bind_addr:
2716     rdma_destroy_id(listen_id);
2717 err_dest_init_create_listen_id:
2718     rdma_destroy_event_channel(rdma->channel);
2719     rdma->channel = NULL;
2720     rdma->error_state = ret;
2721     return ret;
2722 
2723 }
2724 
2725 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2726                                             RDMAContext *rdma)
2727 {
2728     int idx;
2729 
2730     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2731         rdma_return_path->wr_data[idx].control_len = 0;
2732         rdma_return_path->wr_data[idx].control_curr = NULL;
2733     }
2734 
2735     /*the CM channel and CM id is shared*/
2736     rdma_return_path->channel = rdma->channel;
2737     rdma_return_path->listen_id = rdma->listen_id;
2738 
2739     rdma->return_path = rdma_return_path;
2740     rdma_return_path->return_path = rdma;
2741     rdma_return_path->is_return_path = true;
2742 }
2743 
2744 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2745 {
2746     RDMAContext *rdma = NULL;
2747     InetSocketAddress *addr;
2748 
2749     if (host_port) {
2750         rdma = g_new0(RDMAContext, 1);
2751         rdma->current_index = -1;
2752         rdma->current_chunk = -1;
2753 
2754         addr = g_new(InetSocketAddress, 1);
2755         if (!inet_parse(addr, host_port, NULL)) {
2756             rdma->port = atoi(addr->port);
2757             rdma->host = g_strdup(addr->host);
2758             rdma->host_port = g_strdup(host_port);
2759         } else {
2760             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2761             g_free(rdma);
2762             rdma = NULL;
2763         }
2764 
2765         qapi_free_InetSocketAddress(addr);
2766     }
2767 
2768     return rdma;
2769 }
2770 
2771 /*
2772  * QEMUFile interface to the control channel.
2773  * SEND messages for control only.
2774  * VM's ram is handled with regular RDMA messages.
2775  */
2776 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2777                                        const struct iovec *iov,
2778                                        size_t niov,
2779                                        int *fds,
2780                                        size_t nfds,
2781                                        int flags,
2782                                        Error **errp)
2783 {
2784     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2785     QEMUFile *f = rioc->file;
2786     RDMAContext *rdma;
2787     int ret;
2788     ssize_t done = 0;
2789     size_t i;
2790     size_t len = 0;
2791 
2792     RCU_READ_LOCK_GUARD();
2793     rdma = qatomic_rcu_read(&rioc->rdmaout);
2794 
2795     if (!rdma) {
2796         error_setg(errp, "RDMA control channel output is not set");
2797         return -1;
2798     }
2799 
2800     CHECK_ERROR_STATE();
2801 
2802     /*
2803      * Push out any writes that
2804      * we're queued up for VM's ram.
2805      */
2806     ret = qemu_rdma_write_flush(f, rdma);
2807     if (ret < 0) {
2808         rdma->error_state = ret;
2809         error_setg(errp, "qemu_rdma_write_flush returned %d", ret);
2810         return -1;
2811     }
2812 
2813     for (i = 0; i < niov; i++) {
2814         size_t remaining = iov[i].iov_len;
2815         uint8_t * data = (void *)iov[i].iov_base;
2816         while (remaining) {
2817             RDMAControlHeader head;
2818 
2819             len = MIN(remaining, RDMA_SEND_INCREMENT);
2820             remaining -= len;
2821 
2822             head.len = len;
2823             head.type = RDMA_CONTROL_QEMU_FILE;
2824 
2825             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2826 
2827             if (ret < 0) {
2828                 rdma->error_state = ret;
2829                 error_setg(errp, "qemu_rdma_exchange_send returned %d", ret);
2830                 return -1;
2831             }
2832 
2833             data += len;
2834             done += len;
2835         }
2836     }
2837 
2838     return done;
2839 }
2840 
2841 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2842                              size_t size, int idx)
2843 {
2844     size_t len = 0;
2845 
2846     if (rdma->wr_data[idx].control_len) {
2847         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2848 
2849         len = MIN(size, rdma->wr_data[idx].control_len);
2850         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2851         rdma->wr_data[idx].control_curr += len;
2852         rdma->wr_data[idx].control_len -= len;
2853     }
2854 
2855     return len;
2856 }
2857 
2858 /*
2859  * QEMUFile interface to the control channel.
2860  * RDMA links don't use bytestreams, so we have to
2861  * return bytes to QEMUFile opportunistically.
2862  */
2863 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2864                                       const struct iovec *iov,
2865                                       size_t niov,
2866                                       int **fds,
2867                                       size_t *nfds,
2868                                       int flags,
2869                                       Error **errp)
2870 {
2871     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2872     RDMAContext *rdma;
2873     RDMAControlHeader head;
2874     int ret = 0;
2875     ssize_t i;
2876     size_t done = 0;
2877 
2878     RCU_READ_LOCK_GUARD();
2879     rdma = qatomic_rcu_read(&rioc->rdmain);
2880 
2881     if (!rdma) {
2882         error_setg(errp, "RDMA control channel input is not set");
2883         return -1;
2884     }
2885 
2886     CHECK_ERROR_STATE();
2887 
2888     for (i = 0; i < niov; i++) {
2889         size_t want = iov[i].iov_len;
2890         uint8_t *data = (void *)iov[i].iov_base;
2891 
2892         /*
2893          * First, we hold on to the last SEND message we
2894          * were given and dish out the bytes until we run
2895          * out of bytes.
