xref: /qemu/plugins/api.c (revision 4a1babe5)
1 /*
2  * QEMU Plugin API
3  *
4  * This provides the API that is available to the plugins to interact
5  * with QEMU. We have to be careful not to expose internal details of
6  * how QEMU works so we abstract out things like translation and
7  * instructions to anonymous data types:
8  *
9  *  qemu_plugin_tb
10  *  qemu_plugin_insn
11  *  qemu_plugin_register
12  *
13  * Which can then be passed back into the API to do additional things.
14  * As such all the public functions in here are exported in
15  * qemu-plugin.h.
16  *
17  * The general life-cycle of a plugin is:
18  *
19  *  - plugin is loaded, public qemu_plugin_install called
20  *    - the install func registers callbacks for events
21  *    - usually an atexit_cb is registered to dump info at the end
22  *  - when a registered event occurs the plugin is called
23  *     - some events pass additional info
24  *     - during translation the plugin can decide to instrument any
25  *       instruction
26  *  - when QEMU exits all the registered atexit callbacks are called
27  *
28  * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
29  * Copyright (C) 2019, Linaro
30  *
31  * License: GNU GPL, version 2 or later.
32  *   See the COPYING file in the top-level directory.
33  *
34  * SPDX-License-Identifier: GPL-2.0-or-later
35  *
36  */
37 
38 #include "qemu/osdep.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/plugin.h"
41 #include "qemu/log.h"
42 #include "tcg/tcg.h"
43 #include "exec/exec-all.h"
44 #include "exec/gdbstub.h"
45 #include "exec/ram_addr.h"
46 #include "disas/disas.h"
47 #include "plugin.h"
48 #ifndef CONFIG_USER_ONLY
49 #include "qemu/plugin-memory.h"
50 #include "hw/boards.h"
51 #else
52 #include "qemu.h"
53 #ifdef CONFIG_LINUX
54 #include "loader.h"
55 #endif
56 #endif
57 
58 /* Uninstall and Reset handlers */
59 
60 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
61 {
62     plugin_reset_uninstall(id, cb, false);
63 }
64 
65 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
66 {
67     plugin_reset_uninstall(id, cb, true);
68 }
69 
70 /*
71  * Plugin Register Functions
72  *
73  * This allows the plugin to register callbacks for various events
74  * during the translation.
75  */
76 
77 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
78                                        qemu_plugin_vcpu_simple_cb_t cb)
79 {
80     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
81 }
82 
83 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
84                                        qemu_plugin_vcpu_simple_cb_t cb)
85 {
86     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
87 }
88 
89 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
90                                           qemu_plugin_vcpu_udata_cb_t cb,
91                                           enum qemu_plugin_cb_flags flags,
92                                           void *udata)
93 {
94     if (!tb->mem_only) {
95         int index = flags == QEMU_PLUGIN_CB_R_REGS ||
96                     flags == QEMU_PLUGIN_CB_RW_REGS ?
97                     PLUGIN_CB_REGULAR_R : PLUGIN_CB_REGULAR;
98 
99         plugin_register_dyn_cb__udata(&tb->cbs[index],
100                                       cb, flags, udata);
101     }
102 }
103 
104 void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
105     struct qemu_plugin_tb *tb,
106     enum qemu_plugin_op op,
107     qemu_plugin_u64 entry,
108     uint64_t imm)
109 {
110     if (!tb->mem_only) {
111         plugin_register_inline_op_on_entry(
112             &tb->cbs[PLUGIN_CB_INLINE], 0, op, entry, imm);
113     }
114 }
115 
116 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
117                                             qemu_plugin_vcpu_udata_cb_t cb,
118                                             enum qemu_plugin_cb_flags flags,
119                                             void *udata)
120 {
121     if (!insn->mem_only) {
122         int index = flags == QEMU_PLUGIN_CB_R_REGS ||
123                     flags == QEMU_PLUGIN_CB_RW_REGS ?
124                     PLUGIN_CB_REGULAR_R : PLUGIN_CB_REGULAR;
125 
126         plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][index],
127                                       cb, flags, udata);
128     }
129 }
130 
131 void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
132     struct qemu_plugin_insn *insn,
133     enum qemu_plugin_op op,
134     qemu_plugin_u64 entry,
135     uint64_t imm)
136 {
137     if (!insn->mem_only) {
138         plugin_register_inline_op_on_entry(
139             &insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 0, op, entry, imm);
140     }
141 }
142 
143 
144 /*
145  * We always plant memory instrumentation because they don't finalise until
146  * after the operation has complete.
