xref: /qemu/migration/rdma.c (revision 90113883)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 #include "qom/object.h"
39 #include <poll.h>
40 
41 /*
42  * Print and error on both the Monitor and the Log file.
43  */
44 #define ERROR(errp, fmt, ...) \
45     do { \
46         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
47         if (errp && (*(errp) == NULL)) { \
48             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
49         } \
50     } while (0)
51 
52 #define RDMA_RESOLVE_TIMEOUT_MS 10000
53 
54 /* Do not merge data if larger than this. */
55 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
56 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
57 
58 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
59 
60 /*
61  * This is only for non-live state being migrated.
62  * Instead of RDMA_WRITE messages, we use RDMA_SEND
63  * messages for that state, which requires a different
64  * delivery design than main memory.
65  */
66 #define RDMA_SEND_INCREMENT 32768
67 
68 /*
69  * Maximum size infiniband SEND message
70  */
71 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
72 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
73 
74 #define RDMA_CONTROL_VERSION_CURRENT 1
75 /*
76  * Capabilities for negotiation.
77  */
78 #define RDMA_CAPABILITY_PIN_ALL 0x01
79 
80 /*
81  * Add the other flags above to this list of known capabilities
82  * as they are introduced.
83  */
84 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
85 
86 #define CHECK_ERROR_STATE() \
87     do { \
88         if (rdma->error_state) { \
89             if (!rdma->error_reported) { \
90                 error_report("RDMA is in an error state waiting migration" \
91                                 " to abort!"); \
92                 rdma->error_reported = 1; \
93             } \
94             return rdma->error_state; \
95         } \
96     } while (0)
97 
98 /*
99  * A work request ID is 64-bits and we split up these bits
100  * into 3 parts:
101  *
102  * bits 0-15 : type of control message, 2^16
103  * bits 16-29: ram block index, 2^14
104  * bits 30-63: ram block chunk number, 2^34
105  *
106  * The last two bit ranges are only used for RDMA writes,
107  * in order to track their completion and potentially
108  * also track unregistration status of the message.
109  */
110 #define RDMA_WRID_TYPE_SHIFT  0UL
111 #define RDMA_WRID_BLOCK_SHIFT 16UL
112 #define RDMA_WRID_CHUNK_SHIFT 30UL
113 
114 #define RDMA_WRID_TYPE_MASK \
115     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
116 
117 #define RDMA_WRID_BLOCK_MASK \
118     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
119 
120 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
121 
122 /*
123  * RDMA migration protocol:
124  * 1. RDMA Writes (data messages, i.e. RAM)
125  * 2. IB Send/Recv (control channel messages)
126  */
127 enum {
128     RDMA_WRID_NONE = 0,
129     RDMA_WRID_RDMA_WRITE = 1,
130     RDMA_WRID_SEND_CONTROL = 2000,
131     RDMA_WRID_RECV_CONTROL = 4000,
132 };
133 
134 static const char *wrid_desc[] = {
135     [RDMA_WRID_NONE] = "NONE",
136     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
137     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
138     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
139 };
140 
141 /*
142  * Work request IDs for IB SEND messages only (not RDMA writes).
143  * This is used by the migration protocol to transmit
144  * control messages (such as device state and registration commands)
145  *
146  * We could use more WRs, but we have enough for now.
147  */
148 enum {
149     RDMA_WRID_READY = 0,
150     RDMA_WRID_DATA,
151     RDMA_WRID_CONTROL,
152     RDMA_WRID_MAX,
153 };
154 
155 /*
156  * SEND/RECV IB Control Messages.
157  */
158 enum {
159     RDMA_CONTROL_NONE = 0,
160     RDMA_CONTROL_ERROR,
161     RDMA_CONTROL_READY,               /* ready to receive */
162     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
163     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
164     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
165     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
166     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
167     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
168     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
169     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
170     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
171 };
172 
173 
174 /*
175  * Memory and MR structures used to represent an IB Send/Recv work request.
176  * This is *not* used for RDMA writes, only IB Send/Recv.
177  */
178 typedef struct {
179     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
180     struct   ibv_mr *control_mr;               /* registration metadata */
181     size_t   control_len;                      /* length of the message */
182     uint8_t *control_curr;                     /* start of unconsumed bytes */
183 } RDMAWorkRequestData;
184 
185 /*
186  * Negotiate RDMA capabilities during connection-setup time.
187  */
188 typedef struct {
189     uint32_t version;
190     uint32_t flags;
191 } RDMACapabilities;
192 
193 static void caps_to_network(RDMACapabilities *cap)
194 {
195     cap->version = htonl(cap->version);
196     cap->flags = htonl(cap->flags);
197 }
198 
199 static void network_to_caps(RDMACapabilities *cap)
200 {
201     cap->version = ntohl(cap->version);
202     cap->flags = ntohl(cap->flags);
203 }
204 
205 /*
206  * Representation of a RAMBlock from an RDMA perspective.
207  * This is not transmitted, only local.
208  * This and subsequent structures cannot be linked lists
209  * because we're using a single IB message to transmit
210  * the information. It's small anyway, so a list is overkill.
211  */
212 typedef struct RDMALocalBlock {
213     char          *block_name;
214     uint8_t       *local_host_addr; /* local virtual address */
215     uint64_t       remote_host_addr; /* remote virtual address */
216     uint64_t       offset;
217     uint64_t       length;
218     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
219     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
220     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
221     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
222     int            index;           /* which block are we */
223     unsigned int   src_index;       /* (Only used on dest) */
224     bool           is_ram_block;
225     int            nb_chunks;
226     unsigned long *transit_bitmap;
227     unsigned long *unregister_bitmap;
228 } RDMALocalBlock;
229 
230 /*
231  * Also represents a RAMblock, but only on the dest.
232  * This gets transmitted by the dest during connection-time
233  * to the source VM and then is used to populate the
234  * corresponding RDMALocalBlock with
235  * the information needed to perform the actual RDMA.
236  */
237 typedef struct QEMU_PACKED RDMADestBlock {
238     uint64_t remote_host_addr;
239     uint64_t offset;
240     uint64_t length;
241     uint32_t remote_rkey;
242     uint32_t padding;
243 } RDMADestBlock;
244 
245 static const char *control_desc(unsigned int rdma_control)
246 {
247     static const char *strs[] = {
248         [RDMA_CONTROL_NONE] = "NONE",
249         [RDMA_CONTROL_ERROR] = "ERROR",
250         [RDMA_CONTROL_READY] = "READY",
251         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
252         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
253         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
254         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
255         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
256         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
257         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
258         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
259         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
260     };
261 
262     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
263         return "??BAD CONTROL VALUE??";
264     }
265 
266     return strs[rdma_control];
267 }
268 
269 static uint64_t htonll(uint64_t v)
270 {
271     union { uint32_t lv[2]; uint64_t llv; } u;
272     u.lv[0] = htonl(v >> 32);
273     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
274     return u.llv;
275 }
276 
277 static uint64_t ntohll(uint64_t v)
278 {
279     union { uint32_t lv[2]; uint64_t llv; } u;
280     u.llv = v;
281     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
282 }
283 
284 static void dest_block_to_network(RDMADestBlock *db)
285 {
286     db->remote_host_addr = htonll(db->remote_host_addr);
287     db->offset = htonll(db->offset);
288     db->length = htonll(db->length);
289     db->remote_rkey = htonl(db->remote_rkey);
290 }
291 
292 static void network_to_dest_block(RDMADestBlock *db)
293 {
294     db->remote_host_addr = ntohll(db->remote_host_addr);
295     db->offset = ntohll(db->offset);
296     db->length = ntohll(db->length);
297     db->remote_rkey = ntohl(db->remote_rkey);
298 }
299 
300 /*
301  * Virtual address of the above structures used for transmitting
302  * the RAMBlock descriptions at connection-time.
303  * This structure is *not* transmitted.
304  */
305 typedef struct RDMALocalBlocks {
306     int nb_blocks;
307     bool     init;             /* main memory init complete */
308     RDMALocalBlock *block;
309 } RDMALocalBlocks;
310 
311 /*
312  * Main data structure for RDMA state.
313  * While there is only one copy of this structure being allocated right now,
314  * this is the place where one would start if you wanted to consider
315  * having more than one RDMA connection open at the same time.
316  */
317 typedef struct RDMAContext {
318     char *host;
319     int port;
320     char *host_port;
321 
322     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
323 
324     /*
325      * This is used by *_exchange_send() to figure out whether or not
326      * the initial "READY" message has already been received or not.
327      * This is because other functions may potentially poll() and detect
328      * the READY message before send() does, in which case we need to
329      * know if it completed.
330      */
331     int control_ready_expected;
332 
333     /* number of outstanding writes */
334     int nb_sent;
335 
336     /* store info about current buffer so that we can
337        merge it with future sends */
338     uint64_t current_addr;
339     uint64_t current_length;
340     /* index of ram block the current buffer belongs to */
341     int current_index;
342     /* index of the chunk in the current ram block */
343     int current_chunk;
344 
345     bool pin_all;
346 
347     /*
348      * infiniband-specific variables for opening the device
349      * and maintaining connection state and so forth.
350      *
351      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
352      * cm_id->verbs, cm_id->channel, and cm_id->qp.
353      */
354     struct rdma_cm_id *cm_id;               /* connection manager ID */
355     struct rdma_cm_id *listen_id;
356     bool connected;
357 
358     struct ibv_context          *verbs;
359     struct rdma_event_channel   *channel;
360     struct ibv_qp *qp;                      /* queue pair */
361     struct ibv_comp_channel *comp_channel;  /* completion channel */
362     struct ibv_pd *pd;                      /* protection domain */
363     struct ibv_cq *cq;                      /* completion queue */
364 
365     /*
366      * If a previous write failed (perhaps because of a failed
367      * memory registration, then do not attempt any future work
368      * and remember the error state.
369      */
370     int error_state;
371     int error_reported;
372     int received_error;
373 
374     /*
375      * Description of ram blocks used throughout the code.
376      */
377     RDMALocalBlocks local_ram_blocks;
378     RDMADestBlock  *dest_blocks;
379 
380     /* Index of the next RAMBlock received during block registration */
381     unsigned int    next_src_index;
382 
383     /*
384      * Migration on *destination* started.
385      * Then use coroutine yield function.
386      * Source runs in a thread, so we don't care.
387      */
388     int migration_started_on_destination;
389 
390     int total_registrations;
391     int total_writes;
392 
393     int unregister_current, unregister_next;
394     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
395 
396     GHashTable *blockmap;
397 
398     /* the RDMAContext for return path */
399     struct RDMAContext *return_path;
400     bool is_return_path;
401 } RDMAContext;
402 
403 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
404 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
405 
406 
407 
408 struct QIOChannelRDMA {
409     QIOChannel parent;
410     RDMAContext *rdmain;
411     RDMAContext *rdmaout;
412     QEMUFile *file;
413     bool blocking; /* XXX we don't actually honour this yet */
414 };
415 
416 /*
417  * Main structure for IB Send/Recv control messages.
418  * This gets prepended at the beginning of every Send/Recv.
419  */
420 typedef struct QEMU_PACKED {
421     uint32_t len;     /* Total length of data portion */
422     uint32_t type;    /* which control command to perform */
423     uint32_t repeat;  /* number of commands in data portion of same type */
424     uint32_t padding;
425 } RDMAControlHeader;
426 
427 static void control_to_network(RDMAControlHeader *control)
428 {
429     control->type = htonl(control->type);
430     control->len = htonl(control->len);
431     control->repeat = htonl(control->repeat);
432 }
433 
434 static void network_to_control(RDMAControlHeader *control)
435 {
436     control->type = ntohl(control->type);
437     control->len = ntohl(control->len);
438     control->repeat = ntohl(control->repeat);
439 }
440 
441 /*
442  * Register a single Chunk.
443  * Information sent by the source VM to inform the dest
444  * to register an single chunk of memory before we can perform
445  * the actual RDMA operation.
446  */
447 typedef struct QEMU_PACKED {
448     union QEMU_PACKED {
449         uint64_t current_addr;  /* offset into the ram_addr_t space */
450         uint64_t chunk;         /* chunk to lookup if unregistering */
451     } key;
452     uint32_t current_index; /* which ramblock the chunk belongs to */
453     uint32_t padding;
454     uint64_t chunks;            /* how many sequential chunks to register */
455 } RDMARegister;
456 
457 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
458 {
459     RDMALocalBlock *local_block;
460     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
461 
462     if (local_block->is_ram_block) {
463         /*
464          * current_addr as passed in is an address in the local ram_addr_t
465          * space, we need to translate this for the destination
466          */
467         reg->key.current_addr -= local_block->offset;
468         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
469     }
470     reg->key.current_addr = htonll(reg->key.current_addr);
471     reg->current_index = htonl(reg->current_index);
472     reg->chunks = htonll(reg->chunks);
473 }
474 
475 static void network_to_register(RDMARegister *reg)
476 {
477     reg->key.current_addr = ntohll(reg->key.current_addr);
478     reg->current_index = ntohl(reg->current_index);
479     reg->chunks = ntohll(reg->chunks);
480 }
481 
482 typedef struct QEMU_PACKED {
483     uint32_t value;     /* if zero, we will madvise() */
484     uint32_t block_idx; /* which ram block index */
485     uint64_t offset;    /* Address in remote ram_addr_t space */
486     uint64_t length;    /* length of the chunk */
487 } RDMACompress;
488 
489 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
490 {
491     comp->value = htonl(comp->value);
492     /*
493      * comp->offset as passed in is an address in the local ram_addr_t
494      * space, we need to translate this for the destination
495      */
496     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
497     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
498     comp->block_idx = htonl(comp->block_idx);
499     comp->offset = htonll(comp->offset);
500     comp->length = htonll(comp->length);
501 }
502 
503 static void network_to_compress(RDMACompress *comp)
504 {
505     comp->value = ntohl(comp->value);
506     comp->block_idx = ntohl(comp->block_idx);
507     comp->offset = ntohll(comp->offset);
508     comp->length = ntohll(comp->length);
509 }
510 
511 /*
512  * The result of the dest's memory registration produces an "rkey"
513  * which the source VM must reference in order to perform
514  * the RDMA operation.
