xref: /qemu/qapi/migration.json (revision 8eb0a257)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages. Always zero, only provided for
27#     compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34#     (since 1.3)
35#
36# @mbps: throughput in megabits/sec.  (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39#     (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42#     destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45#     statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50#     (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53#     (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56#     (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59#     (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62#     synchronization could not avoid copying dirty pages.  This is
63#     between 0 and @dirty-sync-count * @multifd-channels.  (since
64#     7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71#
72##
73{ 'struct': 'MigrationStats',
74  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75           'duplicate': 'int',
76           'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
77           'normal': 'int',
78           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79           'mbps': 'number', 'dirty-sync-count': 'int',
80           'postcopy-requests': 'int', 'page-size': 'int',
81           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83           'postcopy-bytes': 'uint64',
84           'dirty-sync-missed-zero-copy': 'uint64' } }
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
108  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109           'cache-miss': 'int', 'cache-miss-rate': 'number',
110           'encoding-rate': 'number', 'overflow': 'int' } }
111
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
119# @busy: count of times that no free thread was available to compress
120#     data
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132           'compressed-size': 'int', 'compression-rate': 'number' } }
133
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
149# @postcopy-active: like active, but now in postcopy mode.  (since
150#     2.5)
151#
152# @postcopy-paused: during postcopy but paused.  (since 3.0)
153#
154# @postcopy-recover: trying to recover from a paused postcopy.  (since
155#     3.0)
156#
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
161# @colo: VM is in the process of fault tolerance, VM can not get into
162#     this state unless colo capability is enabled for migration.
163#     (since 2.8)
164#
165# @pre-switchover: Paused before device serialisation.  (since 2.11)
166#
167# @device: During device serialisation when pause-before-switchover is
168#     enabled (since 2.11)
169#
170# @wait-unplug: wait for device unplug request by guest OS to be
171#     completed.  (since 4.2)
172#
173# Since: 2.3
174##
175{ 'enum': 'MigrationStatus',
176  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177            'active', 'postcopy-active', 'postcopy-paused',
178            'postcopy-recover', 'completed', 'failed', 'colo',
179            'pre-switchover', 'device', 'wait-unplug' ] }
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
185# @transferred: amount of bytes transferred to the target VM by VFIO
186#     devices
187#
188# Since: 5.2
189##
190{ 'struct': 'VfioStats',
191  'data': {'transferred': 'int' } }
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
199#     If this field is not returned, no migration process has been
200#     initiated
201#
202# @ram: @MigrationStats containing detailed migration status, only
203#     returned if status is 'active' or 'completed'(since 1.2)
204#
205# @disk: @MigrationStats containing detailed disk migration status,
206#     only returned if status is 'active' and it is a block migration
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209#     migration statistics, only returned if XBZRLE feature is on and
210#     status is 'active' or 'completed' (since 1.2)
211#
212# @total-time: total amount of milliseconds since migration started.
213#     If migration has ended, it returns the total migration time.
214#     (since 1.2)
215#
216# @downtime: only present when migration finishes correctly total
217#     downtime in milliseconds for the guest.  (since 1.3)
218#
219# @expected-downtime: only present while migration is active expected
220#     downtime in milliseconds for the guest in last walk of the dirty
221#     bitmap.  (since 1.3)
222#
223# @setup-time: amount of setup time in milliseconds *before* the
224#     iterations begin but *after* the QMP command is issued.  This is
225#     designed to provide an accounting of any activities (such as
226#     RDMA pinning) which may be expensive, but do not actually occur
227#     during the iterative migration rounds themselves.  (since 1.6)
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
230#     throttled during auto-converge.  This is only present when
231#     auto-converge has started throttling guest cpus.  (Since 2.7)
232#
233# @error-desc: the human readable error description string. Clients
234#     should not attempt to parse the error strings.  (Since 2.7)
235#
236# @postcopy-blocktime: total time when all vCPU were blocked during
237#     postcopy live migration.  This is only present when the
238#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
239#
240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241#     This is only present when the postcopy-blocktime migration
242#     capability is enabled.  (Since 3.0)
243#
244# @compression: migration compression statistics, only returned if
245#     compression feature is on and status is 'active' or 'completed'
246#     (Since 3.1)
247#
248# @socket-address: Only used for tcp, to know what the real port is
249#     (Since 4.0)
250#
251# @vfio: @VfioStats containing detailed VFIO devices migration
252#     statistics, only returned if VFIO device is present, migration
253#     is supported by all VFIO devices and status is 'active' or
254#     'completed' (since 5.2)
255#
256# @blocked-reasons: A list of reasons an outgoing migration is
257#     blocked.  Present and non-empty when migration is blocked.
258#     (since 6.0)
259#
260# @dirty-limit-throttle-time-per-round: Maximum throttle time
261#     (in microseconds) of virtual CPUs each dirty ring full round,
262#     which shows how MigrationCapability dirty-limit affects the
263#     guest during live migration.  (Since 8.1)
264#
265# @dirty-limit-ring-full-time: Estimated average dirty ring full time
266#     (in microseconds) for each dirty ring full round.  The value
267#     equals the dirty ring memory size divided by the average dirty
268#     page rate of the virtual CPU, which can be used to observe the
269#     average memory load of the virtual CPU indirectly.  Note that
270#     zero means guest doesn't dirty memory.  (Since 8.1)
271#
272# Features:
273#
274# @deprecated: Member @disk is deprecated because block migration is.
275#     Member @compression is deprecated because it is unreliable and
276#     untested.  It is recommended to use multifd migration, which
277#     offers an alternative compression implementation that is
278#     reliable and tested.
279#
280# Since: 0.14
281##
282{ 'struct': 'MigrationInfo',
283  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
284           '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] },
285           '*vfio': 'VfioStats',
286           '*xbzrle-cache': 'XBZRLECacheStats',
287           '*total-time': 'int',
288           '*expected-downtime': 'int',
289           '*downtime': 'int',
290           '*setup-time': 'int',
291           '*cpu-throttle-percentage': 'int',
292           '*error-desc': 'str',
293           '*blocked-reasons': ['str'],
294           '*postcopy-blocktime': 'uint32',
295           '*postcopy-vcpu-blocktime': ['uint32'],
296           '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] },
297           '*socket-address': ['SocketAddress'],
298           '*dirty-limit-throttle-time-per-round': 'uint64',
299           '*dirty-limit-ring-full-time': 'uint64'} }
300
301##
302# @query-migrate:
303#
304# Returns information about current migration process.  If migration
305# is active there will be another json-object with RAM migration
306# status and if block migration is active another one with block
307# migration status.
308#
309# Returns: @MigrationInfo
310#
311# Since: 0.14
312#
313# Examples:
314#
315#     1. Before the first migration
316#
317#     -> { "execute": "query-migrate" }
318#     <- { "return": {} }
319#
320#     2. Migration is done and has succeeded
321#
322#     -> { "execute": "query-migrate" }
323#     <- { "return": {
324#             "status": "completed",
325#             "total-time":12345,
326#             "setup-time":12345,
327#             "downtime":12345,
328#             "ram":{
329#               "transferred":123,
330#               "remaining":123,
331#               "total":246,
332#               "duplicate":123,
333#               "normal":123,
334#               "normal-bytes":123456,
335#               "dirty-sync-count":15
336#             }
337#          }
338#        }
339#
340#     3. Migration is done and has failed
341#
342#     -> { "execute": "query-migrate" }
343#     <- { "return": { "status": "failed" } }
344#
345#     4. Migration is being performed and is not a block migration:
346#
347#     -> { "execute": "query-migrate" }
348#     <- {
349#           "return":{
350#              "status":"active",
351#              "total-time":12345,
352#              "setup-time":12345,
353#              "expected-downtime":12345,
354#              "ram":{
355#                 "transferred":123,
356#                 "remaining":123,
357#                 "total":246,
358#                 "duplicate":123,
359#                 "normal":123,
360#                 "normal-bytes":123456,
361#                 "dirty-sync-count":15
362#              }
363#           }
364#        }
365#
366#     5. Migration is being performed and is a block migration:
367#
368#     -> { "execute": "query-migrate" }
369#     <- {
370#           "return":{
371#              "status":"active",
372#              "total-time":12345,
373#              "setup-time":12345,
374#              "expected-downtime":12345,
375#              "ram":{
376#                 "total":1057024,
377#                 "remaining":1053304,
378#                 "transferred":3720,
379#                 "duplicate":123,
380#                 "normal":123,
381#                 "normal-bytes":123456,
382#                 "dirty-sync-count":15
383#              },
384#              "disk":{
385#                 "total":20971520,
386#                 "remaining":20880384,
387#                 "transferred":91136
388#              }
389#           }
390#        }
391#
392#     6. Migration is being performed and XBZRLE is active:
393#
394#     -> { "execute": "query-migrate" }
395#     <- {
396#           "return":{
397#              "status":"active",
398#              "total-time":12345,
399#              "setup-time":12345,
400#              "expected-downtime":12345,
401#              "ram":{
402#                 "total":1057024,
403#                 "remaining":1053304,
404#                 "transferred":3720,
405#                 "duplicate":10,
406#                 "normal":3333,
407#                 "normal-bytes":3412992,
408#                 "dirty-sync-count":15
409#              },
410#              "xbzrle-cache":{
411#                 "cache-size":67108864,
412#                 "bytes":20971520,
413#                 "pages":2444343,
414#                 "cache-miss":2244,
415#                 "cache-miss-rate":0.123,
416#                 "encoding-rate":80.1,
417#                 "overflow":34434
418#              }
419#           }
420#        }
421##
422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
423
424##
425# @MigrationCapability:
426#
427# Migration capabilities enumeration
428#
429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
430#     Encoding). This feature allows us to minimize migration traffic
431#     for certain work loads, by sending compressed difference of the
432#     pages
433#
434# @rdma-pin-all: Controls whether or not the entire VM memory
435#     footprint is mlock()'d on demand or all at once.  Refer to
436#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
437#
438# @zero-blocks: During storage migration encode blocks of zeroes
439#     efficiently.  This essentially saves 1MB of zeroes per block on
440#     the wire.  Enabling requires source and target VM to support
441#     this feature.  To enable it is sufficient to enable the
442#     capability on the source VM. The feature is disabled by default.
