xref: /qemu/migration/rdma.c (revision b88651cb)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 #include "qom/object.h"
39 #include <poll.h>
40 
41 /*
42  * Print and error on both the Monitor and the Log file.
43  */
44 #define ERROR(errp, fmt, ...) \
45     do { \
46         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
47         if (errp && (*(errp) == NULL)) { \
48             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
49         } \
50     } while (0)
51 
52 #define RDMA_RESOLVE_TIMEOUT_MS 10000
53 
54 /* Do not merge data if larger than this. */
55 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
56 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
57 
58 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
59 
60 /*
61  * This is only for non-live state being migrated.
62  * Instead of RDMA_WRITE messages, we use RDMA_SEND
63  * messages for that state, which requires a different
64  * delivery design than main memory.
65  */
66 #define RDMA_SEND_INCREMENT 32768
67 
68 /*
69  * Maximum size infiniband SEND message
70  */
71 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
72 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
73 
74 #define RDMA_CONTROL_VERSION_CURRENT 1
75 /*
76  * Capabilities for negotiation.
77  */
78 #define RDMA_CAPABILITY_PIN_ALL 0x01
79 
80 /*
81  * Add the other flags above to this list of known capabilities
82  * as they are introduced.
83  */
84 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
85 
86 #define CHECK_ERROR_STATE() \
87     do { \
88         if (rdma->error_state) { \
89             if (!rdma->error_reported) { \
90                 error_report("RDMA is in an error state waiting migration" \
91                                 " to abort!"); \
92                 rdma->error_reported = 1; \
93             } \
94             return rdma->error_state; \
95         } \
96     } while (0)
97 
98 /*
99  * A work request ID is 64-bits and we split up these bits
100  * into 3 parts:
101  *
102  * bits 0-15 : type of control message, 2^16
103  * bits 16-29: ram block index, 2^14
104  * bits 30-63: ram block chunk number, 2^34
105  *
106  * The last two bit ranges are only used for RDMA writes,
107  * in order to track their completion and potentially
108  * also track unregistration status of the message.
109  */
110 #define RDMA_WRID_TYPE_SHIFT  0UL
111 #define RDMA_WRID_BLOCK_SHIFT 16UL
112 #define RDMA_WRID_CHUNK_SHIFT 30UL
113 
114 #define RDMA_WRID_TYPE_MASK \
115     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
116 
117 #define RDMA_WRID_BLOCK_MASK \
118     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
119 
120 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
121 
122 /*
123  * RDMA migration protocol:
124  * 1. RDMA Writes (data messages, i.e. RAM)
125  * 2. IB Send/Recv (control channel messages)
126  */
127 enum {
128     RDMA_WRID_NONE = 0,
129     RDMA_WRID_RDMA_WRITE = 1,
130     RDMA_WRID_SEND_CONTROL = 2000,
131     RDMA_WRID_RECV_CONTROL = 4000,
132 };
133 
134 static const char *wrid_desc[] = {
135     [RDMA_WRID_NONE] = "NONE",
136     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
137     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
138     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
139 };
140 
141 /*
142  * Work request IDs for IB SEND messages only (not RDMA writes).
143  * This is used by the migration protocol to transmit
144  * control messages (such as device state and registration commands)
145  *
146  * We could use more WRs, but we have enough for now.
147  */
148 enum {
149     RDMA_WRID_READY = 0,
150     RDMA_WRID_DATA,
151     RDMA_WRID_CONTROL,
152     RDMA_WRID_MAX,
153 };
154 
155 /*
156  * SEND/RECV IB Control Messages.
157  */
158 enum {
159     RDMA_CONTROL_NONE = 0,
160     RDMA_CONTROL_ERROR,
161     RDMA_CONTROL_READY,               /* ready to receive */
162     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
163     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
164     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
165     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
166     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
167     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
168     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
169     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
170     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
171 };
172 
173 
174 /*
175  * Memory and MR structures used to represent an IB Send/Recv work request.
176  * This is *not* used for RDMA writes, only IB Send/Recv.
177  */
178 typedef struct {
179     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
180     struct   ibv_mr *control_mr;               /* registration metadata */
181     size_t   control_len;                      /* length of the message */
182     uint8_t *control_curr;                     /* start of unconsumed bytes */
183 } RDMAWorkRequestData;
184 
185 /*
186  * Negotiate RDMA capabilities during connection-setup time.
187  */
188 typedef struct {
189     uint32_t version;
190     uint32_t flags;
191 } RDMACapabilities;
192 
193 static void caps_to_network(RDMACapabilities *cap)
194 {
195     cap->version = htonl(cap->version);
196     cap->flags = htonl(cap->flags);
197 }
198 
199 static void network_to_caps(RDMACapabilities *cap)
200 {
201     cap->version = ntohl(cap->version);
202     cap->flags = ntohl(cap->flags);
203 }
204 
205 /*
206  * Representation of a RAMBlock from an RDMA perspective.
207  * This is not transmitted, only local.
208  * This and subsequent structures cannot be linked lists
209  * because we're using a single IB message to transmit
210  * the information. It's small anyway, so a list is overkill.
211  */
212 typedef struct RDMALocalBlock {
213     char          *block_name;
214     uint8_t       *local_host_addr; /* local virtual address */
215     uint64_t       remote_host_addr; /* remote virtual address */
216     uint64_t       offset;
217     uint64_t       length;
218     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
219     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
220     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
221     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
222     int            index;           /* which block are we */
223     unsigned int   src_index;       /* (Only used on dest) */
224     bool           is_ram_block;
225     int            nb_chunks;
226     unsigned long *transit_bitmap;
227     unsigned long *unregister_bitmap;
228 } RDMALocalBlock;
229 
230 /*
231  * Also represents a RAMblock, but only on the dest.
232  * This gets transmitted by the dest during connection-time
233  * to the source VM and then is used to populate the
234  * corresponding RDMALocalBlock with
235  * the information needed to perform the actual RDMA.
236  */
237 typedef struct QEMU_PACKED RDMADestBlock {
238     uint64_t remote_host_addr;
239     uint64_t offset;
240     uint64_t length;
241     uint32_t remote_rkey;
242     uint32_t padding;
243 } RDMADestBlock;
244 
245 static const char *control_desc(unsigned int rdma_control)
246 {
247     static const char *strs[] = {
248         [RDMA_CONTROL_NONE] = "NONE",
249         [RDMA_CONTROL_ERROR] = "ERROR",
250         [RDMA_CONTROL_READY] = "READY",
251         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
252         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
253         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
254         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
255         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
256         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
257         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
258         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
259         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
260     };
261 
262     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
263         return "??BAD CONTROL VALUE??";
264     }
265 
266     return strs[rdma_control];
267 }
268 
269 static uint64_t htonll(uint64_t v)
270 {
271     union { uint32_t lv[2]; uint64_t llv; } u;
272     u.lv[0] = htonl(v >> 32);
273     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
274     return u.llv;
275 }
276 
277 static uint64_t ntohll(uint64_t v)
278 {
279     union { uint32_t lv[2]; uint64_t llv; } u;
280     u.llv = v;
281     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
282 }
283 
284 static void dest_block_to_network(RDMADestBlock *db)
285 {
286     db->remote_host_addr = htonll(db->remote_host_addr);
287     db->offset = htonll(db->offset);
288     db->length = htonll(db->length);
289     db->remote_rkey = htonl(db->remote_rkey);
290 }
291 
292 static void network_to_dest_block(RDMADestBlock *db)
293 {
294     db->remote_host_addr = ntohll(db->remote_host_addr);
295     db->offset = ntohll(db->offset);
296     db->length = ntohll(db->length);
297     db->remote_rkey = ntohl(db->remote_rkey);
298 }
299 
300 /*
301  * Virtual address of the above structures used for transmitting
302  * the RAMBlock descriptions at connection-time.
303  * This structure is *not* transmitted.
304  */
305 typedef struct RDMALocalBlocks {
306     int nb_blocks;
307     bool     init;             /* main memory init complete */
308     RDMALocalBlock *block;
309 } RDMALocalBlocks;
310 
311 /*
312  * Main data structure for RDMA state.
313  * While there is only one copy of this structure being allocated right now,
314  * this is the place where one would start if you wanted to consider
315  * having more than one RDMA connection open at the same time.
316  */
317 typedef struct RDMAContext {
318     char *host;
319     int port;
320     char *host_port;
321 
322     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
323 
324     /*
325      * This is used by *_exchange_send() to figure out whether or not
326      * the initial "READY" message has already been received or not.
327      * This is because other functions may potentially poll() and detect
328      * the READY message before send() does, in which case we need to
329      * know if it completed.
330      */
331     int control_ready_expected;
332 
333     /* number of outstanding writes */
334     int nb_sent;
335 
336     /* store info about current buffer so that we can
337        merge it with future sends */
338     uint64_t current_addr;
339     uint64_t current_length;
340     /* index of ram block the current buffer belongs to */
341     int current_index;
342     /* index of the chunk in the current ram block */
343     int current_chunk;
344 
345     bool pin_all;
346 
347     /*
348      * infiniband-specific variables for opening the device
349      * and maintaining connection state and so forth.
350      *
351      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
352      * cm_id->verbs, cm_id->channel, and cm_id->qp.
353      */
354     struct rdma_cm_id *cm_id;               /* connection manager ID */
355     struct rdma_cm_id *listen_id;
356     bool connected;
357 
358     struct ibv_context          *verbs;
359     struct rdma_event_channel   *channel;
360     struct ibv_qp *qp;                      /* queue pair */
361     struct ibv_comp_channel *recv_comp_channel;  /* recv completion channel */
362     struct ibv_comp_channel *send_comp_channel;  /* send completion channel */
363     struct ibv_pd *pd;                      /* protection domain */
364     struct ibv_cq *recv_cq;                 /* recvieve completion queue */
365     struct ibv_cq *send_cq;                 /* send completion queue */
366 
367     /*
368      * If a previous write failed (perhaps because of a failed
369      * memory registration, then do not attempt any future work
370      * and remember the error state.
371      */
372     int error_state;
373     int error_reported;
374     int received_error;
375 
376     /*
377      * Description of ram blocks used throughout the code.
378      */
379     RDMALocalBlocks local_ram_blocks;
380     RDMADestBlock  *dest_blocks;
381 
382     /* Index of the next RAMBlock received during block registration */
383     unsigned int    next_src_index;
384 
385     /*
386      * Migration on *destination* started.
387      * Then use coroutine yield function.
388      * Source runs in a thread, so we don't care.
389      */
390     int migration_started_on_destination;
391 
392     int total_registrations;
393     int total_writes;
394 
395     int unregister_current, unregister_next;
396     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
397 
398     GHashTable *blockmap;
399 
400     /* the RDMAContext for return path */
401     struct RDMAContext *return_path;
402     bool is_return_path;
403 } RDMAContext;
404 
405 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
406 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
407 
408 
409 
410 struct QIOChannelRDMA {
411     QIOChannel parent;
412     RDMAContext *rdmain;
413     RDMAContext *rdmaout;
414     QEMUFile *file;
415     bool blocking; /* XXX we don't actually honour this yet */
416 };
417 
418 /*
419  * Main structure for IB Send/Recv control messages.
420  * This gets prepended at the beginning of every Send/Recv.
421  */
422 typedef struct QEMU_PACKED {
423     uint32_t len;     /* Total length of data portion */
424     uint32_t type;    /* which control command to perform */
425     uint32_t repeat;  /* number of commands in data portion of same type */
426     uint32_t padding;
427 } RDMAControlHeader;
428 
429 static void control_to_network(RDMAControlHeader *control)
430 {
431     control->type = htonl(control->type);
432     control->len = htonl(control->len);
433     control->repeat = htonl(control->repeat);
434 }
435 
436 static void network_to_control(RDMAControlHeader *control)
437 {
438     control->type = ntohl(control->type);
439     control->len = ntohl(control->len);
440     control->repeat = ntohl(control->repeat);
441 }
442 
443 /*
444  * Register a single Chunk.
445  * Information sent by the source VM to inform the dest
446  * to register an single chunk of memory before we can perform
447  * the actual RDMA operation.
448  */
449 typedef struct QEMU_PACKED {
450     union QEMU_PACKED {
451         uint64_t current_addr;  /* offset into the ram_addr_t space */
452         uint64_t chunk;         /* chunk to lookup if unregistering */
453     } key;
454     uint32_t current_index; /* which ramblock the chunk belongs to */
455     uint32_t padding;
456     uint64_t chunks;            /* how many sequential chunks to register */
457 } RDMARegister;
458 
459 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
460 {
461     RDMALocalBlock *local_block;
462     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
463 
464     if (local_block->is_ram_block) {
465         /*
466          * current_addr as passed in is an address in the local ram_addr_t
467          * space, we need to translate this for the destination
468          */
469         reg->key.current_addr -= local_block->offset;
470         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
471     }
472     reg->key.current_addr = htonll(reg->key.current_addr);
473     reg->current_index = htonl(reg->current_index);
474     reg->chunks = htonll(reg->chunks);
475 }
476 
477 static void network_to_register(RDMARegister *reg)
478 {
479     reg->key.current_addr = ntohll(reg->key.current_addr);
480     reg->current_index = ntohl(reg->current_index);
481     reg->chunks = ntohll(reg->chunks);
482 }
483 
484 typedef struct QEMU_PACKED {
485     uint32_t value;     /* if zero, we will madvise() */
486     uint32_t block_idx; /* which ram block index */
487     uint64_t offset;    /* Address in remote ram_addr_t space */
488     uint64_t length;    /* length of the chunk */
489 } RDMACompress;
490 
491 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
492 {
493     comp->value = htonl(comp->value);
494     /*
495      * comp->offset as passed in is an address in the local ram_addr_t
496      * space, we need to translate this for the destination
497      */
498     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
499     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
500     comp->block_idx = htonl(comp->block_idx);
501     comp->offset = htonll(comp->offset);
502     comp->length = htonll(comp->length);
503 }
504 
505 static void network_to_compress(RDMACompress *comp)
506 {
507     comp->value = ntohl(comp->value);
508     comp->block_idx = ntohl(comp->block_idx);
509     comp->offset = ntohll(comp->offset);
510     comp->length = ntohll(comp->length);
511 }
512 
513 /*
514  * The result of the dest's memory registration produces an "rkey"
515  * which the source VM must reference in order to perform
516  * the RDMA operation.