2896          */
2897         ret = qemu_rdma_fill(rdma, data, want, 0);
2898         done += ret;
2899         want -= ret;
2900         /* Got what we needed, so go to next iovec */
2901         if (want == 0) {
2902             continue;
2903         }
2904 
2905         /* If we got any data so far, then don't wait
2906          * for more, just return what we have */
2907         if (done > 0) {
2908             break;
2909         }
2910 
2911 
2912         /* We've got nothing at all, so lets wait for
2913          * more to arrive
2914          */
2915         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2916 
2917         if (ret < 0) {
2918             rdma->error_state = ret;
2919             error_setg(errp, "qemu_rdma_exchange_recv returned %d", ret);
2920             return -1;
2921         }
2922 
2923         /*
2924          * SEND was received with new bytes, now try again.
2925          */
2926         ret = qemu_rdma_fill(rdma, data, want, 0);
2927         done += ret;
2928         want -= ret;
2929 
2930         /* Still didn't get enough, so lets just return */
2931         if (want) {
2932             if (done == 0) {
2933                 return QIO_CHANNEL_ERR_BLOCK;
2934             } else {
2935                 break;
2936             }
2937         }
2938     }
2939     return done;
2940 }
2941 
2942 /*
2943  * Block until all the outstanding chunks have been delivered by the hardware.
2944  */
2945 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2946 {
2947     int ret;
2948 
2949     if (qemu_rdma_write_flush(f, rdma) < 0) {
2950         return -EIO;
2951     }
2952 
2953     while (rdma->nb_sent) {
2954         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2955         if (ret < 0) {
2956             error_report("rdma migration: complete polling error!");
2957             return -EIO;
2958         }
2959     }
2960 
2961     qemu_rdma_unregister_waiting(rdma);
2962 
2963     return 0;
2964 }
2965 
2966 
2967 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2968                                          bool blocking,
2969                                          Error **errp)
2970 {
2971     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2972     /* XXX we should make readv/writev actually honour this :-) */
2973     rioc->blocking = blocking;
2974     return 0;
2975 }
2976 
2977 
2978 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2979 struct QIOChannelRDMASource {
2980     GSource parent;
2981     QIOChannelRDMA *rioc;
2982     GIOCondition condition;
2983 };
2984 
2985 static gboolean
2986 qio_channel_rdma_source_prepare(GSource *source,
2987                                 gint *timeout)
2988 {
2989     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2990     RDMAContext *rdma;
2991     GIOCondition cond = 0;
2992     *timeout = -1;
2993 
2994     RCU_READ_LOCK_GUARD();
2995     if (rsource->condition == G_IO_IN) {
2996         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2997     } else {
2998         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2999     }
3000 
3001     if (!rdma) {
3002         error_report("RDMAContext is NULL when prepare Gsource");
3003         return FALSE;
3004     }
3005 
3006     if (rdma->wr_data[0].control_len) {
3007         cond |= G_IO_IN;
3008     }
3009     cond |= G_IO_OUT;
3010 
3011     return cond & rsource->condition;
3012 }
3013 
3014 static gboolean
3015 qio_channel_rdma_source_check(GSource *source)
3016 {
3017     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3018     RDMAContext *rdma;
3019     GIOCondition cond = 0;
3020 
3021     RCU_READ_LOCK_GUARD();
3022     if (rsource->condition == G_IO_IN) {
3023         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3024     } else {
3025         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3026     }
3027 
3028     if (!rdma) {
3029         error_report("RDMAContext is NULL when check Gsource");
3030         return FALSE;
3031     }
3032 
3033     if (rdma->wr_data[0].control_len) {
3034         cond |= G_IO_IN;
3035     }
3036     cond |= G_IO_OUT;
3037 
3038     return cond & rsource->condition;
3039 }
3040 
3041 static gboolean
3042 qio_channel_rdma_source_dispatch(GSource *source,
3043                                  GSourceFunc callback,
3044                                  gpointer user_data)
3045 {
3046     QIOChannelFunc func = (QIOChannelFunc)callback;
3047     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3048     RDMAContext *rdma;
3049     GIOCondition cond = 0;
3050 
3051     RCU_READ_LOCK_GUARD();
3052     if (rsource->condition == G_IO_IN) {
3053         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3054     } else {
3055         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3056     }
3057 
3058     if (!rdma) {
3059         error_report("RDMAContext is NULL when dispatch Gsource");
3060         return FALSE;
3061     }
3062 
3063     if (rdma->wr_data[0].control_len) {
3064         cond |= G_IO_IN;
3065     }
3066     cond |= G_IO_OUT;
3067 
3068     return (*func)(QIO_CHANNEL(rsource->rioc),
3069                    (cond & rsource->condition),
3070                    user_data);
3071 }
3072 
3073 static void
3074 qio_channel_rdma_source_finalize(GSource *source)
3075 {
3076     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3077 
3078     object_unref(OBJECT(ssource->rioc));
3079 }
3080 
3081 GSourceFuncs qio_channel_rdma_source_funcs = {
3082     qio_channel_rdma_source_prepare,
3083     qio_channel_rdma_source_check,
3084     qio_channel_rdma_source_dispatch,
3085     qio_channel_rdma_source_finalize
3086 };
3087 
3088 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3089                                               GIOCondition condition)
3090 {
3091     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3092     QIOChannelRDMASource *ssource;
3093     GSource *source;
3094 
3095     source = g_source_new(&qio_channel_rdma_source_funcs,
3096                           sizeof(QIOChannelRDMASource));
3097     ssource = (QIOChannelRDMASource *)source;
3098 
3099     ssource->rioc = rioc;