443#     (since 1.6)
444#
445# @compress: Use multiple compression threads to accelerate live
446#     migration.  This feature can help to reduce the migration
447#     traffic, by sending compressed pages.  Please note that if
448#     compress and xbzrle are both on, compress only takes effect in
449#     the ram bulk stage, after that, it will be disabled and only
450#     xbzrle takes effect, this can help to minimize migration
451#     traffic.  The feature is disabled by default.  (since 2.4)
452#
453# @events: generate events for each migration state change (since 2.4)
454#
455# @auto-converge: If enabled, QEMU will automatically throttle down
456#     the guest to speed up convergence of RAM migration.  (since 1.6)
457#
458# @postcopy-ram: Start executing on the migration target before all of
459#     RAM has been migrated, pulling the remaining pages along as
460#     needed.  The capacity must have the same setting on both source
461#     and target or migration will not even start.  NOTE: If the
462#     migration fails during postcopy the VM will fail.  (since 2.6)
463#
464# @x-colo: If enabled, migration will never end, and the state of the
465#     VM on the primary side will be migrated continuously to the VM
466#     on secondary side, this process is called COarse-Grain LOck
467#     Stepping (COLO) for Non-stop Service.  (since 2.8)
468#
469# @release-ram: if enabled, qemu will free the migrated ram pages on
470#     the source during postcopy-ram migration.  (since 2.9)
471#
472# @block: If enabled, QEMU will also migrate the contents of all block
473#     devices.  Default is disabled.  A possible alternative uses
474#     mirror jobs to a builtin NBD server on the destination, which
475#     offers more flexibility.  (Since 2.10)
476#
477# @return-path: If enabled, migration will use the return path even
478#     for precopy.  (since 2.10)
479#
480# @pause-before-switchover: Pause outgoing migration before
481#     serialising device state and before disabling block IO (since
482#     2.11)
483#
484# @multifd: Use more than one fd for migration (since 4.0)
485#
486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
487#     (since 2.12)
488#
489# @postcopy-blocktime: Calculate downtime for postcopy live migration
490#     (since 3.0)
491#
492# @late-block-activate: If enabled, the destination will not activate
493#     block devices (and thus take locks) immediately at the end of
494#     migration.  (since 3.0)
495#
496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
497#     that is accessible on the destination machine.  (since 4.0)
498#
499# @validate-uuid: Send the UUID of the source to allow the destination
500#     to ensure it is the same.  (since 4.2)
501#
502# @background-snapshot: If enabled, the migration stream will be a
503#     snapshot of the VM exactly at the point when the migration
504#     procedure starts.  The VM RAM is saved with running VM. (since
505#     6.0)
506#
507# @zero-copy-send: Controls behavior on sending memory pages on
508#     migration.  When true, enables a zero-copy mechanism for sending
509#     memory pages, if host supports it.  Requires that QEMU be
510#     permitted to use locked memory for guest RAM pages.  (since 7.1)
511#
512# @postcopy-preempt: If enabled, the migration process will allow
513#     postcopy requests to preempt precopy stream, so postcopy
514#     requests will be handled faster.  This is a performance feature
515#     and should not affect the correctness of postcopy migration.
516#     (since 7.1)
517#
518# @switchover-ack: If enabled, migration will not stop the source VM
519#     and complete the migration until an ACK is received from the
520#     destination that it's OK to do so.  Exactly when this ACK is
521#     sent depends on the migrated devices that use this feature.  For
522#     example, a device can use it to make sure some of its data is
523#     sent and loaded in the destination before doing switchover.
524#     This can reduce downtime if devices that support this capability
525#     are present.  'return-path' capability must be enabled to use
526#     it.  (since 8.1)
527#
528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
529#     keep their dirty page rate within @vcpu-dirty-limit.  This can
530#     improve responsiveness of large guests during live migration,
531#     and can result in more stable read performance.  Requires KVM
532#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
533#
534# @mapped-ram: Migrate using fixed offsets in the migration file for
535#     each RAM page.  Requires a migration URI that supports seeking,
536#     such as a file.  (since 9.0)
537#
538# Features:
539#
540# @deprecated: Member @block is deprecated.  Use blockdev-mirror with
541#     NBD instead.  Member @compress is deprecated because it is
542#     unreliable and untested.  It is recommended to use multifd
543#     migration, which offers an alternative compression
544#     implementation that is reliable and tested.
545#
546# @unstable: Members @x-colo and @x-ignore-shared are experimental.
547#
548# Since: 1.2
549##
550{ 'enum': 'MigrationCapability',
551  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
552           { 'name': 'compress', 'features': [ 'deprecated' ] },
553           'events', 'postcopy-ram',
554           { 'name': 'x-colo', 'features': [ 'unstable' ] },
555           'release-ram',
556           { 'name': 'block', 'features': [ 'deprecated' ] },
557           'return-path', 'pause-before-switchover', 'multifd',
558           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
559           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
560           'validate-uuid', 'background-snapshot',
561           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
562           'dirty-limit', 'mapped-ram'] }
563
564##
565# @MigrationCapabilityStatus:
566#
567# Migration capability information
568#
569# @capability: capability enum
570#
571# @state: capability state bool
572#
573# Since: 1.2
574##
575{ 'struct': 'MigrationCapabilityStatus',
576  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
577
578##
579# @migrate-set-capabilities:
580#
581# Enable/Disable the following migration capabilities (like xbzrle)
582#
583# @capabilities: json array of capability modifications to make
584#
585# Since: 1.2
586#
587# Example:
588#
589#     -> { "execute": "migrate-set-capabilities" , "arguments":
590#          { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
591#     <- { "return": {} }
592##
593{ 'command': 'migrate-set-capabilities',
594  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
595
596##
597# @query-migrate-capabilities:
598#
599# Returns information about the current migration capabilities status
600#
601# Returns: @MigrationCapabilityStatus
602#
603# Since: 1.2
604#
605# Example:
606#
607#     -> { "execute": "query-migrate-capabilities" }
608#     <- { "return": [
609#           {"state": false, "capability": "xbzrle"},
610#           {"state": false, "capability": "rdma-pin-all"},
611#           {"state": false, "capability": "auto-converge"},
612#           {"state": false, "capability": "zero-blocks"},
613#           {"state": false, "capability": "compress"},
614#           {"state": true, "capability": "events"},
615#           {"state": false, "capability": "postcopy-ram"},
616#           {"state": false, "capability": "x-colo"}
617#        ]}
618##
619{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
620
621##
622# @MultiFDCompression:
623#
624# An enumeration of multifd compression methods.
625#
626# @none: no compression.
627#
628# @zlib: use zlib compression method.
629#
630# @zstd: use zstd compression method.
631#
632# Since: 5.0
633##
634{ 'enum': 'MultiFDCompression',
635  'data': [ 'none', 'zlib',
636            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
637
638##
639# @MigMode:
640#
641# @normal: the original form of migration. (since 8.2)
642#
643# @cpr-reboot: The migrate command stops the VM and saves state to
644#     the URI.  After quitting QEMU, the user resumes by running
645#     QEMU -incoming.
646#
647#     This mode allows the user to quit QEMU, optionally update and
648#     reboot the OS, and restart QEMU.  If the user reboots, the URI
649#     must persist across the reboot, such as by using a file.
650#
651#     Unlike normal mode, the use of certain local storage options
652#     does not block the migration, but the user must not modify the
653#     contents of guest block devices between the quit and restart.
654#
655#     This mode supports VFIO devices provided the user first puts
656#     the guest in the suspended runstate, such as by issuing
657#     guest-suspend-ram to the QEMU guest agent.
658#
659#     Best performance is achieved when the memory backend is shared
660#     and the @x-ignore-shared migration capability is set, but this
661#     is not required.  Further, if the user reboots before restarting
662#     such a configuration, the shared memory must persist across the
663#     reboot, such as by backing it with a dax device.
664#
665#     @cpr-reboot may not be used with postcopy, background-snapshot,
666#     or COLO.
667#
668#     (since 8.2)
669##
670{ 'enum': 'MigMode',
671  'data': [ 'normal', 'cpr-reboot' ] }
672
673##
674# @ZeroPageDetection:
675#
676# @none: Do not perform zero page checking.
677#
678# @legacy: Perform zero page checking in main migration thread.
679#
680# @multifd: Perform zero page checking in multifd sender thread if
681#     multifd migration is enabled, else in the main migration
682#     thread as for @legacy.