517  */
518 typedef struct QEMU_PACKED {
519     uint32_t rkey;
520     uint32_t padding;
521     uint64_t host_addr;
522 } RDMARegisterResult;
523 
524 static void result_to_network(RDMARegisterResult *result)
525 {
526     result->rkey = htonl(result->rkey);
527     result->host_addr = htonll(result->host_addr);
528 };
529 
530 static void network_to_result(RDMARegisterResult *result)
531 {
532     result->rkey = ntohl(result->rkey);
533     result->host_addr = ntohll(result->host_addr);
534 };
535 
536 const char *print_wrid(int wrid);
537 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
538                                    uint8_t *data, RDMAControlHeader *resp,
539                                    int *resp_idx,
540                                    int (*callback)(RDMAContext *rdma));
541 
542 static inline uint64_t ram_chunk_index(const uint8_t *start,
543                                        const uint8_t *host)
544 {
545     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
546 }
547 
548 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
549                                        uint64_t i)
550 {
551     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
552                                   (i << RDMA_REG_CHUNK_SHIFT));
553 }
554 
555 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
556                                      uint64_t i)
557 {
558     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
559                                          (1UL << RDMA_REG_CHUNK_SHIFT);
560 
561     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
562         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
563     }
564 
565     return result;
566 }
567 
568 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
569                          void *host_addr,
570                          ram_addr_t block_offset, uint64_t length)
571 {
572     RDMALocalBlocks *local = &rdma->local_ram_blocks;
573     RDMALocalBlock *block;
574     RDMALocalBlock *old = local->block;
575 
576     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
577 
578     if (local->nb_blocks) {
579         int x;
580 
581         if (rdma->blockmap) {
582             for (x = 0; x < local->nb_blocks; x++) {
583                 g_hash_table_remove(rdma->blockmap,
584                                     (void *)(uintptr_t)old[x].offset);
585                 g_hash_table_insert(rdma->blockmap,
586                                     (void *)(uintptr_t)old[x].offset,
587                                     &local->block[x]);
588             }
589         }
590         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
591         g_free(old);
592     }
593 
594     block = &local->block[local->nb_blocks];
595 
596     block->block_name = g_strdup(block_name);
597     block->local_host_addr = host_addr;
598     block->offset = block_offset;
599     block->length = length;
600     block->index = local->nb_blocks;
601     block->src_index = ~0U; /* Filled in by the receipt of the block list */
602     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
603     block->transit_bitmap = bitmap_new(block->nb_chunks);
604     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
605     block->unregister_bitmap = bitmap_new(block->nb_chunks);
606     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
607     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
608 
609     block->is_ram_block = local->init ? false : true;
610 
611     if (rdma->blockmap) {
612         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
613     }
614 
615     trace_rdma_add_block(block_name, local->nb_blocks,
616                          (uintptr_t) block->local_host_addr,
617                          block->offset, block->length,
618                          (uintptr_t) (block->local_host_addr + block->length),
619                          BITS_TO_LONGS(block->nb_chunks) *
620                              sizeof(unsigned long) * 8,
621                          block->nb_chunks);
622 
623     local->nb_blocks++;
624 
625     return 0;
626 }
627 
628 /*
629  * Memory regions need to be registered with the device and queue pairs setup
630  * in advanced before the migration starts. This tells us where the RAM blocks
631  * are so that we can register them individually.
632  */
633 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
634 {
635     const char *block_name = qemu_ram_get_idstr(rb);
636     void *host_addr = qemu_ram_get_host_addr(rb);
637     ram_addr_t block_offset = qemu_ram_get_offset(rb);
638     ram_addr_t length = qemu_ram_get_used_length(rb);
639     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
640 }
641 
642 /*
643  * Identify the RAMBlocks and their quantity. They will be references to
644  * identify chunk boundaries inside each RAMBlock and also be referenced
645  * during dynamic page registration.
646  */
647 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
648 {
649     RDMALocalBlocks *local = &rdma->local_ram_blocks;
650     int ret;
651 
652     assert(rdma->blockmap == NULL);
653     memset(local, 0, sizeof *local);
654     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
655     if (ret) {
656         return ret;
657     }
658     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
659     rdma->dest_blocks = g_new0(RDMADestBlock,
660                                rdma->local_ram_blocks.nb_blocks);
661     local->init = true;
662     return 0;
663 }
664 
665 /*
666  * Note: If used outside of cleanup, the caller must ensure that the destination
667  * block structures are also updated
668  */
669 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
670 {
671     RDMALocalBlocks *local = &rdma->local_ram_blocks;
672     RDMALocalBlock *old = local->block;
673     int x;
674 
675     if (rdma->blockmap) {
676         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
677     }
678     if (block->pmr) {
679         int j;
680 
681         for (j = 0; j < block->nb_chunks; j++) {
682             if (!block->pmr[j]) {
683                 continue;
684             }
685             ibv_dereg_mr(block->pmr[j]);
686             rdma->total_registrations--;
687         }
688         g_free(block->pmr);
689         block->pmr = NULL;
690     }
691 
692     if (block->mr) {
693         ibv_dereg_mr(block->mr);
694         rdma->total_registrations--;
695         block->mr = NULL;
696     }
697 
698     g_free(block->transit_bitmap);
699     block->transit_bitmap = NULL;
700 
701     g_free(block->unregister_bitmap);
702     block->unregister_bitmap = NULL;
703 
704     g_free(block->remote_keys);
705     block->remote_keys = NULL;
706 
707     g_free(block->block_name);
708     block->block_name = NULL;
709 
710     if (rdma->blockmap) {
711         for (x = 0; x < local->nb_blocks; x++) {
712             g_hash_table_remove(rdma->blockmap,
713                                 (void *)(uintptr_t)old[x].offset);
714         }
715     }
716 
717     if (local->nb_blocks > 1) {
718 
719         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
720 
721         if (block->index) {
722             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
723         }
724 
725         if (block->index < (local->nb_blocks - 1)) {
726             memcpy(local->block + block->index, old + (block->index + 1),
727                 sizeof(RDMALocalBlock) *
728                     (local->nb_blocks - (block->index + 1)));
729             for (x = block->index; x < local->nb_blocks - 1; x++) {
730                 local->block[x].index--;
731             }
732         }
733     } else {
734         assert(block == local->block);
735         local->block = NULL;
736     }
737 
738     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
739                            block->offset, block->length,
740                             (uintptr_t)(block->local_host_addr + block->length),
741                            BITS_TO_LONGS(block->nb_chunks) *
742                                sizeof(unsigned long) * 8, block->nb_chunks);
743 
744     g_free(old);
745 
746     local->nb_blocks--;
747 
748     if (local->nb_blocks && rdma->blockmap) {
749         for (x = 0; x < local->nb_blocks; x++) {
750             g_hash_table_insert(rdma->blockmap,
751                                 (void *)(uintptr_t)local->block[x].offset,
752                                 &local->block[x]);
753         }
754     }
755 
756     return 0;
757 }
758 
759 /*
760  * Put in the log file which RDMA device was opened and the details
761  * associated with that device.
762  */
763 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
764 {
765     struct ibv_port_attr port;
766 
767     if (ibv_query_port(verbs, 1, &port)) {
768         error_report("Failed to query port information");
769         return;
770     }
771 
772     printf("%s RDMA Device opened: kernel name %s "
773            "uverbs device name %s, "
774            "infiniband_verbs class device path %s, "
775            "infiniband class device path %s, "
776            "transport: (%d) %s\n",
777                 who,
778                 verbs->device->name,
779                 verbs->device->dev_name,
780                 verbs->device->dev_path,
781                 verbs->device->ibdev_path,
782                 port.link_layer,
783                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
784                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
785                     ? "Ethernet" : "Unknown"));
786 }
787 
788 /*
789  * Put in the log file the RDMA gid addressing information,
790  * useful for folks who have trouble understanding the
791  * RDMA device hierarchy in the kernel.
792  */
793 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
794 {
795     char sgid[33];
796     char dgid[33];
797     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
798     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
799     trace_qemu_rdma_dump_gid(who, sgid, dgid);
800 }
801 
802 /*
803  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
804  * We will try the next addrinfo struct, and fail if there are
805  * no other valid addresses to bind against.
806  *
807  * If user is listening on '[::]', then we will not have a opened a device
808  * yet and have no way of verifying if the device is RoCE or not.
809  *
810  * In this case, the source VM will throw an error for ALL types of
811  * connections (both IPv4 and IPv6) if the destination machine does not have
812  * a regular infiniband network available for use.
813  *
814  * The only way to guarantee that an error is thrown for broken kernels is
815  * for the management software to choose a *specific* interface at bind time
816  * and validate what time of hardware it is.
817  *
818  * Unfortunately, this puts the user in a fix:
819  *
820  *  If the source VM connects with an IPv4 address without knowing that the
821  *  destination has bound to '[::]' the migration will unconditionally fail
822  *  unless the management software is explicitly listening on the IPv4
823  *  address while using a RoCE-based device.
824  *
825  *  If the source VM connects with an IPv6 address, then we're OK because we can
826  *  throw an error on the source (and similarly on the destination).
827  *
828  *  But in mixed environments, this will be broken for a while until it is fixed
829  *  inside linux.
830  *
831  * We do provide a *tiny* bit of help in this function: We can list all of the
832  * devices in the system and check to see if all the devices are RoCE or
833  * Infiniband.
834  *
835  * If we detect that we have a *pure* RoCE environment, then we can safely
836  * thrown an error even if the management software has specified '[::]' as the
837  * bind address.
838  *
839  * However, if there is are multiple hetergeneous devices, then we cannot make
840  * this assumption and the user just has to be sure they know what they are
841  * doing.
842  *
843  * Patches are being reviewed on linux-rdma.
844  */
845 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
846 {
847     /* This bug only exists in linux, to our knowledge. */
848 #ifdef CONFIG_LINUX
849     struct ibv_port_attr port_attr;
850 
851     /*
852      * Verbs are only NULL if management has bound to '[::]'.
853      *
854      * Let's iterate through all the devices and see if there any pure IB
855      * devices (non-ethernet).
856      *
857      * If not, then we can safely proceed with the migration.
858      * Otherwise, there are no guarantees until the bug is fixed in linux.
859      */
860     if (!verbs) {
861         int num_devices, x;
862         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
863         bool roce_found = false;
864         bool ib_found = false;
865 
866         for (x = 0; x < num_devices; x++) {
867             verbs = ibv_open_device(dev_list[x]);
868             if (!verbs) {
869                 if (errno == EPERM) {
870                     continue;
871                 } else {
872                     return -EINVAL;
873                 }
874             }
875 
876             if (ibv_query_port(verbs, 1, &port_attr)) {
877                 ibv_close_device(verbs);
878                 ERROR(errp, "Could not query initial IB port");
879                 return -EINVAL;
880             }
881 
882             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
883                 ib_found = true;
884             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
885                 roce_found = true;
886             }
887 
888             ibv_close_device(verbs);
889 
890         }
891 
892         if (roce_found) {
893             if (ib_found) {
894                 fprintf(stderr, "WARN: migrations may fail:"
895                                 " IPv6 over RoCE / iWARP in linux"
896                                 " is broken. But since you appear to have a"
897                                 " mixed RoCE / IB environment, be sure to only"
898                                 " migrate over the IB fabric until the kernel "
899                                 " fixes the bug.\n");
900             } else {
901                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
902                             " and your management software has specified '[::]'"
903                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
904                 return -ENONET;
905             }
906         }
907 
908         return 0;
909     }
910 
911     /*
912      * If we have a verbs context, that means that some other than '[::]' was
913      * used by the management software for binding. In which case we can
914      * actually warn the user about a potentially broken kernel.
915      */
916 
917     /* IB ports start with 1, not 0 */
918     if (ibv_query_port(verbs, 1, &port_attr)) {
919         ERROR(errp, "Could not query initial IB port");
920         return -EINVAL;
921     }
922 
923     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
924         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
925                     "(but patches on linux-rdma in progress)");
926         return -ENONET;
927     }
928 
929 #endif
930 
931     return 0;
932 }
933 
934 /*
935  * Figure out which RDMA device corresponds to the requested IP hostname
936  * Also create the initial connection manager identifiers for opening
937  * the connection.
938  */
939 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
940 {
941     int ret;
942     struct rdma_addrinfo *res;
943     char port_str[16];
944     struct rdma_cm_event *cm_event;
945     char ip[40] = "unknown";
946     struct rdma_addrinfo *e;
947 
948     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
949         ERROR(errp, "RDMA hostname has not been set");
950         return -EINVAL;
951     }
952 
953     /* create CM channel */
954     rdma->channel = rdma_create_event_channel();
955     if (!rdma->channel) {
956         ERROR(errp, "could not create CM channel");
957         return -EINVAL;
958     }
959 
960     /* create CM id */
961     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
962     if (ret) {
963         ERROR(errp, "could not create channel id");
964         goto err_resolve_create_id;
965     }
966 
967     snprintf(port_str, 16, "%d", rdma->port);
968     port_str[15] = '\0';
969 
970     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
971     if (ret < 0) {
972         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
973         goto err_resolve_get_addr;
974     }
975 
976     for (e = res; e != NULL; e = e->ai_next) {
977         inet_ntop(e->ai_family,
978             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
979         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
980 
981         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
982                 RDMA_RESOLVE_TIMEOUT_MS);
983         if (!ret) {
984             if (e->ai_family == AF_INET6) {
985                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
986                 if (ret) {
987                     continue;
988                 }
989             }
990             goto route;
991         }
992     }
993 
994     rdma_freeaddrinfo(res);
995     ERROR(errp, "could not resolve address %s", rdma->host);
996     goto err_resolve_get_addr;
997 
998 route:
999     rdma_freeaddrinfo(res);
1000     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1001 
1002     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1003     if (ret) {
1004         ERROR(errp, "could not perform event_addr_resolved");
1005         goto err_resolve_get_addr;
1006     }
1007 
1008     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1009         ERROR(errp, "result not equal to event_addr_resolved %s",
1010                 rdma_event_str(cm_event->event));
1011         error_report("rdma_resolve_addr");
1012         rdma_ack_cm_event(cm_event);
1013         ret = -EINVAL;
1014         goto err_resolve_get_addr;
1015     }
1016     rdma_ack_cm_event(cm_event);
1017 
1018     /* resolve route */
1019     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1020     if (ret) {
1021         ERROR(errp, "could not resolve rdma route");
1022         goto err_resolve_get_addr;
1023     }
1024 
1025     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1026     if (ret) {
1027         ERROR(errp, "could not perform event_route_resolved");
1028         goto err_resolve_get_addr;
1029     }
1030     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1031         ERROR(errp, "result not equal to event_route_resolved: %s",
1032                         rdma_event_str(cm_event->event));
1033         rdma_ack_cm_event(cm_event);
1034         ret = -EINVAL;
1035         goto err_resolve_get_addr;
1036     }
1037     rdma_ack_cm_event(cm_event);
1038     rdma->verbs = rdma->cm_id->verbs;
1039     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1040     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1041     return 0;
1042 
1043 err_resolve_get_addr:
1044     rdma_destroy_id(rdma->cm_id);
1045     rdma->cm_id = NULL;
1046 err_resolve_create_id:
1047     rdma_destroy_event_channel(rdma->channel);
1048     rdma->channel = NULL;
1049     return ret;
1050 }
1051 
1052 /*
1053  * Create protection domain and completion queues
1054  */
1055 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1056 {
1057     /* allocate pd */
1058     rdma->pd = ibv_alloc_pd(rdma->verbs);
1059     if (!rdma->pd) {
1060         error_report("failed to allocate protection domain");
1061         return -1;
1062     }
1063 
1064     /* create receive completion channel */
1065     rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1066     if (!rdma->recv_comp_channel) {
1067         error_report("failed to allocate receive completion channel");
1068         goto err_alloc_pd_cq;
1069     }
1070 
1071     /*
1072      * Completion queue can be filled by read work requests.
1073      */
1074     rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1075                                   NULL, rdma->recv_comp_channel, 0);
1076     if (!rdma->recv_cq) {
1077         error_report("failed to allocate receive completion queue");
1078         goto err_alloc_pd_cq;
1079     }
1080 
1081     /* create send completion channel */
1082     rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1083     if (!rdma->send_comp_channel) {
1084         error_report("failed to allocate send completion channel");
1085         goto err_alloc_pd_cq;
1086     }
1087 
1088     rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1089                                   NULL, rdma->send_comp_channel, 0);
1090     if (!rdma->send_cq) {
1091         error_report("failed to allocate send completion queue");
1092         goto err_alloc_pd_cq;
1093     }
1094 
1095     return 0;
1096 
1097 err_alloc_pd_cq:
1098     if (rdma->pd) {
1099         ibv_dealloc_pd(rdma->pd);
1100     }
1101     if (rdma->recv_comp_channel) {
1102         ibv_destroy_comp_channel(rdma->recv_comp_channel);
1103     }
1104     if (rdma->send_comp_channel) {
1105         ibv_destroy_comp_channel(rdma->send_comp_channel);
1106     }
1107     if (rdma->recv_cq) {
1108         ibv_destroy_cq(rdma->recv_cq);
1109         rdma->recv_cq = NULL;
1110     }
1111     rdma->pd = NULL;
1112     rdma->recv_comp_channel = NULL;
1113     rdma->send_comp_channel = NULL;
1114     return -1;
1115 
1116 }
1117 
1118 /*
1119  * Create queue pairs.