147  */
148 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
149                                       qemu_plugin_vcpu_mem_cb_t cb,
150                                       enum qemu_plugin_cb_flags flags,
151                                       enum qemu_plugin_mem_rw rw,
152                                       void *udata)
153 {
154     plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
155                                 cb, flags, rw, udata);
156 }
157 
158 void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
159     struct qemu_plugin_insn *insn,
160     enum qemu_plugin_mem_rw rw,
161     enum qemu_plugin_op op,
162     qemu_plugin_u64 entry,
163     uint64_t imm)
164 {
165     plugin_register_inline_op_on_entry(
166         &insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE], rw, op, entry, imm);
167 }
168 
169 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
170                                            qemu_plugin_vcpu_tb_trans_cb_t cb)
171 {
172     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
173 }
174 
175 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
176                                           qemu_plugin_vcpu_syscall_cb_t cb)
177 {
178     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
179 }
180 
181 void
182 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
183                                          qemu_plugin_vcpu_syscall_ret_cb_t cb)
184 {
185     plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
186 }
187 
188 /*
189  * Plugin Queries
190  *
191  * These are queries that the plugin can make to gauge information
192  * from our opaque data types. We do not want to leak internal details
193  * here just information useful to the plugin.
194  */
195 
196 /*
197  * Translation block information:
198  *
199  * A plugin can query the virtual address of the start of the block
200  * and the number of instructions in it. It can also get access to
201  * each translated instruction.
202  */
203 
204 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
205 {
206     return tb->n;
207 }
208 
209 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
210 {
211     return tb->vaddr;
212 }
213 
214 struct qemu_plugin_insn *
215 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
216 {
217     struct qemu_plugin_insn *insn;
218     if (unlikely(idx >= tb->n)) {
219         return NULL;
220     }
221     insn = g_ptr_array_index(tb->insns, idx);
222     insn->mem_only = tb->mem_only;
223     return insn;
224 }
225 
226 /*
227  * Instruction information
228  *
229  * These queries allow the plugin to retrieve information about each
230  * instruction being translated.
231  */
232 
233 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
234 {
235     return insn->data->data;
236 }
237 
238 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
239 {
240     return insn->data->len;
241 }
242 
243 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
244 {
245     return insn->vaddr;
246 }
247 
248 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
249 {
250     return insn->haddr;
251 }
252 
253 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
254 {
255     CPUState *cpu = current_cpu;
256     return plugin_disas(cpu, insn->vaddr, insn->data->len);
257 }
258 
259 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
260 {
261     const char *sym = lookup_symbol(insn->vaddr);
262     return sym[0] != 0 ? sym : NULL;
263 }
264 
265 /*
266  * The memory queries allow the plugin to query information about a
267  * memory access.
268  */
269 
270 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
271 {
272     MemOp op = get_memop(info);
273     return op & MO_SIZE;
274 }
275 
276 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
277 {
278     MemOp op = get_memop(info);
279     return op & MO_SIGN;
280 }
281 
282 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
283 {
284     MemOp op = get_memop(info);
285     return (op & MO_BSWAP) == MO_BE;
286 }
287 
288 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
289 {
290     return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
291 }
292 
293 /*
294  * Virtual Memory queries
295  */
296 
297 #ifdef CONFIG_SOFTMMU
298 static __thread struct qemu_plugin_hwaddr hwaddr_info;
299 #endif
300 
301 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
302                                                   uint64_t vaddr)
303 {
304 #ifdef CONFIG_SOFTMMU
305     CPUState *cpu = current_cpu;
306     unsigned int mmu_idx = get_mmuidx(info);
307     enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
308     hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
309 
310     assert(mmu_idx < NB_MMU_MODES);
311 
312     if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
313                            hwaddr_info.is_store, &hwaddr_info)) {
314         error_report("invalid use of qemu_plugin_get_hwaddr");
315         return NULL;
316     }
317 
318     return &hwaddr_info;
319 #else
320     return NULL;
321 #endif
322 }
323 
324 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
325 {
326 #ifdef CONFIG_SOFTMMU
327     return haddr->is_io;
328 #else
329     return false;
330 #endif
331 }
332 
333 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
334 {
335 #ifdef CONFIG_SOFTMMU
336     if (haddr) {
337         return haddr->phys_addr;
338     }
339 #endif
340     return 0;
341 }
342 
