xref: /qemu/qapi/machine.json (revision 3e775730)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# = Machines
9##
10
11{ 'include': 'common.json' }
12{ 'include': 'machine-common.json' }
13
14##
15# @SysEmuTarget:
16#
17# The comprehensive enumeration of QEMU system emulation ("softmmu")
18# targets.  Run "./configure --help" in the project root directory,
19# and look for the \*-softmmu targets near the "--target-list" option.
20# The individual target constants are not documented here, for the
21# time being.
22#
23# @rx: since 5.0
24#
25# @avr: since 5.1
26#
27# Notes: The resulting QMP strings can be appended to the
28#     "qemu-system-" prefix to produce the corresponding QEMU
29#     executable name.  This is true even for "qemu-system-x86_64".
30#
31# Since: 3.0
32##
33{ 'enum' : 'SysEmuTarget',
34  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35             'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36             'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38             'sh4eb', 'sparc', 'sparc64', 'tricore',
39             'x86_64', 'xtensa', 'xtensaeb' ] }
40
41##
42# @CpuS390State:
43#
44# An enumeration of cpu states that can be assumed by a virtual S390
45# CPU
46#
47# Since: 2.12
48##
49{ 'enum': 'CpuS390State',
50  'prefix': 'S390_CPU_STATE',
51  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52
53##
54# @CpuInfoS390:
55#
56# Additional information about a virtual S390 CPU
57#
58# @cpu-state: the virtual CPU's state
59#
60# @dedicated: the virtual CPU's dedication (since 8.2)
61#
62# @entitlement: the virtual CPU's entitlement (since 8.2)
63#
64# Since: 2.12
65##
66{ 'struct': 'CpuInfoS390',
67  'data': { 'cpu-state': 'CpuS390State',
68            '*dedicated': 'bool',
69            '*entitlement': 'CpuS390Entitlement' } }
70
71##
72# @CpuInfoFast:
73#
74# Information about a virtual CPU
75#
76# @cpu-index: index of the virtual CPU
77#
78# @qom-path: path to the CPU object in the QOM tree
79#
80# @thread-id: ID of the underlying host thread
81#
82# @props: properties associated with a virtual CPU, e.g. the socket id
83#
84# @target: the QEMU system emulation target, which determines which
85#     additional fields will be listed (since 3.0)
86#
87# Since: 2.12
88##
89{ 'union'         : 'CpuInfoFast',
90  'base'          : { 'cpu-index'    : 'int',
91                      'qom-path'     : 'str',
92                      'thread-id'    : 'int',
93                      '*props'       : 'CpuInstanceProperties',
94                      'target'       : 'SysEmuTarget' },
95  'discriminator' : 'target',
96  'data'          : { 's390x'        : 'CpuInfoS390' } }
97
98##
99# @query-cpus-fast:
100#
101# Returns information about all virtual CPUs.
102#
103# Returns: list of @CpuInfoFast
104#
105# Since: 2.12
106#
107# Example:
108#
109#     -> { "execute": "query-cpus-fast" }
110#     <- { "return": [
111#             {
112#                 "thread-id": 25627,
113#                 "props": {
114#                     "core-id": 0,
115#                     "thread-id": 0,
116#                     "socket-id": 0
117#                 },
118#                 "qom-path": "/machine/unattached/device[0]",
119#                 "target":"x86_64",
120#                 "cpu-index": 0
121#             },
122#             {
123#                 "thread-id": 25628,
124#                 "props": {
125#                     "core-id": 0,
126#                     "thread-id": 0,
127#                     "socket-id": 1
128#                 },
129#                 "qom-path": "/machine/unattached/device[2]",
130#                 "target":"x86_64",
131#                 "cpu-index": 1
132#             }
133#         ]
134#     }
135##
136{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
137
138##
139# @MachineInfo:
140#
141# Information describing a machine.
142#
143# @name: the name of the machine
144#
145# @alias: an alias for the machine name
146#
147# @is-default: whether the machine is default
148#
149# @cpu-max: maximum number of CPUs supported by the machine type
150#     (since 1.5)
151#
152# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
153#
154# @numa-mem-supported: true if '-numa node,mem' option is supported by
155#     the machine type and false otherwise (since 4.1)
156#
157# @deprecated: if true, the machine type is deprecated and may be
158#     removed in future versions of QEMU according to the QEMU
159#     deprecation policy (since 4.1)
160#
161# @default-cpu-type: default CPU model typename if none is requested
162#     via the -cpu argument.  (since 4.2)
163#
164# @default-ram-id: the default ID of initial RAM memory backend (since
165#     5.2)
166#
167# @acpi: machine type supports ACPI (since 8.0)
168#
169# Since: 1.2
170##
171{ 'struct': 'MachineInfo',
172  'data': { 'name': 'str', '*alias': 'str',
173            '*is-default': 'bool', 'cpu-max': 'int',
174            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
175            'deprecated': 'bool', '*default-cpu-type': 'str',
176            '*default-ram-id': 'str', 'acpi': 'bool' } }
177
178##
179# @query-machines:
180#
181# Return a list of supported machines
182#
183# Returns: a list of MachineInfo
184#
185# Since: 1.2
186##
187{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
188
189##
190# @CurrentMachineParams:
191#
192# Information describing the running machine parameters.
193#
194# @wakeup-suspend-support: true if the machine supports wake up from
195#     suspend
196#
197# Since: 4.0
198##
199{ 'struct': 'CurrentMachineParams',
200  'data': { 'wakeup-suspend-support': 'bool'} }
201
202##
203# @query-current-machine:
204#
205# Return information on the current virtual machine.
206#
207# Returns: CurrentMachineParams
208#
209# Since: 4.0
210##
211{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
212
213##
214# @TargetInfo:
215#
216# Information describing the QEMU target.
217#
218# @arch: the target architecture
219#
220# Since: 1.2
221##
222{ 'struct': 'TargetInfo',
223  'data': { 'arch': 'SysEmuTarget' } }
224
225##
226# @query-target:
227#
228# Return information about the target for this QEMU
229#
230# Returns: TargetInfo
231#
232# Since: 1.2
233##
234{ 'command': 'query-target', 'returns': 'TargetInfo' }
235
236##
237# @UuidInfo:
238#
239# Guest UUID information (Universally Unique Identifier).