1120  */
1121 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1122 {
1123     struct ibv_qp_init_attr attr = { 0 };
1124     int ret;
1125 
1126     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1127     attr.cap.max_recv_wr = 3;
1128     attr.cap.max_send_sge = 1;
1129     attr.cap.max_recv_sge = 1;
1130     attr.send_cq = rdma->send_cq;
1131     attr.recv_cq = rdma->recv_cq;
1132     attr.qp_type = IBV_QPT_RC;
1133 
1134     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1135     if (ret) {
1136         return -1;
1137     }
1138 
1139     rdma->qp = rdma->cm_id->qp;
1140     return 0;
1141 }
1142 
1143 /* Check whether On-Demand Paging is supported by RDAM device */
1144 static bool rdma_support_odp(struct ibv_context *dev)
1145 {
1146     struct ibv_device_attr_ex attr = {0};
1147     int ret = ibv_query_device_ex(dev, NULL, &attr);
1148     if (ret) {
1149         return false;
1150     }
1151 
1152     if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1153         return true;
1154     }
1155 
1156     return false;
1157 }
1158 
1159 /*
1160  * ibv_advise_mr to avoid RNR NAK error as far as possible.
1161  * The responder mr registering with ODP will sent RNR NAK back to
1162  * the requester in the face of the page fault.
1163  */
1164 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1165                                          uint32_t len,  uint32_t lkey,
1166                                          const char *name, bool wr)
1167 {
1168 #ifdef HAVE_IBV_ADVISE_MR
1169     int ret;
1170     int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1171                  IBV_ADVISE_MR_ADVICE_PREFETCH;
1172     struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1173 
1174     ret = ibv_advise_mr(pd, advice,
1175                         IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1176     /* ignore the error */
1177     if (ret) {
1178         trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1179     } else {
1180         trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1181     }
1182 #endif
1183 }
1184 
1185 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1186 {
1187     int i;
1188     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1189 
1190     for (i = 0; i < local->nb_blocks; i++) {
1191         int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1192 
1193         local->block[i].mr =
1194             ibv_reg_mr(rdma->pd,
1195                     local->block[i].local_host_addr,
1196                     local->block[i].length, access
1197                     );
1198 
1199         if (!local->block[i].mr &&
1200             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1201                 access |= IBV_ACCESS_ON_DEMAND;
1202                 /* register ODP mr */
1203                 local->block[i].mr =
1204                     ibv_reg_mr(rdma->pd,
1205                                local->block[i].local_host_addr,
1206                                local->block[i].length, access);
1207                 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1208 
1209                 if (local->block[i].mr) {
1210                     qemu_rdma_advise_prefetch_mr(rdma->pd,
1211                                     (uintptr_t)local->block[i].local_host_addr,
1212                                     local->block[i].length,
1213                                     local->block[i].mr->lkey,
1214                                     local->block[i].block_name,
1215                                     true);
1216                 }
1217         }
1218 
1219         if (!local->block[i].mr) {
1220             perror("Failed to register local dest ram block!");
1221             break;
1222         }
1223         rdma->total_registrations++;
1224     }
1225 
1226     if (i >= local->nb_blocks) {
1227         return 0;
1228     }
1229 
1230     for (i--; i >= 0; i--) {
1231         ibv_dereg_mr(local->block[i].mr);
1232         local->block[i].mr = NULL;
1233         rdma->total_registrations--;
1234     }
1235 
1236     return -1;
1237 
1238 }
1239 
1240 /*
1241  * Find the ram block that corresponds to the page requested to be
1242  * transmitted by QEMU.
1243  *
1244  * Once the block is found, also identify which 'chunk' within that
1245  * block that the page belongs to.
1246  *
1247  * This search cannot fail or the migration will fail.
1248  */
1249 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1250                                       uintptr_t block_offset,
1251                                       uint64_t offset,
1252                                       uint64_t length,
1253                                       uint64_t *block_index,
1254                                       uint64_t *chunk_index)
1255 {
1256     uint64_t current_addr = block_offset + offset;
1257     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1258                                                 (void *) block_offset);
1259     assert(block);
1260     assert(current_addr >= block->offset);
1261     assert((current_addr + length) <= (block->offset + block->length));
1262 
1263     *block_index = block->index;
1264     *chunk_index = ram_chunk_index(block->local_host_addr,
1265                 block->local_host_addr + (current_addr - block->offset));
1266 
1267     return 0;
1268 }
1269 
1270 /*
1271  * Register a chunk with IB. If the chunk was already registered
1272  * previously, then skip.
1273  *
1274  * Also return the keys associated with the registration needed
1275  * to perform the actual RDMA operation.
1276  */
1277 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1278         RDMALocalBlock *block, uintptr_t host_addr,
1279         uint32_t *lkey, uint32_t *rkey, int chunk,
1280         uint8_t *chunk_start, uint8_t *chunk_end)
1281 {
1282     if (block->mr) {
1283         if (lkey) {
1284             *lkey = block->mr->lkey;
1285         }
1286         if (rkey) {
1287             *rkey = block->mr->rkey;
1288         }
1289         return 0;
1290     }
1291 
1292     /* allocate memory to store chunk MRs */
1293     if (!block->pmr) {
1294         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1295     }
1296 
1297     /*
1298      * If 'rkey', then we're the destination, so grant access to the source.
1299      *
1300      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1301      */
1302     if (!block->pmr[chunk]) {
1303         uint64_t len = chunk_end - chunk_start;
1304         int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1305                      0;
1306 
1307         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1308 
1309         block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1310         if (!block->pmr[chunk] &&
1311             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1312             access |= IBV_ACCESS_ON_DEMAND;
1313             /* register ODP mr */
1314             block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1315             trace_qemu_rdma_register_odp_mr(block->block_name);
1316 
1317             if (block->pmr[chunk]) {
1318                 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1319                                             len, block->pmr[chunk]->lkey,
1320                                             block->block_name, rkey);
1321 
1322             }
1323         }
1324     }
1325     if (!block->pmr[chunk]) {
1326         perror("Failed to register chunk!");
1327         fprintf(stderr, "Chunk details: block: %d chunk index %d"
1328                         " start %" PRIuPTR " end %" PRIuPTR
1329                         " host %" PRIuPTR
1330                         " local %" PRIuPTR " registrations: %d\n",
1331                         block->index, chunk, (uintptr_t)chunk_start,
1332                         (uintptr_t)chunk_end, host_addr,
1333                         (uintptr_t)block->local_host_addr,
1334                         rdma->total_registrations);
1335         return -1;
1336     }
1337     rdma->total_registrations++;
1338 
1339     if (lkey) {
1340         *lkey = block->pmr[chunk]->lkey;
1341     }
1342     if (rkey) {
1343         *rkey = block->pmr[chunk]->rkey;
1344     }
1345     return 0;
1346 }
1347 
1348 /*
1349  * Register (at connection time) the memory used for control
1350  * channel messages.
1351  */
1352 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1353 {
1354     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1355             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1356             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1357     if (rdma->wr_data[idx].control_mr) {
1358         rdma->total_registrations++;
1359         return 0;
1360     }
1361     error_report("qemu_rdma_reg_control failed");
1362     return -1;
1363 }
1364 
1365 const char *print_wrid(int wrid)
1366 {
1367     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1368         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1369     }
1370     return wrid_desc[wrid];
1371 }
1372 
1373 /*
1374  * RDMA requires memory registration (mlock/pinning), but this is not good for
1375  * overcommitment.
1376  *
1377  * In preparation for the future where LRU information or workload-specific
1378  * writable writable working set memory access behavior is available to QEMU
1379  * it would be nice to have in place the ability to UN-register/UN-pin
1380  * particular memory regions from the RDMA hardware when it is determine that
1381  * those regions of memory will likely not be accessed again in the near future.
1382  *
1383  * While we do not yet have such information right now, the following
1384  * compile-time option allows us to perform a non-optimized version of this
1385  * behavior.
1386  *
1387  * By uncommenting this option, you will cause *all* RDMA transfers to be
1388  * unregistered immediately after the transfer completes on both sides of the
1389  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1390  *
1391  * This will have a terrible impact on migration performance, so until future
1392  * workload information or LRU information is available, do not attempt to use
1393  * this feature except for basic testing.
1394  */
1395 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1396 
1397 /*
1398  * Perform a non-optimized memory unregistration after every transfer
1399  * for demonstration purposes, only if pin-all is not requested.
1400  *
1401  * Potential optimizations:
1402  * 1. Start a new thread to run this function continuously
1403         - for bit clearing
1404         - and for receipt of unregister messages
1405  * 2. Use an LRU.
1406  * 3. Use workload hints.
1407  */
1408 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1409 {
1410     while (rdma->unregistrations[rdma->unregister_current]) {
1411         int ret;
1412         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1413         uint64_t chunk =
1414             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1415         uint64_t index =
1416             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1417         RDMALocalBlock *block =
1418             &(rdma->local_ram_blocks.block[index]);
1419         RDMARegister reg = { .current_index = index };
1420         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1421                                  };
1422         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1423                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1424                                    .repeat = 1,
1425                                  };
1426 
1427         trace_qemu_rdma_unregister_waiting_proc(chunk,
1428                                                 rdma->unregister_current);
1429 
1430         rdma->unregistrations[rdma->unregister_current] = 0;
1431         rdma->unregister_current++;
1432 
1433         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1434             rdma->unregister_current = 0;
1435         }
1436 
1437 
1438         /*
1439          * Unregistration is speculative (because migration is single-threaded
1440          * and we cannot break the protocol's inifinband message ordering).
1441          * Thus, if the memory is currently being used for transmission,
1442          * then abort the attempt to unregister and try again
1443          * later the next time a completion is received for this memory.
1444          */
1445         clear_bit(chunk, block->unregister_bitmap);
1446 
1447         if (test_bit(chunk, block->transit_bitmap)) {
1448             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1449             continue;
1450         }
1451 
1452         trace_qemu_rdma_unregister_waiting_send(chunk);
1453 
1454         ret = ibv_dereg_mr(block->pmr[chunk]);
1455         block->pmr[chunk] = NULL;
1456         block->remote_keys[chunk] = 0;
1457 
1458         if (ret != 0) {
1459             perror("unregistration chunk failed");
1460             return -ret;
1461         }
1462         rdma->total_registrations--;
1463 
1464         reg.key.chunk = chunk;
1465         register_to_network(rdma, &reg);
1466         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1467                                 &resp, NULL, NULL);
1468         if (ret < 0) {
1469             return ret;
1470         }
1471 
1472         trace_qemu_rdma_unregister_waiting_complete(chunk);
1473     }
1474 
1475     return 0;
1476 }
1477 
1478 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1479                                          uint64_t chunk)
1480 {
1481     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1482 
1483     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1484     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1485 
1486     return result;
1487 }
1488 
1489 /*
1490  * Set bit for unregistration in the next iteration.
1491  * We cannot transmit right here, but will unpin later.
1492  */
1493 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1494                                         uint64_t chunk, uint64_t wr_id)
1495 {
1496     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1497         error_report("rdma migration: queue is full");
1498     } else {
1499         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1500 
1501         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1502             trace_qemu_rdma_signal_unregister_append(chunk,
1503                                                      rdma->unregister_next);
1504 
1505             rdma->unregistrations[rdma->unregister_next++] =
1506                     qemu_rdma_make_wrid(wr_id, index, chunk);
1507 
1508             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1509                 rdma->unregister_next = 0;
1510             }
1511         } else {
1512             trace_qemu_rdma_signal_unregister_already(chunk);
1513         }
1514     }
1515 }
1516 
1517 /*
1518  * Consult the connection manager to see a work request
1519  * (of any kind) has completed.
1520  * Return the work request ID that completed.
1521  */
1522 static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1523                                uint64_t *wr_id_out, uint32_t *byte_len)
1524 {
1525     int ret;
1526     struct ibv_wc wc;
1527     uint64_t wr_id;
1528 
1529     ret = ibv_poll_cq(cq, 1, &wc);
1530 
1531     if (!ret) {
1532         *wr_id_out = RDMA_WRID_NONE;
1533         return 0;
1534     }
1535 
1536     if (ret < 0) {
1537         error_report("ibv_poll_cq return %d", ret);
1538         return ret;
1539     }
1540 
1541     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1542 
1543     if (wc.status != IBV_WC_SUCCESS) {
1544         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1545                         wc.status, ibv_wc_status_str(wc.status));
1546         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1547 
1548         return -1;
1549     }
1550 
1551     if (rdma->control_ready_expected &&
1552         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1553         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1554                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1555         rdma->control_ready_expected = 0;
1556     }
1557 
1558     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1559         uint64_t chunk =
1560             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1561         uint64_t index =
1562             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1563         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1564 
1565         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1566                                    index, chunk, block->local_host_addr,
1567                                    (void *)(uintptr_t)block->remote_host_addr);
1568 
1569         clear_bit(chunk, block->transit_bitmap);
1570 
1571         if (rdma->nb_sent > 0) {
1572             rdma->nb_sent--;
1573         }
1574 
1575         if (!rdma->pin_all) {
1576             /*
1577              * FYI: If one wanted to signal a specific chunk to be unregistered
1578              * using LRU or workload-specific information, this is the function
1579              * you would call to do so. That chunk would then get asynchronously
1580              * unregistered later.
1581              */
1582 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1583             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1584 #endif
1585         }
1586     } else {
1587         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1588     }
1589 
1590     *wr_id_out = wc.wr_id;
1591     if (byte_len) {
1592         *byte_len = wc.byte_len;
1593     }
1594 
1595     return  0;
1596 }
1597 
1598 /* Wait for activity on the completion channel.
1599  * Returns 0 on success, none-0 on error.
1600  */
1601 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1602                                        struct ibv_comp_channel *comp_channel)
1603 {
1604     struct rdma_cm_event *cm_event;
1605     int ret = -1;
1606 
1607     /*
1608      * Coroutine doesn't start until migration_fd_process_incoming()
1609      * so don't yield unless we know we're running inside of a coroutine.
1610      */
1611     if (rdma->migration_started_on_destination &&
1612         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1613         yield_until_fd_readable(comp_channel->fd);
1614     } else {
1615         /* This is the source side, we're in a separate thread
1616          * or destination prior to migration_fd_process_incoming()
1617          * after postcopy, the destination also in a separate thread.
1618          * we can't yield; so we have to poll the fd.
1619          * But we need to be able to handle 'cancel' or an error
1620          * without hanging forever.