515  */
516 typedef struct QEMU_PACKED {
517     uint32_t rkey;
518     uint32_t padding;
519     uint64_t host_addr;
520 } RDMARegisterResult;
521 
522 static void result_to_network(RDMARegisterResult *result)
523 {
524     result->rkey = htonl(result->rkey);
525     result->host_addr = htonll(result->host_addr);
526 };
527 
528 static void network_to_result(RDMARegisterResult *result)
529 {
530     result->rkey = ntohl(result->rkey);
531     result->host_addr = ntohll(result->host_addr);
532 };
533 
534 const char *print_wrid(int wrid);
535 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
536                                    uint8_t *data, RDMAControlHeader *resp,
537                                    int *resp_idx,
538                                    int (*callback)(RDMAContext *rdma));
539 
540 static inline uint64_t ram_chunk_index(const uint8_t *start,
541                                        const uint8_t *host)
542 {
543     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
544 }
545 
546 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
547                                        uint64_t i)
548 {
549     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
550                                   (i << RDMA_REG_CHUNK_SHIFT));
551 }
552 
553 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
554                                      uint64_t i)
555 {
556     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
557                                          (1UL << RDMA_REG_CHUNK_SHIFT);
558 
559     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
560         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
561     }
562 
563     return result;
564 }
565 
566 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
567                          void *host_addr,
568                          ram_addr_t block_offset, uint64_t length)
569 {
570     RDMALocalBlocks *local = &rdma->local_ram_blocks;
571     RDMALocalBlock *block;
572     RDMALocalBlock *old = local->block;
573 
574     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
575 
576     if (local->nb_blocks) {
577         int x;
578 
579         if (rdma->blockmap) {
580             for (x = 0; x < local->nb_blocks; x++) {
581                 g_hash_table_remove(rdma->blockmap,
582                                     (void *)(uintptr_t)old[x].offset);
583                 g_hash_table_insert(rdma->blockmap,
584                                     (void *)(uintptr_t)old[x].offset,
585                                     &local->block[x]);
586             }
587         }
588         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
589         g_free(old);
590     }
591 
592     block = &local->block[local->nb_blocks];
593 
594     block->block_name = g_strdup(block_name);
595     block->local_host_addr = host_addr;
596     block->offset = block_offset;
597     block->length = length;
598     block->index = local->nb_blocks;
599     block->src_index = ~0U; /* Filled in by the receipt of the block list */
600     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
601     block->transit_bitmap = bitmap_new(block->nb_chunks);
602     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
603     block->unregister_bitmap = bitmap_new(block->nb_chunks);
604     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
605     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
606 
607     block->is_ram_block = local->init ? false : true;
608 
609     if (rdma->blockmap) {
610         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
611     }
612 
613     trace_rdma_add_block(block_name, local->nb_blocks,
614                          (uintptr_t) block->local_host_addr,
615                          block->offset, block->length,
616                          (uintptr_t) (block->local_host_addr + block->length),
617                          BITS_TO_LONGS(block->nb_chunks) *
618                              sizeof(unsigned long) * 8,
619                          block->nb_chunks);
620 
621     local->nb_blocks++;
622 
623     return 0;
624 }
625 
626 /*
627  * Memory regions need to be registered with the device and queue pairs setup
628  * in advanced before the migration starts. This tells us where the RAM blocks
629  * are so that we can register them individually.
630  */
631 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
632 {
633     const char *block_name = qemu_ram_get_idstr(rb);
634     void *host_addr = qemu_ram_get_host_addr(rb);
635     ram_addr_t block_offset = qemu_ram_get_offset(rb);
636     ram_addr_t length = qemu_ram_get_used_length(rb);
637     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
638 }
639 
640 /*
641  * Identify the RAMBlocks and their quantity. They will be references to
642  * identify chunk boundaries inside each RAMBlock and also be referenced
643  * during dynamic page registration.
644  */
645 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
646 {
647     RDMALocalBlocks *local = &rdma->local_ram_blocks;
648     int ret;
649 
650     assert(rdma->blockmap == NULL);
651     memset(local, 0, sizeof *local);
652     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
653     if (ret) {
654         return ret;
655     }
656     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
657     rdma->dest_blocks = g_new0(RDMADestBlock,
658                                rdma->local_ram_blocks.nb_blocks);
659     local->init = true;
660     return 0;
661 }
662 
663 /*
664  * Note: If used outside of cleanup, the caller must ensure that the destination
665  * block structures are also updated
666  */
667 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
668 {
669     RDMALocalBlocks *local = &rdma->local_ram_blocks;
670     RDMALocalBlock *old = local->block;
671     int x;
672 
673     if (rdma->blockmap) {
674         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
675     }
676     if (block->pmr) {
677         int j;
678 
679         for (j = 0; j < block->nb_chunks; j++) {
680             if (!block->pmr[j]) {
681                 continue;
682             }
683             ibv_dereg_mr(block->pmr[j]);
684             rdma->total_registrations--;
685         }
686         g_free(block->pmr);
687         block->pmr = NULL;
688     }
689 
690     if (block->mr) {
691         ibv_dereg_mr(block->mr);
692         rdma->total_registrations--;
693         block->mr = NULL;
694     }
695 
696     g_free(block->transit_bitmap);
697     block->transit_bitmap = NULL;
698 
699     g_free(block->unregister_bitmap);
700     block->unregister_bitmap = NULL;
701 
702     g_free(block->remote_keys);
703     block->remote_keys = NULL;
704 
705     g_free(block->block_name);
706     block->block_name = NULL;
707 
708     if (rdma->blockmap) {
709         for (x = 0; x < local->nb_blocks; x++) {
710             g_hash_table_remove(rdma->blockmap,
711                                 (void *)(uintptr_t)old[x].offset);
712         }
713     }
714 
715     if (local->nb_blocks > 1) {
716 
717         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
718 
719         if (block->index) {
720             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
721         }
722 
723         if (block->index < (local->nb_blocks - 1)) {
724             memcpy(local->block + block->index, old + (block->index + 1),
725                 sizeof(RDMALocalBlock) *
726                     (local->nb_blocks - (block->index + 1)));
727             for (x = block->index; x < local->nb_blocks - 1; x++) {
728                 local->block[x].index--;
729             }
730         }
731     } else {
732         assert(block == local->block);
733         local->block = NULL;
734     }
735 
736     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
737                            block->offset, block->length,
738                             (uintptr_t)(block->local_host_addr + block->length),
739                            BITS_TO_LONGS(block->nb_chunks) *
740                                sizeof(unsigned long) * 8, block->nb_chunks);
741 
742     g_free(old);
743 
744     local->nb_blocks--;
745 
746     if (local->nb_blocks && rdma->blockmap) {
747         for (x = 0; x < local->nb_blocks; x++) {
748             g_hash_table_insert(rdma->blockmap,
749                                 (void *)(uintptr_t)local->block[x].offset,
750                                 &local->block[x]);
751         }
752     }
753 
754     return 0;
755 }
756 
757 /*
758  * Put in the log file which RDMA device was opened and the details
759  * associated with that device.
760  */
761 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
762 {
763     struct ibv_port_attr port;
764 
765     if (ibv_query_port(verbs, 1, &port)) {
766         error_report("Failed to query port information");
767         return;
768     }
769 
770     printf("%s RDMA Device opened: kernel name %s "
771            "uverbs device name %s, "
772            "infiniband_verbs class device path %s, "
773            "infiniband class device path %s, "
774            "transport: (%d) %s\n",
775                 who,
776                 verbs->device->name,
777                 verbs->device->dev_name,
778                 verbs->device->dev_path,
779                 verbs->device->ibdev_path,
780                 port.link_layer,
781                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
782                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
783                     ? "Ethernet" : "Unknown"));
784 }
785 
786 /*
787  * Put in the log file the RDMA gid addressing information,
788  * useful for folks who have trouble understanding the
789  * RDMA device hierarchy in the kernel.
790  */
791 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
792 {
793     char sgid[33];
794     char dgid[33];
795     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
796     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
797     trace_qemu_rdma_dump_gid(who, sgid, dgid);
798 }
799 
800 /*
801  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
802  * We will try the next addrinfo struct, and fail if there are
803  * no other valid addresses to bind against.
804  *
805  * If user is listening on '[::]', then we will not have a opened a device
806  * yet and have no way of verifying if the device is RoCE or not.
807  *
808  * In this case, the source VM will throw an error for ALL types of
809  * connections (both IPv4 and IPv6) if the destination machine does not have
810  * a regular infiniband network available for use.
811  *
812  * The only way to guarantee that an error is thrown for broken kernels is
813  * for the management software to choose a *specific* interface at bind time
814  * and validate what time of hardware it is.
815  *
816  * Unfortunately, this puts the user in a fix:
817  *
818  *  If the source VM connects with an IPv4 address without knowing that the
819  *  destination has bound to '[::]' the migration will unconditionally fail
820  *  unless the management software is explicitly listening on the IPv4
821  *  address while using a RoCE-based device.
822  *
823  *  If the source VM connects with an IPv6 address, then we're OK because we can
824  *  throw an error on the source (and similarly on the destination).
825  *
826  *  But in mixed environments, this will be broken for a while until it is fixed
827  *  inside linux.
828  *
829  * We do provide a *tiny* bit of help in this function: We can list all of the
830  * devices in the system and check to see if all the devices are RoCE or
831  * Infiniband.
832  *
833  * If we detect that we have a *pure* RoCE environment, then we can safely
834  * thrown an error even if the management software has specified '[::]' as the
835  * bind address.
836  *
837  * However, if there is are multiple hetergeneous devices, then we cannot make
838  * this assumption and the user just has to be sure they know what they are
839  * doing.
840  *
841  * Patches are being reviewed on linux-rdma.
842  */
843 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
844 {
845     /* This bug only exists in linux, to our knowledge. */
846 #ifdef CONFIG_LINUX
847     struct ibv_port_attr port_attr;
848 
849     /*
850      * Verbs are only NULL if management has bound to '[::]'.
851      *
852      * Let's iterate through all the devices and see if there any pure IB
853      * devices (non-ethernet).
854      *
855      * If not, then we can safely proceed with the migration.
856      * Otherwise, there are no guarantees until the bug is fixed in linux.
857      */
858     if (!verbs) {
859         int num_devices, x;
860         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
861         bool roce_found = false;
862         bool ib_found = false;
863 
864         for (x = 0; x < num_devices; x++) {
865             verbs = ibv_open_device(dev_list[x]);
866             if (!verbs) {
867                 if (errno == EPERM) {
868                     continue;
869                 } else {
870                     return -EINVAL;
871                 }
872             }
873 
874             if (ibv_query_port(verbs, 1, &port_attr)) {
875                 ibv_close_device(verbs);
876                 ERROR(errp, "Could not query initial IB port");
877                 return -EINVAL;
878             }
879 
880             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
881                 ib_found = true;
882             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
883                 roce_found = true;
884             }
885 
886             ibv_close_device(verbs);
887 
888         }
889 
890         if (roce_found) {
891             if (ib_found) {
892                 fprintf(stderr, "WARN: migrations may fail:"
893                                 " IPv6 over RoCE / iWARP in linux"
894                                 " is broken. But since you appear to have a"
895                                 " mixed RoCE / IB environment, be sure to only"
896                                 " migrate over the IB fabric until the kernel "
897                                 " fixes the bug.\n");
898             } else {
899                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
900                             " and your management software has specified '[::]'"
901                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
902                 return -ENONET;
903             }
904         }
905 
906         return 0;
907     }
908 
909     /*
910      * If we have a verbs context, that means that some other than '[::]' was
911      * used by the management software for binding. In which case we can
912      * actually warn the user about a potentially broken kernel.
913      */
914 
915     /* IB ports start with 1, not 0 */
916     if (ibv_query_port(verbs, 1, &port_attr)) {
917         ERROR(errp, "Could not query initial IB port");
918         return -EINVAL;
919     }
920 
921     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
922         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
923                     "(but patches on linux-rdma in progress)");
924         return -ENONET;
925     }
926 
927 #endif
928 
929     return 0;
930 }
931 
932 /*
933  * Figure out which RDMA device corresponds to the requested IP hostname
934  * Also create the initial connection manager identifiers for opening
935  * the connection.
936  */
937 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
938 {
939     int ret;
940     struct rdma_addrinfo *res;
941     char port_str[16];
942     struct rdma_cm_event *cm_event;
943     char ip[40] = "unknown";
944     struct rdma_addrinfo *e;
945 
946     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
947         ERROR(errp, "RDMA hostname has not been set");
948         return -EINVAL;
949     }
950 
951     /* create CM channel */
952     rdma->channel = rdma_create_event_channel();
953     if (!rdma->channel) {
954         ERROR(errp, "could not create CM channel");
955         return -EINVAL;
956     }
957 
958     /* create CM id */
959     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
960     if (ret) {
961         ERROR(errp, "could not create channel id");
962         goto err_resolve_create_id;
963     }
964 
965     snprintf(port_str, 16, "%d", rdma->port);
966     port_str[15] = '\0';
967 
968     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
969     if (ret < 0) {
970         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
971         goto err_resolve_get_addr;
972     }
973 
974     for (e = res; e != NULL; e = e->ai_next) {
975         inet_ntop(e->ai_family,
976             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
977         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
978 
979         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
980                 RDMA_RESOLVE_TIMEOUT_MS);
981         if (!ret) {
982             if (e->ai_family == AF_INET6) {
983                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
984                 if (ret) {
985                     continue;
986                 }
987             }
988             goto route;
989         }
990     }
991 
992     rdma_freeaddrinfo(res);
993     ERROR(errp, "could not resolve address %s", rdma->host);
994     goto err_resolve_get_addr;
995 
996 route:
997     rdma_freeaddrinfo(res);
998     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
999 
1000     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1001     if (ret) {
1002         ERROR(errp, "could not perform event_addr_resolved");
1003         goto err_resolve_get_addr;
1004     }
1005 
1006     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1007         ERROR(errp, "result not equal to event_addr_resolved %s",
1008                 rdma_event_str(cm_event->event));
1009         error_report("rdma_resolve_addr");
1010         rdma_ack_cm_event(cm_event);
1011         ret = -EINVAL;
1012         goto err_resolve_get_addr;
1013     }
1014     rdma_ack_cm_event(cm_event);
1015 
1016     /* resolve route */
1017     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1018     if (ret) {
1019         ERROR(errp, "could not resolve rdma route");
1020         goto err_resolve_get_addr;
1021     }
1022 
1023     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1024     if (ret) {
1025         ERROR(errp, "could not perform event_route_resolved");
1026         goto err_resolve_get_addr;
1027     }
1028     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1029         ERROR(errp, "result not equal to event_route_resolved: %s",
1030                         rdma_event_str(cm_event->event));
1031         rdma_ack_cm_event(cm_event);
1032         ret = -EINVAL;
1033         goto err_resolve_get_addr;
1034     }
1035     rdma_ack_cm_event(cm_event);
1036     rdma->verbs = rdma->cm_id->verbs;
1037     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1038     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1039     return 0;
1040 
1041 err_resolve_get_addr:
1042     rdma_destroy_id(rdma->cm_id);
1043     rdma->cm_id = NULL;
1044 err_resolve_create_id:
1045     rdma_destroy_event_channel(rdma->channel);
1046     rdma->channel = NULL;
1047     return ret;
1048 }
1049 
1050 /*
1051  * Create protection domain and completion queues
1052  */
1053 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1054 {
1055     /* allocate pd */
1056     rdma->pd = ibv_alloc_pd(rdma->verbs);
1057     if (!rdma->pd) {
1058         error_report("failed to allocate protection domain");
1059         return -1;
1060     }
1061 
1062     /* create completion channel */
1063     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1064     if (!rdma->comp_channel) {
1065         error_report("failed to allocate completion channel");
1066         goto err_alloc_pd_cq;
1067     }
1068 
1069     /*
1070      * Completion queue can be filled by both read and write work requests,
1071      * so must reflect the sum of both possible queue sizes.
1072      */
1073     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074             NULL, rdma->comp_channel, 0);
1075     if (!rdma->cq) {
1076         error_report("failed to allocate completion queue");
1077         goto err_alloc_pd_cq;
1078     }
1079 
1080     return 0;
1081 
1082 err_alloc_pd_cq:
1083     if (rdma->pd) {
1084         ibv_dealloc_pd(rdma->pd);
1085     }
1086     if (rdma->comp_channel) {
1087         ibv_destroy_comp_channel(rdma->comp_channel);
1088     }
1089     rdma->pd = NULL;
1090     rdma->comp_channel = NULL;
1091     return -1;
1092 
1093 }
1094 
1095 /*
1096  * Create queue pairs.