240#
241# @UUID: the UUID of the guest
242#
243# Since: 0.14
244#
245# Notes: If no UUID was specified for the guest, a null UUID is
246#     returned.
247##
248{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
249
250##
251# @query-uuid:
252#
253# Query the guest UUID information.
254#
255# Returns: The @UuidInfo for the guest
256#
257# Since: 0.14
258#
259# Example:
260#
261#     -> { "execute": "query-uuid" }
262#     <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
263##
264{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
265
266##
267# @GuidInfo:
268#
269# GUID information.
270#
271# @guid: the globally unique identifier
272#
273# Since: 2.9
274##
275{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
276
277##
278# @query-vm-generation-id:
279#
280# Show Virtual Machine Generation ID
281#
282# Since: 2.9
283##
284{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
285
286##
287# @system_reset:
288#
289# Performs a hard reset of a guest.
290#
291# Since: 0.14
292#
293# Example:
294#
295#     -> { "execute": "system_reset" }
296#     <- { "return": {} }
297##
298{ 'command': 'system_reset' }
299
300##
301# @system_powerdown:
302#
303# Requests that a guest perform a powerdown operation.
304#
305# Since: 0.14
306#
307# Notes: A guest may or may not respond to this command.  This command
308#     returning does not indicate that a guest has accepted the
309#     request or that it has shut down.  Many guests will respond to
310#     this command by prompting the user in some way.
311#
312# Example:
313#
314#     -> { "execute": "system_powerdown" }
315#     <- { "return": {} }
316##
317{ 'command': 'system_powerdown' }
318
319##
320# @system_wakeup:
321#
322# Wake up guest from suspend.  If the guest has wake-up from suspend
323# support enabled (wakeup-suspend-support flag from
324# query-current-machine), wake-up guest from suspend if the guest is
325# in SUSPENDED state.  Return an error otherwise.
326#
327# Since: 1.1
328#
329# Returns: nothing.
330#
331# Note: prior to 4.0, this command does nothing in case the guest
332#     isn't suspended.
333#
334# Example:
335#
336#     -> { "execute": "system_wakeup" }
337#     <- { "return": {} }
338##
339{ 'command': 'system_wakeup' }
340
341##
342# @LostTickPolicy:
343#
344# Policy for handling lost ticks in timer devices.  Ticks end up
345# getting lost when, for example, the guest is paused.
346#
347# @discard: throw away the missed ticks and continue with future
348#     injection normally.  The guest OS will see the timer jump ahead
349#     by a potentially quite significant amount all at once, as if the
350#     intervening chunk of time had simply not existed; needless to
351#     say, such a sudden jump can easily confuse a guest OS which is
352#     not specifically prepared to deal with it.  Assuming the guest
353#     OS can deal correctly with the time jump, the time in the guest
354#     and in the host should now match.
355#
356# @delay: continue to deliver ticks at the normal rate.  The guest OS
357#     will not notice anything is amiss, as from its point of view
358#     time will have continued to flow normally.  The time in the
359#     guest should now be behind the time in the host by exactly the
360#     amount of time during which ticks have been missed.
361#
362# @slew: deliver ticks at a higher rate to catch up with the missed
363#     ticks.  The guest OS will not notice anything is amiss, as from
364#     its point of view time will have continued to flow normally.
365#     Once the timer has managed to catch up with all the missing
366#     ticks, the time in the guest and in the host should match.
367#
368# Since: 2.0
369##
370{ 'enum': 'LostTickPolicy',
371  'data': ['discard', 'delay', 'slew' ] }
372
373##
374# @inject-nmi:
375#
376# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
377# all CPUs (ppc64). The command fails when the guest doesn't support
378# injecting.
379#
380# Returns: If successful, nothing
381#
382# Since: 0.14
383#
384# Note: prior to 2.1, this command was only supported for x86 and s390
385#     VMs
386#
387# Example:
388#
389#     -> { "execute": "inject-nmi" }
390#     <- { "return": {} }
391##
392{ 'command': 'inject-nmi' }
393
394##
395# @KvmInfo:
396#
397# Information about support for KVM acceleration
398#
399# @enabled: true if KVM acceleration is active
400#
401# @present: true if KVM acceleration is built into this executable
402#
403# Since: 0.14
404##
405{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
406
407##
408# @query-kvm:
409#
410# Returns information about KVM acceleration
411#
412# Returns: @KvmInfo
413#
414# Since: 0.14
415#
416# Example:
417#
418#     -> { "execute": "query-kvm" }
419#     <- { "return": { "enabled": true, "present": true } }
420##
421{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
422
423##
424# @NumaOptionsType:
425#
426# @node: NUMA nodes configuration
427#
428# @dist: NUMA distance configuration (since 2.10)
429#
430# @cpu: property based CPU(s) to node mapping (Since: 2.10)
431#
432# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
433#
434# @hmat-cache: memory side cache information (Since: 5.0)
435#
436# Since: 2.1
437##
438{ 'enum': 'NumaOptionsType',
439  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
440
441##
442# @NumaOptions:
443#
444# A discriminated record of NUMA options.  (for OptsVisitor)
445#
446# @type: NUMA option type
447#
448# Since: 2.1
449##
450{ 'union': 'NumaOptions',
451  'base': { 'type': 'NumaOptionsType' },
452  'discriminator': 'type',
453  'data': {
454    'node': 'NumaNodeOptions',
455    'dist': 'NumaDistOptions',
456    'cpu': 'NumaCpuOptions',
457    'hmat-lb': 'NumaHmatLBOptions',
458    'hmat-cache': 'NumaHmatCacheOptions' }}
459
460##
461# @NumaNodeOptions:
462#
463# Create a guest NUMA node.  (for OptsVisitor)
464#
465# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
466#
467# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
468#     omitted)
469#
470# @mem: memory size of this node; mutually exclusive with @memdev.
471#     Equally divide total memory among nodes if both @mem and @memdev
472#     are omitted.
473#
474# @memdev: memory backend object.  If specified for one node, it must
475#     be specified for all nodes.
