xref: /qemu/migration/rdma.c (revision 849729bb)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  *
6  * Authors:
7  *  Michael R. Hines <mrhines@us.ibm.com>
8  *  Jiuxing Liu <jl@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or
11  * later.  See the COPYING file in the top-level directory.
12  *
13  */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qemu/sockets.h"
21 #include "qemu/bitmap.h"
22 #include "block/coroutine.h"
23 #include <stdio.h>
24 #include <sys/types.h>
25 #include <sys/socket.h>
26 #include <netdb.h>
27 #include <arpa/inet.h>
28 #include <string.h>
29 #include <rdma/rdma_cma.h>
30 #include "trace.h"
31 
32 /*
33  * Print and error on both the Monitor and the Log file.
34  */
35 #define ERROR(errp, fmt, ...) \
36     do { \
37         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
38         if (errp && (*(errp) == NULL)) { \
39             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
40         } \
41     } while (0)
42 
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
44 
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
48 
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
50 
51 /*
52  * This is only for non-live state being migrated.
53  * Instead of RDMA_WRITE messages, we use RDMA_SEND
54  * messages for that state, which requires a different
55  * delivery design than main memory.
56  */
57 #define RDMA_SEND_INCREMENT 32768
58 
59 /*
60  * Maximum size infiniband SEND message
61  */
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
64 
65 #define RDMA_CONTROL_VERSION_CURRENT 1
66 /*
67  * Capabilities for negotiation.
68  */
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
70 
71 /*
72  * Add the other flags above to this list of known capabilities
73  * as they are introduced.
74  */
75 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
76 
77 #define CHECK_ERROR_STATE() \
78     do { \
79         if (rdma->error_state) { \
80             if (!rdma->error_reported) { \
81                 error_report("RDMA is in an error state waiting migration" \
82                                 " to abort!"); \
83                 rdma->error_reported = 1; \
84             } \
85             return rdma->error_state; \
86         } \
87     } while (0);
88 
89 /*
90  * A work request ID is 64-bits and we split up these bits
91  * into 3 parts:
92  *
93  * bits 0-15 : type of control message, 2^16
94  * bits 16-29: ram block index, 2^14
95  * bits 30-63: ram block chunk number, 2^34
96  *
97  * The last two bit ranges are only used for RDMA writes,
98  * in order to track their completion and potentially
99  * also track unregistration status of the message.
100  */
101 #define RDMA_WRID_TYPE_SHIFT  0UL
102 #define RDMA_WRID_BLOCK_SHIFT 16UL
103 #define RDMA_WRID_CHUNK_SHIFT 30UL
104 
105 #define RDMA_WRID_TYPE_MASK \
106     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
107 
108 #define RDMA_WRID_BLOCK_MASK \
109     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
110 
111 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
112 
113 /*
114  * RDMA migration protocol:
115  * 1. RDMA Writes (data messages, i.e. RAM)
116  * 2. IB Send/Recv (control channel messages)
117  */
118 enum {
119     RDMA_WRID_NONE = 0,
120     RDMA_WRID_RDMA_WRITE = 1,
121     RDMA_WRID_SEND_CONTROL = 2000,
122     RDMA_WRID_RECV_CONTROL = 4000,
123 };
124 
125 static const char *wrid_desc[] = {
126     [RDMA_WRID_NONE] = "NONE",
127     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
128     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
129     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
130 };
131 
132 /*
133  * Work request IDs for IB SEND messages only (not RDMA writes).
134  * This is used by the migration protocol to transmit
135  * control messages (such as device state and registration commands)
136  *
137  * We could use more WRs, but we have enough for now.
138  */
139 enum {
140     RDMA_WRID_READY = 0,
141     RDMA_WRID_DATA,
142     RDMA_WRID_CONTROL,
143     RDMA_WRID_MAX,
144 };
145 
146 /*
147  * SEND/RECV IB Control Messages.
148  */
149 enum {
150     RDMA_CONTROL_NONE = 0,
151     RDMA_CONTROL_ERROR,
152     RDMA_CONTROL_READY,               /* ready to receive */
153     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
154     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
155     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
156     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
157     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
158     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
159     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
160     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
161     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
162 };
163 
164 static const char *control_desc[] = {
165     [RDMA_CONTROL_NONE] = "NONE",
166     [RDMA_CONTROL_ERROR] = "ERROR",
167     [RDMA_CONTROL_READY] = "READY",
168     [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
169     [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
170     [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
171     [RDMA_CONTROL_COMPRESS] = "COMPRESS",
172     [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
173     [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
174     [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
175     [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
176     [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
177 };
178 
179 /*
180  * Memory and MR structures used to represent an IB Send/Recv work request.
181  * This is *not* used for RDMA writes, only IB Send/Recv.
182  */
183 typedef struct {
184     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
185     struct   ibv_mr *control_mr;               /* registration metadata */
186     size_t   control_len;                      /* length of the message */
187     uint8_t *control_curr;                     /* start of unconsumed bytes */
188 } RDMAWorkRequestData;
189 
190 /*
191  * Negotiate RDMA capabilities during connection-setup time.
192  */
193 typedef struct {
194     uint32_t version;
195     uint32_t flags;
196 } RDMACapabilities;
197 
198 static void caps_to_network(RDMACapabilities *cap)
199 {
200     cap->version = htonl(cap->version);
201     cap->flags = htonl(cap->flags);
202 }
203 
204 static void network_to_caps(RDMACapabilities *cap)
205 {
206     cap->version = ntohl(cap->version);
207     cap->flags = ntohl(cap->flags);
208 }
209 
210 /*
211  * Representation of a RAMBlock from an RDMA perspective.
212  * This is not transmitted, only local.
213  * This and subsequent structures cannot be linked lists
214  * because we're using a single IB message to transmit
215  * the information. It's small anyway, so a list is overkill.
216  */
217 typedef struct RDMALocalBlock {
218     uint8_t  *local_host_addr; /* local virtual address */
219     uint64_t remote_host_addr; /* remote virtual address */
220     uint64_t offset;
221     uint64_t length;
222     struct   ibv_mr **pmr;     /* MRs for chunk-level registration */
223     struct   ibv_mr *mr;       /* MR for non-chunk-level registration */
224     uint32_t *remote_keys;     /* rkeys for chunk-level registration */
225     uint32_t remote_rkey;      /* rkeys for non-chunk-level registration */
226     int      index;            /* which block are we */
227     bool     is_ram_block;
228     int      nb_chunks;
229     unsigned long *transit_bitmap;
230     unsigned long *unregister_bitmap;
231 } RDMALocalBlock;
232 
233 /*
234  * Also represents a RAMblock, but only on the dest.
235  * This gets transmitted by the dest during connection-time
236  * to the source VM and then is used to populate the
237  * corresponding RDMALocalBlock with
238  * the information needed to perform the actual RDMA.
239  */
240 typedef struct QEMU_PACKED RDMADestBlock {
241     uint64_t remote_host_addr;
242     uint64_t offset;
243     uint64_t length;
244     uint32_t remote_rkey;
245     uint32_t padding;
246 } RDMADestBlock;
247 
248 static uint64_t htonll(uint64_t v)
249 {
250     union { uint32_t lv[2]; uint64_t llv; } u;
251     u.lv[0] = htonl(v >> 32);
252     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
253     return u.llv;
254 }
255 
256 static uint64_t ntohll(uint64_t v) {
257     union { uint32_t lv[2]; uint64_t llv; } u;
258     u.llv = v;
259     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
260 }
261 
262 static void dest_block_to_network(RDMADestBlock *db)
263 {
264     db->remote_host_addr = htonll(db->remote_host_addr);
265     db->offset = htonll(db->offset);
266     db->length = htonll(db->length);
267     db->remote_rkey = htonl(db->remote_rkey);
268 }
269 
270 static void network_to_dest_block(RDMADestBlock *db)
271 {
272     db->remote_host_addr = ntohll(db->remote_host_addr);
273     db->offset = ntohll(db->offset);
274     db->length = ntohll(db->length);
275     db->remote_rkey = ntohl(db->remote_rkey);
276 }
277 
278 /*
279  * Virtual address of the above structures used for transmitting
280  * the RAMBlock descriptions at connection-time.
281  * This structure is *not* transmitted.
282  */
283 typedef struct RDMALocalBlocks {
284     int nb_blocks;
285     bool     init;             /* main memory init complete */
286     RDMALocalBlock *block;
287 } RDMALocalBlocks;
288 
289 /*
290  * Main data structure for RDMA state.
291  * While there is only one copy of this structure being allocated right now,
292  * this is the place where one would start if you wanted to consider
293  * having more than one RDMA connection open at the same time.
294  */
295 typedef struct RDMAContext {
296     char *host;
297     int port;
298 
299     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
300 
301     /*
302      * This is used by *_exchange_send() to figure out whether or not
303      * the initial "READY" message has already been received or not.
304      * This is because other functions may potentially poll() and detect
305      * the READY message before send() does, in which case we need to
306      * know if it completed.
307      */
308     int control_ready_expected;
309 
310     /* number of outstanding writes */
311     int nb_sent;
312 
313     /* store info about current buffer so that we can
314        merge it with future sends */
315     uint64_t current_addr;
316     uint64_t current_length;
317     /* index of ram block the current buffer belongs to */
318     int current_index;
319     /* index of the chunk in the current ram block */
320     int current_chunk;
321 
322     bool pin_all;
323 
324     /*
325      * infiniband-specific variables for opening the device
326      * and maintaining connection state and so forth.
327      *
328      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
329      * cm_id->verbs, cm_id->channel, and cm_id->qp.
330      */
331     struct rdma_cm_id *cm_id;               /* connection manager ID */
332     struct rdma_cm_id *listen_id;
333     bool connected;
334 
335     struct ibv_context          *verbs;
336     struct rdma_event_channel   *channel;
337     struct ibv_qp *qp;                      /* queue pair */
338     struct ibv_comp_channel *comp_channel;  /* completion channel */
339     struct ibv_pd *pd;                      /* protection domain */
340     struct ibv_cq *cq;                      /* completion queue */
341 
342     /*
343      * If a previous write failed (perhaps because of a failed
344      * memory registration, then do not attempt any future work
345      * and remember the error state.
346      */
347     int error_state;
348     int error_reported;
349 
350     /*
351      * Description of ram blocks used throughout the code.
352      */
353     RDMALocalBlocks local_ram_blocks;
354     RDMADestBlock  *dest_blocks;
355 
356     /*
357      * Migration on *destination* started.
358      * Then use coroutine yield function.
359      * Source runs in a thread, so we don't care.
360      */
361     int migration_started_on_destination;
362 
363     int total_registrations;
364     int total_writes;
365 
366     int unregister_current, unregister_next;
367     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
368 
369     GHashTable *blockmap;
370 } RDMAContext;
371 
372 /*
373  * Interface to the rest of the migration call stack.
374  */
375 typedef struct QEMUFileRDMA {
376     RDMAContext *rdma;
377     size_t len;
378     void *file;
379 } QEMUFileRDMA;
380 
381 /*
382  * Main structure for IB Send/Recv control messages.
383  * This gets prepended at the beginning of every Send/Recv.
384  */
385 typedef struct QEMU_PACKED {
386     uint32_t len;     /* Total length of data portion */
387     uint32_t type;    /* which control command to perform */
388     uint32_t repeat;  /* number of commands in data portion of same type */
389     uint32_t padding;
390 } RDMAControlHeader;
391 
392 static void control_to_network(RDMAControlHeader *control)
393 {
394     control->type = htonl(control->type);
395     control->len = htonl(control->len);
396     control->repeat = htonl(control->repeat);
397 }
398 
399 static void network_to_control(RDMAControlHeader *control)
400 {
401     control->type = ntohl(control->type);
402     control->len = ntohl(control->len);
403     control->repeat = ntohl(control->repeat);
404 }
405 
406 /*
407  * Register a single Chunk.
408  * Information sent by the source VM to inform the dest
409  * to register an single chunk of memory before we can perform
410  * the actual RDMA operation.