683#
684# Since: 9.0
685#
686##
687{ 'enum': 'ZeroPageDetection',
688  'data': [ 'none', 'legacy', 'multifd' ] }
689
690##
691# @BitmapMigrationBitmapAliasTransform:
692#
693# @persistent: If present, the bitmap will be made persistent or
694#     transient depending on this parameter.
695#
696# Since: 6.0
697##
698{ 'struct': 'BitmapMigrationBitmapAliasTransform',
699  'data': {
700      '*persistent': 'bool'
701  } }
702
703##
704# @BitmapMigrationBitmapAlias:
705#
706# @name: The name of the bitmap.
707#
708# @alias: An alias name for migration (for example the bitmap name on
709#     the opposite site).
710#
711# @transform: Allows the modification of the migrated bitmap.  (since
712#     6.0)
713#
714# Since: 5.2
715##
716{ 'struct': 'BitmapMigrationBitmapAlias',
717  'data': {
718      'name': 'str',
719      'alias': 'str',
720      '*transform': 'BitmapMigrationBitmapAliasTransform'
721  } }
722
723##
724# @BitmapMigrationNodeAlias:
725#
726# Maps a block node name and the bitmaps it has to aliases for dirty
727# bitmap migration.
728#
729# @node-name: A block node name.
730#
731# @alias: An alias block node name for migration (for example the node
732#     name on the opposite site).
733#
734# @bitmaps: Mappings for the bitmaps on this node.
735#
736# Since: 5.2
737##
738{ 'struct': 'BitmapMigrationNodeAlias',
739  'data': {
740      'node-name': 'str',
741      'alias': 'str',
742      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
743  } }
744
745##
746# @MigrationParameter:
747#
748# Migration parameters enumeration
749#
750# @announce-initial: Initial delay (in milliseconds) before sending
751#     the first announce (Since 4.0)
752#
753# @announce-max: Maximum delay (in milliseconds) between packets in
754#     the announcement (Since 4.0)
755#
756# @announce-rounds: Number of self-announce packets sent after
757#     migration (Since 4.0)
758#
759# @announce-step: Increase in delay (in milliseconds) between
760#     subsequent packets in the announcement (Since 4.0)
761#
762# @compress-level: Set the compression level to be used in live
763#     migration, the compression level is an integer between 0 and 9,
764#     where 0 means no compression, 1 means the best compression
765#     speed, and 9 means best compression ratio which will consume
766#     more CPU.
767#
768# @compress-threads: Set compression thread count to be used in live
769#     migration, the compression thread count is an integer between 1
770#     and 255.
771#
772# @compress-wait-thread: Controls behavior when all compression
773#     threads are currently busy.  If true (default), wait for a free
774#     compression thread to become available; otherwise, send the page
775#     uncompressed.  (Since 3.1)
776#
777# @decompress-threads: Set decompression thread count to be used in
778#     live migration, the decompression thread count is an integer
779#     between 1 and 255. Usually, decompression is at least 4 times as
780#     fast as compression, so set the decompress-threads to the number
781#     about 1/4 of compress-threads is adequate.
782#
783# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
784#     bytes_xfer_period to trigger throttling.  It is expressed as
785#     percentage.  The default value is 50. (Since 5.0)
786#
787# @cpu-throttle-initial: Initial percentage of time guest cpus are
788#     throttled when migration auto-converge is activated.  The
789#     default value is 20. (Since 2.7)
790#
791# @cpu-throttle-increment: throttle percentage increase each time
792#     auto-converge detects that migration is not making progress.
793#     The default value is 10. (Since 2.7)
794#
795# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
796#     the tail stage of throttling, the Guest is very sensitive to CPU
797#     percentage while the @cpu-throttle -increment is excessive
798#     usually at tail stage.  If this parameter is true, we will
799#     compute the ideal CPU percentage used by the Guest, which may
800#     exactly make the dirty rate match the dirty rate threshold.
801#     Then we will choose a smaller throttle increment between the one
802#     specified by @cpu-throttle-increment and the one generated by
803#     ideal CPU percentage.  Therefore, it is compatible to
804#     traditional throttling, meanwhile the throttle increment won't
805#     be excessive at tail stage.  The default value is false.  (Since
806#     5.1)
807#
808# @tls-creds: ID of the 'tls-creds' object that provides credentials
809#     for establishing a TLS connection over the migration data
810#     channel.  On the outgoing side of the migration, the credentials
811#     must be for a 'client' endpoint, while for the incoming side the
812#     credentials must be for a 'server' endpoint.  Setting this to a
813#     non-empty string enables TLS for all migrations.  An empty
814#     string means that QEMU will use plain text mode for migration,
815#     rather than TLS.  (Since 2.7)
816#
817# @tls-hostname: migration target's hostname for validating the
818#     server's x509 certificate identity.  If empty, QEMU will use the
819#     hostname from the migration URI, if any.  A non-empty value is
820#     required when using x509 based TLS credentials and the migration
821#     URI does not include a hostname, such as fd: or exec: based
822#     migration.  (Since 2.7)
823#
824#     Note: empty value works only since 2.9.
825#
826# @tls-authz: ID of the 'authz' object subclass that provides access
827#     control checking of the TLS x509 certificate distinguished name.
828#     This object is only resolved at time of use, so can be deleted
829#     and recreated on the fly while the migration server is active.
830#     If missing, it will default to denying access (Since 4.0)
831#
832# @max-bandwidth: to set maximum speed for migration.  maximum speed
833#     in bytes per second.  (Since 2.8)
834#
835# @avail-switchover-bandwidth: to set the available bandwidth that
836#     migration can use during switchover phase.  NOTE!  This does not
837#     limit the bandwidth during switchover, but only for calculations when
838#     making decisions to switchover.  By default, this value is zero,
839#     which means QEMU will estimate the bandwidth automatically.  This can
840#     be set when the estimated value is not accurate, while the user is
841#     able to guarantee such bandwidth is available when switching over.
842#     When specified correctly, this can make the switchover decision much
843#     more accurate.  (Since 8.2)
844#
845# @downtime-limit: set maximum tolerated downtime for migration.
846#     maximum downtime in milliseconds (Since 2.8)
847#
848# @x-checkpoint-delay: The delay time (in ms) between two COLO
849#     checkpoints in periodic mode.  (Since 2.8)
850#
851# @block-incremental: Affects how much storage is migrated when the
852#     block migration capability is enabled.  When false, the entire
853#     storage backing chain is migrated into a flattened image at the
854#     destination; when true, only the active qcow2 layer is migrated
855#     and the destination must already have access to the same backing
856#     chain as was used on the source.  (since 2.10)
857#
858# @multifd-channels: Number of channels used to migrate data in
859#     parallel.  This is the same number that the number of sockets
860#     used for migration.  The default value is 2 (since 4.0)
861#
862# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
863#     needs to be a multiple of the target page size and a power of 2
864#     (Since 2.11)
865#
866# @max-postcopy-bandwidth: Background transfer bandwidth during
867#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
868#     (Since 3.0)
869#
870# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
871#     (Since 3.1)
872#
873# @multifd-compression: Which compression method to use.  Defaults to
874#     none.  (Since 5.0)
875#
876# @multifd-zlib-level: Set the compression level to be used in live
877#     migration, the compression level is an integer between 0 and 9,
878#     where 0 means no compression, 1 means the best compression
879#     speed, and 9 means best compression ratio which will consume
880#     more CPU. Defaults to 1. (Since 5.0)
881#
882# @multifd-zstd-level: Set the compression level to be used in live
883#     migration, the compression level is an integer between 0 and 20,
884#     where 0 means no compression, 1 means the best compression
885#     speed, and 20 means best compression ratio which will consume
886#     more CPU. Defaults to 1. (Since 5.0)
887#
888# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
889#     aliases for the purpose of dirty bitmap migration.  Such aliases
890#     may for example be the corresponding names on the opposite site.
891#     The mapping must be one-to-one, but not necessarily complete: On
892#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
893#     will be ignored.  On the destination, encountering an unmapped
894#     alias in the incoming migration stream will result in a report,
895#     and all further bitmap migration data will then be discarded.
896#     Note that the destination does not know about bitmaps it does
897#     not receive, so there is no limitation or requirement regarding
898#     the number of bitmaps received, or how they are named, or on
899#     which nodes they are placed.  By default (when this parameter
900#     has never been set), bitmap names are mapped to themselves.
901#     Nodes are mapped to their block device name if there is one, and
902#     to their node name otherwise.  (Since 5.2)
903#
904# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
905#     limit during live migration.  Should be in the range 1 to 1000ms.
906#     Defaults to 1000ms.  (Since 8.1)
907#
908# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
909#     Defaults to 1.  (Since 8.1)
910#
911# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
912#        (Since 8.2)
913#
914# @zero-page-detection: Whether and how to detect zero pages.
915#     See description in @ZeroPageDetection.  Default is 'multifd'.
916#     (since 9.0)
917#
918# Features:
919#
920# @deprecated: Member @block-incremental is deprecated.  Use
921#     blockdev-mirror with NBD instead.  Members @compress-level,
922#     @compress-threads, @decompress-threads and @compress-wait-thread
923#     are deprecated because @compression is deprecated.
924#
925# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
926#     are experimental.
