xref: /qemu/qapi/migration.json (revision 401e311f)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages. Always zero, only provided for
27#     compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34#     (since 1.3)
35#
36# @mbps: throughput in megabits/sec.  (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39#     (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42#     destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45#     statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50#     (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53#     (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56#     (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59#     (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62#     synchronization could not avoid copying dirty pages.  This is
63#     between 0 and @dirty-sync-count * @multifd-channels.  (since
64#     7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71#
72##
73{ 'struct': 'MigrationStats',
74  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75           'duplicate': 'int',
76           'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
77           'normal': 'int',
78           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79           'mbps': 'number', 'dirty-sync-count': 'int',
80           'postcopy-requests': 'int', 'page-size': 'int',
81           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83           'postcopy-bytes': 'uint64',
84           'dirty-sync-missed-zero-copy': 'uint64' } }
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
108  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109           'cache-miss': 'int', 'cache-miss-rate': 'number',
110           'encoding-rate': 'number', 'overflow': 'int' } }
111
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
119# @busy: count of times that no free thread was available to compress
120#     data
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132           'compressed-size': 'int', 'compression-rate': 'number' } }
133
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
149# @postcopy-active: like active, but now in postcopy mode.  (since
150#     2.5)
151#
152# @postcopy-paused: during postcopy but paused.  (since 3.0)
153#
154# @postcopy-recover: trying to recover from a paused postcopy.  (since
155#     3.0)
156#
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
161# @colo: VM is in the process of fault tolerance, VM can not get into
162#     this state unless colo capability is enabled for migration.
163#     (since 2.8)
164#
165# @pre-switchover: Paused before device serialisation.  (since 2.11)
166#
167# @device: During device serialisation when pause-before-switchover is
168#     enabled (since 2.11)
169#
170# @wait-unplug: wait for device unplug request by guest OS to be
171#     completed.  (since 4.2)
172#
173# Since: 2.3
174##
175{ 'enum': 'MigrationStatus',
176  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177            'active', 'postcopy-active', 'postcopy-paused',
178            'postcopy-recover', 'completed', 'failed', 'colo',
179            'pre-switchover', 'device', 'wait-unplug' ] }
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
185# @transferred: amount of bytes transferred to the target VM by VFIO
186#     devices
187#
188# Since: 5.2
189##
190{ 'struct': 'VfioStats',
191  'data': {'transferred': 'int' } }
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
199#     If this field is not returned, no migration process has been
200#     initiated
201#
202# @ram: @MigrationStats containing detailed migration status, only
203#     returned if status is 'active' or 'completed'(since 1.2)
204#
205# @disk: @MigrationStats containing detailed disk migration status,
206#     only returned if status is 'active' and it is a block migration
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209#     migration statistics, only returned if XBZRLE feature is on and
210#     status is 'active' or 'completed' (since 1.2)
211#
212# @total-time: total amount of milliseconds since migration started.
213#     If migration has ended, it returns the total migration time.
214#     (since 1.2)
215#
216# @downtime: only present when migration finishes correctly total
217#     downtime in milliseconds for the guest.  (since 1.3)
218#
219# @expected-downtime: only present while migration is active expected
220#     downtime in milliseconds for the guest in last walk of the dirty
221#     bitmap.  (since 1.3)
222#
223# @setup-time: amount of setup time in milliseconds *before* the
224#     iterations begin but *after* the QMP command is issued.  This is
225#     designed to provide an accounting of any activities (such as
226#     RDMA pinning) which may be expensive, but do not actually occur
227#     during the iterative migration rounds themselves.  (since 1.6)
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
230#     throttled during auto-converge.  This is only present when
231#     auto-converge has started throttling guest cpus.  (Since 2.7)
232#
233# @error-desc: the human readable error description string. Clients
234#     should not attempt to parse the error strings.  (Since 2.7)
235#
236# @postcopy-blocktime: total time when all vCPU were blocked during
237#     postcopy live migration.  This is only present when the
238#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
239#
240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241#     This is only present when the postcopy-blocktime migration
242#     capability is enabled.  (Since 3.0)
243#
244# @compression: migration compression statistics, only returned if
245#     compression feature is on and status is 'active' or 'completed'
246#     (Since 3.1)
247#
248# @socket-address: Only used for tcp, to know what the real port is
249#     (Since 4.0)
250#
251# @vfio: @VfioStats containing detailed VFIO devices migration
252#     statistics, only returned if VFIO device is present, migration
253#     is supported by all VFIO devices and status is 'active' or
254#     'completed' (since 5.2)
255#
256# @blocked-reasons: A list of reasons an outgoing migration is
257#     blocked.  Present and non-empty when migration is blocked.
258#     (since 6.0)
259#
260# @dirty-limit-throttle-time-per-round: Maximum throttle time
261#     (in microseconds) of virtual CPUs each dirty ring full round,
262#     which shows how MigrationCapability dirty-limit affects the
263#     guest during live migration.  (Since 8.1)
264#
265# @dirty-limit-ring-full-time: Estimated average dirty ring full time
266#     (in microseconds) for each dirty ring full round.  The value
267#     equals the dirty ring memory size divided by the average dirty
268#     page rate of the virtual CPU, which can be used to observe the
269#     average memory load of the virtual CPU indirectly.  Note that
270#     zero means guest doesn't dirty memory.  (Since 8.1)
271#
272# Features:
273#
274# @deprecated: Member @disk is deprecated because block migration is.
275#     Member @compression is deprecated because it is unreliable and
276#     untested.  It is recommended to use multifd migration, which
277#     offers an alternative compression implementation that is
278#     reliable and tested.
279#
280# Since: 0.14
281##
282{ 'struct': 'MigrationInfo',
283  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
284           '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] },
285           '*vfio': 'VfioStats',
286           '*xbzrle-cache': 'XBZRLECacheStats',
287           '*total-time': 'int',
288           '*expected-downtime': 'int',
289           '*downtime': 'int',
290           '*setup-time': 'int',
291           '*cpu-throttle-percentage': 'int',
292           '*error-desc': 'str',
293           '*blocked-reasons': ['str'],
294           '*postcopy-blocktime': 'uint32',
295           '*postcopy-vcpu-blocktime': ['uint32'],
296           '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] },
297           '*socket-address': ['SocketAddress'],
298           '*dirty-limit-throttle-time-per-round': 'uint64',
299           '*dirty-limit-ring-full-time': 'uint64'} }
300
301##
302# @query-migrate:
303#
304# Returns information about current migration process.  If migration
305# is active there will be another json-object with RAM migration
306# status and if block migration is active another one with block
307# migration status.
308#
309# Returns: @MigrationInfo
310#
311# Since: 0.14
312#
313# Examples:
314#
315#     1. Before the first migration
316#
317#     -> { "execute": "query-migrate" }
318#     <- { "return": {} }
319#
320#     2. Migration is done and has succeeded
321#
322#     -> { "execute": "query-migrate" }
323#     <- { "return": {
324#             "status": "completed",
325#             "total-time":12345,
326#             "setup-time":12345,
327#             "downtime":12345,
328#             "ram":{
329#               "transferred":123,
330#               "remaining":123,
331#               "total":246,
332#               "duplicate":123,
333#               "normal":123,
334#               "normal-bytes":123456,
335#               "dirty-sync-count":15
336#             }
337#          }
338#        }
339#
340#     3. Migration is done and has failed
341#
342#     -> { "execute": "query-migrate" }
343#     <- { "return": { "status": "failed" } }
344#
345#     4. Migration is being performed and is not a block migration:
346#
347#     -> { "execute": "query-migrate" }
348#     <- {
349#           "return":{
350#              "status":"active",
351#              "total-time":12345,
352#              "setup-time":12345,
353#              "expected-downtime":12345,
354#              "ram":{
355#                 "transferred":123,
356#                 "remaining":123,
357#                 "total":246,
358#                 "duplicate":123,
359#                 "normal":123,
360#                 "normal-bytes":123456,
361#                 "dirty-sync-count":15
362#              }
363#           }
364#        }
365#
366#     5. Migration is being performed and is a block migration:
367#
368#     -> { "execute": "query-migrate" }
369#     <- {
370#           "return":{
371#              "status":"active",
372#              "total-time":12345,
373#              "setup-time":12345,
374#              "expected-downtime":12345,
375#              "ram":{
376#                 "total":1057024,
377#                 "remaining":1053304,
378#                 "transferred":3720,
379#                 "duplicate":123,
380#                 "normal":123,
381#                 "normal-bytes":123456,
382#                 "dirty-sync-count":15
383#              },
384#              "disk":{
385#                 "total":20971520,
386#                 "remaining":20880384,
387#                 "transferred":91136
388#              }
389#           }
390#        }
391#
392#     6. Migration is being performed and XBZRLE is active:
393#
394#     -> { "execute": "query-migrate" }
395#     <- {
396#           "return":{
397#              "status":"active",
398#              "total-time":12345,
399#              "setup-time":12345,
400#              "expected-downtime":12345,
401#              "ram":{
402#                 "total":1057024,
403#                 "remaining":1053304,
404#                 "transferred":3720,
405#                 "duplicate":10,
406#                 "normal":3333,
407#                 "normal-bytes":3412992,
408#                 "dirty-sync-count":15
409#              },
410#              "xbzrle-cache":{
411#                 "cache-size":67108864,
412#                 "bytes":20971520,
413#                 "pages":2444343,
414#                 "cache-miss":2244,
415#                 "cache-miss-rate":0.123,
416#                 "encoding-rate":80.1,
417#                 "overflow":34434
418#              }
419#           }
420#        }
421##
422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
423
424##
425# @MigrationCapability:
426#
427# Migration capabilities enumeration
428#
429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
430#     Encoding). This feature allows us to minimize migration traffic
431#     for certain work loads, by sending compressed difference of the
432#     pages
433#
434# @rdma-pin-all: Controls whether or not the entire VM memory
435#     footprint is mlock()'d on demand or all at once.  Refer to
436#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
437#
438# @zero-blocks: During storage migration encode blocks of zeroes
439#     efficiently.  This essentially saves 1MB of zeroes per block on
440#     the wire.  Enabling requires source and target VM to support
441#     this feature.  To enable it is sufficient to enable the
442#     capability on the source VM. The feature is disabled by default.