1097  */
1098 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1099 {
1100     struct ibv_qp_init_attr attr = { 0 };
1101     int ret;
1102 
1103     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1104     attr.cap.max_recv_wr = 3;
1105     attr.cap.max_send_sge = 1;
1106     attr.cap.max_recv_sge = 1;
1107     attr.send_cq = rdma->cq;
1108     attr.recv_cq = rdma->cq;
1109     attr.qp_type = IBV_QPT_RC;
1110 
1111     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1112     if (ret) {
1113         return -1;
1114     }
1115 
1116     rdma->qp = rdma->cm_id->qp;
1117     return 0;
1118 }
1119 
1120 /* Check whether On-Demand Paging is supported by RDAM device */
1121 static bool rdma_support_odp(struct ibv_context *dev)
1122 {
1123     struct ibv_device_attr_ex attr = {0};
1124     int ret = ibv_query_device_ex(dev, NULL, &attr);
1125     if (ret) {
1126         return false;
1127     }
1128 
1129     if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1130         return true;
1131     }
1132 
1133     return false;
1134 }
1135 
1136 /*
1137  * ibv_advise_mr to avoid RNR NAK error as far as possible.
1138  * The responder mr registering with ODP will sent RNR NAK back to
1139  * the requester in the face of the page fault.
1140  */
1141 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1142                                          uint32_t len,  uint32_t lkey,
1143                                          const char *name, bool wr)
1144 {
1145 #ifdef HAVE_IBV_ADVISE_MR
1146     int ret;
1147     int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1148                  IBV_ADVISE_MR_ADVICE_PREFETCH;
1149     struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1150 
1151     ret = ibv_advise_mr(pd, advice,
1152                         IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1153     /* ignore the error */
1154     if (ret) {
1155         trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1156     } else {
1157         trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1158     }
1159 #endif
1160 }
1161 
1162 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1163 {
1164     int i;
1165     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1166 
1167     for (i = 0; i < local->nb_blocks; i++) {
1168         int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1169 
1170         local->block[i].mr =
1171             ibv_reg_mr(rdma->pd,
1172                     local->block[i].local_host_addr,
1173                     local->block[i].length, access
1174                     );
1175 
1176         if (!local->block[i].mr &&
1177             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1178                 access |= IBV_ACCESS_ON_DEMAND;
1179                 /* register ODP mr */
1180                 local->block[i].mr =
1181                     ibv_reg_mr(rdma->pd,
1182                                local->block[i].local_host_addr,
1183                                local->block[i].length, access);
1184                 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1185 
1186                 if (local->block[i].mr) {
1187                     qemu_rdma_advise_prefetch_mr(rdma->pd,
1188                                     (uintptr_t)local->block[i].local_host_addr,
1189                                     local->block[i].length,
1190                                     local->block[i].mr->lkey,
1191                                     local->block[i].block_name,
1192                                     true);
1193                 }
1194         }
1195 
1196         if (!local->block[i].mr) {
1197             perror("Failed to register local dest ram block!");
1198             break;
1199         }
1200         rdma->total_registrations++;
1201     }
1202 
1203     if (i >= local->nb_blocks) {
1204         return 0;
1205     }
1206 
1207     for (i--; i >= 0; i--) {
1208         ibv_dereg_mr(local->block[i].mr);
1209         local->block[i].mr = NULL;
1210         rdma->total_registrations--;
1211     }
1212 
1213     return -1;
1214 
1215 }
1216 
1217 /*
1218  * Find the ram block that corresponds to the page requested to be
1219  * transmitted by QEMU.
1220  *
1221  * Once the block is found, also identify which 'chunk' within that
1222  * block that the page belongs to.
1223  *
1224  * This search cannot fail or the migration will fail.
1225  */
1226 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1227                                       uintptr_t block_offset,
1228                                       uint64_t offset,
1229                                       uint64_t length,
1230                                       uint64_t *block_index,
1231                                       uint64_t *chunk_index)
1232 {
1233     uint64_t current_addr = block_offset + offset;
1234     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1235                                                 (void *) block_offset);
1236     assert(block);
1237     assert(current_addr >= block->offset);
1238     assert((current_addr + length) <= (block->offset + block->length));
1239 
1240     *block_index = block->index;
1241     *chunk_index = ram_chunk_index(block->local_host_addr,
1242                 block->local_host_addr + (current_addr - block->offset));
1243 
1244     return 0;
1245 }
1246 
1247 /*
1248  * Register a chunk with IB. If the chunk was already registered
1249  * previously, then skip.
1250  *
1251  * Also return the keys associated with the registration needed
1252  * to perform the actual RDMA operation.
1253  */
1254 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1255         RDMALocalBlock *block, uintptr_t host_addr,
1256         uint32_t *lkey, uint32_t *rkey, int chunk,
1257         uint8_t *chunk_start, uint8_t *chunk_end)
1258 {
1259     if (block->mr) {
1260         if (lkey) {
1261             *lkey = block->mr->lkey;
1262         }
1263         if (rkey) {
1264             *rkey = block->mr->rkey;
1265         }
1266         return 0;
1267     }
1268 
1269     /* allocate memory to store chunk MRs */
1270     if (!block->pmr) {
1271         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1272     }
1273 
1274     /*
1275      * If 'rkey', then we're the destination, so grant access to the source.
1276      *
1277      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1278      */
1279     if (!block->pmr[chunk]) {
1280         uint64_t len = chunk_end - chunk_start;
1281         int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1282                      0;
1283 
1284         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1285 
1286         block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1287         if (!block->pmr[chunk] &&
1288             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1289             access |= IBV_ACCESS_ON_DEMAND;
1290             /* register ODP mr */
1291             block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1292             trace_qemu_rdma_register_odp_mr(block->block_name);
1293 
1294             if (block->pmr[chunk]) {
1295                 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1296                                             len, block->pmr[chunk]->lkey,
1297                                             block->block_name, rkey);
1298 
1299             }
1300         }
1301     }
1302     if (!block->pmr[chunk]) {
1303         perror("Failed to register chunk!");
1304         fprintf(stderr, "Chunk details: block: %d chunk index %d"
1305                         " start %" PRIuPTR " end %" PRIuPTR
1306                         " host %" PRIuPTR
1307                         " local %" PRIuPTR " registrations: %d\n",
1308                         block->index, chunk, (uintptr_t)chunk_start,
1309                         (uintptr_t)chunk_end, host_addr,
1310                         (uintptr_t)block->local_host_addr,
1311                         rdma->total_registrations);
1312         return -1;
1313     }
1314     rdma->total_registrations++;
1315 
1316     if (lkey) {
1317         *lkey = block->pmr[chunk]->lkey;
1318     }
1319     if (rkey) {
1320         *rkey = block->pmr[chunk]->rkey;
1321     }
1322     return 0;
1323 }
1324 
1325 /*
1326  * Register (at connection time) the memory used for control
1327  * channel messages.
1328  */
1329 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1330 {
1331     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1332             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1333             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1334     if (rdma->wr_data[idx].control_mr) {
1335         rdma->total_registrations++;
1336         return 0;
1337     }
1338     error_report("qemu_rdma_reg_control failed");
1339     return -1;
1340 }
1341 
1342 const char *print_wrid(int wrid)
1343 {
1344     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1345         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1346     }
1347     return wrid_desc[wrid];
1348 }
1349 
1350 /*
1351  * RDMA requires memory registration (mlock/pinning), but this is not good for
1352  * overcommitment.
1353  *
1354  * In preparation for the future where LRU information or workload-specific
1355  * writable writable working set memory access behavior is available to QEMU
1356  * it would be nice to have in place the ability to UN-register/UN-pin
1357  * particular memory regions from the RDMA hardware when it is determine that
1358  * those regions of memory will likely not be accessed again in the near future.
1359  *
1360  * While we do not yet have such information right now, the following
1361  * compile-time option allows us to perform a non-optimized version of this
1362  * behavior.
1363  *
1364  * By uncommenting this option, you will cause *all* RDMA transfers to be
1365  * unregistered immediately after the transfer completes on both sides of the
1366  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1367  *
1368  * This will have a terrible impact on migration performance, so until future
1369  * workload information or LRU information is available, do not attempt to use
1370  * this feature except for basic testing.
1371  */
1372 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1373 
1374 /*
1375  * Perform a non-optimized memory unregistration after every transfer
1376  * for demonstration purposes, only if pin-all is not requested.
1377  *
1378  * Potential optimizations:
1379  * 1. Start a new thread to run this function continuously
1380         - for bit clearing
1381         - and for receipt of unregister messages
1382  * 2. Use an LRU.
1383  * 3. Use workload hints.
1384  */
1385 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1386 {
1387     while (rdma->unregistrations[rdma->unregister_current]) {
1388         int ret;
1389         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1390         uint64_t chunk =
1391             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1392         uint64_t index =
1393             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1394         RDMALocalBlock *block =
1395             &(rdma->local_ram_blocks.block[index]);
1396         RDMARegister reg = { .current_index = index };
1397         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1398                                  };
1399         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1400                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1401                                    .repeat = 1,
1402                                  };
1403 
1404         trace_qemu_rdma_unregister_waiting_proc(chunk,
1405                                                 rdma->unregister_current);
1406 
1407         rdma->unregistrations[rdma->unregister_current] = 0;
1408         rdma->unregister_current++;
1409 
1410         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1411             rdma->unregister_current = 0;
1412         }
1413 
1414 
1415         /*
1416          * Unregistration is speculative (because migration is single-threaded
1417          * and we cannot break the protocol's inifinband message ordering).
1418          * Thus, if the memory is currently being used for transmission,
1419          * then abort the attempt to unregister and try again
1420          * later the next time a completion is received for this memory.
1421          */
1422         clear_bit(chunk, block->unregister_bitmap);
1423 
1424         if (test_bit(chunk, block->transit_bitmap)) {
1425             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1426             continue;
1427         }
1428 
1429         trace_qemu_rdma_unregister_waiting_send(chunk);
1430 
1431         ret = ibv_dereg_mr(block->pmr[chunk]);
1432         block->pmr[chunk] = NULL;
1433         block->remote_keys[chunk] = 0;
1434 
1435         if (ret != 0) {
1436             perror("unregistration chunk failed");
1437             return -ret;
1438         }
1439         rdma->total_registrations--;
1440 
1441         reg.key.chunk = chunk;
1442         register_to_network(rdma, &reg);
1443         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1444                                 &resp, NULL, NULL);
1445         if (ret < 0) {
1446             return ret;
1447         }
1448 
1449         trace_qemu_rdma_unregister_waiting_complete(chunk);
1450     }
1451 
1452     return 0;
1453 }
1454 
1455 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1456                                          uint64_t chunk)
1457 {
1458     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1459 
1460     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1461     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1462 
1463     return result;
1464 }
1465 
1466 /*
1467  * Set bit for unregistration in the next iteration.
1468  * We cannot transmit right here, but will unpin later.
1469  */
1470 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1471                                         uint64_t chunk, uint64_t wr_id)
1472 {
1473     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1474         error_report("rdma migration: queue is full");
1475     } else {
1476         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1477 
1478         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1479             trace_qemu_rdma_signal_unregister_append(chunk,
1480                                                      rdma->unregister_next);
1481 
1482             rdma->unregistrations[rdma->unregister_next++] =
1483                     qemu_rdma_make_wrid(wr_id, index, chunk);
1484 
1485             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1486                 rdma->unregister_next = 0;
1487             }
1488         } else {
1489             trace_qemu_rdma_signal_unregister_already(chunk);
1490         }
1491     }
1492 }
1493 
1494 /*
1495  * Consult the connection manager to see a work request
1496  * (of any kind) has completed.
1497  * Return the work request ID that completed.
1498  */
1499 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1500                                uint32_t *byte_len)
1501 {
1502     int ret;
1503     struct ibv_wc wc;
1504     uint64_t wr_id;
1505 
1506     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1507 
1508     if (!ret) {
1509         *wr_id_out = RDMA_WRID_NONE;
1510         return 0;
1511     }
1512 
1513     if (ret < 0) {
1514         error_report("ibv_poll_cq return %d", ret);
1515         return ret;
1516     }
1517 
1518     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1519 
1520     if (wc.status != IBV_WC_SUCCESS) {
1521         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1522                         wc.status, ibv_wc_status_str(wc.status));
1523         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1524 
1525         return -1;
1526     }
1527 
1528     if (rdma->control_ready_expected &&
1529         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1530         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1531                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1532         rdma->control_ready_expected = 0;
1533     }
1534 
1535     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1536         uint64_t chunk =
1537             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1538         uint64_t index =
1539             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1540         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1541 
1542         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1543                                    index, chunk, block->local_host_addr,
1544                                    (void *)(uintptr_t)block->remote_host_addr);
1545 
1546         clear_bit(chunk, block->transit_bitmap);
1547 
1548         if (rdma->nb_sent > 0) {
1549             rdma->nb_sent--;
1550         }
1551 
1552         if (!rdma->pin_all) {
1553             /*
1554              * FYI: If one wanted to signal a specific chunk to be unregistered
1555              * using LRU or workload-specific information, this is the function
1556              * you would call to do so. That chunk would then get asynchronously
1557              * unregistered later.
1558              */
1559 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1560             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1561 #endif
1562         }
1563     } else {
1564         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1565     }
1566 
1567     *wr_id_out = wc.wr_id;
1568     if (byte_len) {
1569         *byte_len = wc.byte_len;
1570     }
1571 
1572     return  0;
1573 }
1574 
1575 /* Wait for activity on the completion channel.
1576  * Returns 0 on success, none-0 on error.
1577  */
1578 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1579 {
1580     struct rdma_cm_event *cm_event;
1581     int ret = -1;
1582 
1583     /*
1584      * Coroutine doesn't start until migration_fd_process_incoming()
1585      * so don't yield unless we know we're running inside of a coroutine.
1586      */
1587     if (rdma->migration_started_on_destination &&
1588         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1589         yield_until_fd_readable(rdma->comp_channel->fd);
1590     } else {
1591         /* This is the source side, we're in a separate thread
1592          * or destination prior to migration_fd_process_incoming()
1593          * after postcopy, the destination also in a separate thread.
1594          * we can't yield; so we have to poll the fd.
1595          * But we need to be able to handle 'cancel' or an error
1596          * without hanging forever.
1597          */
1598         while (!rdma->error_state  && !rdma->received_error) {
1599             GPollFD pfds[2];
1600             pfds[0].fd = rdma->comp_channel->fd;
1601             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1602             pfds[0].revents = 0;
1603 
1604             pfds[1].fd = rdma->channel->fd;
1605             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1606             pfds[1].revents = 0;
1607 
1608             /* 0.1s timeout, should be fine for a 'cancel' */
1609             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1610             case 2:
1611             case 1: /* fd active */
1612                 if (pfds[0].revents) {
1613                     return 0;
1614                 }
1615 
1616                 if (pfds[1].revents) {
1617                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1618                     if (ret) {
1619                         error_report("failed to get cm event while wait "
1620                                      "completion channel");
1621                         return -EPIPE;
1622                     }
1623 
1624                     error_report("receive cm event while wait comp channel,"
1625                                  "cm event is %d", cm_event->event);
1626                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1627                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1628                         rdma_ack_cm_event(cm_event);
1629                         return -EPIPE;
1630                     }
1631                     rdma_ack_cm_event(cm_event);
1632                 }
1633                 break;
1634 
1635             case 0: /* Timeout, go around again */
1636                 break;
1637 
1638             default: /* Error of some type -
1639                       * I don't trust errno from qemu_poll_ns
1640                      */
1641                 error_report("%s: poll failed", __func__);
1642                 return -EPIPE;
1643             }
1644 
1645             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1646                 /* Bail out and let the cancellation happen */
1647                 return -EPIPE;
1648             }
1649         }
1650     }
1651 
1652     if (rdma->received_error) {
1653         return -EPIPE;
1654     }
1655     return rdma->error_state;
1656 }
1657 
1658 /*
1659  * Block until the next work request has completed.
