xref: /qemu/qapi/machine.json (revision bb2df37a)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4# This work is licensed under the terms of the GNU GPL, version 2 or later.
5# See the COPYING file in the top-level directory.
6
7##
8# = Machines
9##
10
11{ 'include': 'common.json' }
12{ 'include': 'machine-common.json' }
13
14##
15# @SysEmuTarget:
16#
17# The comprehensive enumeration of QEMU system emulation ("softmmu")
18# targets.  Run "./configure --help" in the project root directory,
19# and look for the \*-softmmu targets near the "--target-list" option.
20# The individual target constants are not documented here, for the
21# time being.
22#
23# @rx: since 5.0
24#
25# @avr: since 5.1
26#
27# Notes: The resulting QMP strings can be appended to the
28#     "qemu-system-" prefix to produce the corresponding QEMU
29#     executable name.  This is true even for "qemu-system-x86_64".
30#
31# Since: 3.0
32##
33{ 'enum' : 'SysEmuTarget',
34  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35             'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36             'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37             'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38             'sh4eb', 'sparc', 'sparc64', 'tricore',
39             'x86_64', 'xtensa', 'xtensaeb' ] }
40
41##
42# @CpuS390State:
43#
44# An enumeration of cpu states that can be assumed by a virtual S390
45# CPU
46#
47# Since: 2.12
48##
49{ 'enum': 'CpuS390State',
50  'prefix': 'S390_CPU_STATE',
51  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52
53##
54# @CpuInfoS390:
55#
56# Additional information about a virtual S390 CPU
57#
58# @cpu-state: the virtual CPU's state
59#
60# @dedicated: the virtual CPU's dedication (since 8.2)
61#
62# @entitlement: the virtual CPU's entitlement (since 8.2)
63#
64# Since: 2.12
65##
66{ 'struct': 'CpuInfoS390',
67  'data': { 'cpu-state': 'CpuS390State',
68            '*dedicated': 'bool',
69            '*entitlement': 'CpuS390Entitlement' } }
70
71##
72# @CpuInfoFast:
73#
74# Information about a virtual CPU
75#
76# @cpu-index: index of the virtual CPU
77#
78# @qom-path: path to the CPU object in the QOM tree
79#
80# @thread-id: ID of the underlying host thread
81#
82# @props: properties associated with a virtual CPU, e.g. the socket id
83#
84# @target: the QEMU system emulation target, which determines which
85#     additional fields will be listed (since 3.0)
86#
87# Since: 2.12
88##
89{ 'union'         : 'CpuInfoFast',
90  'base'          : { 'cpu-index'    : 'int',
91                      'qom-path'     : 'str',
92                      'thread-id'    : 'int',
93                      '*props'       : 'CpuInstanceProperties',
94                      'target'       : 'SysEmuTarget' },
95  'discriminator' : 'target',
96  'data'          : { 's390x'        : 'CpuInfoS390' } }
97
98##
99# @query-cpus-fast:
100#
101# Returns information about all virtual CPUs.
102#
103# Returns: list of @CpuInfoFast
104#
105# Since: 2.12
106#
107# Example:
108#
109# -> { "execute": "query-cpus-fast" }
110# <- { "return": [
111#         {
112#             "thread-id": 25627,
113#             "props": {
114#                 "core-id": 0,
115#                 "thread-id": 0,
116#                 "socket-id": 0
117#             },
118#             "qom-path": "/machine/unattached/device[0]",
119#             "target":"x86_64",
120#             "cpu-index": 0
121#         },
122#         {
123#             "thread-id": 25628,
124#             "props": {
125#                 "core-id": 0,
126#                 "thread-id": 0,
127#                 "socket-id": 1
128#             },
129#             "qom-path": "/machine/unattached/device[2]",
130#             "target":"x86_64",
131#             "cpu-index": 1
132#         }
133#     ]
134# }
135##
136{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
137
138##
139# @MachineInfo:
140#
141# Information describing a machine.
142#
143# @name: the name of the machine
144#
145# @alias: an alias for the machine name
146#
147# @is-default: whether the machine is default
148#
149# @cpu-max: maximum number of CPUs supported by the machine type
150#     (since 1.5)
151#
152# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
153#
154# @numa-mem-supported: true if '-numa node,mem' option is supported by
155#     the machine type and false otherwise (since 4.1)
156#
157# @deprecated: if true, the machine type is deprecated and may be
158#     removed in future versions of QEMU according to the QEMU
159#     deprecation policy (since 4.1)
160#
161# @default-cpu-type: default CPU model typename if none is requested
162#     via the -cpu argument.  (since 4.2)
163#
164# @default-ram-id: the default ID of initial RAM memory backend (since
165#     5.2)
166#
167# @acpi: machine type supports ACPI (since 8.0)
168#
169# Since: 1.2
170##
171{ 'struct': 'MachineInfo',
172  'data': { 'name': 'str', '*alias': 'str',
173            '*is-default': 'bool', 'cpu-max': 'int',
174            'hotpluggable-cpus': 'bool',  'numa-mem-supported': 'bool',
175            'deprecated': 'bool', '*default-cpu-type': 'str',
176            '*default-ram-id': 'str', 'acpi': 'bool' } }
177
178##
179# @query-machines:
180#
181# Return a list of supported machines
182#
183# Returns: a list of MachineInfo
184#
185# Since: 1.2
186##
187{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
188
189##
190# @CurrentMachineParams:
191#
192# Information describing the running machine parameters.
193#
194# @wakeup-suspend-support: true if the machine supports wake up from
195#     suspend
196#
197# Since: 4.0
198##
199{ 'struct': 'CurrentMachineParams',
200  'data': { 'wakeup-suspend-support': 'bool'} }
201
202##
203# @query-current-machine:
204#
205# Return information on the current virtual machine.
