xref: /qemu/net/vhost-vdpa.c (revision d884e272)
1 /*
2  * vhost-vdpa.c
3  *
4  * Copyright(c) 2017-2018 Intel Corporation.
5  * Copyright(c) 2020 Red Hat, Inc.
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "clients.h"
14 #include "hw/virtio/virtio-net.h"
15 #include "net/vhost_net.h"
16 #include "net/vhost-vdpa.h"
17 #include "hw/virtio/vhost-vdpa.h"
18 #include "qemu/config-file.h"
19 #include "qemu/error-report.h"
20 #include "qemu/log.h"
21 #include "qemu/memalign.h"
22 #include "qemu/option.h"
23 #include "qapi/error.h"
24 #include <linux/vhost.h>
25 #include <sys/ioctl.h>
26 #include <err.h>
27 #include "standard-headers/linux/virtio_net.h"
28 #include "monitor/monitor.h"
29 #include "migration/migration.h"
30 #include "migration/misc.h"
31 #include "hw/virtio/vhost.h"
32 #include "trace.h"
33 
34 /* Todo:need to add the multiqueue support here */
35 typedef struct VhostVDPAState {
36     NetClientState nc;
37     struct vhost_vdpa vhost_vdpa;
38     NotifierWithReturn migration_state;
39     VHostNetState *vhost_net;
40 
41     /* Control commands shadow buffers */
42     void *cvq_cmd_out_buffer;
43     virtio_net_ctrl_ack *status;
44 
45     /* The device always have SVQ enabled */
46     bool always_svq;
47 
48     /* The device can isolate CVQ in its own ASID */
49     bool cvq_isolated;
50 
51     bool started;
52 } VhostVDPAState;
53 
54 /*
55  * The array is sorted alphabetically in ascending order,
56  * with the exception of VHOST_INVALID_FEATURE_BIT,
57  * which should always be the last entry.
58  */
59 const int vdpa_feature_bits[] = {
60     VIRTIO_F_ANY_LAYOUT,
61     VIRTIO_F_IOMMU_PLATFORM,
62     VIRTIO_F_NOTIFY_ON_EMPTY,
63     VIRTIO_F_RING_PACKED,
64     VIRTIO_F_RING_RESET,
65     VIRTIO_F_VERSION_1,
66     VIRTIO_NET_F_CSUM,
67     VIRTIO_NET_F_CTRL_GUEST_OFFLOADS,
68     VIRTIO_NET_F_CTRL_MAC_ADDR,
69     VIRTIO_NET_F_CTRL_RX,
70     VIRTIO_NET_F_CTRL_RX_EXTRA,
71     VIRTIO_NET_F_CTRL_VLAN,
72     VIRTIO_NET_F_CTRL_VQ,
73     VIRTIO_NET_F_GSO,
74     VIRTIO_NET_F_GUEST_CSUM,
75     VIRTIO_NET_F_GUEST_ECN,
76     VIRTIO_NET_F_GUEST_TSO4,
77     VIRTIO_NET_F_GUEST_TSO6,
78     VIRTIO_NET_F_GUEST_UFO,
79     VIRTIO_NET_F_GUEST_USO4,
80     VIRTIO_NET_F_GUEST_USO6,
81     VIRTIO_NET_F_HASH_REPORT,
82     VIRTIO_NET_F_HOST_ECN,
83     VIRTIO_NET_F_HOST_TSO4,
84     VIRTIO_NET_F_HOST_TSO6,
85     VIRTIO_NET_F_HOST_UFO,
86     VIRTIO_NET_F_HOST_USO,
87     VIRTIO_NET_F_MQ,
88     VIRTIO_NET_F_MRG_RXBUF,
89     VIRTIO_NET_F_MTU,
90     VIRTIO_NET_F_RSS,
91     VIRTIO_NET_F_STATUS,
92     VIRTIO_RING_F_EVENT_IDX,
93     VIRTIO_RING_F_INDIRECT_DESC,
94 
95     /* VHOST_INVALID_FEATURE_BIT should always be the last entry */
96     VHOST_INVALID_FEATURE_BIT
97 };
98 
99 /** Supported device specific feature bits with SVQ */
100 static const uint64_t vdpa_svq_device_features =
101     BIT_ULL(VIRTIO_NET_F_CSUM) |
102     BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) |
103     BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) |
104     BIT_ULL(VIRTIO_NET_F_MTU) |
105     BIT_ULL(VIRTIO_NET_F_MAC) |
106     BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) |
107     BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) |
108     BIT_ULL(VIRTIO_NET_F_GUEST_ECN) |
109     BIT_ULL(VIRTIO_NET_F_GUEST_UFO) |
110     BIT_ULL(VIRTIO_NET_F_HOST_TSO4) |
111     BIT_ULL(VIRTIO_NET_F_HOST_TSO6) |
112     BIT_ULL(VIRTIO_NET_F_HOST_ECN) |
113     BIT_ULL(VIRTIO_NET_F_HOST_UFO) |
114     BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) |
115     BIT_ULL(VIRTIO_NET_F_STATUS) |
116     BIT_ULL(VIRTIO_NET_F_CTRL_VQ) |
117     BIT_ULL(VIRTIO_NET_F_CTRL_RX) |
118     BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) |
119     BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) |
120     BIT_ULL(VIRTIO_NET_F_MQ) |
121     BIT_ULL(VIRTIO_F_ANY_LAYOUT) |
122     BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) |
123     /* VHOST_F_LOG_ALL is exposed by SVQ */
124     BIT_ULL(VHOST_F_LOG_ALL) |
125     BIT_ULL(VIRTIO_NET_F_HASH_REPORT) |
126     BIT_ULL(VIRTIO_NET_F_RSS) |
127     BIT_ULL(VIRTIO_NET_F_RSC_EXT) |
128     BIT_ULL(VIRTIO_NET_F_STANDBY) |
129     BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX);
130 
131 #define VHOST_VDPA_NET_CVQ_ASID 1
132 
133 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc)
134 {
135     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
136     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
137     return s->vhost_net;
138 }
139 
140 static size_t vhost_vdpa_net_cvq_cmd_len(void)
141 {
142     /*
143      * MAC_TABLE_SET is the ctrl command that produces the longer out buffer.
144      * In buffer is always 1 byte, so it should fit here
145      */
146     return sizeof(struct virtio_net_ctrl_hdr) +
147            2 * sizeof(struct virtio_net_ctrl_mac) +
148            MAC_TABLE_ENTRIES * ETH_ALEN;
149 }
150 
151 static size_t vhost_vdpa_net_cvq_cmd_page_len(void)
152 {
153     return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size());
154 }
155 
156 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp)
157 {
158     uint64_t invalid_dev_features =
159         features & ~vdpa_svq_device_features &
160         /* Transport are all accepted at this point */
161         ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START,
162                          VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START);
163 
164     if (invalid_dev_features) {
165         error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64,
166                    invalid_dev_features);
167         return false;
168     }
169 
170     return vhost_svq_valid_features(features, errp);
171 }
172 
173 static int vhost_vdpa_net_check_device_id(struct vhost_net *net)
174 {
175     uint32_t device_id;
176     int ret;
177     struct vhost_dev *hdev;
178 
179     hdev = (struct vhost_dev *)&net->dev;
180     ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id);
181     if (device_id != VIRTIO_ID_NET) {
182         return -ENOTSUP;
183     }
184     return ret;
185 }
186 
187 static int vhost_vdpa_add(NetClientState *ncs, void *be,
188                           int queue_pair_index, int nvqs)
189 {
190     VhostNetOptions options;
191     struct vhost_net *net = NULL;
192     VhostVDPAState *s;
193     int ret;
194 
195     options.backend_type = VHOST_BACKEND_TYPE_VDPA;
196     assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
197     s = DO_UPCAST(VhostVDPAState, nc, ncs);
198     options.net_backend = ncs;
199     options.opaque      = be;
200     options.busyloop_timeout = 0;
201     options.nvqs = nvqs;
202 
203     net = vhost_net_init(&options);
204     if (!net) {
205         error_report("failed to init vhost_net for queue");
206         goto err_init;
207     }
208     s->vhost_net = net;
209     ret = vhost_vdpa_net_check_device_id(net);
210     if (ret) {
211         goto err_check;
212     }
213     return 0;
214 err_check:
215     vhost_net_cleanup(net);
216     g_free(net);
217 err_init:
218     return -1;
219 }
220 
221 static void vhost_vdpa_cleanup(NetClientState *nc)
222 {
223     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
224 
225     /*
226      * If a peer NIC is attached, do not cleanup anything.
