xref: /qemu/migration/rdma.c (revision 8b7b9c5c)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
42 
43 /*
44  * Print and error on both the Monitor and the Log file.
45  */
46 #define ERROR(errp, fmt, ...) \
47     do { \
48         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
49         if (errp && (*(errp) == NULL)) { \
50             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
51         } \
52     } while (0)
53 
54 #define RDMA_RESOLVE_TIMEOUT_MS 10000
55 
56 /* Do not merge data if larger than this. */
57 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
58 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
59 
60 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
61 
62 /*
63  * This is only for non-live state being migrated.
64  * Instead of RDMA_WRITE messages, we use RDMA_SEND
65  * messages for that state, which requires a different
66  * delivery design than main memory.
67  */
68 #define RDMA_SEND_INCREMENT 32768
69 
70 /*
71  * Maximum size infiniband SEND message
72  */
73 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
74 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
75 
76 #define RDMA_CONTROL_VERSION_CURRENT 1
77 /*
78  * Capabilities for negotiation.
79  */
80 #define RDMA_CAPABILITY_PIN_ALL 0x01
81 
82 /*
83  * Add the other flags above to this list of known capabilities
84  * as they are introduced.
85  */
86 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
87 
88 #define CHECK_ERROR_STATE() \
89     do { \
90         if (rdma->error_state) { \
91             if (!rdma->error_reported) { \
92                 error_report("RDMA is in an error state waiting migration" \
93                                 " to abort!"); \
94                 rdma->error_reported = 1; \
95             } \
96             return rdma->error_state; \
97         } \
98     } while (0)
99 
100 /*
101  * A work request ID is 64-bits and we split up these bits
102  * into 3 parts:
103  *
104  * bits 0-15 : type of control message, 2^16
105  * bits 16-29: ram block index, 2^14
106  * bits 30-63: ram block chunk number, 2^34
107  *
108  * The last two bit ranges are only used for RDMA writes,
109  * in order to track their completion and potentially
110  * also track unregistration status of the message.
111  */
112 #define RDMA_WRID_TYPE_SHIFT  0UL
113 #define RDMA_WRID_BLOCK_SHIFT 16UL
114 #define RDMA_WRID_CHUNK_SHIFT 30UL
115 
116 #define RDMA_WRID_TYPE_MASK \
117     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
118 
119 #define RDMA_WRID_BLOCK_MASK \
120     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
121 
122 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
123 
124 /*
125  * RDMA migration protocol:
126  * 1. RDMA Writes (data messages, i.e. RAM)
127  * 2. IB Send/Recv (control channel messages)
128  */
129 enum {
130     RDMA_WRID_NONE = 0,
131     RDMA_WRID_RDMA_WRITE = 1,
132     RDMA_WRID_SEND_CONTROL = 2000,
133     RDMA_WRID_RECV_CONTROL = 4000,
134 };
135 
136 static const char *wrid_desc[] = {
137     [RDMA_WRID_NONE] = "NONE",
138     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
139     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
140     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
141 };
142 
143 /*
144  * Work request IDs for IB SEND messages only (not RDMA writes).
145  * This is used by the migration protocol to transmit
146  * control messages (such as device state and registration commands)
147  *
148  * We could use more WRs, but we have enough for now.
149  */
150 enum {
151     RDMA_WRID_READY = 0,
152     RDMA_WRID_DATA,
153     RDMA_WRID_CONTROL,
154     RDMA_WRID_MAX,
155 };
156 
157 /*
158  * SEND/RECV IB Control Messages.
159  */
160 enum {
161     RDMA_CONTROL_NONE = 0,
162     RDMA_CONTROL_ERROR,
163     RDMA_CONTROL_READY,               /* ready to receive */
164     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
165     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
166     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
167     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
168     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
169     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
170     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
171     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
172     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
173 };
174 
175 
176 /*
177  * Memory and MR structures used to represent an IB Send/Recv work request.
178  * This is *not* used for RDMA writes, only IB Send/Recv.
179  */
180 typedef struct {
181     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
182     struct   ibv_mr *control_mr;               /* registration metadata */
183     size_t   control_len;                      /* length of the message */
184     uint8_t *control_curr;                     /* start of unconsumed bytes */
185 } RDMAWorkRequestData;
186 
187 /*
188  * Negotiate RDMA capabilities during connection-setup time.
189  */
190 typedef struct {
191     uint32_t version;
192     uint32_t flags;
193 } RDMACapabilities;
194 
195 static void caps_to_network(RDMACapabilities *cap)
196 {
197     cap->version = htonl(cap->version);
198     cap->flags = htonl(cap->flags);
199 }
200 
201 static void network_to_caps(RDMACapabilities *cap)
202 {
203     cap->version = ntohl(cap->version);
204     cap->flags = ntohl(cap->flags);
205 }
206 
207 /*
208  * Representation of a RAMBlock from an RDMA perspective.
209  * This is not transmitted, only local.
210  * This and subsequent structures cannot be linked lists
211  * because we're using a single IB message to transmit
212  * the information. It's small anyway, so a list is overkill.
213  */
214 typedef struct RDMALocalBlock {
215     char          *block_name;
216     uint8_t       *local_host_addr; /* local virtual address */
217     uint64_t       remote_host_addr; /* remote virtual address */
218     uint64_t       offset;
219     uint64_t       length;
220     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
221     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
222     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
223     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
224     int            index;           /* which block are we */
225     unsigned int   src_index;       /* (Only used on dest) */
226     bool           is_ram_block;
227     int            nb_chunks;
228     unsigned long *transit_bitmap;
229     unsigned long *unregister_bitmap;
230 } RDMALocalBlock;
231 
232 /*
233  * Also represents a RAMblock, but only on the dest.
234  * This gets transmitted by the dest during connection-time
235  * to the source VM and then is used to populate the
236  * corresponding RDMALocalBlock with
237  * the information needed to perform the actual RDMA.
238  */
239 typedef struct QEMU_PACKED RDMADestBlock {
240     uint64_t remote_host_addr;
241     uint64_t offset;
242     uint64_t length;
243     uint32_t remote_rkey;
244     uint32_t padding;
245 } RDMADestBlock;
246 
247 static const char *control_desc(unsigned int rdma_control)
248 {
249     static const char *strs[] = {
250         [RDMA_CONTROL_NONE] = "NONE",
251         [RDMA_CONTROL_ERROR] = "ERROR",
252         [RDMA_CONTROL_READY] = "READY",
253         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
254         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
255         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
256         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
257         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
258         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
259         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
260         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
261         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
262     };
263 
264     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
265         return "??BAD CONTROL VALUE??";
266     }
267 
268     return strs[rdma_control];
269 }
270 
271 static uint64_t htonll(uint64_t v)
272 {
273     union { uint32_t lv[2]; uint64_t llv; } u;
274     u.lv[0] = htonl(v >> 32);
275     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
276     return u.llv;
277 }
278 
279 static uint64_t ntohll(uint64_t v)
280 {
281     union { uint32_t lv[2]; uint64_t llv; } u;
282     u.llv = v;
283     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
284 }
285 
286 static void dest_block_to_network(RDMADestBlock *db)
287 {
288     db->remote_host_addr = htonll(db->remote_host_addr);
289     db->offset = htonll(db->offset);
290     db->length = htonll(db->length);
291     db->remote_rkey = htonl(db->remote_rkey);
292 }
293 
294 static void network_to_dest_block(RDMADestBlock *db)
295 {
296     db->remote_host_addr = ntohll(db->remote_host_addr);
297     db->offset = ntohll(db->offset);
298     db->length = ntohll(db->length);
299     db->remote_rkey = ntohl(db->remote_rkey);
300 }
301 
302 /*
303  * Virtual address of the above structures used for transmitting
304  * the RAMBlock descriptions at connection-time.
305  * This structure is *not* transmitted.
306  */
307 typedef struct RDMALocalBlocks {
308     int nb_blocks;
309     bool     init;             /* main memory init complete */
310     RDMALocalBlock *block;
311 } RDMALocalBlocks;
312 
313 /*
314  * Main data structure for RDMA state.
315  * While there is only one copy of this structure being allocated right now,
316  * this is the place where one would start if you wanted to consider
317  * having more than one RDMA connection open at the same time.
318  */
319 typedef struct RDMAContext {
320     char *host;
321     int port;
322     char *host_port;
323 
324     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
325 
326     /*
327      * This is used by *_exchange_send() to figure out whether or not
328      * the initial "READY" message has already been received or not.
329      * This is because other functions may potentially poll() and detect
330      * the READY message before send() does, in which case we need to
331      * know if it completed.
332      */
333     int control_ready_expected;
334 
335     /* number of outstanding writes */
336     int nb_sent;
337 
338     /* store info about current buffer so that we can
339        merge it with future sends */
340     uint64_t current_addr;
341     uint64_t current_length;
342     /* index of ram block the current buffer belongs to */
343     int current_index;
344     /* index of the chunk in the current ram block */
345     int current_chunk;
346 
347     bool pin_all;
348 
349     /*
350      * infiniband-specific variables for opening the device
351      * and maintaining connection state and so forth.
352      *
353      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
354      * cm_id->verbs, cm_id->channel, and cm_id->qp.
355      */
356     struct rdma_cm_id *cm_id;               /* connection manager ID */
357     struct rdma_cm_id *listen_id;
358     bool connected;
359 
360     struct ibv_context          *verbs;
361     struct rdma_event_channel   *channel;
362     struct ibv_qp *qp;                      /* queue pair */
363     struct ibv_comp_channel *recv_comp_channel;  /* recv completion channel */
364     struct ibv_comp_channel *send_comp_channel;  /* send completion channel */
365     struct ibv_pd *pd;                      /* protection domain */
366     struct ibv_cq *recv_cq;                 /* recvieve completion queue */
367     struct ibv_cq *send_cq;                 /* send completion queue */
368 
369     /*
370      * If a previous write failed (perhaps because of a failed
371      * memory registration, then do not attempt any future work
372      * and remember the error state.
373      */
374     int error_state;
375     int error_reported;
376     int received_error;
377 
378     /*
379      * Description of ram blocks used throughout the code.
380      */
381     RDMALocalBlocks local_ram_blocks;
382     RDMADestBlock  *dest_blocks;
383 
384     /* Index of the next RAMBlock received during block registration */
385     unsigned int    next_src_index;
386 
387     /*
388      * Migration on *destination* started.
389      * Then use coroutine yield function.
390      * Source runs in a thread, so we don't care.
391      */
392     int migration_started_on_destination;
393 
394     int total_registrations;
395     int total_writes;
396 
397     int unregister_current, unregister_next;
398     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
399 
400     GHashTable *blockmap;
401 
402     /* the RDMAContext for return path */
403     struct RDMAContext *return_path;
404     bool is_return_path;
405 } RDMAContext;
406 
407 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
408 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
409 
410 
411 
412 struct QIOChannelRDMA {
413     QIOChannel parent;
414     RDMAContext *rdmain;
415     RDMAContext *rdmaout;
416     QEMUFile *file;
417     bool blocking; /* XXX we don't actually honour this yet */
418 };
419 
420 /*
421  * Main structure for IB Send/Recv control messages.
422  * This gets prepended at the beginning of every Send/Recv.
423  */
424 typedef struct QEMU_PACKED {
425     uint32_t len;     /* Total length of data portion */
426     uint32_t type;    /* which control command to perform */
427     uint32_t repeat;  /* number of commands in data portion of same type */
428     uint32_t padding;
429 } RDMAControlHeader;
430 
431 static void control_to_network(RDMAControlHeader *control)
432 {
433     control->type = htonl(control->type);
434     control->len = htonl(control->len);
435     control->repeat = htonl(control->repeat);
436 }
437 
438 static void network_to_control(RDMAControlHeader *control)
439 {
440     control->type = ntohl(control->type);
441     control->len = ntohl(control->len);
442     control->repeat = ntohl(control->repeat);
443 }
444 
445 /*
446  * Register a single Chunk.
447  * Information sent by the source VM to inform the dest
448  * to register an single chunk of memory before we can perform
449  * the actual RDMA operation.
450  */
451 typedef struct QEMU_PACKED {
452     union QEMU_PACKED {
453         uint64_t current_addr;  /* offset into the ram_addr_t space */
454         uint64_t chunk;         /* chunk to lookup if unregistering */
455     } key;
456     uint32_t current_index; /* which ramblock the chunk belongs to */
457     uint32_t padding;
458     uint64_t chunks;            /* how many sequential chunks to register */
459 } RDMARegister;
460 
461 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
462 {
463     RDMALocalBlock *local_block;
464     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
465 
466     if (local_block->is_ram_block) {
467         /*
468          * current_addr as passed in is an address in the local ram_addr_t
469          * space, we need to translate this for the destination
470          */
471         reg->key.current_addr -= local_block->offset;
472         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
473     }
474     reg->key.current_addr = htonll(reg->key.current_addr);
475     reg->current_index = htonl(reg->current_index);
476     reg->chunks = htonll(reg->chunks);
477 }
478 
479 static void network_to_register(RDMARegister *reg)
480 {
481     reg->key.current_addr = ntohll(reg->key.current_addr);
482     reg->current_index = ntohl(reg->current_index);
483     reg->chunks = ntohll(reg->chunks);
484 }
485 
486 typedef struct QEMU_PACKED {
487     uint32_t value;     /* if zero, we will madvise() */
488     uint32_t block_idx; /* which ram block index */
489     uint64_t offset;    /* Address in remote ram_addr_t space */
490     uint64_t length;    /* length of the chunk */
491 } RDMACompress;
492 
493 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
494 {
495     comp->value = htonl(comp->value);
496     /*
497      * comp->offset as passed in is an address in the local ram_addr_t
498      * space, we need to translate this for the destination
499      */
500     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
501     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
502     comp->block_idx = htonl(comp->block_idx);
503     comp->offset = htonll(comp->offset);
504     comp->length = htonll(comp->length);
505 }
506 
507 static void network_to_compress(RDMACompress *comp)
508 {
509     comp->value = ntohl(comp->value);
510     comp->block_idx = ntohl(comp->block_idx);
511     comp->offset = ntohll(comp->offset);
512     comp->length = ntohll(comp->length);
513 }
514 
515 /*
516  * The result of the dest's memory registration produces an "rkey"
517  * which the source VM must reference in order to perform
518  * the RDMA operation.