206#
207# Returns: CurrentMachineParams
208#
209# Since: 4.0
210##
211{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
212
213##
214# @TargetInfo:
215#
216# Information describing the QEMU target.
217#
218# @arch: the target architecture
219#
220# Since: 1.2
221##
222{ 'struct': 'TargetInfo',
223  'data': { 'arch': 'SysEmuTarget' } }
224
225##
226# @query-target:
227#
228# Return information about the target for this QEMU
229#
230# Returns: TargetInfo
231#
232# Since: 1.2
233##
234{ 'command': 'query-target', 'returns': 'TargetInfo' }
235
236##
237# @UuidInfo:
238#
239# Guest UUID information (Universally Unique Identifier).
240#
241# @UUID: the UUID of the guest
242#
243# Since: 0.14
244#
245# Notes: If no UUID was specified for the guest, a null UUID is
246#     returned.
247##
248{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
249
250##
251# @query-uuid:
252#
253# Query the guest UUID information.
254#
255# Returns: The @UuidInfo for the guest
256#
257# Since: 0.14
258#
259# Example:
260#
261# -> { "execute": "query-uuid" }
262# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
263##
264{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
265
266##
267# @GuidInfo:
268#
269# GUID information.
270#
271# @guid: the globally unique identifier
272#
273# Since: 2.9
274##
275{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
276
277##
278# @query-vm-generation-id:
279#
280# Show Virtual Machine Generation ID
281#
282# Since: 2.9
283##
284{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
285
286##
287# @system_reset:
288#
289# Performs a hard reset of a guest.
290#
291# Since: 0.14
292#
293# Example:
294#
295# -> { "execute": "system_reset" }
296# <- { "return": {} }
297##
298{ 'command': 'system_reset' }
299
300##
301# @system_powerdown:
302#
303# Requests that a guest perform a powerdown operation.
304#
305# Since: 0.14
306#
307# Notes: A guest may or may not respond to this command.  This command
308#     returning does not indicate that a guest has accepted the
309#     request or that it has shut down.  Many guests will respond to
310#     this command by prompting the user in some way.
311#
312# Example:
313#
314# -> { "execute": "system_powerdown" }
315# <- { "return": {} }
316##
317{ 'command': 'system_powerdown' }
318
319##
320# @system_wakeup:
321#
322# Wake up guest from suspend.  If the guest has wake-up from suspend
323# support enabled (wakeup-suspend-support flag from
324# query-current-machine), wake-up guest from suspend if the guest is
325# in SUSPENDED state.  Return an error otherwise.
326#
327# Since: 1.1
328#
329# Returns: nothing.
330#
331# Note: prior to 4.0, this command does nothing in case the guest
332#     isn't suspended.
333#
334# Example:
335#
336# -> { "execute": "system_wakeup" }
337# <- { "return": {} }
338##
339{ 'command': 'system_wakeup' }
340
341##
342# @LostTickPolicy:
343#
344# Policy for handling lost ticks in timer devices.  Ticks end up
345# getting lost when, for example, the guest is paused.
346#
347# @discard: throw away the missed ticks and continue with future
348#     injection normally.  The guest OS will see the timer jump ahead
349#     by a potentially quite significant amount all at once, as if the
350#     intervening chunk of time had simply not existed; needless to
351#     say, such a sudden jump can easily confuse a guest OS which is
352#     not specifically prepared to deal with it.  Assuming the guest
353#     OS can deal correctly with the time jump, the time in the guest
354#     and in the host should now match.
355#
356# @delay: continue to deliver ticks at the normal rate.  The guest OS
357#     will not notice anything is amiss, as from its point of view
358#     time will have continued to flow normally.  The time in the
359#     guest should now be behind the time in the host by exactly the
360#     amount of time during which ticks have been missed.
361#
362# @slew: deliver ticks at a higher rate to catch up with the missed
363#     ticks.  The guest OS will not notice anything is amiss, as from
364#     its point of view time will have continued to flow normally.
365#     Once the timer has managed to catch up with all the missing
366#     ticks, the time in the guest and in the host should match.
367#
368# Since: 2.0
369##
370{ 'enum': 'LostTickPolicy',
371  'data': ['discard', 'delay', 'slew' ] }
372
373##
374# @inject-nmi:
375#
376# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
377# all CPUs (ppc64). The command fails when the guest doesn't support
378# injecting.
379#
380# Returns: If successful, nothing
381#
382# Since: 0.14
383#
384# Note: prior to 2.1, this command was only supported for x86 and s390
385#     VMs
386#
387# Example:
388#
389# -> { "execute": "inject-nmi" }
390# <- { "return": {} }
391##
392{ 'command': 'inject-nmi' }
393
394##
395# @KvmInfo:
396#
397# Information about support for KVM acceleration
398#
399# @enabled: true if KVM acceleration is active
400#
401# @present: true if KVM acceleration is built into this executable
402#
403# Since: 0.14
404##
405{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
406
407##
408# @query-kvm:
409#
410# Returns information about KVM acceleration
411#
412# Returns: @KvmInfo
413#
414# Since: 0.14
415#
416# Example:
417#
418# -> { "execute": "query-kvm" }
419# <- { "return": { "enabled": true, "present": true } }
420##
421{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
422
423##
424# @NumaOptionsType:
425#
426# @node: NUMA nodes configuration
427#
428# @dist: NUMA distance configuration (since 2.10)
429#
430# @cpu: property based CPU(s) to node mapping (Since: 2.10)
431#
432# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
433#
434# @hmat-cache: memory side cache information (Since: 5.0)
435#
436# Since: 2.1
437##
438{ 'enum': 'NumaOptionsType',
439  'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
440
441##
442# @NumaOptions:
443#
444# A discriminated record of NUMA options.  (for OptsVisitor)
445#
446# Since: 2.1
447##
448{ 'union': 'NumaOptions',
449  'base': { 'type': 'NumaOptionsType' },
450  'discriminator': 'type',
451  'data': {
452    'node': 'NumaNodeOptions',
453    'dist': 'NumaDistOptions',
454    'cpu': 'NumaCpuOptions',
455    'hmat-lb': 'NumaHmatLBOptions',
456    'hmat-cache': 'NumaHmatCacheOptions' }}
457
458##
459# @NumaNodeOptions:
460#
461# Create a guest NUMA node.  (for OptsVisitor)
462#
463# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
464#
465# @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
466#     omitted)
467#
468# @mem: memory size of this node; mutually exclusive with @memdev.