476#
477# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
478#     to the nodeid which has the memory controller responsible for
479#     this NUMA node.  This field provides additional information as
480#     to the initiator node that is closest (as in directly attached)
481#     to this node, and therefore has the best performance (since 5.0)
482#
483# Since: 2.1
484##
485{ 'struct': 'NumaNodeOptions',
486  'data': {
487   '*nodeid': 'uint16',
488   '*cpus':   ['uint16'],
489   '*mem':    'size',
490   '*memdev': 'str',
491   '*initiator': 'uint16' }}
492
493##
494# @NumaDistOptions:
495#
496# Set the distance between 2 NUMA nodes.
497#
498# @src: source NUMA node.
499#
500# @dst: destination NUMA node.
501#
502# @val: NUMA distance from source node to destination node.  When a
503#     node is unreachable from another node, set the distance between
504#     them to 255.
505#
506# Since: 2.10
507##
508{ 'struct': 'NumaDistOptions',
509  'data': {
510   'src': 'uint16',
511   'dst': 'uint16',
512   'val': 'uint8' }}
513
514##
515# @CXLFixedMemoryWindowOptions:
516#
517# Create a CXL Fixed Memory Window
518#
519# @size: Size of the Fixed Memory Window in bytes.  Must be a multiple
520#     of 256MiB.
521#
522# @interleave-granularity: Number of contiguous bytes for which
523#     accesses will go to a given interleave target.  Accepted values
524#     [256, 512, 1k, 2k, 4k, 8k, 16k]
525#
526# @targets: Target root bridge IDs from -device ...,id=<ID> for each
527#     root bridge.
528#
529# Since: 7.1
530##
531{ 'struct': 'CXLFixedMemoryWindowOptions',
532  'data': {
533      'size': 'size',
534      '*interleave-granularity': 'size',
535      'targets': ['str'] }}
536
537##
538# @CXLFMWProperties:
539#
540# List of CXL Fixed Memory Windows.
541#
542# @cxl-fmw: List of CXLFixedMemoryWindowOptions
543#
544# Since: 7.1
545##
546{ 'struct' : 'CXLFMWProperties',
547  'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
548}
549
550##
551# @X86CPURegister32:
552#
553# A X86 32-bit register
554#
555# Since: 1.5
556##
557{ 'enum': 'X86CPURegister32',
558  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
559
560##
561# @X86CPUFeatureWordInfo:
562#
563# Information about a X86 CPU feature word
564#
565# @cpuid-input-eax: Input EAX value for CPUID instruction for that
566#     feature word
567#
568# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
569#     feature word
570#
571# @cpuid-register: Output register containing the feature bits
572#
573# @features: value of output register, containing the feature bits
574#
575# Since: 1.5
576##
577{ 'struct': 'X86CPUFeatureWordInfo',
578  'data': { 'cpuid-input-eax': 'int',
579            '*cpuid-input-ecx': 'int',
580            'cpuid-register': 'X86CPURegister32',
581            'features': 'int' } }
582
583##
584# @DummyForceArrays:
585#
586# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
587# internally
588#
589# Since: 2.5
590##
591{ 'struct': 'DummyForceArrays',
592  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
593
594##
595# @NumaCpuOptions:
596#
597# Option "-numa cpu" overrides default cpu to node mapping.  It
598# accepts the same set of cpu properties as returned by
599# query-hotpluggable-cpus[].props, where node-id could be used to
600# override default node mapping.
601#
602# Since: 2.10
603##
604{ 'struct': 'NumaCpuOptions',
605   'base': 'CpuInstanceProperties',
606   'data' : {} }
607
608##
609# @HmatLBMemoryHierarchy:
610#
611# The memory hierarchy in the System Locality Latency and Bandwidth
612# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
613#
614# For more information about @HmatLBMemoryHierarchy, see chapter
615# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
616#
617# @memory: the structure represents the memory performance
618#
619# @first-level: first level of memory side cache
620#
621# @second-level: second level of memory side cache
622#
623# @third-level: third level of memory side cache
624#
625# Since: 5.0
626##
627{ 'enum': 'HmatLBMemoryHierarchy',
628  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
629
630##
631# @HmatLBDataType:
632#
633# Data type in the System Locality Latency and Bandwidth Information
634# Structure of HMAT (Heterogeneous Memory Attribute Table)
635#
636# For more information about @HmatLBDataType, see chapter 5.2.27.4:
637# Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
638#
639# @access-latency: access latency (nanoseconds)
640#
641# @read-latency: read latency (nanoseconds)
642#
643# @write-latency: write latency (nanoseconds)
644#
645# @access-bandwidth: access bandwidth (Bytes per second)
646#
647# @read-bandwidth: read bandwidth (Bytes per second)
648#
649# @write-bandwidth: write bandwidth (Bytes per second)
650#
651# Since: 5.0
652##
653{ 'enum': 'HmatLBDataType',
654  'data': [ 'access-latency', 'read-latency', 'write-latency',
655            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
656
657##
658# @NumaHmatLBOptions:
659#
660# Set the system locality latency and bandwidth information between
661# Initiator and Target proximity Domains.
662#
663# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
664# Table 5-146 of ACPI 6.3 spec.
665#
666# @initiator: the Initiator Proximity Domain.
667#
668# @target: the Target Proximity Domain.
669#
670# @hierarchy: the Memory Hierarchy.  Indicates the performance of
671#     memory or side cache.
672#
673# @data-type: presents the type of data, access/read/write latency or
674#     hit latency.
675#
676# @latency: the value of latency from @initiator to @target proximity
677#     domain, the latency unit is "ns(nanosecond)".
678#
679# @bandwidth: the value of bandwidth between @initiator and @target
680#     proximity domain, the bandwidth unit is "Bytes per second".