1621          */
1622         while (!rdma->error_state  && !rdma->received_error) {
1623             GPollFD pfds[2];
1624             pfds[0].fd = comp_channel->fd;
1625             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1626             pfds[0].revents = 0;
1627 
1628             pfds[1].fd = rdma->channel->fd;
1629             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1630             pfds[1].revents = 0;
1631 
1632             /* 0.1s timeout, should be fine for a 'cancel' */
1633             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1634             case 2:
1635             case 1: /* fd active */
1636                 if (pfds[0].revents) {
1637                     return 0;
1638                 }
1639 
1640                 if (pfds[1].revents) {
1641                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1642                     if (ret) {
1643                         error_report("failed to get cm event while wait "
1644                                      "completion channel");
1645                         return -EPIPE;
1646                     }
1647 
1648                     error_report("receive cm event while wait comp channel,"
1649                                  "cm event is %d", cm_event->event);
1650                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1651                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1652                         rdma_ack_cm_event(cm_event);
1653                         return -EPIPE;
1654                     }
1655                     rdma_ack_cm_event(cm_event);
1656                 }
1657                 break;
1658 
1659             case 0: /* Timeout, go around again */
1660                 break;
1661 
1662             default: /* Error of some type -
1663                       * I don't trust errno from qemu_poll_ns
1664                      */
1665                 error_report("%s: poll failed", __func__);
1666                 return -EPIPE;
1667             }
1668 
1669             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1670                 /* Bail out and let the cancellation happen */
1671                 return -EPIPE;
1672             }
1673         }
1674     }
1675 
1676     if (rdma->received_error) {
1677         return -EPIPE;
1678     }
1679     return rdma->error_state;
1680 }
1681 
1682 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid)
1683 {
1684     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1685            rdma->recv_comp_channel;
1686 }
1687 
1688 static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid)
1689 {
1690     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1691 }
1692 
1693 /*
1694  * Block until the next work request has completed.
1695  *
1696  * First poll to see if a work request has already completed,
1697  * otherwise block.
1698  *
1699  * If we encounter completed work requests for IDs other than
1700  * the one we're interested in, then that's generally an error.
1701  *
1702  * The only exception is actual RDMA Write completions. These
1703  * completions only need to be recorded, but do not actually
1704  * need further processing.
1705  */
1706 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1707                                     uint32_t *byte_len)
1708 {
1709     int num_cq_events = 0, ret = 0;
1710     struct ibv_cq *cq;
1711     void *cq_ctx;
1712     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1713     struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1714     struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1715 
1716     if (ibv_req_notify_cq(poll_cq, 0)) {
1717         return -1;
1718     }
1719     /* poll cq first */
1720     while (wr_id != wrid_requested) {
1721         ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1722         if (ret < 0) {
1723             return ret;
1724         }
1725 
1726         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1727 
1728         if (wr_id == RDMA_WRID_NONE) {
1729             break;
1730         }
1731         if (wr_id != wrid_requested) {
1732             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1733                        wrid_requested, print_wrid(wr_id), wr_id);
1734         }
1735     }
1736 
1737     if (wr_id == wrid_requested) {
1738         return 0;
1739     }
1740 
1741     while (1) {
1742         ret = qemu_rdma_wait_comp_channel(rdma, ch);
1743         if (ret) {
1744             goto err_block_for_wrid;
1745         }
1746 
1747         ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1748         if (ret) {
1749             perror("ibv_get_cq_event");
1750             goto err_block_for_wrid;
1751         }
1752 
1753         num_cq_events++;
1754 
1755         ret = -ibv_req_notify_cq(cq, 0);
1756         if (ret) {
1757             goto err_block_for_wrid;
1758         }
1759 
1760         while (wr_id != wrid_requested) {
1761             ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1762             if (ret < 0) {
1763                 goto err_block_for_wrid;
1764             }
1765 
1766             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1767 
1768             if (wr_id == RDMA_WRID_NONE) {
1769                 break;
1770             }
1771             if (wr_id != wrid_requested) {
1772                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1773                                    wrid_requested, print_wrid(wr_id), wr_id);
1774             }
1775         }
1776 
1777         if (wr_id == wrid_requested) {
1778             goto success_block_for_wrid;
1779         }
1780     }
1781 
1782 success_block_for_wrid:
1783     if (num_cq_events) {
1784         ibv_ack_cq_events(cq, num_cq_events);
1785     }
1786     return 0;
1787 
1788 err_block_for_wrid:
1789     if (num_cq_events) {
1790         ibv_ack_cq_events(cq, num_cq_events);
1791     }
1792 
1793     rdma->error_state = ret;
1794     return ret;
1795 }
1796 
1797 /*
1798  * Post a SEND message work request for the control channel
1799  * containing some data and block until the post completes.
1800  */
1801 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1802                                        RDMAControlHeader *head)
1803 {
1804     int ret = 0;
1805     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1806     struct ibv_send_wr *bad_wr;
1807     struct ibv_sge sge = {
1808                            .addr = (uintptr_t)(wr->control),
1809                            .length = head->len + sizeof(RDMAControlHeader),
1810                            .lkey = wr->control_mr->lkey,
1811                          };
1812     struct ibv_send_wr send_wr = {
1813                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1814                                    .opcode = IBV_WR_SEND,
1815                                    .send_flags = IBV_SEND_SIGNALED,
1816                                    .sg_list = &sge,
1817                                    .num_sge = 1,
1818                                 };
1819 
1820     trace_qemu_rdma_post_send_control(control_desc(head->type));
1821 
1822     /*
1823      * We don't actually need to do a memcpy() in here if we used
1824      * the "sge" properly, but since we're only sending control messages
1825      * (not RAM in a performance-critical path), then its OK for now.
1826      *
1827      * The copy makes the RDMAControlHeader simpler to manipulate
1828      * for the time being.
1829      */
1830     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1831     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1832     control_to_network((void *) wr->control);
1833 
1834     if (buf) {
1835         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1836     }
1837 
1838 
1839     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1840 
1841     if (ret > 0) {
1842         error_report("Failed to use post IB SEND for control");
1843         return -ret;
1844     }
1845 
1846     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1847     if (ret < 0) {
1848         error_report("rdma migration: send polling control error");
1849     }
1850 
1851     return ret;
1852 }
1853 
1854 /*
1855  * Post a RECV work request in anticipation of some future receipt
1856  * of data on the control channel.
1857  */
1858 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1859 {
1860     struct ibv_recv_wr *bad_wr;
1861     struct ibv_sge sge = {
1862                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1863                             .length = RDMA_CONTROL_MAX_BUFFER,
1864                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1865                          };
1866 
1867     struct ibv_recv_wr recv_wr = {
1868                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1869                                     .sg_list = &sge,
1870                                     .num_sge = 1,
1871                                  };
1872 
1873 
1874     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1875         return -1;
1876     }
1877 
1878     return 0;
1879 }
1880 
1881 /*
1882  * Block and wait for a RECV control channel message to arrive.
1883  */
1884 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1885                 RDMAControlHeader *head, int expecting, int idx)
1886 {
1887     uint32_t byte_len;
1888     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1889                                        &byte_len);
1890 
1891     if (ret < 0) {
1892         error_report("rdma migration: recv polling control error!");
1893         return ret;
1894     }
1895 
1896     network_to_control((void *) rdma->wr_data[idx].control);
1897     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1898 
1899     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1900 
1901     if (expecting == RDMA_CONTROL_NONE) {
1902         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1903                                              head->type);
1904     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1905         error_report("Was expecting a %s (%d) control message"
1906                 ", but got: %s (%d), length: %d",
1907                 control_desc(expecting), expecting,
1908                 control_desc(head->type), head->type, head->len);
1909         if (head->type == RDMA_CONTROL_ERROR) {
1910             rdma->received_error = true;
1911         }
1912         return -EIO;
1913     }
1914     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1915         error_report("too long length: %d", head->len);
1916         return -EINVAL;
1917     }
1918     if (sizeof(*head) + head->len != byte_len) {
1919         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1920         return -EINVAL;
1921     }
1922 
1923     return 0;
1924 }
1925 
1926 /*
1927  * When a RECV work request has completed, the work request's
1928  * buffer is pointed at the header.
1929  *
1930  * This will advance the pointer to the data portion
1931  * of the control message of the work request's buffer that
1932  * was populated after the work request finished.
1933  */
1934 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1935                                   RDMAControlHeader *head)
1936 {
1937     rdma->wr_data[idx].control_len = head->len;
1938     rdma->wr_data[idx].control_curr =
1939         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1940 }
1941 
1942 /*
1943  * This is an 'atomic' high-level operation to deliver a single, unified
1944  * control-channel message.
1945  *
1946  * Additionally, if the user is expecting some kind of reply to this message,
1947  * they can request a 'resp' response message be filled in by posting an
1948  * additional work request on behalf of the user and waiting for an additional
1949  * completion.
1950  *
1951  * The extra (optional) response is used during registration to us from having
1952  * to perform an *additional* exchange of message just to provide a response by
1953  * instead piggy-backing on the acknowledgement.
1954  */
1955 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1956                                    uint8_t *data, RDMAControlHeader *resp,
1957                                    int *resp_idx,
1958                                    int (*callback)(RDMAContext *rdma))
1959 {
1960     int ret = 0;
1961 
1962     /*
1963      * Wait until the dest is ready before attempting to deliver the message
1964      * by waiting for a READY message.
1965      */
1966     if (rdma->control_ready_expected) {
1967         RDMAControlHeader resp;
1968         ret = qemu_rdma_exchange_get_response(rdma,
1969                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1970         if (ret < 0) {
1971             return ret;
1972         }
1973     }
1974 
1975     /*
1976      * If the user is expecting a response, post a WR in anticipation of it.
1977      */
1978     if (resp) {
1979         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1980         if (ret) {
1981             error_report("rdma migration: error posting"
1982                     " extra control recv for anticipated result!");
1983             return ret;
1984         }
1985     }
1986 
1987     /*
1988      * Post a WR to replace the one we just consumed for the READY message.
1989      */
1990     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1991     if (ret) {
1992         error_report("rdma migration: error posting first control recv!");
1993         return ret;
1994     }
1995 
1996     /*
1997      * Deliver the control message that was requested.
1998      */
1999     ret = qemu_rdma_post_send_control(rdma, data, head);
2000 
2001     if (ret < 0) {
2002         error_report("Failed to send control buffer!");
2003         return ret;
2004     }
2005 
2006     /*
2007      * If we're expecting a response, block and wait for it.
2008      */
2009     if (resp) {
2010         if (callback) {
2011             trace_qemu_rdma_exchange_send_issue_callback();
2012             ret = callback(rdma);
2013             if (ret < 0) {
2014                 return ret;
2015             }
2016         }
2017 
2018         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
2019         ret = qemu_rdma_exchange_get_response(rdma, resp,
2020                                               resp->type, RDMA_WRID_DATA);
2021 
2022         if (ret < 0) {
2023             return ret;
2024         }
2025 
2026         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
2027         if (resp_idx) {
2028             *resp_idx = RDMA_WRID_DATA;
2029         }
2030         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
2031     }
2032 
2033     rdma->control_ready_expected = 1;
2034 
2035     return 0;
2036 }
2037 
2038 /*
2039  * This is an 'atomic' high-level operation to receive a single, unified
2040  * control-channel message.
2041  */
2042 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
2043                                 int expecting)
2044 {
2045     RDMAControlHeader ready = {
2046                                 .len = 0,
2047                                 .type = RDMA_CONTROL_READY,
2048                                 .repeat = 1,
2049                               };
2050     int ret;
2051 
2052     /*
2053      * Inform the source that we're ready to receive a message.
2054      */
2055     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
2056 
2057     if (ret < 0) {
2058         error_report("Failed to send control buffer!");
2059         return ret;
2060     }
2061 
2062     /*
2063      * Block and wait for the message.
2064      */
2065     ret = qemu_rdma_exchange_get_response(rdma, head,
2066                                           expecting, RDMA_WRID_READY);
2067 
2068     if (ret < 0) {
2069         return ret;
2070     }
2071 
2072     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2073 
2074     /*
2075      * Post a new RECV work request to replace the one we just consumed.
2076      */
2077     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2078     if (ret) {
2079         error_report("rdma migration: error posting second control recv!");
2080         return ret;
2081     }
2082 
2083     return 0;
2084 }
2085 
2086 /*
2087  * Write an actual chunk of memory using RDMA.
2088  *
2089  * If we're using dynamic registration on the dest-side, we have to
2090  * send a registration command first.
2091  */
2092 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2093                                int current_index, uint64_t current_addr,
2094                                uint64_t length)
2095 {
2096     struct ibv_sge sge;
2097     struct ibv_send_wr send_wr = { 0 };
2098     struct ibv_send_wr *bad_wr;
2099     int reg_result_idx, ret, count = 0;
2100     uint64_t chunk, chunks;
2101     uint8_t *chunk_start, *chunk_end;
2102     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2103     RDMARegister reg;
2104     RDMARegisterResult *reg_result;
2105     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2106     RDMAControlHeader head = { .len = sizeof(RDMARegister),
2107                                .type = RDMA_CONTROL_REGISTER_REQUEST,
2108                                .repeat = 1,
2109                              };
2110 
2111 retry:
2112     sge.addr = (uintptr_t)(block->local_host_addr +
2113                             (current_addr - block->offset));
2114     sge.length = length;
2115 
2116     chunk = ram_chunk_index(block->local_host_addr,
2117                             (uint8_t *)(uintptr_t)sge.addr);
2118     chunk_start = ram_chunk_start(block, chunk);
2119 
2120     if (block->is_ram_block) {
2121         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2122 
2123         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2124             chunks--;
2125         }
2126     } else {
2127         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2128 
2129         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2130             chunks--;
2131         }
2132     }
2133 
2134     trace_qemu_rdma_write_one_top(chunks + 1,
2135                                   (chunks + 1) *
2136                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2137 
2138     chunk_end = ram_chunk_end(block, chunk + chunks);
2139 
2140     if (!rdma->pin_all) {
2141 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2142         qemu_rdma_unregister_waiting(rdma);
2143 #endif
2144     }
2145 
2146     while (test_bit(chunk, block->transit_bitmap)) {
2147         (void)count;
2148         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2149                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2150 
2151         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2152 
2153         if (ret < 0) {
2154             error_report("Failed to Wait for previous write to complete "
2155                     "block %d chunk %" PRIu64
2156                     " current %" PRIu64 " len %" PRIu64 " %d",
2157                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2158             return ret;
2159         }
2160     }
2161 
2162     if (!rdma->pin_all || !block->is_ram_block) {
2163         if (!block->remote_keys[chunk]) {
2164             /*
2165              * This chunk has not yet been registered, so first check to see
2166              * if the entire chunk is zero. If so, tell the other size to
2167              * memset() + madvise() the entire chunk without RDMA.
2168              */
2169 
2170             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2171                 RDMACompress comp = {
2172                                         .offset = current_addr,
2173                                         .value = 0,
2174                                         .block_idx = current_index,
2175                                         .length = length,
2176                                     };
2177 
2178                 head.len = sizeof(comp);
2179                 head.type = RDMA_CONTROL_COMPRESS;
2180 
2181                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2182                                                current_index, current_addr);
2183 
2184                 compress_to_network(rdma, &comp);
2185                 ret = qemu_rdma_exchange_send(rdma, &head,
2186                                 (uint8_t *) &comp, NULL, NULL, NULL);
2187 
2188                 if (ret < 0) {
2189                     return -EIO;
2190                 }
2191 
2192                 acct_update_position(f, sge.length, true);
2193 
2194                 return 1;
2195             }
2196 
2197             /*
2198              * Otherwise, tell other side to register.
2199              */
2200             reg.current_index = current_index;
2201             if (block->is_ram_block) {
2202                 reg.key.current_addr = current_addr;
2203             } else {
2204                 reg.key.chunk = chunk;
2205             }
2206             reg.chunks = chunks;
2207 
2208             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2209                                               current_addr);
2210 
2211             register_to_network(rdma, &reg);
2212             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2213                                     &resp, &reg_result_idx, NULL);
2214             if (ret < 0) {
2215                 return ret;
2216             }
2217 
2218             /* try to overlap this single registration with the one we sent. */
2219             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2220                                                 &sge.lkey, NULL, chunk,
2221                                                 chunk_start, chunk_end)) {
2222                 error_report("cannot get lkey");
2223                 return -EINVAL;
2224             }
2225 
2226             reg_result = (RDMARegisterResult *)
2227                     rdma->wr_data[reg_result_idx].control_curr;
2228 
2229             network_to_result(reg_result);
2230 
2231             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2232                                                  reg_result->rkey, chunk);
2233 
2234             block->remote_keys[chunk] = reg_result->rkey;
2235             block->remote_host_addr = reg_result->host_addr;
2236         } else {
2237             /* already registered before */
2238             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2239                                                 &sge.lkey, NULL, chunk,
2240                                                 chunk_start, chunk_end)) {
2241                 error_report("cannot get lkey!");
2242                 return -EINVAL;
2243             }
2244         }
2245 
2246         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2247     } else {
2248         send_wr.wr.rdma.rkey = block->remote_rkey;
2249 
2250         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2251                                                      &sge.lkey, NULL, chunk,
2252                                                      chunk_start, chunk_end)) {
2253             error_report("cannot get lkey!");
2254             return -EINVAL;
2255         }
2256     }
2257 
2258     /*
2259      * Encode the ram block index and chunk within this wrid.