469#     Equally divide total memory among nodes if both @mem and @memdev
470#     are omitted.
471#
472# @memdev: memory backend object.  If specified for one node, it must
473#     be specified for all nodes.
474#
475# @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
476#     to the nodeid which has the memory controller responsible for
477#     this NUMA node.  This field provides additional information as
478#     to the initiator node that is closest (as in directly attached)
479#     to this node, and therefore has the best performance (since 5.0)
480#
481# Since: 2.1
482##
483{ 'struct': 'NumaNodeOptions',
484  'data': {
485   '*nodeid': 'uint16',
486   '*cpus':   ['uint16'],
487   '*mem':    'size',
488   '*memdev': 'str',
489   '*initiator': 'uint16' }}
490
491##
492# @NumaDistOptions:
493#
494# Set the distance between 2 NUMA nodes.
495#
496# @src: source NUMA node.
497#
498# @dst: destination NUMA node.
499#
500# @val: NUMA distance from source node to destination node.  When a
501#     node is unreachable from another node, set the distance between
502#     them to 255.
503#
504# Since: 2.10
505##
506{ 'struct': 'NumaDistOptions',
507  'data': {
508   'src': 'uint16',
509   'dst': 'uint16',
510   'val': 'uint8' }}
511
512##
513# @CXLFixedMemoryWindowOptions:
514#
515# Create a CXL Fixed Memory Window
516#
517# @size: Size of the Fixed Memory Window in bytes.  Must be a multiple
518#     of 256MiB.
519#
520# @interleave-granularity: Number of contiguous bytes for which
521#     accesses will go to a given interleave target.  Accepted values
522#     [256, 512, 1k, 2k, 4k, 8k, 16k]
523#
524# @targets: Target root bridge IDs from -device ...,id=<ID> for each
525#     root bridge.
526#
527# Since: 7.1
528##
529{ 'struct': 'CXLFixedMemoryWindowOptions',
530  'data': {
531      'size': 'size',
532      '*interleave-granularity': 'size',
533      'targets': ['str'] }}
534
535##
536# @CXLFMWProperties:
537#
538# List of CXL Fixed Memory Windows.
539#
540# @cxl-fmw: List of CXLFixedMemoryWindowOptions
541#
542# Since: 7.1
543##
544{ 'struct' : 'CXLFMWProperties',
545  'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
546}
547
548##
549# @X86CPURegister32:
550#
551# A X86 32-bit register
552#
553# Since: 1.5
554##
555{ 'enum': 'X86CPURegister32',
556  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
557
558##
559# @X86CPUFeatureWordInfo:
560#
561# Information about a X86 CPU feature word
562#
563# @cpuid-input-eax: Input EAX value for CPUID instruction for that
564#     feature word
565#
566# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
567#     feature word
568#
569# @cpuid-register: Output register containing the feature bits
570#
571# @features: value of output register, containing the feature bits
572#
573# Since: 1.5
574##
575{ 'struct': 'X86CPUFeatureWordInfo',
576  'data': { 'cpuid-input-eax': 'int',
577            '*cpuid-input-ecx': 'int',
578            'cpuid-register': 'X86CPURegister32',
579            'features': 'int' } }
580
581##
582# @DummyForceArrays:
583#
584# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
585# internally
586#
587# Since: 2.5
588##
589{ 'struct': 'DummyForceArrays',
590  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
591
592##
593# @NumaCpuOptions:
594#
595# Option "-numa cpu" overrides default cpu to node mapping.  It
596# accepts the same set of cpu properties as returned by
597# query-hotpluggable-cpus[].props, where node-id could be used to
598# override default node mapping.
599#
600# Since: 2.10
601##
602{ 'struct': 'NumaCpuOptions',
603   'base': 'CpuInstanceProperties',
604   'data' : {} }
605
606##
607# @HmatLBMemoryHierarchy:
608#
609# The memory hierarchy in the System Locality Latency and Bandwidth
610# Information Structure of HMAT (Heterogeneous Memory Attribute Table)
611#
612# For more information about @HmatLBMemoryHierarchy, see chapter
613# 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
614#
615# @memory: the structure represents the memory performance
616#
617# @first-level: first level of memory side cache
618#
619# @second-level: second level of memory side cache
620#
621# @third-level: third level of memory side cache
622#
623# Since: 5.0
624##
625{ 'enum': 'HmatLBMemoryHierarchy',
626  'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
627
628##
629# @HmatLBDataType:
630#
631# Data type in the System Locality Latency and Bandwidth Information
632# Structure of HMAT (Heterogeneous Memory Attribute Table)
633#
634# For more information about @HmatLBDataType, see chapter 5.2.27.4:
635# Table 5-146:  Field "Data Type" of ACPI 6.3 spec.
636#
637# @access-latency: access latency (nanoseconds)
638#
639# @read-latency: read latency (nanoseconds)
640#
641# @write-latency: write latency (nanoseconds)
642#
643# @access-bandwidth: access bandwidth (Bytes per second)
644#
645# @read-bandwidth: read bandwidth (Bytes per second)
646#
647# @write-bandwidth: write bandwidth (Bytes per second)
648#
649# Since: 5.0
650##
651{ 'enum': 'HmatLBDataType',
652  'data': [ 'access-latency', 'read-latency', 'write-latency',
653            'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
654
655##
656# @NumaHmatLBOptions:
657#
658# Set the system locality latency and bandwidth information between
659# Initiator and Target proximity Domains.