681#
682# Since: 5.0
683##
684{ 'struct': 'NumaHmatLBOptions',
685    'data': {
686    'initiator': 'uint16',
687    'target': 'uint16',
688    'hierarchy': 'HmatLBMemoryHierarchy',
689    'data-type': 'HmatLBDataType',
690    '*latency': 'uint64',
691    '*bandwidth': 'size' }}
692
693##
694# @HmatCacheAssociativity:
695#
696# Cache associativity in the Memory Side Cache Information Structure
697# of HMAT
698#
699# For more information of @HmatCacheAssociativity, see chapter
700# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
701#
702# @none: None (no memory side cache in this proximity domain, or cache
703#     associativity unknown)
704#
705# @direct: Direct Mapped
706#
707# @complex: Complex Cache Indexing (implementation specific)
708#
709# Since: 5.0
710##
711{ 'enum': 'HmatCacheAssociativity',
712  'data': [ 'none', 'direct', 'complex' ] }
713
714##
715# @HmatCacheWritePolicy:
716#
717# Cache write policy in the Memory Side Cache Information Structure of
718# HMAT
719#
720# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
721# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
722#
723# @none: None (no memory side cache in this proximity domain, or cache
724#     write policy unknown)
725#
726# @write-back: Write Back (WB)
727#
728# @write-through: Write Through (WT)
729#
730# Since: 5.0
731##
732{ 'enum': 'HmatCacheWritePolicy',
733  'data': [ 'none', 'write-back', 'write-through' ] }
734
735##
736# @NumaHmatCacheOptions:
737#
738# Set the memory side cache information for a given memory domain.
739#
740# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
741# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
742#
743# @node-id: the memory proximity domain to which the memory belongs.
744#
745# @size: the size of memory side cache in bytes.
746#
747# @level: the cache level described in this structure.
748#
749# @associativity: the cache associativity,
750#     none/direct-mapped/complex(complex cache indexing).
751#
752# @policy: the write policy, none/write-back/write-through.
753#
754# @line: the cache Line size in bytes.
755#
756# Since: 5.0
757##
758{ 'struct': 'NumaHmatCacheOptions',
759  'data': {
760   'node-id': 'uint32',
761   'size': 'size',
762   'level': 'uint8',
763   'associativity': 'HmatCacheAssociativity',
764   'policy': 'HmatCacheWritePolicy',
765   'line': 'uint16' }}
766
767##
768# @memsave:
769#
770# Save a portion of guest memory to a file.
771#
772# @val: the virtual address of the guest to start from
773#
774# @size: the size of memory region to save
775#
776# @filename: the file to save the memory to as binary data
777#
778# @cpu-index: the index of the virtual CPU to use for translating the
779#     virtual address (defaults to CPU 0)
780#
781# Returns: Nothing on success
782#
783# Since: 0.14
784#
785# Notes: Errors were not reliably returned until 1.1
786#
787# Example:
788#
789#     -> { "execute": "memsave",
790#          "arguments": { "val": 10,
791#                         "size": 100,
792#                         "filename": "/tmp/virtual-mem-dump" } }
793#     <- { "return": {} }
794##
795{ 'command': 'memsave',
796  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
797
798##
799# @pmemsave:
800#
801# Save a portion of guest physical memory to a file.
802#
803# @val: the physical address of the guest to start from
804#
805# @size: the size of memory region to save
806#
807# @filename: the file to save the memory to as binary data
808#
809# Returns: Nothing on success
810#
811# Since: 0.14
812#
813# Notes: Errors were not reliably returned until 1.1
814#
815# Example:
816#
817#     -> { "execute": "pmemsave",
818#          "arguments": { "val": 10,
819#                         "size": 100,
820#                         "filename": "/tmp/physical-mem-dump" } }
821#     <- { "return": {} }
822##
823{ 'command': 'pmemsave',
824  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
825
826##
827# @Memdev:
828#
829# Information about memory backend
830#
831# @id: backend's ID if backend has 'id' property (since 2.9)
832#
833# @size: memory backend size
834#
835# @merge: whether memory merge support is enabled
836#
837# @dump: whether memory backend's memory is included in a core dump
838#
839# @prealloc: whether memory was preallocated
840#
841# @share: whether memory is private to QEMU or shared (since 6.1)
842#
843# @reserve: whether swap space (or huge pages) was reserved if
844#     applicable.  This corresponds to the user configuration and not
845#     the actual behavior implemented in the OS to perform the
846#     reservation.  For example, Linux will never reserve swap space
847#     for shared file mappings.  (since 6.1)
848#
849# @host-nodes: host nodes for its memory policy
850#
851# @policy: memory policy of memory backend
852#
853# Since: 2.1
854##
855{ 'struct': 'Memdev',
856  'data': {
857    '*id':        'str',
858    'size':       'size',
859    'merge':      'bool',
860    'dump':       'bool',
861    'prealloc':   'bool',
862    'share':      'bool',
863    '*reserve':    'bool',
864    'host-nodes': ['uint16'],
865    'policy':     'HostMemPolicy' }}
866
867##
868# @query-memdev:
869#
870# Returns information for all memory backends.
871#
872# Returns: a list of @Memdev.
873#
874# Since: 2.1
875#
876# Example:
877#
878#     -> { "execute": "query-memdev" }
879#     <- { "return": [
880#            {
881#              "id": "mem1",
882#              "size": 536870912,
883#              "merge": false,
884#              "dump": true,
885#              "prealloc": false,
886#              "share": false,
887#              "host-nodes": [0, 1],
888#              "policy": "bind"
889#            },
890#            {
891#              "size": 536870912,
892#              "merge": false,
893#              "dump": true,
894#              "prealloc": true,
895#              "share": false,
896#              "host-nodes": [2, 3],
897#              "policy": "preferred"
898#            }
899#          ]
900#        }
901##
902{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
903
904##
905# @CpuInstanceProperties:
906#
907# List of properties to be used for hotplugging a CPU instance, it
908# should be passed by management with device_add command when a CPU is
909# being hotplugged.
910#
911# Which members are optional and which mandatory depends on the
912# architecture and board.
913#
914# For s390x see :ref:`cpu-topology-s390x`.
915#
916# The ids other than the node-id specify the position of the CPU
917# within the CPU topology (as defined by the machine property "smp",
918# thus see also type @SMPConfiguration)
919#
920# @node-id: NUMA node ID the CPU belongs to
921#
922# @drawer-id: drawer number within CPU topology the CPU belongs to
923#     (since 8.2)
924#
925# @book-id: book number within parent container the CPU belongs to
926#     (since 8.2)
927#
928# @socket-id: socket number within parent container the CPU belongs to
929#
930# @die-id: die number within the parent container the CPU belongs to
931#    (since 4.1)
932#
933# @cluster-id: cluster number within the parent container the CPU
934#     belongs to (since 7.1)
935#
936# @core-id: core number within the parent container the CPU
937#     belongs to
938#
939# @thread-id: thread number within the core the CPU  belongs to
940#
941# Note: management should be prepared to pass through additional
942#     properties with device_add.