927#
928# Since: 2.4
929##
930{ 'enum': 'MigrationParameter',
931  'data': ['announce-initial', 'announce-max',
932           'announce-rounds', 'announce-step',
933           { 'name': 'compress-level', 'features': [ 'deprecated' ] },
934           { 'name': 'compress-threads', 'features': [ 'deprecated' ] },
935           { 'name': 'decompress-threads', 'features': [ 'deprecated' ] },
936           { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] },
937           'throttle-trigger-threshold',
938           'cpu-throttle-initial', 'cpu-throttle-increment',
939           'cpu-throttle-tailslow',
940           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
941           'avail-switchover-bandwidth', 'downtime-limit',
942           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
943           { 'name': 'block-incremental', 'features': [ 'deprecated' ] },
944           'multifd-channels',
945           'xbzrle-cache-size', 'max-postcopy-bandwidth',
946           'max-cpu-throttle', 'multifd-compression',
947           'multifd-zlib-level', 'multifd-zstd-level',
948           'block-bitmap-mapping',
949           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
950           'vcpu-dirty-limit',
951           'mode',
952           'zero-page-detection'] }
953
954##
955# @MigrateSetParameters:
956#
957# @announce-initial: Initial delay (in milliseconds) before sending
958#     the first announce (Since 4.0)
959#
960# @announce-max: Maximum delay (in milliseconds) between packets in
961#     the announcement (Since 4.0)
962#
963# @announce-rounds: Number of self-announce packets sent after
964#     migration (Since 4.0)
965#
966# @announce-step: Increase in delay (in milliseconds) between
967#     subsequent packets in the announcement (Since 4.0)
968#
969# @compress-level: Set the compression level to be used in live
970#     migration, the compression level is an integer between 0 and 9,
971#     where 0 means no compression, 1 means the best compression
972#     speed, and 9 means best compression ratio which will consume
973#     more CPU.
974#
975# @compress-threads: Set compression thread count to be used in live
976#     migration, the compression thread count is an integer between 1
977#     and 255.
978#
979# @compress-wait-thread: Controls behavior when all compression
980#     threads are currently busy.  If true (default), wait for a free
981#     compression thread to become available; otherwise, send the page
982#     uncompressed.  (Since 3.1)
983#
984# @decompress-threads: Set decompression thread count to be used in
985#     live migration, the decompression thread count is an integer
986#     between 1 and 255. Usually, decompression is at least 4 times as
987#     fast as compression, so set the decompress-threads to the number
988#     about 1/4 of compress-threads is adequate.
989#
990# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
991#     bytes_xfer_period to trigger throttling.  It is expressed as
992#     percentage.  The default value is 50. (Since 5.0)
993#
994# @cpu-throttle-initial: Initial percentage of time guest cpus are
995#     throttled when migration auto-converge is activated.  The
996#     default value is 20. (Since 2.7)
997#
998# @cpu-throttle-increment: throttle percentage increase each time
999#     auto-converge detects that migration is not making progress.
1000#     The default value is 10. (Since 2.7)
1001#
1002# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1003#     the tail stage of throttling, the Guest is very sensitive to CPU
1004#     percentage while the @cpu-throttle -increment is excessive
1005#     usually at tail stage.  If this parameter is true, we will
1006#     compute the ideal CPU percentage used by the Guest, which may
1007#     exactly make the dirty rate match the dirty rate threshold.
1008#     Then we will choose a smaller throttle increment between the one
1009#     specified by @cpu-throttle-increment and the one generated by
1010#     ideal CPU percentage.  Therefore, it is compatible to
1011#     traditional throttling, meanwhile the throttle increment won't
1012#     be excessive at tail stage.  The default value is false.  (Since
1013#     5.1)
1014#
1015# @tls-creds: ID of the 'tls-creds' object that provides credentials
1016#     for establishing a TLS connection over the migration data
1017#     channel.  On the outgoing side of the migration, the credentials
1018#     must be for a 'client' endpoint, while for the incoming side the
1019#     credentials must be for a 'server' endpoint.  Setting this to a
1020#     non-empty string enables TLS for all migrations.  An empty
1021#     string means that QEMU will use plain text mode for migration,
1022#     rather than TLS.  This is the default.  (Since 2.7)
1023#
1024# @tls-hostname: migration target's hostname for validating the
1025#     server's x509 certificate identity.  If empty, QEMU will use the
1026#     hostname from the migration URI, if any.  A non-empty value is
1027#     required when using x509 based TLS credentials and the migration
1028#     URI does not include a hostname, such as fd: or exec: based
1029#     migration.  (Since 2.7)
1030#
1031#     Note: empty value works only since 2.9.
1032#
1033# @tls-authz: ID of the 'authz' object subclass that provides access
1034#     control checking of the TLS x509 certificate distinguished name.
1035#     This object is only resolved at time of use, so can be deleted
1036#     and recreated on the fly while the migration server is active.
1037#     If missing, it will default to denying access (Since 4.0)
1038#
1039# @max-bandwidth: to set maximum speed for migration.  maximum speed
1040#     in bytes per second.  (Since 2.8)
1041#
1042# @avail-switchover-bandwidth: to set the available bandwidth that
1043#     migration can use during switchover phase.  NOTE!  This does not
1044#     limit the bandwidth during switchover, but only for calculations when
1045#     making decisions to switchover.  By default, this value is zero,
1046#     which means QEMU will estimate the bandwidth automatically.  This can
1047#     be set when the estimated value is not accurate, while the user is
1048#     able to guarantee such bandwidth is available when switching over.
1049#     When specified correctly, this can make the switchover decision much
1050#     more accurate.  (Since 8.2)
1051#
1052# @downtime-limit: set maximum tolerated downtime for migration.
1053#     maximum downtime in milliseconds (Since 2.8)
1054#
1055# @x-checkpoint-delay: The delay time (in ms) between two COLO
1056#     checkpoints in periodic mode.  (Since 2.8)
1057#
1058# @block-incremental: Affects how much storage is migrated when the
1059#     block migration capability is enabled.  When false, the entire
1060#     storage backing chain is migrated into a flattened image at the
1061#     destination; when true, only the active qcow2 layer is migrated
1062#     and the destination must already have access to the same backing
1063#     chain as was used on the source.  (since 2.10)
1064#
1065# @multifd-channels: Number of channels used to migrate data in
1066#     parallel.  This is the same number that the number of sockets
1067#     used for migration.  The default value is 2 (since 4.0)
1068#
1069# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1070#     needs to be a multiple of the target page size and a power of 2
1071#     (Since 2.11)
1072#
1073# @max-postcopy-bandwidth: Background transfer bandwidth during
1074#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1075#     (Since 3.0)
1076#
1077# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1078#     (Since 3.1)
1079#
1080# @multifd-compression: Which compression method to use.  Defaults to
1081#     none.  (Since 5.0)
1082#
1083# @multifd-zlib-level: Set the compression level to be used in live
1084#     migration, the compression level is an integer between 0 and 9,
1085#     where 0 means no compression, 1 means the best compression
1086#     speed, and 9 means best compression ratio which will consume
1087#     more CPU. Defaults to 1. (Since 5.0)
1088#
1089# @multifd-zstd-level: Set the compression level to be used in live
1090#     migration, the compression level is an integer between 0 and 20,
1091#     where 0 means no compression, 1 means the best compression
1092#     speed, and 20 means best compression ratio which will consume
1093#     more CPU. Defaults to 1. (Since 5.0)
1094#
1095# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1096#     aliases for the purpose of dirty bitmap migration.  Such aliases
1097#     may for example be the corresponding names on the opposite site.
1098#     The mapping must be one-to-one, but not necessarily complete: On
1099#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1100#     will be ignored.  On the destination, encountering an unmapped
1101#     alias in the incoming migration stream will result in a report,
1102#     and all further bitmap migration data will then be discarded.
1103#     Note that the destination does not know about bitmaps it does
1104#     not receive, so there is no limitation or requirement regarding
1105#     the number of bitmaps received, or how they are named, or on
1106#     which nodes they are placed.  By default (when this parameter
1107#     has never been set), bitmap names are mapped to themselves.
1108#     Nodes are mapped to their block device name if there is one, and
1109#     to their node name otherwise.  (Since 5.2)
1110#
1111# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1112#     limit during live migration.  Should be in the range 1 to 1000ms.
1113#     Defaults to 1000ms.  (Since 8.1)
1114#
1115# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1116#     Defaults to 1.  (Since 8.1)
1117#
1118# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1119#        (Since 8.2)
1120#
1121# @zero-page-detection: Whether and how to detect zero pages.
1122#     See description in @ZeroPageDetection.  Default is 'multifd'.
1123#     (since 9.0)
1124#
1125# Features:
1126#
1127# @deprecated: Member @block-incremental is deprecated.  Use
1128#     blockdev-mirror with NBD instead.  Members @compress-level,
1129#     @compress-threads, @decompress-threads and @compress-wait-thread
1130#     are deprecated because @compression is deprecated.
1131#
1132# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1133#     are experimental.