227      * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup()
228      * when the guest is shutting down.
229      */
230     if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) {
231         return;
232     }
233     munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len());
234     munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len());
235     if (s->vhost_net) {
236         vhost_net_cleanup(s->vhost_net);
237         g_free(s->vhost_net);
238         s->vhost_net = NULL;
239     }
240     if (s->vhost_vdpa.index != 0) {
241         return;
242     }
243     qemu_close(s->vhost_vdpa.shared->device_fd);
244     g_free(s->vhost_vdpa.shared);
245 }
246 
247 /** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend  */
248 static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd)
249 {
250     return true;
251 }
252 
253 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc)
254 {
255     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
256 
257     return true;
258 }
259 
260 static bool vhost_vdpa_has_ufo(NetClientState *nc)
261 {
262     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
263     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
264     uint64_t features = 0;
265     features |= (1ULL << VIRTIO_NET_F_HOST_UFO);
266     features = vhost_net_get_features(s->vhost_net, features);
267     return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO));
268 
269 }
270 
271 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc,
272                                        Error **errp)
273 {
274     const char *driver = object_class_get_name(oc);
275 
276     if (!g_str_has_prefix(driver, "virtio-net-")) {
277         error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*");
278         return false;
279     }
280 
281     return true;
282 }
283 
284 /** Dummy receive in case qemu falls back to userland tap networking */
285 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf,
286                                   size_t size)
287 {
288     return size;
289 }
290 
291 
292 /** From any vdpa net client, get the netclient of the i-th queue pair */
293 static VhostVDPAState *vhost_vdpa_net_get_nc_vdpa(VhostVDPAState *s, int i)
294 {
295     NICState *nic = qemu_get_nic(s->nc.peer);
296     NetClientState *nc_i = qemu_get_peer(nic->ncs, i);
297 
298     return DO_UPCAST(VhostVDPAState, nc, nc_i);
299 }
300 
301 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s)
302 {
303     return vhost_vdpa_net_get_nc_vdpa(s, 0);
304 }
305 
306 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable)
307 {
308     struct vhost_vdpa *v = &s->vhost_vdpa;
309     VirtIONet *n;
310     VirtIODevice *vdev;
311     int data_queue_pairs, cvq, r;
312 
313     /* We are only called on the first data vqs and only if x-svq is not set */
314     if (s->vhost_vdpa.shadow_vqs_enabled == enable) {
315         return;
316     }
317 
318     vdev = v->dev->vdev;
319     n = VIRTIO_NET(vdev);
320     if (!n->vhost_started) {
321         return;
322     }
323 
324     data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1;
325     cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ?
326                                   n->max_ncs - n->max_queue_pairs : 0;
327     v->shared->svq_switching = enable ?
328         SVQ_TSTATE_ENABLING : SVQ_TSTATE_DISABLING;
329     /*
330      * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter
331      * in the future and resume the device if read-only operations between
332      * suspend and reset goes wrong.
333      */
334     vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq);
335 
336     /* Start will check migration setup_or_active to configure or not SVQ */
337     r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq);
338     if (unlikely(r < 0)) {
339         error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r);
340     }
341     v->shared->svq_switching = SVQ_TSTATE_DONE;
342 }
343 
344 static int vdpa_net_migration_state_notifier(NotifierWithReturn *notifier,
345                                              MigrationEvent *e, Error **errp)
346 {
347     VhostVDPAState *s = container_of(notifier, VhostVDPAState, migration_state);
348 
349     if (e->type == MIG_EVENT_PRECOPY_SETUP) {
350         vhost_vdpa_net_log_global_enable(s, true);
351     } else if (e->type == MIG_EVENT_PRECOPY_FAILED) {
352         vhost_vdpa_net_log_global_enable(s, false);
353     }
354     return 0;
355 }
356 
357 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s)
358 {
359     struct vhost_vdpa *v = &s->vhost_vdpa;
360 
361     migration_add_notifier(&s->migration_state,
362                            vdpa_net_migration_state_notifier);
363     if (v->shadow_vqs_enabled) {
364         v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first,
365                                                    v->shared->iova_range.last);
366     }
367 }
368 
369 static int vhost_vdpa_net_data_start(NetClientState *nc)
370 {
371     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
372     struct vhost_vdpa *v = &s->vhost_vdpa;
373 
374     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
375 
376     if (s->always_svq ||
377         migration_is_setup_or_active(migrate_get_current()->state)) {
378         v->shadow_vqs_enabled = true;
379     } else {
380         v->shadow_vqs_enabled = false;
381     }
382 
383     if (v->index == 0) {
384         v->shared->shadow_data = v->shadow_vqs_enabled;
385         vhost_vdpa_net_data_start_first(s);
386         return 0;
387     }
388 
389     return 0;
390 }
391 
392 static int vhost_vdpa_net_data_load(NetClientState *nc)
393 {
394     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
395     struct vhost_vdpa *v = &s->vhost_vdpa;
396     bool has_cvq = v->dev->vq_index_end % 2;
397 
398     if (has_cvq) {
399         return 0;
400     }
401 
402     for (int i = 0; i < v->dev->nvqs; ++i) {
403         vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index);
404     }
405     return 0;
406 }
407 
408 static void vhost_vdpa_net_client_stop(NetClientState *nc)
409 {
410     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
411     struct vhost_dev *dev;
412 
413     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
414 
415     if (s->vhost_vdpa.index == 0) {
416         migration_remove_notifier(&s->migration_state);
417     }
418 
419     dev = s->vhost_vdpa.dev;
420     if (dev->vq_index + dev->nvqs == dev->vq_index_end) {
421         g_clear_pointer(&s->vhost_vdpa.shared->iova_tree,
422                         vhost_iova_tree_delete);
423     }
424 }
425 
426 static NetClientInfo net_vhost_vdpa_info = {
427         .type = NET_CLIENT_DRIVER_VHOST_VDPA,
428         .size = sizeof(VhostVDPAState),
429         .receive = vhost_vdpa_receive,
430         .start = vhost_vdpa_net_data_start,
431         .load = vhost_vdpa_net_data_load,
432         .stop = vhost_vdpa_net_client_stop,
433         .cleanup = vhost_vdpa_cleanup,
434         .has_vnet_hdr = vhost_vdpa_has_vnet_hdr,
435         .has_ufo = vhost_vdpa_has_ufo,
436         .check_peer_type = vhost_vdpa_check_peer_type,
437         .set_steering_ebpf = vhost_vdpa_set_steering_ebpf,
438 };
439 
440 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index,
441                                           Error **errp)
442 {
443     struct vhost_vring_state state = {
444         .index = vq_index,
445     };
446     int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state);
447 
448     if (unlikely(r < 0)) {
449         r = -errno;
450         error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index);
451         return r;
452     }
453 
454     return state.num;
455 }
456 
457 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v,
458                                            unsigned vq_group,
459                                            unsigned asid_num)
460 {
461     struct vhost_vring_state asid = {
462         .index = vq_group,
463         .num = asid_num,
464     };
465     int r;
466 
467     trace_vhost_vdpa_set_address_space_id(v, vq_group, asid_num);
468 
469     r = ioctl(v->shared->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid);
470     if (unlikely(r < 0)) {
471         error_report("Can't set vq group %u asid %u, errno=%d (%s)",
472                      asid.index, asid.num, errno, g_strerror(errno));
473     }
474     return r;
475 }
476 
477 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr)
478 {
479     VhostIOVATree *tree = v->shared->iova_tree;
480     DMAMap needle = {
481         /*
482          * No need to specify size or to look for more translations since
483          * this contiguous chunk was allocated by us.