943#
944# Since: 2.7
945##
946{ 'struct': 'CpuInstanceProperties',
947  # Keep these in sync with the properties device_add accepts
948  'data': { '*node-id': 'int',
949            '*drawer-id': 'int',
950            '*book-id': 'int',
951            '*socket-id': 'int',
952            '*die-id': 'int',
953            '*cluster-id': 'int',
954            '*core-id': 'int',
955            '*thread-id': 'int'
956  }
957}
958
959##
960# @HotpluggableCPU:
961#
962# @type: CPU object type for usage with device_add command
963#
964# @props: list of properties to be used for hotplugging CPU
965#
966# @vcpus-count: number of logical VCPU threads @HotpluggableCPU
967#     provides
968#
969# @qom-path: link to existing CPU object if CPU is present or omitted
970#     if CPU is not present.
971#
972# Since: 2.7
973##
974{ 'struct': 'HotpluggableCPU',
975  'data': { 'type': 'str',
976            'vcpus-count': 'int',
977            'props': 'CpuInstanceProperties',
978            '*qom-path': 'str'
979          }
980}
981
982##
983# @query-hotpluggable-cpus:
984#
985# TODO: Better documentation; currently there is none.
986#
987# Returns: a list of HotpluggableCPU objects.
988#
989# Since: 2.7
990#
991# Examples:
992#
993#     For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
994#     POWER8:
995#
996#     -> { "execute": "query-hotpluggable-cpus" }
997#     <- {"return": [
998#          { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
999#            "vcpus-count": 1 },
1000#          { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
1001#            "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
1002#        ]}'
1003#
1004#     For pc machine type started with -smp 1,maxcpus=2:
1005#
1006#     -> { "execute": "query-hotpluggable-cpus" }
1007#     <- {"return": [
1008#          {
1009#             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1010#             "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1011#          },
1012#          {
1013#             "qom-path": "/machine/unattached/device[0]",
1014#             "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1015#             "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1016#          }
1017#        ]}
1018#
1019#     For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
1020#     qemu (Since: 2.11):
1021#
1022#     -> { "execute": "query-hotpluggable-cpus" }
1023#     <- {"return": [
1024#          {
1025#             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1026#             "props": { "core-id": 1 }
1027#          },
1028#          {
1029#             "qom-path": "/machine/unattached/device[0]",
1030#             "type": "qemu-s390x-cpu", "vcpus-count": 1,
1031#             "props": { "core-id": 0 }
1032#          }
1033#        ]}
1034##
1035{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1036             'allow-preconfig': true }
1037
1038##
1039# @set-numa-node:
1040#
1041# Runtime equivalent of '-numa' CLI option, available at preconfigure
1042# stage to configure numa mapping before initializing machine.
1043#
1044# Since: 3.0
1045##
1046{ 'command': 'set-numa-node', 'boxed': true,
1047  'data': 'NumaOptions',
1048  'allow-preconfig': true
1049}
1050
1051##
1052# @balloon:
1053#
1054# Request the balloon driver to change its balloon size.
1055#
1056# @value: the target logical size of the VM in bytes.  We can deduce
1057#     the size of the balloon using this formula:
1058#
1059#        logical_vm_size = vm_ram_size - balloon_size
1060#
1061#     From it we have: balloon_size = vm_ram_size - @value
1062#
1063# Returns:
1064#     - Nothing on success
1065#     - If the balloon driver is enabled but not functional because
1066#       the KVM kernel module cannot support it, KVMMissingCap
1067#     - If no balloon device is present, DeviceNotActive
1068#
1069# Notes: This command just issues a request to the guest.  When it
1070#     returns, the balloon size may not have changed.  A guest can
1071#     change the balloon size independent of this command.
1072#
1073# Since: 0.14
1074#
1075# Example:
1076#
1077#     -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1078#     <- { "return": {} }
1079#
1080#     With a 2.5GiB guest this command inflated the ballon to 3GiB.
1081##
1082{ 'command': 'balloon', 'data': {'value': 'int'} }
1083
1084##
1085# @BalloonInfo:
1086#
1087# Information about the guest balloon device.
1088#
1089# @actual: the logical size of the VM in bytes Formula used:
1090#     logical_vm_size = vm_ram_size - balloon_size
1091#
1092# Since: 0.14
1093##
1094{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1095
1096##
1097# @query-balloon:
1098#
1099# Return information about the balloon device.
1100#
1101# Returns:
1102#     - @BalloonInfo on success
1103#     - If the balloon driver is enabled but not functional because
1104#       the KVM kernel module cannot support it, KVMMissingCap
1105#     - If no balloon device is present, DeviceNotActive
1106#
1107# Since: 0.14
1108#
1109# Example:
1110#
1111#     -> { "execute": "query-balloon" }
1112#     <- { "return": {
1113#              "actual": 1073741824
1114#           }
1115#        }
1116##
1117{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1118
1119##
1120# @BALLOON_CHANGE:
1121#
1122# Emitted when the guest changes the actual BALLOON level.  This value
1123# is equivalent to the @actual field return by the 'query-balloon'
1124# command
1125#
1126# @actual: the logical size of the VM in bytes Formula used:
1127#     logical_vm_size = vm_ram_size - balloon_size
1128#
1129# Note: this event is rate-limited.
1130#
1131# Since: 1.2
1132#
1133# Example:
1134#
1135#     <- { "event": "BALLOON_CHANGE",
1136#          "data": { "actual": 944766976 },
1137#          "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1138##
1139{ 'event': 'BALLOON_CHANGE',
1140  'data': { 'actual': 'int' } }
1141
1142##
1143# @HvBalloonInfo:
1144#
1145# hv-balloon guest-provided memory status information.
1146#
1147# @committed: the amount of memory in use inside the guest plus the
1148#     amount of the memory unusable inside the guest (ballooned out,
1149#     offline, etc.)
1150#
1151# @available: the amount of the memory inside the guest available for
1152#     new allocations ("free")
1153#
1154# Since: 8.2
1155##
1156{ 'struct': 'HvBalloonInfo',
1157  'data': { 'committed': 'size', 'available': 'size' } }
1158
1159##
1160# @query-hv-balloon-status-report:
1161#
1162# Returns the hv-balloon driver data contained in the last received "STATUS"
1163# message from the guest.