3100     object_ref(OBJECT(rioc));
3101 
3102     ssource->condition = condition;
3103 
3104     return source;
3105 }
3106 
3107 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3108                                                 AioContext *read_ctx,
3109                                                 IOHandler *io_read,
3110                                                 AioContext *write_ctx,
3111                                                 IOHandler *io_write,
3112                                                 void *opaque)
3113 {
3114     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3115     if (io_read) {
3116         aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3117                            io_read, io_write, NULL, NULL, opaque);
3118         aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3119                            io_read, io_write, NULL, NULL, opaque);
3120     } else {
3121         aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3122                            io_read, io_write, NULL, NULL, opaque);
3123         aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3124                            io_read, io_write, NULL, NULL, opaque);
3125     }
3126 }
3127 
3128 struct rdma_close_rcu {
3129     struct rcu_head rcu;
3130     RDMAContext *rdmain;
3131     RDMAContext *rdmaout;
3132 };
3133 
3134 /* callback from qio_channel_rdma_close via call_rcu */
3135 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3136 {
3137     if (rcu->rdmain) {
3138         qemu_rdma_cleanup(rcu->rdmain);
3139     }
3140 
3141     if (rcu->rdmaout) {
3142         qemu_rdma_cleanup(rcu->rdmaout);
3143     }
3144 
3145     g_free(rcu->rdmain);
3146     g_free(rcu->rdmaout);
3147     g_free(rcu);
3148 }
3149 
3150 static int qio_channel_rdma_close(QIOChannel *ioc,
3151                                   Error **errp)
3152 {
3153     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3154     RDMAContext *rdmain, *rdmaout;
3155     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3156 
3157     trace_qemu_rdma_close();
3158 
3159     rdmain = rioc->rdmain;
3160     if (rdmain) {
3161         qatomic_rcu_set(&rioc->rdmain, NULL);
3162     }
3163 
3164     rdmaout = rioc->rdmaout;
3165     if (rdmaout) {
3166         qatomic_rcu_set(&rioc->rdmaout, NULL);
3167     }
3168 
3169     rcu->rdmain = rdmain;
3170     rcu->rdmaout = rdmaout;
3171     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3172 
3173     return 0;
3174 }
3175 
3176 static int
3177 qio_channel_rdma_shutdown(QIOChannel *ioc,
3178                             QIOChannelShutdown how,
3179                             Error **errp)
3180 {
3181     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3182     RDMAContext *rdmain, *rdmaout;
3183 
3184     RCU_READ_LOCK_GUARD();
3185 
3186     rdmain = qatomic_rcu_read(&rioc->rdmain);
3187     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3188 
3189     switch (how) {
3190     case QIO_CHANNEL_SHUTDOWN_READ:
3191         if (rdmain) {
3192             rdmain->error_state = -1;
3193         }
3194         break;
3195     case QIO_CHANNEL_SHUTDOWN_WRITE:
3196         if (rdmaout) {
3197             rdmaout->error_state = -1;
3198         }
3199         break;
3200     case QIO_CHANNEL_SHUTDOWN_BOTH:
3201     default:
3202         if (rdmain) {
3203             rdmain->error_state = -1;
3204         }
3205         if (rdmaout) {
3206             rdmaout->error_state = -1;
3207         }
3208         break;
3209     }
3210 
3211     return 0;
3212 }
3213 
3214 /*
3215  * Parameters:
3216  *    @offset == 0 :
3217  *        This means that 'block_offset' is a full virtual address that does not
3218  *        belong to a RAMBlock of the virtual machine and instead
3219  *        represents a private malloc'd memory area that the caller wishes to
3220  *        transfer.
3221  *
3222  *    @offset != 0 :
3223  *        Offset is an offset to be added to block_offset and used
3224  *        to also lookup the corresponding RAMBlock.
3225  *
3226  *    @size : Number of bytes to transfer
3227  *
3228  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3229  *                  sent. Usually, this will not be more than a few bytes of
3230  *                  the protocol because most transfers are sent asynchronously.
3231  */
3232 static size_t qemu_rdma_save_page(QEMUFile *f,
3233                                   ram_addr_t block_offset, ram_addr_t offset,
3234                                   size_t size, uint64_t *bytes_sent)
3235 {
3236     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3237     RDMAContext *rdma;
3238     int ret;
3239 
3240     if (migration_in_postcopy()) {
3241         return RAM_SAVE_CONTROL_NOT_SUPP;
3242     }
3243 
3244     RCU_READ_LOCK_GUARD();
3245     rdma = qatomic_rcu_read(&rioc->rdmaout);
3246 
3247     if (!rdma) {
3248         return -EIO;
3249     }
3250 
3251     CHECK_ERROR_STATE();
3252 
3253     qemu_fflush(f);
3254 
3255     /*
3256      * Add this page to the current 'chunk'. If the chunk
3257      * is full, or the page doesn't belong to the current chunk,
3258      * an actual RDMA write will occur and a new chunk will be formed.
3259      */
3260     ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3261     if (ret < 0) {
3262         error_report("rdma migration: write error! %d", ret);
3263         goto err;
3264     }
3265 
3266     /*
3267      * We always return 1 bytes because the RDMA
3268      * protocol is completely asynchronous. We do not yet know
3269      * whether an  identified chunk is zero or not because we're
3270      * waiting for other pages to potentially be merged with
3271      * the current chunk. So, we have to call qemu_update_position()
3272      * later on when the actual write occurs.
3273      */
3274     if (bytes_sent) {
3275         *bytes_sent = 1;
3276     }
3277 
3278     /*
3279      * Drain the Completion Queue if possible, but do not block,
3280      * just poll.
3281      *
3282      * If nothing to poll, the end of the iteration will do this
3283      * again to make sure we don't overflow the request queue.