660#
661# For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
662# Table 5-146 of ACPI 6.3 spec.
663#
664# @initiator: the Initiator Proximity Domain.
665#
666# @target: the Target Proximity Domain.
667#
668# @hierarchy: the Memory Hierarchy.  Indicates the performance of
669#     memory or side cache.
670#
671# @data-type: presents the type of data, access/read/write latency or
672#     hit latency.
673#
674# @latency: the value of latency from @initiator to @target proximity
675#     domain, the latency unit is "ns(nanosecond)".
676#
677# @bandwidth: the value of bandwidth between @initiator and @target
678#     proximity domain, the bandwidth unit is "Bytes per second".
679#
680# Since: 5.0
681##
682{ 'struct': 'NumaHmatLBOptions',
683    'data': {
684    'initiator': 'uint16',
685    'target': 'uint16',
686    'hierarchy': 'HmatLBMemoryHierarchy',
687    'data-type': 'HmatLBDataType',
688    '*latency': 'uint64',
689    '*bandwidth': 'size' }}
690
691##
692# @HmatCacheAssociativity:
693#
694# Cache associativity in the Memory Side Cache Information Structure
695# of HMAT
696#
697# For more information of @HmatCacheAssociativity, see chapter
698# 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
699#
700# @none: None (no memory side cache in this proximity domain, or cache
701#     associativity unknown)
702#
703# @direct: Direct Mapped
704#
705# @complex: Complex Cache Indexing (implementation specific)
706#
707# Since: 5.0
708##
709{ 'enum': 'HmatCacheAssociativity',
710  'data': [ 'none', 'direct', 'complex' ] }
711
712##
713# @HmatCacheWritePolicy:
714#
715# Cache write policy in the Memory Side Cache Information Structure of
716# HMAT
717#
718# For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
719# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
720#
721# @none: None (no memory side cache in this proximity domain, or cache
722#     write policy unknown)
723#
724# @write-back: Write Back (WB)
725#
726# @write-through: Write Through (WT)
727#
728# Since: 5.0
729##
730{ 'enum': 'HmatCacheWritePolicy',
731  'data': [ 'none', 'write-back', 'write-through' ] }
732
733##
734# @NumaHmatCacheOptions:
735#
736# Set the memory side cache information for a given memory domain.
737#
738# For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
739# Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
740#
741# @node-id: the memory proximity domain to which the memory belongs.
742#
743# @size: the size of memory side cache in bytes.
744#
745# @level: the cache level described in this structure.
746#
747# @associativity: the cache associativity,
748#     none/direct-mapped/complex(complex cache indexing).
749#
750# @policy: the write policy, none/write-back/write-through.
751#
752# @line: the cache Line size in bytes.
753#
754# Since: 5.0
755##
756{ 'struct': 'NumaHmatCacheOptions',
757  'data': {
758   'node-id': 'uint32',
759   'size': 'size',
760   'level': 'uint8',
761   'associativity': 'HmatCacheAssociativity',
762   'policy': 'HmatCacheWritePolicy',
763   'line': 'uint16' }}
764
765##
766# @memsave:
767#
768# Save a portion of guest memory to a file.
769#
770# @val: the virtual address of the guest to start from
771#
772# @size: the size of memory region to save
773#
774# @filename: the file to save the memory to as binary data
775#
776# @cpu-index: the index of the virtual CPU to use for translating the
777#     virtual address (defaults to CPU 0)
778#
779# Returns: Nothing on success
780#
781# Since: 0.14
782#
783# Notes: Errors were not reliably returned until 1.1
784#
785# Example:
786#
787# -> { "execute": "memsave",
788#      "arguments": { "val": 10,
789#                     "size": 100,
790#                     "filename": "/tmp/virtual-mem-dump" } }
791# <- { "return": {} }
792##
793{ 'command': 'memsave',
794  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
795
796##
797# @pmemsave:
798#
799# Save a portion of guest physical memory to a file.
800#
801# @val: the physical address of the guest to start from
802#
803# @size: the size of memory region to save
804#
805# @filename: the file to save the memory to as binary data
806#
807# Returns: Nothing on success
808#
809# Since: 0.14
810#
811# Notes: Errors were not reliably returned until 1.1
812#
813# Example:
814#
815# -> { "execute": "pmemsave",
816#      "arguments": { "val": 10,
817#                     "size": 100,
818#                     "filename": "/tmp/physical-mem-dump" } }
819# <- { "return": {} }
820##
821{ 'command': 'pmemsave',
822  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
823
824##
825# @Memdev:
826#
827# Information about memory backend
828#
829# @id: backend's ID if backend has 'id' property (since 2.9)
830#
831# @size: memory backend size
832#
833# @merge: whether memory merge support is enabled
834#
835# @dump: whether memory backend's memory is included in a core dump
836#
837# @prealloc: whether memory was preallocated
838#
839# @share: whether memory is private to QEMU or shared (since 6.1)
840#
841# @reserve: whether swap space (or huge pages) was reserved if
842#     applicable.  This corresponds to the user configuration and not
843#     the actual behavior implemented in the OS to perform the
844#     reservation.  For example, Linux will never reserve swap space
845#     for shared file mappings.  (since 6.1)
846#
847# @host-nodes: host nodes for its memory policy
848#
849# @policy: memory policy of memory backend
850#
851# Since: 2.1
852##
853{ 'struct': 'Memdev',
854  'data': {
855    '*id':        'str',
856    'size':       'size',
857    'merge':      'bool',
858    'dump':       'bool',
859    'prealloc':   'bool',
860    'share':      'bool',
861    '*reserve':    'bool',
862    'host-nodes': ['uint16'],
863    'policy':     'HostMemPolicy' }}
864
865##
866# @query-memdev:
867#
868# Returns information for all memory backends.