1164#
1165# Returns:
1166#     - @HvBalloonInfo on success
1167#     - If no hv-balloon device is present, guest memory status
1168#       reporting is not enabled or no guest memory status report
1169#       received yet, GenericError
1170#
1171# Since: 8.2
1172#
1173# Example:
1174#
1175#     -> { "execute": "query-hv-balloon-status-report" }
1176#     <- { "return": {
1177#              "committed": 816640000,
1178#              "available": 3333054464
1179#           }
1180#        }
1181##
1182{ 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' }
1183
1184##
1185# @HV_BALLOON_STATUS_REPORT:
1186#
1187# Emitted when the hv-balloon driver receives a "STATUS" message from
1188# the guest.
1189#
1190# Note: this event is rate-limited.
1191#
1192# Since: 8.2
1193#
1194# Example:
1195#
1196#     <- { "event": "HV_BALLOON_STATUS_REPORT",
1197#          "data": { "committed": 816640000, "available": 3333054464 },
1198#          "timestamp": { "seconds": 1600295492, "microseconds": 661044 } }
1199#
1200##
1201{ 'event': 'HV_BALLOON_STATUS_REPORT',
1202  'data': 'HvBalloonInfo' }
1203
1204##
1205# @MemoryInfo:
1206#
1207# Actual memory information in bytes.
1208#
1209# @base-memory: size of "base" memory specified with command line
1210#     option -m.
1211#
1212# @plugged-memory: size of memory that can be hot-unplugged.  This
1213#     field is omitted if target doesn't support memory hotplug (i.e.
1214#     CONFIG_MEM_DEVICE not defined at build time).
1215#
1216# Since: 2.11
1217##
1218{ 'struct': 'MemoryInfo',
1219  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1220
1221##
1222# @query-memory-size-summary:
1223#
1224# Return the amount of initially allocated and present hotpluggable
1225# (if enabled) memory in bytes.
1226#
1227# Example:
1228#
1229#     -> { "execute": "query-memory-size-summary" }
1230#     <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1231#
1232# Since: 2.11
1233##
1234{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1235
1236##
1237# @PCDIMMDeviceInfo:
1238#
1239# PCDIMMDevice state information
1240#
1241# @id: device's ID
1242#
1243# @addr: physical address, where device is mapped
1244#
1245# @size: size of memory that the device provides
1246#
1247# @slot: slot number at which device is plugged in
1248#
1249# @node: NUMA node number where device is plugged in
1250#
1251# @memdev: memory backend linked with device
1252#
1253# @hotplugged: true if device was hotplugged
1254#
1255# @hotpluggable: true if device if could be added/removed while
1256#     machine is running
1257#
1258# Since: 2.1
1259##
1260{ 'struct': 'PCDIMMDeviceInfo',
1261  'data': { '*id': 'str',
1262            'addr': 'int',
1263            'size': 'int',
1264            'slot': 'int',
1265            'node': 'int',
1266            'memdev': 'str',
1267            'hotplugged': 'bool',
1268            'hotpluggable': 'bool'
1269          }
1270}
1271
1272##
1273# @VirtioPMEMDeviceInfo:
1274#
1275# VirtioPMEM state information
1276#
1277# @id: device's ID
1278#
1279# @memaddr: physical address in memory, where device is mapped
1280#
1281# @size: size of memory that the device provides
1282#
1283# @memdev: memory backend linked with device
1284#
1285# Since: 4.1
1286##
1287{ 'struct': 'VirtioPMEMDeviceInfo',
1288  'data': { '*id': 'str',
1289            'memaddr': 'size',
1290            'size': 'size',
1291            'memdev': 'str'
1292          }
1293}
1294
1295##
1296# @VirtioMEMDeviceInfo:
1297#
1298# VirtioMEMDevice state information
1299#
1300# @id: device's ID
1301#
1302# @memaddr: physical address in memory, where device is mapped
1303#
1304# @requested-size: the user requested size of the device
1305#
1306# @size: the (current) size of memory that the device provides
1307#
1308# @max-size: the maximum size of memory that the device can provide
1309#
1310# @block-size: the block size of memory that the device provides
1311#
1312# @node: NUMA node number where device is assigned to
1313#
1314# @memdev: memory backend linked with the region
1315#
1316# Since: 5.1
1317##
1318{ 'struct': 'VirtioMEMDeviceInfo',
1319  'data': { '*id': 'str',
1320            'memaddr': 'size',
1321            'requested-size': 'size',
1322            'size': 'size',
1323            'max-size': 'size',
1324            'block-size': 'size',
1325            'node': 'int',
1326            'memdev': 'str'
1327          }
1328}
1329
1330##
1331# @SgxEPCDeviceInfo:
1332#
1333# Sgx EPC state information
1334#
1335# @id: device's ID
1336#
1337# @memaddr: physical address in memory, where device is mapped
1338#
1339# @size: size of memory that the device provides
1340#
1341# @memdev: memory backend linked with device
1342#
1343# @node: the numa node (Since: 7.0)
1344#
1345# Since: 6.2
1346##
1347{ 'struct': 'SgxEPCDeviceInfo',
1348  'data': { '*id': 'str',
1349            'memaddr': 'size',
1350            'size': 'size',
1351            'node': 'int',
1352            'memdev': 'str'
1353          }
1354}
1355
1356##
1357# @HvBalloonDeviceInfo:
1358#
1359# hv-balloon provided memory state information
1360#
1361# @id: device's ID
1362#
1363# @memaddr: physical address in memory, where device is mapped
1364#
1365# @max-size: the maximum size of memory that the device can provide
1366#
1367# @memdev: memory backend linked with device
1368#
1369# Since: 8.2
1370##
1371{ 'struct': 'HvBalloonDeviceInfo',
1372  'data': { '*id': 'str',
1373            '*memaddr': 'size',
1374            'max-size': 'size',
1375            '*memdev': 'str'
1376          }
1377}
1378
1379##
1380# @MemoryDeviceInfoKind:
1381#
1382# @nvdimm: since 2.12
1383#
1384# @virtio-pmem: since 4.1
1385#
1386# @virtio-mem: since 5.1
1387#
1388# @sgx-epc: since 6.2.