443#     (since 1.6)
444#
445# @compress: Use multiple compression threads to accelerate live
446#     migration.  This feature can help to reduce the migration
447#     traffic, by sending compressed pages.  Please note that if
448#     compress and xbzrle are both on, compress only takes effect in
449#     the ram bulk stage, after that, it will be disabled and only
450#     xbzrle takes effect, this can help to minimize migration
451#     traffic.  The feature is disabled by default.  (since 2.4)
452#
453# @events: generate events for each migration state change (since 2.4)
454#
455# @auto-converge: If enabled, QEMU will automatically throttle down
456#     the guest to speed up convergence of RAM migration.  (since 1.6)
457#
458# @postcopy-ram: Start executing on the migration target before all of
459#     RAM has been migrated, pulling the remaining pages along as
460#     needed.  The capacity must have the same setting on both source
461#     and target or migration will not even start.  NOTE: If the
462#     migration fails during postcopy the VM will fail.  (since 2.6)
463#
464# @x-colo: If enabled, migration will never end, and the state of the
465#     VM on the primary side will be migrated continuously to the VM
466#     on secondary side, this process is called COarse-Grain LOck
467#     Stepping (COLO) for Non-stop Service.  (since 2.8)
468#
469# @release-ram: if enabled, qemu will free the migrated ram pages on
470#     the source during postcopy-ram migration.  (since 2.9)
471#
472# @block: If enabled, QEMU will also migrate the contents of all block
473#     devices.  Default is disabled.  A possible alternative uses
474#     mirror jobs to a builtin NBD server on the destination, which
475#     offers more flexibility.  (Since 2.10)
476#
477# @return-path: If enabled, migration will use the return path even
478#     for precopy.  (since 2.10)
479#
480# @pause-before-switchover: Pause outgoing migration before
481#     serialising device state and before disabling block IO (since
482#     2.11)
483#
484# @multifd: Use more than one fd for migration (since 4.0)
485#
486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
487#     (since 2.12)
488#
489# @postcopy-blocktime: Calculate downtime for postcopy live migration
490#     (since 3.0)
491#
492# @late-block-activate: If enabled, the destination will not activate
493#     block devices (and thus take locks) immediately at the end of
494#     migration.  (since 3.0)
495#
496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
497#     that is accessible on the destination machine.  (since 4.0)
498#
499# @validate-uuid: Send the UUID of the source to allow the destination
500#     to ensure it is the same.  (since 4.2)
501#
502# @background-snapshot: If enabled, the migration stream will be a
503#     snapshot of the VM exactly at the point when the migration
504#     procedure starts.  The VM RAM is saved with running VM. (since
505#     6.0)
506#
507# @zero-copy-send: Controls behavior on sending memory pages on
508#     migration.  When true, enables a zero-copy mechanism for sending
509#     memory pages, if host supports it.  Requires that QEMU be
510#     permitted to use locked memory for guest RAM pages.  (since 7.1)
511#
512# @postcopy-preempt: If enabled, the migration process will allow
513#     postcopy requests to preempt precopy stream, so postcopy
514#     requests will be handled faster.  This is a performance feature
515#     and should not affect the correctness of postcopy migration.
516#     (since 7.1)
517#
518# @switchover-ack: If enabled, migration will not stop the source VM
519#     and complete the migration until an ACK is received from the
520#     destination that it's OK to do so.  Exactly when this ACK is
521#     sent depends on the migrated devices that use this feature.  For
522#     example, a device can use it to make sure some of its data is
523#     sent and loaded in the destination before doing switchover.
524#     This can reduce downtime if devices that support this capability
525#     are present.  'return-path' capability must be enabled to use
526#     it.  (since 8.1)
527#
528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
529#     keep their dirty page rate within @vcpu-dirty-limit.  This can
530#     improve responsiveness of large guests during live migration,
531#     and can result in more stable read performance.  Requires KVM
532#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
533#
534# Features:
535#
536# @deprecated: Member @block is deprecated.  Use blockdev-mirror with
537#     NBD instead.  Member @compress is deprecated because it is
538#     unreliable and untested.  It is recommended to use multifd
539#     migration, which offers an alternative compression
540#     implementation that is reliable and tested.
541#
542# @unstable: Members @x-colo and @x-ignore-shared are experimental.
543#
544# Since: 1.2
545##
546{ 'enum': 'MigrationCapability',
547  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
548           { 'name': 'compress', 'features': [ 'deprecated' ] },
549           'events', 'postcopy-ram',
550           { 'name': 'x-colo', 'features': [ 'unstable' ] },
551           'release-ram',
552           { 'name': 'block', 'features': [ 'deprecated' ] },
553           'return-path', 'pause-before-switchover', 'multifd',
554           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
555           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
556           'validate-uuid', 'background-snapshot',
557           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
558           'dirty-limit'] }
559
560##
561# @MigrationCapabilityStatus:
562#
563# Migration capability information
564#
565# @capability: capability enum
566#
567# @state: capability state bool
568#
569# Since: 1.2
570##
571{ 'struct': 'MigrationCapabilityStatus',
572  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
573
574##
575# @migrate-set-capabilities:
576#
577# Enable/Disable the following migration capabilities (like xbzrle)
578#
579# @capabilities: json array of capability modifications to make
580#
581# Since: 1.2
582#
583# Example:
584#
585#     -> { "execute": "migrate-set-capabilities" , "arguments":
586#          { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
587#     <- { "return": {} }
588##
589{ 'command': 'migrate-set-capabilities',
590  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
591
592##
593# @query-migrate-capabilities:
594#
595# Returns information about the current migration capabilities status
596#
597# Returns: @MigrationCapabilityStatus
598#
599# Since: 1.2
600#
601# Example:
602#
603#     -> { "execute": "query-migrate-capabilities" }
604#     <- { "return": [
605#           {"state": false, "capability": "xbzrle"},
606#           {"state": false, "capability": "rdma-pin-all"},
607#           {"state": false, "capability": "auto-converge"},
608#           {"state": false, "capability": "zero-blocks"},
609#           {"state": false, "capability": "compress"},
610#           {"state": true, "capability": "events"},
611#           {"state": false, "capability": "postcopy-ram"},
612#           {"state": false, "capability": "x-colo"}
613#        ]}
614##
615{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
616
617##
618# @MultiFDCompression:
619#
620# An enumeration of multifd compression methods.
621#
622# @none: no compression.
623#
624# @zlib: use zlib compression method.
625#
626# @zstd: use zstd compression method.
627#
628# Since: 5.0
629##
630{ 'enum': 'MultiFDCompression',
631  'data': [ 'none', 'zlib',
632            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
633
634##
635# @MigMode:
636#
637# @normal: the original form of migration. (since 8.2)
638#
639# @cpr-reboot: The migrate command stops the VM and saves state to
640#     the URI.  After quitting QEMU, the user resumes by running
641#     QEMU -incoming.
642#
643#     This mode allows the user to quit QEMU, optionally update and
644#     reboot the OS, and restart QEMU.  If the user reboots, the URI
645#     must persist across the reboot, such as by using a file.
646#
647#     Unlike normal mode, the use of certain local storage options
648#     does not block the migration, but the user must not modify the
649#     contents of guest block devices between the quit and restart.
650#
651#     This mode supports VFIO devices provided the user first puts
652#     the guest in the suspended runstate, such as by issuing
653#     guest-suspend-ram to the QEMU guest agent.
654#
655#     Best performance is achieved when the memory backend is shared
656#     and the @x-ignore-shared migration capability is set, but this
657#     is not required.  Further, if the user reboots before restarting
658#     such a configuration, the shared memory must persist across the
659#     reboot, such as by backing it with a dax device.
660#
661#     @cpr-reboot may not be used with postcopy, background-snapshot,
662#     or COLO.
663#
664#     (since 8.2)
665##
666{ 'enum': 'MigMode',
667  'data': [ 'normal', 'cpr-reboot' ] }
668
669##
670# @BitmapMigrationBitmapAliasTransform:
671#
672# @persistent: If present, the bitmap will be made persistent or
673#     transient depending on this parameter.
674#
675# Since: 6.0
676##
677{ 'struct': 'BitmapMigrationBitmapAliasTransform',
678  'data': {
679      '*persistent': 'bool'
680  } }
681
682##
683# @BitmapMigrationBitmapAlias:
684#
685# @name: The name of the bitmap.
686#
687# @alias: An alias name for migration (for example the bitmap name on
688#     the opposite site).
689#
690# @transform: Allows the modification of the migrated bitmap.  (since
691#     6.0)
692#
693# Since: 5.2
694##
695{ 'struct': 'BitmapMigrationBitmapAlias',
696  'data': {
697      'name': 'str',
698      'alias': 'str',
699      '*transform': 'BitmapMigrationBitmapAliasTransform'
700  } }
701
702##
703# @BitmapMigrationNodeAlias:
704#
705# Maps a block node name and the bitmaps it has to aliases for dirty
706# bitmap migration.
707#
708# @node-name: A block node name.
709#
710# @alias: An alias block node name for migration (for example the node
711#     name on the opposite site).
712#
713# @bitmaps: Mappings for the bitmaps on this node.
714#
715# Since: 5.2
716##
717{ 'struct': 'BitmapMigrationNodeAlias',
718  'data': {
719      'node-name': 'str',
720      'alias': 'str',
721      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
722  } }
723
724##
725# @MigrationParameter:
726#
727# Migration parameters enumeration
728#
729# @announce-initial: Initial delay (in milliseconds) before sending
730#     the first announce (Since 4.0)
731#
732# @announce-max: Maximum delay (in milliseconds) between packets in
733#     the announcement (Since 4.0)
734#
735# @announce-rounds: Number of self-announce packets sent after
736#     migration (Since 4.0)
737#
738# @announce-step: Increase in delay (in milliseconds) between
739#     subsequent packets in the announcement (Since 4.0)
740#
741# @compress-level: Set the compression level to be used in live
742#     migration, the compression level is an integer between 0 and 9,
743#     where 0 means no compression, 1 means the best compression
744#     speed, and 9 means best compression ratio which will consume
745#     more CPU.
746#
747# @compress-threads: Set compression thread count to be used in live
748#     migration, the compression thread count is an integer between 1
749#     and 255.
750#
751# @compress-wait-thread: Controls behavior when all compression
752#     threads are currently busy.  If true (default), wait for a free
753#     compression thread to become available; otherwise, send the page
754#     uncompressed.  (Since 3.1)
755#
756# @decompress-threads: Set decompression thread count to be used in
757#     live migration, the decompression thread count is an integer
758#     between 1 and 255. Usually, decompression is at least 4 times as
759#     fast as compression, so set the decompress-threads to the number
760#     about 1/4 of compress-threads is adequate.
761#
762# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
763#     bytes_xfer_period to trigger throttling.  It is expressed as
764#     percentage.  The default value is 50. (Since 5.0)
765#
766# @cpu-throttle-initial: Initial percentage of time guest cpus are
767#     throttled when migration auto-converge is activated.  The
768#     default value is 20. (Since 2.7)
769#
770# @cpu-throttle-increment: throttle percentage increase each time
771#     auto-converge detects that migration is not making progress.