869#
870# Returns: a list of @Memdev.
871#
872# Since: 2.1
873#
874# Example:
875#
876# -> { "execute": "query-memdev" }
877# <- { "return": [
878#        {
879#          "id": "mem1",
880#          "size": 536870912,
881#          "merge": false,
882#          "dump": true,
883#          "prealloc": false,
884#          "share": false,
885#          "host-nodes": [0, 1],
886#          "policy": "bind"
887#        },
888#        {
889#          "size": 536870912,
890#          "merge": false,
891#          "dump": true,
892#          "prealloc": true,
893#          "share": false,
894#          "host-nodes": [2, 3],
895#          "policy": "preferred"
896#        }
897#      ]
898#    }
899##
900{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
901
902##
903# @CpuInstanceProperties:
904#
905# List of properties to be used for hotplugging a CPU instance, it
906# should be passed by management with device_add command when a CPU is
907# being hotplugged.
908#
909# Which members are optional and which mandatory depends on the
910# architecture and board.
911#
912# The ids other than the node-id specify the position of the CPU
913# within the CPU topology (as defined by the machine property "smp",
914# thus see also type @SMPConfiguration)
915#
916# @node-id: NUMA node ID the CPU belongs to
917#
918# @drawer-id: drawer number within CPU topology the CPU belongs to
919#     (since 8.2)
920#
921# @book-id: book number within parent container the CPU belongs to
922#     (since 8.2)
923#
924# @socket-id: socket number within parent container the CPU belongs to
925#
926# @die-id: die number within the parent container the CPU belongs to
927#    (since 4.1)
928#
929# @cluster-id: cluster number within the parent container the CPU
930#     belongs to (since 7.1)
931#
932# @core-id: core number within the parent container the CPU
933#     belongs to
934#
935# @thread-id: thread number within the core the CPU  belongs to
936#
937# Note: management should be prepared to pass through additional
938#     properties with device_add.
939#
940# Since: 2.7
941##
942{ 'struct': 'CpuInstanceProperties',
943  # Keep these in sync with the properties device_add accepts
944  'data': { '*node-id': 'int',
945            '*drawer-id': 'int',
946            '*book-id': 'int',
947            '*socket-id': 'int',
948            '*die-id': 'int',
949            '*cluster-id': 'int',
950            '*core-id': 'int',
951            '*thread-id': 'int'
952  }
953}
954
955##
956# @HotpluggableCPU:
957#
958# @type: CPU object type for usage with device_add command
959#
960# @props: list of properties to be used for hotplugging CPU
961#
962# @vcpus-count: number of logical VCPU threads @HotpluggableCPU
963#     provides
964#
965# @qom-path: link to existing CPU object if CPU is present or omitted
966#     if CPU is not present.
967#
968# Since: 2.7
969##
970{ 'struct': 'HotpluggableCPU',
971  'data': { 'type': 'str',
972            'vcpus-count': 'int',
973            'props': 'CpuInstanceProperties',
974            '*qom-path': 'str'
975          }
976}
977
978##
979# @query-hotpluggable-cpus:
980#
981# TODO: Better documentation; currently there is none.
982#
983# Returns: a list of HotpluggableCPU objects.
984#
985# Since: 2.7
986#
987# Examples:
988#
989# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
990# POWER8:
991#
992# -> { "execute": "query-hotpluggable-cpus" }
993# <- {"return": [
994#      { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
995#        "vcpus-count": 1 },
996#      { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
997#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
998#    ]}'
999#
1000# For pc machine type started with -smp 1,maxcpus=2:
1001#
1002# -> { "execute": "query-hotpluggable-cpus" }
1003# <- {"return": [
1004#      {
1005#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1006#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1007#      },
1008#      {
1009#         "qom-path": "/machine/unattached/device[0]",
1010#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1011#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1012#      }
1013#    ]}
1014#
1015# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
1016# qemu (Since: 2.11):
1017#
1018# -> { "execute": "query-hotpluggable-cpus" }
1019# <- {"return": [
1020#      {
1021#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
1022#         "props": { "core-id": 1 }
1023#      },
1024#      {
1025#         "qom-path": "/machine/unattached/device[0]",
1026#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
1027#         "props": { "core-id": 0 }
1028#      }
1029#    ]}
1030##
1031{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1032             'allow-preconfig': true }
1033
1034##
1035# @set-numa-node:
1036#
1037# Runtime equivalent of '-numa' CLI option, available at preconfigure
1038# stage to configure numa mapping before initializing machine.
1039#
1040# Since: 3.0
1041##
1042{ 'command': 'set-numa-node', 'boxed': true,
1043  'data': 'NumaOptions',
1044  'allow-preconfig': true
1045}
1046
1047##
1048# @balloon:
1049#
1050# Request the balloon driver to change its balloon size.
1051#
1052# @value: the target logical size of the VM in bytes.  We can deduce
1053#     the size of the balloon using this formula:
1054#
1055#        logical_vm_size = vm_ram_size - balloon_size
1056#
1057#     From it we have: balloon_size = vm_ram_size - @value
1058#
1059# Returns:
1060# - Nothing on success
1061# - If the balloon driver is enabled but not functional because the
1062#   KVM kernel module cannot support it, KVMMissingCap
1063# - If no balloon device is present, DeviceNotActive
1064#
1065# Notes: This command just issues a request to the guest.  When it
1066#     returns, the balloon size may not have changed.  A guest can
1067#     change the balloon size independent of this command.
1068#
1069# Since: 0.14
1070#
1071# Example:
1072#
1073# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1074# <- { "return": {} }
1075#
1076# With a 2.5GiB guest this command inflated the ballon to 3GiB.
1077##
1078{ 'command': 'balloon', 'data': {'value': 'int'} }
1079
1080##
1081# @BalloonInfo:
1082#
1083# Information about the guest balloon device.