1660  *
1661  * First poll to see if a work request has already completed,
1662  * otherwise block.
1663  *
1664  * If we encounter completed work requests for IDs other than
1665  * the one we're interested in, then that's generally an error.
1666  *
1667  * The only exception is actual RDMA Write completions. These
1668  * completions only need to be recorded, but do not actually
1669  * need further processing.
1670  */
1671 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1672                                     uint32_t *byte_len)
1673 {
1674     int num_cq_events = 0, ret = 0;
1675     struct ibv_cq *cq;
1676     void *cq_ctx;
1677     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1678 
1679     if (ibv_req_notify_cq(rdma->cq, 0)) {
1680         return -1;
1681     }
1682     /* poll cq first */
1683     while (wr_id != wrid_requested) {
1684         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1685         if (ret < 0) {
1686             return ret;
1687         }
1688 
1689         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1690 
1691         if (wr_id == RDMA_WRID_NONE) {
1692             break;
1693         }
1694         if (wr_id != wrid_requested) {
1695             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1696                        wrid_requested, print_wrid(wr_id), wr_id);
1697         }
1698     }
1699 
1700     if (wr_id == wrid_requested) {
1701         return 0;
1702     }
1703 
1704     while (1) {
1705         ret = qemu_rdma_wait_comp_channel(rdma);
1706         if (ret) {
1707             goto err_block_for_wrid;
1708         }
1709 
1710         ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1711         if (ret) {
1712             perror("ibv_get_cq_event");
1713             goto err_block_for_wrid;
1714         }
1715 
1716         num_cq_events++;
1717 
1718         ret = -ibv_req_notify_cq(cq, 0);
1719         if (ret) {
1720             goto err_block_for_wrid;
1721         }
1722 
1723         while (wr_id != wrid_requested) {
1724             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1725             if (ret < 0) {
1726                 goto err_block_for_wrid;
1727             }
1728 
1729             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1730 
1731             if (wr_id == RDMA_WRID_NONE) {
1732                 break;
1733             }
1734             if (wr_id != wrid_requested) {
1735                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1736                                    wrid_requested, print_wrid(wr_id), wr_id);
1737             }
1738         }
1739 
1740         if (wr_id == wrid_requested) {
1741             goto success_block_for_wrid;
1742         }
1743     }
1744 
1745 success_block_for_wrid:
1746     if (num_cq_events) {
1747         ibv_ack_cq_events(cq, num_cq_events);
1748     }
1749     return 0;
1750 
1751 err_block_for_wrid:
1752     if (num_cq_events) {
1753         ibv_ack_cq_events(cq, num_cq_events);
1754     }
1755 
1756     rdma->error_state = ret;
1757     return ret;
1758 }
1759 
1760 /*
1761  * Post a SEND message work request for the control channel
1762  * containing some data and block until the post completes.
1763  */
1764 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1765                                        RDMAControlHeader *head)
1766 {
1767     int ret = 0;
1768     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1769     struct ibv_send_wr *bad_wr;
1770     struct ibv_sge sge = {
1771                            .addr = (uintptr_t)(wr->control),
1772                            .length = head->len + sizeof(RDMAControlHeader),
1773                            .lkey = wr->control_mr->lkey,
1774                          };
1775     struct ibv_send_wr send_wr = {
1776                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1777                                    .opcode = IBV_WR_SEND,
1778                                    .send_flags = IBV_SEND_SIGNALED,
1779                                    .sg_list = &sge,
1780                                    .num_sge = 1,
1781                                 };
1782 
1783     trace_qemu_rdma_post_send_control(control_desc(head->type));
1784 
1785     /*
1786      * We don't actually need to do a memcpy() in here if we used
1787      * the "sge" properly, but since we're only sending control messages
1788      * (not RAM in a performance-critical path), then its OK for now.
1789      *
1790      * The copy makes the RDMAControlHeader simpler to manipulate
1791      * for the time being.
1792      */
1793     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1794     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1795     control_to_network((void *) wr->control);
1796 
1797     if (buf) {
1798         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1799     }
1800 
1801 
1802     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1803 
1804     if (ret > 0) {
1805         error_report("Failed to use post IB SEND for control");
1806         return -ret;
1807     }
1808 
1809     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1810     if (ret < 0) {
1811         error_report("rdma migration: send polling control error");
1812     }
1813 
1814     return ret;
1815 }
1816 
1817 /*
1818  * Post a RECV work request in anticipation of some future receipt
1819  * of data on the control channel.
1820  */
1821 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1822 {
1823     struct ibv_recv_wr *bad_wr;
1824     struct ibv_sge sge = {
1825                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1826                             .length = RDMA_CONTROL_MAX_BUFFER,
1827                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1828                          };
1829 
1830     struct ibv_recv_wr recv_wr = {
1831                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1832                                     .sg_list = &sge,
1833                                     .num_sge = 1,
1834                                  };
1835 
1836 
1837     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1838         return -1;
1839     }
1840 
1841     return 0;
1842 }
1843 
1844 /*
1845  * Block and wait for a RECV control channel message to arrive.
1846  */
1847 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1848                 RDMAControlHeader *head, int expecting, int idx)
1849 {
1850     uint32_t byte_len;
1851     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1852                                        &byte_len);
1853 
1854     if (ret < 0) {
1855         error_report("rdma migration: recv polling control error!");
1856         return ret;
1857     }
1858 
1859     network_to_control((void *) rdma->wr_data[idx].control);
1860     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1861 
1862     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1863 
1864     if (expecting == RDMA_CONTROL_NONE) {
1865         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1866                                              head->type);
1867     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1868         error_report("Was expecting a %s (%d) control message"
1869                 ", but got: %s (%d), length: %d",
1870                 control_desc(expecting), expecting,
1871                 control_desc(head->type), head->type, head->len);
1872         if (head->type == RDMA_CONTROL_ERROR) {
1873             rdma->received_error = true;
1874         }
1875         return -EIO;
1876     }
1877     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1878         error_report("too long length: %d", head->len);
1879         return -EINVAL;
1880     }
1881     if (sizeof(*head) + head->len != byte_len) {
1882         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1883         return -EINVAL;
1884     }
1885 
1886     return 0;
1887 }
1888 
1889 /*
1890  * When a RECV work request has completed, the work request's
1891  * buffer is pointed at the header.
1892  *
1893  * This will advance the pointer to the data portion
1894  * of the control message of the work request's buffer that
1895  * was populated after the work request finished.
1896  */
1897 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1898                                   RDMAControlHeader *head)
1899 {
1900     rdma->wr_data[idx].control_len = head->len;
1901     rdma->wr_data[idx].control_curr =
1902         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1903 }
1904 
1905 /*
1906  * This is an 'atomic' high-level operation to deliver a single, unified
1907  * control-channel message.
1908  *
1909  * Additionally, if the user is expecting some kind of reply to this message,
1910  * they can request a 'resp' response message be filled in by posting an
1911  * additional work request on behalf of the user and waiting for an additional
1912  * completion.
1913  *
1914  * The extra (optional) response is used during registration to us from having
1915  * to perform an *additional* exchange of message just to provide a response by
1916  * instead piggy-backing on the acknowledgement.
1917  */
1918 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1919                                    uint8_t *data, RDMAControlHeader *resp,
1920                                    int *resp_idx,
1921                                    int (*callback)(RDMAContext *rdma))
1922 {
1923     int ret = 0;
1924 
1925     /*
1926      * Wait until the dest is ready before attempting to deliver the message
1927      * by waiting for a READY message.
1928      */
1929     if (rdma->control_ready_expected) {
1930         RDMAControlHeader resp;
1931         ret = qemu_rdma_exchange_get_response(rdma,
1932                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1933         if (ret < 0) {
1934             return ret;
1935         }
1936     }
1937 
1938     /*
1939      * If the user is expecting a response, post a WR in anticipation of it.
1940      */
1941     if (resp) {
1942         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1943         if (ret) {
1944             error_report("rdma migration: error posting"
1945                     " extra control recv for anticipated result!");
1946             return ret;
1947         }
1948     }
1949 
1950     /*
1951      * Post a WR to replace the one we just consumed for the READY message.
1952      */
1953     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1954     if (ret) {
1955         error_report("rdma migration: error posting first control recv!");
1956         return ret;
1957     }
1958 
1959     /*
1960      * Deliver the control message that was requested.
1961      */
1962     ret = qemu_rdma_post_send_control(rdma, data, head);
1963 
1964     if (ret < 0) {
1965         error_report("Failed to send control buffer!");
1966         return ret;
1967     }
1968 
1969     /*
1970      * If we're expecting a response, block and wait for it.
1971      */
1972     if (resp) {
1973         if (callback) {
1974             trace_qemu_rdma_exchange_send_issue_callback();
1975             ret = callback(rdma);
1976             if (ret < 0) {
1977                 return ret;
1978             }
1979         }
1980 
1981         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1982         ret = qemu_rdma_exchange_get_response(rdma, resp,
1983                                               resp->type, RDMA_WRID_DATA);
1984 
1985         if (ret < 0) {
1986             return ret;
1987         }
1988 
1989         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1990         if (resp_idx) {
1991             *resp_idx = RDMA_WRID_DATA;
1992         }
1993         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1994     }
1995 
1996     rdma->control_ready_expected = 1;
1997 
1998     return 0;
1999 }
2000 
2001 /*
2002  * This is an 'atomic' high-level operation to receive a single, unified
2003  * control-channel message.
2004  */
2005 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
2006                                 int expecting)
2007 {
2008     RDMAControlHeader ready = {
2009                                 .len = 0,
2010                                 .type = RDMA_CONTROL_READY,
2011                                 .repeat = 1,
2012                               };
2013     int ret;
2014 
2015     /*
2016      * Inform the source that we're ready to receive a message.
2017      */
2018     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
2019 
2020     if (ret < 0) {
2021         error_report("Failed to send control buffer!");
2022         return ret;
2023     }
2024 
2025     /*
2026      * Block and wait for the message.
2027      */
2028     ret = qemu_rdma_exchange_get_response(rdma, head,
2029                                           expecting, RDMA_WRID_READY);
2030 
2031     if (ret < 0) {
2032         return ret;
2033     }
2034 
2035     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2036 
2037     /*
2038      * Post a new RECV work request to replace the one we just consumed.
2039      */
2040     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2041     if (ret) {
2042         error_report("rdma migration: error posting second control recv!");
2043         return ret;
2044     }
2045 
2046     return 0;
2047 }
2048 
2049 /*
2050  * Write an actual chunk of memory using RDMA.
2051  *
2052  * If we're using dynamic registration on the dest-side, we have to
2053  * send a registration command first.
2054  */
2055 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2056                                int current_index, uint64_t current_addr,
2057                                uint64_t length)
2058 {
2059     struct ibv_sge sge;
2060     struct ibv_send_wr send_wr = { 0 };
2061     struct ibv_send_wr *bad_wr;
2062     int reg_result_idx, ret, count = 0;
2063     uint64_t chunk, chunks;
2064     uint8_t *chunk_start, *chunk_end;
2065     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2066     RDMARegister reg;
2067     RDMARegisterResult *reg_result;
2068     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2069     RDMAControlHeader head = { .len = sizeof(RDMARegister),
2070                                .type = RDMA_CONTROL_REGISTER_REQUEST,
2071                                .repeat = 1,
2072                              };
2073 
2074 retry:
2075     sge.addr = (uintptr_t)(block->local_host_addr +
2076                             (current_addr - block->offset));
2077     sge.length = length;
2078 
2079     chunk = ram_chunk_index(block->local_host_addr,
2080                             (uint8_t *)(uintptr_t)sge.addr);
2081     chunk_start = ram_chunk_start(block, chunk);
2082 
2083     if (block->is_ram_block) {
2084         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2085 
2086         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2087             chunks--;
2088         }
2089     } else {
2090         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2091 
2092         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2093             chunks--;
2094         }
2095     }
2096 
2097     trace_qemu_rdma_write_one_top(chunks + 1,
2098                                   (chunks + 1) *
2099                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2100 
2101     chunk_end = ram_chunk_end(block, chunk + chunks);
2102 
2103     if (!rdma->pin_all) {
2104 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2105         qemu_rdma_unregister_waiting(rdma);
2106 #endif
2107     }
2108 
2109     while (test_bit(chunk, block->transit_bitmap)) {
2110         (void)count;
2111         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2112                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2113 
2114         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2115 
2116         if (ret < 0) {
2117             error_report("Failed to Wait for previous write to complete "
2118                     "block %d chunk %" PRIu64
2119                     " current %" PRIu64 " len %" PRIu64 " %d",
2120                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2121             return ret;
2122         }
2123     }
2124 
2125     if (!rdma->pin_all || !block->is_ram_block) {
2126         if (!block->remote_keys[chunk]) {
2127             /*
2128              * This chunk has not yet been registered, so first check to see
2129              * if the entire chunk is zero. If so, tell the other size to
2130              * memset() + madvise() the entire chunk without RDMA.
2131              */
2132 
2133             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2134                 RDMACompress comp = {
2135                                         .offset = current_addr,
2136                                         .value = 0,
2137                                         .block_idx = current_index,
2138                                         .length = length,
2139                                     };
2140 
2141                 head.len = sizeof(comp);
2142                 head.type = RDMA_CONTROL_COMPRESS;
2143 
2144                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2145                                                current_index, current_addr);
2146 
2147                 compress_to_network(rdma, &comp);
2148                 ret = qemu_rdma_exchange_send(rdma, &head,
2149                                 (uint8_t *) &comp, NULL, NULL, NULL);
2150 
2151                 if (ret < 0) {
2152                     return -EIO;
2153                 }
2154 
2155                 acct_update_position(f, sge.length, true);
2156 
2157                 return 1;
2158             }
2159 
2160             /*
2161              * Otherwise, tell other side to register.