519  */
520 typedef struct QEMU_PACKED {
521     uint32_t rkey;
522     uint32_t padding;
523     uint64_t host_addr;
524 } RDMARegisterResult;
525 
526 static void result_to_network(RDMARegisterResult *result)
527 {
528     result->rkey = htonl(result->rkey);
529     result->host_addr = htonll(result->host_addr);
530 };
531 
532 static void network_to_result(RDMARegisterResult *result)
533 {
534     result->rkey = ntohl(result->rkey);
535     result->host_addr = ntohll(result->host_addr);
536 };
537 
538 const char *print_wrid(int wrid);
539 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
540                                    uint8_t *data, RDMAControlHeader *resp,
541                                    int *resp_idx,
542                                    int (*callback)(RDMAContext *rdma));
543 
544 static inline uint64_t ram_chunk_index(const uint8_t *start,
545                                        const uint8_t *host)
546 {
547     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
548 }
549 
550 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
551                                        uint64_t i)
552 {
553     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
554                                   (i << RDMA_REG_CHUNK_SHIFT));
555 }
556 
557 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
558                                      uint64_t i)
559 {
560     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
561                                          (1UL << RDMA_REG_CHUNK_SHIFT);
562 
563     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
564         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
565     }
566 
567     return result;
568 }
569 
570 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
571                          void *host_addr,
572                          ram_addr_t block_offset, uint64_t length)
573 {
574     RDMALocalBlocks *local = &rdma->local_ram_blocks;
575     RDMALocalBlock *block;
576     RDMALocalBlock *old = local->block;
577 
578     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
579 
580     if (local->nb_blocks) {
581         int x;
582 
583         if (rdma->blockmap) {
584             for (x = 0; x < local->nb_blocks; x++) {
585                 g_hash_table_remove(rdma->blockmap,
586                                     (void *)(uintptr_t)old[x].offset);
587                 g_hash_table_insert(rdma->blockmap,
588                                     (void *)(uintptr_t)old[x].offset,
589                                     &local->block[x]);
590             }
591         }
592         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
593         g_free(old);
594     }
595 
596     block = &local->block[local->nb_blocks];
597 
598     block->block_name = g_strdup(block_name);
599     block->local_host_addr = host_addr;
600     block->offset = block_offset;
601     block->length = length;
602     block->index = local->nb_blocks;
603     block->src_index = ~0U; /* Filled in by the receipt of the block list */
604     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
605     block->transit_bitmap = bitmap_new(block->nb_chunks);
606     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
607     block->unregister_bitmap = bitmap_new(block->nb_chunks);
608     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
609     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
610 
611     block->is_ram_block = local->init ? false : true;
612 
613     if (rdma->blockmap) {
614         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
615     }
616 
617     trace_rdma_add_block(block_name, local->nb_blocks,
618                          (uintptr_t) block->local_host_addr,
619                          block->offset, block->length,
620                          (uintptr_t) (block->local_host_addr + block->length),
621                          BITS_TO_LONGS(block->nb_chunks) *
622                              sizeof(unsigned long) * 8,
623                          block->nb_chunks);
624 
625     local->nb_blocks++;
626 
627     return 0;
628 }
629 
630 /*
631  * Memory regions need to be registered with the device and queue pairs setup
632  * in advanced before the migration starts. This tells us where the RAM blocks
633  * are so that we can register them individually.
634  */
635 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
636 {
637     const char *block_name = qemu_ram_get_idstr(rb);
638     void *host_addr = qemu_ram_get_host_addr(rb);
639     ram_addr_t block_offset = qemu_ram_get_offset(rb);
640     ram_addr_t length = qemu_ram_get_used_length(rb);
641     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
642 }
643 
644 /*
645  * Identify the RAMBlocks and their quantity. They will be references to
646  * identify chunk boundaries inside each RAMBlock and also be referenced
647  * during dynamic page registration.
648  */
649 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
650 {
651     RDMALocalBlocks *local = &rdma->local_ram_blocks;
652     int ret;
653 
654     assert(rdma->blockmap == NULL);
655     memset(local, 0, sizeof *local);
656     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
657     if (ret) {
658         return ret;
659     }
660     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
661     rdma->dest_blocks = g_new0(RDMADestBlock,
662                                rdma->local_ram_blocks.nb_blocks);
663     local->init = true;
664     return 0;
665 }
666 
667 /*
668  * Note: If used outside of cleanup, the caller must ensure that the destination
669  * block structures are also updated
670  */
671 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
672 {
673     RDMALocalBlocks *local = &rdma->local_ram_blocks;
674     RDMALocalBlock *old = local->block;
675     int x;
676 
677     if (rdma->blockmap) {
678         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
679     }
680     if (block->pmr) {
681         int j;
682 
683         for (j = 0; j < block->nb_chunks; j++) {
684             if (!block->pmr[j]) {
685                 continue;
686             }
687             ibv_dereg_mr(block->pmr[j]);
688             rdma->total_registrations--;
689         }
690         g_free(block->pmr);
691         block->pmr = NULL;
692     }
693 
694     if (block->mr) {
695         ibv_dereg_mr(block->mr);
696         rdma->total_registrations--;
697         block->mr = NULL;
698     }
699 
700     g_free(block->transit_bitmap);
701     block->transit_bitmap = NULL;
702 
703     g_free(block->unregister_bitmap);
704     block->unregister_bitmap = NULL;
705 
706     g_free(block->remote_keys);
707     block->remote_keys = NULL;
708 
709     g_free(block->block_name);
710     block->block_name = NULL;
711 
712     if (rdma->blockmap) {
713         for (x = 0; x < local->nb_blocks; x++) {
714             g_hash_table_remove(rdma->blockmap,
715                                 (void *)(uintptr_t)old[x].offset);
716         }
717     }
718 
719     if (local->nb_blocks > 1) {
720 
721         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
722 
723         if (block->index) {
724             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
725         }
726 
727         if (block->index < (local->nb_blocks - 1)) {
728             memcpy(local->block + block->index, old + (block->index + 1),
729                 sizeof(RDMALocalBlock) *
730                     (local->nb_blocks - (block->index + 1)));
731             for (x = block->index; x < local->nb_blocks - 1; x++) {
732                 local->block[x].index--;
733             }
734         }
735     } else {
736         assert(block == local->block);
737         local->block = NULL;
738     }
739 
740     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
741                            block->offset, block->length,
742                             (uintptr_t)(block->local_host_addr + block->length),
743                            BITS_TO_LONGS(block->nb_chunks) *
744                                sizeof(unsigned long) * 8, block->nb_chunks);
745 
746     g_free(old);
747 
748     local->nb_blocks--;
749 
750     if (local->nb_blocks && rdma->blockmap) {
751         for (x = 0; x < local->nb_blocks; x++) {
752             g_hash_table_insert(rdma->blockmap,
753                                 (void *)(uintptr_t)local->block[x].offset,
754                                 &local->block[x]);
755         }
756     }
757 
758     return 0;
759 }
760 
761 /*
762  * Put in the log file which RDMA device was opened and the details
763  * associated with that device.
764  */
765 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
766 {
767     struct ibv_port_attr port;
768 
769     if (ibv_query_port(verbs, 1, &port)) {
770         error_report("Failed to query port information");
771         return;
772     }
773 
774     printf("%s RDMA Device opened: kernel name %s "
775            "uverbs device name %s, "
776            "infiniband_verbs class device path %s, "
777            "infiniband class device path %s, "
778            "transport: (%d) %s\n",
779                 who,
780                 verbs->device->name,
781                 verbs->device->dev_name,
782                 verbs->device->dev_path,
783                 verbs->device->ibdev_path,
784                 port.link_layer,
785                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
786                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
787                     ? "Ethernet" : "Unknown"));
788 }
789 
790 /*
791  * Put in the log file the RDMA gid addressing information,
792  * useful for folks who have trouble understanding the
793  * RDMA device hierarchy in the kernel.
794  */
795 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
796 {
797     char sgid[33];
798     char dgid[33];
799     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
800     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
801     trace_qemu_rdma_dump_gid(who, sgid, dgid);
802 }
803 
804 /*
805  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
806  * We will try the next addrinfo struct, and fail if there are
807  * no other valid addresses to bind against.
808  *
809  * If user is listening on '[::]', then we will not have a opened a device
810  * yet and have no way of verifying if the device is RoCE or not.
811  *
812  * In this case, the source VM will throw an error for ALL types of
813  * connections (both IPv4 and IPv6) if the destination machine does not have
814  * a regular infiniband network available for use.
815  *
816  * The only way to guarantee that an error is thrown for broken kernels is
817  * for the management software to choose a *specific* interface at bind time
818  * and validate what time of hardware it is.
819  *
820  * Unfortunately, this puts the user in a fix:
821  *
822  *  If the source VM connects with an IPv4 address without knowing that the
823  *  destination has bound to '[::]' the migration will unconditionally fail
824  *  unless the management software is explicitly listening on the IPv4
825  *  address while using a RoCE-based device.
826  *
827  *  If the source VM connects with an IPv6 address, then we're OK because we can
828  *  throw an error on the source (and similarly on the destination).
829  *
830  *  But in mixed environments, this will be broken for a while until it is fixed
831  *  inside linux.
832  *
833  * We do provide a *tiny* bit of help in this function: We can list all of the
834  * devices in the system and check to see if all the devices are RoCE or
835  * Infiniband.
836  *
837  * If we detect that we have a *pure* RoCE environment, then we can safely
838  * thrown an error even if the management software has specified '[::]' as the
839  * bind address.
840  *
841  * However, if there is are multiple hetergeneous devices, then we cannot make
842  * this assumption and the user just has to be sure they know what they are
843  * doing.
844  *
845  * Patches are being reviewed on linux-rdma.
846  */
847 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
848 {
849     /* This bug only exists in linux, to our knowledge. */
850 #ifdef CONFIG_LINUX
851     struct ibv_port_attr port_attr;
852 
853     /*
854      * Verbs are only NULL if management has bound to '[::]'.
855      *
856      * Let's iterate through all the devices and see if there any pure IB
857      * devices (non-ethernet).
858      *
859      * If not, then we can safely proceed with the migration.
860      * Otherwise, there are no guarantees until the bug is fixed in linux.
861      */
862     if (!verbs) {
863         int num_devices, x;
864         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
865         bool roce_found = false;
866         bool ib_found = false;
867 
868         for (x = 0; x < num_devices; x++) {
869             verbs = ibv_open_device(dev_list[x]);
870             if (!verbs) {
871                 if (errno == EPERM) {
872                     continue;
873                 } else {
874                     return -EINVAL;
875                 }
876             }
877 
878             if (ibv_query_port(verbs, 1, &port_attr)) {
879                 ibv_close_device(verbs);
880                 ERROR(errp, "Could not query initial IB port");
881                 return -EINVAL;
882             }
883 
884             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
885                 ib_found = true;
886             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
887                 roce_found = true;
888             }
889 
890             ibv_close_device(verbs);
891 
892         }
893 
894         if (roce_found) {
895             if (ib_found) {
896                 fprintf(stderr, "WARN: migrations may fail:"
897                                 " IPv6 over RoCE / iWARP in linux"
898                                 " is broken. But since you appear to have a"
899                                 " mixed RoCE / IB environment, be sure to only"
900                                 " migrate over the IB fabric until the kernel "
901                                 " fixes the bug.\n");
902             } else {
903                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
904                             " and your management software has specified '[::]'"
905                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
906                 return -ENONET;
907             }
908         }
909 
910         return 0;
911     }
912 
913     /*
914      * If we have a verbs context, that means that some other than '[::]' was
915      * used by the management software for binding. In which case we can
916      * actually warn the user about a potentially broken kernel.
917      */
918 
919     /* IB ports start with 1, not 0 */
920     if (ibv_query_port(verbs, 1, &port_attr)) {
921         ERROR(errp, "Could not query initial IB port");
922         return -EINVAL;
923     }
924 
925     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
926         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
927                     "(but patches on linux-rdma in progress)");
928         return -ENONET;
929     }
930 
931 #endif
932 
933     return 0;
934 }
935 
936 /*
937  * Figure out which RDMA device corresponds to the requested IP hostname
938  * Also create the initial connection manager identifiers for opening
939  * the connection.
940  */
941 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
942 {
943     int ret;
944     struct rdma_addrinfo *res;
945     char port_str[16];
946     struct rdma_cm_event *cm_event;
947     char ip[40] = "unknown";
948     struct rdma_addrinfo *e;
949 
950     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
951         ERROR(errp, "RDMA hostname has not been set");
952         return -EINVAL;
953     }
954 
955     /* create CM channel */
956     rdma->channel = rdma_create_event_channel();
957     if (!rdma->channel) {
958         ERROR(errp, "could not create CM channel");
959         return -EINVAL;
960     }
961 
962     /* create CM id */
963     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
964     if (ret) {
965         ERROR(errp, "could not create channel id");
966         goto err_resolve_create_id;
967     }
968 
969     snprintf(port_str, 16, "%d", rdma->port);
970     port_str[15] = '\0';
971 
972     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
973     if (ret < 0) {
974         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
975         goto err_resolve_get_addr;
976     }
977 
978     for (e = res; e != NULL; e = e->ai_next) {
979         inet_ntop(e->ai_family,
980             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
981         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
982 
983         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
984                 RDMA_RESOLVE_TIMEOUT_MS);
985         if (!ret) {
986             if (e->ai_family == AF_INET6) {
987                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
988                 if (ret) {
989                     continue;
990                 }
991             }
992             goto route;
993         }
994     }
995 
996     rdma_freeaddrinfo(res);
997     ERROR(errp, "could not resolve address %s", rdma->host);
998     goto err_resolve_get_addr;
999 
1000 route:
1001     rdma_freeaddrinfo(res);
1002     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1003 
1004     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1005     if (ret) {
1006         ERROR(errp, "could not perform event_addr_resolved");
1007         goto err_resolve_get_addr;
1008     }
1009 
1010     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1011         ERROR(errp, "result not equal to event_addr_resolved %s",
1012                 rdma_event_str(cm_event->event));
1013         error_report("rdma_resolve_addr");
1014         rdma_ack_cm_event(cm_event);
1015         ret = -EINVAL;
1016         goto err_resolve_get_addr;
1017     }
1018     rdma_ack_cm_event(cm_event);
1019 
1020     /* resolve route */
1021     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1022     if (ret) {
1023         ERROR(errp, "could not resolve rdma route");
1024         goto err_resolve_get_addr;
1025     }
1026 
1027     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1028     if (ret) {
1029         ERROR(errp, "could not perform event_route_resolved");
1030         goto err_resolve_get_addr;
1031     }
1032     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1033         ERROR(errp, "result not equal to event_route_resolved: %s",
1034                         rdma_event_str(cm_event->event));
1035         rdma_ack_cm_event(cm_event);
1036         ret = -EINVAL;
1037         goto err_resolve_get_addr;
1038     }
1039     rdma_ack_cm_event(cm_event);
1040     rdma->verbs = rdma->cm_id->verbs;
1041     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1042     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1043     return 0;
1044 
1045 err_resolve_get_addr:
1046     rdma_destroy_id(rdma->cm_id);
1047     rdma->cm_id = NULL;
1048 err_resolve_create_id:
1049     rdma_destroy_event_channel(rdma->channel);
1050     rdma->channel = NULL;
1051     return ret;
1052 }
1053 
1054 /*
1055  * Create protection domain and completion queues
1056  */
1057 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1058 {
1059     /* allocate pd */
1060     rdma->pd = ibv_alloc_pd(rdma->verbs);
1061     if (!rdma->pd) {
1062         error_report("failed to allocate protection domain");
1063         return -1;
1064     }
1065 
1066     /* create receive completion channel */
1067     rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1068     if (!rdma->recv_comp_channel) {
1069         error_report("failed to allocate receive completion channel");
1070         goto err_alloc_pd_cq;
1071     }
1072 
1073     /*
1074      * Completion queue can be filled by read work requests.