484          */
485         .translated_addr = (hwaddr)(uintptr_t)addr,
486     };
487     const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle);
488     int r;
489 
490     if (unlikely(!map)) {
491         error_report("Cannot locate expected map");
492         return;
493     }
494 
495     r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, map->iova,
496                              map->size + 1);
497     if (unlikely(r != 0)) {
498         error_report("Device cannot unmap: %s(%d)", g_strerror(r), r);
499     }
500 
501     vhost_iova_tree_remove(tree, *map);
502 }
503 
504 /** Map CVQ buffer. */
505 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size,
506                                   bool write)
507 {
508     DMAMap map = {};
509     int r;
510 
511     map.translated_addr = (hwaddr)(uintptr_t)buf;
512     map.size = size - 1;
513     map.perm = write ? IOMMU_RW : IOMMU_RO,
514     r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map);
515     if (unlikely(r != IOVA_OK)) {
516         error_report("Cannot map injected element");
517         return r;
518     }
519 
520     r = vhost_vdpa_dma_map(v->shared, v->address_space_id, map.iova,
521                            vhost_vdpa_net_cvq_cmd_page_len(), buf, !write);
522     if (unlikely(r < 0)) {
523         goto dma_map_err;
524     }
525 
526     return 0;
527 
528 dma_map_err:
529     vhost_iova_tree_remove(v->shared->iova_tree, map);
530     return r;
531 }
532 
533 static int vhost_vdpa_net_cvq_start(NetClientState *nc)
534 {
535     VhostVDPAState *s, *s0;
536     struct vhost_vdpa *v;
537     int64_t cvq_group;
538     int r;
539     Error *err = NULL;
540 
541     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
542 
543     s = DO_UPCAST(VhostVDPAState, nc, nc);
544     v = &s->vhost_vdpa;
545 
546     s0 = vhost_vdpa_net_first_nc_vdpa(s);
547     v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled;
548     s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID;
549 
550     if (v->shared->shadow_data) {
551         /* SVQ is already configured for all virtqueues */
552         goto out;
553     }
554 
555     /*
556      * If we early return in these cases SVQ will not be enabled. The migration
557      * will be blocked as long as vhost-vdpa backends will not offer _F_LOG.
558      */
559     if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) {
560         return 0;
561     }
562 
563     if (!s->cvq_isolated) {
564         return 0;
565     }
566 
567     cvq_group = vhost_vdpa_get_vring_group(v->shared->device_fd,
568                                            v->dev->vq_index_end - 1,
569                                            &err);
570     if (unlikely(cvq_group < 0)) {
571         error_report_err(err);
572         return cvq_group;
573     }
574 
575     r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID);
576     if (unlikely(r < 0)) {
577         return r;
578     }
579 
580     v->shadow_vqs_enabled = true;
581     s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID;
582 
583 out:
584     if (!s->vhost_vdpa.shadow_vqs_enabled) {
585         return 0;
586     }
587 
588     /*
589      * If other vhost_vdpa already have an iova_tree, reuse it for simplicity,
590      * whether CVQ shares ASID with guest or not, because:
591      * - Memory listener need access to guest's memory addresses allocated in
592      *   the IOVA tree.
593      * - There should be plenty of IOVA address space for both ASID not to
594      *   worry about collisions between them.  Guest's translations are still
595      *   validated with virtio virtqueue_pop so there is no risk for the guest
596      *   to access memory that it shouldn't.
597      *
598      * To allocate a iova tree per ASID is doable but it complicates the code
599      * and it is not worth it for the moment.
600      */
601     if (!v->shared->iova_tree) {
602         v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first,
603                                                    v->shared->iova_range.last);
604     }
605 
606     r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer,
607                                vhost_vdpa_net_cvq_cmd_page_len(), false);
608     if (unlikely(r < 0)) {
609         return r;
610     }
611 
612     r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status,
613                                vhost_vdpa_net_cvq_cmd_page_len(), true);
614     if (unlikely(r < 0)) {
615         vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer);
616     }
617 
618     return r;
619 }
620 
621 static void vhost_vdpa_net_cvq_stop(NetClientState *nc)
622 {
623     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
624 
625     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
626 
627     if (s->vhost_vdpa.shadow_vqs_enabled) {
628         vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer);
629         vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status);
630     }
631 
632     vhost_vdpa_net_client_stop(nc);
633 }
634 
635 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s,
636                                     const struct iovec *out_sg, size_t out_num,
637                                     const struct iovec *in_sg, size_t in_num)
638 {
639     VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
640     int r;
641 
642     r = vhost_svq_add(svq, out_sg, out_num, in_sg, in_num, NULL);
643     if (unlikely(r != 0)) {
644         if (unlikely(r == -ENOSPC)) {
645             qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n",
646                           __func__);
647         }
648     }
649 
650     return r;
651 }
652 
653 /*
654  * Convenience wrapper to poll SVQ for multiple control commands.
655  *
656  * Caller should hold the BQL when invoking this function, and should take
657  * the answer before SVQ pulls by itself when BQL is released.
658  */
659 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight)
660 {
661     VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
662     return vhost_svq_poll(svq, cmds_in_flight);
663 }
664 
665 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s,
666                                              struct iovec *out_cursor,
667                                              struct iovec *in_cursor)
668 {
669     /* reset the cursor of the output buffer for the device */
670     out_cursor->iov_base = s->cvq_cmd_out_buffer;
671     out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len();
672 
673     /* reset the cursor of the in buffer for the device */
674     in_cursor->iov_base = s->status;
675     in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len();
676 }
677 
678 /*
679  * Poll SVQ for multiple pending control commands and check the device's ack.
680  *
681  * Caller should hold the BQL when invoking this function.
682  *
683  * @s: The VhostVDPAState
684  * @len: The length of the pending status shadow buffer
685  */
686 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len)
687 {
688     /* device uses a one-byte length ack for each control command */
689     ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len);
690     if (unlikely(dev_written != len)) {
691         return -EIO;
692     }
693 
694     /* check the device's ack */
695     for (int i = 0; i < len; ++i) {
696         if (s->status[i] != VIRTIO_NET_OK) {
697             return -EIO;
698         }
699     }
700     return 0;
701 }
702 
703 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s,
704                                        struct iovec *out_cursor,
705                                        struct iovec *in_cursor, uint8_t class,
706                                        uint8_t cmd, const struct iovec *data_sg,
707                                        size_t data_num)
708 {
709     const struct virtio_net_ctrl_hdr ctrl = {
710         .class = class,
711         .cmd = cmd,
712     };
713     size_t data_size = iov_size(data_sg, data_num), cmd_size;
714     struct iovec out, in;
715     ssize_t r;
716     unsigned dummy_cursor_iov_cnt;
717     VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
718 
719     assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl));
720     cmd_size = sizeof(ctrl) + data_size;
721     trace_vhost_vdpa_net_load_cmd(s, class, cmd, data_num, data_size);
722     if (vhost_svq_available_slots(svq) < 2 ||
723         iov_size(out_cursor, 1) < cmd_size) {
724         /*
725          * It is time to flush all pending control commands if SVQ is full
726          * or control commands shadow buffers are full.