1084#
1085# @actual: the logical size of the VM in bytes Formula used:
1086#     logical_vm_size = vm_ram_size - balloon_size
1087#
1088# Since: 0.14
1089##
1090{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1091
1092##
1093# @query-balloon:
1094#
1095# Return information about the balloon device.
1096#
1097# Returns:
1098# - @BalloonInfo on success
1099# - If the balloon driver is enabled but not functional because the
1100#   KVM kernel module cannot support it, KVMMissingCap
1101# - If no balloon device is present, DeviceNotActive
1102#
1103# Since: 0.14
1104#
1105# Example:
1106#
1107# -> { "execute": "query-balloon" }
1108# <- { "return": {
1109#          "actual": 1073741824
1110#       }
1111#    }
1112##
1113{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1114
1115##
1116# @BALLOON_CHANGE:
1117#
1118# Emitted when the guest changes the actual BALLOON level.  This value
1119# is equivalent to the @actual field return by the 'query-balloon'
1120# command
1121#
1122# @actual: the logical size of the VM in bytes Formula used:
1123#     logical_vm_size = vm_ram_size - balloon_size
1124#
1125# Note: this event is rate-limited.
1126#
1127# Since: 1.2
1128#
1129# Example:
1130#
1131# <- { "event": "BALLOON_CHANGE",
1132#      "data": { "actual": 944766976 },
1133#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1134##
1135{ 'event': 'BALLOON_CHANGE',
1136  'data': { 'actual': 'int' } }
1137
1138##
1139# @MemoryInfo:
1140#
1141# Actual memory information in bytes.
1142#
1143# @base-memory: size of "base" memory specified with command line
1144#     option -m.
1145#
1146# @plugged-memory: size of memory that can be hot-unplugged.  This
1147#     field is omitted if target doesn't support memory hotplug (i.e.
1148#     CONFIG_MEM_DEVICE not defined at build time).
1149#
1150# Since: 2.11
1151##
1152{ 'struct': 'MemoryInfo',
1153  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1154
1155##
1156# @query-memory-size-summary:
1157#
1158# Return the amount of initially allocated and present hotpluggable
1159# (if enabled) memory in bytes.
1160#
1161# Example:
1162#
1163# -> { "execute": "query-memory-size-summary" }
1164# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1165#
1166# Since: 2.11
1167##
1168{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1169
1170##
1171# @PCDIMMDeviceInfo:
1172#
1173# PCDIMMDevice state information
1174#
1175# @id: device's ID
1176#
1177# @addr: physical address, where device is mapped
1178#
1179# @size: size of memory that the device provides
1180#
1181# @slot: slot number at which device is plugged in
1182#
1183# @node: NUMA node number where device is plugged in
1184#
1185# @memdev: memory backend linked with device
1186#
1187# @hotplugged: true if device was hotplugged
1188#
1189# @hotpluggable: true if device if could be added/removed while
1190#     machine is running
1191#
1192# Since: 2.1
1193##
1194{ 'struct': 'PCDIMMDeviceInfo',
1195  'data': { '*id': 'str',
1196            'addr': 'int',
1197            'size': 'int',
1198            'slot': 'int',
1199            'node': 'int',
1200            'memdev': 'str',
1201            'hotplugged': 'bool',
1202            'hotpluggable': 'bool'
1203          }
1204}
1205
1206##
1207# @VirtioPMEMDeviceInfo:
1208#
1209# VirtioPMEM state information
1210#
1211# @id: device's ID
1212#
1213# @memaddr: physical address in memory, where device is mapped
1214#
1215# @size: size of memory that the device provides
1216#
1217# @memdev: memory backend linked with device
1218#
1219# Since: 4.1
1220##
1221{ 'struct': 'VirtioPMEMDeviceInfo',
1222  'data': { '*id': 'str',
1223            'memaddr': 'size',
1224            'size': 'size',
1225            'memdev': 'str'
1226          }
1227}
1228
1229##
1230# @VirtioMEMDeviceInfo:
1231#
1232# VirtioMEMDevice state information
1233#
1234# @id: device's ID
1235#
1236# @memaddr: physical address in memory, where device is mapped
1237#
1238# @requested-size: the user requested size of the device
1239#
1240# @size: the (current) size of memory that the device provides
1241#
1242# @max-size: the maximum size of memory that the device can provide
1243#
1244# @block-size: the block size of memory that the device provides
1245#
1246# @node: NUMA node number where device is assigned to
1247#
1248# @memdev: memory backend linked with the region
1249#
1250# Since: 5.1
1251##
1252{ 'struct': 'VirtioMEMDeviceInfo',
1253  'data': { '*id': 'str',
1254            'memaddr': 'size',
1255            'requested-size': 'size',
1256            'size': 'size',
1257            'max-size': 'size',
1258            'block-size': 'size',
1259            'node': 'int',
1260            'memdev': 'str'
1261          }
1262}
1263
1264##
1265# @SgxEPCDeviceInfo:
1266#
1267# Sgx EPC state information
1268#
1269# @id: device's ID
1270#
1271# @memaddr: physical address in memory, where device is mapped
1272#
1273# @size: size of memory that the device provides
1274#
1275# @memdev: memory backend linked with device
1276#
1277# @node: the numa node (Since: 7.0)
1278#
1279# Since: 6.2
1280##
1281{ 'struct': 'SgxEPCDeviceInfo',
1282  'data': { '*id': 'str',
1283            'memaddr': 'size',
1284            'size': 'size',
1285            'node': 'int',
1286            'memdev': 'str'
1287          }
1288}
1289
1290##
1291# @MemoryDeviceInfoKind:
1292#
1293# @nvdimm: since 2.12
1294#
1295# @virtio-pmem: since 4.1
1296#
1297# @virtio-mem: since 5.1
1298#
1299# @sgx-epc: since 6.2.