1075      */
1076     rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1077                                   NULL, rdma->recv_comp_channel, 0);
1078     if (!rdma->recv_cq) {
1079         error_report("failed to allocate receive completion queue");
1080         goto err_alloc_pd_cq;
1081     }
1082 
1083     /* create send completion channel */
1084     rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1085     if (!rdma->send_comp_channel) {
1086         error_report("failed to allocate send completion channel");
1087         goto err_alloc_pd_cq;
1088     }
1089 
1090     rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1091                                   NULL, rdma->send_comp_channel, 0);
1092     if (!rdma->send_cq) {
1093         error_report("failed to allocate send completion queue");
1094         goto err_alloc_pd_cq;
1095     }
1096 
1097     return 0;
1098 
1099 err_alloc_pd_cq:
1100     if (rdma->pd) {
1101         ibv_dealloc_pd(rdma->pd);
1102     }
1103     if (rdma->recv_comp_channel) {
1104         ibv_destroy_comp_channel(rdma->recv_comp_channel);
1105     }
1106     if (rdma->send_comp_channel) {
1107         ibv_destroy_comp_channel(rdma->send_comp_channel);
1108     }
1109     if (rdma->recv_cq) {
1110         ibv_destroy_cq(rdma->recv_cq);
1111         rdma->recv_cq = NULL;
1112     }
1113     rdma->pd = NULL;
1114     rdma->recv_comp_channel = NULL;
1115     rdma->send_comp_channel = NULL;
1116     return -1;
1117 
1118 }
1119 
1120 /*
1121  * Create queue pairs.
1122  */
1123 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1124 {
1125     struct ibv_qp_init_attr attr = { 0 };
1126     int ret;
1127 
1128     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1129     attr.cap.max_recv_wr = 3;
1130     attr.cap.max_send_sge = 1;
1131     attr.cap.max_recv_sge = 1;
1132     attr.send_cq = rdma->send_cq;
1133     attr.recv_cq = rdma->recv_cq;
1134     attr.qp_type = IBV_QPT_RC;
1135 
1136     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1137     if (ret) {
1138         return -1;
1139     }
1140 
1141     rdma->qp = rdma->cm_id->qp;
1142     return 0;
1143 }
1144 
1145 /* Check whether On-Demand Paging is supported by RDAM device */
1146 static bool rdma_support_odp(struct ibv_context *dev)
1147 {
1148     struct ibv_device_attr_ex attr = {0};
1149     int ret = ibv_query_device_ex(dev, NULL, &attr);
1150     if (ret) {
1151         return false;
1152     }
1153 
1154     if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1155         return true;
1156     }
1157 
1158     return false;
1159 }
1160 
1161 /*
1162  * ibv_advise_mr to avoid RNR NAK error as far as possible.
1163  * The responder mr registering with ODP will sent RNR NAK back to
1164  * the requester in the face of the page fault.
1165  */
1166 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1167                                          uint32_t len,  uint32_t lkey,
1168                                          const char *name, bool wr)
1169 {
1170 #ifdef HAVE_IBV_ADVISE_MR
1171     int ret;
1172     int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1173                  IBV_ADVISE_MR_ADVICE_PREFETCH;
1174     struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1175 
1176     ret = ibv_advise_mr(pd, advice,
1177                         IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1178     /* ignore the error */
1179     if (ret) {
1180         trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1181     } else {
1182         trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1183     }
1184 #endif
1185 }
1186 
1187 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1188 {
1189     int i;
1190     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1191 
1192     for (i = 0; i < local->nb_blocks; i++) {
1193         int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1194 
1195         local->block[i].mr =
1196             ibv_reg_mr(rdma->pd,
1197                     local->block[i].local_host_addr,
1198                     local->block[i].length, access
1199                     );
1200 
1201         if (!local->block[i].mr &&
1202             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1203                 access |= IBV_ACCESS_ON_DEMAND;
1204                 /* register ODP mr */
1205                 local->block[i].mr =
1206                     ibv_reg_mr(rdma->pd,
1207                                local->block[i].local_host_addr,
1208                                local->block[i].length, access);
1209                 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1210 
1211                 if (local->block[i].mr) {
1212                     qemu_rdma_advise_prefetch_mr(rdma->pd,
1213                                     (uintptr_t)local->block[i].local_host_addr,
1214                                     local->block[i].length,
1215                                     local->block[i].mr->lkey,
1216                                     local->block[i].block_name,
1217                                     true);
1218                 }
1219         }
1220 
1221         if (!local->block[i].mr) {
1222             perror("Failed to register local dest ram block!");
1223             break;
1224         }
1225         rdma->total_registrations++;
1226     }
1227 
1228     if (i >= local->nb_blocks) {
1229         return 0;
1230     }
1231 
1232     for (i--; i >= 0; i--) {
1233         ibv_dereg_mr(local->block[i].mr);
1234         local->block[i].mr = NULL;
1235         rdma->total_registrations--;
1236     }
1237 
1238     return -1;
1239 
1240 }
1241 
1242 /*
1243  * Find the ram block that corresponds to the page requested to be
1244  * transmitted by QEMU.
1245  *
1246  * Once the block is found, also identify which 'chunk' within that
1247  * block that the page belongs to.
1248  *
1249  * This search cannot fail or the migration will fail.
1250  */
1251 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1252                                       uintptr_t block_offset,
1253                                       uint64_t offset,
1254                                       uint64_t length,
1255                                       uint64_t *block_index,
1256                                       uint64_t *chunk_index)
1257 {
1258     uint64_t current_addr = block_offset + offset;
1259     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1260                                                 (void *) block_offset);
1261     assert(block);
1262     assert(current_addr >= block->offset);
1263     assert((current_addr + length) <= (block->offset + block->length));
1264 
1265     *block_index = block->index;
1266     *chunk_index = ram_chunk_index(block->local_host_addr,
1267                 block->local_host_addr + (current_addr - block->offset));
1268 
1269     return 0;
1270 }
1271 
1272 /*
1273  * Register a chunk with IB. If the chunk was already registered
1274  * previously, then skip.
1275  *
1276  * Also return the keys associated with the registration needed
1277  * to perform the actual RDMA operation.
1278  */
1279 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1280         RDMALocalBlock *block, uintptr_t host_addr,
1281         uint32_t *lkey, uint32_t *rkey, int chunk,
1282         uint8_t *chunk_start, uint8_t *chunk_end)
1283 {
1284     if (block->mr) {
1285         if (lkey) {
1286             *lkey = block->mr->lkey;
1287         }
1288         if (rkey) {
1289             *rkey = block->mr->rkey;
1290         }
1291         return 0;
1292     }
1293 
1294     /* allocate memory to store chunk MRs */
1295     if (!block->pmr) {
1296         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1297     }
1298 
1299     /*
1300      * If 'rkey', then we're the destination, so grant access to the source.
1301      *
1302      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1303      */
1304     if (!block->pmr[chunk]) {
1305         uint64_t len = chunk_end - chunk_start;
1306         int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1307                      0;
1308 
1309         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1310 
1311         block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1312         if (!block->pmr[chunk] &&
1313             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1314             access |= IBV_ACCESS_ON_DEMAND;
1315             /* register ODP mr */
1316             block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1317             trace_qemu_rdma_register_odp_mr(block->block_name);
1318 
1319             if (block->pmr[chunk]) {
1320                 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1321                                             len, block->pmr[chunk]->lkey,
1322                                             block->block_name, rkey);
1323 
1324             }
1325         }
1326     }
1327     if (!block->pmr[chunk]) {
1328         perror("Failed to register chunk!");
1329         fprintf(stderr, "Chunk details: block: %d chunk index %d"
1330                         " start %" PRIuPTR " end %" PRIuPTR
1331                         " host %" PRIuPTR
1332                         " local %" PRIuPTR " registrations: %d\n",
1333                         block->index, chunk, (uintptr_t)chunk_start,
1334                         (uintptr_t)chunk_end, host_addr,
1335                         (uintptr_t)block->local_host_addr,
1336                         rdma->total_registrations);
1337         return -1;
1338     }
1339     rdma->total_registrations++;
1340 
1341     if (lkey) {
1342         *lkey = block->pmr[chunk]->lkey;
1343     }
1344     if (rkey) {
1345         *rkey = block->pmr[chunk]->rkey;
1346     }
1347     return 0;
1348 }
1349 
1350 /*
1351  * Register (at connection time) the memory used for control
1352  * channel messages.
1353  */
1354 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1355 {
1356     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1357             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1358             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1359     if (rdma->wr_data[idx].control_mr) {
1360         rdma->total_registrations++;
1361         return 0;
1362     }
1363     error_report("qemu_rdma_reg_control failed");
1364     return -1;
1365 }
1366 
1367 const char *print_wrid(int wrid)
1368 {
1369     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1370         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1371     }
1372     return wrid_desc[wrid];
1373 }
1374 
1375 /*
1376  * Perform a non-optimized memory unregistration after every transfer
1377  * for demonstration purposes, only if pin-all is not requested.
1378  *
1379  * Potential optimizations:
1380  * 1. Start a new thread to run this function continuously
1381         - for bit clearing
1382         - and for receipt of unregister messages
1383  * 2. Use an LRU.
1384  * 3. Use workload hints.
1385  */
1386 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1387 {
1388     while (rdma->unregistrations[rdma->unregister_current]) {
1389         int ret;
1390         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1391         uint64_t chunk =
1392             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1393         uint64_t index =
1394             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1395         RDMALocalBlock *block =
1396             &(rdma->local_ram_blocks.block[index]);
1397         RDMARegister reg = { .current_index = index };
1398         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1399                                  };
1400         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1401                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1402                                    .repeat = 1,
1403                                  };
1404 
1405         trace_qemu_rdma_unregister_waiting_proc(chunk,
1406                                                 rdma->unregister_current);
1407 
1408         rdma->unregistrations[rdma->unregister_current] = 0;
1409         rdma->unregister_current++;
1410 
1411         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1412             rdma->unregister_current = 0;
1413         }
1414 
1415 
1416         /*
1417          * Unregistration is speculative (because migration is single-threaded
1418          * and we cannot break the protocol's inifinband message ordering).
1419          * Thus, if the memory is currently being used for transmission,
1420          * then abort the attempt to unregister and try again
1421          * later the next time a completion is received for this memory.
1422          */
1423         clear_bit(chunk, block->unregister_bitmap);
1424 
1425         if (test_bit(chunk, block->transit_bitmap)) {
1426             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1427             continue;
1428         }
1429 
1430         trace_qemu_rdma_unregister_waiting_send(chunk);
1431 
1432         ret = ibv_dereg_mr(block->pmr[chunk]);
1433         block->pmr[chunk] = NULL;
1434         block->remote_keys[chunk] = 0;
1435 
1436         if (ret != 0) {
1437             perror("unregistration chunk failed");
1438             return -ret;
1439         }
1440         rdma->total_registrations--;
1441 
1442         reg.key.chunk = chunk;
1443         register_to_network(rdma, &reg);
1444         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1445                                 &resp, NULL, NULL);
1446         if (ret < 0) {
1447             return ret;
1448         }
1449 
1450         trace_qemu_rdma_unregister_waiting_complete(chunk);
1451     }
1452 
1453     return 0;
1454 }
1455 
1456 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1457                                          uint64_t chunk)
1458 {
1459     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1460 
1461     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1462     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1463 
1464     return result;
1465 }
1466 
1467 /*
1468  * Consult the connection manager to see a work request
1469  * (of any kind) has completed.
1470  * Return the work request ID that completed.
1471  */
1472 static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1473                                uint64_t *wr_id_out, uint32_t *byte_len)
1474 {
1475     int ret;
1476     struct ibv_wc wc;
1477     uint64_t wr_id;
1478 
1479     ret = ibv_poll_cq(cq, 1, &wc);
1480 
1481     if (!ret) {
1482         *wr_id_out = RDMA_WRID_NONE;
1483         return 0;
1484     }
1485 
1486     if (ret < 0) {
1487         error_report("ibv_poll_cq return %d", ret);
1488         return ret;
1489     }
1490 
1491     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1492 
1493     if (wc.status != IBV_WC_SUCCESS) {
1494         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1495                         wc.status, ibv_wc_status_str(wc.status));
1496         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1497 
1498         return -1;
1499     }
1500 
1501     if (rdma->control_ready_expected &&
1502         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1503         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1504                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1505         rdma->control_ready_expected = 0;
1506     }
1507 
1508     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1509         uint64_t chunk =
1510             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1511         uint64_t index =
1512             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1513         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1514 
1515         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1516                                    index, chunk, block->local_host_addr,
1517                                    (void *)(uintptr_t)block->remote_host_addr);
1518 
1519         clear_bit(chunk, block->transit_bitmap);
1520 
1521         if (rdma->nb_sent > 0) {
1522             rdma->nb_sent--;
1523         }
1524     } else {
1525         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1526     }
1527 
1528     *wr_id_out = wc.wr_id;
1529     if (byte_len) {
1530         *byte_len = wc.byte_len;
1531     }
1532 
1533     return  0;
1534 }
1535 
1536 /* Wait for activity on the completion channel.
1537  * Returns 0 on success, none-0 on error.
1538  */
1539 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1540                                        struct ibv_comp_channel *comp_channel)
1541 {
1542     struct rdma_cm_event *cm_event;
1543     int ret = -1;
1544 
1545     /*
1546      * Coroutine doesn't start until migration_fd_process_incoming()
1547      * so don't yield unless we know we're running inside of a coroutine.
1548      */
1549     if (rdma->migration_started_on_destination &&
1550         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1551         yield_until_fd_readable(comp_channel->fd);
1552     } else {
1553         /* This is the source side, we're in a separate thread
1554          * or destination prior to migration_fd_process_incoming()
1555          * after postcopy, the destination also in a separate thread.
1556          * we can't yield; so we have to poll the fd.
1557          * But we need to be able to handle 'cancel' or an error
1558          * without hanging forever.
1559          */
1560         while (!rdma->error_state  && !rdma->received_error) {
1561             GPollFD pfds[2];
1562             pfds[0].fd = comp_channel->fd;
1563             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1564             pfds[0].revents = 0;
1565 
1566             pfds[1].fd = rdma->channel->fd;
1567             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1568             pfds[1].revents = 0;
1569 
1570             /* 0.1s timeout, should be fine for a 'cancel' */
1571             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1572             case 2:
1573             case 1: /* fd active */
1574                 if (pfds[0].revents) {
1575                     return 0;
1576                 }
1577 
1578                 if (pfds[1].revents) {
1579                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1580                     if (ret) {
1581                         error_report("failed to get cm event while wait "
1582                                      "completion channel");
1583                         return -EPIPE;
1584                     }
1585 
1586                     error_report("receive cm event while wait comp channel,"
1587                                  "cm event is %d", cm_event->event);
1588                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1589                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1590                         rdma_ack_cm_event(cm_event);
1591                         return -EPIPE;
1592                     }
1593                     rdma_ack_cm_event(cm_event);
1594                 }
1595                 break;
1596 
1597             case 0: /* Timeout, go around again */
1598                 break;
1599 
1600             default: /* Error of some type -
1601                       * I don't trust errno from qemu_poll_ns
1602                      */
1603                 error_report("%s: poll failed", __func__);
1604                 return -EPIPE;
1605             }
1606 
1607             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1608                 /* Bail out and let the cancellation happen */
1609                 return -EPIPE;
1610             }
1611         }
1612     }
1613 
1614     if (rdma->received_error) {
1615         return -EPIPE;
1616     }
1617     return rdma->error_state;
1618 }
1619 
1620 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid)
1621 {
1622     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1623            rdma->recv_comp_channel;
1624 }
1625 
1626 static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid)
1627 {
1628     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1629 }
1630 
1631 /*
1632  * Block until the next work request has completed.