411  */
412 typedef struct QEMU_PACKED {
413     union QEMU_PACKED {
414         uint64_t current_addr;  /* offset into the ramblock of the chunk */
415         uint64_t chunk;         /* chunk to lookup if unregistering */
416     } key;
417     uint32_t current_index; /* which ramblock the chunk belongs to */
418     uint32_t padding;
419     uint64_t chunks;            /* how many sequential chunks to register */
420 } RDMARegister;
421 
422 static void register_to_network(RDMARegister *reg)
423 {
424     reg->key.current_addr = htonll(reg->key.current_addr);
425     reg->current_index = htonl(reg->current_index);
426     reg->chunks = htonll(reg->chunks);
427 }
428 
429 static void network_to_register(RDMARegister *reg)
430 {
431     reg->key.current_addr = ntohll(reg->key.current_addr);
432     reg->current_index = ntohl(reg->current_index);
433     reg->chunks = ntohll(reg->chunks);
434 }
435 
436 typedef struct QEMU_PACKED {
437     uint32_t value;     /* if zero, we will madvise() */
438     uint32_t block_idx; /* which ram block index */
439     uint64_t offset;    /* where in the remote ramblock this chunk */
440     uint64_t length;    /* length of the chunk */
441 } RDMACompress;
442 
443 static void compress_to_network(RDMACompress *comp)
444 {
445     comp->value = htonl(comp->value);
446     comp->block_idx = htonl(comp->block_idx);
447     comp->offset = htonll(comp->offset);
448     comp->length = htonll(comp->length);
449 }
450 
451 static void network_to_compress(RDMACompress *comp)
452 {
453     comp->value = ntohl(comp->value);
454     comp->block_idx = ntohl(comp->block_idx);
455     comp->offset = ntohll(comp->offset);
456     comp->length = ntohll(comp->length);
457 }
458 
459 /*
460  * The result of the dest's memory registration produces an "rkey"
461  * which the source VM must reference in order to perform
462  * the RDMA operation.
463  */
464 typedef struct QEMU_PACKED {
465     uint32_t rkey;
466     uint32_t padding;
467     uint64_t host_addr;
468 } RDMARegisterResult;
469 
470 static void result_to_network(RDMARegisterResult *result)
471 {
472     result->rkey = htonl(result->rkey);
473     result->host_addr = htonll(result->host_addr);
474 };
475 
476 static void network_to_result(RDMARegisterResult *result)
477 {
478     result->rkey = ntohl(result->rkey);
479     result->host_addr = ntohll(result->host_addr);
480 };
481 
482 const char *print_wrid(int wrid);
483 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
484                                    uint8_t *data, RDMAControlHeader *resp,
485                                    int *resp_idx,
486                                    int (*callback)(RDMAContext *rdma));
487 
488 static inline uint64_t ram_chunk_index(const uint8_t *start,
489                                        const uint8_t *host)
490 {
491     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
492 }
493 
494 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
495                                        uint64_t i)
496 {
497     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
498                                   (i << RDMA_REG_CHUNK_SHIFT));
499 }
500 
501 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
502                                      uint64_t i)
503 {
504     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
505                                          (1UL << RDMA_REG_CHUNK_SHIFT);
506 
507     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
508         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
509     }
510 
511     return result;
512 }
513 
514 static int rdma_add_block(RDMAContext *rdma, void *host_addr,
515                          ram_addr_t block_offset, uint64_t length)
516 {
517     RDMALocalBlocks *local = &rdma->local_ram_blocks;
518     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
519         (void *)(uintptr_t)block_offset);
520     RDMALocalBlock *old = local->block;
521 
522     assert(block == NULL);
523 
524     local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
525 
526     if (local->nb_blocks) {
527         int x;
528 
529         for (x = 0; x < local->nb_blocks; x++) {
530             g_hash_table_remove(rdma->blockmap,
531                                 (void *)(uintptr_t)old[x].offset);
532             g_hash_table_insert(rdma->blockmap,
533                                 (void *)(uintptr_t)old[x].offset,
534                                 &local->block[x]);
535         }
536         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
537         g_free(old);
538     }
539 
540     block = &local->block[local->nb_blocks];
541 
542     block->local_host_addr = host_addr;
543     block->offset = block_offset;
544     block->length = length;
545     block->index = local->nb_blocks;
546     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
547     block->transit_bitmap = bitmap_new(block->nb_chunks);
548     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
549     block->unregister_bitmap = bitmap_new(block->nb_chunks);
550     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
551     block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
552 
553     block->is_ram_block = local->init ? false : true;
554 
555     g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
556 
557     trace_rdma_add_block(local->nb_blocks, (uintptr_t) block->local_host_addr,
558                          block->offset, block->length,
559                          (uintptr_t) (block->local_host_addr + block->length),
560                          BITS_TO_LONGS(block->nb_chunks) *
561                              sizeof(unsigned long) * 8,
562                          block->nb_chunks);
563 
564     local->nb_blocks++;
565 
566     return 0;
567 }
568 
569 /*
570  * Memory regions need to be registered with the device and queue pairs setup
571  * in advanced before the migration starts. This tells us where the RAM blocks
572  * are so that we can register them individually.
573  */
574 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
575     ram_addr_t block_offset, ram_addr_t length, void *opaque)
576 {
577     return rdma_add_block(opaque, host_addr, block_offset, length);
578 }
579 
580 /*
581  * Identify the RAMBlocks and their quantity. They will be references to
582  * identify chunk boundaries inside each RAMBlock and also be referenced
583  * during dynamic page registration.
584  */
585 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
586 {
587     RDMALocalBlocks *local = &rdma->local_ram_blocks;
588 
589     assert(rdma->blockmap == NULL);
590     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
591     memset(local, 0, sizeof *local);
592     qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
593     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
594     rdma->dest_blocks = (RDMADestBlock *) g_malloc0(sizeof(RDMADestBlock) *
595                         rdma->local_ram_blocks.nb_blocks);
596     local->init = true;
597     return 0;
598 }
599 
600 static int rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
601 {
602     RDMALocalBlocks *local = &rdma->local_ram_blocks;
603     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
604         (void *) block_offset);
605     RDMALocalBlock *old = local->block;
606     int x;
607 
608     assert(block);
609 
610     if (block->pmr) {
611         int j;
612 
613         for (j = 0; j < block->nb_chunks; j++) {
614             if (!block->pmr[j]) {
615                 continue;
616             }
617             ibv_dereg_mr(block->pmr[j]);
618             rdma->total_registrations--;
619         }
620         g_free(block->pmr);
621         block->pmr = NULL;
622     }
623 
624     if (block->mr) {
625         ibv_dereg_mr(block->mr);
626         rdma->total_registrations--;
627         block->mr = NULL;
628     }
629 
630     g_free(block->transit_bitmap);
631     block->transit_bitmap = NULL;
632 
633     g_free(block->unregister_bitmap);
634     block->unregister_bitmap = NULL;
635 
636     g_free(block->remote_keys);
637     block->remote_keys = NULL;
638 
639     for (x = 0; x < local->nb_blocks; x++) {
640         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)old[x].offset);
641     }
642 
643     if (local->nb_blocks > 1) {
644 
645         local->block = g_malloc0(sizeof(RDMALocalBlock) *
646                                     (local->nb_blocks - 1));
647 
648         if (block->index) {
649             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
650         }
651 
652         if (block->index < (local->nb_blocks - 1)) {
653             memcpy(local->block + block->index, old + (block->index + 1),
654                 sizeof(RDMALocalBlock) *
655                     (local->nb_blocks - (block->index + 1)));
656         }
657     } else {
658         assert(block == local->block);
659         local->block = NULL;
660     }
661 
662     trace_rdma_delete_block(local->nb_blocks,
663                            (uintptr_t)block->local_host_addr,
664                            block->offset, block->length,
665                             (uintptr_t)(block->local_host_addr + block->length),
666                            BITS_TO_LONGS(block->nb_chunks) *
667                                sizeof(unsigned long) * 8, block->nb_chunks);
668 
669     g_free(old);
670 
671     local->nb_blocks--;
672 
673     if (local->nb_blocks) {
674         for (x = 0; x < local->nb_blocks; x++) {
675             g_hash_table_insert(rdma->blockmap,
676                                 (void *)(uintptr_t)local->block[x].offset,
677                                 &local->block[x]);
678         }
679     }
680 
681     return 0;
682 }
683 
684 /*
685  * Put in the log file which RDMA device was opened and the details
686  * associated with that device.
687  */
688 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
689 {
690     struct ibv_port_attr port;
691 
692     if (ibv_query_port(verbs, 1, &port)) {
693         error_report("Failed to query port information");
694         return;
695     }
696 
697     printf("%s RDMA Device opened: kernel name %s "
698            "uverbs device name %s, "
699            "infiniband_verbs class device path %s, "
700            "infiniband class device path %s, "
701            "transport: (%d) %s\n",
702                 who,
703                 verbs->device->name,
704                 verbs->device->dev_name,
705                 verbs->device->dev_path,
706                 verbs->device->ibdev_path,
707                 port.link_layer,
708                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
709                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
710                     ? "Ethernet" : "Unknown"));
711 }
712 
713 /*
714  * Put in the log file the RDMA gid addressing information,
715  * useful for folks who have trouble understanding the
716  * RDMA device hierarchy in the kernel.
717  */
718 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
719 {
720     char sgid[33];
721     char dgid[33];
722     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
723     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
724     trace_qemu_rdma_dump_gid(who, sgid, dgid);
725 }
726 
727 /*
728  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
729  * We will try the next addrinfo struct, and fail if there are
730  * no other valid addresses to bind against.
731  *
732  * If user is listening on '[::]', then we will not have a opened a device
733  * yet and have no way of verifying if the device is RoCE or not.
734  *
735  * In this case, the source VM will throw an error for ALL types of
736  * connections (both IPv4 and IPv6) if the destination machine does not have
737  * a regular infiniband network available for use.
738  *
739  * The only way to guarantee that an error is thrown for broken kernels is
740  * for the management software to choose a *specific* interface at bind time
741  * and validate what time of hardware it is.
742  *
743  * Unfortunately, this puts the user in a fix:
744  *
745  *  If the source VM connects with an IPv4 address without knowing that the
746  *  destination has bound to '[::]' the migration will unconditionally fail
747  *  unless the management software is explicitly listening on the the IPv4
748  *  address while using a RoCE-based device.
749  *
750  *  If the source VM connects with an IPv6 address, then we're OK because we can
751  *  throw an error on the source (and similarly on the destination).
752  *
753  *  But in mixed environments, this will be broken for a while until it is fixed
754  *  inside linux.
755  *
756  * We do provide a *tiny* bit of help in this function: We can list all of the
757  * devices in the system and check to see if all the devices are RoCE or
758  * Infiniband.
759  *
760  * If we detect that we have a *pure* RoCE environment, then we can safely
761  * thrown an error even if the management software has specified '[::]' as the
762  * bind address.
763  *
764  * However, if there is are multiple hetergeneous devices, then we cannot make
765  * this assumption and the user just has to be sure they know what they are
766  * doing.
767  *
768  * Patches are being reviewed on linux-rdma.
769  */
770 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
771 {
772     struct ibv_port_attr port_attr;
773 
774     /* This bug only exists in linux, to our knowledge. */
775 #ifdef CONFIG_LINUX
776 
777     /*
778      * Verbs are only NULL if management has bound to '[::]'.
779      *
780      * Let's iterate through all the devices and see if there any pure IB
781      * devices (non-ethernet).
782      *
783      * If not, then we can safely proceed with the migration.
784      * Otherwise, there are no guarantees until the bug is fixed in linux.
785      */
786     if (!verbs) {
787         int num_devices, x;
788         struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
789         bool roce_found = false;
790         bool ib_found = false;
791 
792         for (x = 0; x < num_devices; x++) {
793             verbs = ibv_open_device(dev_list[x]);
794             if (!verbs) {
795                 if (errno == EPERM) {
796                     continue;
797                 } else {
798                     return -EINVAL;
799                 }
800             }
801 
802             if (ibv_query_port(verbs, 1, &port_attr)) {
803                 ibv_close_device(verbs);
804                 ERROR(errp, "Could not query initial IB port");
805                 return -EINVAL;
806             }
807 
808             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
809                 ib_found = true;
810             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
811                 roce_found = true;
812             }
813 
814             ibv_close_device(verbs);
815 
816         }
817 
818         if (roce_found) {
819             if (ib_found) {
820                 fprintf(stderr, "WARN: migrations may fail:"
821                                 " IPv6 over RoCE / iWARP in linux"
822                                 " is broken. But since you appear to have a"
823                                 " mixed RoCE / IB environment, be sure to only"
824                                 " migrate over the IB fabric until the kernel "
825                                 " fixes the bug.\n");
826             } else {
827                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
828                             " and your management software has specified '[::]'"
829                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
830                 return -ENONET;
831             }
832         }
833 
834         return 0;
835     }
836 
837     /*
838      * If we have a verbs context, that means that some other than '[::]' was
839      * used by the management software for binding. In which case we can
840      * actually warn the user about a potentially broken kernel.