3284      */
3285     while (1) {
3286         uint64_t wr_id, wr_id_in;
3287         ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3288 
3289         if (ret < 0) {
3290             error_report("rdma migration: polling error! %d", ret);
3291             goto err;
3292         }
3293 
3294         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3295 
3296         if (wr_id == RDMA_WRID_NONE) {
3297             break;
3298         }
3299     }
3300 
3301     while (1) {
3302         uint64_t wr_id, wr_id_in;
3303         ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3304 
3305         if (ret < 0) {
3306             error_report("rdma migration: polling error! %d", ret);
3307             goto err;
3308         }
3309 
3310         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3311 
3312         if (wr_id == RDMA_WRID_NONE) {
3313             break;
3314         }
3315     }
3316 
3317     return RAM_SAVE_CONTROL_DELAYED;
3318 err:
3319     rdma->error_state = ret;
3320     return ret;
3321 }
3322 
3323 static void rdma_accept_incoming_migration(void *opaque);
3324 
3325 static void rdma_cm_poll_handler(void *opaque)
3326 {
3327     RDMAContext *rdma = opaque;
3328     int ret;
3329     struct rdma_cm_event *cm_event;
3330     MigrationIncomingState *mis = migration_incoming_get_current();
3331 
3332     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3333     if (ret) {
3334         error_report("get_cm_event failed %d", errno);
3335         return;
3336     }
3337 
3338     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3339         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3340         if (!rdma->error_state &&
3341             migration_incoming_get_current()->state !=
3342               MIGRATION_STATUS_COMPLETED) {
3343             error_report("receive cm event, cm event is %d", cm_event->event);
3344             rdma->error_state = -EPIPE;
3345             if (rdma->return_path) {
3346                 rdma->return_path->error_state = -EPIPE;
3347             }
3348         }
3349         rdma_ack_cm_event(cm_event);
3350         if (mis->loadvm_co) {
3351             qemu_coroutine_enter(mis->loadvm_co);
3352         }
3353         return;
3354     }
3355     rdma_ack_cm_event(cm_event);
3356 }
3357 
3358 static int qemu_rdma_accept(RDMAContext *rdma)
3359 {
3360     RDMACapabilities cap;
3361     struct rdma_conn_param conn_param = {
3362                                             .responder_resources = 2,
3363                                             .private_data = &cap,
3364                                             .private_data_len = sizeof(cap),
3365                                          };
3366     RDMAContext *rdma_return_path = NULL;
3367     struct rdma_cm_event *cm_event;
3368     struct ibv_context *verbs;
3369     int ret = -EINVAL;
3370     int idx;
3371 
3372     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3373     if (ret) {
3374         goto err_rdma_dest_wait;
3375     }
3376 
3377     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3378         rdma_ack_cm_event(cm_event);
3379         goto err_rdma_dest_wait;
3380     }
3381 
3382     /*
3383      * initialize the RDMAContext for return path for postcopy after first
3384      * connection request reached.
3385      */
3386     if ((migrate_postcopy() || migrate_return_path())
3387         && !rdma->is_return_path) {
3388         rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3389         if (rdma_return_path == NULL) {
3390             rdma_ack_cm_event(cm_event);
3391             goto err_rdma_dest_wait;
3392         }
3393 
3394         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3395     }
3396 
3397     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3398 
3399     network_to_caps(&cap);
3400 
3401     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3402             error_report("Unknown source RDMA version: %d, bailing...",
3403                             cap.version);
3404             rdma_ack_cm_event(cm_event);
3405             goto err_rdma_dest_wait;
3406     }
3407 
3408     /*
3409      * Respond with only the capabilities this version of QEMU knows about.
3410      */
3411     cap.flags &= known_capabilities;
3412 
3413     /*
3414      * Enable the ones that we do know about.
3415      * Add other checks here as new ones are introduced.
3416      */
3417     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3418         rdma->pin_all = true;
3419     }
3420 
3421     rdma->cm_id = cm_event->id;
3422     verbs = cm_event->id->verbs;
3423 
3424     rdma_ack_cm_event(cm_event);
3425 
3426     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3427 
3428     caps_to_network(&cap);
3429 
3430     trace_qemu_rdma_accept_pin_verbsc(verbs);
3431 
3432     if (!rdma->verbs) {
3433         rdma->verbs = verbs;
3434     } else if (rdma->verbs != verbs) {
3435             error_report("ibv context not matching %p, %p!", rdma->verbs,
3436                          verbs);
3437             goto err_rdma_dest_wait;
3438     }
3439 
3440     qemu_rdma_dump_id("dest_init", verbs);
3441 
3442     ret = qemu_rdma_alloc_pd_cq(rdma);
3443     if (ret) {
3444         error_report("rdma migration: error allocating pd and cq!");
3445         goto err_rdma_dest_wait;
3446     }
3447 
3448     ret = qemu_rdma_alloc_qp(rdma);
3449     if (ret) {
3450         error_report("rdma migration: error allocating qp!");
3451         goto err_rdma_dest_wait;
3452     }
3453 
3454     ret = qemu_rdma_init_ram_blocks(rdma);
3455     if (ret) {
3456         error_report("rdma migration: error initializing ram blocks!");
3457         goto err_rdma_dest_wait;
3458     }
3459 
3460     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3461         ret = qemu_rdma_reg_control(rdma, idx);
3462         if (ret) {
3463             error_report("rdma: error registering %d control", idx);
3464             goto err_rdma_dest_wait;
3465         }
3466     }
3467 
3468     /* Accept the second connection request for return path */
3469     if ((migrate_postcopy() || migrate_return_path())
3470         && !rdma->is_return_path) {
3471         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3472                             NULL,
3473                             (void *)(intptr_t)rdma->return_path);
3474     } else {
3475         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3476                             NULL, rdma);
3477     }
3478 
3479     ret = rdma_accept(rdma->cm_id, &conn_param);
3480     if (ret) {
3481         error_report("rdma_accept returns %d", ret);
3482         goto err_rdma_dest_wait;
3483     }
3484 
3485     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3486     if (ret) {
3487         error_report("rdma_accept get_cm_event failed %d", ret);
3488         goto err_rdma_dest_wait;
3489     }
3490 
3491     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3492         error_report("rdma_accept not event established");
3493         rdma_ack_cm_event(cm_event);
3494         goto err_rdma_dest_wait;
3495     }
3496 
3497     rdma_ack_cm_event(cm_event);
3498     rdma->connected = true;
3499 
3500     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3501     if (ret) {
3502         error_report("rdma migration: error posting second control recv");
3503         goto err_rdma_dest_wait;
3504     }
3505 
3506     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3507 
3508     return 0;
3509 
3510 err_rdma_dest_wait:
3511     rdma->error_state = ret;
3512     qemu_rdma_cleanup(rdma);
3513     g_free(rdma_return_path);
3514     return ret;
3515 }
3516 
3517 static int dest_ram_sort_func(const void *a, const void *b)
3518 {
3519     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3520     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3521 
3522     return (a_index < b_index) ? -1 : (a_index != b_index);
3523 }
3524 
3525 /*
3526  * During each iteration of the migration, we listen for instructions
3527  * by the source VM to perform dynamic page registrations before they
3528  * can perform RDMA operations.