1633  *
1634  * First poll to see if a work request has already completed,
1635  * otherwise block.
1636  *
1637  * If we encounter completed work requests for IDs other than
1638  * the one we're interested in, then that's generally an error.
1639  *
1640  * The only exception is actual RDMA Write completions. These
1641  * completions only need to be recorded, but do not actually
1642  * need further processing.
1643  */
1644 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1645                                     uint32_t *byte_len)
1646 {
1647     int num_cq_events = 0, ret = 0;
1648     struct ibv_cq *cq;
1649     void *cq_ctx;
1650     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1651     struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1652     struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1653 
1654     if (ibv_req_notify_cq(poll_cq, 0)) {
1655         return -1;
1656     }
1657     /* poll cq first */
1658     while (wr_id != wrid_requested) {
1659         ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1660         if (ret < 0) {
1661             return ret;
1662         }
1663 
1664         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1665 
1666         if (wr_id == RDMA_WRID_NONE) {
1667             break;
1668         }
1669         if (wr_id != wrid_requested) {
1670             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1671                        wrid_requested, print_wrid(wr_id), wr_id);
1672         }
1673     }
1674 
1675     if (wr_id == wrid_requested) {
1676         return 0;
1677     }
1678 
1679     while (1) {
1680         ret = qemu_rdma_wait_comp_channel(rdma, ch);
1681         if (ret) {
1682             goto err_block_for_wrid;
1683         }
1684 
1685         ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1686         if (ret) {
1687             perror("ibv_get_cq_event");
1688             goto err_block_for_wrid;
1689         }
1690 
1691         num_cq_events++;
1692 
1693         ret = -ibv_req_notify_cq(cq, 0);
1694         if (ret) {
1695             goto err_block_for_wrid;
1696         }
1697 
1698         while (wr_id != wrid_requested) {
1699             ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1700             if (ret < 0) {
1701                 goto err_block_for_wrid;
1702             }
1703 
1704             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1705 
1706             if (wr_id == RDMA_WRID_NONE) {
1707                 break;
1708             }
1709             if (wr_id != wrid_requested) {
1710                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1711                                    wrid_requested, print_wrid(wr_id), wr_id);
1712             }
1713         }
1714 
1715         if (wr_id == wrid_requested) {
1716             goto success_block_for_wrid;
1717         }
1718     }
1719 
1720 success_block_for_wrid:
1721     if (num_cq_events) {
1722         ibv_ack_cq_events(cq, num_cq_events);
1723     }
1724     return 0;
1725 
1726 err_block_for_wrid:
1727     if (num_cq_events) {
1728         ibv_ack_cq_events(cq, num_cq_events);
1729     }
1730 
1731     rdma->error_state = ret;
1732     return ret;
1733 }
1734 
1735 /*
1736  * Post a SEND message work request for the control channel
1737  * containing some data and block until the post completes.
1738  */
1739 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1740                                        RDMAControlHeader *head)
1741 {
1742     int ret = 0;
1743     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1744     struct ibv_send_wr *bad_wr;
1745     struct ibv_sge sge = {
1746                            .addr = (uintptr_t)(wr->control),
1747                            .length = head->len + sizeof(RDMAControlHeader),
1748                            .lkey = wr->control_mr->lkey,
1749                          };
1750     struct ibv_send_wr send_wr = {
1751                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1752                                    .opcode = IBV_WR_SEND,
1753                                    .send_flags = IBV_SEND_SIGNALED,
1754                                    .sg_list = &sge,
1755                                    .num_sge = 1,
1756                                 };
1757 
1758     trace_qemu_rdma_post_send_control(control_desc(head->type));
1759 
1760     /*
1761      * We don't actually need to do a memcpy() in here if we used
1762      * the "sge" properly, but since we're only sending control messages
1763      * (not RAM in a performance-critical path), then its OK for now.
1764      *
1765      * The copy makes the RDMAControlHeader simpler to manipulate
1766      * for the time being.
1767      */
1768     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1769     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1770     control_to_network((void *) wr->control);
1771 
1772     if (buf) {
1773         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1774     }
1775 
1776 
1777     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1778 
1779     if (ret > 0) {
1780         error_report("Failed to use post IB SEND for control");
1781         return -ret;
1782     }
1783 
1784     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1785     if (ret < 0) {
1786         error_report("rdma migration: send polling control error");
1787     }
1788 
1789     return ret;
1790 }
1791 
1792 /*
1793  * Post a RECV work request in anticipation of some future receipt
1794  * of data on the control channel.
1795  */
1796 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1797 {
1798     struct ibv_recv_wr *bad_wr;
1799     struct ibv_sge sge = {
1800                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1801                             .length = RDMA_CONTROL_MAX_BUFFER,
1802                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1803                          };
1804 
1805     struct ibv_recv_wr recv_wr = {
1806                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1807                                     .sg_list = &sge,
1808                                     .num_sge = 1,
1809                                  };
1810 
1811 
1812     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1813         return -1;
1814     }
1815 
1816     return 0;
1817 }
1818 
1819 /*
1820  * Block and wait for a RECV control channel message to arrive.
1821  */
1822 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1823                 RDMAControlHeader *head, int expecting, int idx)
1824 {
1825     uint32_t byte_len;
1826     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1827                                        &byte_len);
1828 
1829     if (ret < 0) {
1830         error_report("rdma migration: recv polling control error!");
1831         return ret;
1832     }
1833 
1834     network_to_control((void *) rdma->wr_data[idx].control);
1835     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1836 
1837     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1838 
1839     if (expecting == RDMA_CONTROL_NONE) {
1840         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1841                                              head->type);
1842     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1843         error_report("Was expecting a %s (%d) control message"
1844                 ", but got: %s (%d), length: %d",
1845                 control_desc(expecting), expecting,
1846                 control_desc(head->type), head->type, head->len);
1847         if (head->type == RDMA_CONTROL_ERROR) {
1848             rdma->received_error = true;
1849         }
1850         return -EIO;
1851     }
1852     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1853         error_report("too long length: %d", head->len);
1854         return -EINVAL;
1855     }
1856     if (sizeof(*head) + head->len != byte_len) {
1857         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1858         return -EINVAL;
1859     }
1860 
1861     return 0;
1862 }
1863 
1864 /*
1865  * When a RECV work request has completed, the work request's
1866  * buffer is pointed at the header.
1867  *
1868  * This will advance the pointer to the data portion
1869  * of the control message of the work request's buffer that
1870  * was populated after the work request finished.
1871  */
1872 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1873                                   RDMAControlHeader *head)
1874 {
1875     rdma->wr_data[idx].control_len = head->len;
1876     rdma->wr_data[idx].control_curr =
1877         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1878 }
1879 
1880 /*
1881  * This is an 'atomic' high-level operation to deliver a single, unified
1882  * control-channel message.
1883  *
1884  * Additionally, if the user is expecting some kind of reply to this message,
1885  * they can request a 'resp' response message be filled in by posting an
1886  * additional work request on behalf of the user and waiting for an additional
1887  * completion.
1888  *
1889  * The extra (optional) response is used during registration to us from having
1890  * to perform an *additional* exchange of message just to provide a response by
1891  * instead piggy-backing on the acknowledgement.
1892  */
1893 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1894                                    uint8_t *data, RDMAControlHeader *resp,
1895                                    int *resp_idx,
1896                                    int (*callback)(RDMAContext *rdma))
1897 {
1898     int ret = 0;
1899 
1900     /*
1901      * Wait until the dest is ready before attempting to deliver the message
1902      * by waiting for a READY message.
1903      */
1904     if (rdma->control_ready_expected) {
1905         RDMAControlHeader resp_ignored;
1906 
1907         ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1908                                               RDMA_CONTROL_READY,
1909                                               RDMA_WRID_READY);
1910         if (ret < 0) {
1911             return ret;
1912         }
1913     }
1914 
1915     /*
1916      * If the user is expecting a response, post a WR in anticipation of it.
1917      */
1918     if (resp) {
1919         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1920         if (ret) {
1921             error_report("rdma migration: error posting"
1922                     " extra control recv for anticipated result!");
1923             return ret;
1924         }
1925     }
1926 
1927     /*
1928      * Post a WR to replace the one we just consumed for the READY message.
1929      */
1930     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1931     if (ret) {
1932         error_report("rdma migration: error posting first control recv!");
1933         return ret;
1934     }
1935 
1936     /*
1937      * Deliver the control message that was requested.
1938      */
1939     ret = qemu_rdma_post_send_control(rdma, data, head);
1940 
1941     if (ret < 0) {
1942         error_report("Failed to send control buffer!");
1943         return ret;
1944     }
1945 
1946     /*
1947      * If we're expecting a response, block and wait for it.
1948      */
1949     if (resp) {
1950         if (callback) {
1951             trace_qemu_rdma_exchange_send_issue_callback();
1952             ret = callback(rdma);
1953             if (ret < 0) {
1954                 return ret;
1955             }
1956         }
1957 
1958         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1959         ret = qemu_rdma_exchange_get_response(rdma, resp,
1960                                               resp->type, RDMA_WRID_DATA);
1961 
1962         if (ret < 0) {
1963             return ret;
1964         }
1965 
1966         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1967         if (resp_idx) {
1968             *resp_idx = RDMA_WRID_DATA;
1969         }
1970         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1971     }
1972 
1973     rdma->control_ready_expected = 1;
1974 
1975     return 0;
1976 }
1977 
1978 /*
1979  * This is an 'atomic' high-level operation to receive a single, unified
1980  * control-channel message.
1981  */
1982 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1983                                 int expecting)
1984 {
1985     RDMAControlHeader ready = {
1986                                 .len = 0,
1987                                 .type = RDMA_CONTROL_READY,
1988                                 .repeat = 1,
1989                               };
1990     int ret;
1991 
1992     /*
1993      * Inform the source that we're ready to receive a message.
1994      */
1995     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1996 
1997     if (ret < 0) {
1998         error_report("Failed to send control buffer!");
1999         return ret;
2000     }
2001 
2002     /*
2003      * Block and wait for the message.
2004      */
2005     ret = qemu_rdma_exchange_get_response(rdma, head,
2006                                           expecting, RDMA_WRID_READY);
2007 
2008     if (ret < 0) {
2009         return ret;
2010     }
2011 
2012     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2013 
2014     /*
2015      * Post a new RECV work request to replace the one we just consumed.
2016      */
2017     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2018     if (ret) {
2019         error_report("rdma migration: error posting second control recv!");
2020         return ret;
2021     }
2022 
2023     return 0;
2024 }
2025 
2026 /*
2027  * Write an actual chunk of memory using RDMA.
2028  *
2029  * If we're using dynamic registration on the dest-side, we have to
2030  * send a registration command first.
2031  */
2032 static int qemu_rdma_write_one(RDMAContext *rdma,
2033                                int current_index, uint64_t current_addr,
2034                                uint64_t length)
2035 {
2036     struct ibv_sge sge;
2037     struct ibv_send_wr send_wr = { 0 };
2038     struct ibv_send_wr *bad_wr;
2039     int reg_result_idx, ret, count = 0;
2040     uint64_t chunk, chunks;
2041     uint8_t *chunk_start, *chunk_end;
2042     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2043     RDMARegister reg;
2044     RDMARegisterResult *reg_result;
2045     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2046     RDMAControlHeader head = { .len = sizeof(RDMARegister),
2047                                .type = RDMA_CONTROL_REGISTER_REQUEST,
2048                                .repeat = 1,
2049                              };
2050 
2051 retry:
2052     sge.addr = (uintptr_t)(block->local_host_addr +
2053                             (current_addr - block->offset));
2054     sge.length = length;
2055 
2056     chunk = ram_chunk_index(block->local_host_addr,
2057                             (uint8_t *)(uintptr_t)sge.addr);
2058     chunk_start = ram_chunk_start(block, chunk);
2059 
2060     if (block->is_ram_block) {
2061         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2062 
2063         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2064             chunks--;
2065         }
2066     } else {
2067         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2068 
2069         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2070             chunks--;
2071         }
2072     }
2073 
2074     trace_qemu_rdma_write_one_top(chunks + 1,
2075                                   (chunks + 1) *
2076                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2077 
2078     chunk_end = ram_chunk_end(block, chunk + chunks);
2079 
2080 
2081     while (test_bit(chunk, block->transit_bitmap)) {
2082         (void)count;
2083         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2084                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2085 
2086         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2087 
2088         if (ret < 0) {
2089             error_report("Failed to Wait for previous write to complete "
2090                     "block %d chunk %" PRIu64
2091                     " current %" PRIu64 " len %" PRIu64 " %d",
2092                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2093             return ret;
2094         }
2095     }
2096 
2097     if (!rdma->pin_all || !block->is_ram_block) {
2098         if (!block->remote_keys[chunk]) {
2099             /*
2100              * This chunk has not yet been registered, so first check to see
2101              * if the entire chunk is zero. If so, tell the other size to
2102              * memset() + madvise() the entire chunk without RDMA.
2103              */
2104 
2105             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2106                 RDMACompress comp = {
2107                                         .offset = current_addr,
2108                                         .value = 0,
2109                                         .block_idx = current_index,
2110                                         .length = length,
2111                                     };
2112 
2113                 head.len = sizeof(comp);
2114                 head.type = RDMA_CONTROL_COMPRESS;
2115 
2116                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2117                                                current_index, current_addr);
2118 
2119                 compress_to_network(rdma, &comp);
2120                 ret = qemu_rdma_exchange_send(rdma, &head,
2121                                 (uint8_t *) &comp, NULL, NULL, NULL);
2122 
2123                 if (ret < 0) {
2124                     return -EIO;
2125                 }
2126 
2127                 /*
2128                  * TODO: Here we are sending something, but we are not
2129                  * accounting for anything transferred.  The following is wrong:
2130                  *
2131                  * stat64_add(&mig_stats.rdma_bytes, sge.length);
2132                  *
2133                  * because we are using some kind of compression.  I
2134                  * would think that head.len would be the more similar
2135                  * thing to a correct value.
2136                  */
2137                 stat64_add(&mig_stats.zero_pages,
2138                            sge.length / qemu_target_page_size());
2139                 return 1;
2140             }
2141 
2142             /*
2143              * Otherwise, tell other side to register.
2144              */
2145             reg.current_index = current_index;
2146             if (block->is_ram_block) {
2147                 reg.key.current_addr = current_addr;
2148             } else {
2149                 reg.key.chunk = chunk;
2150             }
2151             reg.chunks = chunks;
2152 
2153             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2154                                               current_addr);
2155 
2156             register_to_network(rdma, &reg);
2157             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2158                                     &resp, &reg_result_idx, NULL);
2159             if (ret < 0) {
2160                 return ret;
2161             }
2162 
2163             /* try to overlap this single registration with the one we sent. */
2164             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2165                                                 &sge.lkey, NULL, chunk,
2166                                                 chunk_start, chunk_end)) {
2167                 error_report("cannot get lkey");
2168                 return -EINVAL;
2169             }
2170 
2171             reg_result = (RDMARegisterResult *)
2172                     rdma->wr_data[reg_result_idx].control_curr;
2173 
2174             network_to_result(reg_result);
2175 
2176             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2177                                                  reg_result->rkey, chunk);
2178 
2179             block->remote_keys[chunk] = reg_result->rkey;
2180             block->remote_host_addr = reg_result->host_addr;
2181         } else {
2182             /* already registered before */
2183             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2184                                                 &sge.lkey, NULL, chunk,
2185                                                 chunk_start, chunk_end)) {
2186                 error_report("cannot get lkey!");
2187                 return -EINVAL;
2188             }
2189         }
2190 
2191         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2192     } else {
2193         send_wr.wr.rdma.rkey = block->remote_rkey;
2194 
2195         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2196                                                      &sge.lkey, NULL, chunk,
2197                                                      chunk_start, chunk_end)) {
2198             error_report("cannot get lkey!");
2199             return -EINVAL;
2200         }
2201     }
2202 
2203     /*
2204      * Encode the ram block index and chunk within this wrid.