841      */
842 
843     /* IB ports start with 1, not 0 */
844     if (ibv_query_port(verbs, 1, &port_attr)) {
845         ERROR(errp, "Could not query initial IB port");
846         return -EINVAL;
847     }
848 
849     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
850         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
851                     "(but patches on linux-rdma in progress)");
852         return -ENONET;
853     }
854 
855 #endif
856 
857     return 0;
858 }
859 
860 /*
861  * Figure out which RDMA device corresponds to the requested IP hostname
862  * Also create the initial connection manager identifiers for opening
863  * the connection.
864  */
865 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
866 {
867     int ret;
868     struct rdma_addrinfo *res;
869     char port_str[16];
870     struct rdma_cm_event *cm_event;
871     char ip[40] = "unknown";
872     struct rdma_addrinfo *e;
873 
874     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
875         ERROR(errp, "RDMA hostname has not been set");
876         return -EINVAL;
877     }
878 
879     /* create CM channel */
880     rdma->channel = rdma_create_event_channel();
881     if (!rdma->channel) {
882         ERROR(errp, "could not create CM channel");
883         return -EINVAL;
884     }
885 
886     /* create CM id */
887     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
888     if (ret) {
889         ERROR(errp, "could not create channel id");
890         goto err_resolve_create_id;
891     }
892 
893     snprintf(port_str, 16, "%d", rdma->port);
894     port_str[15] = '\0';
895 
896     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
897     if (ret < 0) {
898         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
899         goto err_resolve_get_addr;
900     }
901 
902     for (e = res; e != NULL; e = e->ai_next) {
903         inet_ntop(e->ai_family,
904             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
905         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
906 
907         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
908                 RDMA_RESOLVE_TIMEOUT_MS);
909         if (!ret) {
910             if (e->ai_family == AF_INET6) {
911                 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
912                 if (ret) {
913                     continue;
914                 }
915             }
916             goto route;
917         }
918     }
919 
920     ERROR(errp, "could not resolve address %s", rdma->host);
921     goto err_resolve_get_addr;
922 
923 route:
924     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
925 
926     ret = rdma_get_cm_event(rdma->channel, &cm_event);
927     if (ret) {
928         ERROR(errp, "could not perform event_addr_resolved");
929         goto err_resolve_get_addr;
930     }
931 
932     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
933         ERROR(errp, "result not equal to event_addr_resolved %s",
934                 rdma_event_str(cm_event->event));
935         perror("rdma_resolve_addr");
936         rdma_ack_cm_event(cm_event);
937         ret = -EINVAL;
938         goto err_resolve_get_addr;
939     }
940     rdma_ack_cm_event(cm_event);
941 
942     /* resolve route */
943     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
944     if (ret) {
945         ERROR(errp, "could not resolve rdma route");
946         goto err_resolve_get_addr;
947     }
948 
949     ret = rdma_get_cm_event(rdma->channel, &cm_event);
950     if (ret) {
951         ERROR(errp, "could not perform event_route_resolved");
952         goto err_resolve_get_addr;
953     }
954     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
955         ERROR(errp, "result not equal to event_route_resolved: %s",
956                         rdma_event_str(cm_event->event));
957         rdma_ack_cm_event(cm_event);
958         ret = -EINVAL;
959         goto err_resolve_get_addr;
960     }
961     rdma_ack_cm_event(cm_event);
962     rdma->verbs = rdma->cm_id->verbs;
963     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
964     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
965     return 0;
966 
967 err_resolve_get_addr:
968     rdma_destroy_id(rdma->cm_id);
969     rdma->cm_id = NULL;
970 err_resolve_create_id:
971     rdma_destroy_event_channel(rdma->channel);
972     rdma->channel = NULL;
973     return ret;
974 }
975 
976 /*
977  * Create protection domain and completion queues
978  */
979 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
980 {
981     /* allocate pd */
982     rdma->pd = ibv_alloc_pd(rdma->verbs);
983     if (!rdma->pd) {
984         error_report("failed to allocate protection domain");
985         return -1;
986     }
987 
988     /* create completion channel */
989     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
990     if (!rdma->comp_channel) {
991         error_report("failed to allocate completion channel");
992         goto err_alloc_pd_cq;
993     }
994 
995     /*
996      * Completion queue can be filled by both read and write work requests,
997      * so must reflect the sum of both possible queue sizes.
998      */
999     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1000             NULL, rdma->comp_channel, 0);
1001     if (!rdma->cq) {
1002         error_report("failed to allocate completion queue");
1003         goto err_alloc_pd_cq;
1004     }
1005 
1006     return 0;
1007 
1008 err_alloc_pd_cq:
1009     if (rdma->pd) {
1010         ibv_dealloc_pd(rdma->pd);
1011     }
1012     if (rdma->comp_channel) {
1013         ibv_destroy_comp_channel(rdma->comp_channel);
1014     }
1015     rdma->pd = NULL;
1016     rdma->comp_channel = NULL;
1017     return -1;
1018 
1019 }
1020 
1021 /*
1022  * Create queue pairs.
1023  */
1024 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1025 {
1026     struct ibv_qp_init_attr attr = { 0 };
1027     int ret;
1028 
1029     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1030     attr.cap.max_recv_wr = 3;
1031     attr.cap.max_send_sge = 1;
1032     attr.cap.max_recv_sge = 1;
1033     attr.send_cq = rdma->cq;
1034     attr.recv_cq = rdma->cq;
1035     attr.qp_type = IBV_QPT_RC;
1036 
1037     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1038     if (ret) {
1039         return -1;
1040     }
1041 
1042     rdma->qp = rdma->cm_id->qp;
1043     return 0;
1044 }
1045 
1046 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1047 {
1048     int i;
1049     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1050 
1051     for (i = 0; i < local->nb_blocks; i++) {
1052         local->block[i].mr =
1053             ibv_reg_mr(rdma->pd,
1054                     local->block[i].local_host_addr,
1055                     local->block[i].length,
1056                     IBV_ACCESS_LOCAL_WRITE |
1057                     IBV_ACCESS_REMOTE_WRITE
1058                     );
1059         if (!local->block[i].mr) {
1060             perror("Failed to register local dest ram block!\n");
1061             break;
1062         }
1063         rdma->total_registrations++;
1064     }
1065 
1066     if (i >= local->nb_blocks) {
1067         return 0;
1068     }
1069 
1070     for (i--; i >= 0; i--) {
1071         ibv_dereg_mr(local->block[i].mr);
1072         rdma->total_registrations--;
1073     }
1074 
1075     return -1;
1076 
1077 }
1078 
1079 /*
1080  * Find the ram block that corresponds to the page requested to be
1081  * transmitted by QEMU.
1082  *
1083  * Once the block is found, also identify which 'chunk' within that
1084  * block that the page belongs to.
1085  *
1086  * This search cannot fail or the migration will fail.
1087  */
1088 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1089                                       uintptr_t block_offset,
1090                                       uint64_t offset,
1091                                       uint64_t length,
1092                                       uint64_t *block_index,
1093                                       uint64_t *chunk_index)
1094 {
1095     uint64_t current_addr = block_offset + offset;
1096     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1097                                                 (void *) block_offset);
1098     assert(block);
1099     assert(current_addr >= block->offset);
1100     assert((current_addr + length) <= (block->offset + block->length));
1101 
1102     *block_index = block->index;
1103     *chunk_index = ram_chunk_index(block->local_host_addr,
1104                 block->local_host_addr + (current_addr - block->offset));
1105 
1106     return 0;
1107 }
1108 
1109 /*
1110  * Register a chunk with IB. If the chunk was already registered
1111  * previously, then skip.
1112  *
1113  * Also return the keys associated with the registration needed
1114  * to perform the actual RDMA operation.
1115  */
1116 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1117         RDMALocalBlock *block, uintptr_t host_addr,
1118         uint32_t *lkey, uint32_t *rkey, int chunk,
1119         uint8_t *chunk_start, uint8_t *chunk_end)
1120 {
1121     if (block->mr) {
1122         if (lkey) {
1123             *lkey = block->mr->lkey;
1124         }
1125         if (rkey) {
1126             *rkey = block->mr->rkey;
1127         }
1128         return 0;
1129     }
1130 
1131     /* allocate memory to store chunk MRs */
1132     if (!block->pmr) {
1133         block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1134     }
1135 
1136     /*
1137      * If 'rkey', then we're the destination, so grant access to the source.
1138      *
1139      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1140      */
1141     if (!block->pmr[chunk]) {
1142         uint64_t len = chunk_end - chunk_start;
1143 
1144         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1145 
1146         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1147                 chunk_start, len,
1148                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1149                         IBV_ACCESS_REMOTE_WRITE) : 0));
1150 
1151         if (!block->pmr[chunk]) {
1152             perror("Failed to register chunk!");
1153             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1154                             " start %" PRIuPTR " end %" PRIuPTR
1155                             " host %" PRIuPTR
1156                             " local %" PRIuPTR " registrations: %d\n",
1157                             block->index, chunk, (uintptr_t)chunk_start,
1158                             (uintptr_t)chunk_end, host_addr,
1159                             (uintptr_t)block->local_host_addr,
1160                             rdma->total_registrations);
1161             return -1;
1162         }
1163         rdma->total_registrations++;
1164     }
1165 
1166     if (lkey) {
1167         *lkey = block->pmr[chunk]->lkey;
1168     }
1169     if (rkey) {
1170         *rkey = block->pmr[chunk]->rkey;
1171     }
1172     return 0;
1173 }
1174 
1175 /*
1176  * Register (at connection time) the memory used for control
1177  * channel messages.
1178  */
1179 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1180 {
1181     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1182             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1183             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1184     if (rdma->wr_data[idx].control_mr) {
1185         rdma->total_registrations++;
1186         return 0;
1187     }
1188     error_report("qemu_rdma_reg_control failed");
1189     return -1;
1190 }
1191 
1192 const char *print_wrid(int wrid)
1193 {
1194     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1195         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1196     }
1197     return wrid_desc[wrid];
1198 }
1199 
1200 /*
1201  * RDMA requires memory registration (mlock/pinning), but this is not good for
1202  * overcommitment.
1203  *
1204  * In preparation for the future where LRU information or workload-specific
1205  * writable writable working set memory access behavior is available to QEMU
1206  * it would be nice to have in place the ability to UN-register/UN-pin
1207  * particular memory regions from the RDMA hardware when it is determine that
1208  * those regions of memory will likely not be accessed again in the near future.
1209  *
1210  * While we do not yet have such information right now, the following
1211  * compile-time option allows us to perform a non-optimized version of this
1212  * behavior.
1213  *
1214  * By uncommenting this option, you will cause *all* RDMA transfers to be
1215  * unregistered immediately after the transfer completes on both sides of the
1216  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1217  *
1218  * This will have a terrible impact on migration performance, so until future
1219  * workload information or LRU information is available, do not attempt to use
1220  * this feature except for basic testing.
1221  */
1222 //#define RDMA_UNREGISTRATION_EXAMPLE
1223 
1224 /*
1225  * Perform a non-optimized memory unregistration after every transfer
1226  * for demonsration purposes, only if pin-all is not requested.
1227  *
1228  * Potential optimizations:
1229  * 1. Start a new thread to run this function continuously
1230         - for bit clearing
1231         - and for receipt of unregister messages
1232  * 2. Use an LRU.
1233  * 3. Use workload hints.
1234  */
1235 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1236 {
1237     while (rdma->unregistrations[rdma->unregister_current]) {
1238         int ret;
1239         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1240         uint64_t chunk =
1241             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1242         uint64_t index =
1243             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1244         RDMALocalBlock *block =
1245             &(rdma->local_ram_blocks.block[index]);
1246         RDMARegister reg = { .current_index = index };
1247         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1248                                  };
1249         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1250                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1251                                    .repeat = 1,
1252                                  };
1253 
1254         trace_qemu_rdma_unregister_waiting_proc(chunk,
1255                                                 rdma->unregister_current);
1256 
1257         rdma->unregistrations[rdma->unregister_current] = 0;
1258         rdma->unregister_current++;
1259 
1260         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1261             rdma->unregister_current = 0;
1262         }
1263 
1264 
1265         /*
1266          * Unregistration is speculative (because migration is single-threaded
1267          * and we cannot break the protocol's inifinband message ordering).