3529  *
3530  * We respond with the 'rkey'.
3531  *
3532  * Keep doing this until the source tells us to stop.
3533  */
3534 static int qemu_rdma_registration_handle(QEMUFile *f)
3535 {
3536     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3537                                .type = RDMA_CONTROL_REGISTER_RESULT,
3538                                .repeat = 0,
3539                              };
3540     RDMAControlHeader unreg_resp = { .len = 0,
3541                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3542                                .repeat = 0,
3543                              };
3544     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3545                                  .repeat = 1 };
3546     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3547     RDMAContext *rdma;
3548     RDMALocalBlocks *local;
3549     RDMAControlHeader head;
3550     RDMARegister *reg, *registers;
3551     RDMACompress *comp;
3552     RDMARegisterResult *reg_result;
3553     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3554     RDMALocalBlock *block;
3555     void *host_addr;
3556     int ret = 0;
3557     int idx = 0;
3558     int count = 0;
3559     int i = 0;
3560 
3561     RCU_READ_LOCK_GUARD();
3562     rdma = qatomic_rcu_read(&rioc->rdmain);
3563 
3564     if (!rdma) {
3565         return -EIO;
3566     }
3567 
3568     CHECK_ERROR_STATE();
3569 
3570     local = &rdma->local_ram_blocks;
3571     do {
3572         trace_qemu_rdma_registration_handle_wait();
3573 
3574         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3575 
3576         if (ret < 0) {
3577             break;
3578         }
3579 
3580         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3581             error_report("rdma: Too many requests in this message (%d)."
3582                             "Bailing.", head.repeat);
3583             ret = -EIO;
3584             break;
3585         }
3586 
3587         switch (head.type) {
3588         case RDMA_CONTROL_COMPRESS:
3589             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3590             network_to_compress(comp);
3591 
3592             trace_qemu_rdma_registration_handle_compress(comp->length,
3593                                                          comp->block_idx,
3594                                                          comp->offset);
3595             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3596                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3597                              (unsigned int)comp->block_idx,
3598                              rdma->local_ram_blocks.nb_blocks);
3599                 ret = -EIO;
3600                 goto out;
3601             }
3602             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3603 
3604             host_addr = block->local_host_addr +
3605                             (comp->offset - block->offset);
3606 
3607             ram_handle_compressed(host_addr, comp->value, comp->length);
3608             break;
3609 
3610         case RDMA_CONTROL_REGISTER_FINISHED:
3611             trace_qemu_rdma_registration_handle_finished();
3612             goto out;
3613 
3614         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3615             trace_qemu_rdma_registration_handle_ram_blocks();
3616 
3617             /* Sort our local RAM Block list so it's the same as the source,
3618              * we can do this since we've filled in a src_index in the list
3619              * as we received the RAMBlock list earlier.
3620              */
3621             qsort(rdma->local_ram_blocks.block,
3622                   rdma->local_ram_blocks.nb_blocks,
3623                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3624             for (i = 0; i < local->nb_blocks; i++) {
3625                 local->block[i].index = i;
3626             }
3627 
3628             if (rdma->pin_all) {
3629                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3630                 if (ret) {
3631                     error_report("rdma migration: error dest "
3632                                     "registering ram blocks");
3633                     goto out;
3634                 }
3635             }
3636 
3637             /*
3638              * Dest uses this to prepare to transmit the RAMBlock descriptions
3639              * to the source VM after connection setup.
3640              * Both sides use the "remote" structure to communicate and update
3641              * their "local" descriptions with what was sent.