2205      * We will use this information at the time of completion
2206      * to figure out which bitmap to check against and then which
2207      * chunk in the bitmap to look for.
2208      */
2209     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2210                                         current_index, chunk);
2211 
2212     send_wr.opcode = IBV_WR_RDMA_WRITE;
2213     send_wr.send_flags = IBV_SEND_SIGNALED;
2214     send_wr.sg_list = &sge;
2215     send_wr.num_sge = 1;
2216     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2217                                 (current_addr - block->offset);
2218 
2219     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2220                                    sge.length);
2221 
2222     /*
2223      * ibv_post_send() does not return negative error numbers,
2224      * per the specification they are positive - no idea why.
2225      */
2226     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2227 
2228     if (ret == ENOMEM) {
2229         trace_qemu_rdma_write_one_queue_full();
2230         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2231         if (ret < 0) {
2232             error_report("rdma migration: failed to make "
2233                          "room in full send queue! %d", ret);
2234             return ret;
2235         }
2236 
2237         goto retry;
2238 
2239     } else if (ret > 0) {
2240         perror("rdma migration: post rdma write failed");
2241         return -ret;
2242     }
2243 
2244     set_bit(chunk, block->transit_bitmap);
2245     stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2246     /*
2247      * We are adding to transferred the amount of data written, but no
2248      * overhead at all.  I will asume that RDMA is magicaly and don't
2249      * need to transfer (at least) the addresses where it wants to
2250      * write the pages.  Here it looks like it should be something
2251      * like:
2252      *     sizeof(send_wr) + sge.length
2253      * but this being RDMA, who knows.
2254      */
2255     stat64_add(&mig_stats.rdma_bytes, sge.length);
2256     ram_transferred_add(sge.length);
2257     rdma->total_writes++;
2258 
2259     return 0;
2260 }
2261 
2262 /*
2263  * Push out any unwritten RDMA operations.
2264  *
2265  * We support sending out multiple chunks at the same time.
2266  * Not all of them need to get signaled in the completion queue.
2267  */
2268 static int qemu_rdma_write_flush(RDMAContext *rdma)
2269 {
2270     int ret;
2271 
2272     if (!rdma->current_length) {
2273         return 0;
2274     }
2275 
2276     ret = qemu_rdma_write_one(rdma,
2277             rdma->current_index, rdma->current_addr, rdma->current_length);
2278 
2279     if (ret < 0) {
2280         return ret;
2281     }
2282 
2283     if (ret == 0) {
2284         rdma->nb_sent++;
2285         trace_qemu_rdma_write_flush(rdma->nb_sent);
2286     }
2287 
2288     rdma->current_length = 0;
2289     rdma->current_addr = 0;
2290 
2291     return 0;
2292 }
2293 
2294 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2295                     uint64_t offset, uint64_t len)
2296 {
2297     RDMALocalBlock *block;
2298     uint8_t *host_addr;
2299     uint8_t *chunk_end;
2300 
2301     if (rdma->current_index < 0) {
2302         return 0;
2303     }
2304 
2305     if (rdma->current_chunk < 0) {
2306         return 0;
2307     }
2308 
2309     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2310     host_addr = block->local_host_addr + (offset - block->offset);
2311     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2312 
2313     if (rdma->current_length == 0) {
2314         return 0;
2315     }
2316 
2317     /*
2318      * Only merge into chunk sequentially.
2319      */
2320     if (offset != (rdma->current_addr + rdma->current_length)) {
2321         return 0;
2322     }
2323 
2324     if (offset < block->offset) {
2325         return 0;
2326     }
2327 
2328     if ((offset + len) > (block->offset + block->length)) {
2329         return 0;
2330     }
2331 
2332     if ((host_addr + len) > chunk_end) {
2333         return 0;
2334     }
2335 
2336     return 1;
2337 }
2338 
2339 /*
2340  * We're not actually writing here, but doing three things:
2341  *
2342  * 1. Identify the chunk the buffer belongs to.
2343  * 2. If the chunk is full or the buffer doesn't belong to the current
2344  *    chunk, then start a new chunk and flush() the old chunk.
2345  * 3. To keep the hardware busy, we also group chunks into batches
2346  *    and only require that a batch gets acknowledged in the completion
2347  *    queue instead of each individual chunk.
2348  */
2349 static int qemu_rdma_write(RDMAContext *rdma,
2350                            uint64_t block_offset, uint64_t offset,
2351                            uint64_t len)
2352 {
2353     uint64_t current_addr = block_offset + offset;
2354     uint64_t index = rdma->current_index;
2355     uint64_t chunk = rdma->current_chunk;
2356     int ret;
2357 
2358     /* If we cannot merge it, we flush the current buffer first. */
2359     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2360         ret = qemu_rdma_write_flush(rdma);
2361         if (ret) {
2362             return ret;
2363         }
2364         rdma->current_length = 0;
2365         rdma->current_addr = current_addr;
2366 
2367         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2368                                          offset, len, &index, &chunk);
2369         if (ret) {
2370             error_report("ram block search failed");
2371             return ret;
2372         }
2373         rdma->current_index = index;
2374         rdma->current_chunk = chunk;
2375     }
2376 
2377     /* merge it */
2378     rdma->current_length += len;
2379 
2380     /* flush it if buffer is too large */
2381     if (rdma->current_length >= RDMA_MERGE_MAX) {
2382         return qemu_rdma_write_flush(rdma);
2383     }
2384 
2385     return 0;
2386 }
2387 
2388 static void qemu_rdma_cleanup(RDMAContext *rdma)
2389 {
2390     int idx;
2391 
2392     if (rdma->cm_id && rdma->connected) {
2393         if ((rdma->error_state ||
2394              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2395             !rdma->received_error) {
2396             RDMAControlHeader head = { .len = 0,
2397                                        .type = RDMA_CONTROL_ERROR,
2398                                        .repeat = 1,
2399                                      };
2400             error_report("Early error. Sending error.");
2401             qemu_rdma_post_send_control(rdma, NULL, &head);
2402         }
2403 
2404         rdma_disconnect(rdma->cm_id);
2405         trace_qemu_rdma_cleanup_disconnect();
2406         rdma->connected = false;
2407     }
2408 
2409     if (rdma->channel) {
2410         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2411     }
2412     g_free(rdma->dest_blocks);
2413     rdma->dest_blocks = NULL;
2414 
2415     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2416         if (rdma->wr_data[idx].control_mr) {
2417             rdma->total_registrations--;
2418             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2419         }
2420         rdma->wr_data[idx].control_mr = NULL;
2421     }
2422 
2423     if (rdma->local_ram_blocks.block) {
2424         while (rdma->local_ram_blocks.nb_blocks) {
2425             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2426         }
2427     }
2428 
2429     if (rdma->qp) {
2430         rdma_destroy_qp(rdma->cm_id);
2431         rdma->qp = NULL;
2432     }
2433     if (rdma->recv_cq) {
2434         ibv_destroy_cq(rdma->recv_cq);
2435         rdma->recv_cq = NULL;
2436     }
2437     if (rdma->send_cq) {
2438         ibv_destroy_cq(rdma->send_cq);
2439         rdma->send_cq = NULL;
2440     }
2441     if (rdma->recv_comp_channel) {
2442         ibv_destroy_comp_channel(rdma->recv_comp_channel);
2443         rdma->recv_comp_channel = NULL;
2444     }
2445     if (rdma->send_comp_channel) {
2446         ibv_destroy_comp_channel(rdma->send_comp_channel);
2447         rdma->send_comp_channel = NULL;
2448     }
2449     if (rdma->pd) {
2450         ibv_dealloc_pd(rdma->pd);
2451         rdma->pd = NULL;
2452     }
2453     if (rdma->cm_id) {
2454         rdma_destroy_id(rdma->cm_id);
2455         rdma->cm_id = NULL;
2456     }
2457 
2458     /* the destination side, listen_id and channel is shared */
2459     if (rdma->listen_id) {
2460         if (!rdma->is_return_path) {
2461             rdma_destroy_id(rdma->listen_id);
2462         }
2463         rdma->listen_id = NULL;
2464 
2465         if (rdma->channel) {
2466             if (!rdma->is_return_path) {
2467                 rdma_destroy_event_channel(rdma->channel);
2468             }
2469             rdma->channel = NULL;
2470         }
2471     }
2472 
2473     if (rdma->channel) {
2474         rdma_destroy_event_channel(rdma->channel);
2475         rdma->channel = NULL;
2476     }
2477     g_free(rdma->host);
2478     g_free(rdma->host_port);
2479     rdma->host = NULL;
2480     rdma->host_port = NULL;
2481 }
2482 
2483 
2484 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2485 {
2486     int ret, idx;
2487     Error *local_err = NULL, **temp = &local_err;
2488 
2489     /*
2490      * Will be validated against destination's actual capabilities
2491      * after the connect() completes.
2492      */
2493     rdma->pin_all = pin_all;
2494 
2495     ret = qemu_rdma_resolve_host(rdma, temp);
2496     if (ret) {
2497         goto err_rdma_source_init;
2498     }
2499 
2500     ret = qemu_rdma_alloc_pd_cq(rdma);
2501     if (ret) {
2502         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2503                     " limits may be too low. Please check $ ulimit -a # and "
2504                     "search for 'ulimit -l' in the output");
2505         goto err_rdma_source_init;
2506     }
2507 
2508     ret = qemu_rdma_alloc_qp(rdma);
2509     if (ret) {
2510         ERROR(temp, "rdma migration: error allocating qp!");
2511         goto err_rdma_source_init;
2512     }
2513 
2514     ret = qemu_rdma_init_ram_blocks(rdma);
2515     if (ret) {
2516         ERROR(temp, "rdma migration: error initializing ram blocks!");
2517         goto err_rdma_source_init;
2518     }
2519 
2520     /* Build the hash that maps from offset to RAMBlock */
2521     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2522     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2523         g_hash_table_insert(rdma->blockmap,
2524                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2525                 &rdma->local_ram_blocks.block[idx]);
2526     }
2527 
2528     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2529         ret = qemu_rdma_reg_control(rdma, idx);
2530         if (ret) {
2531             ERROR(temp, "rdma migration: error registering %d control!",
2532                                                             idx);
2533             goto err_rdma_source_init;
2534         }
2535     }
2536 
2537     return 0;
2538 
2539 err_rdma_source_init:
2540     error_propagate(errp, local_err);
2541     qemu_rdma_cleanup(rdma);
2542     return -1;
2543 }
2544 
2545 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2546                                      struct rdma_cm_event **cm_event,
2547                                      long msec, Error **errp)
2548 {
2549     int ret;
2550     struct pollfd poll_fd = {
2551                                 .fd = rdma->channel->fd,
2552                                 .events = POLLIN,
2553                                 .revents = 0
2554                             };
2555 
2556     do {
2557         ret = poll(&poll_fd, 1, msec);
2558     } while (ret < 0 && errno == EINTR);
2559 
2560     if (ret == 0) {
2561         ERROR(errp, "poll cm event timeout");
2562         return -1;
2563     } else if (ret < 0) {
2564         ERROR(errp, "failed to poll cm event, errno=%i", errno);
2565         return -1;
2566     } else if (poll_fd.revents & POLLIN) {
2567         return rdma_get_cm_event(rdma->channel, cm_event);
2568     } else {
2569         ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2570         return -1;
2571     }
2572 }
2573 
2574 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2575 {
2576     RDMACapabilities cap = {
2577                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2578                                 .flags = 0,
2579                            };
2580     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2581                                           .retry_count = 5,
2582                                           .private_data = &cap,
2583                                           .private_data_len = sizeof(cap),
2584                                         };
2585     struct rdma_cm_event *cm_event;
2586     int ret;
2587 
2588     /*
2589      * Only negotiate the capability with destination if the user
2590      * on the source first requested the capability.
2591      */
2592     if (rdma->pin_all) {
2593         trace_qemu_rdma_connect_pin_all_requested();
2594         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2595     }
2596 
2597     caps_to_network(&cap);
2598 
2599     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2600     if (ret) {
2601         ERROR(errp, "posting second control recv");
2602         goto err_rdma_source_connect;
2603     }
2604 
2605     ret = rdma_connect(rdma->cm_id, &conn_param);
2606     if (ret) {
2607         perror("rdma_connect");
2608         ERROR(errp, "connecting to destination!");
2609         goto err_rdma_source_connect;
2610     }
2611 
2612     if (return_path) {
2613         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2614     } else {
2615         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2616     }
2617     if (ret) {
2618         perror("rdma_get_cm_event after rdma_connect");
2619         ERROR(errp, "connecting to destination!");
2620         goto err_rdma_source_connect;
2621     }
2622 
2623     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2624         error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2625         ERROR(errp, "connecting to destination!");
2626         rdma_ack_cm_event(cm_event);
2627         goto err_rdma_source_connect;
2628     }
2629     rdma->connected = true;
2630 
2631     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2632     network_to_caps(&cap);
2633 
2634     /*
2635      * Verify that the *requested* capabilities are supported by the destination
2636      * and disable them otherwise.