2260      * We will use this information at the time of completion
2261      * to figure out which bitmap to check against and then which
2262      * chunk in the bitmap to look for.
2263      */
2264     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2265                                         current_index, chunk);
2266 
2267     send_wr.opcode = IBV_WR_RDMA_WRITE;
2268     send_wr.send_flags = IBV_SEND_SIGNALED;
2269     send_wr.sg_list = &sge;
2270     send_wr.num_sge = 1;
2271     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2272                                 (current_addr - block->offset);
2273 
2274     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2275                                    sge.length);
2276 
2277     /*
2278      * ibv_post_send() does not return negative error numbers,
2279      * per the specification they are positive - no idea why.
2280      */
2281     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2282 
2283     if (ret == ENOMEM) {
2284         trace_qemu_rdma_write_one_queue_full();
2285         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2286         if (ret < 0) {
2287             error_report("rdma migration: failed to make "
2288                          "room in full send queue! %d", ret);
2289             return ret;
2290         }
2291 
2292         goto retry;
2293 
2294     } else if (ret > 0) {
2295         perror("rdma migration: post rdma write failed");
2296         return -ret;
2297     }
2298 
2299     set_bit(chunk, block->transit_bitmap);
2300     acct_update_position(f, sge.length, false);
2301     rdma->total_writes++;
2302 
2303     return 0;
2304 }
2305 
2306 /*
2307  * Push out any unwritten RDMA operations.
2308  *
2309  * We support sending out multiple chunks at the same time.
2310  * Not all of them need to get signaled in the completion queue.
2311  */
2312 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2313 {
2314     int ret;
2315 
2316     if (!rdma->current_length) {
2317         return 0;
2318     }
2319 
2320     ret = qemu_rdma_write_one(f, rdma,
2321             rdma->current_index, rdma->current_addr, rdma->current_length);
2322 
2323     if (ret < 0) {
2324         return ret;
2325     }
2326 
2327     if (ret == 0) {
2328         rdma->nb_sent++;
2329         trace_qemu_rdma_write_flush(rdma->nb_sent);
2330     }
2331 
2332     rdma->current_length = 0;
2333     rdma->current_addr = 0;
2334 
2335     return 0;
2336 }
2337 
2338 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2339                     uint64_t offset, uint64_t len)
2340 {
2341     RDMALocalBlock *block;
2342     uint8_t *host_addr;
2343     uint8_t *chunk_end;
2344 
2345     if (rdma->current_index < 0) {
2346         return 0;
2347     }
2348 
2349     if (rdma->current_chunk < 0) {
2350         return 0;
2351     }
2352 
2353     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2354     host_addr = block->local_host_addr + (offset - block->offset);
2355     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2356 
2357     if (rdma->current_length == 0) {
2358         return 0;
2359     }
2360 
2361     /*
2362      * Only merge into chunk sequentially.
2363      */
2364     if (offset != (rdma->current_addr + rdma->current_length)) {
2365         return 0;
2366     }
2367 
2368     if (offset < block->offset) {
2369         return 0;
2370     }
2371 
2372     if ((offset + len) > (block->offset + block->length)) {
2373         return 0;
2374     }
2375 
2376     if ((host_addr + len) > chunk_end) {
2377         return 0;
2378     }
2379 
2380     return 1;
2381 }
2382 
2383 /*
2384  * We're not actually writing here, but doing three things:
2385  *
2386  * 1. Identify the chunk the buffer belongs to.
2387  * 2. If the chunk is full or the buffer doesn't belong to the current
2388  *    chunk, then start a new chunk and flush() the old chunk.
2389  * 3. To keep the hardware busy, we also group chunks into batches
2390  *    and only require that a batch gets acknowledged in the completion
2391  *    queue instead of each individual chunk.
2392  */
2393 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2394                            uint64_t block_offset, uint64_t offset,
2395                            uint64_t len)
2396 {
2397     uint64_t current_addr = block_offset + offset;
2398     uint64_t index = rdma->current_index;
2399     uint64_t chunk = rdma->current_chunk;
2400     int ret;
2401 
2402     /* If we cannot merge it, we flush the current buffer first. */
2403     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2404         ret = qemu_rdma_write_flush(f, rdma);
2405         if (ret) {
2406             return ret;
2407         }
2408         rdma->current_length = 0;
2409         rdma->current_addr = current_addr;
2410 
2411         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2412                                          offset, len, &index, &chunk);
2413         if (ret) {
2414             error_report("ram block search failed");
2415             return ret;
2416         }
2417         rdma->current_index = index;
2418         rdma->current_chunk = chunk;
2419     }
2420 
2421     /* merge it */
2422     rdma->current_length += len;
2423 
2424     /* flush it if buffer is too large */
2425     if (rdma->current_length >= RDMA_MERGE_MAX) {
2426         return qemu_rdma_write_flush(f, rdma);
2427     }
2428 
2429     return 0;
2430 }
2431 
2432 static void qemu_rdma_cleanup(RDMAContext *rdma)
2433 {
2434     int idx;
2435 
2436     if (rdma->cm_id && rdma->connected) {
2437         if ((rdma->error_state ||
2438              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2439             !rdma->received_error) {
2440             RDMAControlHeader head = { .len = 0,
2441                                        .type = RDMA_CONTROL_ERROR,
2442                                        .repeat = 1,
2443                                      };
2444             error_report("Early error. Sending error.");
2445             qemu_rdma_post_send_control(rdma, NULL, &head);
2446         }
2447 
2448         rdma_disconnect(rdma->cm_id);
2449         trace_qemu_rdma_cleanup_disconnect();
2450         rdma->connected = false;
2451     }
2452 
2453     if (rdma->channel) {
2454         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2455     }
2456     g_free(rdma->dest_blocks);
2457     rdma->dest_blocks = NULL;
2458 
2459     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2460         if (rdma->wr_data[idx].control_mr) {
2461             rdma->total_registrations--;
2462             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2463         }
2464         rdma->wr_data[idx].control_mr = NULL;
2465     }
2466 
2467     if (rdma->local_ram_blocks.block) {
2468         while (rdma->local_ram_blocks.nb_blocks) {
2469             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2470         }
2471     }
2472 
2473     if (rdma->qp) {
2474         rdma_destroy_qp(rdma->cm_id);
2475         rdma->qp = NULL;
2476     }
2477     if (rdma->recv_cq) {
2478         ibv_destroy_cq(rdma->recv_cq);
2479         rdma->recv_cq = NULL;
2480     }
2481     if (rdma->send_cq) {
2482         ibv_destroy_cq(rdma->send_cq);
2483         rdma->send_cq = NULL;
2484     }
2485     if (rdma->recv_comp_channel) {
2486         ibv_destroy_comp_channel(rdma->recv_comp_channel);
2487         rdma->recv_comp_channel = NULL;
2488     }
2489     if (rdma->send_comp_channel) {
2490         ibv_destroy_comp_channel(rdma->send_comp_channel);
2491         rdma->send_comp_channel = NULL;
2492     }
2493     if (rdma->pd) {
2494         ibv_dealloc_pd(rdma->pd);
2495         rdma->pd = NULL;
2496     }
2497     if (rdma->cm_id) {
2498         rdma_destroy_id(rdma->cm_id);
2499         rdma->cm_id = NULL;
2500     }
2501 
2502     /* the destination side, listen_id and channel is shared */
2503     if (rdma->listen_id) {
2504         if (!rdma->is_return_path) {
2505             rdma_destroy_id(rdma->listen_id);
2506         }
2507         rdma->listen_id = NULL;
2508 
2509         if (rdma->channel) {
2510             if (!rdma->is_return_path) {
2511                 rdma_destroy_event_channel(rdma->channel);
2512             }
2513             rdma->channel = NULL;
2514         }
2515     }
2516 
2517     if (rdma->channel) {
2518         rdma_destroy_event_channel(rdma->channel);
2519         rdma->channel = NULL;
2520     }
2521     g_free(rdma->host);
2522     g_free(rdma->host_port);
2523     rdma->host = NULL;
2524     rdma->host_port = NULL;
2525 }
2526 
2527 
2528 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2529 {
2530     int ret, idx;
2531     Error *local_err = NULL, **temp = &local_err;
2532 
2533     /*
2534      * Will be validated against destination's actual capabilities
2535      * after the connect() completes.
2536      */
2537     rdma->pin_all = pin_all;
2538 
2539     ret = qemu_rdma_resolve_host(rdma, temp);
2540     if (ret) {
2541         goto err_rdma_source_init;
2542     }
2543 
2544     ret = qemu_rdma_alloc_pd_cq(rdma);
2545     if (ret) {
2546         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2547                     " limits may be too low. Please check $ ulimit -a # and "
2548                     "search for 'ulimit -l' in the output");
2549         goto err_rdma_source_init;
2550     }
2551 
2552     ret = qemu_rdma_alloc_qp(rdma);
2553     if (ret) {
2554         ERROR(temp, "rdma migration: error allocating qp!");
2555         goto err_rdma_source_init;
2556     }
2557 
2558     ret = qemu_rdma_init_ram_blocks(rdma);
2559     if (ret) {
2560         ERROR(temp, "rdma migration: error initializing ram blocks!");
2561         goto err_rdma_source_init;
2562     }
2563 
2564     /* Build the hash that maps from offset to RAMBlock */
2565     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2566     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2567         g_hash_table_insert(rdma->blockmap,
2568                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2569                 &rdma->local_ram_blocks.block[idx]);
2570     }
2571 
2572     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2573         ret = qemu_rdma_reg_control(rdma, idx);
2574         if (ret) {
2575             ERROR(temp, "rdma migration: error registering %d control!",
2576                                                             idx);
2577             goto err_rdma_source_init;
2578         }
2579     }
2580 
2581     return 0;
2582 
2583 err_rdma_source_init:
2584     error_propagate(errp, local_err);
2585     qemu_rdma_cleanup(rdma);
2586     return -1;
2587 }
2588 
2589 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2590                                      struct rdma_cm_event **cm_event,
2591                                      long msec, Error **errp)
2592 {
2593     int ret;
2594     struct pollfd poll_fd = {
2595                                 .fd = rdma->channel->fd,
2596                                 .events = POLLIN,
2597                                 .revents = 0
2598                             };
2599 
2600     do {
2601         ret = poll(&poll_fd, 1, msec);
2602     } while (ret < 0 && errno == EINTR);
2603 
2604     if (ret == 0) {
2605         ERROR(errp, "poll cm event timeout");
2606         return -1;
2607     } else if (ret < 0) {
2608         ERROR(errp, "failed to poll cm event, errno=%i", errno);
2609         return -1;
2610     } else if (poll_fd.revents & POLLIN) {
2611         return rdma_get_cm_event(rdma->channel, cm_event);
2612     } else {
2613         ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2614         return -1;
2615     }
2616 }
2617 
2618 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2619 {
2620     RDMACapabilities cap = {
2621                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2622                                 .flags = 0,
2623                            };
2624     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2625                                           .retry_count = 5,
2626                                           .private_data = &cap,
2627                                           .private_data_len = sizeof(cap),
2628                                         };
2629     struct rdma_cm_event *cm_event;
2630     int ret;
2631 
2632     /*
2633      * Only negotiate the capability with destination if the user
2634      * on the source first requested the capability.
2635      */
2636     if (rdma->pin_all) {
2637         trace_qemu_rdma_connect_pin_all_requested();
2638         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2639     }
2640 
2641     caps_to_network(&cap);
2642 
2643     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2644     if (ret) {
2645         ERROR(errp, "posting second control recv");
2646         goto err_rdma_source_connect;
2647     }
2648 
2649     ret = rdma_connect(rdma->cm_id, &conn_param);
2650     if (ret) {
2651         perror("rdma_connect");
2652         ERROR(errp, "connecting to destination!");
2653         goto err_rdma_source_connect;
2654     }
2655 
2656     if (return_path) {
2657         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2658     } else {
2659         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2660     }
2661     if (ret) {
2662         perror("rdma_get_cm_event after rdma_connect");
2663         ERROR(errp, "connecting to destination!");
2664         goto err_rdma_source_connect;
2665     }
2666 
2667     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2668         error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2669         ERROR(errp, "connecting to destination!");
2670         rdma_ack_cm_event(cm_event);
2671         goto err_rdma_source_connect;
2672     }
2673     rdma->connected = true;
2674 
2675     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2676     network_to_caps(&cap);
2677 
2678     /*
2679      * Verify that the *requested* capabilities are supported by the destination
2680      * and disable them otherwise.
2681      */
2682     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2683         ERROR(errp, "Server cannot support pinning all memory. "
2684                         "Will register memory dynamically.");
2685         rdma->pin_all = false;
2686     }
2687 
2688     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2689 
2690     rdma_ack_cm_event(cm_event);
2691 
2692     rdma->control_ready_expected = 1;
2693     rdma->nb_sent = 0;
2694     return 0;
2695 
2696 err_rdma_source_connect:
2697     qemu_rdma_cleanup(rdma);
2698     return -1;
2699 }
2700 
2701 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2702 {
2703     int ret, idx;
2704     struct rdma_cm_id *listen_id;
2705     char ip[40] = "unknown";
2706     struct rdma_addrinfo *res, *e;
2707     char port_str[16];
2708     int reuse = 1;
2709 
2710     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2711         rdma->wr_data[idx].control_len = 0;
2712         rdma->wr_data[idx].control_curr = NULL;
2713     }
2714 
2715     if (!rdma->host || !rdma->host[0]) {
2716         ERROR(errp, "RDMA host is not set!");
2717         rdma->error_state = -EINVAL;
2718         return -1;
2719     }
2720     /* create CM channel */
2721     rdma->channel = rdma_create_event_channel();
2722     if (!rdma->channel) {
2723         ERROR(errp, "could not create rdma event channel");
2724         rdma->error_state = -EINVAL;
2725         return -1;
2726     }
2727 
2728     /* create CM id */
2729     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2730     if (ret) {
2731         ERROR(errp, "could not create cm_id!");
2732         goto err_dest_init_create_listen_id;
2733     }
2734 
2735     snprintf(port_str, 16, "%d", rdma->port);
2736     port_str[15] = '\0';
2737 
2738     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2739     if (ret < 0) {
2740         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2741         goto err_dest_init_bind_addr;
2742     }
2743 
2744     ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2745                           &reuse, sizeof reuse);
2746     if (ret) {
2747         ERROR(errp, "Error: could not set REUSEADDR option");
2748         goto err_dest_init_bind_addr;
2749     }
2750     for (e = res; e != NULL; e = e->ai_next) {
2751         inet_ntop(e->ai_family,
2752             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2753         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2754         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2755         if (ret) {
2756             continue;
2757         }
2758         if (e->ai_family == AF_INET6) {
2759             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2760             if (ret) {
2761                 continue;
2762             }
2763         }
2764         break;
2765     }
2766 
2767     rdma_freeaddrinfo(res);
2768     if (!e) {
2769         ERROR(errp, "Error: could not rdma_bind_addr!");
2770         goto err_dest_init_bind_addr;
2771     }
2772 
2773     rdma->listen_id = listen_id;
2774     qemu_rdma_dump_gid("dest_init", listen_id);
2775     return 0;
2776 
2777 err_dest_init_bind_addr:
2778     rdma_destroy_id(listen_id);
2779 err_dest_init_create_listen_id:
2780     rdma_destroy_event_channel(rdma->channel);
2781     rdma->channel = NULL;
2782     rdma->error_state = ret;
2783     return ret;
2784 
2785 }
2786 
2787 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2788                                             RDMAContext *rdma)
2789 {
2790     int idx;
2791 
2792     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2793         rdma_return_path->wr_data[idx].control_len = 0;
2794         rdma_return_path->wr_data[idx].control_curr = NULL;
2795     }
2796 
2797     /*the CM channel and CM id is shared*/
2798     rdma_return_path->channel = rdma->channel;
2799     rdma_return_path->listen_id = rdma->listen_id;
2800 
2801     rdma->return_path = rdma_return_path;
2802     rdma_return_path->return_path = rdma;
2803     rdma_return_path->is_return_path = true;
2804 }
2805 
2806 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2807 {
2808     RDMAContext *rdma = NULL;
2809     InetSocketAddress *addr;
2810 
2811     if (host_port) {
2812         rdma = g_new0(RDMAContext, 1);
2813         rdma->current_index = -1;
2814         rdma->current_chunk = -1;
2815 
2816         addr = g_new(InetSocketAddress, 1);
2817         if (!inet_parse(addr, host_port, NULL)) {
2818             rdma->port = atoi(addr->port);
2819             rdma->host = g_strdup(addr->host);
2820             rdma->host_port = g_strdup(host_port);
2821         } else {
2822             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2823             g_free(rdma);
2824             rdma = NULL;
2825         }
2826 
2827         qapi_free_InetSocketAddress(addr);
2828     }
2829 
2830     return rdma;
2831 }
2832 
2833 /*
2834  * QEMUFile interface to the control channel.