1134#
1135# TODO: either fuse back into MigrationParameters, or make
1136#     MigrationParameters members mandatory
1137#
1138# Since: 2.4
1139##
1140{ 'struct': 'MigrateSetParameters',
1141  'data': { '*announce-initial': 'size',
1142            '*announce-max': 'size',
1143            '*announce-rounds': 'size',
1144            '*announce-step': 'size',
1145            '*compress-level': { 'type': 'uint8',
1146                                 'features': [ 'deprecated' ] },
1147            '*compress-threads':  { 'type': 'uint8',
1148                                    'features': [ 'deprecated' ] },
1149            '*compress-wait-thread':  { 'type': 'bool',
1150                                        'features': [ 'deprecated' ] },
1151            '*decompress-threads':  { 'type': 'uint8',
1152                                      'features': [ 'deprecated' ] },
1153            '*throttle-trigger-threshold': 'uint8',
1154            '*cpu-throttle-initial': 'uint8',
1155            '*cpu-throttle-increment': 'uint8',
1156            '*cpu-throttle-tailslow': 'bool',
1157            '*tls-creds': 'StrOrNull',
1158            '*tls-hostname': 'StrOrNull',
1159            '*tls-authz': 'StrOrNull',
1160            '*max-bandwidth': 'size',
1161            '*avail-switchover-bandwidth': 'size',
1162            '*downtime-limit': 'uint64',
1163            '*x-checkpoint-delay': { 'type': 'uint32',
1164                                     'features': [ 'unstable' ] },
1165            '*block-incremental': { 'type': 'bool',
1166                                    'features': [ 'deprecated' ] },
1167            '*multifd-channels': 'uint8',
1168            '*xbzrle-cache-size': 'size',
1169            '*max-postcopy-bandwidth': 'size',
1170            '*max-cpu-throttle': 'uint8',
1171            '*multifd-compression': 'MultiFDCompression',
1172            '*multifd-zlib-level': 'uint8',
1173            '*multifd-zstd-level': 'uint8',
1174            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1175            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1176                                            'features': [ 'unstable' ] },
1177            '*vcpu-dirty-limit': 'uint64',
1178            '*mode': 'MigMode',
1179            '*zero-page-detection': 'ZeroPageDetection'} }
1180
1181##
1182# @migrate-set-parameters:
1183#
1184# Set various migration parameters.
1185#
1186# Since: 2.4
1187#
1188# Example:
1189#
1190#     -> { "execute": "migrate-set-parameters" ,
1191#          "arguments": { "multifd-channels": 5 } }
1192#     <- { "return": {} }
1193##
1194{ 'command': 'migrate-set-parameters', 'boxed': true,
1195  'data': 'MigrateSetParameters' }
1196
1197##
1198# @MigrationParameters:
1199#
1200# The optional members aren't actually optional.
1201#
1202# @announce-initial: Initial delay (in milliseconds) before sending
1203#     the first announce (Since 4.0)
1204#
1205# @announce-max: Maximum delay (in milliseconds) between packets in
1206#     the announcement (Since 4.0)
1207#
1208# @announce-rounds: Number of self-announce packets sent after
1209#     migration (Since 4.0)
1210#
1211# @announce-step: Increase in delay (in milliseconds) between
1212#     subsequent packets in the announcement (Since 4.0)
1213#
1214# @compress-level: compression level
1215#
1216# @compress-threads: compression thread count
1217#
1218# @compress-wait-thread: Controls behavior when all compression
1219#     threads are currently busy.  If true (default), wait for a free
1220#     compression thread to become available; otherwise, send the page
1221#     uncompressed.  (Since 3.1)
1222#
1223# @decompress-threads: decompression thread count
1224#
1225# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1226#     bytes_xfer_period to trigger throttling.  It is expressed as
1227#     percentage.  The default value is 50. (Since 5.0)
1228#
1229# @cpu-throttle-initial: Initial percentage of time guest cpus are
1230#     throttled when migration auto-converge is activated.  (Since
1231#     2.7)
1232#
1233# @cpu-throttle-increment: throttle percentage increase each time
1234#     auto-converge detects that migration is not making progress.
1235#     (Since 2.7)
1236#
1237# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1238#     the tail stage of throttling, the Guest is very sensitive to CPU
1239#     percentage while the @cpu-throttle -increment is excessive
1240#     usually at tail stage.  If this parameter is true, we will
1241#     compute the ideal CPU percentage used by the Guest, which may
1242#     exactly make the dirty rate match the dirty rate threshold.
1243#     Then we will choose a smaller throttle increment between the one
1244#     specified by @cpu-throttle-increment and the one generated by
1245#     ideal CPU percentage.  Therefore, it is compatible to
1246#     traditional throttling, meanwhile the throttle increment won't
1247#     be excessive at tail stage.  The default value is false.  (Since
1248#     5.1)
1249#
1250# @tls-creds: ID of the 'tls-creds' object that provides credentials
1251#     for establishing a TLS connection over the migration data
1252#     channel.  On the outgoing side of the migration, the credentials
1253#     must be for a 'client' endpoint, while for the incoming side the
1254#     credentials must be for a 'server' endpoint.  An empty string
1255#     means that QEMU will use plain text mode for migration, rather
1256#     than TLS.  (Since 2.7)
1257#
1258#     Note: 2.8 omits empty @tls-creds instead.
1259#
1260# @tls-hostname: migration target's hostname for validating the
1261#     server's x509 certificate identity.  If empty, QEMU will use the
1262#     hostname from the migration URI, if any.  (Since 2.7)
1263#
1264#     Note: 2.8 omits empty @tls-hostname instead.
1265#
1266# @tls-authz: ID of the 'authz' object subclass that provides access
1267#     control checking of the TLS x509 certificate distinguished name.
1268#     (Since 4.0)
1269#
1270# @max-bandwidth: to set maximum speed for migration.  maximum speed
1271#     in bytes per second.  (Since 2.8)
1272#
1273# @avail-switchover-bandwidth: to set the available bandwidth that
1274#     migration can use during switchover phase.  NOTE!  This does not
1275#     limit the bandwidth during switchover, but only for calculations when
1276#     making decisions to switchover.  By default, this value is zero,
1277#     which means QEMU will estimate the bandwidth automatically.  This can
1278#     be set when the estimated value is not accurate, while the user is
1279#     able to guarantee such bandwidth is available when switching over.
1280#     When specified correctly, this can make the switchover decision much
1281#     more accurate.  (Since 8.2)
1282#
1283# @downtime-limit: set maximum tolerated downtime for migration.
1284#     maximum downtime in milliseconds (Since 2.8)
1285#
1286# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1287#     (Since 2.8)
1288#
1289# @block-incremental: Affects how much storage is migrated when the
1290#     block migration capability is enabled.  When false, the entire
1291#     storage backing chain is migrated into a flattened image at the
1292#     destination; when true, only the active qcow2 layer is migrated
1293#     and the destination must already have access to the same backing
1294#     chain as was used on the source.  (since 2.10)
1295#
1296# @multifd-channels: Number of channels used to migrate data in
1297#     parallel.  This is the same number that the number of sockets
1298#     used for migration.  The default value is 2 (since 4.0)
1299#
1300# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1301#     needs to be a multiple of the target page size and a power of 2
1302#     (Since 2.11)
1303#
1304# @max-postcopy-bandwidth: Background transfer bandwidth during
1305#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1306#     (Since 3.0)
1307#
1308# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1309#     (Since 3.1)
1310#
1311# @multifd-compression: Which compression method to use.  Defaults to
1312#     none.  (Since 5.0)
1313#
1314# @multifd-zlib-level: Set the compression level to be used in live
1315#     migration, the compression level is an integer between 0 and 9,
1316#     where 0 means no compression, 1 means the best compression
1317#     speed, and 9 means best compression ratio which will consume
1318#     more CPU. Defaults to 1. (Since 5.0)
1319#
1320# @multifd-zstd-level: Set the compression level to be used in live
1321#     migration, the compression level is an integer between 0 and 20,
1322#     where 0 means no compression, 1 means the best compression
1323#     speed, and 20 means best compression ratio which will consume
1324#     more CPU. Defaults to 1. (Since 5.0)
1325#
1326# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1327#     aliases for the purpose of dirty bitmap migration.  Such aliases
1328#     may for example be the corresponding names on the opposite site.
1329#     The mapping must be one-to-one, but not necessarily complete: On
1330#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1331#     will be ignored.  On the destination, encountering an unmapped
1332#     alias in the incoming migration stream will result in a report,
1333#     and all further bitmap migration data will then be discarded.
1334#     Note that the destination does not know about bitmaps it does
1335#     not receive, so there is no limitation or requirement regarding
1336#     the number of bitmaps received, or how they are named, or on
1337#     which nodes they are placed.  By default (when this parameter
1338#     has never been set), bitmap names are mapped to themselves.
1339#     Nodes are mapped to their block device name if there is one, and
1340#     to their node name otherwise.  (Since 5.2)
1341#
1342# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1343#     limit during live migration.  Should be in the range 1 to 1000ms.
1344#     Defaults to 1000ms.  (Since 8.1)
1345#
1346# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1347#     Defaults to 1.  (Since 8.1)
1348#
1349# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1350#        (Since 8.2)
1351#
1352# @zero-page-detection: Whether and how to detect zero pages.
1353#     See description in @ZeroPageDetection.  Default is 'multifd'.
1354#     (since 9.0)
1355#
1356# Features:
1357#
1358# @deprecated: Member @block-incremental is deprecated.  Use
1359#     blockdev-mirror with NBD instead.  Members @compress-level,
1360#     @compress-threads, @decompress-threads and @compress-wait-thread
1361#     are deprecated because @compression is deprecated.
1362#
1363# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1364#     are experimental.