2162              */
2163             reg.current_index = current_index;
2164             if (block->is_ram_block) {
2165                 reg.key.current_addr = current_addr;
2166             } else {
2167                 reg.key.chunk = chunk;
2168             }
2169             reg.chunks = chunks;
2170 
2171             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2172                                               current_addr);
2173 
2174             register_to_network(rdma, &reg);
2175             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2176                                     &resp, &reg_result_idx, NULL);
2177             if (ret < 0) {
2178                 return ret;
2179             }
2180 
2181             /* try to overlap this single registration with the one we sent. */
2182             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2183                                                 &sge.lkey, NULL, chunk,
2184                                                 chunk_start, chunk_end)) {
2185                 error_report("cannot get lkey");
2186                 return -EINVAL;
2187             }
2188 
2189             reg_result = (RDMARegisterResult *)
2190                     rdma->wr_data[reg_result_idx].control_curr;
2191 
2192             network_to_result(reg_result);
2193 
2194             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2195                                                  reg_result->rkey, chunk);
2196 
2197             block->remote_keys[chunk] = reg_result->rkey;
2198             block->remote_host_addr = reg_result->host_addr;
2199         } else {
2200             /* already registered before */
2201             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2202                                                 &sge.lkey, NULL, chunk,
2203                                                 chunk_start, chunk_end)) {
2204                 error_report("cannot get lkey!");
2205                 return -EINVAL;
2206             }
2207         }
2208 
2209         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2210     } else {
2211         send_wr.wr.rdma.rkey = block->remote_rkey;
2212 
2213         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2214                                                      &sge.lkey, NULL, chunk,
2215                                                      chunk_start, chunk_end)) {
2216             error_report("cannot get lkey!");
2217             return -EINVAL;
2218         }
2219     }
2220 
2221     /*
2222      * Encode the ram block index and chunk within this wrid.
2223      * We will use this information at the time of completion
2224      * to figure out which bitmap to check against and then which
2225      * chunk in the bitmap to look for.
2226      */
2227     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2228                                         current_index, chunk);
2229 
2230     send_wr.opcode = IBV_WR_RDMA_WRITE;
2231     send_wr.send_flags = IBV_SEND_SIGNALED;
2232     send_wr.sg_list = &sge;
2233     send_wr.num_sge = 1;
2234     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2235                                 (current_addr - block->offset);
2236 
2237     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2238                                    sge.length);
2239 
2240     /*
2241      * ibv_post_send() does not return negative error numbers,
2242      * per the specification they are positive - no idea why.
2243      */
2244     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2245 
2246     if (ret == ENOMEM) {
2247         trace_qemu_rdma_write_one_queue_full();
2248         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2249         if (ret < 0) {
2250             error_report("rdma migration: failed to make "
2251                          "room in full send queue! %d", ret);
2252             return ret;
2253         }
2254 
2255         goto retry;
2256 
2257     } else if (ret > 0) {
2258         perror("rdma migration: post rdma write failed");
2259         return -ret;
2260     }
2261 
2262     set_bit(chunk, block->transit_bitmap);
2263     acct_update_position(f, sge.length, false);
2264     rdma->total_writes++;
2265 
2266     return 0;
2267 }
2268 
2269 /*
2270  * Push out any unwritten RDMA operations.
2271  *
2272  * We support sending out multiple chunks at the same time.
2273  * Not all of them need to get signaled in the completion queue.
2274  */
2275 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2276 {
2277     int ret;
2278 
2279     if (!rdma->current_length) {
2280         return 0;
2281     }
2282 
2283     ret = qemu_rdma_write_one(f, rdma,
2284             rdma->current_index, rdma->current_addr, rdma->current_length);
2285 
2286     if (ret < 0) {
2287         return ret;
2288     }
2289 
2290     if (ret == 0) {
2291         rdma->nb_sent++;
2292         trace_qemu_rdma_write_flush(rdma->nb_sent);
2293     }
2294 
2295     rdma->current_length = 0;
2296     rdma->current_addr = 0;
2297 
2298     return 0;
2299 }
2300 
2301 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2302                     uint64_t offset, uint64_t len)
2303 {
2304     RDMALocalBlock *block;
2305     uint8_t *host_addr;
2306     uint8_t *chunk_end;
2307 
2308     if (rdma->current_index < 0) {
2309         return 0;
2310     }
2311 
2312     if (rdma->current_chunk < 0) {
2313         return 0;
2314     }
2315 
2316     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2317     host_addr = block->local_host_addr + (offset - block->offset);
2318     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2319 
2320     if (rdma->current_length == 0) {
2321         return 0;
2322     }
2323 
2324     /*
2325      * Only merge into chunk sequentially.
2326      */
2327     if (offset != (rdma->current_addr + rdma->current_length)) {
2328         return 0;
2329     }
2330 
2331     if (offset < block->offset) {
2332         return 0;
2333     }
2334 
2335     if ((offset + len) > (block->offset + block->length)) {
2336         return 0;
2337     }
2338 
2339     if ((host_addr + len) > chunk_end) {
2340         return 0;
2341     }
2342 
2343     return 1;
2344 }
2345 
2346 /*
2347  * We're not actually writing here, but doing three things:
2348  *
2349  * 1. Identify the chunk the buffer belongs to.
2350  * 2. If the chunk is full or the buffer doesn't belong to the current
2351  *    chunk, then start a new chunk and flush() the old chunk.
2352  * 3. To keep the hardware busy, we also group chunks into batches
2353  *    and only require that a batch gets acknowledged in the completion
2354  *    queue instead of each individual chunk.
2355  */
2356 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2357                            uint64_t block_offset, uint64_t offset,
2358                            uint64_t len)
2359 {
2360     uint64_t current_addr = block_offset + offset;
2361     uint64_t index = rdma->current_index;
2362     uint64_t chunk = rdma->current_chunk;
2363     int ret;
2364 
2365     /* If we cannot merge it, we flush the current buffer first. */
2366     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2367         ret = qemu_rdma_write_flush(f, rdma);
2368         if (ret) {
2369             return ret;
2370         }
2371         rdma->current_length = 0;
2372         rdma->current_addr = current_addr;
2373 
2374         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2375                                          offset, len, &index, &chunk);
2376         if (ret) {
2377             error_report("ram block search failed");
2378             return ret;
2379         }
2380         rdma->current_index = index;
2381         rdma->current_chunk = chunk;
2382     }
2383 
2384     /* merge it */
2385     rdma->current_length += len;
2386 
2387     /* flush it if buffer is too large */
2388     if (rdma->current_length >= RDMA_MERGE_MAX) {
2389         return qemu_rdma_write_flush(f, rdma);
2390     }
2391 
2392     return 0;
2393 }
2394 
2395 static void qemu_rdma_cleanup(RDMAContext *rdma)
2396 {
2397     int idx;
2398 
2399     if (rdma->cm_id && rdma->connected) {
2400         if ((rdma->error_state ||
2401              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2402             !rdma->received_error) {
2403             RDMAControlHeader head = { .len = 0,
2404                                        .type = RDMA_CONTROL_ERROR,
2405                                        .repeat = 1,
2406                                      };
2407             error_report("Early error. Sending error.");
2408             qemu_rdma_post_send_control(rdma, NULL, &head);
2409         }
2410 
2411         rdma_disconnect(rdma->cm_id);
2412         trace_qemu_rdma_cleanup_disconnect();
2413         rdma->connected = false;
2414     }
2415 
2416     if (rdma->channel) {
2417         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2418     }
2419     g_free(rdma->dest_blocks);
2420     rdma->dest_blocks = NULL;
2421 
2422     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2423         if (rdma->wr_data[idx].control_mr) {
2424             rdma->total_registrations--;
2425             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2426         }
2427         rdma->wr_data[idx].control_mr = NULL;
2428     }
2429 
2430     if (rdma->local_ram_blocks.block) {
2431         while (rdma->local_ram_blocks.nb_blocks) {
2432             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2433         }
2434     }
2435 
2436     if (rdma->qp) {
2437         rdma_destroy_qp(rdma->cm_id);
2438         rdma->qp = NULL;
2439     }
2440     if (rdma->cq) {
2441         ibv_destroy_cq(rdma->cq);
2442         rdma->cq = NULL;
2443     }
2444     if (rdma->comp_channel) {
2445         ibv_destroy_comp_channel(rdma->comp_channel);
2446         rdma->comp_channel = NULL;
2447     }
2448     if (rdma->pd) {
2449         ibv_dealloc_pd(rdma->pd);
2450         rdma->pd = NULL;
2451     }
2452     if (rdma->cm_id) {
2453         rdma_destroy_id(rdma->cm_id);
2454         rdma->cm_id = NULL;
2455     }
2456 
2457     /* the destination side, listen_id and channel is shared */
2458     if (rdma->listen_id) {
2459         if (!rdma->is_return_path) {
2460             rdma_destroy_id(rdma->listen_id);
2461         }
2462         rdma->listen_id = NULL;
2463 
2464         if (rdma->channel) {
2465             if (!rdma->is_return_path) {
2466                 rdma_destroy_event_channel(rdma->channel);
2467             }
2468             rdma->channel = NULL;
2469         }
2470     }
2471 
2472     if (rdma->channel) {
2473         rdma_destroy_event_channel(rdma->channel);
2474         rdma->channel = NULL;
2475     }
2476     g_free(rdma->host);
2477     g_free(rdma->host_port);
2478     rdma->host = NULL;
2479     rdma->host_port = NULL;
2480 }
2481 
2482 
2483 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2484 {
2485     int ret, idx;
2486     Error *local_err = NULL, **temp = &local_err;
2487 
2488     /*
2489      * Will be validated against destination's actual capabilities
2490      * after the connect() completes.
2491      */
2492     rdma->pin_all = pin_all;
2493 
2494     ret = qemu_rdma_resolve_host(rdma, temp);
2495     if (ret) {
2496         goto err_rdma_source_init;
2497     }
2498 
2499     ret = qemu_rdma_alloc_pd_cq(rdma);
2500     if (ret) {
2501         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2502                     " limits may be too low. Please check $ ulimit -a # and "
2503                     "search for 'ulimit -l' in the output");
2504         goto err_rdma_source_init;
2505     }
2506 
2507     ret = qemu_rdma_alloc_qp(rdma);
2508     if (ret) {
2509         ERROR(temp, "rdma migration: error allocating qp!");
2510         goto err_rdma_source_init;
2511     }
2512 
2513     ret = qemu_rdma_init_ram_blocks(rdma);
2514     if (ret) {
2515         ERROR(temp, "rdma migration: error initializing ram blocks!");
2516         goto err_rdma_source_init;
2517     }
2518 
2519     /* Build the hash that maps from offset to RAMBlock */
2520     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2521     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2522         g_hash_table_insert(rdma->blockmap,
2523                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2524                 &rdma->local_ram_blocks.block[idx]);
2525     }
2526 
2527     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2528         ret = qemu_rdma_reg_control(rdma, idx);
2529         if (ret) {
2530             ERROR(temp, "rdma migration: error registering %d control!",
2531                                                             idx);
2532             goto err_rdma_source_init;
2533         }
2534     }
2535 
2536     return 0;
2537 
2538 err_rdma_source_init:
2539     error_propagate(errp, local_err);
2540     qemu_rdma_cleanup(rdma);
2541     return -1;
2542 }
2543 
2544 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2545                                      struct rdma_cm_event **cm_event,
2546                                      long msec, Error **errp)
2547 {
2548     int ret;
2549     struct pollfd poll_fd = {
2550                                 .fd = rdma->channel->fd,
2551                                 .events = POLLIN,
2552                                 .revents = 0
2553                             };
2554 
2555     do {
2556         ret = poll(&poll_fd, 1, msec);
2557     } while (ret < 0 && errno == EINTR);
2558 
2559     if (ret == 0) {
2560         ERROR(errp, "poll cm event timeout");
2561         return -1;
2562     } else if (ret < 0) {
2563         ERROR(errp, "failed to poll cm event, errno=%i", errno);
2564         return -1;
2565     } else if (poll_fd.revents & POLLIN) {
2566         return rdma_get_cm_event(rdma->channel, cm_event);
2567     } else {
2568         ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2569         return -1;
2570     }
2571 }
2572 
2573 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2574 {
2575     RDMACapabilities cap = {
2576                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2577                                 .flags = 0,
2578                            };
2579     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2580                                           .retry_count = 5,
2581                                           .private_data = &cap,
2582                                           .private_data_len = sizeof(cap),
2583                                         };
2584     struct rdma_cm_event *cm_event;
2585     int ret;
2586 
2587     /*
2588      * Only negotiate the capability with destination if the user
2589      * on the source first requested the capability.
2590      */
2591     if (rdma->pin_all) {
2592         trace_qemu_rdma_connect_pin_all_requested();
2593         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2594     }
2595 
2596     caps_to_network(&cap);
2597 
2598     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2599     if (ret) {
2600         ERROR(errp, "posting second control recv");
2601         goto err_rdma_source_connect;
2602     }
2603 
2604     ret = rdma_connect(rdma->cm_id, &conn_param);
2605     if (ret) {
2606         perror("rdma_connect");
2607         ERROR(errp, "connecting to destination!");
2608         goto err_rdma_source_connect;
2609     }
2610 
2611     if (return_path) {
2612         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2613     } else {
2614         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2615     }
2616     if (ret) {
2617         perror("rdma_get_cm_event after rdma_connect");
2618         ERROR(errp, "connecting to destination!");
2619         goto err_rdma_source_connect;
2620     }
2621 
2622     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2623         error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2624         ERROR(errp, "connecting to destination!");
2625         rdma_ack_cm_event(cm_event);
2626         goto err_rdma_source_connect;
2627     }
2628     rdma->connected = true;
2629 
2630     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2631     network_to_caps(&cap);
2632 
2633     /*
2634      * Verify that the *requested* capabilities are supported by the destination
2635      * and disable them otherwise.
2636      */
2637     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2638         ERROR(errp, "Server cannot support pinning all memory. "
2639                         "Will register memory dynamically.");
2640         rdma->pin_all = false;
2641     }
2642 
2643     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2644 
2645     rdma_ack_cm_event(cm_event);
2646 
2647     rdma->control_ready_expected = 1;
2648     rdma->nb_sent = 0;
2649     return 0;
2650 
2651 err_rdma_source_connect:
2652     qemu_rdma_cleanup(rdma);
2653     return -1;
2654 }
2655 
2656 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2657 {
2658     int ret, idx;
2659     struct rdma_cm_id *listen_id;
2660     char ip[40] = "unknown";
2661     struct rdma_addrinfo *res, *e;
2662     char port_str[16];
2663 
2664     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2665         rdma->wr_data[idx].control_len = 0;
2666         rdma->wr_data[idx].control_curr = NULL;
2667     }
2668 
2669     if (!rdma->host || !rdma->host[0]) {
2670         ERROR(errp, "RDMA host is not set!");
2671         rdma->error_state = -EINVAL;
2672         return -1;
2673     }
2674     /* create CM channel */
2675     rdma->channel = rdma_create_event_channel();
2676     if (!rdma->channel) {
2677         ERROR(errp, "could not create rdma event channel");
2678         rdma->error_state = -EINVAL;
2679         return -1;
2680     }
2681 
2682     /* create CM id */
2683     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2684     if (ret) {
2685         ERROR(errp, "could not create cm_id!");
2686         goto err_dest_init_create_listen_id;
2687     }
2688 
2689     snprintf(port_str, 16, "%d", rdma->port);
2690     port_str[15] = '\0';
2691 
2692     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2693     if (ret < 0) {
2694         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2695         goto err_dest_init_bind_addr;
2696     }
2697 
2698     for (e = res; e != NULL; e = e->ai_next) {
2699         inet_ntop(e->ai_family,
2700             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2701         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2702         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2703         if (ret) {
2704             continue;
2705         }
2706         if (e->ai_family == AF_INET6) {
2707             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2708             if (ret) {
2709                 continue;
2710             }
2711         }
2712         break;
2713     }
2714 
2715     rdma_freeaddrinfo(res);
2716     if (!e) {
2717         ERROR(errp, "Error: could not rdma_bind_addr!");
2718         goto err_dest_init_bind_addr;
2719     }
2720 
2721     rdma->listen_id = listen_id;
2722     qemu_rdma_dump_gid("dest_init", listen_id);
2723     return 0;
2724 
2725 err_dest_init_bind_addr:
2726     rdma_destroy_id(listen_id);
2727 err_dest_init_create_listen_id:
2728     rdma_destroy_event_channel(rdma->channel);
2729     rdma->channel = NULL;
2730     rdma->error_state = ret;
2731     return ret;
2732 
2733 }
2734 
2735 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2736                                             RDMAContext *rdma)
2737 {
2738     int idx;
2739 
2740     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2741         rdma_return_path->wr_data[idx].control_len = 0;
2742         rdma_return_path->wr_data[idx].control_curr = NULL;
2743     }
2744 
2745     /*the CM channel and CM id is shared*/
2746     rdma_return_path->channel = rdma->channel;
2747     rdma_return_path->listen_id = rdma->listen_id;
2748 
2749     rdma->return_path = rdma_return_path;
2750     rdma_return_path->return_path = rdma;
2751     rdma_return_path->is_return_path = true;
2752 }
2753 
2754 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2755 {
2756     RDMAContext *rdma = NULL;
2757     InetSocketAddress *addr;
2758 
2759     if (host_port) {
2760         rdma = g_new0(RDMAContext, 1);
2761         rdma->current_index = -1;
2762         rdma->current_chunk = -1;
2763 
2764         addr = g_new(InetSocketAddress, 1);
2765         if (!inet_parse(addr, host_port, NULL)) {
2766             rdma->port = atoi(addr->port);
2767             rdma->host = g_strdup(addr->host);
2768             rdma->host_port = g_strdup(host_port);
2769         } else {
2770             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2771             g_free(rdma);
2772             rdma = NULL;
2773         }
2774 
2775         qapi_free_InetSocketAddress(addr);
2776     }
2777 
2778     return rdma;
2779 }
2780 
2781 /*
2782  * QEMUFile interface to the control channel.