1300#
1301# Since: 2.1
1302##
1303{ 'enum': 'MemoryDeviceInfoKind',
1304  'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1305
1306##
1307# @PCDIMMDeviceInfoWrapper:
1308#
1309# Since: 2.1
1310##
1311{ 'struct': 'PCDIMMDeviceInfoWrapper',
1312  'data': { 'data': 'PCDIMMDeviceInfo' } }
1313
1314##
1315# @VirtioPMEMDeviceInfoWrapper:
1316#
1317# Since: 2.1
1318##
1319{ 'struct': 'VirtioPMEMDeviceInfoWrapper',
1320  'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1321
1322##
1323# @VirtioMEMDeviceInfoWrapper:
1324#
1325# Since: 2.1
1326##
1327{ 'struct': 'VirtioMEMDeviceInfoWrapper',
1328  'data': { 'data': 'VirtioMEMDeviceInfo' } }
1329
1330##
1331# @SgxEPCDeviceInfoWrapper:
1332#
1333# Since: 6.2
1334##
1335{ 'struct': 'SgxEPCDeviceInfoWrapper',
1336  'data': { 'data': 'SgxEPCDeviceInfo' } }
1337
1338##
1339# @MemoryDeviceInfo:
1340#
1341# Union containing information about a memory device
1342#
1343# Since: 2.1
1344##
1345{ 'union': 'MemoryDeviceInfo',
1346  'base': { 'type': 'MemoryDeviceInfoKind' },
1347  'discriminator': 'type',
1348  'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1349            'nvdimm': 'PCDIMMDeviceInfoWrapper',
1350            'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1351            'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1352            'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1353          }
1354}
1355
1356##
1357# @SgxEPC:
1358#
1359# Sgx EPC cmdline information
1360#
1361# @memdev: memory backend linked with device
1362#
1363# @node: the numa node (Since: 7.0)
1364#
1365# Since: 6.2
1366##
1367{ 'struct': 'SgxEPC',
1368  'data': { 'memdev': 'str',
1369            'node': 'int'
1370          }
1371}
1372
1373##
1374# @SgxEPCProperties:
1375#
1376# SGX properties of machine types.
1377#
1378# @sgx-epc: list of ids of memory-backend-epc objects.
1379#
1380# Since: 6.2
1381##
1382{ 'struct': 'SgxEPCProperties',
1383  'data': { 'sgx-epc': ['SgxEPC'] }
1384}
1385
1386##
1387# @query-memory-devices:
1388#
1389# Lists available memory devices and their state
1390#
1391# Since: 2.1
1392#
1393# Example:
1394#
1395# -> { "execute": "query-memory-devices" }
1396# <- { "return": [ { "data":
1397#                       { "addr": 5368709120,
1398#                         "hotpluggable": true,
1399#                         "hotplugged": true,
1400#                         "id": "d1",
1401#                         "memdev": "/objects/memX",
1402#                         "node": 0,
1403#                         "size": 1073741824,
1404#                         "slot": 0},
1405#                    "type": "dimm"
1406#                  } ] }
1407##
1408{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1409
1410##
1411# @MEMORY_DEVICE_SIZE_CHANGE:
1412#
1413# Emitted when the size of a memory device changes.  Only emitted for
1414# memory devices that can actually change the size (e.g., virtio-mem
1415# due to guest action).
1416#
1417# @id: device's ID
1418#
1419# @size: the new size of memory that the device provides
1420#
1421# @qom-path: path to the device object in the QOM tree (since 6.2)
1422#
1423# Note: this event is rate-limited.
1424#
1425# Since: 5.1
1426#
1427# Example:
1428#
1429# <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1430#      "data": { "id": "vm0", "size": 1073741824,
1431#                "qom-path": "/machine/unattached/device[2]" },
1432#      "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1433##
1434{ 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1435  'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1436
1437##
1438# @MEM_UNPLUG_ERROR:
1439#
1440# Emitted when memory hot unplug error occurs.
1441#
1442# @device: device name
1443#
1444# @msg: Informative message
1445#
1446# Features:
1447#
1448# @deprecated: This event is deprecated.  Use
1449#     @DEVICE_UNPLUG_GUEST_ERROR instead.
1450#
1451# Since: 2.4
1452#
1453# Example:
1454#
1455# <- { "event": "MEM_UNPLUG_ERROR",
1456#      "data": { "device": "dimm1",
1457#                "msg": "acpi: device unplug for unsupported device"
1458#      },
1459#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1460##
1461{ 'event': 'MEM_UNPLUG_ERROR',
1462  'data': { 'device': 'str', 'msg': 'str' },
1463  'features': ['deprecated'] }
1464
1465##
1466# @BootConfiguration:
1467#
1468# Schema for virtual machine boot configuration.
1469#
1470# @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1471#
1472# @once: Boot order to apply on first boot
1473#
1474# @menu: Whether to show a boot menu
1475#
1476# @splash: The name of the file to be passed to the firmware as logo
1477#     picture, if @menu is true.
1478#
1479# @splash-time: How long to show the logo picture, in milliseconds
1480#
1481# @reboot-timeout: Timeout before guest reboots after boot fails
1482#
1483# @strict: Whether to attempt booting from devices not included in the
1484#     boot order
1485#
1486# Since: 7.1
1487##
1488{ 'struct': 'BootConfiguration', 'data': {
1489     '*order': 'str',
1490     '*once': 'str',
1491     '*menu': 'bool',
1492     '*splash': 'str',
1493     '*splash-time': 'int',
1494     '*reboot-timeout': 'int',
1495     '*strict': 'bool' } }
1496
1497##
1498# @SMPConfiguration:
1499#
1500# Schema for CPU topology configuration.  A missing value lets QEMU
1501# figure out a suitable value based on the ones that are provided.
1502#
1503# The members other than @cpus and @maxcpus define a topology of
1504# containers.
1505#
1506# The ordering from highest/coarsest to lowest/finest is:
1507# @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1508#
1509# Different architectures support different subsets of topology
1510# containers.