1365#
1366# Since: 2.4
1367##
1368{ 'struct': 'MigrationParameters',
1369  'data': { '*announce-initial': 'size',
1370            '*announce-max': 'size',
1371            '*announce-rounds': 'size',
1372            '*announce-step': 'size',
1373            '*compress-level': { 'type': 'uint8',
1374                                 'features': [ 'deprecated' ] },
1375            '*compress-threads': { 'type': 'uint8',
1376                                   'features': [ 'deprecated' ] },
1377            '*compress-wait-thread': { 'type': 'bool',
1378                                       'features': [ 'deprecated' ] },
1379            '*decompress-threads': { 'type': 'uint8',
1380                                     'features': [ 'deprecated' ] },
1381            '*throttle-trigger-threshold': 'uint8',
1382            '*cpu-throttle-initial': 'uint8',
1383            '*cpu-throttle-increment': 'uint8',
1384            '*cpu-throttle-tailslow': 'bool',
1385            '*tls-creds': 'str',
1386            '*tls-hostname': 'str',
1387            '*tls-authz': 'str',
1388            '*max-bandwidth': 'size',
1389            '*avail-switchover-bandwidth': 'size',
1390            '*downtime-limit': 'uint64',
1391            '*x-checkpoint-delay': { 'type': 'uint32',
1392                                     'features': [ 'unstable' ] },
1393            '*block-incremental': { 'type': 'bool',
1394                                    'features': [ 'deprecated' ] },
1395            '*multifd-channels': 'uint8',
1396            '*xbzrle-cache-size': 'size',
1397            '*max-postcopy-bandwidth': 'size',
1398            '*max-cpu-throttle': 'uint8',
1399            '*multifd-compression': 'MultiFDCompression',
1400            '*multifd-zlib-level': 'uint8',
1401            '*multifd-zstd-level': 'uint8',
1402            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1403            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1404                                            'features': [ 'unstable' ] },
1405            '*vcpu-dirty-limit': 'uint64',
1406            '*mode': 'MigMode',
1407            '*zero-page-detection': 'ZeroPageDetection'} }
1408
1409##
1410# @query-migrate-parameters:
1411#
1412# Returns information about the current migration parameters
1413#
1414# Returns: @MigrationParameters
1415#
1416# Since: 2.4
1417#
1418# Example:
1419#
1420#     -> { "execute": "query-migrate-parameters" }
1421#     <- { "return": {
1422#              "multifd-channels": 2,
1423#              "cpu-throttle-increment": 10,
1424#              "cpu-throttle-initial": 20,
1425#              "max-bandwidth": 33554432,
1426#              "downtime-limit": 300
1427#           }
1428#        }
1429##
1430{ 'command': 'query-migrate-parameters',
1431  'returns': 'MigrationParameters' }
1432
1433##
1434# @migrate-start-postcopy:
1435#
1436# Followup to a migration command to switch the migration to postcopy
1437# mode.  The postcopy-ram capability must be set on both source and
1438# destination before the original migration command.
1439#
1440# Since: 2.5
1441#
1442# Example:
1443#
1444#     -> { "execute": "migrate-start-postcopy" }
1445#     <- { "return": {} }
1446##
1447{ 'command': 'migrate-start-postcopy' }
1448
1449##
1450# @MIGRATION:
1451#
1452# Emitted when a migration event happens
1453#
1454# @status: @MigrationStatus describing the current migration status.
1455#
1456# Since: 2.4
1457#
1458# Example:
1459#
1460#     <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1461#         "event": "MIGRATION",
1462#         "data": {"status": "completed"} }
1463##
1464{ 'event': 'MIGRATION',
1465  'data': {'status': 'MigrationStatus'}}
1466
1467##
1468# @MIGRATION_PASS:
1469#
1470# Emitted from the source side of a migration at the start of each
1471# pass (when it syncs the dirty bitmap)
1472#
1473# @pass: An incrementing count (starting at 1 on the first pass)
1474#
1475# Since: 2.6
1476#
1477# Example:
1478#
1479#     <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1480#           "event": "MIGRATION_PASS", "data": {"pass": 2} }
1481##
1482{ 'event': 'MIGRATION_PASS',
1483  'data': { 'pass': 'int' } }
1484
1485##
1486# @COLOMessage:
1487#
1488# The message transmission between Primary side and Secondary side.
1489#
1490# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1491#
1492# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1493#     checkpointing
1494#
1495# @checkpoint-reply: SVM gets PVM's checkpoint request
1496#
1497# @vmstate-send: VM's state will be sent by PVM.
1498#
1499# @vmstate-size: The total size of VMstate.
1500#
1501# @vmstate-received: VM's state has been received by SVM.
1502#
1503# @vmstate-loaded: VM's state has been loaded by SVM.
1504#
1505# Since: 2.8
1506##
1507{ 'enum': 'COLOMessage',
1508  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1509            'vmstate-send', 'vmstate-size', 'vmstate-received',
1510            'vmstate-loaded' ] }
1511
1512##
1513# @COLOMode:
1514#
1515# The COLO current mode.
1516#
1517# @none: COLO is disabled.
1518#
1519# @primary: COLO node in primary side.
1520#
1521# @secondary: COLO node in slave side.
1522#
1523# Since: 2.8
1524##
1525{ 'enum': 'COLOMode',
1526  'data': [ 'none', 'primary', 'secondary'] }
1527
1528##
1529# @FailoverStatus:
1530#
1531# An enumeration of COLO failover status
1532#
1533# @none: no failover has ever happened
1534#
1535# @require: got failover requirement but not handled
1536#
1537# @active: in the process of doing failover
1538#
1539# @completed: finish the process of failover
1540#
1541# @relaunch: restart the failover process, from 'none' -> 'completed'
1542#     (Since 2.9)
1543#
1544# Since: 2.8
1545##
1546{ 'enum': 'FailoverStatus',
1547  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1548
1549##
1550# @COLO_EXIT:
1551#
1552# Emitted when VM finishes COLO mode due to some errors happening or
1553# at the request of users.
1554#
1555# @mode: report COLO mode when COLO exited.
1556#
1557# @reason: describes the reason for the COLO exit.
1558#
1559# Since: 3.1
1560#
1561# Example:
1562#
1563#     <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1564#          "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1565##
1566{ 'event': 'COLO_EXIT',
1567  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1568
1569##
1570# @COLOExitReason:
1571#
1572# The reason for a COLO exit.
1573#
1574# @none: failover has never happened.  This state does not occur in
1575#     the COLO_EXIT event, and is only visible in the result of
1576#     query-colo-status.
1577#
1578# @request: COLO exit is due to an external request.
1579#
1580# @error: COLO exit is due to an internal error.
1581#
1582# @processing: COLO is currently handling a failover (since 4.0).
1583#
1584# Since: 3.1
1585##
1586{ 'enum': 'COLOExitReason',
1587  'data': [ 'none', 'request', 'error' , 'processing' ] }
1588
1589##
1590# @x-colo-lost-heartbeat:
1591#
1592# Tell qemu that heartbeat is lost, request it to do takeover
1593# procedures.  If this command is sent to the PVM, the Primary side
1594# will exit COLO mode.  If sent to the Secondary, the Secondary side
1595# will run failover work, then takes over server operation to become
1596# the service VM.
1597#
1598# Features:
1599#
1600# @unstable: This command is experimental.
1601#
1602# Since: 2.8
1603#
1604# Example:
1605#
1606#     -> { "execute": "x-colo-lost-heartbeat" }
1607#     <- { "return": {} }
1608##
1609{ 'command': 'x-colo-lost-heartbeat',
1610  'features': [ 'unstable' ],
1611  'if': 'CONFIG_REPLICATION' }
1612
1613##
1614# @migrate_cancel:
1615#
1616# Cancel the current executing migration process.
1617#
1618# Notes: This command succeeds even if there is no migration process
1619#     running.
1620#
1621# Since: 0.14
1622#
1623# Example:
1624#
1625#     -> { "execute": "migrate_cancel" }
1626#     <- { "return": {} }
1627##
1628{ 'command': 'migrate_cancel' }
1629
1630##
1631# @migrate-continue:
1632#
1633# Continue migration when it's in a paused state.
1634#
1635# @state: The state the migration is currently expected to be in
1636#
1637# Since: 2.11
1638#
1639# Example:
1640#
1641#     -> { "execute": "migrate-continue" , "arguments":
1642#          { "state": "pre-switchover" } }
1643#     <- { "return": {} }
1644##
1645{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1646
1647##
1648# @MigrationAddressType:
1649#
1650# The migration stream transport mechanisms.
1651#
1652# @socket: Migrate via socket.
1653#
1654# @exec: Direct the migration stream to another process.
1655#
1656# @rdma: Migrate via RDMA.
1657#
1658# @file: Direct the migration stream to a file.
1659#
1660# Since: 8.2
1661##
1662{ 'enum': 'MigrationAddressType',
1663  'data': [ 'socket', 'exec', 'rdma', 'file' ] }
1664
1665##
1666# @FileMigrationArgs:
1667#
1668# @filename: The file to receive the migration stream
1669#
1670# @offset: The file offset where the migration stream will start
1671#
1672# Since: 8.2
1673##
1674{ 'struct': 'FileMigrationArgs',
1675  'data': { 'filename': 'str',
1676            'offset': 'uint64' } }
1677
1678##
1679# @MigrationExecCommand:
1680#
1681# @args: command (list head) and arguments to execute.