727          *
728          * We can poll here since we've had BQL from the time
729          * we sent the descriptor.
730          */
731         r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base -
732                                      (void *)s->status);
733         if (unlikely(r < 0)) {
734             return r;
735         }
736 
737         vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor);
738     }
739 
740     /* pack the CVQ command header */
741     iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl));
742     /* pack the CVQ command command-specific-data */
743     iov_to_buf(data_sg, data_num, 0,
744                out_cursor->iov_base + sizeof(ctrl), data_size);
745 
746     /* extract the required buffer from the cursor for output */
747     iov_copy(&out, 1, out_cursor, 1, 0, cmd_size);
748     /* extract the required buffer from the cursor for input */
749     iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status));
750 
751     r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1);
752     if (unlikely(r < 0)) {
753         trace_vhost_vdpa_net_load_cmd_retval(s, class, cmd, r);
754         return r;
755     }
756 
757     /* iterate the cursors */
758     dummy_cursor_iov_cnt = 1;
759     iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size);
760     dummy_cursor_iov_cnt = 1;
761     iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status));
762 
763     return 0;
764 }
765 
766 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n,
767                                    struct iovec *out_cursor,
768                                    struct iovec *in_cursor)
769 {
770     if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) {
771         const struct iovec data = {
772             .iov_base = (void *)n->mac,
773             .iov_len = sizeof(n->mac),
774         };
775         ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
776                                             VIRTIO_NET_CTRL_MAC,
777                                             VIRTIO_NET_CTRL_MAC_ADDR_SET,
778                                             &data, 1);
779         if (unlikely(r < 0)) {
780             return r;
781         }
782     }
783 
784     /*
785      * According to VirtIO standard, "The device MUST have an
786      * empty MAC filtering table on reset.".
787      *
788      * Therefore, there is no need to send this CVQ command if the
789      * driver also sets an empty MAC filter table, which aligns with
790      * the device's defaults.
791      *
792      * Note that the device's defaults can mismatch the driver's
793      * configuration only at live migration.
794      */
795     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) ||
796         n->mac_table.in_use == 0) {
797         return 0;
798     }
799 
800     uint32_t uni_entries = n->mac_table.first_multi,
801              uni_macs_size = uni_entries * ETH_ALEN,
802              mul_entries = n->mac_table.in_use - uni_entries,
803              mul_macs_size = mul_entries * ETH_ALEN;
804     struct virtio_net_ctrl_mac uni = {
805         .entries = cpu_to_le32(uni_entries),
806     };
807     struct virtio_net_ctrl_mac mul = {
808         .entries = cpu_to_le32(mul_entries),
809     };
810     const struct iovec data[] = {
811         {
812             .iov_base = &uni,
813             .iov_len = sizeof(uni),
814         }, {
815             .iov_base = n->mac_table.macs,
816             .iov_len = uni_macs_size,
817         }, {
818             .iov_base = &mul,
819             .iov_len = sizeof(mul),
820         }, {
821             .iov_base = &n->mac_table.macs[uni_macs_size],
822             .iov_len = mul_macs_size,
823         },
824     };
825     ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
826                                         VIRTIO_NET_CTRL_MAC,
827                                         VIRTIO_NET_CTRL_MAC_TABLE_SET,
828                                         data, ARRAY_SIZE(data));
829     if (unlikely(r < 0)) {
830         return r;
831     }
832 
833     return 0;
834 }
835 
836 static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n,
837                                    struct iovec *out_cursor,
838                                    struct iovec *in_cursor, bool do_rss)
839 {
840     struct virtio_net_rss_config cfg = {};
841     ssize_t r;
842     g_autofree uint16_t *table = NULL;
843 
844     /*
845      * According to VirtIO standard, "Initially the device has all hash
846      * types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.".
847      *
848      * Therefore, there is no need to send this CVQ command if the
849      * driver disables the all hash types, which aligns with
850      * the device's defaults.
851      *
852      * Note that the device's defaults can mismatch the driver's
853      * configuration only at live migration.
854      */
855     if (!n->rss_data.enabled ||
856         n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) {
857         return 0;
858     }
859 
860     table = g_malloc_n(n->rss_data.indirections_len,
861                        sizeof(n->rss_data.indirections_table[0]));
862     cfg.hash_types = cpu_to_le32(n->rss_data.hash_types);
863 
864     if (do_rss) {
865         /*
866          * According to VirtIO standard, "Number of entries in indirection_table
867          * is (indirection_table_mask + 1)".
868          */
869         cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len -
870                                                  1);
871         cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue);
872         for (int i = 0; i < n->rss_data.indirections_len; ++i) {
873             table[i] = cpu_to_le16(n->rss_data.indirections_table[i]);
874         }
875         cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs);
876     } else {
877         /*
878          * According to VirtIO standard, "Field reserved MUST contain zeroes.
879          * It is defined to make the structure to match the layout of
880          * virtio_net_rss_config structure, defined in 5.1.6.5.7.".
881          *
882          * Therefore, we need to zero the fields in
883          * struct virtio_net_rss_config, which corresponds to the
884          * `reserved` field in struct virtio_net_hash_config.
885          *
886          * Note that all other fields are zeroed at their definitions,
887          * except for the `indirection_table` field, where the actual data
888          * is stored in the `table` variable to ensure compatibility
889          * with RSS case. Therefore, we need to zero the `table` variable here.
890          */
891         table[0] = 0;
892     }
893 
894     /*
895      * Considering that virtio_net_handle_rss() currently does not restore
896      * the hash key length parsed from the CVQ command sent from the guest
897      * into n->rss_data and uses the maximum key length in other code, so
898      * we also employ the maximum key length here.