2637      */
2638     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2639         ERROR(errp, "Server cannot support pinning all memory. "
2640                         "Will register memory dynamically.");
2641         rdma->pin_all = false;
2642     }
2643 
2644     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2645 
2646     rdma_ack_cm_event(cm_event);
2647 
2648     rdma->control_ready_expected = 1;
2649     rdma->nb_sent = 0;
2650     return 0;
2651 
2652 err_rdma_source_connect:
2653     qemu_rdma_cleanup(rdma);
2654     return -1;
2655 }
2656 
2657 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2658 {
2659     int ret, idx;
2660     struct rdma_cm_id *listen_id;
2661     char ip[40] = "unknown";
2662     struct rdma_addrinfo *res, *e;
2663     char port_str[16];
2664     int reuse = 1;
2665 
2666     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2667         rdma->wr_data[idx].control_len = 0;
2668         rdma->wr_data[idx].control_curr = NULL;
2669     }
2670 
2671     if (!rdma->host || !rdma->host[0]) {
2672         ERROR(errp, "RDMA host is not set!");
2673         rdma->error_state = -EINVAL;
2674         return -1;
2675     }
2676     /* create CM channel */
2677     rdma->channel = rdma_create_event_channel();
2678     if (!rdma->channel) {
2679         ERROR(errp, "could not create rdma event channel");
2680         rdma->error_state = -EINVAL;
2681         return -1;
2682     }
2683 
2684     /* create CM id */
2685     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2686     if (ret) {
2687         ERROR(errp, "could not create cm_id!");
2688         goto err_dest_init_create_listen_id;
2689     }
2690 
2691     snprintf(port_str, 16, "%d", rdma->port);
2692     port_str[15] = '\0';
2693 
2694     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2695     if (ret < 0) {
2696         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2697         goto err_dest_init_bind_addr;
2698     }
2699 
2700     ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2701                           &reuse, sizeof reuse);
2702     if (ret) {
2703         ERROR(errp, "Error: could not set REUSEADDR option");
2704         goto err_dest_init_bind_addr;
2705     }
2706     for (e = res; e != NULL; e = e->ai_next) {
2707         inet_ntop(e->ai_family,
2708             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2709         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2710         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2711         if (ret) {
2712             continue;
2713         }
2714         if (e->ai_family == AF_INET6) {
2715             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2716             if (ret) {
2717                 continue;
2718             }
2719         }
2720         break;
2721     }
2722 
2723     rdma_freeaddrinfo(res);
2724     if (!e) {
2725         ERROR(errp, "Error: could not rdma_bind_addr!");
2726         goto err_dest_init_bind_addr;
2727     }
2728 
2729     rdma->listen_id = listen_id;
2730     qemu_rdma_dump_gid("dest_init", listen_id);
2731     return 0;
2732 
2733 err_dest_init_bind_addr:
2734     rdma_destroy_id(listen_id);
2735 err_dest_init_create_listen_id:
2736     rdma_destroy_event_channel(rdma->channel);
2737     rdma->channel = NULL;
2738     rdma->error_state = ret;
2739     return ret;
2740 
2741 }
2742 
2743 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2744                                             RDMAContext *rdma)
2745 {
2746     int idx;
2747 
2748     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2749         rdma_return_path->wr_data[idx].control_len = 0;
2750         rdma_return_path->wr_data[idx].control_curr = NULL;
2751     }
2752 
2753     /*the CM channel and CM id is shared*/
2754     rdma_return_path->channel = rdma->channel;
2755     rdma_return_path->listen_id = rdma->listen_id;
2756 
2757     rdma->return_path = rdma_return_path;
2758     rdma_return_path->return_path = rdma;
2759     rdma_return_path->is_return_path = true;
2760 }
2761 
2762 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2763 {
2764     RDMAContext *rdma = NULL;
2765     InetSocketAddress *addr;
2766 
2767     if (host_port) {
2768         rdma = g_new0(RDMAContext, 1);
2769         rdma->current_index = -1;
2770         rdma->current_chunk = -1;
2771 
2772         addr = g_new(InetSocketAddress, 1);
2773         if (!inet_parse(addr, host_port, NULL)) {
2774             rdma->port = atoi(addr->port);
2775             rdma->host = g_strdup(addr->host);
2776             rdma->host_port = g_strdup(host_port);
2777         } else {
2778             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2779             g_free(rdma);
2780             rdma = NULL;
2781         }
2782 
2783         qapi_free_InetSocketAddress(addr);
2784     }
2785 
2786     return rdma;
2787 }
2788 
2789 /*
2790  * QEMUFile interface to the control channel.
2791  * SEND messages for control only.
2792  * VM's ram is handled with regular RDMA messages.
2793  */
2794 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2795                                        const struct iovec *iov,
2796                                        size_t niov,
2797                                        int *fds,
2798                                        size_t nfds,
2799                                        int flags,
2800                                        Error **errp)
2801 {
2802     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2803     RDMAContext *rdma;
2804     int ret;
2805     ssize_t done = 0;
2806     size_t i;
2807     size_t len = 0;
2808 
2809     RCU_READ_LOCK_GUARD();
2810     rdma = qatomic_rcu_read(&rioc->rdmaout);
2811 
2812     if (!rdma) {
2813         error_setg(errp, "RDMA control channel output is not set");
2814         return -1;
2815     }
2816 
2817     CHECK_ERROR_STATE();
2818 
2819     /*
2820      * Push out any writes that
2821      * we're queued up for VM's ram.
2822      */
2823     ret = qemu_rdma_write_flush(rdma);
2824     if (ret < 0) {
2825         rdma->error_state = ret;
2826         error_setg(errp, "qemu_rdma_write_flush returned %d", ret);
2827         return -1;
2828     }
2829 
2830     for (i = 0; i < niov; i++) {
2831         size_t remaining = iov[i].iov_len;
2832         uint8_t * data = (void *)iov[i].iov_base;
2833         while (remaining) {
2834             RDMAControlHeader head = {};
2835 
2836             len = MIN(remaining, RDMA_SEND_INCREMENT);
2837             remaining -= len;
2838 
2839             head.len = len;
2840             head.type = RDMA_CONTROL_QEMU_FILE;
2841 
2842             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2843 
2844             if (ret < 0) {
2845                 rdma->error_state = ret;
2846                 error_setg(errp, "qemu_rdma_exchange_send returned %d", ret);
2847                 return -1;
2848             }
2849 
2850             data += len;
2851             done += len;
2852         }
2853     }
2854 
2855     return done;
2856 }
2857 
2858 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2859                              size_t size, int idx)
2860 {
2861     size_t len = 0;
2862 
2863     if (rdma->wr_data[idx].control_len) {
2864         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2865 
2866         len = MIN(size, rdma->wr_data[idx].control_len);
2867         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2868         rdma->wr_data[idx].control_curr += len;
2869         rdma->wr_data[idx].control_len -= len;
2870     }
2871 
2872     return len;
2873 }
2874 
2875 /*
2876  * QEMUFile interface to the control channel.
2877  * RDMA links don't use bytestreams, so we have to
2878  * return bytes to QEMUFile opportunistically.
2879  */
2880 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2881                                       const struct iovec *iov,
2882                                       size_t niov,
2883                                       int **fds,
2884                                       size_t *nfds,
2885                                       int flags,
2886                                       Error **errp)
2887 {
2888     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2889     RDMAContext *rdma;
2890     RDMAControlHeader head;
2891     int ret = 0;
2892     ssize_t i;
2893     size_t done = 0;
2894 
2895     RCU_READ_LOCK_GUARD();
2896     rdma = qatomic_rcu_read(&rioc->rdmain);
2897 
2898     if (!rdma) {
2899         error_setg(errp, "RDMA control channel input is not set");
2900         return -1;
2901     }
2902 
2903     CHECK_ERROR_STATE();
2904 
2905     for (i = 0; i < niov; i++) {
2906         size_t want = iov[i].iov_len;
2907         uint8_t *data = (void *)iov[i].iov_base;
2908 
2909         /*
2910          * First, we hold on to the last SEND message we
2911          * were given and dish out the bytes until we run
2912          * out of bytes.
2913          */
2914         ret = qemu_rdma_fill(rdma, data, want, 0);
2915         done += ret;
2916         want -= ret;
2917         /* Got what we needed, so go to next iovec */
2918         if (want == 0) {
2919             continue;
2920         }
2921 
2922         /* If we got any data so far, then don't wait
2923          * for more, just return what we have */
2924         if (done > 0) {
2925             break;
2926         }
2927 
2928 
2929         /* We've got nothing at all, so lets wait for
2930          * more to arrive
2931          */
2932         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2933 
2934         if (ret < 0) {
2935             rdma->error_state = ret;
2936             error_setg(errp, "qemu_rdma_exchange_recv returned %d", ret);
2937             return -1;
2938         }
2939 
2940         /*
2941          * SEND was received with new bytes, now try again.
2942          */
2943         ret = qemu_rdma_fill(rdma, data, want, 0);
2944         done += ret;
2945         want -= ret;
2946 
2947         /* Still didn't get enough, so lets just return */
2948         if (want) {
2949             if (done == 0) {
2950                 return QIO_CHANNEL_ERR_BLOCK;
2951             } else {
2952                 break;
2953             }
2954         }
2955     }
2956     return done;
2957 }
2958 
2959 /*
2960  * Block until all the outstanding chunks have been delivered by the hardware.
2961  */
2962 static int qemu_rdma_drain_cq(RDMAContext *rdma)
2963 {
2964     int ret;
2965 
2966     if (qemu_rdma_write_flush(rdma) < 0) {
2967         return -EIO;
2968     }
2969 
2970     while (rdma->nb_sent) {
2971         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2972         if (ret < 0) {
2973             error_report("rdma migration: complete polling error!");
2974             return -EIO;
2975         }
2976     }
2977 
2978     qemu_rdma_unregister_waiting(rdma);
2979 
2980     return 0;
2981 }
2982 
2983 
2984 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2985                                          bool blocking,
2986                                          Error **errp)
2987 {
2988     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2989     /* XXX we should make readv/writev actually honour this :-) */
2990     rioc->blocking = blocking;
2991     return 0;
2992 }
2993 
2994 
2995 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2996 struct QIOChannelRDMASource {
2997     GSource parent;
2998     QIOChannelRDMA *rioc;
2999     GIOCondition condition;
3000 };
3001 
3002 static gboolean
3003 qio_channel_rdma_source_prepare(GSource *source,
3004                                 gint *timeout)
3005 {
3006     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3007     RDMAContext *rdma;
3008     GIOCondition cond = 0;
3009     *timeout = -1;
3010 
3011     RCU_READ_LOCK_GUARD();
3012     if (rsource->condition == G_IO_IN) {
3013         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3014     } else {
3015         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3016     }
3017 
3018     if (!rdma) {
3019         error_report("RDMAContext is NULL when prepare Gsource");
3020         return FALSE;
3021     }
3022 
3023     if (rdma->wr_data[0].control_len) {
3024         cond |= G_IO_IN;
3025     }
3026     cond |= G_IO_OUT;
3027 
3028     return cond & rsource->condition;
3029 }
3030 
3031 static gboolean
3032 qio_channel_rdma_source_check(GSource *source)
3033 {
3034     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3035     RDMAContext *rdma;
3036     GIOCondition cond = 0;
3037 
3038     RCU_READ_LOCK_GUARD();
3039     if (rsource->condition == G_IO_IN) {
3040         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3041     } else {
3042         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3043     }
3044 
3045     if (!rdma) {
3046         error_report("RDMAContext is NULL when check Gsource");
3047         return FALSE;
3048     }
3049 
3050     if (rdma->wr_data[0].control_len) {
3051         cond |= G_IO_IN;
3052     }
3053     cond |= G_IO_OUT;
3054 
3055     return cond & rsource->condition;
3056 }
3057 
3058 static gboolean
3059 qio_channel_rdma_source_dispatch(GSource *source,
3060                                  GSourceFunc callback,
3061                                  gpointer user_data)
3062 {
3063     QIOChannelFunc func = (QIOChannelFunc)callback;
3064     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3065     RDMAContext *rdma;
3066     GIOCondition cond = 0;
3067 
3068     RCU_READ_LOCK_GUARD();
3069     if (rsource->condition == G_IO_IN) {
3070         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3071     } else {
3072         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3073     }
3074 
3075     if (!rdma) {
3076         error_report("RDMAContext is NULL when dispatch Gsource");
3077         return FALSE;
3078     }
3079 
3080     if (rdma->wr_data[0].control_len) {
3081         cond |= G_IO_IN;
3082     }
3083     cond |= G_IO_OUT;
3084 
3085     return (*func)(QIO_CHANNEL(rsource->rioc),
3086                    (cond & rsource->condition),
3087                    user_data);
3088 }
3089 
3090 static void
3091 qio_channel_rdma_source_finalize(GSource *source)
3092 {
3093     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3094 
3095     object_unref(OBJECT(ssource->rioc));
3096 }
3097 
3098 GSourceFuncs qio_channel_rdma_source_funcs = {
3099     qio_channel_rdma_source_prepare,
3100     qio_channel_rdma_source_check,
3101     qio_channel_rdma_source_dispatch,
3102     qio_channel_rdma_source_finalize
3103 };
3104 
3105 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3106                                               GIOCondition condition)
3107 {
3108     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3109     QIOChannelRDMASource *ssource;
3110     GSource *source;
3111 
3112     source = g_source_new(&qio_channel_rdma_source_funcs,
3113                           sizeof(QIOChannelRDMASource));
3114     ssource = (QIOChannelRDMASource *)source;
3115 
3116     ssource->rioc = rioc;
3117     object_ref(OBJECT(rioc));
3118 
3119     ssource->condition = condition;
3120 
3121     return source;
3122 }
3123 
3124 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3125                                                 AioContext *read_ctx,
3126                                                 IOHandler *io_read,
3127                                                 AioContext *write_ctx,
3128                                                 IOHandler *io_write,
3129                                                 void *opaque)
3130 {
3131     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3132     if (io_read) {
3133         aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3134                            io_read, io_write, NULL, NULL, opaque);
3135         aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3136                            io_read, io_write, NULL, NULL, opaque);
3137     } else {
3138         aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3139                            io_read, io_write, NULL, NULL, opaque);
3140         aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3141                            io_read, io_write, NULL, NULL, opaque);
3142     }
3143 }
3144 
3145 struct rdma_close_rcu {
3146     struct rcu_head rcu;
3147     RDMAContext *rdmain;
3148     RDMAContext *rdmaout;
3149 };
3150 
3151 /* callback from qio_channel_rdma_close via call_rcu */
3152 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3153 {
3154     if (rcu->rdmain) {
3155         qemu_rdma_cleanup(rcu->rdmain);
3156     }
3157 
3158     if (rcu->rdmaout) {
3159         qemu_rdma_cleanup(rcu->rdmaout);
3160     }
3161 
3162     g_free(rcu->rdmain);
3163     g_free(rcu->rdmaout);
3164     g_free(rcu);
3165 }
3166 
3167 static int qio_channel_rdma_close(QIOChannel *ioc,
3168                                   Error **errp)
3169 {
3170     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3171     RDMAContext *rdmain, *rdmaout;
3172     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3173 
3174     trace_qemu_rdma_close();
3175 
3176     rdmain = rioc->rdmain;
3177     if (rdmain) {
3178         qatomic_rcu_set(&rioc->rdmain, NULL);
3179     }
3180 
3181     rdmaout = rioc->rdmaout;
3182     if (rdmaout) {
3183         qatomic_rcu_set(&rioc->rdmaout, NULL);
3184     }
3185 
3186     rcu->rdmain = rdmain;
3187     rcu->rdmaout = rdmaout;
3188     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3189 
3190     return 0;
3191 }
3192 
3193 static int
3194 qio_channel_rdma_shutdown(QIOChannel *ioc,
3195                             QIOChannelShutdown how,
3196                             Error **errp)
3197 {
3198     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3199     RDMAContext *rdmain, *rdmaout;
3200 
3201     RCU_READ_LOCK_GUARD();
3202 
3203     rdmain = qatomic_rcu_read(&rioc->rdmain);
3204     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3205 
3206     switch (how) {
3207     case QIO_CHANNEL_SHUTDOWN_READ:
3208         if (rdmain) {
3209             rdmain->error_state = -1;
3210         }
3211         break;
3212     case QIO_CHANNEL_SHUTDOWN_WRITE:
3213         if (rdmaout) {
3214             rdmaout->error_state = -1;
3215         }
3216         break;
3217     case QIO_CHANNEL_SHUTDOWN_BOTH:
3218     default:
3219         if (rdmain) {
3220             rdmain->error_state = -1;
3221         }
3222         if (rdmaout) {
3223             rdmaout->error_state = -1;
3224         }
3225         break;
3226     }
3227 
3228     return 0;
3229 }
3230 
3231 /*
3232  * Parameters:
3233  *    @offset == 0 :
3234  *        This means that 'block_offset' is a full virtual address that does not
3235  *        belong to a RAMBlock of the virtual machine and instead
3236  *        represents a private malloc'd memory area that the caller wishes to
3237  *        transfer.