772#     The default value is 10. (Since 2.7)
773#
774# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
775#     the tail stage of throttling, the Guest is very sensitive to CPU
776#     percentage while the @cpu-throttle -increment is excessive
777#     usually at tail stage.  If this parameter is true, we will
778#     compute the ideal CPU percentage used by the Guest, which may
779#     exactly make the dirty rate match the dirty rate threshold.
780#     Then we will choose a smaller throttle increment between the one
781#     specified by @cpu-throttle-increment and the one generated by
782#     ideal CPU percentage.  Therefore, it is compatible to
783#     traditional throttling, meanwhile the throttle increment won't
784#     be excessive at tail stage.  The default value is false.  (Since
785#     5.1)
786#
787# @tls-creds: ID of the 'tls-creds' object that provides credentials
788#     for establishing a TLS connection over the migration data
789#     channel.  On the outgoing side of the migration, the credentials
790#     must be for a 'client' endpoint, while for the incoming side the
791#     credentials must be for a 'server' endpoint.  Setting this will
792#     enable TLS for all migrations.  The default is unset, resulting
793#     in unsecured migration at the QEMU level.  (Since 2.7)
794#
795# @tls-hostname: hostname of the target host for the migration.  This
796#     is required when using x509 based TLS credentials and the
797#     migration URI does not already include a hostname.  For example
798#     if using fd: or exec: based migration, the hostname must be
799#     provided so that the server's x509 certificate identity can be
800#     validated.  (Since 2.7)
801#
802# @tls-authz: ID of the 'authz' object subclass that provides access
803#     control checking of the TLS x509 certificate distinguished name.
804#     This object is only resolved at time of use, so can be deleted
805#     and recreated on the fly while the migration server is active.
806#     If missing, it will default to denying access (Since 4.0)
807#
808# @max-bandwidth: to set maximum speed for migration.  maximum speed
809#     in bytes per second.  (Since 2.8)
810#
811# @avail-switchover-bandwidth: to set the available bandwidth that
812#     migration can use during switchover phase.  NOTE!  This does not
813#     limit the bandwidth during switchover, but only for calculations when
814#     making decisions to switchover.  By default, this value is zero,
815#     which means QEMU will estimate the bandwidth automatically.  This can
816#     be set when the estimated value is not accurate, while the user is
817#     able to guarantee such bandwidth is available when switching over.
818#     When specified correctly, this can make the switchover decision much
819#     more accurate.  (Since 8.2)
820#
821# @downtime-limit: set maximum tolerated downtime for migration.
822#     maximum downtime in milliseconds (Since 2.8)
823#
824# @x-checkpoint-delay: The delay time (in ms) between two COLO
825#     checkpoints in periodic mode.  (Since 2.8)
826#
827# @block-incremental: Affects how much storage is migrated when the
828#     block migration capability is enabled.  When false, the entire
829#     storage backing chain is migrated into a flattened image at the
830#     destination; when true, only the active qcow2 layer is migrated
831#     and the destination must already have access to the same backing
832#     chain as was used on the source.  (since 2.10)
833#
834# @multifd-channels: Number of channels used to migrate data in
835#     parallel.  This is the same number that the number of sockets
836#     used for migration.  The default value is 2 (since 4.0)
837#
838# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
839#     needs to be a multiple of the target page size and a power of 2
840#     (Since 2.11)
841#
842# @max-postcopy-bandwidth: Background transfer bandwidth during
843#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
844#     (Since 3.0)
845#
846# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
847#     (Since 3.1)
848#
849# @multifd-compression: Which compression method to use.  Defaults to
850#     none.  (Since 5.0)
851#
852# @multifd-zlib-level: Set the compression level to be used in live
853#     migration, the compression level is an integer between 0 and 9,
854#     where 0 means no compression, 1 means the best compression
855#     speed, and 9 means best compression ratio which will consume
856#     more CPU. Defaults to 1. (Since 5.0)
857#
858# @multifd-zstd-level: Set the compression level to be used in live
859#     migration, the compression level is an integer between 0 and 20,
860#     where 0 means no compression, 1 means the best compression
861#     speed, and 20 means best compression ratio which will consume
862#     more CPU. Defaults to 1. (Since 5.0)
863#
864# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
865#     aliases for the purpose of dirty bitmap migration.  Such aliases
866#     may for example be the corresponding names on the opposite site.
867#     The mapping must be one-to-one, but not necessarily complete: On
868#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
869#     will be ignored.  On the destination, encountering an unmapped
870#     alias in the incoming migration stream will result in a report,
871#     and all further bitmap migration data will then be discarded.
872#     Note that the destination does not know about bitmaps it does
873#     not receive, so there is no limitation or requirement regarding
874#     the number of bitmaps received, or how they are named, or on
875#     which nodes they are placed.  By default (when this parameter
876#     has never been set), bitmap names are mapped to themselves.
877#     Nodes are mapped to their block device name if there is one, and
878#     to their node name otherwise.  (Since 5.2)
879#
880# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
881#     limit during live migration.  Should be in the range 1 to 1000ms.
882#     Defaults to 1000ms.  (Since 8.1)
883#
884# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
885#     Defaults to 1.  (Since 8.1)
886#
887# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
888#        (Since 8.2)
889#
890# Features:
891#
892# @deprecated: Member @block-incremental is deprecated.  Use
893#     blockdev-mirror with NBD instead.  Members @compress-level,
894#     @compress-threads, @decompress-threads and @compress-wait-thread
895#     are deprecated because @compression is deprecated.
896#
897# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
898#     are experimental.
899#
900# Since: 2.4
901##
902{ 'enum': 'MigrationParameter',
903  'data': ['announce-initial', 'announce-max',
904           'announce-rounds', 'announce-step',
905           { 'name': 'compress-level', 'features': [ 'deprecated' ] },
906           { 'name': 'compress-threads', 'features': [ 'deprecated' ] },
907           { 'name': 'decompress-threads', 'features': [ 'deprecated' ] },
908           { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] },
909           'throttle-trigger-threshold',
910           'cpu-throttle-initial', 'cpu-throttle-increment',
911           'cpu-throttle-tailslow',
912           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
913           'avail-switchover-bandwidth', 'downtime-limit',
914           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
915           { 'name': 'block-incremental', 'features': [ 'deprecated' ] },
916           'multifd-channels',
917           'xbzrle-cache-size', 'max-postcopy-bandwidth',
918           'max-cpu-throttle', 'multifd-compression',
919           'multifd-zlib-level', 'multifd-zstd-level',
920           'block-bitmap-mapping',
921           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
922           'vcpu-dirty-limit',
923           'mode'] }
924
925##
926# @MigrateSetParameters:
927#
928# @announce-initial: Initial delay (in milliseconds) before sending
929#     the first announce (Since 4.0)
930#
931# @announce-max: Maximum delay (in milliseconds) between packets in
932#     the announcement (Since 4.0)
933#
934# @announce-rounds: Number of self-announce packets sent after
935#     migration (Since 4.0)
936#
937# @announce-step: Increase in delay (in milliseconds) between
938#     subsequent packets in the announcement (Since 4.0)
939#
940# @compress-level: compression level
941#
942# @compress-threads: compression thread count
943#
944# @compress-wait-thread: Controls behavior when all compression
945#     threads are currently busy.  If true (default), wait for a free
946#     compression thread to become available; otherwise, send the page
947#     uncompressed.  (Since 3.1)
948#
949# @decompress-threads: decompression thread count
950#
951# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
952#     bytes_xfer_period to trigger throttling.  It is expressed as
953#     percentage.  The default value is 50. (Since 5.0)
954#
955# @cpu-throttle-initial: Initial percentage of time guest cpus are
956#     throttled when migration auto-converge is activated.  The
957#     default value is 20. (Since 2.7)
958#
959# @cpu-throttle-increment: throttle percentage increase each time
960#     auto-converge detects that migration is not making progress.
961#     The default value is 10. (Since 2.7)
962#
963# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
964#     the tail stage of throttling, the Guest is very sensitive to CPU
965#     percentage while the @cpu-throttle -increment is excessive
966#     usually at tail stage.  If this parameter is true, we will
967#     compute the ideal CPU percentage used by the Guest, which may
968#     exactly make the dirty rate match the dirty rate threshold.
969#     Then we will choose a smaller throttle increment between the one
970#     specified by @cpu-throttle-increment and the one generated by
971#     ideal CPU percentage.  Therefore, it is compatible to
972#     traditional throttling, meanwhile the throttle increment won't
973#     be excessive at tail stage.  The default value is false.  (Since
974#     5.1)
975#
976# @tls-creds: ID of the 'tls-creds' object that provides credentials
977#     for establishing a TLS connection over the migration data
978#     channel.  On the outgoing side of the migration, the credentials
979#     must be for a 'client' endpoint, while for the incoming side the
980#     credentials must be for a 'server' endpoint.  Setting this to a
981#     non-empty string enables TLS for all migrations.  An empty
982#     string means that QEMU will use plain text mode for migration,
983#     rather than TLS (Since 2.9) Previously (since 2.7), this was
984#     reported by omitting tls-creds instead.
985#
986# @tls-hostname: hostname of the target host for the migration.  This
987#     is required when using x509 based TLS credentials and the
988#     migration URI does not already include a hostname.  For example
989#     if using fd: or exec: based migration, the hostname must be
990#     provided so that the server's x509 certificate identity can be
991#     validated.  (Since 2.7) An empty string means that QEMU will use
992#     the hostname associated with the migration URI, if any.  (Since
993#     2.9) Previously (since 2.7), this was reported by omitting
994#     tls-hostname instead.
995#
996# @tls-authz: ID of the 'authz' object subclass that provides access
997#     control checking of the TLS x509 certificate distinguished name.
998#     (Since 4.0)
999#
1000# @max-bandwidth: to set maximum speed for migration.  maximum speed
1001#     in bytes per second.  (Since 2.8)
1002#
1003# @avail-switchover-bandwidth: to set the available bandwidth that
1004#     migration can use during switchover phase.  NOTE!  This does not
1005#     limit the bandwidth during switchover, but only for calculations when
1006#     making decisions to switchover.  By default, this value is zero,
1007#     which means QEMU will estimate the bandwidth automatically.  This can
1008#     be set when the estimated value is not accurate, while the user is
1009#     able to guarantee such bandwidth is available when switching over.
1010#     When specified correctly, this can make the switchover decision much
1011#     more accurate.  (Since 8.2)
1012#
1013# @downtime-limit: set maximum tolerated downtime for migration.