1682#
1683# Since: 8.2
1684##
1685{ 'struct': 'MigrationExecCommand',
1686  'data': {'args': [ 'str' ] } }
1687
1688##
1689# @MigrationAddress:
1690#
1691# Migration endpoint configuration.
1692#
1693# @transport: The migration stream transport mechanism
1694#
1695# Since: 8.2
1696##
1697{ 'union': 'MigrationAddress',
1698  'base': { 'transport' : 'MigrationAddressType'},
1699  'discriminator': 'transport',
1700  'data': {
1701    'socket': 'SocketAddress',
1702    'exec': 'MigrationExecCommand',
1703    'rdma': 'InetSocketAddress',
1704    'file': 'FileMigrationArgs' } }
1705
1706##
1707# @MigrationChannelType:
1708#
1709# The migration channel-type request options.
1710#
1711# @main: Main outbound migration channel.
1712#
1713# Since: 8.1
1714##
1715{ 'enum': 'MigrationChannelType',
1716  'data': [ 'main' ] }
1717
1718##
1719# @MigrationChannel:
1720#
1721# Migration stream channel parameters.
1722#
1723# @channel-type: Channel type for transferring packet information.
1724#
1725# @addr: Migration endpoint configuration on destination interface.
1726#
1727# Since: 8.1
1728##
1729{ 'struct': 'MigrationChannel',
1730  'data': {
1731      'channel-type': 'MigrationChannelType',
1732      'addr': 'MigrationAddress' } }
1733
1734##
1735# @migrate:
1736#
1737# Migrates the current running guest to another Virtual Machine.
1738#
1739# @uri: the Uniform Resource Identifier of the destination VM
1740#
1741# @channels: list of migration stream channels with each stream in the
1742#     list connected to a destination interface endpoint.
1743#
1744# @blk: do block migration (full disk copy)
1745#
1746# @inc: incremental disk copy migration
1747#
1748# @detach: this argument exists only for compatibility reasons and is
1749#     ignored by QEMU
1750#
1751# @resume: resume one paused migration, default "off". (since 3.0)
1752#
1753# Features:
1754#
1755# @deprecated: Members @inc and @blk are deprecated.  Use
1756#     blockdev-mirror with NBD instead.
1757#
1758# Since: 0.14
1759#
1760# Notes:
1761#
1762#     1. The 'query-migrate' command should be used to check
1763#        migration's progress and final result (this information is
1764#        provided by the 'status' member)
1765#
1766#     2. All boolean arguments default to false
1767#
1768#     3. The user Monitor's "detach" argument is invalid in QMP and
1769#        should not be used
1770#
1771#     4. The uri argument should have the Uniform Resource Identifier
1772#        of default destination VM. This connection will be bound to
1773#        default network.
1774#
1775#     5. For now, number of migration streams is restricted to one,
1776#        i.e number of items in 'channels' list is just 1.
1777#
1778#     6. The 'uri' and 'channels' arguments are mutually exclusive;
1779#        exactly one of the two should be present.
1780#
1781# Example:
1782#
1783#     -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1784#     <- { "return": {} }
1785#
1786#     -> { "execute": "migrate",
1787#          "arguments": {
1788#              "channels": [ { "channel-type": "main",
1789#                              "addr": { "transport": "socket",
1790#                                        "type": "inet",
1791#                                        "host": "10.12.34.9",
1792#                                        "port": "1050" } } ] } }
1793#     <- { "return": {} }
1794#
1795#     -> { "execute": "migrate",
1796#          "arguments": {
1797#              "channels": [ { "channel-type": "main",
1798#                              "addr": { "transport": "exec",
1799#                                        "args": [ "/bin/nc", "-p", "6000",
1800#                                                  "/some/sock" ] } } ] } }
1801#     <- { "return": {} }
1802#
1803#     -> { "execute": "migrate",
1804#          "arguments": {
1805#              "channels": [ { "channel-type": "main",
1806#                              "addr": { "transport": "rdma",
1807#                                        "host": "10.12.34.9",
1808#                                        "port": "1050" } } ] } }
1809#     <- { "return": {} }
1810#
1811#     -> { "execute": "migrate",
1812#          "arguments": {
1813#              "channels": [ { "channel-type": "main",
1814#                              "addr": { "transport": "file",
1815#                                        "filename": "/tmp/migfile",
1816#                                        "offset": "0x1000" } } ] } }
1817#     <- { "return": {} }
1818#
1819##
1820{ 'command': 'migrate',
1821  'data': {'*uri': 'str',
1822           '*channels': [ 'MigrationChannel' ],
1823           '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] },
1824           '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] },
1825           '*detach': 'bool', '*resume': 'bool' } }
1826
1827##
1828# @migrate-incoming:
1829#
1830# Start an incoming migration, the qemu must have been started with
1831# -incoming defer
1832#
1833# @uri: The Uniform Resource Identifier identifying the source or
1834#     address to listen on
1835#
1836# @channels: list of migration stream channels with each stream in the
1837#     list connected to a destination interface endpoint.
1838#
1839# Since: 2.3
1840#
1841# Notes:
1842#
1843#     1. It's a bad idea to use a string for the uri, but it needs to
1844#        stay compatible with -incoming and the format of the uri is
1845#        already exposed above libvirt.
1846#
1847#     2. QEMU must be started with -incoming defer to allow
1848#        migrate-incoming to be used.
1849#
1850#     3. The uri format is the same as for -incoming
1851#
1852#     4. For now, number of migration streams is restricted to one,
1853#        i.e number of items in 'channels' list is just 1.
1854#
1855#     5. The 'uri' and 'channels' arguments are mutually exclusive;
1856#        exactly one of the two should be present.
1857#
1858# Example:
1859#
1860#     -> { "execute": "migrate-incoming",
1861#          "arguments": { "uri": "tcp:0:4446" } }
1862#     <- { "return": {} }
1863#
1864#     -> { "execute": "migrate-incoming",
1865#          "arguments": {
1866#              "channels": [ { "channel-type": "main",
1867#                              "addr": { "transport": "socket",
1868#                                        "type": "inet",
1869#                                        "host": "10.12.34.9",
1870#                                        "port": "1050" } } ] } }
1871#     <- { "return": {} }
1872#
1873#     -> { "execute": "migrate-incoming",
1874#          "arguments": {
1875#              "channels": [ { "channel-type": "main",
1876#                              "addr": { "transport": "exec",
1877#                                        "args": [ "/bin/nc", "-p", "6000",
1878#                                                  "/some/sock" ] } } ] } }
1879#     <- { "return": {} }
1880#
1881#     -> { "execute": "migrate-incoming",
1882#          "arguments": {
1883#              "channels": [ { "channel-type": "main",
1884#                              "addr": { "transport": "rdma",
1885#                                        "host": "10.12.34.9",
1886#                                        "port": "1050" } } ] } }
1887#     <- { "return": {} }
1888##
1889{ 'command': 'migrate-incoming',
1890             'data': {'*uri': 'str',
1891                      '*channels': [ 'MigrationChannel' ] } }
1892
1893##
1894# @xen-save-devices-state:
1895#
1896# Save the state of all devices to file.  The RAM and the block
1897# devices of the VM are not saved by this command.
1898#
1899# @filename: the file to save the state of the devices to as binary
1900#     data.  See xen-save-devices-state.txt for a description of the
1901#     binary format.
1902#
1903# @live: Optional argument to ask QEMU to treat this command as part
1904#     of a live migration.  Default to true.  (since 2.11)
1905#
1906# Since: 1.1
1907#
1908# Example:
1909#
1910#     -> { "execute": "xen-save-devices-state",
1911#          "arguments": { "filename": "/tmp/save" } }
1912#     <- { "return": {} }
1913##
1914{ 'command': 'xen-save-devices-state',
1915  'data': {'filename': 'str', '*live':'bool' } }
1916
1917##
1918# @xen-set-global-dirty-log:
1919#
1920# Enable or disable the global dirty log mode.
1921#
1922# @enable: true to enable, false to disable.
1923#
1924# Since: 1.3
1925#
1926# Example:
1927#
1928#     -> { "execute": "xen-set-global-dirty-log",
1929#          "arguments": { "enable": true } }
1930#     <- { "return": {} }
1931##
1932{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1933
1934##
1935# @xen-load-devices-state:
1936#
1937# Load the state of all devices from file.  The RAM and the block
1938# devices of the VM are not loaded by this command.
1939#
1940# @filename: the file to load the state of the devices from as binary
1941#     data.  See xen-save-devices-state.txt for a description of the
1942#     binary format.
1943#
1944# Since: 2.7
1945#
1946# Example:
1947#
1948#     -> { "execute": "xen-load-devices-state",
1949#          "arguments": { "filename": "/tmp/resume" } }
1950#     <- { "return": {} }
1951##
1952{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1953
1954##
1955# @xen-set-replication:
1956#
1957# Enable or disable replication.
1958#
1959# @enable: true to enable, false to disable.
1960#
1961# @primary: true for primary or false for secondary.
1962#
1963# @failover: true to do failover, false to stop.  but cannot be
1964#     specified if 'enable' is true.  default value is false.