2783  * SEND messages for control only.
2784  * VM's ram is handled with regular RDMA messages.
2785  */
2786 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2787                                        const struct iovec *iov,
2788                                        size_t niov,
2789                                        int *fds,
2790                                        size_t nfds,
2791                                        Error **errp)
2792 {
2793     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2794     QEMUFile *f = rioc->file;
2795     RDMAContext *rdma;
2796     int ret;
2797     ssize_t done = 0;
2798     size_t i;
2799     size_t len = 0;
2800 
2801     RCU_READ_LOCK_GUARD();
2802     rdma = qatomic_rcu_read(&rioc->rdmaout);
2803 
2804     if (!rdma) {
2805         return -EIO;
2806     }
2807 
2808     CHECK_ERROR_STATE();
2809 
2810     /*
2811      * Push out any writes that
2812      * we're queued up for VM's ram.
2813      */
2814     ret = qemu_rdma_write_flush(f, rdma);
2815     if (ret < 0) {
2816         rdma->error_state = ret;
2817         return ret;
2818     }
2819 
2820     for (i = 0; i < niov; i++) {
2821         size_t remaining = iov[i].iov_len;
2822         uint8_t * data = (void *)iov[i].iov_base;
2823         while (remaining) {
2824             RDMAControlHeader head;
2825 
2826             len = MIN(remaining, RDMA_SEND_INCREMENT);
2827             remaining -= len;
2828 
2829             head.len = len;
2830             head.type = RDMA_CONTROL_QEMU_FILE;
2831 
2832             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2833 
2834             if (ret < 0) {
2835                 rdma->error_state = ret;
2836                 return ret;
2837             }
2838 
2839             data += len;
2840             done += len;
2841         }
2842     }
2843 
2844     return done;
2845 }
2846 
2847 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2848                              size_t size, int idx)
2849 {
2850     size_t len = 0;
2851 
2852     if (rdma->wr_data[idx].control_len) {
2853         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2854 
2855         len = MIN(size, rdma->wr_data[idx].control_len);
2856         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2857         rdma->wr_data[idx].control_curr += len;
2858         rdma->wr_data[idx].control_len -= len;
2859     }
2860 
2861     return len;
2862 }
2863 
2864 /*
2865  * QEMUFile interface to the control channel.
2866  * RDMA links don't use bytestreams, so we have to
2867  * return bytes to QEMUFile opportunistically.
2868  */
2869 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2870                                       const struct iovec *iov,
2871                                       size_t niov,
2872                                       int **fds,
2873                                       size_t *nfds,
2874                                       Error **errp)
2875 {
2876     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2877     RDMAContext *rdma;
2878     RDMAControlHeader head;
2879     int ret = 0;
2880     ssize_t i;
2881     size_t done = 0;
2882 
2883     RCU_READ_LOCK_GUARD();
2884     rdma = qatomic_rcu_read(&rioc->rdmain);
2885 
2886     if (!rdma) {
2887         return -EIO;
2888     }
2889 
2890     CHECK_ERROR_STATE();
2891 
2892     for (i = 0; i < niov; i++) {
2893         size_t want = iov[i].iov_len;
2894         uint8_t *data = (void *)iov[i].iov_base;
2895 
2896         /*
2897          * First, we hold on to the last SEND message we
2898          * were given and dish out the bytes until we run
2899          * out of bytes.
2900          */
2901         ret = qemu_rdma_fill(rdma, data, want, 0);
2902         done += ret;
2903         want -= ret;
2904         /* Got what we needed, so go to next iovec */
2905         if (want == 0) {
2906             continue;
2907         }
2908 
2909         /* If we got any data so far, then don't wait
2910          * for more, just return what we have */
2911         if (done > 0) {
2912             break;
2913         }
2914 
2915 
2916         /* We've got nothing at all, so lets wait for
2917          * more to arrive
2918          */
2919         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2920 
2921         if (ret < 0) {
2922             rdma->error_state = ret;
2923             return ret;
2924         }
2925 
2926         /*
2927          * SEND was received with new bytes, now try again.
2928          */
2929         ret = qemu_rdma_fill(rdma, data, want, 0);
2930         done += ret;
2931         want -= ret;
2932 
2933         /* Still didn't get enough, so lets just return */
2934         if (want) {
2935             if (done == 0) {
2936                 return QIO_CHANNEL_ERR_BLOCK;
2937             } else {
2938                 break;
2939             }
2940         }
2941     }
2942     return done;
2943 }
2944 
2945 /*
2946  * Block until all the outstanding chunks have been delivered by the hardware.
2947  */
2948 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2949 {
2950     int ret;
2951 
2952     if (qemu_rdma_write_flush(f, rdma) < 0) {
2953         return -EIO;
2954     }
2955 
2956     while (rdma->nb_sent) {
2957         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2958         if (ret < 0) {
2959             error_report("rdma migration: complete polling error!");
2960             return -EIO;
2961         }
2962     }
2963 
2964     qemu_rdma_unregister_waiting(rdma);
2965 
2966     return 0;
2967 }
2968 
2969 
2970 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2971                                          bool blocking,
2972                                          Error **errp)
2973 {
2974     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2975     /* XXX we should make readv/writev actually honour this :-) */
2976     rioc->blocking = blocking;
2977     return 0;
2978 }
2979 
2980 
2981 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2982 struct QIOChannelRDMASource {
2983     GSource parent;
2984     QIOChannelRDMA *rioc;
2985     GIOCondition condition;
2986 };
2987 
2988 static gboolean
2989 qio_channel_rdma_source_prepare(GSource *source,
2990                                 gint *timeout)
2991 {
2992     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2993     RDMAContext *rdma;
2994     GIOCondition cond = 0;
2995     *timeout = -1;
2996 
2997     RCU_READ_LOCK_GUARD();
2998     if (rsource->condition == G_IO_IN) {
2999         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3000     } else {
3001         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3002     }
3003 
3004     if (!rdma) {
3005         error_report("RDMAContext is NULL when prepare Gsource");
3006         return FALSE;
3007     }
3008 
3009     if (rdma->wr_data[0].control_len) {
3010         cond |= G_IO_IN;
3011     }
3012     cond |= G_IO_OUT;
3013 
3014     return cond & rsource->condition;
3015 }
3016 
3017 static gboolean
3018 qio_channel_rdma_source_check(GSource *source)
3019 {
3020     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3021     RDMAContext *rdma;
3022     GIOCondition cond = 0;
3023 
3024     RCU_READ_LOCK_GUARD();
3025     if (rsource->condition == G_IO_IN) {
3026         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3027     } else {
3028         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3029     }
3030 
3031     if (!rdma) {
3032         error_report("RDMAContext is NULL when check Gsource");
3033         return FALSE;
3034     }
3035 
3036     if (rdma->wr_data[0].control_len) {
3037         cond |= G_IO_IN;
3038     }
3039     cond |= G_IO_OUT;
3040 
3041     return cond & rsource->condition;
3042 }
3043 
3044 static gboolean
3045 qio_channel_rdma_source_dispatch(GSource *source,
3046                                  GSourceFunc callback,
3047                                  gpointer user_data)
3048 {
3049     QIOChannelFunc func = (QIOChannelFunc)callback;
3050     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3051     RDMAContext *rdma;
3052     GIOCondition cond = 0;
3053 
3054     RCU_READ_LOCK_GUARD();
3055     if (rsource->condition == G_IO_IN) {
3056         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3057     } else {
3058         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3059     }
3060 
3061     if (!rdma) {
3062         error_report("RDMAContext is NULL when dispatch Gsource");
3063         return FALSE;
3064     }
3065 
3066     if (rdma->wr_data[0].control_len) {
3067         cond |= G_IO_IN;
3068     }
3069     cond |= G_IO_OUT;
3070 
3071     return (*func)(QIO_CHANNEL(rsource->rioc),
3072                    (cond & rsource->condition),
3073                    user_data);
3074 }
3075 
3076 static void
3077 qio_channel_rdma_source_finalize(GSource *source)
3078 {
3079     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3080 
3081     object_unref(OBJECT(ssource->rioc));
3082 }
3083 
3084 GSourceFuncs qio_channel_rdma_source_funcs = {
3085     qio_channel_rdma_source_prepare,
3086     qio_channel_rdma_source_check,
3087     qio_channel_rdma_source_dispatch,
3088     qio_channel_rdma_source_finalize
3089 };
3090 
3091 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3092                                               GIOCondition condition)
3093 {
3094     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3095     QIOChannelRDMASource *ssource;
3096     GSource *source;
3097 
3098     source = g_source_new(&qio_channel_rdma_source_funcs,
3099                           sizeof(QIOChannelRDMASource));
3100     ssource = (QIOChannelRDMASource *)source;
3101 
3102     ssource->rioc = rioc;
3103     object_ref(OBJECT(rioc));
3104 
3105     ssource->condition = condition;
3106 
3107     return source;
3108 }
3109 
3110 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3111                                                   AioContext *ctx,
3112                                                   IOHandler *io_read,
3113                                                   IOHandler *io_write,
3114                                                   void *opaque)
3115 {
3116     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3117     if (io_read) {
3118         aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3119                            false, io_read, io_write, NULL, opaque);
3120     } else {
3121         aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3122                            false, io_read, io_write, NULL, opaque);
3123     }
3124 }
3125 
3126 struct rdma_close_rcu {
3127     struct rcu_head rcu;
3128     RDMAContext *rdmain;
3129     RDMAContext *rdmaout;
3130 };
3131 
3132 /* callback from qio_channel_rdma_close via call_rcu */
3133 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3134 {
3135     if (rcu->rdmain) {
3136         qemu_rdma_cleanup(rcu->rdmain);
3137     }
3138 
3139     if (rcu->rdmaout) {
3140         qemu_rdma_cleanup(rcu->rdmaout);
3141     }
3142 
3143     g_free(rcu->rdmain);
3144     g_free(rcu->rdmaout);
3145     g_free(rcu);
3146 }
3147 
3148 static int qio_channel_rdma_close(QIOChannel *ioc,
3149                                   Error **errp)
3150 {
3151     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3152     RDMAContext *rdmain, *rdmaout;
3153     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3154 
3155     trace_qemu_rdma_close();
3156 
3157     rdmain = rioc->rdmain;
3158     if (rdmain) {
3159         qatomic_rcu_set(&rioc->rdmain, NULL);
3160     }
3161 
3162     rdmaout = rioc->rdmaout;
3163     if (rdmaout) {
3164         qatomic_rcu_set(&rioc->rdmaout, NULL);
3165     }
3166 
3167     rcu->rdmain = rdmain;
3168     rcu->rdmaout = rdmaout;
3169     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3170 
3171     return 0;
3172 }
3173 
3174 static int
3175 qio_channel_rdma_shutdown(QIOChannel *ioc,
3176                             QIOChannelShutdown how,
3177                             Error **errp)
3178 {
3179     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3180     RDMAContext *rdmain, *rdmaout;
3181 
3182     RCU_READ_LOCK_GUARD();
3183 
3184     rdmain = qatomic_rcu_read(&rioc->rdmain);
3185     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3186 
3187     switch (how) {
3188     case QIO_CHANNEL_SHUTDOWN_READ:
3189         if (rdmain) {
3190             rdmain->error_state = -1;
3191         }
3192         break;
3193     case QIO_CHANNEL_SHUTDOWN_WRITE:
3194         if (rdmaout) {
3195             rdmaout->error_state = -1;
3196         }
3197         break;
3198     case QIO_CHANNEL_SHUTDOWN_BOTH:
3199     default:
3200         if (rdmain) {
3201             rdmain->error_state = -1;
3202         }
3203         if (rdmaout) {
3204             rdmaout->error_state = -1;
3205         }
3206         break;
3207     }
3208 
3209     return 0;
3210 }
3211 
3212 /*
3213  * Parameters:
3214  *    @offset == 0 :
3215  *        This means that 'block_offset' is a full virtual address that does not
3216  *        belong to a RAMBlock of the virtual machine and instead
3217  *        represents a private malloc'd memory area that the caller wishes to
3218  *        transfer.
3219  *
3220  *    @offset != 0 :
3221  *        Offset is an offset to be added to block_offset and used
3222  *        to also lookup the corresponding RAMBlock.
3223  *
3224  *    @size > 0 :
3225  *        Initiate an transfer this size.
3226  *
3227  *    @size == 0 :
3228  *        A 'hint' or 'advice' that means that we wish to speculatively
3229  *        and asynchronously unregister this memory. In this case, there is no
3230  *        guarantee that the unregister will actually happen, for example,
3231  *        if the memory is being actively transmitted. Additionally, the memory
3232  *        may be re-registered at any future time if a write within the same
3233  *        chunk was requested again, even if you attempted to unregister it
3234  *        here.
3235  *
3236  *    @size < 0 : TODO, not yet supported
3237  *        Unregister the memory NOW. This means that the caller does not
3238  *        expect there to be any future RDMA transfers and we just want to clean
3239  *        things up. This is used in case the upper layer owns the memory and
3240  *        cannot wait for qemu_fclose() to occur.
3241  *
3242  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3243  *                  sent. Usually, this will not be more than a few bytes of
3244  *                  the protocol because most transfers are sent asynchronously.