1511#
1512# For example, s390x does not have clusters and dies, and the socket
1513# is the parent container of cores.
1514#
1515# @cpus: number of virtual CPUs in the virtual machine
1516#
1517# @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1518#     machine
1519#
1520# @drawers: number of drawers in the CPU topology (since 8.2)
1521#
1522# @books: number of books in the CPU topology (since 8.2)
1523#
1524# @sockets: number of sockets per parent container
1525#
1526# @dies: number of dies per parent container
1527#
1528# @clusters: number of clusters per parent container (since 7.0)
1529#
1530# @cores: number of cores per parent container
1531#
1532# @threads: number of threads per core
1533#
1534# Since: 6.1
1535##
1536{ 'struct': 'SMPConfiguration', 'data': {
1537     '*cpus': 'int',
1538     '*drawers': 'int',
1539     '*books': 'int',
1540     '*sockets': 'int',
1541     '*dies': 'int',
1542     '*clusters': 'int',
1543     '*cores': 'int',
1544     '*threads': 'int',
1545     '*maxcpus': 'int' } }
1546
1547##
1548# @x-query-irq:
1549#
1550# Query interrupt statistics
1551#
1552# Features:
1553#
1554# @unstable: This command is meant for debugging.
1555#
1556# Returns: interrupt statistics
1557#
1558# Since: 6.2
1559##
1560{ 'command': 'x-query-irq',
1561  'returns': 'HumanReadableText',
1562  'features': [ 'unstable' ] }
1563
1564##
1565# @x-query-jit:
1566#
1567# Query TCG compiler statistics
1568#
1569# Features:
1570#
1571# @unstable: This command is meant for debugging.
1572#
1573# Returns: TCG compiler statistics
1574#
1575# Since: 6.2
1576##
1577{ 'command': 'x-query-jit',
1578  'returns': 'HumanReadableText',
1579  'if': 'CONFIG_TCG',
1580  'features': [ 'unstable' ] }
1581
1582##
1583# @x-query-numa:
1584#
1585# Query NUMA topology information
1586#
1587# Features:
1588#
1589# @unstable: This command is meant for debugging.
1590#
1591# Returns: topology information
1592#
1593# Since: 6.2
1594##
1595{ 'command': 'x-query-numa',
1596  'returns': 'HumanReadableText',
1597  'features': [ 'unstable' ] }
1598
1599##
1600# @x-query-opcount:
1601#
1602# Query TCG opcode counters
1603#
1604# Features:
1605#
1606# @unstable: This command is meant for debugging.
1607#
1608# Returns: TCG opcode counters
1609#
1610# Since: 6.2
1611##
1612{ 'command': 'x-query-opcount',
1613  'returns': 'HumanReadableText',
1614  'if': 'CONFIG_TCG',
1615  'features': [ 'unstable' ] }
1616
1617##
1618# @x-query-ramblock:
1619#
1620# Query system ramblock information
1621#
1622# Features:
1623#
1624# @unstable: This command is meant for debugging.
1625#
1626# Returns: system ramblock information
1627#
1628# Since: 6.2
1629##
1630{ 'command': 'x-query-ramblock',
1631  'returns': 'HumanReadableText',
1632  'features': [ 'unstable' ] }
1633
1634##
1635# @x-query-rdma:
1636#
1637# Query RDMA state
1638#
1639# Features:
1640#
1641# @unstable: This command is meant for debugging.
1642#
1643# Returns: RDMA state
1644#
1645# Since: 6.2
1646##
1647{ 'command': 'x-query-rdma',
1648  'returns': 'HumanReadableText',
1649  'features': [ 'unstable' ] }
1650
1651##
1652# @x-query-roms:
1653#
1654# Query information on the registered ROMS
1655#
1656# Features:
1657#
1658# @unstable: This command is meant for debugging.
1659#
1660# Returns: registered ROMs
1661#
1662# Since: 6.2
1663##
1664{ 'command': 'x-query-roms',
1665  'returns': 'HumanReadableText',
1666  'features': [ 'unstable' ] }
1667
1668##
1669# @x-query-usb:
1670#
1671# Query information on the USB devices
1672#
1673# Features:
1674#
1675# @unstable: This command is meant for debugging.
1676#
1677# Returns: USB device information
1678#
1679# Since: 6.2
1680##
1681{ 'command': 'x-query-usb',
1682  'returns': 'HumanReadableText',
1683  'features': [ 'unstable' ] }
1684
1685##
1686# @SmbiosEntryPointType:
1687#
1688# @32: SMBIOS version 2.1 (32-bit) Entry Point
1689#
1690# @64: SMBIOS version 3.0 (64-bit) Entry Point
1691#
1692# Since: 7.0
1693##
1694{ 'enum': 'SmbiosEntryPointType',
1695  'data': [ '32', '64' ] }
1696
1697##
1698# @MemorySizeConfiguration:
1699#
1700# Schema for memory size configuration.
1701#
1702# @size: memory size in bytes
1703#
1704# @max-size: maximum hotpluggable memory size in bytes
1705#
1706# @slots: number of available memory slots for hotplug
1707#
1708# Since: 7.1
1709##
1710{ 'struct': 'MemorySizeConfiguration', 'data': {
1711     '*size': 'size',
1712     '*max-size': 'size',
1713     '*slots': 'uint64' } }
1714
1715##
1716# @dumpdtb:
1717#
1718# Save the FDT in dtb format.
1719#
1720# @filename: name of the dtb file to be created
1721#
1722# Since: 7.2
1723#
1724# Example:
1725#
1726# -> { "execute": "dumpdtb" }
1727#      "arguments": { "filename": "fdt.dtb" } }
1728# <- { "return": {} }
1729##
1730{ 'command': 'dumpdtb',
1731  'data': { 'filename': 'str' },
1732  'if': 'CONFIG_FDT' }
1733