1014#     maximum downtime in milliseconds (Since 2.8)
1015#
1016# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1017#     (Since 2.8)
1018#
1019# @block-incremental: Affects how much storage is migrated when the
1020#     block migration capability is enabled.  When false, the entire
1021#     storage backing chain is migrated into a flattened image at the
1022#     destination; when true, only the active qcow2 layer is migrated
1023#     and the destination must already have access to the same backing
1024#     chain as was used on the source.  (since 2.10)
1025#
1026# @multifd-channels: Number of channels used to migrate data in
1027#     parallel.  This is the same number that the number of sockets
1028#     used for migration.  The default value is 2 (since 4.0)
1029#
1030# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1031#     needs to be a multiple of the target page size and a power of 2
1032#     (Since 2.11)
1033#
1034# @max-postcopy-bandwidth: Background transfer bandwidth during
1035#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1036#     (Since 3.0)
1037#
1038# @max-cpu-throttle: maximum cpu throttle percentage.  The default
1039#     value is 99. (Since 3.1)
1040#
1041# @multifd-compression: Which compression method to use.  Defaults to
1042#     none.  (Since 5.0)
1043#
1044# @multifd-zlib-level: Set the compression level to be used in live
1045#     migration, the compression level is an integer between 0 and 9,
1046#     where 0 means no compression, 1 means the best compression
1047#     speed, and 9 means best compression ratio which will consume
1048#     more CPU. Defaults to 1. (Since 5.0)
1049#
1050# @multifd-zstd-level: Set the compression level to be used in live
1051#     migration, the compression level is an integer between 0 and 20,
1052#     where 0 means no compression, 1 means the best compression
1053#     speed, and 20 means best compression ratio which will consume
1054#     more CPU. Defaults to 1. (Since 5.0)
1055#
1056# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1057#     aliases for the purpose of dirty bitmap migration.  Such aliases
1058#     may for example be the corresponding names on the opposite site.
1059#     The mapping must be one-to-one, but not necessarily complete: On
1060#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1061#     will be ignored.  On the destination, encountering an unmapped
1062#     alias in the incoming migration stream will result in a report,
1063#     and all further bitmap migration data will then be discarded.
1064#     Note that the destination does not know about bitmaps it does
1065#     not receive, so there is no limitation or requirement regarding
1066#     the number of bitmaps received, or how they are named, or on
1067#     which nodes they are placed.  By default (when this parameter
1068#     has never been set), bitmap names are mapped to themselves.
1069#     Nodes are mapped to their block device name if there is one, and
1070#     to their node name otherwise.  (Since 5.2)
1071#
1072# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1073#     limit during live migration.  Should be in the range 1 to 1000ms.
1074#     Defaults to 1000ms.  (Since 8.1)
1075#
1076# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1077#     Defaults to 1.  (Since 8.1)
1078#
1079# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1080#        (Since 8.2)
1081#
1082# Features:
1083#
1084# @deprecated: Member @block-incremental is deprecated.  Use
1085#     blockdev-mirror with NBD instead.  Members @compress-level,
1086#     @compress-threads, @decompress-threads and @compress-wait-thread
1087#     are deprecated because @compression is deprecated.
1088#
1089# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1090#     are experimental.
1091#
1092# TODO: either fuse back into MigrationParameters, or make
1093#     MigrationParameters members mandatory
1094#
1095# Since: 2.4
1096##
1097{ 'struct': 'MigrateSetParameters',
1098  'data': { '*announce-initial': 'size',
1099            '*announce-max': 'size',
1100            '*announce-rounds': 'size',
1101            '*announce-step': 'size',
1102            '*compress-level': { 'type': 'uint8',
1103                                 'features': [ 'deprecated' ] },
1104            '*compress-threads':  { 'type': 'uint8',
1105                                    'features': [ 'deprecated' ] },
1106            '*compress-wait-thread':  { 'type': 'bool',
1107                                        'features': [ 'deprecated' ] },
1108            '*decompress-threads':  { 'type': 'uint8',
1109                                      'features': [ 'deprecated' ] },
1110            '*throttle-trigger-threshold': 'uint8',
1111            '*cpu-throttle-initial': 'uint8',
1112            '*cpu-throttle-increment': 'uint8',
1113            '*cpu-throttle-tailslow': 'bool',
1114            '*tls-creds': 'StrOrNull',
1115            '*tls-hostname': 'StrOrNull',
1116            '*tls-authz': 'StrOrNull',
1117            '*max-bandwidth': 'size',
1118            '*avail-switchover-bandwidth': 'size',
1119            '*downtime-limit': 'uint64',
1120            '*x-checkpoint-delay': { 'type': 'uint32',
1121                                     'features': [ 'unstable' ] },
1122            '*block-incremental': { 'type': 'bool',
1123                                    'features': [ 'deprecated' ] },
1124            '*multifd-channels': 'uint8',
1125            '*xbzrle-cache-size': 'size',
1126            '*max-postcopy-bandwidth': 'size',
1127            '*max-cpu-throttle': 'uint8',
1128            '*multifd-compression': 'MultiFDCompression',
1129            '*multifd-zlib-level': 'uint8',
1130            '*multifd-zstd-level': 'uint8',
1131            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1132            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1133                                            'features': [ 'unstable' ] },
1134            '*vcpu-dirty-limit': 'uint64',
1135            '*mode': 'MigMode'} }
1136
1137##
1138# @migrate-set-parameters:
1139#
1140# Set various migration parameters.
1141#
1142# Since: 2.4
1143#
1144# Example:
1145#
1146#     -> { "execute": "migrate-set-parameters" ,
1147#          "arguments": { "multifd-channels": 5 } }
1148#     <- { "return": {} }
1149##
1150{ 'command': 'migrate-set-parameters', 'boxed': true,
1151  'data': 'MigrateSetParameters' }
1152
1153##
1154# @MigrationParameters:
1155#
1156# The optional members aren't actually optional.
1157#
1158# @announce-initial: Initial delay (in milliseconds) before sending
1159#     the first announce (Since 4.0)
1160#
1161# @announce-max: Maximum delay (in milliseconds) between packets in
1162#     the announcement (Since 4.0)
1163#
1164# @announce-rounds: Number of self-announce packets sent after
1165#     migration (Since 4.0)
1166#
1167# @announce-step: Increase in delay (in milliseconds) between
1168#     subsequent packets in the announcement (Since 4.0)
1169#
1170# @compress-level: compression level
1171#
1172# @compress-threads: compression thread count
1173#
1174# @compress-wait-thread: Controls behavior when all compression
1175#     threads are currently busy.  If true (default), wait for a free
1176#     compression thread to become available; otherwise, send the page
1177#     uncompressed.  (Since 3.1)
1178#
1179# @decompress-threads: decompression thread count
1180#
1181# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1182#     bytes_xfer_period to trigger throttling.  It is expressed as
1183#     percentage.  The default value is 50. (Since 5.0)
1184#
1185# @cpu-throttle-initial: Initial percentage of time guest cpus are
1186#     throttled when migration auto-converge is activated.  (Since
1187#     2.7)
1188#
1189# @cpu-throttle-increment: throttle percentage increase each time
1190#     auto-converge detects that migration is not making progress.
1191#     (Since 2.7)
1192#
1193# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1194#     the tail stage of throttling, the Guest is very sensitive to CPU
1195#     percentage while the @cpu-throttle -increment is excessive
1196#     usually at tail stage.  If this parameter is true, we will
1197#     compute the ideal CPU percentage used by the Guest, which may
1198#     exactly make the dirty rate match the dirty rate threshold.
1199#     Then we will choose a smaller throttle increment between the one
1200#     specified by @cpu-throttle-increment and the one generated by
1201#     ideal CPU percentage.  Therefore, it is compatible to
1202#     traditional throttling, meanwhile the throttle increment won't
1203#     be excessive at tail stage.  The default value is false.  (Since
1204#     5.1)
1205#
1206# @tls-creds: ID of the 'tls-creds' object that provides credentials
1207#     for establishing a TLS connection over the migration data
1208#     channel.  On the outgoing side of the migration, the credentials
1209#     must be for a 'client' endpoint, while for the incoming side the
1210#     credentials must be for a 'server' endpoint.  An empty string
1211#     means that QEMU will use plain text mode for migration, rather
1212#     than TLS (Since 2.7) Note: 2.8 reports this by omitting
1213#     tls-creds instead.
1214#
1215# @tls-hostname: hostname of the target host for the migration.  This
1216#     is required when using x509 based TLS credentials and the
1217#     migration URI does not already include a hostname.  For example
1218#     if using fd: or exec: based migration, the hostname must be
1219#     provided so that the server's x509 certificate identity can be
1220#     validated.  (Since 2.7) An empty string means that QEMU will use
1221#     the hostname associated with the migration URI, if any.  (Since
1222#     2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1223#
1224# @tls-authz: ID of the 'authz' object subclass that provides access
1225#     control checking of the TLS x509 certificate distinguished name.
1226#     (Since 4.0)
1227#
1228# @max-bandwidth: to set maximum speed for migration.  maximum speed
1229#     in bytes per second.  (Since 2.8)
1230#
1231# @avail-switchover-bandwidth: to set the available bandwidth that
1232#     migration can use during switchover phase.  NOTE!  This does not
1233#     limit the bandwidth during switchover, but only for calculations when
1234#     making decisions to switchover.  By default, this value is zero,
1235#     which means QEMU will estimate the bandwidth automatically.  This can
1236#     be set when the estimated value is not accurate, while the user is
1237#     able to guarantee such bandwidth is available when switching over.
1238#     When specified correctly, this can make the switchover decision much
1239#     more accurate.  (Since 8.2)
1240#
1241# @downtime-limit: set maximum tolerated downtime for migration.