1268          * Thus, if the memory is currently being used for transmission,
1269          * then abort the attempt to unregister and try again
1270          * later the next time a completion is received for this memory.
1271          */
1272         clear_bit(chunk, block->unregister_bitmap);
1273 
1274         if (test_bit(chunk, block->transit_bitmap)) {
1275             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1276             continue;
1277         }
1278 
1279         trace_qemu_rdma_unregister_waiting_send(chunk);
1280 
1281         ret = ibv_dereg_mr(block->pmr[chunk]);
1282         block->pmr[chunk] = NULL;
1283         block->remote_keys[chunk] = 0;
1284 
1285         if (ret != 0) {
1286             perror("unregistration chunk failed");
1287             return -ret;
1288         }
1289         rdma->total_registrations--;
1290 
1291         reg.key.chunk = chunk;
1292         register_to_network(&reg);
1293         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1294                                 &resp, NULL, NULL);
1295         if (ret < 0) {
1296             return ret;
1297         }
1298 
1299         trace_qemu_rdma_unregister_waiting_complete(chunk);
1300     }
1301 
1302     return 0;
1303 }
1304 
1305 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1306                                          uint64_t chunk)
1307 {
1308     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1309 
1310     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1311     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1312 
1313     return result;
1314 }
1315 
1316 /*
1317  * Set bit for unregistration in the next iteration.
1318  * We cannot transmit right here, but will unpin later.
1319  */
1320 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1321                                         uint64_t chunk, uint64_t wr_id)
1322 {
1323     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1324         error_report("rdma migration: queue is full");
1325     } else {
1326         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1327 
1328         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1329             trace_qemu_rdma_signal_unregister_append(chunk,
1330                                                      rdma->unregister_next);
1331 
1332             rdma->unregistrations[rdma->unregister_next++] =
1333                     qemu_rdma_make_wrid(wr_id, index, chunk);
1334 
1335             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1336                 rdma->unregister_next = 0;
1337             }
1338         } else {
1339             trace_qemu_rdma_signal_unregister_already(chunk);
1340         }
1341     }
1342 }
1343 
1344 /*
1345  * Consult the connection manager to see a work request
1346  * (of any kind) has completed.
1347  * Return the work request ID that completed.
1348  */
1349 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1350                                uint32_t *byte_len)
1351 {
1352     int ret;
1353     struct ibv_wc wc;
1354     uint64_t wr_id;
1355 
1356     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1357 
1358     if (!ret) {
1359         *wr_id_out = RDMA_WRID_NONE;
1360         return 0;
1361     }
1362 
1363     if (ret < 0) {
1364         error_report("ibv_poll_cq return %d", ret);
1365         return ret;
1366     }
1367 
1368     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1369 
1370     if (wc.status != IBV_WC_SUCCESS) {
1371         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1372                         wc.status, ibv_wc_status_str(wc.status));
1373         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1374 
1375         return -1;
1376     }
1377 
1378     if (rdma->control_ready_expected &&
1379         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1380         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1381                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1382         rdma->control_ready_expected = 0;
1383     }
1384 
1385     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1386         uint64_t chunk =
1387             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1388         uint64_t index =
1389             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1390         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1391 
1392         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1393                                    index, chunk, block->local_host_addr,
1394                                    (void *)(uintptr_t)block->remote_host_addr);
1395 
1396         clear_bit(chunk, block->transit_bitmap);
1397 
1398         if (rdma->nb_sent > 0) {
1399             rdma->nb_sent--;
1400         }
1401 
1402         if (!rdma->pin_all) {
1403             /*
1404              * FYI: If one wanted to signal a specific chunk to be unregistered
1405              * using LRU or workload-specific information, this is the function
1406              * you would call to do so. That chunk would then get asynchronously
1407              * unregistered later.
1408              */
1409 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1410             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1411 #endif
1412         }
1413     } else {
1414         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1415     }
1416 
1417     *wr_id_out = wc.wr_id;
1418     if (byte_len) {
1419         *byte_len = wc.byte_len;
1420     }
1421 
1422     return  0;
1423 }
1424 
1425 /*
1426  * Block until the next work request has completed.
1427  *
1428  * First poll to see if a work request has already completed,
1429  * otherwise block.
1430  *
1431  * If we encounter completed work requests for IDs other than
1432  * the one we're interested in, then that's generally an error.
1433  *
1434  * The only exception is actual RDMA Write completions. These
1435  * completions only need to be recorded, but do not actually
1436  * need further processing.
1437  */
1438 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1439                                     uint32_t *byte_len)
1440 {
1441     int num_cq_events = 0, ret = 0;
1442     struct ibv_cq *cq;
1443     void *cq_ctx;
1444     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1445 
1446     if (ibv_req_notify_cq(rdma->cq, 0)) {
1447         return -1;
1448     }
1449     /* poll cq first */
1450     while (wr_id != wrid_requested) {
1451         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1452         if (ret < 0) {
1453             return ret;
1454         }
1455 
1456         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1457 
1458         if (wr_id == RDMA_WRID_NONE) {
1459             break;
1460         }
1461         if (wr_id != wrid_requested) {
1462             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1463                        wrid_requested, print_wrid(wr_id), wr_id);
1464         }
1465     }
1466 
1467     if (wr_id == wrid_requested) {
1468         return 0;
1469     }
1470 
1471     while (1) {
1472         /*
1473          * Coroutine doesn't start until process_incoming_migration()
1474          * so don't yield unless we know we're running inside of a coroutine.
1475          */
1476         if (rdma->migration_started_on_destination) {
1477             yield_until_fd_readable(rdma->comp_channel->fd);
1478         }
1479 
1480         if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1481             perror("ibv_get_cq_event");
1482             goto err_block_for_wrid;
1483         }
1484 
1485         num_cq_events++;
1486 
1487         if (ibv_req_notify_cq(cq, 0)) {
1488             goto err_block_for_wrid;
1489         }
1490 
1491         while (wr_id != wrid_requested) {
1492             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1493             if (ret < 0) {
1494                 goto err_block_for_wrid;
1495             }
1496 
1497             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1498 
1499             if (wr_id == RDMA_WRID_NONE) {
1500                 break;
1501             }
1502             if (wr_id != wrid_requested) {
1503                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1504                                    wrid_requested, print_wrid(wr_id), wr_id);
1505             }
1506         }
1507 
1508         if (wr_id == wrid_requested) {
1509             goto success_block_for_wrid;
1510         }
1511     }
1512 
1513 success_block_for_wrid:
1514     if (num_cq_events) {
1515         ibv_ack_cq_events(cq, num_cq_events);
1516     }
1517     return 0;
1518 
1519 err_block_for_wrid:
1520     if (num_cq_events) {
1521         ibv_ack_cq_events(cq, num_cq_events);
1522     }
1523     return ret;
1524 }
1525 
1526 /*
1527  * Post a SEND message work request for the control channel
1528  * containing some data and block until the post completes.
1529  */
1530 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1531                                        RDMAControlHeader *head)
1532 {
1533     int ret = 0;
1534     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1535     struct ibv_send_wr *bad_wr;
1536     struct ibv_sge sge = {
1537                            .addr = (uintptr_t)(wr->control),
1538                            .length = head->len + sizeof(RDMAControlHeader),
1539                            .lkey = wr->control_mr->lkey,
1540                          };
1541     struct ibv_send_wr send_wr = {
1542                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1543                                    .opcode = IBV_WR_SEND,
1544                                    .send_flags = IBV_SEND_SIGNALED,
1545                                    .sg_list = &sge,
1546                                    .num_sge = 1,
1547                                 };
1548 
1549     trace_qemu_rdma_post_send_control(control_desc[head->type]);
1550 
1551     /*
1552      * We don't actually need to do a memcpy() in here if we used
1553      * the "sge" properly, but since we're only sending control messages
1554      * (not RAM in a performance-critical path), then its OK for now.
1555      *
1556      * The copy makes the RDMAControlHeader simpler to manipulate
1557      * for the time being.
1558      */
1559     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1560     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1561     control_to_network((void *) wr->control);
1562 
1563     if (buf) {
1564         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1565     }
1566 
1567 
1568     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1569 
1570     if (ret > 0) {
1571         error_report("Failed to use post IB SEND for control");
1572         return -ret;
1573     }
1574 
1575     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1576     if (ret < 0) {
1577         error_report("rdma migration: send polling control error");
1578     }
1579 
1580     return ret;
1581 }
1582 
1583 /*
1584  * Post a RECV work request in anticipation of some future receipt
1585  * of data on the control channel.
1586  */
1587 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1588 {
1589     struct ibv_recv_wr *bad_wr;
1590     struct ibv_sge sge = {
1591                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1592                             .length = RDMA_CONTROL_MAX_BUFFER,
1593                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1594                          };
1595 
1596     struct ibv_recv_wr recv_wr = {
1597                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1598                                     .sg_list = &sge,
1599                                     .num_sge = 1,
1600                                  };
1601 
1602 
1603     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1604         return -1;
1605     }
1606 
1607     return 0;
1608 }
1609 
1610 /*
1611  * Block and wait for a RECV control channel message to arrive.
1612  */
1613 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1614                 RDMAControlHeader *head, int expecting, int idx)
1615 {
1616     uint32_t byte_len;
1617     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1618                                        &byte_len);
1619 
1620     if (ret < 0) {
1621         error_report("rdma migration: recv polling control error!");
1622         return ret;
1623     }
1624 
1625     network_to_control((void *) rdma->wr_data[idx].control);
1626     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1627 
1628     trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
1629 
1630     if (expecting == RDMA_CONTROL_NONE) {
1631         trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
1632                                              head->type);
1633     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1634         error_report("Was expecting a %s (%d) control message"
1635                 ", but got: %s (%d), length: %d",
1636                 control_desc[expecting], expecting,
1637                 control_desc[head->type], head->type, head->len);
1638         return -EIO;
1639     }
1640     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1641         error_report("too long length: %d", head->len);
1642         return -EINVAL;
1643     }
1644     if (sizeof(*head) + head->len != byte_len) {
1645         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1646         return -EINVAL;
1647     }
1648 
1649     return 0;
1650 }
1651 
1652 /*
1653  * When a RECV work request has completed, the work request's
1654  * buffer is pointed at the header.
1655  *
1656  * This will advance the pointer to the data portion
1657  * of the control message of the work request's buffer that
1658  * was populated after the work request finished.
1659  */
1660 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1661                                   RDMAControlHeader *head)
1662 {
1663     rdma->wr_data[idx].control_len = head->len;
1664     rdma->wr_data[idx].control_curr =
1665         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1666 }
1667 
1668 /*
1669  * This is an 'atomic' high-level operation to deliver a single, unified
1670  * control-channel message.
1671  *
1672  * Additionally, if the user is expecting some kind of reply to this message,
1673  * they can request a 'resp' response message be filled in by posting an
1674  * additional work request on behalf of the user and waiting for an additional
1675  * completion.
1676  *
1677  * The extra (optional) response is used during registration to us from having
1678  * to perform an *additional* exchange of message just to provide a response by
1679  * instead piggy-backing on the acknowledgement.
1680  */
1681 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1682                                    uint8_t *data, RDMAControlHeader *resp,
1683                                    int *resp_idx,
1684                                    int (*callback)(RDMAContext *rdma))
1685 {
1686     int ret = 0;
1687 
1688     /*
1689      * Wait until the dest is ready before attempting to deliver the message
1690      * by waiting for a READY message.
1691      */
1692     if (rdma->control_ready_expected) {
1693         RDMAControlHeader resp;
1694         ret = qemu_rdma_exchange_get_response(rdma,
1695                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1696         if (ret < 0) {
1697             return ret;
1698         }
1699     }
1700 
1701     /*
1702      * If the user is expecting a response, post a WR in anticipation of it.
1703      */
1704     if (resp) {
1705         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1706         if (ret) {
1707             error_report("rdma migration: error posting"
1708                     " extra control recv for anticipated result!");
1709             return ret;
1710         }
1711     }
1712 
1713     /*
1714      * Post a WR to replace the one we just consumed for the READY message.