899      */
900     cfg.hash_key_length = sizeof(n->rss_data.key);
901 
902     const struct iovec data[] = {
903         {
904             .iov_base = &cfg,
905             .iov_len = offsetof(struct virtio_net_rss_config,
906                                 indirection_table),
907         }, {
908             .iov_base = table,
909             .iov_len = n->rss_data.indirections_len *
910                        sizeof(n->rss_data.indirections_table[0]),
911         }, {
912             .iov_base = &cfg.max_tx_vq,
913             .iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) -
914                        offsetof(struct virtio_net_rss_config, max_tx_vq),
915         }, {
916             .iov_base = (void *)n->rss_data.key,
917             .iov_len = sizeof(n->rss_data.key),
918         }
919     };
920 
921     r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
922                                 VIRTIO_NET_CTRL_MQ,
923                                 do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG :
924                                 VIRTIO_NET_CTRL_MQ_HASH_CONFIG,
925                                 data, ARRAY_SIZE(data));
926     if (unlikely(r < 0)) {
927         return r;
928     }
929 
930     return 0;
931 }
932 
933 static int vhost_vdpa_net_load_mq(VhostVDPAState *s,
934                                   const VirtIONet *n,
935                                   struct iovec *out_cursor,
936                                   struct iovec *in_cursor)
937 {
938     struct virtio_net_ctrl_mq mq;
939     ssize_t r;
940 
941     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) {
942         return 0;
943     }
944 
945     trace_vhost_vdpa_net_load_mq(s, n->curr_queue_pairs);
946 
947     mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs);
948     const struct iovec data = {
949         .iov_base = &mq,
950         .iov_len = sizeof(mq),
951     };
952     r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
953                                 VIRTIO_NET_CTRL_MQ,
954                                 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET,
955                                 &data, 1);
956     if (unlikely(r < 0)) {
957         return r;
958     }
959 
960     if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) {
961         /* load the receive-side scaling state */
962         r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true);
963         if (unlikely(r < 0)) {
964             return r;
965         }
966     } else if (virtio_vdev_has_feature(&n->parent_obj,
967                                        VIRTIO_NET_F_HASH_REPORT)) {
968         /* load the hash calculation state */
969         r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false);
970         if (unlikely(r < 0)) {
971             return r;
972         }
973     }
974 
975     return 0;
976 }
977 
978 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s,
979                                         const VirtIONet *n,
980                                         struct iovec *out_cursor,
981                                         struct iovec *in_cursor)
982 {
983     uint64_t offloads;
984     ssize_t r;
985 
986     if (!virtio_vdev_has_feature(&n->parent_obj,
987                                  VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) {
988         return 0;
989     }
990 
991     if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) {
992         /*
993          * According to VirtIO standard, "Upon feature negotiation
994          * corresponding offload gets enabled to preserve
995          * backward compatibility.".
996          *
997          * Therefore, there is no need to send this CVQ command if the
998          * driver also enables all supported offloads, which aligns with
999          * the device's defaults.
1000          *
1001          * Note that the device's defaults can mismatch the driver's
1002          * configuration only at live migration.
1003          */
1004         return 0;
1005     }
1006 
1007     offloads = cpu_to_le64(n->curr_guest_offloads);
1008     const struct iovec data = {
1009         .iov_base = &offloads,
1010         .iov_len = sizeof(offloads),
1011     };
1012     r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
1013                                 VIRTIO_NET_CTRL_GUEST_OFFLOADS,
1014                                 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET,
1015                                 &data, 1);
1016     if (unlikely(r < 0)) {
1017         return r;
1018     }
1019 
1020     return 0;
1021 }
1022 
1023 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s,
1024                                        struct iovec *out_cursor,
1025                                        struct iovec *in_cursor,
1026                                        uint8_t cmd,
1027                                        uint8_t on)
1028 {
1029     const struct iovec data = {
1030         .iov_base = &on,
1031         .iov_len = sizeof(on),
1032     };
1033     ssize_t r;
1034 
1035     r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
1036                                 VIRTIO_NET_CTRL_RX, cmd, &data, 1);
1037     if (unlikely(r < 0)) {
1038         return r;
1039     }
1040 
1041     return 0;
1042 }
1043 
1044 static int vhost_vdpa_net_load_rx(VhostVDPAState *s,
1045                                   const VirtIONet *n,
1046                                   struct iovec *out_cursor,
1047                                   struct iovec *in_cursor)
1048 {
1049     ssize_t r;
1050 
1051     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) {
1052         return 0;
1053     }
1054 
1055     /*
1056      * According to virtio_net_reset(), device turns promiscuous mode
1057      * on by default.
1058      *
1059      * Additionally, according to VirtIO standard, "Since there are
1060      * no guarantees, it can use a hash filter or silently switch to
1061      * allmulti or promiscuous mode if it is given too many addresses.".
1062      * QEMU marks `n->mac_table.uni_overflow` if guest sets too many
1063      * non-multicast MAC addresses, indicating that promiscuous mode
1064      * should be enabled.
1065      *
1066      * Therefore, QEMU should only send this CVQ command if the
1067      * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off,
1068      * which sets promiscuous mode on, different from the device's defaults.
1069      *
1070      * Note that the device's defaults can mismatch the driver's
1071      * configuration only at live migration.
1072      */
1073     if (!n->mac_table.uni_overflow && !n->promisc) {
1074         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1075                                         VIRTIO_NET_CTRL_RX_PROMISC, 0);
1076         if (unlikely(r < 0)) {
1077             return r;
1078         }
1079     }
1080 
1081     /*
1082      * According to virtio_net_reset(), device turns all-multicast mode
1083      * off by default.
1084      *
1085      * According to VirtIO standard, "Since there are no guarantees,
1086      * it can use a hash filter or silently switch to allmulti or
1087      * promiscuous mode if it is given too many addresses.". QEMU marks
1088      * `n->mac_table.multi_overflow` if guest sets too many
1089      * non-multicast MAC addresses.
1090      *
1091      * Therefore, QEMU should only send this CVQ command if the
1092      * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on,
1093      * which sets all-multicast mode on, different from the device's defaults.
1094      *
1095      * Note that the device's defaults can mismatch the driver's
1096      * configuration only at live migration.
1097      */
1098     if (n->mac_table.multi_overflow || n->allmulti) {
1099         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1100                                         VIRTIO_NET_CTRL_RX_ALLMULTI, 1);
1101         if (unlikely(r < 0)) {
1102             return r;
1103         }
1104     }
1105 
1106     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) {
1107         return 0;
1108     }
1109 
1110     /*
1111      * According to virtio_net_reset(), device turns all-unicast mode
1112      * off by default.
1113      *
1114      * Therefore, QEMU should only send this CVQ command if the driver
1115      * sets all-unicast mode on, different from the device's defaults.
1116      *
1117      * Note that the device's defaults can mismatch the driver's
1118      * configuration only at live migration.
1119      */
1120     if (n->alluni) {
1121         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1122                                         VIRTIO_NET_CTRL_RX_ALLUNI, 1);
1123         if (r < 0) {
1124             return r;
1125         }
1126     }
1127 
1128     /*
1129      * According to virtio_net_reset(), device turns non-multicast mode
1130      * off by default.
1131      *
1132      * Therefore, QEMU should only send this CVQ command if the driver
1133      * sets non-multicast mode on, different from the device's defaults.
1134      *
1135      * Note that the device's defaults can mismatch the driver's
1136      * configuration only at live migration.
1137      */
1138     if (n->nomulti) {
1139         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1140                                         VIRTIO_NET_CTRL_RX_NOMULTI, 1);
1141         if (r < 0) {
1142             return r;
1143         }
1144     }
1145 
1146     /*
1147      * According to virtio_net_reset(), device turns non-unicast mode
1148      * off by default.
1149      *
1150      * Therefore, QEMU should only send this CVQ command if the driver
1151      * sets non-unicast mode on, different from the device's defaults.
1152      *
1153      * Note that the device's defaults can mismatch the driver's
1154      * configuration only at live migration.
1155      */
1156     if (n->nouni) {
1157         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1158                                         VIRTIO_NET_CTRL_RX_NOUNI, 1);
1159         if (r < 0) {
1160             return r;
1161         }
1162     }
1163 
1164     /*
1165      * According to virtio_net_reset(), device turns non-broadcast mode
1166      * off by default.
1167      *
1168      * Therefore, QEMU should only send this CVQ command if the driver
1169      * sets non-broadcast mode on, different from the device's defaults.
1170      *
1171      * Note that the device's defaults can mismatch the driver's
1172      * configuration only at live migration.