3245  */
3246 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3247                                   ram_addr_t block_offset, ram_addr_t offset,
3248                                   size_t size, uint64_t *bytes_sent)
3249 {
3250     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3251     RDMAContext *rdma;
3252     int ret;
3253 
3254     RCU_READ_LOCK_GUARD();
3255     rdma = qatomic_rcu_read(&rioc->rdmaout);
3256 
3257     if (!rdma) {
3258         return -EIO;
3259     }
3260 
3261     CHECK_ERROR_STATE();
3262 
3263     if (migration_in_postcopy()) {
3264         return RAM_SAVE_CONTROL_NOT_SUPP;
3265     }
3266 
3267     qemu_fflush(f);
3268 
3269     if (size > 0) {
3270         /*
3271          * Add this page to the current 'chunk'. If the chunk
3272          * is full, or the page doesn't belong to the current chunk,
3273          * an actual RDMA write will occur and a new chunk will be formed.
3274          */
3275         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3276         if (ret < 0) {
3277             error_report("rdma migration: write error! %d", ret);
3278             goto err;
3279         }
3280 
3281         /*
3282          * We always return 1 bytes because the RDMA
3283          * protocol is completely asynchronous. We do not yet know
3284          * whether an  identified chunk is zero or not because we're
3285          * waiting for other pages to potentially be merged with
3286          * the current chunk. So, we have to call qemu_update_position()
3287          * later on when the actual write occurs.
3288          */
3289         if (bytes_sent) {
3290             *bytes_sent = 1;
3291         }
3292     } else {
3293         uint64_t index, chunk;
3294 
3295         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3296         if (size < 0) {
3297             ret = qemu_rdma_drain_cq(f, rdma);
3298             if (ret < 0) {
3299                 fprintf(stderr, "rdma: failed to synchronously drain"
3300                                 " completion queue before unregistration.\n");
3301                 goto err;
3302             }
3303         }
3304         */
3305 
3306         ret = qemu_rdma_search_ram_block(rdma, block_offset,
3307                                          offset, size, &index, &chunk);
3308 
3309         if (ret) {
3310             error_report("ram block search failed");
3311             goto err;
3312         }
3313 
3314         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3315 
3316         /*
3317          * TODO: Synchronous, guaranteed unregistration (should not occur during
3318          * fast-path). Otherwise, unregisters will process on the next call to
3319          * qemu_rdma_drain_cq()
3320         if (size < 0) {
3321             qemu_rdma_unregister_waiting(rdma);
3322         }
3323         */
3324     }
3325 
3326     /*
3327      * Drain the Completion Queue if possible, but do not block,
3328      * just poll.
3329      *
3330      * If nothing to poll, the end of the iteration will do this
3331      * again to make sure we don't overflow the request queue.
3332      */
3333     while (1) {
3334         uint64_t wr_id, wr_id_in;
3335         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3336         if (ret < 0) {
3337             error_report("rdma migration: polling error! %d", ret);
3338             goto err;
3339         }
3340 
3341         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3342 
3343         if (wr_id == RDMA_WRID_NONE) {
3344             break;
3345         }
3346     }
3347 
3348     return RAM_SAVE_CONTROL_DELAYED;
3349 err:
3350     rdma->error_state = ret;
3351     return ret;
3352 }
3353 
3354 static void rdma_accept_incoming_migration(void *opaque);
3355 
3356 static void rdma_cm_poll_handler(void *opaque)
3357 {
3358     RDMAContext *rdma = opaque;
3359     int ret;
3360     struct rdma_cm_event *cm_event;
3361     MigrationIncomingState *mis = migration_incoming_get_current();
3362 
3363     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3364     if (ret) {
3365         error_report("get_cm_event failed %d", errno);
3366         return;
3367     }
3368 
3369     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3370         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3371         if (!rdma->error_state &&
3372             migration_incoming_get_current()->state !=
3373               MIGRATION_STATUS_COMPLETED) {
3374             error_report("receive cm event, cm event is %d", cm_event->event);
3375             rdma->error_state = -EPIPE;
3376             if (rdma->return_path) {
3377                 rdma->return_path->error_state = -EPIPE;
3378             }
3379         }
3380         rdma_ack_cm_event(cm_event);
3381 
3382         if (mis->migration_incoming_co) {
3383             qemu_coroutine_enter(mis->migration_incoming_co);
3384         }
3385         return;
3386     }
3387     rdma_ack_cm_event(cm_event);
3388 }
3389 
3390 static int qemu_rdma_accept(RDMAContext *rdma)
3391 {
3392     RDMACapabilities cap;
3393     struct rdma_conn_param conn_param = {
3394                                             .responder_resources = 2,
3395                                             .private_data = &cap,
3396                                             .private_data_len = sizeof(cap),
3397                                          };
3398     RDMAContext *rdma_return_path = NULL;
3399     struct rdma_cm_event *cm_event;
3400     struct ibv_context *verbs;
3401     int ret = -EINVAL;
3402     int idx;
3403 
3404     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3405     if (ret) {
3406         goto err_rdma_dest_wait;
3407     }
3408 
3409     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3410         rdma_ack_cm_event(cm_event);
3411         goto err_rdma_dest_wait;
3412     }
3413 
3414     /*
3415      * initialize the RDMAContext for return path for postcopy after first
3416      * connection request reached.
3417      */
3418     if (migrate_postcopy() && !rdma->is_return_path) {
3419         rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3420         if (rdma_return_path == NULL) {
3421             rdma_ack_cm_event(cm_event);
3422             goto err_rdma_dest_wait;
3423         }
3424 
3425         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3426     }
3427 
3428     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3429 
3430     network_to_caps(&cap);
3431 
3432     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3433             error_report("Unknown source RDMA version: %d, bailing...",
3434                             cap.version);
3435             rdma_ack_cm_event(cm_event);
3436             goto err_rdma_dest_wait;
3437     }
3438 
3439     /*
3440      * Respond with only the capabilities this version of QEMU knows about.
3441      */
3442     cap.flags &= known_capabilities;
3443 
3444     /*
3445      * Enable the ones that we do know about.
3446      * Add other checks here as new ones are introduced.
3447      */
3448     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3449         rdma->pin_all = true;
3450     }
3451 
3452     rdma->cm_id = cm_event->id;
3453     verbs = cm_event->id->verbs;
3454 
3455     rdma_ack_cm_event(cm_event);
3456 
3457     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3458 
3459     caps_to_network(&cap);
3460 
3461     trace_qemu_rdma_accept_pin_verbsc(verbs);
3462 
3463     if (!rdma->verbs) {
3464         rdma->verbs = verbs;
3465     } else if (rdma->verbs != verbs) {
3466             error_report("ibv context not matching %p, %p!", rdma->verbs,
3467                          verbs);
3468             goto err_rdma_dest_wait;
3469     }
3470 
3471     qemu_rdma_dump_id("dest_init", verbs);
3472 
3473     ret = qemu_rdma_alloc_pd_cq(rdma);
3474     if (ret) {
3475         error_report("rdma migration: error allocating pd and cq!");
3476         goto err_rdma_dest_wait;
3477     }
3478 
3479     ret = qemu_rdma_alloc_qp(rdma);
3480     if (ret) {
3481         error_report("rdma migration: error allocating qp!");
3482         goto err_rdma_dest_wait;
3483     }
3484 
3485     ret = qemu_rdma_init_ram_blocks(rdma);
3486     if (ret) {
3487         error_report("rdma migration: error initializing ram blocks!");
3488         goto err_rdma_dest_wait;
3489     }
3490 
3491     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3492         ret = qemu_rdma_reg_control(rdma, idx);
3493         if (ret) {
3494             error_report("rdma: error registering %d control", idx);
3495             goto err_rdma_dest_wait;
3496         }
3497     }
3498 
3499     /* Accept the second connection request for return path */
3500     if (migrate_postcopy() && !rdma->is_return_path) {
3501         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3502                             NULL,
3503                             (void *)(intptr_t)rdma->return_path);
3504     } else {
3505         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3506                             NULL, rdma);
3507     }
3508 
3509     ret = rdma_accept(rdma->cm_id, &conn_param);
3510     if (ret) {
3511         error_report("rdma_accept returns %d", ret);
3512         goto err_rdma_dest_wait;
3513     }
3514 
3515     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3516     if (ret) {
3517         error_report("rdma_accept get_cm_event failed %d", ret);
3518         goto err_rdma_dest_wait;
3519     }
3520 
3521     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3522         error_report("rdma_accept not event established");
3523         rdma_ack_cm_event(cm_event);
3524         goto err_rdma_dest_wait;
3525     }
3526 
3527     rdma_ack_cm_event(cm_event);
3528     rdma->connected = true;
3529 
3530     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3531     if (ret) {
3532         error_report("rdma migration: error posting second control recv");
3533         goto err_rdma_dest_wait;
3534     }
3535 
3536     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3537 
3538     return 0;
3539 
3540 err_rdma_dest_wait:
3541     rdma->error_state = ret;
3542     qemu_rdma_cleanup(rdma);
3543     g_free(rdma_return_path);
3544     return ret;
3545 }
3546 
3547 static int dest_ram_sort_func(const void *a, const void *b)
3548 {
3549     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3550     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3551 
3552     return (a_index < b_index) ? -1 : (a_index != b_index);
3553 }
3554 
3555 /*
3556  * During each iteration of the migration, we listen for instructions
3557  * by the source VM to perform dynamic page registrations before they
3558  * can perform RDMA operations.
3559  *
3560  * We respond with the 'rkey'.
3561  *
3562  * Keep doing this until the source tells us to stop.
3563  */
3564 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3565 {
3566     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3567                                .type = RDMA_CONTROL_REGISTER_RESULT,
3568                                .repeat = 0,
3569                              };
3570     RDMAControlHeader unreg_resp = { .len = 0,
3571                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3572                                .repeat = 0,
3573                              };
3574     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3575                                  .repeat = 1 };
3576     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3577     RDMAContext *rdma;
3578     RDMALocalBlocks *local;
3579     RDMAControlHeader head;
3580     RDMARegister *reg, *registers;
3581     RDMACompress *comp;
3582     RDMARegisterResult *reg_result;
3583     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3584     RDMALocalBlock *block;
3585     void *host_addr;
3586     int ret = 0;
3587     int idx = 0;
3588     int count = 0;
3589     int i = 0;
3590 
3591     RCU_READ_LOCK_GUARD();
3592     rdma = qatomic_rcu_read(&rioc->rdmain);
3593 
3594     if (!rdma) {
3595         return -EIO;
3596     }
3597 
3598     CHECK_ERROR_STATE();
3599 
3600     local = &rdma->local_ram_blocks;
3601     do {
3602         trace_qemu_rdma_registration_handle_wait();
3603 
3604         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3605 
3606         if (ret < 0) {
3607             break;
3608         }
3609 
3610         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3611             error_report("rdma: Too many requests in this message (%d)."
3612                             "Bailing.", head.repeat);
3613             ret = -EIO;
3614             break;
3615         }
3616 
3617         switch (head.type) {
3618         case RDMA_CONTROL_COMPRESS:
3619             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3620             network_to_compress(comp);
3621 
3622             trace_qemu_rdma_registration_handle_compress(comp->length,
3623                                                          comp->block_idx,
3624                                                          comp->offset);
3625             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3626                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3627                              (unsigned int)comp->block_idx,
3628                              rdma->local_ram_blocks.nb_blocks);
3629                 ret = -EIO;
3630                 goto out;
3631             }
3632             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3633 
3634             host_addr = block->local_host_addr +
3635                             (comp->offset - block->offset);
3636 
3637             ram_handle_compressed(host_addr, comp->value, comp->length);
3638             break;
3639 
3640         case RDMA_CONTROL_REGISTER_FINISHED:
3641             trace_qemu_rdma_registration_handle_finished();
3642             goto out;
3643 
3644         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3645             trace_qemu_rdma_registration_handle_ram_blocks();
3646 
3647             /* Sort our local RAM Block list so it's the same as the source,
3648              * we can do this since we've filled in a src_index in the list
3649              * as we received the RAMBlock list earlier.
3650              */
3651             qsort(rdma->local_ram_blocks.block,
3652                   rdma->local_ram_blocks.nb_blocks,
3653                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3654             for (i = 0; i < local->nb_blocks; i++) {
3655                 local->block[i].index = i;
3656             }
3657 
3658             if (rdma->pin_all) {
3659                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3660                 if (ret) {
3661                     error_report("rdma migration: error dest "
3662                                     "registering ram blocks");
3663                     goto out;
3664                 }
3665             }
3666 
3667             /*
3668              * Dest uses this to prepare to transmit the RAMBlock descriptions
3669              * to the source VM after connection setup.
3670              * Both sides use the "remote" structure to communicate and update
3671              * their "local" descriptions with what was sent.