1715      */
1716     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1717     if (ret) {
1718         error_report("rdma migration: error posting first control recv!");
1719         return ret;
1720     }
1721 
1722     /*
1723      * Deliver the control message that was requested.
1724      */
1725     ret = qemu_rdma_post_send_control(rdma, data, head);
1726 
1727     if (ret < 0) {
1728         error_report("Failed to send control buffer!");
1729         return ret;
1730     }
1731 
1732     /*
1733      * If we're expecting a response, block and wait for it.
1734      */
1735     if (resp) {
1736         if (callback) {
1737             trace_qemu_rdma_exchange_send_issue_callback();
1738             ret = callback(rdma);
1739             if (ret < 0) {
1740                 return ret;
1741             }
1742         }
1743 
1744         trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
1745         ret = qemu_rdma_exchange_get_response(rdma, resp,
1746                                               resp->type, RDMA_WRID_DATA);
1747 
1748         if (ret < 0) {
1749             return ret;
1750         }
1751 
1752         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1753         if (resp_idx) {
1754             *resp_idx = RDMA_WRID_DATA;
1755         }
1756         trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
1757     }
1758 
1759     rdma->control_ready_expected = 1;
1760 
1761     return 0;
1762 }
1763 
1764 /*
1765  * This is an 'atomic' high-level operation to receive a single, unified
1766  * control-channel message.
1767  */
1768 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1769                                 int expecting)
1770 {
1771     RDMAControlHeader ready = {
1772                                 .len = 0,
1773                                 .type = RDMA_CONTROL_READY,
1774                                 .repeat = 1,
1775                               };
1776     int ret;
1777 
1778     /*
1779      * Inform the source that we're ready to receive a message.
1780      */
1781     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1782 
1783     if (ret < 0) {
1784         error_report("Failed to send control buffer!");
1785         return ret;
1786     }
1787 
1788     /*
1789      * Block and wait for the message.
1790      */
1791     ret = qemu_rdma_exchange_get_response(rdma, head,
1792                                           expecting, RDMA_WRID_READY);
1793 
1794     if (ret < 0) {
1795         return ret;
1796     }
1797 
1798     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1799 
1800     /*
1801      * Post a new RECV work request to replace the one we just consumed.
1802      */
1803     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1804     if (ret) {
1805         error_report("rdma migration: error posting second control recv!");
1806         return ret;
1807     }
1808 
1809     return 0;
1810 }
1811 
1812 /*
1813  * Write an actual chunk of memory using RDMA.
1814  *
1815  * If we're using dynamic registration on the dest-side, we have to
1816  * send a registration command first.
1817  */
1818 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1819                                int current_index, uint64_t current_addr,
1820                                uint64_t length)
1821 {
1822     struct ibv_sge sge;
1823     struct ibv_send_wr send_wr = { 0 };
1824     struct ibv_send_wr *bad_wr;
1825     int reg_result_idx, ret, count = 0;
1826     uint64_t chunk, chunks;
1827     uint8_t *chunk_start, *chunk_end;
1828     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1829     RDMARegister reg;
1830     RDMARegisterResult *reg_result;
1831     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1832     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1833                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1834                                .repeat = 1,
1835                              };
1836 
1837 retry:
1838     sge.addr = (uintptr_t)(block->local_host_addr +
1839                             (current_addr - block->offset));
1840     sge.length = length;
1841 
1842     chunk = ram_chunk_index(block->local_host_addr,
1843                             (uint8_t *)(uintptr_t)sge.addr);
1844     chunk_start = ram_chunk_start(block, chunk);
1845 
1846     if (block->is_ram_block) {
1847         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1848 
1849         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1850             chunks--;
1851         }
1852     } else {
1853         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1854 
1855         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1856             chunks--;
1857         }
1858     }
1859 
1860     trace_qemu_rdma_write_one_top(chunks + 1,
1861                                   (chunks + 1) *
1862                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1863 
1864     chunk_end = ram_chunk_end(block, chunk + chunks);
1865 
1866     if (!rdma->pin_all) {
1867 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1868         qemu_rdma_unregister_waiting(rdma);
1869 #endif
1870     }
1871 
1872     while (test_bit(chunk, block->transit_bitmap)) {
1873         (void)count;
1874         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1875                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1876 
1877         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1878 
1879         if (ret < 0) {
1880             error_report("Failed to Wait for previous write to complete "
1881                     "block %d chunk %" PRIu64
1882                     " current %" PRIu64 " len %" PRIu64 " %d",
1883                     current_index, chunk, sge.addr, length, rdma->nb_sent);
1884             return ret;
1885         }
1886     }
1887 
1888     if (!rdma->pin_all || !block->is_ram_block) {
1889         if (!block->remote_keys[chunk]) {
1890             /*
1891              * This chunk has not yet been registered, so first check to see
1892              * if the entire chunk is zero. If so, tell the other size to
1893              * memset() + madvise() the entire chunk without RDMA.
1894              */
1895 
1896             if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1897                                                    length)
1898                    && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1899                                                     length) == length) {
1900                 RDMACompress comp = {
1901                                         .offset = current_addr,
1902                                         .value = 0,
1903                                         .block_idx = current_index,
1904                                         .length = length,
1905                                     };
1906 
1907                 head.len = sizeof(comp);
1908                 head.type = RDMA_CONTROL_COMPRESS;
1909 
1910                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
1911                                                current_index, current_addr);
1912 
1913                 compress_to_network(&comp);
1914                 ret = qemu_rdma_exchange_send(rdma, &head,
1915                                 (uint8_t *) &comp, NULL, NULL, NULL);
1916 
1917                 if (ret < 0) {
1918                     return -EIO;
1919                 }
1920 
1921                 acct_update_position(f, sge.length, true);
1922 
1923                 return 1;
1924             }
1925 
1926             /*
1927              * Otherwise, tell other side to register.
1928              */
1929             reg.current_index = current_index;
1930             if (block->is_ram_block) {
1931                 reg.key.current_addr = current_addr;
1932             } else {
1933                 reg.key.chunk = chunk;
1934             }
1935             reg.chunks = chunks;
1936 
1937             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
1938                                               current_addr);
1939 
1940             register_to_network(&reg);
1941             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1942                                     &resp, &reg_result_idx, NULL);
1943             if (ret < 0) {
1944                 return ret;
1945             }
1946 
1947             /* try to overlap this single registration with the one we sent. */
1948             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1949                                                 &sge.lkey, NULL, chunk,
1950                                                 chunk_start, chunk_end)) {
1951                 error_report("cannot get lkey");
1952                 return -EINVAL;
1953             }
1954 
1955             reg_result = (RDMARegisterResult *)
1956                     rdma->wr_data[reg_result_idx].control_curr;
1957 
1958             network_to_result(reg_result);
1959 
1960             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
1961                                                  reg_result->rkey, chunk);
1962 
1963             block->remote_keys[chunk] = reg_result->rkey;
1964             block->remote_host_addr = reg_result->host_addr;
1965         } else {
1966             /* already registered before */
1967             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1968                                                 &sge.lkey, NULL, chunk,
1969                                                 chunk_start, chunk_end)) {
1970                 error_report("cannot get lkey!");
1971                 return -EINVAL;
1972             }
1973         }
1974 
1975         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1976     } else {
1977         send_wr.wr.rdma.rkey = block->remote_rkey;
1978 
1979         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1980                                                      &sge.lkey, NULL, chunk,
1981                                                      chunk_start, chunk_end)) {
1982             error_report("cannot get lkey!");
1983             return -EINVAL;
1984         }
1985     }
1986 
1987     /*
1988      * Encode the ram block index and chunk within this wrid.
1989      * We will use this information at the time of completion
1990      * to figure out which bitmap to check against and then which
1991      * chunk in the bitmap to look for.
1992      */
1993     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1994                                         current_index, chunk);
1995 
1996     send_wr.opcode = IBV_WR_RDMA_WRITE;
1997     send_wr.send_flags = IBV_SEND_SIGNALED;
1998     send_wr.sg_list = &sge;
1999     send_wr.num_sge = 1;
2000     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2001                                 (current_addr - block->offset);
2002 
2003     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2004                                    sge.length);
2005 
2006     /*
2007      * ibv_post_send() does not return negative error numbers,
2008      * per the specification they are positive - no idea why.
2009      */
2010     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2011 
2012     if (ret == ENOMEM) {
2013         trace_qemu_rdma_write_one_queue_full();
2014         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2015         if (ret < 0) {
2016             error_report("rdma migration: failed to make "
2017                          "room in full send queue! %d", ret);
2018             return ret;
2019         }
2020 
2021         goto retry;
2022 
2023     } else if (ret > 0) {
2024         perror("rdma migration: post rdma write failed");
2025         return -ret;
2026     }
2027 
2028     set_bit(chunk, block->transit_bitmap);
2029     acct_update_position(f, sge.length, false);
2030     rdma->total_writes++;
2031 
2032     return 0;
2033 }
2034 
2035 /*
2036  * Push out any unwritten RDMA operations.
2037  *
2038  * We support sending out multiple chunks at the same time.
2039  * Not all of them need to get signaled in the completion queue.
2040  */
2041 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2042 {
2043     int ret;
2044 
2045     if (!rdma->current_length) {
2046         return 0;
2047     }
2048 
2049     ret = qemu_rdma_write_one(f, rdma,
2050             rdma->current_index, rdma->current_addr, rdma->current_length);
2051 
2052     if (ret < 0) {
2053         return ret;
2054     }
2055 
2056     if (ret == 0) {
2057         rdma->nb_sent++;
2058         trace_qemu_rdma_write_flush(rdma->nb_sent);
2059     }
2060 
2061     rdma->current_length = 0;
2062     rdma->current_addr = 0;
2063 
2064     return 0;
2065 }
2066 
2067 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2068                     uint64_t offset, uint64_t len)
2069 {
2070     RDMALocalBlock *block;
2071     uint8_t *host_addr;
2072     uint8_t *chunk_end;
2073 
2074     if (rdma->current_index < 0) {
2075         return 0;
2076     }
2077 
2078     if (rdma->current_chunk < 0) {
2079         return 0;
2080     }
2081 
2082     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2083     host_addr = block->local_host_addr + (offset - block->offset);
2084     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2085 
2086     if (rdma->current_length == 0) {
2087         return 0;
2088     }
2089 
2090     /*
2091      * Only merge into chunk sequentially.
2092      */
2093     if (offset != (rdma->current_addr + rdma->current_length)) {
2094         return 0;
2095     }
2096 
2097     if (offset < block->offset) {
2098         return 0;
2099     }
2100 
2101     if ((offset + len) > (block->offset + block->length)) {
2102         return 0;
2103     }
2104 
2105     if ((host_addr + len) > chunk_end) {
2106         return 0;
2107     }
2108 
2109     return 1;
2110 }
2111 
2112 /*
2113  * We're not actually writing here, but doing three things:
2114  *
2115  * 1. Identify the chunk the buffer belongs to.
2116  * 2. If the chunk is full or the buffer doesn't belong to the current
2117  *    chunk, then start a new chunk and flush() the old chunk.
2118  * 3. To keep the hardware busy, we also group chunks into batches
2119  *    and only require that a batch gets acknowledged in the completion
2120  *    qeueue instead of each individual chunk.