1173      */
1174     if (n->nobcast) {
1175         r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1176                                         VIRTIO_NET_CTRL_RX_NOBCAST, 1);
1177         if (r < 0) {
1178             return r;
1179         }
1180     }
1181 
1182     return 0;
1183 }
1184 
1185 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s,
1186                                            const VirtIONet *n,
1187                                            struct iovec *out_cursor,
1188                                            struct iovec *in_cursor,
1189                                            uint16_t vid)
1190 {
1191     const struct iovec data = {
1192         .iov_base = &vid,
1193         .iov_len = sizeof(vid),
1194     };
1195     ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
1196                                         VIRTIO_NET_CTRL_VLAN,
1197                                         VIRTIO_NET_CTRL_VLAN_ADD,
1198                                         &data, 1);
1199     if (unlikely(r < 0)) {
1200         return r;
1201     }
1202 
1203     return 0;
1204 }
1205 
1206 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s,
1207                                     const VirtIONet *n,
1208                                     struct iovec *out_cursor,
1209                                     struct iovec *in_cursor)
1210 {
1211     int r;
1212 
1213     if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) {
1214         return 0;
1215     }
1216 
1217     for (int i = 0; i < MAX_VLAN >> 5; i++) {
1218         for (int j = 0; n->vlans[i] && j <= 0x1f; j++) {
1219             if (n->vlans[i] & (1U << j)) {
1220                 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor,
1221                                                     in_cursor, (i << 5) + j);
1222                 if (unlikely(r != 0)) {
1223                     return r;
1224                 }
1225             }
1226         }
1227     }
1228 
1229     return 0;
1230 }
1231 
1232 static int vhost_vdpa_net_cvq_load(NetClientState *nc)
1233 {
1234     VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
1235     struct vhost_vdpa *v = &s->vhost_vdpa;
1236     const VirtIONet *n;
1237     int r;
1238     struct iovec out_cursor, in_cursor;
1239 
1240     assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
1241 
1242     vhost_vdpa_set_vring_ready(v, v->dev->vq_index);
1243 
1244     if (v->shadow_vqs_enabled) {
1245         n = VIRTIO_NET(v->dev->vdev);
1246         vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor);
1247         r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor);
1248         if (unlikely(r < 0)) {
1249             return r;
1250         }
1251         r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor);
1252         if (unlikely(r)) {
1253             return r;
1254         }
1255         r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor);
1256         if (unlikely(r)) {
1257             return r;
1258         }
1259         r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor);
1260         if (unlikely(r)) {
1261             return r;
1262         }
1263         r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor);
1264         if (unlikely(r)) {
1265             return r;
1266         }
1267 
1268         /*
1269          * We need to poll and check all pending device's used buffers.
1270          *
1271          * We can poll here since we've had BQL from the time
1272          * we sent the descriptor.
1273          */
1274         r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status);
1275         if (unlikely(r)) {
1276             return r;
1277         }
1278     }
1279 
1280     for (int i = 0; i < v->dev->vq_index; ++i) {
1281         vhost_vdpa_set_vring_ready(v, i);
1282     }
1283 
1284     return 0;
1285 }
1286 
1287 static NetClientInfo net_vhost_vdpa_cvq_info = {
1288     .type = NET_CLIENT_DRIVER_VHOST_VDPA,
1289     .size = sizeof(VhostVDPAState),
1290     .receive = vhost_vdpa_receive,
1291     .start = vhost_vdpa_net_cvq_start,
1292     .load = vhost_vdpa_net_cvq_load,
1293     .stop = vhost_vdpa_net_cvq_stop,
1294     .cleanup = vhost_vdpa_cleanup,
1295     .has_vnet_hdr = vhost_vdpa_has_vnet_hdr,
1296     .has_ufo = vhost_vdpa_has_ufo,
1297     .check_peer_type = vhost_vdpa_check_peer_type,
1298     .set_steering_ebpf = vhost_vdpa_set_steering_ebpf,
1299 };
1300 
1301 /*
1302  * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to
1303  * vdpa device.
1304  *
1305  * Considering that QEMU cannot send the entire filter table to the
1306  * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ
1307  * command to enable promiscuous mode to receive all packets,
1308  * according to VirtIO standard, "Since there are no guarantees,
1309  * it can use a hash filter or silently switch to allmulti or
1310  * promiscuous mode if it is given too many addresses.".
1311  *
1312  * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and
1313  * marks `n->mac_table.x_overflow` accordingly, it should have
1314  * the same effect on the device model to receive
1315  * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses.
1316  * The same applies to multicast MAC addresses.
1317  *
1318  * Therefore, QEMU can provide the device model with a fake
1319  * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1)
1320  * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast
1321  * MAC addresses. This ensures that the device model marks
1322  * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`,
1323  * allowing all packets to be received, which aligns with the
1324  * state of the vdpa device.
1325  */
1326 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s,
1327                                                        VirtQueueElement *elem,
1328                                                        struct iovec *out,
1329                                                        const struct iovec *in)
1330 {
1331     struct virtio_net_ctrl_mac mac_data, *mac_ptr;
1332     struct virtio_net_ctrl_hdr *hdr_ptr;
1333     uint32_t cursor;
1334     ssize_t r;
1335     uint8_t on = 1;
1336 
1337     /* parse the non-multicast MAC address entries from CVQ command */
1338     cursor = sizeof(*hdr_ptr);
1339     r = iov_to_buf(elem->out_sg, elem->out_num, cursor,
1340                    &mac_data, sizeof(mac_data));
1341     if (unlikely(r != sizeof(mac_data))) {
1342         /*
1343          * If the CVQ command is invalid, we should simulate the vdpa device
1344          * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1345          */
1346         *s->status = VIRTIO_NET_ERR;
1347         return sizeof(*s->status);
1348     }
1349     cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN;
1350 
1351     /* parse the multicast MAC address entries from CVQ command */
1352     r = iov_to_buf(elem->out_sg, elem->out_num, cursor,
1353                    &mac_data, sizeof(mac_data));
1354     if (r != sizeof(mac_data)) {
1355         /*
1356          * If the CVQ command is invalid, we should simulate the vdpa device
1357          * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1358          */
1359         *s->status = VIRTIO_NET_ERR;
1360         return sizeof(*s->status);
1361     }
1362     cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN;
1363 
1364     /* validate the CVQ command */
1365     if (iov_size(elem->out_sg, elem->out_num) != cursor) {
1366         /*
1367          * If the CVQ command is invalid, we should simulate the vdpa device
1368          * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1369          */
1370         *s->status = VIRTIO_NET_ERR;
1371         return sizeof(*s->status);
1372     }
1373 
1374     /*
1375      * According to VirtIO standard, "Since there are no guarantees,
1376      * it can use a hash filter or silently switch to allmulti or
1377      * promiscuous mode if it is given too many addresses.".
1378      *
1379      * Therefore, considering that QEMU is unable to send the entire
1380      * filter table to the vdpa device, it should send the
1381      * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode
1382      */
1383     hdr_ptr = out->iov_base;
1384     out->iov_len = sizeof(*hdr_ptr) + sizeof(on);
1385 
1386     hdr_ptr->class = VIRTIO_NET_CTRL_RX;
1387     hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC;
1388     iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on));
1389     r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1);
1390     if (unlikely(r < 0)) {
1391         return r;
1392     }
1393 
1394     /*
1395      * We can poll here since we've had BQL from the time
1396      * we sent the descriptor.
1397      */
1398     r = vhost_vdpa_net_svq_poll(s, 1);
1399     if (unlikely(r < sizeof(*s->status))) {
1400         return r;
1401     }
1402     if (*s->status != VIRTIO_NET_OK) {
1403         return sizeof(*s->status);
1404     }
1405 
1406     /*
1407      * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ
1408      * command to the device model, including (`MAC_TABLE_ENTRIES` + 1)
1409      * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1)
1410      * multicast MAC addresses.