3672              */
3673             for (i = 0; i < local->nb_blocks; i++) {
3674                 rdma->dest_blocks[i].remote_host_addr =
3675                     (uintptr_t)(local->block[i].local_host_addr);
3676 
3677                 if (rdma->pin_all) {
3678                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3679                 }
3680 
3681                 rdma->dest_blocks[i].offset = local->block[i].offset;
3682                 rdma->dest_blocks[i].length = local->block[i].length;
3683 
3684                 dest_block_to_network(&rdma->dest_blocks[i]);
3685                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3686                     local->block[i].block_name,
3687                     local->block[i].offset,
3688                     local->block[i].length,
3689                     local->block[i].local_host_addr,
3690                     local->block[i].src_index);
3691             }
3692 
3693             blocks.len = rdma->local_ram_blocks.nb_blocks
3694                                                 * sizeof(RDMADestBlock);
3695 
3696 
3697             ret = qemu_rdma_post_send_control(rdma,
3698                                         (uint8_t *) rdma->dest_blocks, &blocks);
3699 
3700             if (ret < 0) {
3701                 error_report("rdma migration: error sending remote info");
3702                 goto out;
3703             }
3704 
3705             break;
3706         case RDMA_CONTROL_REGISTER_REQUEST:
3707             trace_qemu_rdma_registration_handle_register(head.repeat);
3708 
3709             reg_resp.repeat = head.repeat;
3710             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3711 
3712             for (count = 0; count < head.repeat; count++) {
3713                 uint64_t chunk;
3714                 uint8_t *chunk_start, *chunk_end;
3715 
3716                 reg = &registers[count];
3717                 network_to_register(reg);
3718 
3719                 reg_result = &results[count];
3720 
3721                 trace_qemu_rdma_registration_handle_register_loop(count,
3722                          reg->current_index, reg->key.current_addr, reg->chunks);
3723 
3724                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3725                     error_report("rdma: 'register' bad block index %u (vs %d)",
3726                                  (unsigned int)reg->current_index,
3727                                  rdma->local_ram_blocks.nb_blocks);
3728                     ret = -ENOENT;
3729                     goto out;
3730                 }
3731                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3732                 if (block->is_ram_block) {
3733                     if (block->offset > reg->key.current_addr) {
3734                         error_report("rdma: bad register address for block %s"
3735                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3736                             block->block_name, block->offset,
3737                             reg->key.current_addr);
3738                         ret = -ERANGE;
3739                         goto out;
3740                     }
3741                     host_addr = (block->local_host_addr +
3742                                 (reg->key.current_addr - block->offset));
3743                     chunk = ram_chunk_index(block->local_host_addr,
3744                                             (uint8_t *) host_addr);
3745                 } else {
3746                     chunk = reg->key.chunk;
3747                     host_addr = block->local_host_addr +
3748                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3749                     /* Check for particularly bad chunk value */
3750                     if (host_addr < (void *)block->local_host_addr) {
3751                         error_report("rdma: bad chunk for block %s"
3752                             " chunk: %" PRIx64,
3753                             block->block_name, reg->key.chunk);
3754                         ret = -ERANGE;
3755                         goto out;
3756                     }
3757                 }
3758                 chunk_start = ram_chunk_start(block, chunk);
3759                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3760                 /* avoid "-Waddress-of-packed-member" warning */
3761                 uint32_t tmp_rkey = 0;
3762                 if (qemu_rdma_register_and_get_keys(rdma, block,
3763                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3764                             chunk, chunk_start, chunk_end)) {
3765                     error_report("cannot get rkey");
3766                     ret = -EINVAL;
3767                     goto out;
3768                 }
3769                 reg_result->rkey = tmp_rkey;
3770 
3771                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3772 
3773                 trace_qemu_rdma_registration_handle_register_rkey(
3774                                                            reg_result->rkey);
3775 
3776                 result_to_network(reg_result);
3777             }
3778 
3779             ret = qemu_rdma_post_send_control(rdma,
3780                             (uint8_t *) results, &reg_resp);
3781 
3782             if (ret < 0) {
3783                 error_report("Failed to send control buffer");
3784                 goto out;
3785             }
3786             break;
3787         case RDMA_CONTROL_UNREGISTER_REQUEST:
3788             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3789             unreg_resp.repeat = head.repeat;
3790             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3791 
3792             for (count = 0; count < head.repeat; count++) {
3793                 reg = &registers[count];
3794                 network_to_register(reg);
3795 
3796                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3797                            reg->current_index, reg->key.chunk);
3798 
3799                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3800 
3801                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3802                 block->pmr[reg->key.chunk] = NULL;
3803 
3804                 if (ret != 0) {
3805                     perror("rdma unregistration chunk failed");
3806                     ret = -ret;
3807                     goto out;
3808                 }
3809 
3810                 rdma->total_registrations--;
3811 
3812                 trace_qemu_rdma_registration_handle_unregister_success(
3813                                                        reg->key.chunk);
3814             }
3815 
3816             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3817 
3818             if (ret < 0) {
3819                 error_report("Failed to send control buffer");
3820                 goto out;
3821             }
3822             break;
3823         case RDMA_CONTROL_REGISTER_RESULT:
3824             error_report("Invalid RESULT message at dest.");
3825             ret = -EIO;
3826             goto out;
3827         default:
3828             error_report("Unknown control message %s", control_desc(head.type));
3829             ret = -EIO;
3830             goto out;
3831         }
3832     } while (1);
3833 out:
3834     if (ret < 0) {
3835         rdma->error_state = ret;
3836     }
3837     return ret;
3838 }
3839 
3840 /* Destination:
3841  * Called via a ram_control_load_hook during the initial RAM load section which
3842  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3843  * on the source.
3844  * We've already built our local RAMBlock list, but not yet sent the list to
3845  * the source.
3846  */
3847 static int
3848 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3849 {
3850     RDMAContext *rdma;
3851     int curr;
3852     int found = -1;
3853 
3854     RCU_READ_LOCK_GUARD();
3855     rdma = qatomic_rcu_read(&rioc->rdmain);
3856 
3857     if (!rdma) {
3858         return -EIO;
3859     }
3860 
3861     /* Find the matching RAMBlock in our local list */
3862     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3863         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3864             found = curr;
3865             break;
3866         }
3867     }
3868 
3869     if (found == -1) {
3870         error_report("RAMBlock '%s' not found on destination", name);
3871         return -ENOENT;
3872     }
3873 
3874     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3875     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3876     rdma->next_src_index++;
3877 
3878     return 0;
3879 }
3880 
3881 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3882 {
3883     switch (flags) {
3884     case RAM_CONTROL_BLOCK_REG:
3885         return rdma_block_notification_handle(opaque, data);
3886 
3887     case RAM_CONTROL_HOOK:
3888         return qemu_rdma_registration_handle(f, opaque);
3889 
3890     default:
3891         /* Shouldn't be called with any other values */
3892         abort();
3893     }
3894 }
3895 
3896 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3897                                         uint64_t flags, void *data)
3898 {
3899     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3900     RDMAContext *rdma;
3901 
3902     RCU_READ_LOCK_GUARD();
3903     rdma = qatomic_rcu_read(&rioc->rdmaout);
3904     if (!rdma) {
3905         return -EIO;
3906     }
3907 
3908     CHECK_ERROR_STATE();
3909 
3910     if (migration_in_postcopy()) {
3911         return 0;
3912     }
3913 
3914     trace_qemu_rdma_registration_start(flags);
3915     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3916     qemu_fflush(f);
3917 
3918     return 0;
3919 }
3920 
3921 /*
3922  * Inform dest that dynamic registrations are done for now.
3923  * First, flush writes, if any.
3924  */
3925 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3926                                        uint64_t flags, void *data)
3927 {
3928     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3929     RDMAContext *rdma;
3930     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3931     int ret = 0;
3932 
3933     RCU_READ_LOCK_GUARD();
3934     rdma = qatomic_rcu_read(&rioc->rdmaout);
3935     if (!rdma) {
3936         return -EIO;
3937     }
3938 
3939     CHECK_ERROR_STATE();
3940 
3941     if (migration_in_postcopy()) {
3942         return 0;
3943     }
3944 
3945     qemu_fflush(f);
3946     ret = qemu_rdma_drain_cq(f, rdma);
3947 
3948     if (ret < 0) {
3949         goto err;
3950     }
3951 
3952     if (flags == RAM_CONTROL_SETUP) {
3953         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3954         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3955         int reg_result_idx, i, nb_dest_blocks;
3956 
3957         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3958         trace_qemu_rdma_registration_stop_ram();
3959 
3960         /*
3961          * Make sure that we parallelize the pinning on both sides.
3962          * For very large guests, doing this serially takes a really
3963          * long time, so we have to 'interleave' the pinning locally
3964          * with the control messages by performing the pinning on this
3965          * side before we receive the control response from the other
3966          * side that the pinning has completed.
3967          */
3968         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3969                     &reg_result_idx, rdma->pin_all ?
3970                     qemu_rdma_reg_whole_ram_blocks : NULL);
3971         if (ret < 0) {
3972             fprintf(stderr, "receiving remote info!");
3973             return ret;
3974         }
3975 
3976         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3977 
3978         /*
3979          * The protocol uses two different sets of rkeys (mutually exclusive):
3980          * 1. One key to represent the virtual address of the entire ram block.
3981          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3982          * 2. One to represent individual chunks within a ram block.
3983          *    (dynamic chunk registration enabled - pin individual chunks.)
3984          *
3985          * Once the capability is successfully negotiated, the destination transmits
3986          * the keys to use (or sends them later) including the virtual addresses
3987          * and then propagates the remote ram block descriptions to his local copy.
3988          */
3989 
3990         if (local->nb_blocks != nb_dest_blocks) {
3991             fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3992                     "Your QEMU command line parameters are probably "
3993                     "not identical on both the source and destination.",
3994                     local->nb_blocks, nb_dest_blocks);
3995             rdma->error_state = -EINVAL;
3996             return -EINVAL;
3997         }
3998 
3999         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
4000         memcpy(rdma->dest_blocks,
4001             rdma->wr_data[reg_result_idx].control_curr, resp.len);
4002         for (i = 0; i < nb_dest_blocks; i++) {
4003             network_to_dest_block(&rdma->dest_blocks[i]);
4004 
4005             /* We require that the blocks are in the same order */
4006             if (rdma->dest_blocks[i].length != local->block[i].length) {
4007                 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
4008                         "vs %" PRIu64, local->block[i].block_name, i,
4009                         local->block[i].length,
4010                         rdma->dest_blocks[i].length);
4011                 rdma->error_state = -EINVAL;
4012                 return -EINVAL;
4013             }
4014             local->block[i].remote_host_addr =
4015                     rdma->dest_blocks[i].remote_host_addr;
4016             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
4017         }
4018     }
4019 
4020     trace_qemu_rdma_registration_stop(flags);
4021 
4022     head.type = RDMA_CONTROL_REGISTER_FINISHED;
4023     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
4024 
4025     if (ret < 0) {
4026         goto err;
4027     }
4028 
4029     return 0;
4030 err:
4031     rdma->error_state = ret;
4032     return ret;
4033 }
4034 
4035 static const QEMUFileHooks rdma_read_hooks = {
4036     .hook_ram_load = rdma_load_hook,
4037 };
4038 
4039 static const QEMUFileHooks rdma_write_hooks = {
4040     .before_ram_iterate = qemu_rdma_registration_start,
4041     .after_ram_iterate  = qemu_rdma_registration_stop,
4042     .save_page          = qemu_rdma_save_page,
4043 };
4044 
4045 
4046 static void qio_channel_rdma_finalize(Object *obj)
4047 {
4048     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4049     if (rioc->rdmain) {
4050         qemu_rdma_cleanup(rioc->rdmain);
4051         g_free(rioc->rdmain);
4052         rioc->rdmain = NULL;
4053     }
4054     if (rioc->rdmaout) {
4055         qemu_rdma_cleanup(rioc->rdmaout);
4056         g_free(rioc->rdmaout);
4057         rioc->rdmaout = NULL;
4058     }
4059 }
4060 
4061 static void qio_channel_rdma_class_init(ObjectClass *klass,
4062                                         void *class_data G_GNUC_UNUSED)
4063 {
4064     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4065 
4066     ioc_klass->io_writev = qio_channel_rdma_writev;
4067     ioc_klass->io_readv = qio_channel_rdma_readv;
4068     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4069     ioc_klass->io_close = qio_channel_rdma_close;
4070     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4071     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4072     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4073 }
4074 
4075 static const TypeInfo qio_channel_rdma_info = {
4076     .parent = TYPE_QIO_CHANNEL,
4077     .name = TYPE_QIO_CHANNEL_RDMA,
4078     .instance_size = sizeof(QIOChannelRDMA),
4079     .instance_finalize = qio_channel_rdma_finalize,
4080     .class_init = qio_channel_rdma_class_init,
4081 };
4082 
4083 static void qio_channel_rdma_register_types(void)
4084 {
4085     type_register_static(&qio_channel_rdma_info);
4086 }
4087 
4088 type_init(qio_channel_rdma_register_types);
4089 
4090 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4091 {
4092     QIOChannelRDMA *rioc;
4093 
4094     if (qemu_file_mode_is_not_valid(mode)) {
4095         return NULL;
4096     }
4097 
4098     rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4099 
4100     if (mode[0] == 'w') {
4101         rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
4102         rioc->rdmaout = rdma;
4103         rioc->rdmain = rdma->return_path;
4104         qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4105     } else {
4106         rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
4107         rioc->rdmain = rdma;
4108         rioc->rdmaout = rdma->return_path;
4109         qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4110     }
4111 
4112     return rioc->file;
4113 }
4114 
4115 static void rdma_accept_incoming_migration(void *opaque)
4116 {
4117     RDMAContext *rdma = opaque;
4118     int ret;
4119     QEMUFile *f;
4120     Error *local_err = NULL;
4121 
4122     trace_qemu_rdma_accept_incoming_migration();
4123     ret = qemu_rdma_accept(rdma);
4124 
4125     if (ret) {
4126         fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4127         return;
4128     }
4129 
4130     trace_qemu_rdma_accept_incoming_migration_accepted();
4131 
4132     if (rdma->is_return_path) {
4133         return;
4134     }
4135 
4136     f = qemu_fopen_rdma(rdma, "rb");
4137     if (f == NULL) {
4138         fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4139         qemu_rdma_cleanup(rdma);
4140         return;
4141     }
4142 
4143     rdma->migration_started_on_destination = 1;
4144     migration_fd_process_incoming(f, &local_err);
4145     if (local_err) {
4146         error_reportf_err(local_err, "RDMA ERROR:");
4147     }
4148 }
4149 
4150 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4151 {
4152     int ret;
4153     RDMAContext *rdma, *rdma_return_path = NULL;
4154     Error *local_err = NULL;
4155 
4156     trace_rdma_start_incoming_migration();
4157 
4158     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4159     if (ram_block_discard_is_required()) {
4160         error_setg(errp, "RDMA: cannot disable RAM discard");
4161         return;
4162     }
4163 
4164     rdma = qemu_rdma_data_init(host_port, &local_err);
4165     if (rdma == NULL) {
4166         goto err;
4167     }
4168 
4169     ret = qemu_rdma_dest_init(rdma, &local_err);
4170 
4171     if (ret) {
4172         goto err;
4173     }
4174 
4175     trace_rdma_start_incoming_migration_after_dest_init();
4176 
4177     ret = rdma_listen(rdma->listen_id, 5);
4178 
4179     if (ret) {
4180         ERROR(errp, "listening on socket!");
4181         goto cleanup_rdma;
4182     }
4183 
4184     trace_rdma_start_incoming_migration_after_rdma_listen();
4185 
4186     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4187                         NULL, (void *)(intptr_t)rdma);
4188     return;
4189 
4190 cleanup_rdma:
4191     qemu_rdma_cleanup(rdma);
4192 err:
4193     error_propagate(errp, local_err);
4194     if (rdma) {
4195         g_free(rdma->host);
4196         g_free(rdma->host_port);
4197     }
4198     g_free(rdma);
4199     g_free(rdma_return_path);
4200 }
4201 
4202 void rdma_start_outgoing_migration(void *opaque,
4203                             const char *host_port, Error **errp)
4204 {
4205     MigrationState *s = opaque;
4206     RDMAContext *rdma_return_path = NULL;
4207     RDMAContext *rdma;
4208     int ret = 0;
4209 
4210     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4211     if (ram_block_discard_is_required()) {
4212         error_setg(errp, "RDMA: cannot disable RAM discard");
4213         return;
4214     }
4215 
4216     rdma = qemu_rdma_data_init(host_port, errp);
4217     if (rdma == NULL) {
4218         goto err;
4219     }
4220 
4221     ret = qemu_rdma_source_init(rdma,
4222         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4223 
4224     if (ret) {
4225         goto err;
4226     }
4227 
4228     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4229     ret = qemu_rdma_connect(rdma, errp, false);
4230 
4231     if (ret) {
4232         goto err;
4233     }
4234 
4235     /* RDMA postcopy need a separate queue pair for return path */
4236     if (migrate_postcopy()) {
4237         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4238 
4239         if (rdma_return_path == NULL) {
4240             goto return_path_err;
4241         }
4242 
4243         ret = qemu_rdma_source_init(rdma_return_path,
4244             s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4245 
4246         if (ret) {
4247             goto return_path_err;
4248         }
4249 
4250         ret = qemu_rdma_connect(rdma_return_path, errp, true);
4251 
4252         if (ret) {
4253             goto return_path_err;
4254         }
4255 
4256         rdma->return_path = rdma_return_path;
4257         rdma_return_path->return_path = rdma;
4258         rdma_return_path->is_return_path = true;
4259     }
4260 
4261     trace_rdma_start_outgoing_migration_after_rdma_connect();
4262 
4263     s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4264     migrate_fd_connect(s, NULL);
4265     return;
4266 return_path_err:
4267     qemu_rdma_cleanup(rdma);
4268 err:
4269     g_free(rdma);
4270     g_free(rdma_return_path);
4271 }
4272