2835  * SEND messages for control only.
2836  * VM's ram is handled with regular RDMA messages.
2837  */
2838 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2839                                        const struct iovec *iov,
2840                                        size_t niov,
2841                                        int *fds,
2842                                        size_t nfds,
2843                                        int flags,
2844                                        Error **errp)
2845 {
2846     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2847     QEMUFile *f = rioc->file;
2848     RDMAContext *rdma;
2849     int ret;
2850     ssize_t done = 0;
2851     size_t i;
2852     size_t len = 0;
2853 
2854     RCU_READ_LOCK_GUARD();
2855     rdma = qatomic_rcu_read(&rioc->rdmaout);
2856 
2857     if (!rdma) {
2858         return -EIO;
2859     }
2860 
2861     CHECK_ERROR_STATE();
2862 
2863     /*
2864      * Push out any writes that
2865      * we're queued up for VM's ram.
2866      */
2867     ret = qemu_rdma_write_flush(f, rdma);
2868     if (ret < 0) {
2869         rdma->error_state = ret;
2870         return ret;
2871     }
2872 
2873     for (i = 0; i < niov; i++) {
2874         size_t remaining = iov[i].iov_len;
2875         uint8_t * data = (void *)iov[i].iov_base;
2876         while (remaining) {
2877             RDMAControlHeader head;
2878 
2879             len = MIN(remaining, RDMA_SEND_INCREMENT);
2880             remaining -= len;
2881 
2882             head.len = len;
2883             head.type = RDMA_CONTROL_QEMU_FILE;
2884 
2885             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2886 
2887             if (ret < 0) {
2888                 rdma->error_state = ret;
2889                 return ret;
2890             }
2891 
2892             data += len;
2893             done += len;
2894         }
2895     }
2896 
2897     return done;
2898 }
2899 
2900 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2901                              size_t size, int idx)
2902 {
2903     size_t len = 0;
2904 
2905     if (rdma->wr_data[idx].control_len) {
2906         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2907 
2908         len = MIN(size, rdma->wr_data[idx].control_len);
2909         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2910         rdma->wr_data[idx].control_curr += len;
2911         rdma->wr_data[idx].control_len -= len;
2912     }
2913 
2914     return len;
2915 }
2916 
2917 /*
2918  * QEMUFile interface to the control channel.
2919  * RDMA links don't use bytestreams, so we have to
2920  * return bytes to QEMUFile opportunistically.
2921  */
2922 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2923                                       const struct iovec *iov,
2924                                       size_t niov,
2925                                       int **fds,
2926                                       size_t *nfds,
2927                                       Error **errp)
2928 {
2929     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2930     RDMAContext *rdma;
2931     RDMAControlHeader head;
2932     int ret = 0;
2933     ssize_t i;
2934     size_t done = 0;
2935 
2936     RCU_READ_LOCK_GUARD();
2937     rdma = qatomic_rcu_read(&rioc->rdmain);
2938 
2939     if (!rdma) {
2940         return -EIO;
2941     }
2942 
2943     CHECK_ERROR_STATE();
2944 
2945     for (i = 0; i < niov; i++) {
2946         size_t want = iov[i].iov_len;
2947         uint8_t *data = (void *)iov[i].iov_base;
2948 
2949         /*
2950          * First, we hold on to the last SEND message we
2951          * were given and dish out the bytes until we run
2952          * out of bytes.
2953          */
2954         ret = qemu_rdma_fill(rdma, data, want, 0);
2955         done += ret;
2956         want -= ret;
2957         /* Got what we needed, so go to next iovec */
2958         if (want == 0) {
2959             continue;
2960         }
2961 
2962         /* If we got any data so far, then don't wait
2963          * for more, just return what we have */
2964         if (done > 0) {
2965             break;
2966         }
2967 
2968 
2969         /* We've got nothing at all, so lets wait for
2970          * more to arrive
2971          */
2972         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2973 
2974         if (ret < 0) {
2975             rdma->error_state = ret;
2976             return ret;
2977         }
2978 
2979         /*
2980          * SEND was received with new bytes, now try again.
2981          */
2982         ret = qemu_rdma_fill(rdma, data, want, 0);
2983         done += ret;
2984         want -= ret;
2985 
2986         /* Still didn't get enough, so lets just return */
2987         if (want) {
2988             if (done == 0) {
2989                 return QIO_CHANNEL_ERR_BLOCK;
2990             } else {
2991                 break;
2992             }
2993         }
2994     }
2995     return done;
2996 }
2997 
2998 /*
2999  * Block until all the outstanding chunks have been delivered by the hardware.
3000  */
3001 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
3002 {
3003     int ret;
3004 
3005     if (qemu_rdma_write_flush(f, rdma) < 0) {
3006         return -EIO;
3007     }
3008 
3009     while (rdma->nb_sent) {
3010         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
3011         if (ret < 0) {
3012             error_report("rdma migration: complete polling error!");
3013             return -EIO;
3014         }
3015     }
3016 
3017     qemu_rdma_unregister_waiting(rdma);
3018 
3019     return 0;
3020 }
3021 
3022 
3023 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
3024                                          bool blocking,
3025                                          Error **errp)
3026 {
3027     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3028     /* XXX we should make readv/writev actually honour this :-) */
3029     rioc->blocking = blocking;
3030     return 0;
3031 }
3032 
3033 
3034 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
3035 struct QIOChannelRDMASource {
3036     GSource parent;
3037     QIOChannelRDMA *rioc;
3038     GIOCondition condition;
3039 };
3040 
3041 static gboolean
3042 qio_channel_rdma_source_prepare(GSource *source,
3043                                 gint *timeout)
3044 {
3045     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3046     RDMAContext *rdma;
3047     GIOCondition cond = 0;
3048     *timeout = -1;
3049 
3050     RCU_READ_LOCK_GUARD();
3051     if (rsource->condition == G_IO_IN) {
3052         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3053     } else {
3054         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3055     }
3056 
3057     if (!rdma) {
3058         error_report("RDMAContext is NULL when prepare Gsource");
3059         return FALSE;
3060     }
3061 
3062     if (rdma->wr_data[0].control_len) {
3063         cond |= G_IO_IN;
3064     }
3065     cond |= G_IO_OUT;
3066 
3067     return cond & rsource->condition;
3068 }
3069 
3070 static gboolean
3071 qio_channel_rdma_source_check(GSource *source)
3072 {
3073     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3074     RDMAContext *rdma;
3075     GIOCondition cond = 0;
3076 
3077     RCU_READ_LOCK_GUARD();
3078     if (rsource->condition == G_IO_IN) {
3079         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3080     } else {
3081         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3082     }
3083 
3084     if (!rdma) {
3085         error_report("RDMAContext is NULL when check Gsource");
3086         return FALSE;
3087     }
3088 
3089     if (rdma->wr_data[0].control_len) {
3090         cond |= G_IO_IN;
3091     }
3092     cond |= G_IO_OUT;
3093 
3094     return cond & rsource->condition;
3095 }
3096 
3097 static gboolean
3098 qio_channel_rdma_source_dispatch(GSource *source,
3099                                  GSourceFunc callback,
3100                                  gpointer user_data)
3101 {
3102     QIOChannelFunc func = (QIOChannelFunc)callback;
3103     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3104     RDMAContext *rdma;
3105     GIOCondition cond = 0;
3106 
3107     RCU_READ_LOCK_GUARD();
3108     if (rsource->condition == G_IO_IN) {
3109         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3110     } else {
3111         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3112     }
3113 
3114     if (!rdma) {
3115         error_report("RDMAContext is NULL when dispatch Gsource");
3116         return FALSE;
3117     }
3118 
3119     if (rdma->wr_data[0].control_len) {
3120         cond |= G_IO_IN;
3121     }
3122     cond |= G_IO_OUT;
3123 
3124     return (*func)(QIO_CHANNEL(rsource->rioc),
3125                    (cond & rsource->condition),
3126                    user_data);
3127 }
3128 
3129 static void
3130 qio_channel_rdma_source_finalize(GSource *source)
3131 {
3132     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3133 
3134     object_unref(OBJECT(ssource->rioc));
3135 }
3136 
3137 GSourceFuncs qio_channel_rdma_source_funcs = {
3138     qio_channel_rdma_source_prepare,
3139     qio_channel_rdma_source_check,
3140     qio_channel_rdma_source_dispatch,
3141     qio_channel_rdma_source_finalize
3142 };
3143 
3144 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3145                                               GIOCondition condition)
3146 {
3147     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3148     QIOChannelRDMASource *ssource;
3149     GSource *source;
3150 
3151     source = g_source_new(&qio_channel_rdma_source_funcs,
3152                           sizeof(QIOChannelRDMASource));
3153     ssource = (QIOChannelRDMASource *)source;
3154 
3155     ssource->rioc = rioc;
3156     object_ref(OBJECT(rioc));
3157 
3158     ssource->condition = condition;
3159 
3160     return source;
3161 }
3162 
3163 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3164                                                   AioContext *ctx,
3165                                                   IOHandler *io_read,
3166                                                   IOHandler *io_write,
3167                                                   void *opaque)
3168 {
3169     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3170     if (io_read) {
3171         aio_set_fd_handler(ctx, rioc->rdmain->recv_comp_channel->fd,
3172                            false, io_read, io_write, NULL, NULL, opaque);
3173         aio_set_fd_handler(ctx, rioc->rdmain->send_comp_channel->fd,
3174                            false, io_read, io_write, NULL, NULL, opaque);
3175     } else {
3176         aio_set_fd_handler(ctx, rioc->rdmaout->recv_comp_channel->fd,
3177                            false, io_read, io_write, NULL, NULL, opaque);
3178         aio_set_fd_handler(ctx, rioc->rdmaout->send_comp_channel->fd,
3179                            false, io_read, io_write, NULL, NULL, opaque);
3180     }
3181 }
3182 
3183 struct rdma_close_rcu {
3184     struct rcu_head rcu;
3185     RDMAContext *rdmain;
3186     RDMAContext *rdmaout;
3187 };
3188 
3189 /* callback from qio_channel_rdma_close via call_rcu */
3190 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3191 {
3192     if (rcu->rdmain) {
3193         qemu_rdma_cleanup(rcu->rdmain);
3194     }
3195 
3196     if (rcu->rdmaout) {
3197         qemu_rdma_cleanup(rcu->rdmaout);
3198     }
3199 
3200     g_free(rcu->rdmain);
3201     g_free(rcu->rdmaout);
3202     g_free(rcu);
3203 }
3204 
3205 static int qio_channel_rdma_close(QIOChannel *ioc,
3206                                   Error **errp)
3207 {
3208     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3209     RDMAContext *rdmain, *rdmaout;
3210     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3211 
3212     trace_qemu_rdma_close();
3213 
3214     rdmain = rioc->rdmain;
3215     if (rdmain) {
3216         qatomic_rcu_set(&rioc->rdmain, NULL);
3217     }
3218 
3219     rdmaout = rioc->rdmaout;
3220     if (rdmaout) {
3221         qatomic_rcu_set(&rioc->rdmaout, NULL);
3222     }
3223 
3224     rcu->rdmain = rdmain;
3225     rcu->rdmaout = rdmaout;
3226     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3227 
3228     return 0;
3229 }
3230 
3231 static int
3232 qio_channel_rdma_shutdown(QIOChannel *ioc,
3233                             QIOChannelShutdown how,
3234                             Error **errp)
3235 {
3236     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3237     RDMAContext *rdmain, *rdmaout;
3238 
3239     RCU_READ_LOCK_GUARD();
3240 
3241     rdmain = qatomic_rcu_read(&rioc->rdmain);
3242     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3243 
3244     switch (how) {
3245     case QIO_CHANNEL_SHUTDOWN_READ:
3246         if (rdmain) {
3247             rdmain->error_state = -1;
3248         }
3249         break;
3250     case QIO_CHANNEL_SHUTDOWN_WRITE:
3251         if (rdmaout) {
3252             rdmaout->error_state = -1;
3253         }
3254         break;
3255     case QIO_CHANNEL_SHUTDOWN_BOTH:
3256     default:
3257         if (rdmain) {
3258             rdmain->error_state = -1;
3259         }
3260         if (rdmaout) {
3261             rdmaout->error_state = -1;
3262         }
3263         break;
3264     }
3265 
3266     return 0;
3267 }
3268 
3269 /*
3270  * Parameters:
3271  *    @offset == 0 :
3272  *        This means that 'block_offset' is a full virtual address that does not
3273  *        belong to a RAMBlock of the virtual machine and instead
3274  *        represents a private malloc'd memory area that the caller wishes to
3275  *        transfer.
3276  *
3277  *    @offset != 0 :
3278  *        Offset is an offset to be added to block_offset and used
3279  *        to also lookup the corresponding RAMBlock.
3280  *
3281  *    @size > 0 :
3282  *        Initiate an transfer this size.
3283  *
3284  *    @size == 0 :
3285  *        A 'hint' or 'advice' that means that we wish to speculatively
3286  *        and asynchronously unregister this memory. In this case, there is no
3287  *        guarantee that the unregister will actually happen, for example,
3288  *        if the memory is being actively transmitted. Additionally, the memory
3289  *        may be re-registered at any future time if a write within the same
3290  *        chunk was requested again, even if you attempted to unregister it
3291  *        here.
3292  *
3293  *    @size < 0 : TODO, not yet supported
3294  *        Unregister the memory NOW. This means that the caller does not
3295  *        expect there to be any future RDMA transfers and we just want to clean
3296  *        things up. This is used in case the upper layer owns the memory and
3297  *        cannot wait for qemu_fclose() to occur.
3298  *
3299  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3300  *                  sent. Usually, this will not be more than a few bytes of
3301  *                  the protocol because most transfers are sent asynchronously.