1411      *
1412      * By doing so, the device model can mark `n->mac_table.uni_overflow`
1413      * and `n->mac_table.multi_overflow`, enabling all packets to be
1414      * received, which aligns with the state of the vdpa device.
1415      */
1416     cursor = 0;
1417     uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1,
1418              fake_mul_entries = MAC_TABLE_ENTRIES + 1,
1419              fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) +
1420                              sizeof(mac_data) + fake_uni_entries * ETH_ALEN +
1421                              sizeof(mac_data) + fake_mul_entries * ETH_ALEN;
1422 
1423     assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len());
1424     out->iov_len = fake_cvq_size;
1425 
1426     /* pack the header for fake CVQ command */
1427     hdr_ptr = out->iov_base + cursor;
1428     hdr_ptr->class = VIRTIO_NET_CTRL_MAC;
1429     hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
1430     cursor += sizeof(*hdr_ptr);
1431 
1432     /*
1433      * Pack the non-multicast MAC addresses part for fake CVQ command.
1434      *
1435      * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC
1436      * addresses provided in CVQ command. Therefore, only the entries
1437      * field need to be prepared in the CVQ command.
1438      */
1439     mac_ptr = out->iov_base + cursor;
1440     mac_ptr->entries = cpu_to_le32(fake_uni_entries);
1441     cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN;
1442 
1443     /*
1444      * Pack the multicast MAC addresses part for fake CVQ command.
1445      *
1446      * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC
1447      * addresses provided in CVQ command. Therefore, only the entries
1448      * field need to be prepared in the CVQ command.
1449      */
1450     mac_ptr = out->iov_base + cursor;
1451     mac_ptr->entries = cpu_to_le32(fake_mul_entries);
1452 
1453     /*
1454      * Simulating QEMU poll a vdpa device used buffer
1455      * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1456      */
1457     return sizeof(*s->status);
1458 }
1459 
1460 /**
1461  * Validate and copy control virtqueue commands.
1462  *
1463  * Following QEMU guidelines, we offer a copy of the buffers to the device to
1464  * prevent TOCTOU bugs.
1465  */
1466 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq,
1467                                             VirtQueueElement *elem,
1468                                             void *opaque)
1469 {
1470     VhostVDPAState *s = opaque;
1471     size_t in_len;
1472     const struct virtio_net_ctrl_hdr *ctrl;
1473     virtio_net_ctrl_ack status = VIRTIO_NET_ERR;
1474     /* Out buffer sent to both the vdpa device and the device model */
1475     struct iovec out = {
1476         .iov_base = s->cvq_cmd_out_buffer,
1477     };
1478     /* in buffer used for device model */
1479     const struct iovec model_in = {
1480         .iov_base = &status,
1481         .iov_len = sizeof(status),
1482     };
1483     /* in buffer used for vdpa device */
1484     const struct iovec vdpa_in = {
1485         .iov_base = s->status,
1486         .iov_len = sizeof(*s->status),
1487     };
1488     ssize_t dev_written = -EINVAL;
1489 
1490     out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0,
1491                              s->cvq_cmd_out_buffer,
1492                              vhost_vdpa_net_cvq_cmd_page_len());
1493 
1494     ctrl = s->cvq_cmd_out_buffer;
1495     if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) {
1496         /*
1497          * Guest announce capability is emulated by qemu, so don't forward to
1498          * the device.
1499          */
1500         dev_written = sizeof(status);
1501         *s->status = VIRTIO_NET_OK;
1502     } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC &&
1503                         ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET &&
1504                         iov_size(elem->out_sg, elem->out_num) > out.iov_len)) {
1505         /*
1506          * Due to the size limitation of the out buffer sent to the vdpa device,
1507          * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive
1508          * MAC addresses set by the driver for the filter table can cause
1509          * truncation of the CVQ command in QEMU. As a result, the vdpa device
1510          * rejects the flawed CVQ command.
1511          *
1512          * Therefore, QEMU must handle this situation instead of sending
1513          * the CVQ command directly.
1514          */
1515         dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem,
1516                                                             &out, &vdpa_in);
1517         if (unlikely(dev_written < 0)) {
1518             goto out;
1519         }
1520     } else {
1521         ssize_t r;
1522         r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1);
1523         if (unlikely(r < 0)) {
1524             dev_written = r;
1525             goto out;
1526         }
1527 
1528         /*
1529          * We can poll here since we've had BQL from the time
1530          * we sent the descriptor.
1531          */
1532         dev_written = vhost_vdpa_net_svq_poll(s, 1);
1533     }
1534 
1535     if (unlikely(dev_written < sizeof(status))) {
1536         error_report("Insufficient written data (%zu)", dev_written);
1537         goto out;
1538     }
1539 
1540     if (*s->status != VIRTIO_NET_OK) {
1541         goto out;
1542     }
1543 
1544     status = VIRTIO_NET_ERR;
1545     virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1);
1546     if (status != VIRTIO_NET_OK) {
1547         error_report("Bad CVQ processing in model");
1548     }
1549 
1550 out:
1551     in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status,
1552                           sizeof(status));
1553     if (unlikely(in_len < sizeof(status))) {
1554         error_report("Bad device CVQ written length");
1555     }
1556     vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status)));
1557     /*
1558      * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when
1559      * the function successfully forwards the CVQ command, indicated
1560      * by a non-negative value of `dev_written`. Otherwise, it still
1561      * belongs to SVQ.
1562      * This function should only free the `elem` when it owns.
1563      */
1564     if (dev_written >= 0) {
1565         g_free(elem);
1566     }
1567     return dev_written < 0 ? dev_written : 0;
1568 }
1569 
1570 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = {
1571     .avail_handler = vhost_vdpa_net_handle_ctrl_avail,
1572 };
1573 
1574 /**
1575  * Probe if CVQ is isolated
1576  *
1577  * @device_fd         The vdpa device fd
1578  * @features          Features offered by the device.
1579  * @cvq_index         The control vq pair index
1580  *
1581  * Returns <0 in case of failure, 0 if false and 1 if true.
1582  */
1583 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features,
1584                                           int cvq_index, Error **errp)
1585 {
1586     uint64_t backend_features;
1587     int64_t cvq_group;
1588     uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE |
1589                      VIRTIO_CONFIG_S_DRIVER;
1590     int r;
1591 
1592     ERRP_GUARD();
1593 
1594     r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features);
1595     if (unlikely(r < 0)) {
1596         error_setg_errno(errp, errno, "Cannot get vdpa backend_features");
1597         return r;
1598     }
1599 
1600     if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) {
1601         return 0;
1602     }
1603 
1604     r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
1605     if (unlikely(r)) {
1606         error_setg_errno(errp, -r, "Cannot set device status");
1607         goto out;
1608     }
1609 
1610     r = ioctl(device_fd, VHOST_SET_FEATURES, &features);
1611     if (unlikely(r)) {
1612         error_setg_errno(errp, -r, "Cannot set features");
1613         goto out;
1614     }
1615 
1616     status |= VIRTIO_CONFIG_S_FEATURES_OK;
1617     r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
1618     if (unlikely(r)) {
1619         error_setg_errno(errp, -r, "Cannot set device status");
1620         goto out;
1621     }
1622 
1623     cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp);
1624     if (unlikely(cvq_group < 0)) {
1625         if (cvq_group != -ENOTSUP) {
1626             r = cvq_group;
1627             goto out;
1628         }
1629 
1630         /*
1631          * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend
1632          * support ASID even if the parent driver does not.  The CVQ cannot be
1633          * isolated in this case.