2121  */
2122 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2123                            uint64_t block_offset, uint64_t offset,
2124                            uint64_t len)
2125 {
2126     uint64_t current_addr = block_offset + offset;
2127     uint64_t index = rdma->current_index;
2128     uint64_t chunk = rdma->current_chunk;
2129     int ret;
2130 
2131     /* If we cannot merge it, we flush the current buffer first. */
2132     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2133         ret = qemu_rdma_write_flush(f, rdma);
2134         if (ret) {
2135             return ret;
2136         }
2137         rdma->current_length = 0;
2138         rdma->current_addr = current_addr;
2139 
2140         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2141                                          offset, len, &index, &chunk);
2142         if (ret) {
2143             error_report("ram block search failed");
2144             return ret;
2145         }
2146         rdma->current_index = index;
2147         rdma->current_chunk = chunk;
2148     }
2149 
2150     /* merge it */
2151     rdma->current_length += len;
2152 
2153     /* flush it if buffer is too large */
2154     if (rdma->current_length >= RDMA_MERGE_MAX) {
2155         return qemu_rdma_write_flush(f, rdma);
2156     }
2157 
2158     return 0;
2159 }
2160 
2161 static void qemu_rdma_cleanup(RDMAContext *rdma)
2162 {
2163     struct rdma_cm_event *cm_event;
2164     int ret, idx;
2165 
2166     if (rdma->cm_id && rdma->connected) {
2167         if (rdma->error_state) {
2168             RDMAControlHeader head = { .len = 0,
2169                                        .type = RDMA_CONTROL_ERROR,
2170                                        .repeat = 1,
2171                                      };
2172             error_report("Early error. Sending error.");
2173             qemu_rdma_post_send_control(rdma, NULL, &head);
2174         }
2175 
2176         ret = rdma_disconnect(rdma->cm_id);
2177         if (!ret) {
2178             trace_qemu_rdma_cleanup_waiting_for_disconnect();
2179             ret = rdma_get_cm_event(rdma->channel, &cm_event);
2180             if (!ret) {
2181                 rdma_ack_cm_event(cm_event);
2182             }
2183         }
2184         trace_qemu_rdma_cleanup_disconnect();
2185         rdma->connected = false;
2186     }
2187 
2188     g_free(rdma->dest_blocks);
2189     rdma->dest_blocks = NULL;
2190 
2191     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2192         if (rdma->wr_data[idx].control_mr) {
2193             rdma->total_registrations--;
2194             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2195         }
2196         rdma->wr_data[idx].control_mr = NULL;
2197     }
2198 
2199     if (rdma->local_ram_blocks.block) {
2200         while (rdma->local_ram_blocks.nb_blocks) {
2201             rdma_delete_block(rdma, rdma->local_ram_blocks.block->offset);
2202         }
2203     }
2204 
2205     if (rdma->qp) {
2206         rdma_destroy_qp(rdma->cm_id);
2207         rdma->qp = NULL;
2208     }
2209     if (rdma->cq) {
2210         ibv_destroy_cq(rdma->cq);
2211         rdma->cq = NULL;
2212     }
2213     if (rdma->comp_channel) {
2214         ibv_destroy_comp_channel(rdma->comp_channel);
2215         rdma->comp_channel = NULL;
2216     }
2217     if (rdma->pd) {
2218         ibv_dealloc_pd(rdma->pd);
2219         rdma->pd = NULL;
2220     }
2221     if (rdma->cm_id) {
2222         rdma_destroy_id(rdma->cm_id);
2223         rdma->cm_id = NULL;
2224     }
2225     if (rdma->listen_id) {
2226         rdma_destroy_id(rdma->listen_id);
2227         rdma->listen_id = NULL;
2228     }
2229     if (rdma->channel) {
2230         rdma_destroy_event_channel(rdma->channel);
2231         rdma->channel = NULL;
2232     }
2233     g_free(rdma->host);
2234     rdma->host = NULL;
2235 }
2236 
2237 
2238 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2239 {
2240     int ret, idx;
2241     Error *local_err = NULL, **temp = &local_err;
2242 
2243     /*
2244      * Will be validated against destination's actual capabilities
2245      * after the connect() completes.
2246      */
2247     rdma->pin_all = pin_all;
2248 
2249     ret = qemu_rdma_resolve_host(rdma, temp);
2250     if (ret) {
2251         goto err_rdma_source_init;
2252     }
2253 
2254     ret = qemu_rdma_alloc_pd_cq(rdma);
2255     if (ret) {
2256         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2257                     " limits may be too low. Please check $ ulimit -a # and "
2258                     "search for 'ulimit -l' in the output");
2259         goto err_rdma_source_init;
2260     }
2261 
2262     ret = qemu_rdma_alloc_qp(rdma);
2263     if (ret) {
2264         ERROR(temp, "rdma migration: error allocating qp!");
2265         goto err_rdma_source_init;
2266     }
2267 
2268     ret = qemu_rdma_init_ram_blocks(rdma);
2269     if (ret) {
2270         ERROR(temp, "rdma migration: error initializing ram blocks!");
2271         goto err_rdma_source_init;
2272     }
2273 
2274     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2275         ret = qemu_rdma_reg_control(rdma, idx);
2276         if (ret) {
2277             ERROR(temp, "rdma migration: error registering %d control!",
2278                                                             idx);
2279             goto err_rdma_source_init;
2280         }
2281     }
2282 
2283     return 0;
2284 
2285 err_rdma_source_init:
2286     error_propagate(errp, local_err);
2287     qemu_rdma_cleanup(rdma);
2288     return -1;
2289 }
2290 
2291 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2292 {
2293     RDMACapabilities cap = {
2294                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2295                                 .flags = 0,
2296                            };
2297     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2298                                           .retry_count = 5,
2299                                           .private_data = &cap,
2300                                           .private_data_len = sizeof(cap),
2301                                         };
2302     struct rdma_cm_event *cm_event;
2303     int ret;
2304 
2305     /*
2306      * Only negotiate the capability with destination if the user
2307      * on the source first requested the capability.
2308      */
2309     if (rdma->pin_all) {
2310         trace_qemu_rdma_connect_pin_all_requested();
2311         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2312     }
2313 
2314     caps_to_network(&cap);
2315 
2316     ret = rdma_connect(rdma->cm_id, &conn_param);
2317     if (ret) {
2318         perror("rdma_connect");
2319         ERROR(errp, "connecting to destination!");
2320         goto err_rdma_source_connect;
2321     }
2322 
2323     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2324     if (ret) {
2325         perror("rdma_get_cm_event after rdma_connect");
2326         ERROR(errp, "connecting to destination!");
2327         rdma_ack_cm_event(cm_event);
2328         goto err_rdma_source_connect;
2329     }
2330 
2331     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2332         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2333         ERROR(errp, "connecting to destination!");
2334         rdma_ack_cm_event(cm_event);
2335         goto err_rdma_source_connect;
2336     }
2337     rdma->connected = true;
2338 
2339     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2340     network_to_caps(&cap);
2341 
2342     /*
2343      * Verify that the *requested* capabilities are supported by the destination
2344      * and disable them otherwise.
2345      */
2346     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2347         ERROR(errp, "Server cannot support pinning all memory. "
2348                         "Will register memory dynamically.");
2349         rdma->pin_all = false;
2350     }
2351 
2352     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2353 
2354     rdma_ack_cm_event(cm_event);
2355 
2356     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2357     if (ret) {
2358         ERROR(errp, "posting second control recv!");
2359         goto err_rdma_source_connect;
2360     }
2361 
2362     rdma->control_ready_expected = 1;
2363     rdma->nb_sent = 0;
2364     return 0;
2365 
2366 err_rdma_source_connect:
2367     qemu_rdma_cleanup(rdma);
2368     return -1;
2369 }
2370 
2371 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2372 {
2373     int ret, idx;
2374     struct rdma_cm_id *listen_id;
2375     char ip[40] = "unknown";
2376     struct rdma_addrinfo *res, *e;
2377     char port_str[16];
2378 
2379     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2380         rdma->wr_data[idx].control_len = 0;
2381         rdma->wr_data[idx].control_curr = NULL;
2382     }
2383 
2384     if (!rdma->host || !rdma->host[0]) {
2385         ERROR(errp, "RDMA host is not set!");
2386         rdma->error_state = -EINVAL;
2387         return -1;
2388     }
2389     /* create CM channel */
2390     rdma->channel = rdma_create_event_channel();
2391     if (!rdma->channel) {
2392         ERROR(errp, "could not create rdma event channel");
2393         rdma->error_state = -EINVAL;
2394         return -1;
2395     }
2396 
2397     /* create CM id */
2398     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2399     if (ret) {
2400         ERROR(errp, "could not create cm_id!");
2401         goto err_dest_init_create_listen_id;
2402     }
2403 
2404     snprintf(port_str, 16, "%d", rdma->port);
2405     port_str[15] = '\0';
2406 
2407     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2408     if (ret < 0) {
2409         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2410         goto err_dest_init_bind_addr;
2411     }
2412 
2413     for (e = res; e != NULL; e = e->ai_next) {
2414         inet_ntop(e->ai_family,
2415             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2416         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2417         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2418         if (ret) {
2419             continue;
2420         }
2421         if (e->ai_family == AF_INET6) {
2422             ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2423             if (ret) {
2424                 continue;
2425             }
2426         }
2427         break;
2428     }
2429 
2430     if (!e) {
2431         ERROR(errp, "Error: could not rdma_bind_addr!");
2432         goto err_dest_init_bind_addr;
2433     }
2434 
2435     rdma->listen_id = listen_id;
2436     qemu_rdma_dump_gid("dest_init", listen_id);
2437     return 0;
2438 
2439 err_dest_init_bind_addr:
2440     rdma_destroy_id(listen_id);
2441 err_dest_init_create_listen_id:
2442     rdma_destroy_event_channel(rdma->channel);
2443     rdma->channel = NULL;
2444     rdma->error_state = ret;
2445     return ret;
2446 
2447 }
2448 
2449 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2450 {
2451     RDMAContext *rdma = NULL;
2452     InetSocketAddress *addr;
2453 
2454     if (host_port) {
2455         rdma = g_malloc0(sizeof(RDMAContext));
2456         rdma->current_index = -1;
2457         rdma->current_chunk = -1;
2458 
2459         addr = inet_parse(host_port, NULL);
2460         if (addr != NULL) {
2461             rdma->port = atoi(addr->port);
2462             rdma->host = g_strdup(addr->host);
2463         } else {
2464             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2465             g_free(rdma);
2466             rdma = NULL;
2467         }
2468 
2469         qapi_free_InetSocketAddress(addr);
2470     }
2471 
2472     return rdma;
2473 }
2474 
2475 /*
2476  * QEMUFile interface to the control channel.
2477  * SEND messages for control only.
2478  * VM's ram is handled with regular RDMA messages.
2479  */
2480 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2481                                 int64_t pos, int size)
2482 {
2483     QEMUFileRDMA *r = opaque;
2484     QEMUFile *f = r->file;
2485     RDMAContext *rdma = r->rdma;
2486     size_t remaining = size;
2487     uint8_t * data = (void *) buf;
2488     int ret;
2489 
2490     CHECK_ERROR_STATE();
2491 
2492     /*
2493      * Push out any writes that
2494      * we're queued up for VM's ram.
2495      */
2496     ret = qemu_rdma_write_flush(f, rdma);
2497     if (ret < 0) {
2498         rdma->error_state = ret;
2499         return ret;
2500     }
2501 
2502     while (remaining) {
2503         RDMAControlHeader head;
2504 
2505         r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2506         remaining -= r->len;
2507 
2508         head.len = r->len;
2509         head.type = RDMA_CONTROL_QEMU_FILE;
2510 
2511         ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2512 
2513         if (ret < 0) {
2514             rdma->error_state = ret;
2515             return ret;
2516         }
2517 
2518         data += r->len;
2519     }
2520 
2521     return size;
2522 }
2523 
2524 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2525                              int size, int idx)
2526 {
2527     size_t len = 0;
2528 
2529     if (rdma->wr_data[idx].control_len) {
2530         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2531 
2532         len = MIN(size, rdma->wr_data[idx].control_len);
2533         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2534         rdma->wr_data[idx].control_curr += len;
2535         rdma->wr_data[idx].control_len -= len;
2536     }
2537 
2538     return len;
2539 }
2540 
2541 /*
2542  * QEMUFile interface to the control channel.
2543  * RDMA links don't use bytestreams, so we have to
2544  * return bytes to QEMUFile opportunistically.
2545  */
2546 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2547                                 int64_t pos, int size)
2548 {
2549     QEMUFileRDMA *r = opaque;
2550     RDMAContext *rdma = r->rdma;
2551     RDMAControlHeader head;
2552     int ret = 0;
2553 
2554     CHECK_ERROR_STATE();
2555 
2556     /*
2557      * First, we hold on to the last SEND message we
2558      * were given and dish out the bytes until we run
2559      * out of bytes.
2560      */
2561     r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2562     if (r->len) {
2563         return r->len;
2564     }
2565 
2566     /*
2567      * Once we run out, we block and wait for another
2568      * SEND message to arrive.
2569      */
2570     ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2571 
2572     if (ret < 0) {
2573         rdma->error_state = ret;
2574         return ret;
2575     }
2576 
2577     /*
2578      * SEND was received with new bytes, now try again.
2579      */
2580     return qemu_rdma_fill(r->rdma, buf, size, 0);
2581 }
2582 
2583 /*
2584  * Block until all the outstanding chunks have been delivered by the hardware.