3642              */
3643             for (i = 0; i < local->nb_blocks; i++) {
3644                 rdma->dest_blocks[i].remote_host_addr =
3645                     (uintptr_t)(local->block[i].local_host_addr);
3646 
3647                 if (rdma->pin_all) {
3648                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3649                 }
3650 
3651                 rdma->dest_blocks[i].offset = local->block[i].offset;
3652                 rdma->dest_blocks[i].length = local->block[i].length;
3653 
3654                 dest_block_to_network(&rdma->dest_blocks[i]);
3655                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3656                     local->block[i].block_name,
3657                     local->block[i].offset,
3658                     local->block[i].length,
3659                     local->block[i].local_host_addr,
3660                     local->block[i].src_index);
3661             }
3662 
3663             blocks.len = rdma->local_ram_blocks.nb_blocks
3664                                                 * sizeof(RDMADestBlock);
3665 
3666 
3667             ret = qemu_rdma_post_send_control(rdma,
3668                                         (uint8_t *) rdma->dest_blocks, &blocks);
3669 
3670             if (ret < 0) {
3671                 error_report("rdma migration: error sending remote info");
3672                 goto out;
3673             }
3674 
3675             break;
3676         case RDMA_CONTROL_REGISTER_REQUEST:
3677             trace_qemu_rdma_registration_handle_register(head.repeat);
3678 
3679             reg_resp.repeat = head.repeat;
3680             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3681 
3682             for (count = 0; count < head.repeat; count++) {
3683                 uint64_t chunk;
3684                 uint8_t *chunk_start, *chunk_end;
3685 
3686                 reg = &registers[count];
3687                 network_to_register(reg);
3688 
3689                 reg_result = &results[count];
3690 
3691                 trace_qemu_rdma_registration_handle_register_loop(count,
3692                          reg->current_index, reg->key.current_addr, reg->chunks);
3693 
3694                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3695                     error_report("rdma: 'register' bad block index %u (vs %d)",
3696                                  (unsigned int)reg->current_index,
3697                                  rdma->local_ram_blocks.nb_blocks);
3698                     ret = -ENOENT;
3699                     goto out;
3700                 }
3701                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3702                 if (block->is_ram_block) {
3703                     if (block->offset > reg->key.current_addr) {
3704                         error_report("rdma: bad register address for block %s"
3705                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3706                             block->block_name, block->offset,
3707                             reg->key.current_addr);
3708                         ret = -ERANGE;
3709                         goto out;
3710                     }
3711                     host_addr = (block->local_host_addr +
3712                                 (reg->key.current_addr - block->offset));
3713                     chunk = ram_chunk_index(block->local_host_addr,
3714                                             (uint8_t *) host_addr);
3715                 } else {
3716                     chunk = reg->key.chunk;
3717                     host_addr = block->local_host_addr +
3718                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3719                     /* Check for particularly bad chunk value */
3720                     if (host_addr < (void *)block->local_host_addr) {
3721                         error_report("rdma: bad chunk for block %s"
3722                             " chunk: %" PRIx64,
3723                             block->block_name, reg->key.chunk);
3724                         ret = -ERANGE;
3725                         goto out;
3726                     }
3727                 }
3728                 chunk_start = ram_chunk_start(block, chunk);
3729                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3730                 /* avoid "-Waddress-of-packed-member" warning */
3731                 uint32_t tmp_rkey = 0;
3732                 if (qemu_rdma_register_and_get_keys(rdma, block,
3733                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3734                             chunk, chunk_start, chunk_end)) {
3735                     error_report("cannot get rkey");
3736                     ret = -EINVAL;
3737                     goto out;
3738                 }
3739                 reg_result->rkey = tmp_rkey;
3740 
3741                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3742 
3743                 trace_qemu_rdma_registration_handle_register_rkey(
3744                                                            reg_result->rkey);
3745 
3746                 result_to_network(reg_result);
3747             }
3748 
3749             ret = qemu_rdma_post_send_control(rdma,
3750                             (uint8_t *) results, &reg_resp);
3751 
3752             if (ret < 0) {
3753                 error_report("Failed to send control buffer");
3754                 goto out;
3755             }
3756             break;
3757         case RDMA_CONTROL_UNREGISTER_REQUEST:
3758             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3759             unreg_resp.repeat = head.repeat;
3760             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3761 
3762             for (count = 0; count < head.repeat; count++) {
3763                 reg = &registers[count];
3764                 network_to_register(reg);
3765 
3766                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3767                            reg->current_index, reg->key.chunk);
3768 
3769                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3770 
3771                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3772                 block->pmr[reg->key.chunk] = NULL;
3773 
3774                 if (ret != 0) {
3775                     perror("rdma unregistration chunk failed");
3776                     ret = -ret;
3777                     goto out;
3778                 }
3779 
3780                 rdma->total_registrations--;
3781 
3782                 trace_qemu_rdma_registration_handle_unregister_success(
3783                                                        reg->key.chunk);
3784             }
3785 
3786             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3787 
3788             if (ret < 0) {
3789                 error_report("Failed to send control buffer");
3790                 goto out;
3791             }
3792             break;
3793         case RDMA_CONTROL_REGISTER_RESULT:
3794             error_report("Invalid RESULT message at dest.");
3795             ret = -EIO;
3796             goto out;
3797         default:
3798             error_report("Unknown control message %s", control_desc(head.type));
3799             ret = -EIO;
3800             goto out;
3801         }
3802     } while (1);
3803 out:
3804     if (ret < 0) {
3805         rdma->error_state = ret;
3806     }
3807     return ret;
3808 }
3809 
3810 /* Destination:
3811  * Called via a ram_control_load_hook during the initial RAM load section which
3812  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3813  * on the source.
3814  * We've already built our local RAMBlock list, but not yet sent the list to
3815  * the source.
3816  */
3817 static int
3818 rdma_block_notification_handle(QEMUFile *f, const char *name)
3819 {
3820     RDMAContext *rdma;
3821     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3822     int curr;
3823     int found = -1;
3824 
3825     RCU_READ_LOCK_GUARD();
3826     rdma = qatomic_rcu_read(&rioc->rdmain);
3827 
3828     if (!rdma) {
3829         return -EIO;
3830     }
3831 
3832     /* Find the matching RAMBlock in our local list */
3833     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3834         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3835             found = curr;
3836             break;
3837         }
3838     }
3839 
3840     if (found == -1) {
3841         error_report("RAMBlock '%s' not found on destination", name);
3842         return -ENOENT;
3843     }
3844 
3845     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3846     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3847     rdma->next_src_index++;
3848 
3849     return 0;
3850 }
3851 
3852 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3853 {
3854     switch (flags) {
3855     case RAM_CONTROL_BLOCK_REG:
3856         return rdma_block_notification_handle(f, data);
3857 
3858     case RAM_CONTROL_HOOK:
3859         return qemu_rdma_registration_handle(f);
3860 
3861     default:
3862         /* Shouldn't be called with any other values */
3863         abort();
3864     }
3865 }
3866 
3867 static int qemu_rdma_registration_start(QEMUFile *f,
3868                                         uint64_t flags, void *data)
3869 {
3870     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3871     RDMAContext *rdma;
3872 
3873     if (migration_in_postcopy()) {
3874         return 0;
3875     }
3876 
3877     RCU_READ_LOCK_GUARD();
3878     rdma = qatomic_rcu_read(&rioc->rdmaout);
3879     if (!rdma) {
3880         return -EIO;
3881     }
3882 
3883     CHECK_ERROR_STATE();
3884 
3885     trace_qemu_rdma_registration_start(flags);
3886     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3887     qemu_fflush(f);
3888 
3889     return 0;
3890 }
3891 
3892 /*
3893  * Inform dest that dynamic registrations are done for now.