3302  */
3303 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3304                                   ram_addr_t block_offset, ram_addr_t offset,
3305                                   size_t size, uint64_t *bytes_sent)
3306 {
3307     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3308     RDMAContext *rdma;
3309     int ret;
3310 
3311     RCU_READ_LOCK_GUARD();
3312     rdma = qatomic_rcu_read(&rioc->rdmaout);
3313 
3314     if (!rdma) {
3315         return -EIO;
3316     }
3317 
3318     CHECK_ERROR_STATE();
3319 
3320     if (migration_in_postcopy()) {
3321         return RAM_SAVE_CONTROL_NOT_SUPP;
3322     }
3323 
3324     qemu_fflush(f);
3325 
3326     if (size > 0) {
3327         /*
3328          * Add this page to the current 'chunk'. If the chunk
3329          * is full, or the page doesn't belong to the current chunk,
3330          * an actual RDMA write will occur and a new chunk will be formed.
3331          */
3332         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3333         if (ret < 0) {
3334             error_report("rdma migration: write error! %d", ret);
3335             goto err;
3336         }
3337 
3338         /*
3339          * We always return 1 bytes because the RDMA
3340          * protocol is completely asynchronous. We do not yet know
3341          * whether an  identified chunk is zero or not because we're
3342          * waiting for other pages to potentially be merged with
3343          * the current chunk. So, we have to call qemu_update_position()
3344          * later on when the actual write occurs.
3345          */
3346         if (bytes_sent) {
3347             *bytes_sent = 1;
3348         }
3349     } else {
3350         uint64_t index, chunk;
3351 
3352         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3353         if (size < 0) {
3354             ret = qemu_rdma_drain_cq(f, rdma);
3355             if (ret < 0) {
3356                 fprintf(stderr, "rdma: failed to synchronously drain"
3357                                 " completion queue before unregistration.\n");
3358                 goto err;
3359             }
3360         }
3361         */
3362 
3363         ret = qemu_rdma_search_ram_block(rdma, block_offset,
3364                                          offset, size, &index, &chunk);
3365 
3366         if (ret) {
3367             error_report("ram block search failed");
3368             goto err;
3369         }
3370 
3371         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3372 
3373         /*
3374          * TODO: Synchronous, guaranteed unregistration (should not occur during
3375          * fast-path). Otherwise, unregisters will process on the next call to
3376          * qemu_rdma_drain_cq()
3377         if (size < 0) {
3378             qemu_rdma_unregister_waiting(rdma);
3379         }
3380         */
3381     }
3382 
3383     /*
3384      * Drain the Completion Queue if possible, but do not block,
3385      * just poll.
3386      *
3387      * If nothing to poll, the end of the iteration will do this
3388      * again to make sure we don't overflow the request queue.
3389      */
3390     while (1) {
3391         uint64_t wr_id, wr_id_in;
3392         int ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3393         if (ret < 0) {
3394             error_report("rdma migration: polling error! %d", ret);
3395             goto err;
3396         }
3397 
3398         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3399 
3400         if (wr_id == RDMA_WRID_NONE) {
3401             break;
3402         }
3403     }
3404 
3405     while (1) {
3406         uint64_t wr_id, wr_id_in;
3407         int ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3408         if (ret < 0) {
3409             error_report("rdma migration: polling error! %d", ret);
3410             goto err;
3411         }
3412 
3413         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3414 
3415         if (wr_id == RDMA_WRID_NONE) {
3416             break;
3417         }
3418     }
3419 
3420     return RAM_SAVE_CONTROL_DELAYED;
3421 err:
3422     rdma->error_state = ret;
3423     return ret;
3424 }
3425 
3426 static void rdma_accept_incoming_migration(void *opaque);
3427 
3428 static void rdma_cm_poll_handler(void *opaque)
3429 {
3430     RDMAContext *rdma = opaque;
3431     int ret;
3432     struct rdma_cm_event *cm_event;
3433     MigrationIncomingState *mis = migration_incoming_get_current();
3434 
3435     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3436     if (ret) {
3437         error_report("get_cm_event failed %d", errno);
3438         return;
3439     }
3440 
3441     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3442         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3443         if (!rdma->error_state &&
3444             migration_incoming_get_current()->state !=
3445               MIGRATION_STATUS_COMPLETED) {
3446             error_report("receive cm event, cm event is %d", cm_event->event);
3447             rdma->error_state = -EPIPE;
3448             if (rdma->return_path) {
3449                 rdma->return_path->error_state = -EPIPE;
3450             }
3451         }
3452         rdma_ack_cm_event(cm_event);
3453 
3454         if (mis->migration_incoming_co) {
3455             qemu_coroutine_enter(mis->migration_incoming_co);
3456         }
3457         return;
3458     }
3459     rdma_ack_cm_event(cm_event);
3460 }
3461 
3462 static int qemu_rdma_accept(RDMAContext *rdma)
3463 {
3464     RDMACapabilities cap;
3465     struct rdma_conn_param conn_param = {
3466                                             .responder_resources = 2,
3467                                             .private_data = &cap,
3468                                             .private_data_len = sizeof(cap),
3469                                          };
3470     RDMAContext *rdma_return_path = NULL;
3471     struct rdma_cm_event *cm_event;
3472     struct ibv_context *verbs;
3473     int ret = -EINVAL;
3474     int idx;
3475 
3476     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3477     if (ret) {
3478         goto err_rdma_dest_wait;
3479     }
3480 
3481     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3482         rdma_ack_cm_event(cm_event);
3483         goto err_rdma_dest_wait;
3484     }
3485 
3486     /*
3487      * initialize the RDMAContext for return path for postcopy after first
3488      * connection request reached.
3489      */
3490     if (migrate_postcopy() && !rdma->is_return_path) {
3491         rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3492         if (rdma_return_path == NULL) {
3493             rdma_ack_cm_event(cm_event);
3494             goto err_rdma_dest_wait;
3495         }
3496 
3497         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3498     }
3499 
3500     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3501 
3502     network_to_caps(&cap);
3503 
3504     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3505             error_report("Unknown source RDMA version: %d, bailing...",
3506                             cap.version);
3507             rdma_ack_cm_event(cm_event);
3508             goto err_rdma_dest_wait;
3509     }
3510 
3511     /*
3512      * Respond with only the capabilities this version of QEMU knows about.
3513      */
3514     cap.flags &= known_capabilities;
3515 
3516     /*
3517      * Enable the ones that we do know about.
3518      * Add other checks here as new ones are introduced.
3519      */
3520     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3521         rdma->pin_all = true;
3522     }
3523 
3524     rdma->cm_id = cm_event->id;
3525     verbs = cm_event->id->verbs;
3526 
3527     rdma_ack_cm_event(cm_event);
3528 
3529     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3530 
3531     caps_to_network(&cap);
3532 
3533     trace_qemu_rdma_accept_pin_verbsc(verbs);
3534 
3535     if (!rdma->verbs) {
3536         rdma->verbs = verbs;
3537     } else if (rdma->verbs != verbs) {
3538             error_report("ibv context not matching %p, %p!", rdma->verbs,
3539                          verbs);
3540             goto err_rdma_dest_wait;
3541     }
3542 
3543     qemu_rdma_dump_id("dest_init", verbs);
3544 
3545     ret = qemu_rdma_alloc_pd_cq(rdma);
3546     if (ret) {
3547         error_report("rdma migration: error allocating pd and cq!");
3548         goto err_rdma_dest_wait;
3549     }
3550 
3551     ret = qemu_rdma_alloc_qp(rdma);
3552     if (ret) {
3553         error_report("rdma migration: error allocating qp!");
3554         goto err_rdma_dest_wait;
3555     }
3556 
3557     ret = qemu_rdma_init_ram_blocks(rdma);
3558     if (ret) {
3559         error_report("rdma migration: error initializing ram blocks!");
3560         goto err_rdma_dest_wait;
3561     }
3562 
3563     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3564         ret = qemu_rdma_reg_control(rdma, idx);
3565         if (ret) {
3566             error_report("rdma: error registering %d control", idx);
3567             goto err_rdma_dest_wait;
3568         }
3569     }
3570 
3571     /* Accept the second connection request for return path */
3572     if (migrate_postcopy() && !rdma->is_return_path) {
3573         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3574                             NULL,
3575                             (void *)(intptr_t)rdma->return_path);
3576     } else {
3577         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3578                             NULL, rdma);
3579     }
3580 
3581     ret = rdma_accept(rdma->cm_id, &conn_param);
3582     if (ret) {
3583         error_report("rdma_accept returns %d", ret);
3584         goto err_rdma_dest_wait;
3585     }
3586 
3587     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3588     if (ret) {
3589         error_report("rdma_accept get_cm_event failed %d", ret);
3590         goto err_rdma_dest_wait;
3591     }
3592 
3593     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3594         error_report("rdma_accept not event established");
3595         rdma_ack_cm_event(cm_event);
3596         goto err_rdma_dest_wait;
3597     }
3598 
3599     rdma_ack_cm_event(cm_event);
3600     rdma->connected = true;
3601 
3602     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3603     if (ret) {
3604         error_report("rdma migration: error posting second control recv");
3605         goto err_rdma_dest_wait;
3606     }
3607 
3608     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3609 
3610     return 0;
3611 
3612 err_rdma_dest_wait:
3613     rdma->error_state = ret;
3614     qemu_rdma_cleanup(rdma);
3615     g_free(rdma_return_path);
3616     return ret;
3617 }
3618 
3619 static int dest_ram_sort_func(const void *a, const void *b)
3620 {
3621     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3622     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3623 
3624     return (a_index < b_index) ? -1 : (a_index != b_index);
3625 }
3626 
3627 /*
3628  * During each iteration of the migration, we listen for instructions
3629  * by the source VM to perform dynamic page registrations before they
3630  * can perform RDMA operations.
3631  *
3632  * We respond with the 'rkey'.
3633  *
3634  * Keep doing this until the source tells us to stop.
3635  */
3636 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3637 {
3638     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3639                                .type = RDMA_CONTROL_REGISTER_RESULT,
3640                                .repeat = 0,
3641                              };
3642     RDMAControlHeader unreg_resp = { .len = 0,
3643                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3644                                .repeat = 0,
3645                              };
3646     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3647                                  .repeat = 1 };
3648     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3649     RDMAContext *rdma;
3650     RDMALocalBlocks *local;
3651     RDMAControlHeader head;
3652     RDMARegister *reg, *registers;
3653     RDMACompress *comp;
3654     RDMARegisterResult *reg_result;
3655     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3656     RDMALocalBlock *block;
3657     void *host_addr;
3658     int ret = 0;
3659     int idx = 0;
3660     int count = 0;
3661     int i = 0;
3662 
3663     RCU_READ_LOCK_GUARD();
3664     rdma = qatomic_rcu_read(&rioc->rdmain);
3665 
3666     if (!rdma) {
3667         return -EIO;
3668     }
3669 
3670     CHECK_ERROR_STATE();
3671 
3672     local = &rdma->local_ram_blocks;
3673     do {
3674         trace_qemu_rdma_registration_handle_wait();
3675 
3676         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3677 
3678         if (ret < 0) {
3679             break;
3680         }
3681 
3682         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3683             error_report("rdma: Too many requests in this message (%d)."
3684                             "Bailing.", head.repeat);
3685             ret = -EIO;
3686             break;
3687         }
3688 
3689         switch (head.type) {
3690         case RDMA_CONTROL_COMPRESS:
3691             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3692             network_to_compress(comp);
3693 
3694             trace_qemu_rdma_registration_handle_compress(comp->length,
3695                                                          comp->block_idx,
3696                                                          comp->offset);
3697             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3698                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3699                              (unsigned int)comp->block_idx,
3700                              rdma->local_ram_blocks.nb_blocks);
3701                 ret = -EIO;
3702                 goto out;
3703             }
3704             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3705 
3706             host_addr = block->local_host_addr +
3707                             (comp->offset - block->offset);
3708 
3709             ram_handle_compressed(host_addr, comp->value, comp->length);
3710             break;
3711 
3712         case RDMA_CONTROL_REGISTER_FINISHED:
3713             trace_qemu_rdma_registration_handle_finished();
3714             goto out;
3715 
3716         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3717             trace_qemu_rdma_registration_handle_ram_blocks();
3718 
3719             /* Sort our local RAM Block list so it's the same as the source,
3720              * we can do this since we've filled in a src_index in the list
3721              * as we received the RAMBlock list earlier.
3722              */
3723             qsort(rdma->local_ram_blocks.block,
3724                   rdma->local_ram_blocks.nb_blocks,
3725                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3726             for (i = 0; i < local->nb_blocks; i++) {
3727                 local->block[i].index = i;
3728             }
3729 
3730             if (rdma->pin_all) {
3731                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3732                 if (ret) {
3733                     error_report("rdma migration: error dest "
3734                                     "registering ram blocks");
3735                     goto out;
3736                 }
3737             }
3738 
3739             /*
3740              * Dest uses this to prepare to transmit the RAMBlock descriptions
3741              * to the source VM after connection setup.
3742              * Both sides use the "remote" structure to communicate and update
3743              * their "local" descriptions with what was sent.