343 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
344 {
345 #ifdef CONFIG_SOFTMMU
346     if (h && h->is_io) {
347         MemoryRegion *mr = h->mr;
348         if (!mr->name) {
349             unsigned maddr = (uintptr_t)mr;
350             g_autofree char *temp = g_strdup_printf("anon%08x", maddr);
351             return g_intern_string(temp);
352         } else {
353             return g_intern_string(mr->name);
354         }
355     } else {
356         return g_intern_static_string("RAM");
357     }
358 #else
359     return g_intern_static_string("Invalid");
360 #endif
361 }
362 
363 int qemu_plugin_num_vcpus(void)
364 {
365     return plugin_num_vcpus();
366 }
367 
368 /*
369  * Plugin output
370  */
371 void qemu_plugin_outs(const char *string)
372 {
373     qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
374 }
375 
376 bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
377 {
378     return name && value && qapi_bool_parse(name, value, ret, NULL);
379 }
380 
381 /*
382  * Binary path, start and end locations
383  */
384 const char *qemu_plugin_path_to_binary(void)
385 {
386     char *path = NULL;
387 #ifdef CONFIG_USER_ONLY
388     TaskState *ts = get_task_state(current_cpu);
389     path = g_strdup(ts->bprm->filename);
390 #endif
391     return path;
392 }
393 
394 uint64_t qemu_plugin_start_code(void)
395 {
396     uint64_t start = 0;
397 #ifdef CONFIG_USER_ONLY
398     TaskState *ts = get_task_state(current_cpu);
399     start = ts->info->start_code;
400 #endif
401     return start;
402 }
403 
404 uint64_t qemu_plugin_end_code(void)
405 {
406     uint64_t end = 0;
407 #ifdef CONFIG_USER_ONLY
408     TaskState *ts = get_task_state(current_cpu);
409     end = ts->info->end_code;
410 #endif
411     return end;
412 }
413 
414 uint64_t qemu_plugin_entry_code(void)
415 {
416     uint64_t entry = 0;
417 #ifdef CONFIG_USER_ONLY
418     TaskState *ts = get_task_state(current_cpu);
419     entry = ts->info->entry;
420 #endif
421     return entry;
422 }
423 
424 /*
425  * Create register handles.
426  *
427  * We need to create a handle for each register so the plugin
428  * infrastructure can call gdbstub to read a register. They are
429  * currently just a pointer encapsulation of the gdb_reg but in
430  * future may hold internal plugin state so its important plugin
431  * authors are not tempted to treat them as numbers.
432  *
433  * We also construct a result array with those handles and some
434  * ancillary data the plugin might find useful.
435  */
436 
437 static GArray *create_register_handles(GArray *gdbstub_regs)
438 {
439     GArray *find_data = g_array_new(true, true,
440                                     sizeof(qemu_plugin_reg_descriptor));
441 
442     for (int i = 0; i < gdbstub_regs->len; i++) {
443         GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
444         qemu_plugin_reg_descriptor desc;
445 
446         /* skip "un-named" regs */
447         if (!grd->name) {
448             continue;
449         }
450 
451         /* Create a record for the plugin */
452         desc.handle = GINT_TO_POINTER(grd->gdb_reg);
453         desc.name = g_intern_string(grd->name);
454         desc.feature = g_intern_string(grd->feature_name);
455         g_array_append_val(find_data, desc);
456     }
457 
458     return find_data;
459 }
460 
461 GArray *qemu_plugin_get_registers(void)
462 {
463     g_assert(current_cpu);
464 
465     g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
466     return create_register_handles(regs);
467 }
468 
469 int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
470 {
471     g_assert(current_cpu);
472 
473     return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg));
474 }
475 
476 struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size)
477 {
478     return plugin_scoreboard_new(element_size);
479 }
480 
481 void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
482 {
483     plugin_scoreboard_free(score);
484 }
485 
486 void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score,
487                                   unsigned int vcpu_index)
488 {
489     g_assert(vcpu_index < qemu_plugin_num_vcpus());
490     /* we can't use g_array_index since entry size is not statically known */
491     char *base_ptr = score->data->data;
492     return base_ptr + vcpu_index * g_array_get_element_size(score->data);
493 }
494 
495 static uint64_t *plugin_u64_address(qemu_plugin_u64 entry,
496                                     unsigned int vcpu_index)
497 {
498     char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index);
499     return (uint64_t *)(ptr + entry.offset);
500 }
501 
502 void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index,
503                          uint64_t added)
504 {
505     *plugin_u64_address(entry, vcpu_index) += added;
506 }
507 
508 uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry,
509                              unsigned int vcpu_index)
510 {
511     return *plugin_u64_address(entry, vcpu_index);
512 }
513 
514 void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index,
515                          uint64_t val)
516 {
517     *plugin_u64_address(entry, vcpu_index) = val;
518 }
519 
520 uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry)
521 {
522     uint64_t total = 0;
523     for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) {
524         total += qemu_plugin_u64_get(entry, i);
525     }
526     return total;
527 }
528