3238  *
3239  *    @offset != 0 :
3240  *        Offset is an offset to be added to block_offset and used
3241  *        to also lookup the corresponding RAMBlock.
3242  *
3243  *    @size : Number of bytes to transfer
3244  *
3245  *    @pages_sent : User-specificed pointer to indicate how many pages were
3246  *                  sent. Usually, this will not be more than a few bytes of
3247  *                  the protocol because most transfers are sent asynchronously.
3248  */
3249 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3250                                ram_addr_t offset, size_t size)
3251 {
3252     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3253     RDMAContext *rdma;
3254     int ret;
3255 
3256     if (migration_in_postcopy()) {
3257         return RAM_SAVE_CONTROL_NOT_SUPP;
3258     }
3259 
3260     RCU_READ_LOCK_GUARD();
3261     rdma = qatomic_rcu_read(&rioc->rdmaout);
3262 
3263     if (!rdma) {
3264         return -EIO;
3265     }
3266 
3267     CHECK_ERROR_STATE();
3268 
3269     qemu_fflush(f);
3270 
3271     /*
3272      * Add this page to the current 'chunk'. If the chunk
3273      * is full, or the page doesn't belong to the current chunk,
3274      * an actual RDMA write will occur and a new chunk will be formed.
3275      */
3276     ret = qemu_rdma_write(rdma, block_offset, offset, size);
3277     if (ret < 0) {
3278         error_report("rdma migration: write error! %d", ret);
3279         goto err;
3280     }
3281 
3282     /*
3283      * Drain the Completion Queue if possible, but do not block,
3284      * just poll.
3285      *
3286      * If nothing to poll, the end of the iteration will do this
3287      * again to make sure we don't overflow the request queue.
3288      */
3289     while (1) {
3290         uint64_t wr_id, wr_id_in;
3291         ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3292 
3293         if (ret < 0) {
3294             error_report("rdma migration: polling error! %d", ret);
3295             goto err;
3296         }
3297 
3298         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3299 
3300         if (wr_id == RDMA_WRID_NONE) {
3301             break;
3302         }
3303     }
3304 
3305     while (1) {
3306         uint64_t wr_id, wr_id_in;
3307         ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3308 
3309         if (ret < 0) {
3310             error_report("rdma migration: polling error! %d", ret);
3311             goto err;
3312         }
3313 
3314         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3315 
3316         if (wr_id == RDMA_WRID_NONE) {
3317             break;
3318         }
3319     }
3320 
3321     return RAM_SAVE_CONTROL_DELAYED;
3322 err:
3323     rdma->error_state = ret;
3324     return ret;
3325 }
3326 
3327 static void rdma_accept_incoming_migration(void *opaque);
3328 
3329 static void rdma_cm_poll_handler(void *opaque)
3330 {
3331     RDMAContext *rdma = opaque;
3332     int ret;
3333     struct rdma_cm_event *cm_event;
3334     MigrationIncomingState *mis = migration_incoming_get_current();
3335 
3336     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3337     if (ret) {
3338         error_report("get_cm_event failed %d", errno);
3339         return;
3340     }
3341 
3342     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3343         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3344         if (!rdma->error_state &&
3345             migration_incoming_get_current()->state !=
3346               MIGRATION_STATUS_COMPLETED) {
3347             error_report("receive cm event, cm event is %d", cm_event->event);
3348             rdma->error_state = -EPIPE;
3349             if (rdma->return_path) {
3350                 rdma->return_path->error_state = -EPIPE;
3351             }
3352         }
3353         rdma_ack_cm_event(cm_event);
3354         if (mis->loadvm_co) {
3355             qemu_coroutine_enter(mis->loadvm_co);
3356         }
3357         return;
3358     }
3359     rdma_ack_cm_event(cm_event);
3360 }
3361 
3362 static int qemu_rdma_accept(RDMAContext *rdma)
3363 {
3364     RDMACapabilities cap;
3365     struct rdma_conn_param conn_param = {
3366                                             .responder_resources = 2,
3367                                             .private_data = &cap,
3368                                             .private_data_len = sizeof(cap),
3369                                          };
3370     RDMAContext *rdma_return_path = NULL;
3371     struct rdma_cm_event *cm_event;
3372     struct ibv_context *verbs;
3373     int ret = -EINVAL;
3374     int idx;
3375 
3376     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3377     if (ret) {
3378         goto err_rdma_dest_wait;
3379     }
3380 
3381     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3382         rdma_ack_cm_event(cm_event);
3383         goto err_rdma_dest_wait;
3384     }
3385 
3386     /*
3387      * initialize the RDMAContext for return path for postcopy after first
3388      * connection request reached.
3389      */
3390     if ((migrate_postcopy() || migrate_return_path())
3391         && !rdma->is_return_path) {
3392         rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3393         if (rdma_return_path == NULL) {
3394             rdma_ack_cm_event(cm_event);
3395             goto err_rdma_dest_wait;
3396         }
3397 
3398         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3399     }
3400 
3401     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3402 
3403     network_to_caps(&cap);
3404 
3405     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3406             error_report("Unknown source RDMA version: %d, bailing...",
3407                             cap.version);
3408             rdma_ack_cm_event(cm_event);
3409             goto err_rdma_dest_wait;
3410     }
3411 
3412     /*
3413      * Respond with only the capabilities this version of QEMU knows about.
3414      */
3415     cap.flags &= known_capabilities;
3416 
3417     /*
3418      * Enable the ones that we do know about.
3419      * Add other checks here as new ones are introduced.
3420      */
3421     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3422         rdma->pin_all = true;
3423     }
3424 
3425     rdma->cm_id = cm_event->id;
3426     verbs = cm_event->id->verbs;
3427 
3428     rdma_ack_cm_event(cm_event);
3429 
3430     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3431 
3432     caps_to_network(&cap);
3433 
3434     trace_qemu_rdma_accept_pin_verbsc(verbs);
3435 
3436     if (!rdma->verbs) {
3437         rdma->verbs = verbs;
3438     } else if (rdma->verbs != verbs) {
3439             error_report("ibv context not matching %p, %p!", rdma->verbs,
3440                          verbs);
3441             goto err_rdma_dest_wait;
3442     }
3443 
3444     qemu_rdma_dump_id("dest_init", verbs);
3445 
3446     ret = qemu_rdma_alloc_pd_cq(rdma);
3447     if (ret) {
3448         error_report("rdma migration: error allocating pd and cq!");
3449         goto err_rdma_dest_wait;
3450     }
3451 
3452     ret = qemu_rdma_alloc_qp(rdma);
3453     if (ret) {
3454         error_report("rdma migration: error allocating qp!");
3455         goto err_rdma_dest_wait;
3456     }
3457 
3458     ret = qemu_rdma_init_ram_blocks(rdma);
3459     if (ret) {
3460         error_report("rdma migration: error initializing ram blocks!");
3461         goto err_rdma_dest_wait;
3462     }
3463 
3464     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3465         ret = qemu_rdma_reg_control(rdma, idx);
3466         if (ret) {
3467             error_report("rdma: error registering %d control", idx);
3468             goto err_rdma_dest_wait;
3469         }
3470     }
3471 
3472     /* Accept the second connection request for return path */
3473     if ((migrate_postcopy() || migrate_return_path())
3474         && !rdma->is_return_path) {
3475         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3476                             NULL,
3477                             (void *)(intptr_t)rdma->return_path);
3478     } else {
3479         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3480                             NULL, rdma);
3481     }
3482 
3483     ret = rdma_accept(rdma->cm_id, &conn_param);
3484     if (ret) {
3485         error_report("rdma_accept returns %d", ret);
3486         goto err_rdma_dest_wait;
3487     }
3488 
3489     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3490     if (ret) {
3491         error_report("rdma_accept get_cm_event failed %d", ret);
3492         goto err_rdma_dest_wait;
3493     }
3494 
3495     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3496         error_report("rdma_accept not event established");
3497         rdma_ack_cm_event(cm_event);
3498         goto err_rdma_dest_wait;
3499     }
3500 
3501     rdma_ack_cm_event(cm_event);
3502     rdma->connected = true;
3503 
3504     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3505     if (ret) {
3506         error_report("rdma migration: error posting second control recv");
3507         goto err_rdma_dest_wait;
3508     }
3509 
3510     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3511 
3512     return 0;
3513 
3514 err_rdma_dest_wait:
3515     rdma->error_state = ret;
3516     qemu_rdma_cleanup(rdma);
3517     g_free(rdma_return_path);
3518     return ret;
3519 }
3520 
3521 static int dest_ram_sort_func(const void *a, const void *b)
3522 {
3523     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3524     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3525 
3526     return (a_index < b_index) ? -1 : (a_index != b_index);
3527 }
3528 
3529 /*
3530  * During each iteration of the migration, we listen for instructions
3531  * by the source VM to perform dynamic page registrations before they
3532  * can perform RDMA operations.
3533  *
3534  * We respond with the 'rkey'.
3535  *
3536  * Keep doing this until the source tells us to stop.
3537  */
3538 static int qemu_rdma_registration_handle(QEMUFile *f)
3539 {
3540     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3541                                .type = RDMA_CONTROL_REGISTER_RESULT,
3542                                .repeat = 0,
3543                              };
3544     RDMAControlHeader unreg_resp = { .len = 0,
3545                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3546                                .repeat = 0,
3547                              };
3548     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3549                                  .repeat = 1 };
3550     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3551     RDMAContext *rdma;
3552     RDMALocalBlocks *local;
3553     RDMAControlHeader head;
3554     RDMARegister *reg, *registers;
3555     RDMACompress *comp;
3556     RDMARegisterResult *reg_result;
3557     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3558     RDMALocalBlock *block;
3559     void *host_addr;
3560     int ret = 0;
3561     int idx = 0;
3562     int count = 0;
3563     int i = 0;
3564 
3565     RCU_READ_LOCK_GUARD();
3566     rdma = qatomic_rcu_read(&rioc->rdmain);
3567 
3568     if (!rdma) {
3569         return -EIO;
3570     }
3571 
3572     CHECK_ERROR_STATE();
3573 
3574     local = &rdma->local_ram_blocks;
3575     do {
3576         trace_qemu_rdma_registration_handle_wait();
3577 
3578         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3579 
3580         if (ret < 0) {
3581             break;
3582         }
3583 
3584         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3585             error_report("rdma: Too many requests in this message (%d)."
3586                             "Bailing.", head.repeat);
3587             ret = -EIO;
3588             break;
3589         }
3590 
3591         switch (head.type) {
3592         case RDMA_CONTROL_COMPRESS:
3593             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3594             network_to_compress(comp);
3595 
3596             trace_qemu_rdma_registration_handle_compress(comp->length,
3597                                                          comp->block_idx,
3598                                                          comp->offset);
3599             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3600                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3601                              (unsigned int)comp->block_idx,
3602                              rdma->local_ram_blocks.nb_blocks);
3603                 ret = -EIO;
3604                 goto out;
3605             }
3606             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3607 
3608             host_addr = block->local_host_addr +
3609                             (comp->offset - block->offset);
3610 
3611             ram_handle_compressed(host_addr, comp->value, comp->length);
3612             break;
3613 
3614         case RDMA_CONTROL_REGISTER_FINISHED:
3615             trace_qemu_rdma_registration_handle_finished();
3616             goto out;
3617 
3618         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3619             trace_qemu_rdma_registration_handle_ram_blocks();
3620 
3621             /* Sort our local RAM Block list so it's the same as the source,
3622              * we can do this since we've filled in a src_index in the list
3623              * as we received the RAMBlock list earlier.
3624              */
3625             qsort(rdma->local_ram_blocks.block,
3626                   rdma->local_ram_blocks.nb_blocks,
3627                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3628             for (i = 0; i < local->nb_blocks; i++) {
3629                 local->block[i].index = i;
3630             }
3631 
3632             if (rdma->pin_all) {
3633                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3634                 if (ret) {
3635                     error_report("rdma migration: error dest "
3636                                     "registering ram blocks");
3637                     goto out;
3638                 }
3639             }
3640 
3641             /*
3642              * Dest uses this to prepare to transmit the RAMBlock descriptions
3643              * to the source VM after connection setup.
3644              * Both sides use the "remote" structure to communicate and update
3645              * their "local" descriptions with what was sent.