2585  */
2586 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2587 {
2588     int ret;
2589 
2590     if (qemu_rdma_write_flush(f, rdma) < 0) {
2591         return -EIO;
2592     }
2593 
2594     while (rdma->nb_sent) {
2595         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2596         if (ret < 0) {
2597             error_report("rdma migration: complete polling error!");
2598             return -EIO;
2599         }
2600     }
2601 
2602     qemu_rdma_unregister_waiting(rdma);
2603 
2604     return 0;
2605 }
2606 
2607 static int qemu_rdma_close(void *opaque)
2608 {
2609     trace_qemu_rdma_close();
2610     QEMUFileRDMA *r = opaque;
2611     if (r->rdma) {
2612         qemu_rdma_cleanup(r->rdma);
2613         g_free(r->rdma);
2614     }
2615     g_free(r);
2616     return 0;
2617 }
2618 
2619 /*
2620  * Parameters:
2621  *    @offset == 0 :
2622  *        This means that 'block_offset' is a full virtual address that does not
2623  *        belong to a RAMBlock of the virtual machine and instead
2624  *        represents a private malloc'd memory area that the caller wishes to
2625  *        transfer.
2626  *
2627  *    @offset != 0 :
2628  *        Offset is an offset to be added to block_offset and used
2629  *        to also lookup the corresponding RAMBlock.
2630  *
2631  *    @size > 0 :
2632  *        Initiate an transfer this size.
2633  *
2634  *    @size == 0 :
2635  *        A 'hint' or 'advice' that means that we wish to speculatively
2636  *        and asynchronously unregister this memory. In this case, there is no
2637  *        guarantee that the unregister will actually happen, for example,
2638  *        if the memory is being actively transmitted. Additionally, the memory
2639  *        may be re-registered at any future time if a write within the same
2640  *        chunk was requested again, even if you attempted to unregister it
2641  *        here.
2642  *
2643  *    @size < 0 : TODO, not yet supported
2644  *        Unregister the memory NOW. This means that the caller does not
2645  *        expect there to be any future RDMA transfers and we just want to clean
2646  *        things up. This is used in case the upper layer owns the memory and
2647  *        cannot wait for qemu_fclose() to occur.
2648  *
2649  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2650  *                  sent. Usually, this will not be more than a few bytes of
2651  *                  the protocol because most transfers are sent asynchronously.
2652  */
2653 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2654                                   ram_addr_t block_offset, ram_addr_t offset,
2655                                   size_t size, uint64_t *bytes_sent)
2656 {
2657     QEMUFileRDMA *rfile = opaque;
2658     RDMAContext *rdma = rfile->rdma;
2659     int ret;
2660 
2661     CHECK_ERROR_STATE();
2662 
2663     qemu_fflush(f);
2664 
2665     if (size > 0) {
2666         /*
2667          * Add this page to the current 'chunk'. If the chunk
2668          * is full, or the page doen't belong to the current chunk,
2669          * an actual RDMA write will occur and a new chunk will be formed.
2670          */
2671         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2672         if (ret < 0) {
2673             error_report("rdma migration: write error! %d", ret);
2674             goto err;
2675         }
2676 
2677         /*
2678          * We always return 1 bytes because the RDMA
2679          * protocol is completely asynchronous. We do not yet know
2680          * whether an  identified chunk is zero or not because we're
2681          * waiting for other pages to potentially be merged with
2682          * the current chunk. So, we have to call qemu_update_position()
2683          * later on when the actual write occurs.
2684          */
2685         if (bytes_sent) {
2686             *bytes_sent = 1;
2687         }
2688     } else {
2689         uint64_t index, chunk;
2690 
2691         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2692         if (size < 0) {
2693             ret = qemu_rdma_drain_cq(f, rdma);
2694             if (ret < 0) {
2695                 fprintf(stderr, "rdma: failed to synchronously drain"
2696                                 " completion queue before unregistration.\n");
2697                 goto err;
2698             }
2699         }
2700         */
2701 
2702         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2703                                          offset, size, &index, &chunk);
2704 
2705         if (ret) {
2706             error_report("ram block search failed");
2707             goto err;
2708         }
2709 
2710         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2711 
2712         /*
2713          * TODO: Synchronous, guaranteed unregistration (should not occur during
2714          * fast-path). Otherwise, unregisters will process on the next call to
2715          * qemu_rdma_drain_cq()
2716         if (size < 0) {
2717             qemu_rdma_unregister_waiting(rdma);
2718         }
2719         */
2720     }
2721 
2722     /*
2723      * Drain the Completion Queue if possible, but do not block,
2724      * just poll.
2725      *
2726      * If nothing to poll, the end of the iteration will do this
2727      * again to make sure we don't overflow the request queue.
2728      */
2729     while (1) {
2730         uint64_t wr_id, wr_id_in;
2731         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2732         if (ret < 0) {
2733             error_report("rdma migration: polling error! %d", ret);
2734             goto err;
2735         }
2736 
2737         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2738 
2739         if (wr_id == RDMA_WRID_NONE) {
2740             break;
2741         }
2742     }
2743 
2744     return RAM_SAVE_CONTROL_DELAYED;
2745 err:
2746     rdma->error_state = ret;
2747     return ret;
2748 }
2749 
2750 static int qemu_rdma_accept(RDMAContext *rdma)
2751 {
2752     RDMACapabilities cap;
2753     struct rdma_conn_param conn_param = {
2754                                             .responder_resources = 2,
2755                                             .private_data = &cap,
2756                                             .private_data_len = sizeof(cap),
2757                                          };
2758     struct rdma_cm_event *cm_event;
2759     struct ibv_context *verbs;
2760     int ret = -EINVAL;
2761     int idx;
2762 
2763     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2764     if (ret) {
2765         goto err_rdma_dest_wait;
2766     }
2767 
2768     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2769         rdma_ack_cm_event(cm_event);
2770         goto err_rdma_dest_wait;
2771     }
2772 
2773     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2774 
2775     network_to_caps(&cap);
2776 
2777     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2778             error_report("Unknown source RDMA version: %d, bailing...",
2779                             cap.version);
2780             rdma_ack_cm_event(cm_event);
2781             goto err_rdma_dest_wait;
2782     }
2783 
2784     /*
2785      * Respond with only the capabilities this version of QEMU knows about.
2786      */
2787     cap.flags &= known_capabilities;
2788 
2789     /*
2790      * Enable the ones that we do know about.
2791      * Add other checks here as new ones are introduced.
2792      */
2793     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2794         rdma->pin_all = true;
2795     }
2796 
2797     rdma->cm_id = cm_event->id;
2798     verbs = cm_event->id->verbs;
2799 
2800     rdma_ack_cm_event(cm_event);
2801 
2802     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
2803 
2804     caps_to_network(&cap);
2805 
2806     trace_qemu_rdma_accept_pin_verbsc(verbs);
2807 
2808     if (!rdma->verbs) {
2809         rdma->verbs = verbs;
2810     } else if (rdma->verbs != verbs) {
2811             error_report("ibv context not matching %p, %p!", rdma->verbs,
2812                          verbs);
2813             goto err_rdma_dest_wait;
2814     }
2815 
2816     qemu_rdma_dump_id("dest_init", verbs);
2817 
2818     ret = qemu_rdma_alloc_pd_cq(rdma);
2819     if (ret) {
2820         error_report("rdma migration: error allocating pd and cq!");
2821         goto err_rdma_dest_wait;
2822     }
2823 
2824     ret = qemu_rdma_alloc_qp(rdma);
2825     if (ret) {
2826         error_report("rdma migration: error allocating qp!");
2827         goto err_rdma_dest_wait;
2828     }
2829 
2830     ret = qemu_rdma_init_ram_blocks(rdma);
2831     if (ret) {
2832         error_report("rdma migration: error initializing ram blocks!");
2833         goto err_rdma_dest_wait;
2834     }
2835 
2836     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2837         ret = qemu_rdma_reg_control(rdma, idx);
2838         if (ret) {
2839             error_report("rdma: error registering %d control", idx);
2840             goto err_rdma_dest_wait;
2841         }
2842     }
2843 
2844     qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2845 
2846     ret = rdma_accept(rdma->cm_id, &conn_param);
2847     if (ret) {
2848         error_report("rdma_accept returns %d", ret);
2849         goto err_rdma_dest_wait;
2850     }
2851 
2852     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2853     if (ret) {
2854         error_report("rdma_accept get_cm_event failed %d", ret);
2855         goto err_rdma_dest_wait;
2856     }
2857 
2858     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2859         error_report("rdma_accept not event established");
2860         rdma_ack_cm_event(cm_event);
2861         goto err_rdma_dest_wait;
2862     }
2863 
2864     rdma_ack_cm_event(cm_event);
2865     rdma->connected = true;
2866 
2867     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2868     if (ret) {
2869         error_report("rdma migration: error posting second control recv");
2870         goto err_rdma_dest_wait;
2871     }
2872 
2873     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2874 
2875     return 0;
2876 
2877 err_rdma_dest_wait:
2878     rdma->error_state = ret;
2879     qemu_rdma_cleanup(rdma);
2880     return ret;
2881 }
2882 
2883 /*
2884  * During each iteration of the migration, we listen for instructions
2885  * by the source VM to perform dynamic page registrations before they
2886  * can perform RDMA operations.
2887  *
2888  * We respond with the 'rkey'.
2889  *
2890  * Keep doing this until the source tells us to stop.
2891  */
2892 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2893                                          uint64_t flags)
2894 {
2895     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2896                                .type = RDMA_CONTROL_REGISTER_RESULT,
2897                                .repeat = 0,
2898                              };
2899     RDMAControlHeader unreg_resp = { .len = 0,
2900                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2901                                .repeat = 0,
2902                              };
2903     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2904                                  .repeat = 1 };
2905     QEMUFileRDMA *rfile = opaque;
2906     RDMAContext *rdma = rfile->rdma;
2907     RDMALocalBlocks *local = &rdma->local_ram_blocks;
2908     RDMAControlHeader head;
2909     RDMARegister *reg, *registers;
2910     RDMACompress *comp;
2911     RDMARegisterResult *reg_result;
2912     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2913     RDMALocalBlock *block;
2914     void *host_addr;
2915     int ret = 0;
2916     int idx = 0;
2917     int count = 0;
2918     int i = 0;
2919 
2920     CHECK_ERROR_STATE();
2921 
2922     do {
2923         trace_qemu_rdma_registration_handle_wait(flags);
2924 
2925         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2926 
2927         if (ret < 0) {
2928             break;
2929         }
2930 
2931         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2932             error_report("rdma: Too many requests in this message (%d)."
2933                             "Bailing.", head.repeat);
2934             ret = -EIO;
2935             break;
2936         }
2937 
2938         switch (head.type) {
2939         case RDMA_CONTROL_COMPRESS:
2940             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2941             network_to_compress(comp);
2942 
2943             trace_qemu_rdma_registration_handle_compress(comp->length,
2944                                                          comp->block_idx,
2945                                                          comp->offset);
2946             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2947 
2948             host_addr = block->local_host_addr +
2949                             (comp->offset - block->offset);
2950 
2951             ram_handle_compressed(host_addr, comp->value, comp->length);
2952             break;
2953 
2954         case RDMA_CONTROL_REGISTER_FINISHED:
2955             trace_qemu_rdma_registration_handle_finished();
2956             goto out;
2957 
2958         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2959             trace_qemu_rdma_registration_handle_ram_blocks();
2960 
2961             if (rdma->pin_all) {
2962                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2963                 if (ret) {
2964                     error_report("rdma migration: error dest "
2965                                     "registering ram blocks");
2966                     goto out;
2967                 }
2968             }
2969 
2970             /*
2971              * Dest uses this to prepare to transmit the RAMBlock descriptions
2972              * to the source VM after connection setup.
2973              * Both sides use the "remote" structure to communicate and update
2974              * their "local" descriptions with what was sent.