1242#     maximum downtime in milliseconds (Since 2.8)
1243#
1244# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1245#     (Since 2.8)
1246#
1247# @block-incremental: Affects how much storage is migrated when the
1248#     block migration capability is enabled.  When false, the entire
1249#     storage backing chain is migrated into a flattened image at the
1250#     destination; when true, only the active qcow2 layer is migrated
1251#     and the destination must already have access to the same backing
1252#     chain as was used on the source.  (since 2.10)
1253#
1254# @multifd-channels: Number of channels used to migrate data in
1255#     parallel.  This is the same number that the number of sockets
1256#     used for migration.  The default value is 2 (since 4.0)
1257#
1258# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1259#     needs to be a multiple of the target page size and a power of 2
1260#     (Since 2.11)
1261#
1262# @max-postcopy-bandwidth: Background transfer bandwidth during
1263#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1264#     (Since 3.0)
1265#
1266# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1267#     (Since 3.1)
1268#
1269# @multifd-compression: Which compression method to use.  Defaults to
1270#     none.  (Since 5.0)
1271#
1272# @multifd-zlib-level: Set the compression level to be used in live
1273#     migration, the compression level is an integer between 0 and 9,
1274#     where 0 means no compression, 1 means the best compression
1275#     speed, and 9 means best compression ratio which will consume
1276#     more CPU. Defaults to 1. (Since 5.0)
1277#
1278# @multifd-zstd-level: Set the compression level to be used in live
1279#     migration, the compression level is an integer between 0 and 20,
1280#     where 0 means no compression, 1 means the best compression
1281#     speed, and 20 means best compression ratio which will consume
1282#     more CPU. Defaults to 1. (Since 5.0)
1283#
1284# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1285#     aliases for the purpose of dirty bitmap migration.  Such aliases
1286#     may for example be the corresponding names on the opposite site.
1287#     The mapping must be one-to-one, but not necessarily complete: On
1288#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1289#     will be ignored.  On the destination, encountering an unmapped
1290#     alias in the incoming migration stream will result in a report,
1291#     and all further bitmap migration data will then be discarded.
1292#     Note that the destination does not know about bitmaps it does
1293#     not receive, so there is no limitation or requirement regarding
1294#     the number of bitmaps received, or how they are named, or on
1295#     which nodes they are placed.  By default (when this parameter
1296#     has never been set), bitmap names are mapped to themselves.
1297#     Nodes are mapped to their block device name if there is one, and
1298#     to their node name otherwise.  (Since 5.2)
1299#
1300# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1301#     limit during live migration.  Should be in the range 1 to 1000ms.
1302#     Defaults to 1000ms.  (Since 8.1)
1303#
1304# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1305#     Defaults to 1.  (Since 8.1)
1306#
1307# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1308#        (Since 8.2)
1309#
1310# Features:
1311#
1312# @deprecated: Member @block-incremental is deprecated.  Use
1313#     blockdev-mirror with NBD instead.  Members @compress-level,
1314#     @compress-threads, @decompress-threads and @compress-wait-thread
1315#     are deprecated because @compression is deprecated.
1316#
1317# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1318#     are experimental.
1319#
1320# Since: 2.4
1321##
1322{ 'struct': 'MigrationParameters',
1323  'data': { '*announce-initial': 'size',
1324            '*announce-max': 'size',
1325            '*announce-rounds': 'size',
1326            '*announce-step': 'size',
1327            '*compress-level': { 'type': 'uint8',
1328                                 'features': [ 'deprecated' ] },
1329            '*compress-threads': { 'type': 'uint8',
1330                                   'features': [ 'deprecated' ] },
1331            '*compress-wait-thread': { 'type': 'bool',
1332                                       'features': [ 'deprecated' ] },
1333            '*decompress-threads': { 'type': 'uint8',
1334                                     'features': [ 'deprecated' ] },
1335            '*throttle-trigger-threshold': 'uint8',
1336            '*cpu-throttle-initial': 'uint8',
1337            '*cpu-throttle-increment': 'uint8',
1338            '*cpu-throttle-tailslow': 'bool',
1339            '*tls-creds': 'str',
1340            '*tls-hostname': 'str',
1341            '*tls-authz': 'str',
1342            '*max-bandwidth': 'size',
1343            '*avail-switchover-bandwidth': 'size',
1344            '*downtime-limit': 'uint64',
1345            '*x-checkpoint-delay': { 'type': 'uint32',
1346                                     'features': [ 'unstable' ] },
1347            '*block-incremental': { 'type': 'bool',
1348                                    'features': [ 'deprecated' ] },
1349            '*multifd-channels': 'uint8',
1350            '*xbzrle-cache-size': 'size',
1351            '*max-postcopy-bandwidth': 'size',
1352            '*max-cpu-throttle': 'uint8',
1353            '*multifd-compression': 'MultiFDCompression',
1354            '*multifd-zlib-level': 'uint8',
1355            '*multifd-zstd-level': 'uint8',
1356            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1357            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1358                                            'features': [ 'unstable' ] },
1359            '*vcpu-dirty-limit': 'uint64',
1360            '*mode': 'MigMode'} }
1361
1362##
1363# @query-migrate-parameters:
1364#
1365# Returns information about the current migration parameters
1366#
1367# Returns: @MigrationParameters
1368#
1369# Since: 2.4
1370#
1371# Example:
1372#
1373#     -> { "execute": "query-migrate-parameters" }
1374#     <- { "return": {
1375#              "multifd-channels": 2,
1376#              "cpu-throttle-increment": 10,
1377#              "cpu-throttle-initial": 20,
1378#              "max-bandwidth": 33554432,
1379#              "downtime-limit": 300
1380#           }
1381#        }
1382##
1383{ 'command': 'query-migrate-parameters',
1384  'returns': 'MigrationParameters' }
1385
1386##
1387# @migrate-start-postcopy:
1388#
1389# Followup to a migration command to switch the migration to postcopy
1390# mode.  The postcopy-ram capability must be set on both source and
1391# destination before the original migration command.
1392#
1393# Since: 2.5
1394#
1395# Example:
1396#
1397#     -> { "execute": "migrate-start-postcopy" }
1398#     <- { "return": {} }
1399##
1400{ 'command': 'migrate-start-postcopy' }
1401
1402##
1403# @MIGRATION:
1404#
1405# Emitted when a migration event happens
1406#
1407# @status: @MigrationStatus describing the current migration status.
1408#
1409# Since: 2.4
1410#
1411# Example:
1412#
1413#     <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1414#         "event": "MIGRATION",
1415#         "data": {"status": "completed"} }
1416##
1417{ 'event': 'MIGRATION',
1418  'data': {'status': 'MigrationStatus'}}
1419
1420##
1421# @MIGRATION_PASS:
1422#
1423# Emitted from the source side of a migration at the start of each
1424# pass (when it syncs the dirty bitmap)
1425#
1426# @pass: An incrementing count (starting at 1 on the first pass)
1427#
1428# Since: 2.6
1429#
1430# Example:
1431#
1432#     <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1433#           "event": "MIGRATION_PASS", "data": {"pass": 2} }
1434##
1435{ 'event': 'MIGRATION_PASS',
1436  'data': { 'pass': 'int' } }
1437
1438##
1439# @COLOMessage:
1440#
1441# The message transmission between Primary side and Secondary side.
1442#
1443# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1444#
1445# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1446#     checkpointing
1447#
1448# @checkpoint-reply: SVM gets PVM's checkpoint request
1449#
1450# @vmstate-send: VM's state will be sent by PVM.
1451#
1452# @vmstate-size: The total size of VMstate.
1453#
1454# @vmstate-received: VM's state has been received by SVM.
1455#
1456# @vmstate-loaded: VM's state has been loaded by SVM.
1457#
1458# Since: 2.8
1459##
1460{ 'enum': 'COLOMessage',
1461  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1462            'vmstate-send', 'vmstate-size', 'vmstate-received',
1463            'vmstate-loaded' ] }
1464
1465##
1466# @COLOMode:
1467#
1468# The COLO current mode.
1469#
1470# @none: COLO is disabled.
1471#
1472# @primary: COLO node in primary side.
1473#
1474# @secondary: COLO node in slave side.
1475#
1476# Since: 2.8
1477##
1478{ 'enum': 'COLOMode',
1479  'data': [ 'none', 'primary', 'secondary'] }
1480
1481##
1482# @FailoverStatus:
1483#
1484# An enumeration of COLO failover status
1485#
1486# @none: no failover has ever happened
1487#
1488# @require: got failover requirement but not handled
1489#
1490# @active: in the process of doing failover
1491#
1492# @completed: finish the process of failover
1493#
1494# @relaunch: restart the failover process, from 'none' -> 'completed'
1495#     (Since 2.9)
1496#
1497# Since: 2.8
1498##
1499{ 'enum': 'FailoverStatus',
1500  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1501
1502##
1503# @COLO_EXIT:
1504#
1505# Emitted when VM finishes COLO mode due to some errors happening or
1506# at the request of users.
1507#
1508# @mode: report COLO mode when COLO exited.
1509#
1510# @reason: describes the reason for the COLO exit.
1511#
1512# Since: 3.1
1513#
1514# Example:
1515#
1516#     <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1517#          "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1518##
1519{ 'event': 'COLO_EXIT',
1520  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1521
1522##
1523# @COLOExitReason:
1524#
1525# The reason for a COLO exit.
1526#
1527# @none: failover has never happened.  This state does not occur in
1528#     the COLO_EXIT event, and is only visible in the result of
1529#     query-colo-status.
1530#
1531# @request: COLO exit is due to an external request.
1532#
1533# @error: COLO exit is due to an internal error.
1534#
1535# @processing: COLO is currently handling a failover (since 4.0).
1536#
1537# Since: 3.1
1538##
1539{ 'enum': 'COLOExitReason',
1540  'data': [ 'none', 'request', 'error' , 'processing' ] }
1541
1542##
1543# @x-colo-lost-heartbeat:
1544#
1545# Tell qemu that heartbeat is lost, request it to do takeover
1546# procedures.  If this command is sent to the PVM, the Primary side
1547# will exit COLO mode.  If sent to the Secondary, the Secondary side
1548# will run failover work, then takes over server operation to become
1549# the service VM.
1550#
1551# Features:
1552#
1553# @unstable: This command is experimental.
1554#
1555# Since: 2.8
1556#
1557# Example:
1558#
1559#     -> { "execute": "x-colo-lost-heartbeat" }
1560#     <- { "return": {} }
1561##
1562{ 'command': 'x-colo-lost-heartbeat',
1563  'features': [ 'unstable' ],
1564  'if': 'CONFIG_REPLICATION' }
1565
1566##
1567# @migrate_cancel:
1568#
1569# Cancel the current executing migration process.
1570#
1571# Returns: nothing on success
1572#
1573# Notes: This command succeeds even if there is no migration process
1574#     running.
1575#
1576# Since: 0.14
1577#
1578# Example:
1579#
1580#     -> { "execute": "migrate_cancel" }
1581#     <- { "return": {} }
1582##
1583{ 'command': 'migrate_cancel' }
1584
1585##
1586# @migrate-continue:
1587#
1588# Continue migration when it's in a paused state.
1589#
1590# @state: The state the migration is currently expected to be in
1591#
1592# Returns: nothing on success
1593#
1594# Since: 2.11
1595#
1596# Example:
1597#
1598#     -> { "execute": "migrate-continue" , "arguments":
1599#          { "state": "pre-switchover" } }
1600#     <- { "return": {} }
1601##
1602{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1603
1604##
1605# @MigrationAddressType:
1606#
1607# The migration stream transport mechanisms.