3646              */
3647             for (i = 0; i < local->nb_blocks; i++) {
3648                 rdma->dest_blocks[i].remote_host_addr =
3649                     (uintptr_t)(local->block[i].local_host_addr);
3650 
3651                 if (rdma->pin_all) {
3652                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3653                 }
3654 
3655                 rdma->dest_blocks[i].offset = local->block[i].offset;
3656                 rdma->dest_blocks[i].length = local->block[i].length;
3657 
3658                 dest_block_to_network(&rdma->dest_blocks[i]);
3659                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3660                     local->block[i].block_name,
3661                     local->block[i].offset,
3662                     local->block[i].length,
3663                     local->block[i].local_host_addr,
3664                     local->block[i].src_index);
3665             }
3666 
3667             blocks.len = rdma->local_ram_blocks.nb_blocks
3668                                                 * sizeof(RDMADestBlock);
3669 
3670 
3671             ret = qemu_rdma_post_send_control(rdma,
3672                                         (uint8_t *) rdma->dest_blocks, &blocks);
3673 
3674             if (ret < 0) {
3675                 error_report("rdma migration: error sending remote info");
3676                 goto out;
3677             }
3678 
3679             break;
3680         case RDMA_CONTROL_REGISTER_REQUEST:
3681             trace_qemu_rdma_registration_handle_register(head.repeat);
3682 
3683             reg_resp.repeat = head.repeat;
3684             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3685 
3686             for (count = 0; count < head.repeat; count++) {
3687                 uint64_t chunk;
3688                 uint8_t *chunk_start, *chunk_end;
3689 
3690                 reg = &registers[count];
3691                 network_to_register(reg);
3692 
3693                 reg_result = &results[count];
3694 
3695                 trace_qemu_rdma_registration_handle_register_loop(count,
3696                          reg->current_index, reg->key.current_addr, reg->chunks);
3697 
3698                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3699                     error_report("rdma: 'register' bad block index %u (vs %d)",
3700                                  (unsigned int)reg->current_index,
3701                                  rdma->local_ram_blocks.nb_blocks);
3702                     ret = -ENOENT;
3703                     goto out;
3704                 }
3705                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3706                 if (block->is_ram_block) {
3707                     if (block->offset > reg->key.current_addr) {
3708                         error_report("rdma: bad register address for block %s"
3709                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3710                             block->block_name, block->offset,
3711                             reg->key.current_addr);
3712                         ret = -ERANGE;
3713                         goto out;
3714                     }
3715                     host_addr = (block->local_host_addr +
3716                                 (reg->key.current_addr - block->offset));
3717                     chunk = ram_chunk_index(block->local_host_addr,
3718                                             (uint8_t *) host_addr);
3719                 } else {
3720                     chunk = reg->key.chunk;
3721                     host_addr = block->local_host_addr +
3722                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3723                     /* Check for particularly bad chunk value */
3724                     if (host_addr < (void *)block->local_host_addr) {
3725                         error_report("rdma: bad chunk for block %s"
3726                             " chunk: %" PRIx64,
3727                             block->block_name, reg->key.chunk);
3728                         ret = -ERANGE;
3729                         goto out;
3730                     }
3731                 }
3732                 chunk_start = ram_chunk_start(block, chunk);
3733                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3734                 /* avoid "-Waddress-of-packed-member" warning */
3735                 uint32_t tmp_rkey = 0;
3736                 if (qemu_rdma_register_and_get_keys(rdma, block,
3737                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3738                             chunk, chunk_start, chunk_end)) {
3739                     error_report("cannot get rkey");
3740                     ret = -EINVAL;
3741                     goto out;
3742                 }
3743                 reg_result->rkey = tmp_rkey;
3744 
3745                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3746 
3747                 trace_qemu_rdma_registration_handle_register_rkey(
3748                                                            reg_result->rkey);
3749 
3750                 result_to_network(reg_result);
3751             }
3752 
3753             ret = qemu_rdma_post_send_control(rdma,
3754                             (uint8_t *) results, &reg_resp);
3755 
3756             if (ret < 0) {
3757                 error_report("Failed to send control buffer");
3758                 goto out;
3759             }
3760             break;
3761         case RDMA_CONTROL_UNREGISTER_REQUEST:
3762             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3763             unreg_resp.repeat = head.repeat;
3764             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3765 
3766             for (count = 0; count < head.repeat; count++) {
3767                 reg = &registers[count];
3768                 network_to_register(reg);
3769 
3770                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3771                            reg->current_index, reg->key.chunk);
3772 
3773                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3774 
3775                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3776                 block->pmr[reg->key.chunk] = NULL;
3777 
3778                 if (ret != 0) {
3779                     perror("rdma unregistration chunk failed");
3780                     ret = -ret;
3781                     goto out;
3782                 }
3783 
3784                 rdma->total_registrations--;
3785 
3786                 trace_qemu_rdma_registration_handle_unregister_success(
3787                                                        reg->key.chunk);
3788             }
3789 
3790             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3791 
3792             if (ret < 0) {
3793                 error_report("Failed to send control buffer");
3794                 goto out;
3795             }
3796             break;
3797         case RDMA_CONTROL_REGISTER_RESULT:
3798             error_report("Invalid RESULT message at dest.");
3799             ret = -EIO;
3800             goto out;
3801         default:
3802             error_report("Unknown control message %s", control_desc(head.type));
3803             ret = -EIO;
3804             goto out;
3805         }
3806     } while (1);
3807 out:
3808     if (ret < 0) {
3809         rdma->error_state = ret;
3810     }
3811     return ret;
3812 }
3813 
3814 /* Destination:
3815  * Called via a ram_control_load_hook during the initial RAM load section which
3816  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3817  * on the source.
3818  * We've already built our local RAMBlock list, but not yet sent the list to
3819  * the source.
3820  */
3821 static int
3822 rdma_block_notification_handle(QEMUFile *f, const char *name)
3823 {
3824     RDMAContext *rdma;
3825     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3826     int curr;
3827     int found = -1;
3828 
3829     RCU_READ_LOCK_GUARD();
3830     rdma = qatomic_rcu_read(&rioc->rdmain);
3831 
3832     if (!rdma) {
3833         return -EIO;
3834     }
3835 
3836     /* Find the matching RAMBlock in our local list */
3837     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3838         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3839             found = curr;
3840             break;
3841         }
3842     }
3843 
3844     if (found == -1) {
3845         error_report("RAMBlock '%s' not found on destination", name);
3846         return -ENOENT;
3847     }
3848 
3849     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3850     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3851     rdma->next_src_index++;
3852 
3853     return 0;
3854 }
3855 
3856 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3857 {
3858     switch (flags) {
3859     case RAM_CONTROL_BLOCK_REG:
3860         return rdma_block_notification_handle(f, data);
3861 
3862     case RAM_CONTROL_HOOK:
3863         return qemu_rdma_registration_handle(f);
3864 
3865     default:
3866         /* Shouldn't be called with any other values */
3867         abort();
3868     }
3869 }
3870 
3871 static int qemu_rdma_registration_start(QEMUFile *f,
3872                                         uint64_t flags, void *data)
3873 {
3874     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3875     RDMAContext *rdma;
3876 
3877     if (migration_in_postcopy()) {
3878         return 0;
3879     }
3880 
3881     RCU_READ_LOCK_GUARD();
3882     rdma = qatomic_rcu_read(&rioc->rdmaout);
3883     if (!rdma) {
3884         return -EIO;
3885     }
3886 
3887     CHECK_ERROR_STATE();
3888 
3889     trace_qemu_rdma_registration_start(flags);
3890     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3891     qemu_fflush(f);
3892 
3893     return 0;
3894 }
3895 
3896 /*
3897  * Inform dest that dynamic registrations are done for now.
3898  * First, flush writes, if any.
3899  */
3900 static int qemu_rdma_registration_stop(QEMUFile *f,
3901                                        uint64_t flags, void *data)
3902 {
3903     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3904     RDMAContext *rdma;
3905     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3906     int ret = 0;
3907 
3908     if (migration_in_postcopy()) {
3909         return 0;
3910     }
3911 
3912     RCU_READ_LOCK_GUARD();
3913     rdma = qatomic_rcu_read(&rioc->rdmaout);
3914     if (!rdma) {
3915         return -EIO;
3916     }
3917 
3918     CHECK_ERROR_STATE();
3919 
3920     qemu_fflush(f);
3921     ret = qemu_rdma_drain_cq(rdma);
3922 
3923     if (ret < 0) {
3924         goto err;
3925     }
3926 
3927     if (flags == RAM_CONTROL_SETUP) {
3928         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3929         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3930         int reg_result_idx, i, nb_dest_blocks;
3931 
3932         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3933         trace_qemu_rdma_registration_stop_ram();
3934 
3935         /*
3936          * Make sure that we parallelize the pinning on both sides.
3937          * For very large guests, doing this serially takes a really
3938          * long time, so we have to 'interleave' the pinning locally
3939          * with the control messages by performing the pinning on this
3940          * side before we receive the control response from the other
3941          * side that the pinning has completed.
3942          */
3943         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3944                     &reg_result_idx, rdma->pin_all ?
3945                     qemu_rdma_reg_whole_ram_blocks : NULL);
3946         if (ret < 0) {
3947             fprintf(stderr, "receiving remote info!");
3948             return ret;
3949         }
3950 
3951         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3952 
3953         /*
3954          * The protocol uses two different sets of rkeys (mutually exclusive):
3955          * 1. One key to represent the virtual address of the entire ram block.
3956          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3957          * 2. One to represent individual chunks within a ram block.
3958          *    (dynamic chunk registration enabled - pin individual chunks.)
3959          *
3960          * Once the capability is successfully negotiated, the destination transmits
3961          * the keys to use (or sends them later) including the virtual addresses
3962          * and then propagates the remote ram block descriptions to his local copy.
3963          */
3964 
3965         if (local->nb_blocks != nb_dest_blocks) {
3966             fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3967                     "Your QEMU command line parameters are probably "
3968                     "not identical on both the source and destination.",
3969                     local->nb_blocks, nb_dest_blocks);
3970             rdma->error_state = -EINVAL;
3971             return -EINVAL;
3972         }
3973 
3974         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3975         memcpy(rdma->dest_blocks,
3976             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3977         for (i = 0; i < nb_dest_blocks; i++) {
3978             network_to_dest_block(&rdma->dest_blocks[i]);
3979 
3980             /* We require that the blocks are in the same order */
3981             if (rdma->dest_blocks[i].length != local->block[i].length) {
3982                 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3983                         "vs %" PRIu64, local->block[i].block_name, i,
3984                         local->block[i].length,
3985                         rdma->dest_blocks[i].length);
3986                 rdma->error_state = -EINVAL;
3987                 return -EINVAL;
3988             }
3989             local->block[i].remote_host_addr =
3990                     rdma->dest_blocks[i].remote_host_addr;
3991             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3992         }
3993     }
3994 
3995     trace_qemu_rdma_registration_stop(flags);
3996 
3997     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3998     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3999 
4000     if (ret < 0) {
4001         goto err;
4002     }
4003 
4004     return 0;
4005 err:
4006     rdma->error_state = ret;
4007     return ret;
4008 }
4009 
4010 static const QEMUFileHooks rdma_read_hooks = {
4011     .hook_ram_load = rdma_load_hook,
4012 };
4013 
4014 static const QEMUFileHooks rdma_write_hooks = {
4015     .before_ram_iterate = qemu_rdma_registration_start,
4016     .after_ram_iterate  = qemu_rdma_registration_stop,
4017     .save_page          = qemu_rdma_save_page,
4018 };
4019 
4020 
4021 static void qio_channel_rdma_finalize(Object *obj)
4022 {
4023     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4024     if (rioc->rdmain) {
4025         qemu_rdma_cleanup(rioc->rdmain);
4026         g_free(rioc->rdmain);
4027         rioc->rdmain = NULL;
4028     }
4029     if (rioc->rdmaout) {
4030         qemu_rdma_cleanup(rioc->rdmaout);
4031         g_free(rioc->rdmaout);
4032         rioc->rdmaout = NULL;
4033     }
4034 }
4035 
4036 static void qio_channel_rdma_class_init(ObjectClass *klass,
4037                                         void *class_data G_GNUC_UNUSED)
4038 {
4039     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4040 
4041     ioc_klass->io_writev = qio_channel_rdma_writev;
4042     ioc_klass->io_readv = qio_channel_rdma_readv;
4043     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4044     ioc_klass->io_close = qio_channel_rdma_close;
4045     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4046     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4047     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4048 }
4049 
4050 static const TypeInfo qio_channel_rdma_info = {
4051     .parent = TYPE_QIO_CHANNEL,
4052     .name = TYPE_QIO_CHANNEL_RDMA,
4053     .instance_size = sizeof(QIOChannelRDMA),
4054     .instance_finalize = qio_channel_rdma_finalize,
4055     .class_init = qio_channel_rdma_class_init,
4056 };
4057 
4058 static void qio_channel_rdma_register_types(void)
4059 {
4060     type_register_static(&qio_channel_rdma_info);
4061 }
4062 
4063 type_init(qio_channel_rdma_register_types);
4064 
4065 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4066 {
4067     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4068 
4069     rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4070     rioc->rdmain = rdma;
4071     rioc->rdmaout = rdma->return_path;
4072     qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4073 
4074     return rioc->file;
4075 }
4076 
4077 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4078 {
4079     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4080 
4081     rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4082     rioc->rdmaout = rdma;
4083     rioc->rdmain = rdma->return_path;
4084     qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4085 
4086     return rioc->file;
4087 }
4088 
4089 static void rdma_accept_incoming_migration(void *opaque)
4090 {
4091     RDMAContext *rdma = opaque;
4092     int ret;
4093     QEMUFile *f;
4094     Error *local_err = NULL;
4095 
4096     trace_qemu_rdma_accept_incoming_migration();
4097     ret = qemu_rdma_accept(rdma);
4098 
4099     if (ret) {
4100         fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4101         return;
4102     }
4103 
4104     trace_qemu_rdma_accept_incoming_migration_accepted();
4105 
4106     if (rdma->is_return_path) {
4107         return;
4108     }
4109 
4110     f = rdma_new_input(rdma);
4111     if (f == NULL) {
4112         fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n");
4113         qemu_rdma_cleanup(rdma);
4114         return;
4115     }
4116 
4117     rdma->migration_started_on_destination = 1;
4118     migration_fd_process_incoming(f, &local_err);
4119     if (local_err) {
4120         error_reportf_err(local_err, "RDMA ERROR:");
4121     }
4122 }
4123 
4124 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4125 {
4126     int ret;
4127     RDMAContext *rdma;
4128     Error *local_err = NULL;
4129 
4130     trace_rdma_start_incoming_migration();
4131 
4132     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4133     if (ram_block_discard_is_required()) {
4134         error_setg(errp, "RDMA: cannot disable RAM discard");
4135         return;
4136     }
4137 
4138     rdma = qemu_rdma_data_init(host_port, &local_err);
4139     if (rdma == NULL) {
4140         goto err;
4141     }
4142 
4143     ret = qemu_rdma_dest_init(rdma, &local_err);
4144 
4145     if (ret) {
4146         goto err;
4147     }
4148 
4149     trace_rdma_start_incoming_migration_after_dest_init();
4150 
4151     ret = rdma_listen(rdma->listen_id, 5);
4152 
4153     if (ret) {
4154         ERROR(errp, "listening on socket!");
4155         goto cleanup_rdma;
4156     }
4157 
4158     trace_rdma_start_incoming_migration_after_rdma_listen();
4159 
4160     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4161                         NULL, (void *)(intptr_t)rdma);
4162     return;
4163 
4164 cleanup_rdma:
4165     qemu_rdma_cleanup(rdma);
4166 err:
4167     error_propagate(errp, local_err);
4168     if (rdma) {
4169         g_free(rdma->host);
4170         g_free(rdma->host_port);
4171     }
4172     g_free(rdma);
4173 }
4174 
4175 void rdma_start_outgoing_migration(void *opaque,
4176                             const char *host_port, Error **errp)
4177 {
4178     MigrationState *s = opaque;
4179     RDMAContext *rdma_return_path = NULL;
4180     RDMAContext *rdma;
4181     int ret = 0;
4182 
4183     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4184     if (ram_block_discard_is_required()) {
4185         error_setg(errp, "RDMA: cannot disable RAM discard");
4186         return;
4187     }
4188 
4189     rdma = qemu_rdma_data_init(host_port, errp);
4190     if (rdma == NULL) {
4191         goto err;
4192     }
4193 
4194     ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4195 
4196     if (ret) {
4197         goto err;
4198     }
4199 
4200     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4201     ret = qemu_rdma_connect(rdma, errp, false);
4202 
4203     if (ret) {
4204         goto err;
4205     }
4206 
4207     /* RDMA postcopy need a separate queue pair for return path */
4208     if (migrate_postcopy() || migrate_return_path()) {
4209         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4210 
4211         if (rdma_return_path == NULL) {
4212             goto return_path_err;
4213         }
4214 
4215         ret = qemu_rdma_source_init(rdma_return_path,
4216                                     migrate_rdma_pin_all(), errp);
4217 
4218         if (ret) {
4219             goto return_path_err;
4220         }
4221 
4222         ret = qemu_rdma_connect(rdma_return_path, errp, true);
4223 
4224         if (ret) {
4225             goto return_path_err;
4226         }
4227 
4228         rdma->return_path = rdma_return_path;
4229         rdma_return_path->return_path = rdma;
4230         rdma_return_path->is_return_path = true;
4231     }
4232 
4233     trace_rdma_start_outgoing_migration_after_rdma_connect();
4234 
4235     s->to_dst_file = rdma_new_output(rdma);
4236     migrate_fd_connect(s, NULL);
4237     return;
4238 return_path_err:
4239     qemu_rdma_cleanup(rdma);
4240 err:
4241     g_free(rdma);
4242     g_free(rdma_return_path);
4243 }
4244