1389#
1390# @hv-balloon: since 8.2.
1391#
1392# Since: 2.1
1393##
1394{ 'enum': 'MemoryDeviceInfoKind',
1395  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc',
1396            'hv-balloon' ] }
1397
1398##
1399# @PCDIMMDeviceInfoWrapper:
1400#
1401# @data: PCDIMMDevice state information
1402#
1403# Since: 2.1
1404##
1405{ 'struct': 'PCDIMMDeviceInfoWrapper',
1406  'data': { 'data': 'PCDIMMDeviceInfo' } }
1407
1408##
1409# @VirtioPMEMDeviceInfoWrapper:
1410#
1411# @data: VirtioPMEM state information
1412#
1413# Since: 2.1
1414##
1415{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1416  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1417
1418##
1419# @VirtioMEMDeviceInfoWrapper:
1420#
1421# @data: VirtioMEMDevice state information
1422#
1423# Since: 2.1
1424##
1425{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1426  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1427
1428##
1429# @SgxEPCDeviceInfoWrapper:
1430#
1431# @data: Sgx EPC state information
1432#
1433# Since: 6.2
1434##
1435{ 'struct': 'SgxEPCDeviceInfoWrapper',
1436  'data': { 'data': 'SgxEPCDeviceInfo' } }
1437
1438##
1439# @HvBalloonDeviceInfoWrapper:
1440#
1441# @data: hv-balloon provided memory state information
1442#
1443# Since: 8.2
1444##
1445{ 'struct': 'HvBalloonDeviceInfoWrapper',
1446  'data': { 'data': 'HvBalloonDeviceInfo' } }
1447
1448##
1449# @MemoryDeviceInfo:
1450#
1451# Union containing information about a memory device
1452#
1453# @type: memory device type
1454#
1455# Since: 2.1
1456##
1457{ 'union': 'MemoryDeviceInfo',
1458  'base': { 'type': 'MemoryDeviceInfoKind' },
1459  'discriminator': 'type',
1460  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1461            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1462            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1463            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1464            'sgx-epc': 'SgxEPCDeviceInfoWrapper',
1465            'hv-balloon': 'HvBalloonDeviceInfoWrapper'
1466          }
1467}
1468
1469##
1470# @SgxEPC:
1471#
1472# Sgx EPC cmdline information
1473#
1474# @memdev: memory backend linked with device
1475#
1476# @node: the numa node (Since: 7.0)
1477#
1478# Since: 6.2
1479##
1480{ 'struct': 'SgxEPC',
1481  'data': { 'memdev': 'str',
1482            'node': 'int'
1483          }
1484}
1485
1486##
1487# @SgxEPCProperties:
1488#
1489# SGX properties of machine types.
1490#
1491# @sgx-epc: list of ids of memory-backend-epc objects.
1492#
1493# Since: 6.2
1494##
1495{ 'struct': 'SgxEPCProperties',
1496  'data': { 'sgx-epc': ['SgxEPC'] }
1497}
1498
1499##
1500# @query-memory-devices:
1501#
1502# Lists available memory devices and their state
1503#
1504# Since: 2.1
1505#
1506# Example:
1507#
1508#     -> { "execute": "query-memory-devices" }
1509#     <- { "return": [ { "data":
1510#                           { "addr": 5368709120,
1511#                             "hotpluggable": true,
1512#                             "hotplugged": true,
1513#                             "id": "d1",
1514#                             "memdev": "/objects/memX",
1515#                             "node": 0,
1516#                             "size": 1073741824,
1517#                             "slot": 0},
1518#                        "type": "dimm"
1519#                      } ] }
1520##
1521{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1522
1523##
1524# @MEMORY_DEVICE_SIZE_CHANGE:
1525#
1526# Emitted when the size of a memory device changes.  Only emitted for
1527# memory devices that can actually change the size (e.g., virtio-mem
1528# due to guest action).
1529#
1530# @id: device's ID
1531#
1532# @size: the new size of memory that the device provides
1533#
1534# @qom-path: path to the device object in the QOM tree (since 6.2)
1535#
1536# Note: this event is rate-limited.
1537#
1538# Since: 5.1
1539#
1540# Example:
1541#
1542#     <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1543#          "data": { "id": "vm0", "size": 1073741824,
1544#                    "qom-path": "/machine/unattached/device[2]" },
1545#          "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1546##
1547{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1548  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1549
1550##
1551# @MEM_UNPLUG_ERROR:
1552#
1553# Emitted when memory hot unplug error occurs.
1554#
1555# @device: device name
1556#
1557# @msg: Informative message
1558#
1559# Features:
1560#
1561# @deprecated: This event is deprecated.  Use
1562#     @DEVICE_UNPLUG_GUEST_ERROR instead.
1563#
1564# Since: 2.4
1565#
1566# Example:
1567#
1568#     <- { "event": "MEM_UNPLUG_ERROR",
1569#          "data": { "device": "dimm1",
1570#                    "msg": "acpi: device unplug for unsupported device"
1571#          },
1572#          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1573##
1574{ 'event': 'MEM_UNPLUG_ERROR',
1575  'data': { 'device': 'str', 'msg': 'str' },
1576  'features': ['deprecated'] }
1577
1578##
1579# @BootConfiguration:
1580#
1581# Schema for virtual machine boot configuration.
1582#
1583# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1584#
1585# @once: Boot order to apply on first boot
1586#
1587# @menu: Whether to show a boot menu
1588#
1589# @splash: The name of the file to be passed to the firmware as logo
1590#     picture, if @menu is true.
1591#
1592# @splash-time: How long to show the logo picture, in milliseconds
1593#
1594# @reboot-timeout: Timeout before guest reboots after boot fails
1595#
1596# @strict: Whether to attempt booting from devices not included in the
1597#     boot order
1598#
1599# Since: 7.1
1600##
1601{ 'struct': 'BootConfiguration', 'data': {
1602     '*order': 'str',
1603     '*once': 'str',
1604     '*menu': 'bool',
1605     '*splash': 'str',
1606     '*splash-time': 'int',
1607     '*reboot-timeout': 'int',
1608     '*strict': 'bool' } }
1609
1610##
1611# @SMPConfiguration:
1612#
1613# Schema for CPU topology configuration.  A missing value lets QEMU
1614# figure out a suitable value based on the ones that are provided.