1608#
1609# @socket: Migrate via socket.
1610#
1611# @exec: Direct the migration stream to another process.
1612#
1613# @rdma: Migrate via RDMA.
1614#
1615# @file: Direct the migration stream to a file.
1616#
1617# Since: 8.2
1618##
1619{ 'enum': 'MigrationAddressType',
1620  'data': [ 'socket', 'exec', 'rdma', 'file' ] }
1621
1622##
1623# @FileMigrationArgs:
1624#
1625# @filename: The file to receive the migration stream
1626#
1627# @offset: The file offset where the migration stream will start
1628#
1629# Since: 8.2
1630##
1631{ 'struct': 'FileMigrationArgs',
1632  'data': { 'filename': 'str',
1633            'offset': 'uint64' } }
1634
1635##
1636# @MigrationExecCommand:
1637#
1638# @args: command (list head) and arguments to execute.
1639#
1640# Since: 8.2
1641##
1642{ 'struct': 'MigrationExecCommand',
1643  'data': {'args': [ 'str' ] } }
1644
1645##
1646# @MigrationAddress:
1647#
1648# Migration endpoint configuration.
1649#
1650# @transport: The migration stream transport mechanism
1651#
1652# Since: 8.2
1653##
1654{ 'union': 'MigrationAddress',
1655  'base': { 'transport' : 'MigrationAddressType'},
1656  'discriminator': 'transport',
1657  'data': {
1658    'socket': 'SocketAddress',
1659    'exec': 'MigrationExecCommand',
1660    'rdma': 'InetSocketAddress',
1661    'file': 'FileMigrationArgs' } }
1662
1663##
1664# @MigrationChannelType:
1665#
1666# The migration channel-type request options.
1667#
1668# @main: Main outbound migration channel.
1669#
1670# Since: 8.1
1671##
1672{ 'enum': 'MigrationChannelType',
1673  'data': [ 'main' ] }
1674
1675##
1676# @MigrationChannel:
1677#
1678# Migration stream channel parameters.
1679#
1680# @channel-type: Channel type for transferring packet information.
1681#
1682# @addr: Migration endpoint configuration on destination interface.
1683#
1684# Since: 8.1
1685##
1686{ 'struct': 'MigrationChannel',
1687  'data': {
1688      'channel-type': 'MigrationChannelType',
1689      'addr': 'MigrationAddress' } }
1690
1691##
1692# @migrate:
1693#
1694# Migrates the current running guest to another Virtual Machine.
1695#
1696# @uri: the Uniform Resource Identifier of the destination VM
1697#
1698# @channels: list of migration stream channels with each stream in the
1699#     list connected to a destination interface endpoint.
1700#
1701# @blk: do block migration (full disk copy)
1702#
1703# @inc: incremental disk copy migration
1704#
1705# @detach: this argument exists only for compatibility reasons and is
1706#     ignored by QEMU
1707#
1708# @resume: resume one paused migration, default "off". (since 3.0)
1709#
1710# Features:
1711#
1712# @deprecated: Members @inc and @blk are deprecated.  Use
1713#     blockdev-mirror with NBD instead.
1714#
1715# Returns: nothing on success
1716#
1717# Since: 0.14
1718#
1719# Notes:
1720#
1721#     1. The 'query-migrate' command should be used to check
1722#        migration's progress and final result (this information is
1723#        provided by the 'status' member)
1724#
1725#     2. All boolean arguments default to false
1726#
1727#     3. The user Monitor's "detach" argument is invalid in QMP and
1728#        should not be used
1729#
1730#     4. The uri argument should have the Uniform Resource Identifier
1731#        of default destination VM. This connection will be bound to
1732#        default network.
1733#
1734#     5. For now, number of migration streams is restricted to one,
1735#        i.e number of items in 'channels' list is just 1.
1736#
1737#     6. The 'uri' and 'channels' arguments are mutually exclusive;
1738#        exactly one of the two should be present.
1739#
1740# Example:
1741#
1742#     -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1743#     <- { "return": {} }
1744#
1745#     -> { "execute": "migrate",
1746#          "arguments": {
1747#              "channels": [ { "channel-type": "main",
1748#                              "addr": { "transport": "socket",
1749#                                        "type": "inet",
1750#                                        "host": "10.12.34.9",
1751#                                        "port": "1050" } } ] } }
1752#     <- { "return": {} }
1753#
1754#     -> { "execute": "migrate",
1755#          "arguments": {
1756#              "channels": [ { "channel-type": "main",
1757#                              "addr": { "transport": "exec",
1758#                                        "args": [ "/bin/nc", "-p", "6000",
1759#                                                  "/some/sock" ] } } ] } }
1760#     <- { "return": {} }
1761#
1762#     -> { "execute": "migrate",
1763#          "arguments": {
1764#              "channels": [ { "channel-type": "main",
1765#                              "addr": { "transport": "rdma",
1766#                                        "host": "10.12.34.9",
1767#                                        "port": "1050" } } ] } }
1768#     <- { "return": {} }
1769#
1770#     -> { "execute": "migrate",
1771#          "arguments": {
1772#              "channels": [ { "channel-type": "main",
1773#                              "addr": { "transport": "file",
1774#                                        "filename": "/tmp/migfile",
1775#                                        "offset": "0x1000" } } ] } }
1776#     <- { "return": {} }
1777#
1778##
1779{ 'command': 'migrate',
1780  'data': {'*uri': 'str',
1781           '*channels': [ 'MigrationChannel' ],
1782           '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] },
1783           '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] },
1784           '*detach': 'bool', '*resume': 'bool' } }
1785
1786##
1787# @migrate-incoming:
1788#
1789# Start an incoming migration, the qemu must have been started with
1790# -incoming defer
1791#
1792# @uri: The Uniform Resource Identifier identifying the source or
1793#     address to listen on
1794#
1795# @channels: list of migration stream channels with each stream in the
1796#     list connected to a destination interface endpoint.
1797#
1798# Returns: nothing on success
1799#
1800# Since: 2.3
1801#
1802# Notes:
1803#
1804#     1. It's a bad idea to use a string for the uri, but it needs to
1805#        stay compatible with -incoming and the format of the uri is
1806#        already exposed above libvirt.
1807#
1808#     2. QEMU must be started with -incoming defer to allow
1809#        migrate-incoming to be used.
1810#
1811#     3. The uri format is the same as for -incoming
1812#
1813#     4. For now, number of migration streams is restricted to one,
1814#        i.e number of items in 'channels' list is just 1.
1815#
1816#     5. The 'uri' and 'channels' arguments are mutually exclusive;
1817#        exactly one of the two should be present.
1818#
1819# Example:
1820#
1821#     -> { "execute": "migrate-incoming",
1822#          "arguments": { "uri": "tcp:0:4446" } }
1823#     <- { "return": {} }
1824#
1825#     -> { "execute": "migrate-incoming",
1826#          "arguments": {
1827#              "channels": [ { "channel-type": "main",
1828#                              "addr": { "transport": "socket",
1829#                                        "type": "inet",
1830#                                        "host": "10.12.34.9",
1831#                                        "port": "1050" } } ] } }
1832#     <- { "return": {} }
1833#
1834#     -> { "execute": "migrate-incoming",
1835#          "arguments": {
1836#              "channels": [ { "channel-type": "main",
1837#                              "addr": { "transport": "exec",
1838#                                        "args": [ "/bin/nc", "-p", "6000",
1839#                                                  "/some/sock" ] } } ] } }
1840#     <- { "return": {} }
1841#
1842#     -> { "execute": "migrate-incoming",
1843#          "arguments": {
1844#              "channels": [ { "channel-type": "main",
1845#                              "addr": { "transport": "rdma",
1846#                                        "host": "10.12.34.9",
1847#                                        "port": "1050" } } ] } }
1848#     <- { "return": {} }
1849##
1850{ 'command': 'migrate-incoming',
1851             'data': {'*uri': 'str',
1852                      '*channels': [ 'MigrationChannel' ] } }
1853
1854##
1855# @xen-save-devices-state:
1856#
1857# Save the state of all devices to file.  The RAM and the block
1858# devices of the VM are not saved by this command.
1859#
1860# @filename: the file to save the state of the devices to as binary
1861#     data.  See xen-save-devices-state.txt for a description of the
1862#     binary format.
1863#
1864# @live: Optional argument to ask QEMU to treat this command as part
1865#     of a live migration.  Default to true.  (since 2.11)
1866#
1867# Returns: Nothing on success
1868#
1869# Since: 1.1
1870#
1871# Example:
1872#
1873#     -> { "execute": "xen-save-devices-state",
1874#          "arguments": { "filename": "/tmp/save" } }
1875#     <- { "return": {} }
1876##
1877{ 'command': 'xen-save-devices-state',
1878  'data': {'filename': 'str', '*live':'bool' } }
1879
1880##
1881# @xen-set-global-dirty-log:
1882#
1883# Enable or disable the global dirty log mode.
1884#
1885# @enable: true to enable, false to disable.
1886#
1887# Returns: nothing
1888#
1889# Since: 1.3
1890#
1891# Example:
1892#
1893#     -> { "execute": "xen-set-global-dirty-log",
1894#          "arguments": { "enable": true } }
1895#     <- { "return": {} }
1896##
1897{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1898
1899##
1900# @xen-load-devices-state:
1901#
1902# Load the state of all devices from file.  The RAM and the block
1903# devices of the VM are not loaded by this command.
1904#
1905# @filename: the file to load the state of the devices from as binary
1906#     data.  See xen-save-devices-state.txt for a description of the
1907#     binary format.
1908#
1909# Since: 2.7
1910#
1911# Example:
1912#
1913#     -> { "execute": "xen-load-devices-state",
1914#          "arguments": { "filename": "/tmp/resume" } }
1915#     <- { "return": {} }
1916##
1917{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1918
1919##
1920# @xen-set-replication:
1921#
1922# Enable or disable replication.
1923#
1924# @enable: true to enable, false to disable.
1925#
1926# @primary: true for primary or false for secondary.
1927#
1928# @failover: true to do failover, false to stop.  but cannot be
1929#     specified if 'enable' is true.  default value is false.
1930#
1931# Returns: nothing.
1932#
1933# Example:
1934#
1935#     -> { "execute": "xen-set-replication",
1936#          "arguments": {"enable": true, "primary": false} }
1937#     <- { "return": {} }
1938#
1939# Since: 2.9
1940##
1941{ 'command': 'xen-set-replication',
1942  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1943  'if': 'CONFIG_REPLICATION' }
1944
1945##
1946# @ReplicationStatus:
1947#
1948# The result format for 'query-xen-replication-status'.