3894  * First, flush writes, if any.
3895  */
3896 static int qemu_rdma_registration_stop(QEMUFile *f,
3897                                        uint64_t flags, void *data)
3898 {
3899     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3900     RDMAContext *rdma;
3901     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3902     int ret = 0;
3903 
3904     if (migration_in_postcopy()) {
3905         return 0;
3906     }
3907 
3908     RCU_READ_LOCK_GUARD();
3909     rdma = qatomic_rcu_read(&rioc->rdmaout);
3910     if (!rdma) {
3911         return -EIO;
3912     }
3913 
3914     CHECK_ERROR_STATE();
3915 
3916     qemu_fflush(f);
3917     ret = qemu_rdma_drain_cq(f, rdma);
3918 
3919     if (ret < 0) {
3920         goto err;
3921     }
3922 
3923     if (flags == RAM_CONTROL_SETUP) {
3924         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3925         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3926         int reg_result_idx, i, nb_dest_blocks;
3927 
3928         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3929         trace_qemu_rdma_registration_stop_ram();
3930 
3931         /*
3932          * Make sure that we parallelize the pinning on both sides.
3933          * For very large guests, doing this serially takes a really
3934          * long time, so we have to 'interleave' the pinning locally
3935          * with the control messages by performing the pinning on this
3936          * side before we receive the control response from the other
3937          * side that the pinning has completed.
3938          */
3939         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3940                     &reg_result_idx, rdma->pin_all ?
3941                     qemu_rdma_reg_whole_ram_blocks : NULL);
3942         if (ret < 0) {
3943             fprintf(stderr, "receiving remote info!");
3944             return ret;
3945         }
3946 
3947         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3948 
3949         /*
3950          * The protocol uses two different sets of rkeys (mutually exclusive):
3951          * 1. One key to represent the virtual address of the entire ram block.
3952          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3953          * 2. One to represent individual chunks within a ram block.
3954          *    (dynamic chunk registration enabled - pin individual chunks.)
3955          *
3956          * Once the capability is successfully negotiated, the destination transmits
3957          * the keys to use (or sends them later) including the virtual addresses
3958          * and then propagates the remote ram block descriptions to his local copy.
3959          */
3960 
3961         if (local->nb_blocks != nb_dest_blocks) {
3962             fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3963                     "Your QEMU command line parameters are probably "
3964                     "not identical on both the source and destination.",
3965                     local->nb_blocks, nb_dest_blocks);
3966             rdma->error_state = -EINVAL;
3967             return -EINVAL;
3968         }
3969 
3970         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3971         memcpy(rdma->dest_blocks,
3972             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3973         for (i = 0; i < nb_dest_blocks; i++) {
3974             network_to_dest_block(&rdma->dest_blocks[i]);
3975 
3976             /* We require that the blocks are in the same order */
3977             if (rdma->dest_blocks[i].length != local->block[i].length) {
3978                 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3979                         "vs %" PRIu64, local->block[i].block_name, i,
3980                         local->block[i].length,
3981                         rdma->dest_blocks[i].length);
3982                 rdma->error_state = -EINVAL;
3983                 return -EINVAL;
3984             }
3985             local->block[i].remote_host_addr =
3986                     rdma->dest_blocks[i].remote_host_addr;
3987             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3988         }
3989     }
3990 
3991     trace_qemu_rdma_registration_stop(flags);
3992 
3993     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3994     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3995 
3996     if (ret < 0) {
3997         goto err;
3998     }
3999 
4000     return 0;
4001 err:
4002     rdma->error_state = ret;
4003     return ret;
4004 }
4005 
4006 static const QEMUFileHooks rdma_read_hooks = {
4007     .hook_ram_load = rdma_load_hook,
4008 };
4009 
4010 static const QEMUFileHooks rdma_write_hooks = {
4011     .before_ram_iterate = qemu_rdma_registration_start,
4012     .after_ram_iterate  = qemu_rdma_registration_stop,
4013     .save_page          = qemu_rdma_save_page,
4014 };
4015 
4016 
4017 static void qio_channel_rdma_finalize(Object *obj)
4018 {
4019     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4020     if (rioc->rdmain) {
4021         qemu_rdma_cleanup(rioc->rdmain);
4022         g_free(rioc->rdmain);
4023         rioc->rdmain = NULL;
4024     }
4025     if (rioc->rdmaout) {
4026         qemu_rdma_cleanup(rioc->rdmaout);
4027         g_free(rioc->rdmaout);
4028         rioc->rdmaout = NULL;
4029     }
4030 }
4031 
4032 static void qio_channel_rdma_class_init(ObjectClass *klass,
4033                                         void *class_data G_GNUC_UNUSED)
4034 {
4035     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4036 
4037     ioc_klass->io_writev = qio_channel_rdma_writev;
4038     ioc_klass->io_readv = qio_channel_rdma_readv;
4039     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4040     ioc_klass->io_close = qio_channel_rdma_close;