2975              */
2976             for (i = 0; i < local->nb_blocks; i++) {
2977                 rdma->dest_blocks[i].remote_host_addr =
2978                     (uintptr_t)(local->block[i].local_host_addr);
2979 
2980                 if (rdma->pin_all) {
2981                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
2982                 }
2983 
2984                 rdma->dest_blocks[i].offset = local->block[i].offset;
2985                 rdma->dest_blocks[i].length = local->block[i].length;
2986 
2987                 dest_block_to_network(&rdma->dest_blocks[i]);
2988             }
2989 
2990             blocks.len = rdma->local_ram_blocks.nb_blocks
2991                                                 * sizeof(RDMADestBlock);
2992 
2993 
2994             ret = qemu_rdma_post_send_control(rdma,
2995                                         (uint8_t *) rdma->dest_blocks, &blocks);
2996 
2997             if (ret < 0) {
2998                 error_report("rdma migration: error sending remote info");
2999                 goto out;
3000             }
3001 
3002             break;
3003         case RDMA_CONTROL_REGISTER_REQUEST:
3004             trace_qemu_rdma_registration_handle_register(head.repeat);
3005 
3006             reg_resp.repeat = head.repeat;
3007             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3008 
3009             for (count = 0; count < head.repeat; count++) {
3010                 uint64_t chunk;
3011                 uint8_t *chunk_start, *chunk_end;
3012 
3013                 reg = &registers[count];
3014                 network_to_register(reg);
3015 
3016                 reg_result = &results[count];
3017 
3018                 trace_qemu_rdma_registration_handle_register_loop(count,
3019                          reg->current_index, reg->key.current_addr, reg->chunks);
3020 
3021                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3022                 if (block->is_ram_block) {
3023                     host_addr = (block->local_host_addr +
3024                                 (reg->key.current_addr - block->offset));
3025                     chunk = ram_chunk_index(block->local_host_addr,
3026                                             (uint8_t *) host_addr);
3027                 } else {
3028                     chunk = reg->key.chunk;
3029                     host_addr = block->local_host_addr +
3030                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3031                 }
3032                 chunk_start = ram_chunk_start(block, chunk);
3033                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3034                 if (qemu_rdma_register_and_get_keys(rdma, block,
3035                             (uintptr_t)host_addr, NULL, &reg_result->rkey,
3036                             chunk, chunk_start, chunk_end)) {
3037                     error_report("cannot get rkey");
3038                     ret = -EINVAL;
3039                     goto out;
3040                 }
3041 
3042                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3043 
3044                 trace_qemu_rdma_registration_handle_register_rkey(
3045                                                            reg_result->rkey);
3046 
3047                 result_to_network(reg_result);
3048             }
3049 
3050             ret = qemu_rdma_post_send_control(rdma,
3051                             (uint8_t *) results, &reg_resp);
3052 
3053             if (ret < 0) {
3054                 error_report("Failed to send control buffer");
3055                 goto out;
3056             }
3057             break;
3058         case RDMA_CONTROL_UNREGISTER_REQUEST:
3059             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3060             unreg_resp.repeat = head.repeat;
3061             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3062 
3063             for (count = 0; count < head.repeat; count++) {
3064                 reg = &registers[count];
3065                 network_to_register(reg);
3066 
3067                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3068                            reg->current_index, reg->key.chunk);
3069 
3070                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3071 
3072                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3073                 block->pmr[reg->key.chunk] = NULL;
3074 
3075                 if (ret != 0) {
3076                     perror("rdma unregistration chunk failed");
3077                     ret = -ret;
3078                     goto out;
3079                 }
3080 
3081                 rdma->total_registrations--;
3082 
3083                 trace_qemu_rdma_registration_handle_unregister_success(
3084                                                        reg->key.chunk);
3085             }
3086 
3087             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3088 
3089             if (ret < 0) {
3090                 error_report("Failed to send control buffer");
3091                 goto out;
3092             }
3093             break;
3094         case RDMA_CONTROL_REGISTER_RESULT:
3095             error_report("Invalid RESULT message at dest.");
3096             ret = -EIO;
3097             goto out;
3098         default:
3099             error_report("Unknown control message %s", control_desc[head.type]);
3100             ret = -EIO;
3101             goto out;
3102         }
3103     } while (1);
3104 out:
3105     if (ret < 0) {
3106         rdma->error_state = ret;
3107     }
3108     return ret;
3109 }
3110 
3111 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3112                                         uint64_t flags)
3113 {
3114     QEMUFileRDMA *rfile = opaque;
3115     RDMAContext *rdma = rfile->rdma;
3116 
3117     CHECK_ERROR_STATE();
3118 
3119     trace_qemu_rdma_registration_start(flags);
3120     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3121     qemu_fflush(f);
3122 
3123     return 0;
3124 }
3125 
3126 /*
3127  * Inform dest that dynamic registrations are done for now.
3128  * First, flush writes, if any.
3129  */
3130 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3131                                        uint64_t flags)
3132 {
3133     Error *local_err = NULL, **errp = &local_err;
3134     QEMUFileRDMA *rfile = opaque;
3135     RDMAContext *rdma = rfile->rdma;
3136     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3137     int ret = 0;
3138 
3139     CHECK_ERROR_STATE();
3140 
3141     qemu_fflush(f);
3142     ret = qemu_rdma_drain_cq(f, rdma);
3143 
3144     if (ret < 0) {
3145         goto err;
3146     }
3147 
3148     if (flags == RAM_CONTROL_SETUP) {
3149         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3150         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3151         int reg_result_idx, i, j, nb_dest_blocks;
3152 
3153         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3154         trace_qemu_rdma_registration_stop_ram();
3155 
3156         /*
3157          * Make sure that we parallelize the pinning on both sides.
3158          * For very large guests, doing this serially takes a really
3159          * long time, so we have to 'interleave' the pinning locally
3160          * with the control messages by performing the pinning on this
3161          * side before we receive the control response from the other
3162          * side that the pinning has completed.
3163          */
3164         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3165                     &reg_result_idx, rdma->pin_all ?
3166                     qemu_rdma_reg_whole_ram_blocks : NULL);
3167         if (ret < 0) {
3168             ERROR(errp, "receiving remote info!");
3169             return ret;
3170         }
3171 
3172         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3173 
3174         /*
3175          * The protocol uses two different sets of rkeys (mutually exclusive):
3176          * 1. One key to represent the virtual address of the entire ram block.
3177          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3178          * 2. One to represent individual chunks within a ram block.
3179          *    (dynamic chunk registration enabled - pin individual chunks.)
3180          *
3181          * Once the capability is successfully negotiated, the destination transmits
3182          * the keys to use (or sends them later) including the virtual addresses
3183          * and then propagates the remote ram block descriptions to his local copy.
3184          */
3185 
3186         if (local->nb_blocks != nb_dest_blocks) {
3187             ERROR(errp, "ram blocks mismatch #1! "
3188                         "Your QEMU command line parameters are probably "
3189                         "not identical on both the source and destination.");
3190             return -EINVAL;
3191         }
3192 
3193         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3194         memcpy(rdma->dest_blocks,
3195             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3196         for (i = 0; i < nb_dest_blocks; i++) {
3197             network_to_dest_block(&rdma->dest_blocks[i]);
3198 
3199             /* search local ram blocks */
3200             for (j = 0; j < local->nb_blocks; j++) {
3201                 if (rdma->dest_blocks[i].offset != local->block[j].offset) {
3202                     continue;
3203                 }
3204 
3205                 if (rdma->dest_blocks[i].length != local->block[j].length) {
3206                     ERROR(errp, "ram blocks mismatch #2! "
3207                         "Your QEMU command line parameters are probably "
3208                         "not identical on both the source and destination.");
3209                     return -EINVAL;
3210                 }
3211                 local->block[j].remote_host_addr =
3212                         rdma->dest_blocks[i].remote_host_addr;
3213                 local->block[j].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3214                 break;
3215             }
3216 
3217             if (j >= local->nb_blocks) {
3218                 ERROR(errp, "ram blocks mismatch #3! "
3219                         "Your QEMU command line parameters are probably "
3220                         "not identical on both the source and destination.");
3221                 return -EINVAL;
3222             }
3223         }
3224     }
3225 
3226     trace_qemu_rdma_registration_stop(flags);
3227 
3228     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3229     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3230 
3231     if (ret < 0) {
3232         goto err;
3233     }
3234 
3235     return 0;
3236 err:
3237     rdma->error_state = ret;
3238     return ret;
3239 }
3240 
3241 static int qemu_rdma_get_fd(void *opaque)
3242 {
3243     QEMUFileRDMA *rfile = opaque;
3244     RDMAContext *rdma = rfile->rdma;
3245 
3246     return rdma->comp_channel->fd;
3247 }
3248 
3249 static const QEMUFileOps rdma_read_ops = {
3250     .get_buffer    = qemu_rdma_get_buffer,
3251     .get_fd        = qemu_rdma_get_fd,
3252     .close         = qemu_rdma_close,
3253     .hook_ram_load = qemu_rdma_registration_handle,
3254 };
3255 
3256 static const QEMUFileOps rdma_write_ops = {
3257     .put_buffer         = qemu_rdma_put_buffer,
3258     .close              = qemu_rdma_close,
3259     .before_ram_iterate = qemu_rdma_registration_start,
3260     .after_ram_iterate  = qemu_rdma_registration_stop,
3261     .save_page          = qemu_rdma_save_page,
3262 };
3263 
3264 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3265 {
3266     QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3267 
3268     if (qemu_file_mode_is_not_valid(mode)) {
3269         return NULL;
3270     }
3271 
3272     r->rdma = rdma;
3273 
3274     if (mode[0] == 'w') {
3275         r->file = qemu_fopen_ops(r, &rdma_write_ops);
3276     } else {
3277         r->file = qemu_fopen_ops(r, &rdma_read_ops);
3278     }
3279 
3280     return r->file;
3281 }
3282 
3283 static void rdma_accept_incoming_migration(void *opaque)
3284 {
3285     RDMAContext *rdma = opaque;
3286     int ret;
3287     QEMUFile *f;
3288     Error *local_err = NULL, **errp = &local_err;
3289 
3290     trace_qemu_dma_accept_incoming_migration();
3291     ret = qemu_rdma_accept(rdma);
3292 
3293     if (ret) {
3294         ERROR(errp, "RDMA Migration initialization failed!");
3295         return;
3296     }
3297 
3298     trace_qemu_dma_accept_incoming_migration_accepted();
3299 
3300     f = qemu_fopen_rdma(rdma, "rb");
3301     if (f == NULL) {
3302         ERROR(errp, "could not qemu_fopen_rdma!");
3303         qemu_rdma_cleanup(rdma);
3304         return;
3305     }
3306 
3307     rdma->migration_started_on_destination = 1;
3308     process_incoming_migration(f);
3309 }
3310 
3311 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3312 {
3313     int ret;
3314     RDMAContext *rdma;
3315     Error *local_err = NULL;
3316 
3317     trace_rdma_start_incoming_migration();
3318     rdma = qemu_rdma_data_init(host_port, &local_err);
3319 
3320     if (rdma == NULL) {
3321         goto err;
3322     }
3323 
3324     ret = qemu_rdma_dest_init(rdma, &local_err);
3325 
3326     if (ret) {
3327         goto err;
3328     }
3329 
3330     trace_rdma_start_incoming_migration_after_dest_init();
3331 
3332     ret = rdma_listen(rdma->listen_id, 5);
3333 
3334     if (ret) {
3335         ERROR(errp, "listening on socket!");
3336         goto err;
3337     }
3338 
3339     trace_rdma_start_incoming_migration_after_rdma_listen();
3340 
3341     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3342                         NULL, (void *)(intptr_t)rdma);
3343     return;
3344 err:
3345     error_propagate(errp, local_err);
3346     g_free(rdma);
3347 }
3348 
3349 void rdma_start_outgoing_migration(void *opaque,
3350                             const char *host_port, Error **errp)
3351 {
3352     MigrationState *s = opaque;
3353     Error *local_err = NULL, **temp = &local_err;
3354     RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3355     int ret = 0;
3356 
3357     if (rdma == NULL) {
3358         ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3359         goto err;
3360     }
3361 
3362     ret = qemu_rdma_source_init(rdma, &local_err,
3363         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3364 
3365     if (ret) {
3366         goto err;
3367     }
3368 
3369     trace_rdma_start_outgoing_migration_after_rdma_source_init();
3370     ret = qemu_rdma_connect(rdma, &local_err);
3371 
3372     if (ret) {
3373         goto err;
3374     }
3375 
3376     trace_rdma_start_outgoing_migration_after_rdma_connect();
3377 
3378     s->file = qemu_fopen_rdma(rdma, "wb");
3379     migrate_fd_connect(s);
3380     return;
3381 err:
3382     error_propagate(errp, local_err);
3383     g_free(rdma);
3384     migrate_fd_error(s);
3385 }
3386