1949#
1950# @error: true if an error happened, false if replication is normal.
1951#
1952# @desc: the human readable error description string, when @error is
1953#     'true'.
1954#
1955# Since: 2.9
1956##
1957{ 'struct': 'ReplicationStatus',
1958  'data': { 'error': 'bool', '*desc': 'str' },
1959  'if': 'CONFIG_REPLICATION' }
1960
1961##
1962# @query-xen-replication-status:
1963#
1964# Query replication status while the vm is running.
1965#
1966# Returns: A @ReplicationStatus object showing the status.
1967#
1968# Example:
1969#
1970#     -> { "execute": "query-xen-replication-status" }
1971#     <- { "return": { "error": false } }
1972#
1973# Since: 2.9
1974##
1975{ 'command': 'query-xen-replication-status',
1976  'returns': 'ReplicationStatus',
1977  'if': 'CONFIG_REPLICATION' }
1978
1979##
1980# @xen-colo-do-checkpoint:
1981#
1982# Xen uses this command to notify replication to trigger a checkpoint.
1983#
1984# Returns: nothing.
1985#
1986# Example:
1987#
1988#     -> { "execute": "xen-colo-do-checkpoint" }
1989#     <- { "return": {} }
1990#
1991# Since: 2.9
1992##
1993{ 'command': 'xen-colo-do-checkpoint',
1994  'if': 'CONFIG_REPLICATION' }
1995
1996##
1997# @COLOStatus:
1998#
1999# The result format for 'query-colo-status'.
2000#
2001# @mode: COLO running mode.  If COLO is running, this field will
2002#     return 'primary' or 'secondary'.
2003#
2004# @last-mode: COLO last running mode.  If COLO is running, this field
2005#     will return same like mode field, after failover we can use this
2006#     field to get last colo mode.  (since 4.0)
2007#
2008# @reason: describes the reason for the COLO exit.
2009#
2010# Since: 3.1
2011##
2012{ 'struct': 'COLOStatus',
2013  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
2014            'reason': 'COLOExitReason' },
2015  'if': 'CONFIG_REPLICATION' }
2016
2017##
2018# @query-colo-status:
2019#
2020# Query COLO status while the vm is running.
2021#
2022# Returns: A @COLOStatus object showing the status.
2023#
2024# Example:
2025#
2026#     -> { "execute": "query-colo-status" }
2027#     <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
2028#
2029# Since: 3.1
2030##
2031{ 'command': 'query-colo-status',
2032  'returns': 'COLOStatus',
2033  'if': 'CONFIG_REPLICATION' }
2034
2035##
2036# @migrate-recover:
2037#
2038# Provide a recovery migration stream URI.
2039#
2040# @uri: the URI to be used for the recovery of migration stream.
2041#
2042# Returns: nothing.
2043#
2044# Example:
2045#
2046#     -> { "execute": "migrate-recover",
2047#          "arguments": { "uri": "tcp:192.168.1.200:12345" } }
2048#     <- { "return": {} }
2049#
2050# Since: 3.0
2051##
2052{ 'command': 'migrate-recover',
2053  'data': { 'uri': 'str' },
2054  'allow-oob': true }
2055
2056##
2057# @migrate-pause:
2058#
2059# Pause a migration.  Currently it only supports postcopy.
2060#
2061# Returns: nothing.
2062#
2063# Example:
2064#
2065#     -> { "execute": "migrate-pause" }
2066#     <- { "return": {} }
2067#
2068# Since: 3.0
2069##
2070{ 'command': 'migrate-pause', 'allow-oob': true }
2071
2072##
2073# @UNPLUG_PRIMARY:
2074#
2075# Emitted from source side of a migration when migration state is
2076# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
2077# resources in QEMU are kept on standby to be able to re-plug it in
2078# case of migration failure.
2079#
2080# @device-id: QEMU device id of the unplugged device
2081#
2082# Since: 4.2
2083#
2084# Example:
2085#
2086#     <- { "event": "UNPLUG_PRIMARY",
2087#          "data": { "device-id": "hostdev0" },
2088#          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2089##
2090{ 'event': 'UNPLUG_PRIMARY',
2091  'data': { 'device-id': 'str' } }
2092
2093##
2094# @DirtyRateVcpu:
2095#
2096# Dirty rate of vcpu.
2097#
2098# @id: vcpu index.
2099#
2100# @dirty-rate: dirty rate.
2101#
2102# Since: 6.2
2103##
2104{ 'struct': 'DirtyRateVcpu',
2105  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
2106
2107##
2108# @DirtyRateStatus:
2109#
2110# Dirty page rate measurement status.
2111#
2112# @unstarted: measuring thread has not been started yet
2113#
2114# @measuring: measuring thread is running
2115#
2116# @measured: dirty page rate is measured and the results are available
2117#
2118# Since: 5.2
2119##
2120{ 'enum': 'DirtyRateStatus',
2121  'data': [ 'unstarted', 'measuring', 'measured'] }
2122
2123##
2124# @DirtyRateMeasureMode:
2125#
2126# Method used to measure dirty page rate.  Differences between
2127# available methods are explained in @calc-dirty-rate.
2128#
2129# @page-sampling: use page sampling
2130#
2131# @dirty-ring: use dirty ring
2132#
2133# @dirty-bitmap: use dirty bitmap
2134#
2135# Since: 6.2
2136##
2137{ 'enum': 'DirtyRateMeasureMode',
2138  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
2139
2140##
2141# @TimeUnit:
2142#
2143# Specifies unit in which time-related value is specified.
2144#
2145# @second: value is in seconds
2146#
2147# @millisecond: value is in milliseconds
2148#
2149# Since: 8.2
2150#
2151##
2152{ 'enum': 'TimeUnit',
2153  'data': ['second', 'millisecond'] }
2154
2155##
2156# @DirtyRateInfo:
2157#
2158# Information about measured dirty page rate.
2159#
2160# @dirty-rate: an estimate of the dirty page rate of the VM in units
2161#     of MiB/s.  Value is present only when @status is 'measured'.
2162#
2163# @status: current status of dirty page rate measurements
2164#
2165# @start-time: start time in units of second for calculation
2166#
2167# @calc-time: time period for which dirty page rate was measured,
2168#     expressed and rounded down to @calc-time-unit.
2169#
2170# @calc-time-unit: time unit of @calc-time  (Since 8.2)
2171#
2172# @sample-pages: number of sampled pages per GiB of guest memory.
2173#     Valid only in page-sampling mode (Since 6.1)
2174#
2175# @mode: mode that was used to measure dirty page rate (Since 6.2)
2176#
2177# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
2178#     specified (Since 6.2)
2179#
2180# Since: 5.2
2181##
2182{ 'struct': 'DirtyRateInfo',
2183  'data': {'*dirty-rate': 'int64',
2184           'status': 'DirtyRateStatus',
2185           'start-time': 'int64',
2186           'calc-time': 'int64',
2187           'calc-time-unit': 'TimeUnit',
2188           'sample-pages': 'uint64',
2189           'mode': 'DirtyRateMeasureMode',
2190           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
2191
2192##
2193# @calc-dirty-rate:
2194#
2195# Start measuring dirty page rate of the VM.  Results can be retrieved
2196# with @query-dirty-rate after measurements are completed.
2197#
2198# Dirty page rate is the number of pages changed in a given time
2199# period expressed in MiB/s.  The following methods of calculation are
2200# available:
2201#
2202# 1. In page sampling mode, a random subset of pages are selected and
2203#    hashed twice: once at the beginning of measurement time period,
2204#    and once again at the end.  If two hashes for some page are
2205#    different, the page is counted as changed.  Since this method
2206#    relies on sampling and hashing, calculated dirty page rate is
2207#    only an estimate of its true value.  Increasing @sample-pages
2208#    improves estimation quality at the cost of higher computational
2209#    overhead.
2210#
2211# 2. Dirty bitmap mode captures writes to memory (for example by
2212#    temporarily revoking write access to all pages) and counting page
2213#    faults.  Information about modified pages is collected into a
2214#    bitmap, where each bit corresponds to one guest page.  This mode
2215#    requires that KVM accelerator property "dirty-ring-size" is *not*
2216#    set.
2217#
2218# 3. Dirty ring mode is similar to dirty bitmap mode, but the
2219#    information about modified pages is collected into ring buffer.
2220#    This mode tracks page modification per each vCPU separately.  It
2221#    requires that KVM accelerator property "dirty-ring-size" is set.
2222#
2223# @calc-time: time period for which dirty page rate is calculated.
2224#     By default it is specified in seconds, but the unit can be set
2225#     explicitly with @calc-time-unit.  Note that larger @calc-time
2226#     values will typically result in smaller dirty page rates because
2227#     page dirtying is a one-time event.  Once some page is counted
2228#     as dirty during @calc-time period, further writes to this page
2229#     will not increase dirty page rate anymore.
2230#
2231# @calc-time-unit: time unit in which @calc-time is specified.
2232#     By default it is seconds. (Since 8.2)
2233#
2234# @sample-pages: number of sampled pages per each GiB of guest memory.
2235#     Default value is 512.  For 4KiB guest pages this corresponds to
2236#     sampling ratio of 0.2%.  This argument is used only in page
2237#     sampling mode.  (Since 6.1)
2238#
2239# @mode: mechanism for tracking dirty pages.  Default value is
2240#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
2241#     (Since 6.1)
2242#
2243# Since: 5.2
2244#
2245# Example:
2246#
2247#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2248#                                                     'sample-pages': 512} }
2249#     <- { "return": {} }
2250#
2251#     Measure dirty rate using dirty bitmap for 500 milliseconds:
2252#
2253#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2254#         "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2255#
2256#     <- { "return": {} }
2257##
2258{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2259                                         '*calc-time-unit': 'TimeUnit',
2260                                         '*sample-pages': 'int',
2261                                         '*mode': 'DirtyRateMeasureMode'} }
2262
2263##
2264# @query-dirty-rate:
2265#
2266# Query results of the most recent invocation of @calc-dirty-rate.
2267#
2268# @calc-time-unit: time unit in which to report calculation time.
2269#     By default it is reported in seconds. (Since 8.2)
2270#
2271# Since: 5.2
2272#
2273# Examples:
2274#
2275#     1. Measurement is in progress:
2276#
2277#     <- {"status": "measuring", "sample-pages": 512,
2278#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2279#         "calc-time-unit": "second"}
2280#
2281#     2. Measurement has been completed:
2282#
2283#     <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2284#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2285#         "calc-time-unit": "second"}
2286##
2287{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2288                                 'returns': 'DirtyRateInfo' }
2289
2290##
2291# @DirtyLimitInfo:
2292#
2293# Dirty page rate limit information of a virtual CPU.