4041     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4042     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4043     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4044 }
4045 
4046 static const TypeInfo qio_channel_rdma_info = {
4047     .parent = TYPE_QIO_CHANNEL,
4048     .name = TYPE_QIO_CHANNEL_RDMA,
4049     .instance_size = sizeof(QIOChannelRDMA),
4050     .instance_finalize = qio_channel_rdma_finalize,
4051     .class_init = qio_channel_rdma_class_init,
4052 };
4053 
4054 static void qio_channel_rdma_register_types(void)
4055 {
4056     type_register_static(&qio_channel_rdma_info);
4057 }
4058 
4059 type_init(qio_channel_rdma_register_types);
4060 
4061 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4062 {
4063     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4064 
4065     rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4066     rioc->rdmain = rdma;
4067     rioc->rdmaout = rdma->return_path;
4068     qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4069 
4070     return rioc->file;
4071 }
4072 
4073 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4074 {
4075     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4076 
4077     rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4078     rioc->rdmaout = rdma;
4079     rioc->rdmain = rdma->return_path;
4080     qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4081 
4082     return rioc->file;
4083 }
4084 
4085 static void rdma_accept_incoming_migration(void *opaque)
4086 {
4087     RDMAContext *rdma = opaque;
4088     int ret;
4089     QEMUFile *f;
4090     Error *local_err = NULL;
4091 
4092     trace_qemu_rdma_accept_incoming_migration();
4093     ret = qemu_rdma_accept(rdma);
4094 
4095     if (ret) {
4096         fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4097         return;
4098     }
4099 
4100     trace_qemu_rdma_accept_incoming_migration_accepted();
4101 
4102     if (rdma->is_return_path) {
4103         return;
4104     }
4105 
4106     f = rdma_new_input(rdma);
4107     if (f == NULL) {
4108         fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n");
4109         qemu_rdma_cleanup(rdma);
4110         return;
4111     }
4112 
4113     rdma->migration_started_on_destination = 1;
4114     migration_fd_process_incoming(f, &local_err);
4115     if (local_err) {
4116         error_reportf_err(local_err, "RDMA ERROR:");
4117     }
4118 }
4119 
4120 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4121 {
4122     int ret;
4123     RDMAContext *rdma;
4124     Error *local_err = NULL;
4125 
4126     trace_rdma_start_incoming_migration();
4127 
4128     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4129     if (ram_block_discard_is_required()) {
4130         error_setg(errp, "RDMA: cannot disable RAM discard");
4131         return;
4132     }
4133 
4134     rdma = qemu_rdma_data_init(host_port, &local_err);
4135     if (rdma == NULL) {
4136         goto err;
4137     }
4138 
4139     ret = qemu_rdma_dest_init(rdma, &local_err);
4140 
4141     if (ret) {
4142         goto err;
4143     }
4144 
4145     trace_rdma_start_incoming_migration_after_dest_init();
4146 
4147     ret = rdma_listen(rdma->listen_id, 5);
4148 
4149     if (ret) {
4150         ERROR(errp, "listening on socket!");
4151         goto cleanup_rdma;
4152     }
4153 
4154     trace_rdma_start_incoming_migration_after_rdma_listen();
4155 
4156     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4157                         NULL, (void *)(intptr_t)rdma);
4158     return;
4159 
4160 cleanup_rdma:
4161     qemu_rdma_cleanup(rdma);
4162 err:
4163     error_propagate(errp, local_err);
4164     if (rdma) {
4165         g_free(rdma->host);
4166         g_free(rdma->host_port);
4167     }
4168     g_free(rdma);
4169 }
4170 
4171 void rdma_start_outgoing_migration(void *opaque,
4172                             const char *host_port, Error **errp)
4173 {
4174     MigrationState *s = opaque;
4175     RDMAContext *rdma_return_path = NULL;
4176     RDMAContext *rdma;
4177     int ret = 0;
4178 
4179     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4180     if (ram_block_discard_is_required()) {
4181         error_setg(errp, "RDMA: cannot disable RAM discard");
4182         return;
4183     }
4184 
4185     rdma = qemu_rdma_data_init(host_port, errp);
4186     if (rdma == NULL) {
4187         goto err;
4188     }
4189 
4190     ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4191 
4192     if (ret) {
4193         goto err;
4194     }
4195 
4196     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4197     ret = qemu_rdma_connect(rdma, errp, false);
4198 
4199     if (ret) {
4200         goto err;
4201     }
4202 
4203     /* RDMA postcopy need a separate queue pair for return path */
4204     if (migrate_postcopy() || migrate_return_path()) {
4205         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4206 
4207         if (rdma_return_path == NULL) {
4208             goto return_path_err;
4209         }
4210 
4211         ret = qemu_rdma_source_init(rdma_return_path,
4212                                     migrate_rdma_pin_all(), errp);
4213 
4214         if (ret) {
4215             goto return_path_err;
4216         }
4217 
4218         ret = qemu_rdma_connect(rdma_return_path, errp, true);
4219 
4220         if (ret) {
4221             goto return_path_err;
4222         }
4223 
4224         rdma->return_path = rdma_return_path;
4225         rdma_return_path->return_path = rdma;
4226         rdma_return_path->is_return_path = true;
4227     }
4228 
4229     trace_rdma_start_outgoing_migration_after_rdma_connect();
4230 
4231     s->to_dst_file = rdma_new_output(rdma);
4232     migrate_fd_connect(s, NULL);
4233     return;
4234 return_path_err:
4235     qemu_rdma_cleanup(rdma);
4236 err:
4237     g_free(rdma);
4238     g_free(rdma_return_path);
4239 }
4240