1615#
1616# The members other than @cpus and @maxcpus define a topology of
1617# containers.
1618#
1619# The ordering from highest/coarsest to lowest/finest is:
1620# @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1621#
1622# Different architectures support different subsets of topology
1623# containers.
1624#
1625# For example, s390x does not have clusters and dies, and the socket
1626# is the parent container of cores.
1627#
1628# @cpus: number of virtual CPUs in the virtual machine
1629#
1630# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1631#     machine
1632#
1633# @drawers: number of drawers in the CPU topology (since 8.2)
1634#
1635# @books: number of books in the CPU topology (since 8.2)
1636#
1637# @sockets: number of sockets per parent container
1638#
1639# @dies: number of dies per parent container
1640#
1641# @clusters: number of clusters per parent container (since 7.0)
1642#
1643# @cores: number of cores per parent container
1644#
1645# @threads: number of threads per core
1646#
1647# Since: 6.1
1648##
1649{ 'struct': 'SMPConfiguration', 'data': {
1650     '*cpus': 'int',
1651     '*drawers': 'int',
1652     '*books': 'int',
1653     '*sockets': 'int',
1654     '*dies': 'int',
1655     '*clusters': 'int',
1656     '*cores': 'int',
1657     '*threads': 'int',
1658     '*maxcpus': 'int' } }
1659
1660##
1661# @x-query-irq:
1662#
1663# Query interrupt statistics
1664#
1665# Features:
1666#
1667# @unstable: This command is meant for debugging.
1668#
1669# Returns: interrupt statistics
1670#
1671# Since: 6.2
1672##
1673{ 'command': 'x-query-irq',
1674  'returns': 'HumanReadableText',
1675  'features': [ 'unstable' ] }
1676
1677##
1678# @x-query-jit:
1679#
1680# Query TCG compiler statistics
1681#
1682# Features:
1683#
1684# @unstable: This command is meant for debugging.
1685#
1686# Returns: TCG compiler statistics
1687#
1688# Since: 6.2
1689##
1690{ 'command': 'x-query-jit',
1691  'returns': 'HumanReadableText',
1692  'if': 'CONFIG_TCG',
1693  'features': [ 'unstable' ] }
1694
1695##
1696# @x-query-numa:
1697#
1698# Query NUMA topology information
1699#
1700# Features:
1701#
1702# @unstable: This command is meant for debugging.
1703#
1704# Returns: topology information
1705#
1706# Since: 6.2
1707##
1708{ 'command': 'x-query-numa',
1709  'returns': 'HumanReadableText',
1710  'features': [ 'unstable' ] }
1711
1712##
1713# @x-query-opcount:
1714#
1715# Query TCG opcode counters
1716#
1717# Features:
1718#
1719# @unstable: This command is meant for debugging.
1720#
1721# Returns: TCG opcode counters
1722#
1723# Since: 6.2
1724##
1725{ 'command': 'x-query-opcount',
1726  'returns': 'HumanReadableText',
1727  'if': 'CONFIG_TCG',
1728  'features': [ 'unstable' ] }
1729
1730##
1731# @x-query-ramblock:
1732#
1733# Query system ramblock information
1734#
1735# Features:
1736#
1737# @unstable: This command is meant for debugging.
1738#
1739# Returns: system ramblock information
1740#
1741# Since: 6.2
1742##
1743{ 'command': 'x-query-ramblock',
1744  'returns': 'HumanReadableText',
1745  'features': [ 'unstable' ] }
1746
1747##
1748# @x-query-rdma:
1749#
1750# Query RDMA state
1751#
1752# Features:
1753#
1754# @unstable: This command is meant for debugging.
1755#
1756# Returns: RDMA state
1757#
1758# Since: 6.2
1759##
1760{ 'command': 'x-query-rdma',
1761  'returns': 'HumanReadableText',
1762  'features': [ 'unstable' ] }
1763
1764##
1765# @x-query-roms:
1766#
1767# Query information on the registered ROMS
1768#
1769# Features:
1770#
1771# @unstable: This command is meant for debugging.
1772#
1773# Returns: registered ROMs
1774#
1775# Since: 6.2
1776##
1777{ 'command': 'x-query-roms',
1778  'returns': 'HumanReadableText',
1779  'features': [ 'unstable' ] }
1780
1781##
1782# @x-query-usb:
1783#
1784# Query information on the USB devices
1785#
1786# Features:
1787#
1788# @unstable: This command is meant for debugging.
1789#
1790# Returns: USB device information
1791#
1792# Since: 6.2
1793##
1794{ 'command': 'x-query-usb',
1795  'returns': 'HumanReadableText',
1796  'features': [ 'unstable' ] }
1797
1798##
1799# @SmbiosEntryPointType:
1800#
1801# @32: SMBIOS version 2.1 (32-bit) Entry Point
1802#
1803# @64: SMBIOS version 3.0 (64-bit) Entry Point
1804#
1805# Since: 7.0
1806##
1807{ 'enum': 'SmbiosEntryPointType',
1808  'data': [ '32', '64' ] }
1809
1810##
1811# @MemorySizeConfiguration:
1812#
1813# Schema for memory size configuration.
1814#
1815# @size: memory size in bytes
1816#
1817# @max-size: maximum hotpluggable memory size in bytes
1818#
1819# @slots: number of available memory slots for hotplug
1820#
1821# Since: 7.1
1822##
1823{ 'struct': 'MemorySizeConfiguration', 'data': {
1824     '*size': 'size',
1825     '*max-size': 'size',
1826     '*slots': 'uint64' } }
1827
1828##
1829# @dumpdtb:
1830#
1831# Save the FDT in dtb format.
1832#
1833# @filename: name of the dtb file to be created
1834#
1835# Since: 7.2
1836#
1837# Example:
1838#
1839#     -> { "execute": "dumpdtb" }
1840#          "arguments": { "filename": "fdt.dtb" } }
1841#     <- { "return": {} }
1842##
1843{ 'command': 'dumpdtb',
1844  'data': { 'filename': 'str' },
1845  'if': 'CONFIG_FDT' }
1846