2294#
2295# @cpu-index: index of a virtual CPU.
2296#
2297# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2298#     CPU, 0 means unlimited.
2299#
2300# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2301#
2302# Since: 7.1
2303##
2304{ 'struct': 'DirtyLimitInfo',
2305  'data': { 'cpu-index': 'int',
2306            'limit-rate': 'uint64',
2307            'current-rate': 'uint64' } }
2308
2309##
2310# @set-vcpu-dirty-limit:
2311#
2312# Set the upper limit of dirty page rate for virtual CPUs.
2313#
2314# Requires KVM with accelerator property "dirty-ring-size" set.  A
2315# virtual CPU's dirty page rate is a measure of its memory load.  To
2316# observe dirty page rates, use @calc-dirty-rate.
2317#
2318# @cpu-index: index of a virtual CPU, default is all.
2319#
2320# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2321#
2322# Since: 7.1
2323#
2324# Example:
2325#
2326#     -> {"execute": "set-vcpu-dirty-limit"}
2327#         "arguments": { "dirty-rate": 200,
2328#                        "cpu-index": 1 } }
2329#     <- { "return": {} }
2330##
2331{ 'command': 'set-vcpu-dirty-limit',
2332  'data': { '*cpu-index': 'int',
2333            'dirty-rate': 'uint64' } }
2334
2335##
2336# @cancel-vcpu-dirty-limit:
2337#
2338# Cancel the upper limit of dirty page rate for virtual CPUs.
2339#
2340# Cancel the dirty page limit for the vCPU which has been set with
2341# set-vcpu-dirty-limit command.  Note that this command requires
2342# support from dirty ring, same as the "set-vcpu-dirty-limit".
2343#
2344# @cpu-index: index of a virtual CPU, default is all.
2345#
2346# Since: 7.1
2347#
2348# Example:
2349#
2350#     -> {"execute": "cancel-vcpu-dirty-limit"},
2351#         "arguments": { "cpu-index": 1 } }
2352#     <- { "return": {} }
2353##
2354{ 'command': 'cancel-vcpu-dirty-limit',
2355  'data': { '*cpu-index': 'int'} }
2356
2357##
2358# @query-vcpu-dirty-limit:
2359#
2360# Returns information about virtual CPU dirty page rate limits, if
2361# any.
2362#
2363# Since: 7.1
2364#
2365# Example:
2366#
2367#     -> {"execute": "query-vcpu-dirty-limit"}
2368#     <- {"return": [
2369#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2370#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2371##
2372{ 'command': 'query-vcpu-dirty-limit',
2373  'returns': [ 'DirtyLimitInfo' ] }
2374
2375##
2376# @MigrationThreadInfo:
2377#
2378# Information about migrationthreads
2379#
2380# @name: the name of migration thread
2381#
2382# @thread-id: ID of the underlying host thread
2383#
2384# Since: 7.2
2385##
2386{ 'struct': 'MigrationThreadInfo',
2387  'data': {'name': 'str',
2388           'thread-id': 'int'} }
2389
2390##
2391# @query-migrationthreads:
2392#
2393# Returns information of migration threads
2394#
2395# data: migration thread name
2396#
2397# Returns: information about migration threads
2398#
2399# Since: 7.2
2400##
2401{ 'command': 'query-migrationthreads',
2402  'returns': ['MigrationThreadInfo'] }
2403
2404##
2405# @snapshot-save:
2406#
2407# Save a VM snapshot
2408#
2409# @job-id: identifier for the newly created job
2410#
2411# @tag: name of the snapshot to create
2412#
2413# @vmstate: block device node name to save vmstate to
2414#
2415# @devices: list of block device node names to save a snapshot to
2416#
2417# Applications should not assume that the snapshot save is complete
2418# when this command returns.  The job commands / events must be used
2419# to determine completion and to fetch details of any errors that
2420# arise.
2421#
2422# Note that execution of the guest CPUs may be stopped during the time
2423# it takes to save the snapshot.  A future version of QEMU may ensure
2424# CPUs are executing continuously.
2425#
2426# It is strongly recommended that @devices contain all writable block
2427# device nodes if a consistent snapshot is required.
2428#
2429# If @tag already exists, an error will be reported
2430#
2431# Returns: nothing
2432#
2433# Example:
2434#
2435#     -> { "execute": "snapshot-save",
2436#          "arguments": {
2437#             "job-id": "snapsave0",
2438#             "tag": "my-snap",
2439#             "vmstate": "disk0",
2440#             "devices": ["disk0", "disk1"]
2441#          }
2442#        }
2443#     <- { "return": { } }
2444#     <- {"event": "JOB_STATUS_CHANGE",
2445#         "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2446#         "data": {"status": "created", "id": "snapsave0"}}
2447#     <- {"event": "JOB_STATUS_CHANGE",
2448#         "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2449#         "data": {"status": "running", "id": "snapsave0"}}
2450#     <- {"event": "STOP",
2451#         "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2452#     <- {"event": "RESUME",
2453#         "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2454#     <- {"event": "JOB_STATUS_CHANGE",
2455#         "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2456#         "data": {"status": "waiting", "id": "snapsave0"}}
2457#     <- {"event": "JOB_STATUS_CHANGE",
2458#         "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2459#         "data": {"status": "pending", "id": "snapsave0"}}
2460#     <- {"event": "JOB_STATUS_CHANGE",
2461#         "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2462#         "data": {"status": "concluded", "id": "snapsave0"}}
2463#     -> {"execute": "query-jobs"}
2464#     <- {"return": [{"current-progress": 1,
2465#                     "status": "concluded",
2466#                     "total-progress": 1,
2467#                     "type": "snapshot-save",
2468#                     "id": "snapsave0"}]}
2469#
2470# Since: 6.0
2471##
2472{ 'command': 'snapshot-save',
2473  'data': { 'job-id': 'str',
2474            'tag': 'str',
2475            'vmstate': 'str',
2476            'devices': ['str'] } }
2477
2478##
2479# @snapshot-load:
2480#
2481# Load a VM snapshot
2482#
2483# @job-id: identifier for the newly created job
2484#
2485# @tag: name of the snapshot to load.
2486#
2487# @vmstate: block device node name to load vmstate from
2488#
2489# @devices: list of block device node names to load a snapshot from
2490#
2491# Applications should not assume that the snapshot load is complete
2492# when this command returns.  The job commands / events must be used
2493# to determine completion and to fetch details of any errors that
2494# arise.
2495#
2496# Note that execution of the guest CPUs will be stopped during the
2497# time it takes to load the snapshot.
2498#
2499# It is strongly recommended that @devices contain all writable block
2500# device nodes that can have changed since the original @snapshot-save
2501# command execution.
2502#
2503# Returns: nothing
2504#
2505# Example:
2506#
2507#     -> { "execute": "snapshot-load",
2508#          "arguments": {
2509#             "job-id": "snapload0",
2510#             "tag": "my-snap",
2511#             "vmstate": "disk0",
2512#             "devices": ["disk0", "disk1"]
2513#          }
2514#        }
2515#     <- { "return": { } }
2516#     <- {"event": "JOB_STATUS_CHANGE",
2517#         "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2518#         "data": {"status": "created", "id": "snapload0"}}
2519#     <- {"event": "JOB_STATUS_CHANGE",
2520#         "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2521#         "data": {"status": "running", "id": "snapload0"}}
2522#     <- {"event": "STOP",
2523#         "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2524#     <- {"event": "RESUME",
2525#         "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2526#     <- {"event": "JOB_STATUS_CHANGE",
2527#         "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2528#         "data": {"status": "waiting", "id": "snapload0"}}
2529#     <- {"event": "JOB_STATUS_CHANGE",
2530#         "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2531#         "data": {"status": "pending", "id": "snapload0"}}
2532#     <- {"event": "JOB_STATUS_CHANGE",
2533#         "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2534#         "data": {"status": "concluded", "id": "snapload0"}}
2535#     -> {"execute": "query-jobs"}
2536#     <- {"return": [{"current-progress": 1,
2537#                     "status": "concluded",
2538#                     "total-progress": 1,
2539#                     "type": "snapshot-load",
2540#                     "id": "snapload0"}]}
2541#
2542# Since: 6.0
2543##
2544{ 'command': 'snapshot-load',
2545  'data': { 'job-id': 'str',
2546            'tag': 'str',
2547            'vmstate': 'str',
2548            'devices': ['str'] } }
2549
2550##
2551# @snapshot-delete:
2552#
2553# Delete a VM snapshot
2554#
2555# @job-id: identifier for the newly created job
2556#
2557# @tag: name of the snapshot to delete.
2558#
2559# @devices: list of block device node names to delete a snapshot from
2560#
2561# Applications should not assume that the snapshot delete is complete
2562# when this command returns.  The job commands / events must be used
2563# to determine completion and to fetch details of any errors that
2564# arise.
2565#
2566# Returns: nothing
2567#
2568# Example:
2569#
2570#     -> { "execute": "snapshot-delete",
2571#          "arguments": {
2572#             "job-id": "snapdelete0",
2573#             "tag": "my-snap",
2574#             "devices": ["disk0", "disk1"]
2575#          }
2576#        }
2577#     <- { "return": { } }
2578#     <- {"event": "JOB_STATUS_CHANGE",
2579#         "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2580#         "data": {"status": "created", "id": "snapdelete0"}}
2581#     <- {"event": "JOB_STATUS_CHANGE",
2582#         "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2583#         "data": {"status": "running", "id": "snapdelete0"}}
2584#     <- {"event": "JOB_STATUS_CHANGE",
2585#         "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2586#         "data": {"status": "waiting", "id": "snapdelete0"}}
2587#     <- {"event": "JOB_STATUS_CHANGE",
2588#         "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2589#         "data": {"status": "pending", "id": "snapdelete0"}}
2590#     <- {"event": "JOB_STATUS_CHANGE",
2591#         "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2592#         "data": {"status": "concluded", "id": "snapdelete0"}}
2593#     -> {"execute": "query-jobs"}
2594#     <- {"return": [{"current-progress": 1,
2595#                     "status": "concluded",
2596#                     "total-progress": 1,
2597#                     "type": "snapshot-delete",
2598#                     "id": "snapdelete0"}]}
2599#
2600# Since: 6.0
2601##
2602{ 'command': 'snapshot-delete',
2603  'data': { 'job-id': 'str',
2604            'tag': 'str',
2605            'devices': ['str'] } }
2606