3744              */
3745             for (i = 0; i < local->nb_blocks; i++) {
3746                 rdma->dest_blocks[i].remote_host_addr =
3747                     (uintptr_t)(local->block[i].local_host_addr);
3748 
3749                 if (rdma->pin_all) {
3750                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3751                 }
3752 
3753                 rdma->dest_blocks[i].offset = local->block[i].offset;
3754                 rdma->dest_blocks[i].length = local->block[i].length;
3755 
3756                 dest_block_to_network(&rdma->dest_blocks[i]);
3757                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3758                     local->block[i].block_name,
3759                     local->block[i].offset,
3760                     local->block[i].length,
3761                     local->block[i].local_host_addr,
3762                     local->block[i].src_index);
3763             }
3764 
3765             blocks.len = rdma->local_ram_blocks.nb_blocks
3766                                                 * sizeof(RDMADestBlock);
3767 
3768 
3769             ret = qemu_rdma_post_send_control(rdma,
3770                                         (uint8_t *) rdma->dest_blocks, &blocks);
3771 
3772             if (ret < 0) {
3773                 error_report("rdma migration: error sending remote info");
3774                 goto out;
3775             }
3776 
3777             break;
3778         case RDMA_CONTROL_REGISTER_REQUEST:
3779             trace_qemu_rdma_registration_handle_register(head.repeat);
3780 
3781             reg_resp.repeat = head.repeat;
3782             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3783 
3784             for (count = 0; count < head.repeat; count++) {
3785                 uint64_t chunk;
3786                 uint8_t *chunk_start, *chunk_end;
3787 
3788                 reg = &registers[count];
3789                 network_to_register(reg);
3790 
3791                 reg_result = &results[count];
3792 
3793                 trace_qemu_rdma_registration_handle_register_loop(count,
3794                          reg->current_index, reg->key.current_addr, reg->chunks);
3795 
3796                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3797                     error_report("rdma: 'register' bad block index %u (vs %d)",
3798                                  (unsigned int)reg->current_index,
3799                                  rdma->local_ram_blocks.nb_blocks);
3800                     ret = -ENOENT;
3801                     goto out;
3802                 }
3803                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3804                 if (block->is_ram_block) {
3805                     if (block->offset > reg->key.current_addr) {
3806                         error_report("rdma: bad register address for block %s"
3807                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3808                             block->block_name, block->offset,
3809                             reg->key.current_addr);
3810                         ret = -ERANGE;
3811                         goto out;
3812                     }
3813                     host_addr = (block->local_host_addr +
3814                                 (reg->key.current_addr - block->offset));
3815                     chunk = ram_chunk_index(block->local_host_addr,
3816                                             (uint8_t *) host_addr);
3817                 } else {
3818                     chunk = reg->key.chunk;
3819                     host_addr = block->local_host_addr +
3820                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3821                     /* Check for particularly bad chunk value */
3822                     if (host_addr < (void *)block->local_host_addr) {
3823                         error_report("rdma: bad chunk for block %s"
3824                             " chunk: %" PRIx64,
3825                             block->block_name, reg->key.chunk);
3826                         ret = -ERANGE;
3827                         goto out;
3828                     }
3829                 }
3830                 chunk_start = ram_chunk_start(block, chunk);
3831                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3832                 /* avoid "-Waddress-of-packed-member" warning */
3833                 uint32_t tmp_rkey = 0;
3834                 if (qemu_rdma_register_and_get_keys(rdma, block,
3835                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3836                             chunk, chunk_start, chunk_end)) {
3837                     error_report("cannot get rkey");
3838                     ret = -EINVAL;
3839                     goto out;
3840                 }
3841                 reg_result->rkey = tmp_rkey;
3842 
3843                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3844 
3845                 trace_qemu_rdma_registration_handle_register_rkey(
3846                                                            reg_result->rkey);
3847 
3848                 result_to_network(reg_result);
3849             }
3850 
3851             ret = qemu_rdma_post_send_control(rdma,
3852                             (uint8_t *) results, &reg_resp);
3853 
3854             if (ret < 0) {
3855                 error_report("Failed to send control buffer");
3856                 goto out;
3857             }
3858             break;
3859         case RDMA_CONTROL_UNREGISTER_REQUEST:
3860             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3861             unreg_resp.repeat = head.repeat;
3862             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3863 
3864             for (count = 0; count < head.repeat; count++) {
3865                 reg = &registers[count];
3866                 network_to_register(reg);
3867 
3868                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3869                            reg->current_index, reg->key.chunk);
3870 
3871                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3872 
3873                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3874                 block->pmr[reg->key.chunk] = NULL;
3875 
3876                 if (ret != 0) {
3877                     perror("rdma unregistration chunk failed");
3878                     ret = -ret;
3879                     goto out;
3880                 }
3881 
3882                 rdma->total_registrations--;
3883 
3884                 trace_qemu_rdma_registration_handle_unregister_success(
3885                                                        reg->key.chunk);
3886             }
3887 
3888             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3889 
3890             if (ret < 0) {
3891                 error_report("Failed to send control buffer");
3892                 goto out;
3893             }
3894             break;
3895         case RDMA_CONTROL_REGISTER_RESULT:
3896             error_report("Invalid RESULT message at dest.");
3897             ret = -EIO;
3898             goto out;
3899         default:
3900             error_report("Unknown control message %s", control_desc(head.type));
3901             ret = -EIO;
3902             goto out;
3903         }
3904     } while (1);
3905 out:
3906     if (ret < 0) {
3907         rdma->error_state = ret;
3908     }
3909     return ret;
3910 }
3911 
3912 /* Destination:
3913  * Called via a ram_control_load_hook during the initial RAM load section which
3914  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3915  * on the source.
3916  * We've already built our local RAMBlock list, but not yet sent the list to
3917  * the source.
3918  */
3919 static int
3920 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3921 {
3922     RDMAContext *rdma;
3923     int curr;
3924     int found = -1;
3925 
3926     RCU_READ_LOCK_GUARD();
3927     rdma = qatomic_rcu_read(&rioc->rdmain);
3928 
3929     if (!rdma) {
3930         return -EIO;
3931     }
3932 
3933     /* Find the matching RAMBlock in our local list */
3934     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3935         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3936             found = curr;
3937             break;
3938         }
3939     }
3940 
3941     if (found == -1) {
3942         error_report("RAMBlock '%s' not found on destination", name);
3943         return -ENOENT;
3944     }
3945 
3946     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3947     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3948     rdma->next_src_index++;
3949 
3950     return 0;
3951 }
3952 
3953 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3954 {
3955     switch (flags) {
3956     case RAM_CONTROL_BLOCK_REG:
3957         return rdma_block_notification_handle(opaque, data);
3958 
3959     case RAM_CONTROL_HOOK:
3960         return qemu_rdma_registration_handle(f, opaque);
3961 
3962     default:
3963         /* Shouldn't be called with any other values */
3964         abort();
3965     }
3966 }
3967 
3968 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3969                                         uint64_t flags, void *data)
3970 {
3971     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3972     RDMAContext *rdma;
3973 
3974     RCU_READ_LOCK_GUARD();
3975     rdma = qatomic_rcu_read(&rioc->rdmaout);
3976     if (!rdma) {
3977         return -EIO;
3978     }
3979 
3980     CHECK_ERROR_STATE();
3981 
3982     if (migration_in_postcopy()) {
3983         return 0;
3984     }
3985 
3986     trace_qemu_rdma_registration_start(flags);
3987     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3988     qemu_fflush(f);
3989 
3990     return 0;
3991 }
3992 
3993 /*
3994  * Inform dest that dynamic registrations are done for now.
3995  * First, flush writes, if any.
3996  */
3997 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3998                                        uint64_t flags, void *data)
3999 {
4000     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
4001     RDMAContext *rdma;
4002     RDMAControlHeader head = { .len = 0, .repeat = 1 };
4003     int ret = 0;
4004 
4005     RCU_READ_LOCK_GUARD();
4006     rdma = qatomic_rcu_read(&rioc->rdmaout);
4007     if (!rdma) {
4008         return -EIO;
4009     }
4010 
4011     CHECK_ERROR_STATE();
4012 
4013     if (migration_in_postcopy()) {
4014         return 0;
4015     }
4016 
4017     qemu_fflush(f);
4018     ret = qemu_rdma_drain_cq(f, rdma);
4019 
4020     if (ret < 0) {
4021         goto err;
4022     }
4023 
4024     if (flags == RAM_CONTROL_SETUP) {
4025         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
4026         RDMALocalBlocks *local = &rdma->local_ram_blocks;
4027         int reg_result_idx, i, nb_dest_blocks;
4028 
4029         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
4030         trace_qemu_rdma_registration_stop_ram();
4031 
4032         /*
4033          * Make sure that we parallelize the pinning on both sides.
4034          * For very large guests, doing this serially takes a really
4035          * long time, so we have to 'interleave' the pinning locally
4036          * with the control messages by performing the pinning on this
4037          * side before we receive the control response from the other
4038          * side that the pinning has completed.
4039          */
4040         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
4041                     &reg_result_idx, rdma->pin_all ?
4042                     qemu_rdma_reg_whole_ram_blocks : NULL);
4043         if (ret < 0) {
4044             fprintf(stderr, "receiving remote info!");
4045             return ret;
4046         }
4047 
4048         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
4049 
4050         /*
4051          * The protocol uses two different sets of rkeys (mutually exclusive):
4052          * 1. One key to represent the virtual address of the entire ram block.
4053          *    (dynamic chunk registration disabled - pin everything with one rkey.)
4054          * 2. One to represent individual chunks within a ram block.
4055          *    (dynamic chunk registration enabled - pin individual chunks.)
4056          *
4057          * Once the capability is successfully negotiated, the destination transmits
4058          * the keys to use (or sends them later) including the virtual addresses
4059          * and then propagates the remote ram block descriptions to his local copy.
4060          */
4061 
4062         if (local->nb_blocks != nb_dest_blocks) {
4063             fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
4064                     "Your QEMU command line parameters are probably "
4065                     "not identical on both the source and destination.",
4066                     local->nb_blocks, nb_dest_blocks);
4067             rdma->error_state = -EINVAL;
4068             return -EINVAL;
4069         }
4070 
4071         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
4072         memcpy(rdma->dest_blocks,
4073             rdma->wr_data[reg_result_idx].control_curr, resp.len);
4074         for (i = 0; i < nb_dest_blocks; i++) {
4075             network_to_dest_block(&rdma->dest_blocks[i]);
4076 
4077             /* We require that the blocks are in the same order */
4078             if (rdma->dest_blocks[i].length != local->block[i].length) {
4079                 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
4080                         "vs %" PRIu64, local->block[i].block_name, i,
4081                         local->block[i].length,
4082                         rdma->dest_blocks[i].length);
4083                 rdma->error_state = -EINVAL;
4084                 return -EINVAL;
4085             }
4086             local->block[i].remote_host_addr =
4087                     rdma->dest_blocks[i].remote_host_addr;
4088             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
4089         }
4090     }
4091 
4092     trace_qemu_rdma_registration_stop(flags);
4093 
4094     head.type = RDMA_CONTROL_REGISTER_FINISHED;
4095     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
4096 
4097     if (ret < 0) {
4098         goto err;
4099     }
4100 
4101     return 0;
4102 err:
4103     rdma->error_state = ret;
4104     return ret;
4105 }
4106 
4107 static const QEMUFileHooks rdma_read_hooks = {
4108     .hook_ram_load = rdma_load_hook,
4109 };
4110 
4111 static const QEMUFileHooks rdma_write_hooks = {
4112     .before_ram_iterate = qemu_rdma_registration_start,
4113     .after_ram_iterate  = qemu_rdma_registration_stop,
4114     .save_page          = qemu_rdma_save_page,
4115 };
4116 
4117 
4118 static void qio_channel_rdma_finalize(Object *obj)
4119 {
4120     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4121     if (rioc->rdmain) {
4122         qemu_rdma_cleanup(rioc->rdmain);
4123         g_free(rioc->rdmain);
4124         rioc->rdmain = NULL;
4125     }
4126     if (rioc->rdmaout) {
4127         qemu_rdma_cleanup(rioc->rdmaout);
4128         g_free(rioc->rdmaout);
4129         rioc->rdmaout = NULL;
4130     }
4131 }
4132 
4133 static void qio_channel_rdma_class_init(ObjectClass *klass,
4134                                         void *class_data G_GNUC_UNUSED)
4135 {
4136     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4137 
4138     ioc_klass->io_writev = qio_channel_rdma_writev;
4139     ioc_klass->io_readv = qio_channel_rdma_readv;
4140     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4141     ioc_klass->io_close = qio_channel_rdma_close;
4142     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4143     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4144     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4145 }
4146 
4147 static const TypeInfo qio_channel_rdma_info = {
4148     .parent = TYPE_QIO_CHANNEL,
4149     .name = TYPE_QIO_CHANNEL_RDMA,
4150     .instance_size = sizeof(QIOChannelRDMA),
4151     .instance_finalize = qio_channel_rdma_finalize,
4152     .class_init = qio_channel_rdma_class_init,
4153 };
4154 
4155 static void qio_channel_rdma_register_types(void)
4156 {
4157     type_register_static(&qio_channel_rdma_info);
4158 }
4159 
4160 type_init(qio_channel_rdma_register_types);
4161 
4162 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4163 {
4164     QIOChannelRDMA *rioc;
4165 
4166     if (qemu_file_mode_is_not_valid(mode)) {
4167         return NULL;
4168     }
4169 
4170     rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4171 
4172     if (mode[0] == 'w') {
4173         rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
4174         rioc->rdmaout = rdma;
4175         rioc->rdmain = rdma->return_path;
4176         qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4177     } else {
4178         rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
4179         rioc->rdmain = rdma;
4180         rioc->rdmaout = rdma->return_path;
4181         qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4182     }
4183 
4184     return rioc->file;
4185 }
4186 
4187 static void rdma_accept_incoming_migration(void *opaque)
4188 {
4189     RDMAContext *rdma = opaque;
4190     int ret;
4191     QEMUFile *f;
4192     Error *local_err = NULL;
4193 
4194     trace_qemu_rdma_accept_incoming_migration();
4195     ret = qemu_rdma_accept(rdma);
4196 
4197     if (ret) {
4198         fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4199         return;
4200     }
4201 
4202     trace_qemu_rdma_accept_incoming_migration_accepted();
4203 
4204     if (rdma->is_return_path) {
4205         return;
4206     }
4207 
4208     f = qemu_fopen_rdma(rdma, "rb");
4209     if (f == NULL) {
4210         fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4211         qemu_rdma_cleanup(rdma);
4212         return;
4213     }
4214 
4215     rdma->migration_started_on_destination = 1;
4216     migration_fd_process_incoming(f, &local_err);
4217     if (local_err) {
4218         error_reportf_err(local_err, "RDMA ERROR:");
4219     }
4220 }
4221 
4222 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4223 {
4224     int ret;
4225     RDMAContext *rdma, *rdma_return_path = NULL;
4226     Error *local_err = NULL;
4227 
4228     trace_rdma_start_incoming_migration();
4229 
4230     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4231     if (ram_block_discard_is_required()) {
4232         error_setg(errp, "RDMA: cannot disable RAM discard");
4233         return;
4234     }
4235 
4236     rdma = qemu_rdma_data_init(host_port, &local_err);
4237     if (rdma == NULL) {
4238         goto err;
4239     }
4240 
4241     ret = qemu_rdma_dest_init(rdma, &local_err);
4242 
4243     if (ret) {
4244         goto err;
4245     }
4246 
4247     trace_rdma_start_incoming_migration_after_dest_init();
4248 
4249     ret = rdma_listen(rdma->listen_id, 5);
4250 
4251     if (ret) {
4252         ERROR(errp, "listening on socket!");
4253         goto cleanup_rdma;
4254     }
4255 
4256     trace_rdma_start_incoming_migration_after_rdma_listen();
4257 
4258     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4259                         NULL, (void *)(intptr_t)rdma);
4260     return;
4261 
4262 cleanup_rdma:
4263     qemu_rdma_cleanup(rdma);
4264 err:
4265     error_propagate(errp, local_err);
4266     if (rdma) {
4267         g_free(rdma->host);
4268         g_free(rdma->host_port);
4269     }
4270     g_free(rdma);
4271     g_free(rdma_return_path);
4272 }
4273 
4274 void rdma_start_outgoing_migration(void *opaque,
4275                             const char *host_port, Error **errp)
4276 {
4277     MigrationState *s = opaque;
4278     RDMAContext *rdma_return_path = NULL;
4279     RDMAContext *rdma;
4280     int ret = 0;
4281 
4282     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4283     if (ram_block_discard_is_required()) {
4284         error_setg(errp, "RDMA: cannot disable RAM discard");
4285         return;
4286     }
4287 
4288     rdma = qemu_rdma_data_init(host_port, errp);
4289     if (rdma == NULL) {
4290         goto err;
4291     }
4292 
4293     ret = qemu_rdma_source_init(rdma,
4294         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4295 
4296     if (ret) {
4297         goto err;
4298     }
4299 
4300     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4301     ret = qemu_rdma_connect(rdma, errp, false);
4302 
4303     if (ret) {
4304         goto err;
4305     }
4306 
4307     /* RDMA postcopy need a separate queue pair for return path */
4308     if (migrate_postcopy()) {
4309         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4310 
4311         if (rdma_return_path == NULL) {
4312             goto return_path_err;
4313         }
4314 
4315         ret = qemu_rdma_source_init(rdma_return_path,
4316             s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4317 
4318         if (ret) {
4319             goto return_path_err;
4320         }
4321 
4322         ret = qemu_rdma_connect(rdma_return_path, errp, true);
4323 
4324         if (ret) {
4325             goto return_path_err;
4326         }
4327 
4328         rdma->return_path = rdma_return_path;
4329         rdma_return_path->return_path = rdma;
4330         rdma_return_path->is_return_path = true;
4331     }
4332 
4333     trace_rdma_start_outgoing_migration_after_rdma_connect();
4334 
4335     s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4336     migrate_fd_connect(s, NULL);
4337     return;
4338 return_path_err:
4339     qemu_rdma_cleanup(rdma);
4340 err:
4341     g_free(rdma);
4342     g_free(rdma_return_path);
4343 }
4344