1634          */
1635         error_free(*errp);
1636         *errp = NULL;
1637         r = 0;
1638         goto out;
1639     }
1640 
1641     for (int i = 0; i < cvq_index; ++i) {
1642         int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp);
1643         if (unlikely(group < 0)) {
1644             r = group;
1645             goto out;
1646         }
1647 
1648         if (group == (int64_t)cvq_group) {
1649             r = 0;
1650             goto out;
1651         }
1652     }
1653 
1654     r = 1;
1655 
1656 out:
1657     status = 0;
1658     ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
1659     return r;
1660 }
1661 
1662 static NetClientState *net_vhost_vdpa_init(NetClientState *peer,
1663                                        const char *device,
1664                                        const char *name,
1665                                        int vdpa_device_fd,
1666                                        int queue_pair_index,
1667                                        int nvqs,
1668                                        bool is_datapath,
1669                                        bool svq,
1670                                        struct vhost_vdpa_iova_range iova_range,
1671                                        uint64_t features,
1672                                        VhostVDPAShared *shared,
1673                                        Error **errp)
1674 {
1675     NetClientState *nc = NULL;
1676     VhostVDPAState *s;
1677     int ret = 0;
1678     assert(name);
1679     int cvq_isolated = 0;
1680 
1681     if (is_datapath) {
1682         nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device,
1683                                  name);
1684     } else {
1685         cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features,
1686                                                       queue_pair_index * 2,
1687                                                       errp);
1688         if (unlikely(cvq_isolated < 0)) {
1689             return NULL;
1690         }
1691 
1692         nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer,
1693                                          device, name);
1694     }
1695     qemu_set_info_str(nc, TYPE_VHOST_VDPA);
1696     s = DO_UPCAST(VhostVDPAState, nc, nc);
1697 
1698     s->vhost_vdpa.index = queue_pair_index;
1699     s->always_svq = svq;
1700     s->migration_state.notify = NULL;
1701     s->vhost_vdpa.shadow_vqs_enabled = svq;
1702     if (queue_pair_index == 0) {
1703         vhost_vdpa_net_valid_svq_features(features,
1704                                           &s->vhost_vdpa.migration_blocker);
1705         s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1);
1706         s->vhost_vdpa.shared->device_fd = vdpa_device_fd;
1707         s->vhost_vdpa.shared->iova_range = iova_range;
1708         s->vhost_vdpa.shared->shadow_data = svq;
1709     } else if (!is_datapath) {
1710         s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(),
1711                                      PROT_READ | PROT_WRITE,
1712                                      MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1713         s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(),
1714                          PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS,
1715                          -1, 0);
1716 
1717         s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops;
1718         s->vhost_vdpa.shadow_vq_ops_opaque = s;
1719         s->cvq_isolated = cvq_isolated;
1720     }
1721     if (queue_pair_index != 0) {
1722         s->vhost_vdpa.shared = shared;
1723     }
1724 
1725     ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs);
1726     if (ret) {
1727         qemu_del_net_client(nc);
1728         return NULL;
1729     }
1730 
1731     return nc;
1732 }
1733 
1734 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp)
1735 {
1736     int ret = ioctl(fd, VHOST_GET_FEATURES, features);
1737     if (unlikely(ret < 0)) {
1738         error_setg_errno(errp, errno,
1739                          "Fail to query features from vhost-vDPA device");
1740     }
1741     return ret;
1742 }
1743 
1744 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features,
1745                                           int *has_cvq, Error **errp)
1746 {
1747     unsigned long config_size = offsetof(struct vhost_vdpa_config, buf);
1748     g_autofree struct vhost_vdpa_config *config = NULL;
1749     __virtio16 *max_queue_pairs;
1750     int ret;
1751 
1752     if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) {
1753         *has_cvq = 1;
1754     } else {
1755         *has_cvq = 0;
1756     }
1757 
1758     if (features & (1 << VIRTIO_NET_F_MQ)) {
1759         config = g_malloc0(config_size + sizeof(*max_queue_pairs));
1760         config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs);
1761         config->len = sizeof(*max_queue_pairs);
1762 
1763         ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config);
1764         if (ret) {
1765             error_setg(errp, "Fail to get config from vhost-vDPA device");
1766             return -ret;
1767         }
1768 
1769         max_queue_pairs = (__virtio16 *)&config->buf;
1770 
1771         return lduw_le_p(max_queue_pairs);
1772     }
1773 
1774     return 1;
1775 }
1776 
1777 int net_init_vhost_vdpa(const Netdev *netdev, const char *name,
1778                         NetClientState *peer, Error **errp)
1779 {
1780     const NetdevVhostVDPAOptions *opts;
1781     uint64_t features;
1782     int vdpa_device_fd;
1783     g_autofree NetClientState **ncs = NULL;
1784     struct vhost_vdpa_iova_range iova_range;
1785     NetClientState *nc;
1786     int queue_pairs, r, i = 0, has_cvq = 0;
1787 
1788     assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA);
1789     opts = &netdev->u.vhost_vdpa;
1790     if (!opts->vhostdev && !opts->vhostfd) {
1791         error_setg(errp,
1792                    "vhost-vdpa: neither vhostdev= nor vhostfd= was specified");
1793         return -1;
1794     }
1795 
1796     if (opts->vhostdev && opts->vhostfd) {
1797         error_setg(errp,
1798                    "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive");
1799         return -1;
1800     }
1801 
1802     if (opts->vhostdev) {
1803         vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp);
1804         if (vdpa_device_fd == -1) {
1805             return -errno;
1806         }
1807     } else {
1808         /* has_vhostfd */
1809         vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp);
1810         if (vdpa_device_fd == -1) {
1811             error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: ");
1812             return -1;
1813         }
1814     }
1815 
1816     r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp);
1817     if (unlikely(r < 0)) {
1818         goto err;
1819     }
1820 
1821     queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features,
1822                                                  &has_cvq, errp);
1823     if (queue_pairs < 0) {
1824         qemu_close(vdpa_device_fd);
1825         return queue_pairs;
1826     }
1827 
1828     r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range);
1829     if (unlikely(r < 0)) {
1830         error_setg(errp, "vhost-vdpa: get iova range failed: %s",
1831                    strerror(-r));
1832         goto err;
1833     }
1834 
1835     if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) {
1836         goto err;
1837     }
1838 
1839     ncs = g_malloc0(sizeof(*ncs) * queue_pairs);
1840 
1841     for (i = 0; i < queue_pairs; i++) {
1842         VhostVDPAShared *shared = NULL;
1843 
1844         if (i) {
1845             shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared;
1846         }
1847         ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name,
1848                                      vdpa_device_fd, i, 2, true, opts->x_svq,
1849                                      iova_range, features, shared, errp);
1850         if (!ncs[i])
1851             goto err;
1852     }
1853 
1854     if (has_cvq) {
1855         VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]);
1856         VhostVDPAShared *shared = s0->vhost_vdpa.shared;
1857 
1858         nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name,
1859                                  vdpa_device_fd, i, 1, false,
1860                                  opts->x_svq, iova_range, features, shared,
1861                                  errp);
1862         if (!nc)
1863             goto err;
1864     }
1865 
1866     return 0;
1867 
1868 err:
1869     if (i) {
1870         for (i--; i >= 0; i--) {
1871             qemu_del_net_client(ncs[i]);
1872         }
1873     }
1874 
1875     qemu_close(vdpa_device_fd);
1876 
1877     return -1;
1878 }
1879