1965#
1966# Example:
1967#
1968#     -> { "execute": "xen-set-replication",
1969#          "arguments": {"enable": true, "primary": false} }
1970#     <- { "return": {} }
1971#
1972# Since: 2.9
1973##
1974{ 'command': 'xen-set-replication',
1975  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1976  'if': 'CONFIG_REPLICATION' }
1977
1978##
1979# @ReplicationStatus:
1980#
1981# The result format for 'query-xen-replication-status'.
1982#
1983# @error: true if an error happened, false if replication is normal.
1984#
1985# @desc: the human readable error description string, when @error is
1986#     'true'.
1987#
1988# Since: 2.9
1989##
1990{ 'struct': 'ReplicationStatus',
1991  'data': { 'error': 'bool', '*desc': 'str' },
1992  'if': 'CONFIG_REPLICATION' }
1993
1994##
1995# @query-xen-replication-status:
1996#
1997# Query replication status while the vm is running.
1998#
1999# Returns: A @ReplicationStatus object showing the status.
2000#
2001# Example:
2002#
2003#     -> { "execute": "query-xen-replication-status" }
2004#     <- { "return": { "error": false } }
2005#
2006# Since: 2.9
2007##
2008{ 'command': 'query-xen-replication-status',
2009  'returns': 'ReplicationStatus',
2010  'if': 'CONFIG_REPLICATION' }
2011
2012##
2013# @xen-colo-do-checkpoint:
2014#
2015# Xen uses this command to notify replication to trigger a checkpoint.
2016#
2017# Example:
2018#
2019#     -> { "execute": "xen-colo-do-checkpoint" }
2020#     <- { "return": {} }
2021#
2022# Since: 2.9
2023##
2024{ 'command': 'xen-colo-do-checkpoint',
2025  'if': 'CONFIG_REPLICATION' }
2026
2027##
2028# @COLOStatus:
2029#
2030# The result format for 'query-colo-status'.
2031#
2032# @mode: COLO running mode.  If COLO is running, this field will
2033#     return 'primary' or 'secondary'.
2034#
2035# @last-mode: COLO last running mode.  If COLO is running, this field
2036#     will return same like mode field, after failover we can use this
2037#     field to get last colo mode.  (since 4.0)
2038#
2039# @reason: describes the reason for the COLO exit.
2040#
2041# Since: 3.1
2042##
2043{ 'struct': 'COLOStatus',
2044  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
2045            'reason': 'COLOExitReason' },
2046  'if': 'CONFIG_REPLICATION' }
2047
2048##
2049# @query-colo-status:
2050#
2051# Query COLO status while the vm is running.
2052#
2053# Returns: A @COLOStatus object showing the status.
2054#
2055# Example:
2056#
2057#     -> { "execute": "query-colo-status" }
2058#     <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
2059#
2060# Since: 3.1
2061##
2062{ 'command': 'query-colo-status',
2063  'returns': 'COLOStatus',
2064  'if': 'CONFIG_REPLICATION' }
2065
2066##
2067# @migrate-recover:
2068#
2069# Provide a recovery migration stream URI.
2070#
2071# @uri: the URI to be used for the recovery of migration stream.
2072#
2073# Example:
2074#
2075#     -> { "execute": "migrate-recover",
2076#          "arguments": { "uri": "tcp:192.168.1.200:12345" } }
2077#     <- { "return": {} }
2078#
2079# Since: 3.0
2080##
2081{ 'command': 'migrate-recover',
2082  'data': { 'uri': 'str' },
2083  'allow-oob': true }
2084
2085##
2086# @migrate-pause:
2087#
2088# Pause a migration.  Currently it only supports postcopy.
2089#
2090# Example:
2091#
2092#     -> { "execute": "migrate-pause" }
2093#     <- { "return": {} }
2094#
2095# Since: 3.0
2096##
2097{ 'command': 'migrate-pause', 'allow-oob': true }
2098
2099##
2100# @UNPLUG_PRIMARY:
2101#
2102# Emitted from source side of a migration when migration state is
2103# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
2104# resources in QEMU are kept on standby to be able to re-plug it in
2105# case of migration failure.
2106#
2107# @device-id: QEMU device id of the unplugged device
2108#
2109# Since: 4.2
2110#
2111# Example:
2112#
2113#     <- { "event": "UNPLUG_PRIMARY",
2114#          "data": { "device-id": "hostdev0" },
2115#          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2116##
2117{ 'event': 'UNPLUG_PRIMARY',
2118  'data': { 'device-id': 'str' } }
2119
2120##
2121# @DirtyRateVcpu:
2122#
2123# Dirty rate of vcpu.
2124#
2125# @id: vcpu index.
2126#
2127# @dirty-rate: dirty rate.
2128#
2129# Since: 6.2
2130##
2131{ 'struct': 'DirtyRateVcpu',
2132  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
2133
2134##
2135# @DirtyRateStatus:
2136#
2137# Dirty page rate measurement status.
2138#
2139# @unstarted: measuring thread has not been started yet
2140#
2141# @measuring: measuring thread is running
2142#
2143# @measured: dirty page rate is measured and the results are available
2144#
2145# Since: 5.2
2146##
2147{ 'enum': 'DirtyRateStatus',
2148  'data': [ 'unstarted', 'measuring', 'measured'] }
2149
2150##
2151# @DirtyRateMeasureMode:
2152#
2153# Method used to measure dirty page rate.  Differences between
2154# available methods are explained in @calc-dirty-rate.
2155#
2156# @page-sampling: use page sampling
2157#
2158# @dirty-ring: use dirty ring
2159#
2160# @dirty-bitmap: use dirty bitmap
2161#
2162# Since: 6.2
2163##
2164{ 'enum': 'DirtyRateMeasureMode',
2165  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
2166
2167##
2168# @TimeUnit:
2169#
2170# Specifies unit in which time-related value is specified.
2171#
2172# @second: value is in seconds
2173#
2174# @millisecond: value is in milliseconds
2175#
2176# Since: 8.2
2177#
2178##
2179{ 'enum': 'TimeUnit',
2180  'data': ['second', 'millisecond'] }
2181
2182##
2183# @DirtyRateInfo:
2184#
2185# Information about measured dirty page rate.
2186#
2187# @dirty-rate: an estimate of the dirty page rate of the VM in units
2188#     of MiB/s.  Value is present only when @status is 'measured'.
2189#
2190# @status: current status of dirty page rate measurements
2191#
2192# @start-time: start time in units of second for calculation
2193#
2194# @calc-time: time period for which dirty page rate was measured,
2195#     expressed and rounded down to @calc-time-unit.
2196#
2197# @calc-time-unit: time unit of @calc-time  (Since 8.2)
2198#
2199# @sample-pages: number of sampled pages per GiB of guest memory.
2200#     Valid only in page-sampling mode (Since 6.1)
2201#
2202# @mode: mode that was used to measure dirty page rate (Since 6.2)
2203#
2204# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
2205#     specified (Since 6.2)
2206#
2207# Since: 5.2
2208##
2209{ 'struct': 'DirtyRateInfo',
2210  'data': {'*dirty-rate': 'int64',
2211           'status': 'DirtyRateStatus',
2212           'start-time': 'int64',
2213           'calc-time': 'int64',
2214           'calc-time-unit': 'TimeUnit',
2215           'sample-pages': 'uint64',
2216           'mode': 'DirtyRateMeasureMode',
2217           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
2218
2219##
2220# @calc-dirty-rate:
2221#
2222# Start measuring dirty page rate of the VM.  Results can be retrieved
2223# with @query-dirty-rate after measurements are completed.
2224#
2225# Dirty page rate is the number of pages changed in a given time
2226# period expressed in MiB/s.  The following methods of calculation are
2227# available:
2228#
2229# 1. In page sampling mode, a random subset of pages are selected and
2230#    hashed twice: once at the beginning of measurement time period,
2231#    and once again at the end.  If two hashes for some page are
2232#    different, the page is counted as changed.  Since this method
2233#    relies on sampling and hashing, calculated dirty page rate is
2234#    only an estimate of its true value.  Increasing @sample-pages
2235#    improves estimation quality at the cost of higher computational
2236#    overhead.
2237#
2238# 2. Dirty bitmap mode captures writes to memory (for example by
2239#    temporarily revoking write access to all pages) and counting page
2240#    faults.  Information about modified pages is collected into a
2241#    bitmap, where each bit corresponds to one guest page.  This mode
2242#    requires that KVM accelerator property "dirty-ring-size" is *not*
2243#    set.
2244#
2245# 3. Dirty ring mode is similar to dirty bitmap mode, but the
2246#    information about modified pages is collected into ring buffer.
2247#    This mode tracks page modification per each vCPU separately.  It
2248#    requires that KVM accelerator property "dirty-ring-size" is set.
2249#
2250# @calc-time: time period for which dirty page rate is calculated.
2251#     By default it is specified in seconds, but the unit can be set
2252#     explicitly with @calc-time-unit.  Note that larger @calc-time
2253#     values will typically result in smaller dirty page rates because
2254#     page dirtying is a one-time event.  Once some page is counted
2255#     as dirty during @calc-time period, further writes to this page
2256#     will not increase dirty page rate anymore.
2257#
2258# @calc-time-unit: time unit in which @calc-time is specified.
2259#     By default it is seconds. (Since 8.2)
2260#
2261# @sample-pages: number of sampled pages per each GiB of guest memory.
2262#     Default value is 512.  For 4KiB guest pages this corresponds to
2263#     sampling ratio of 0.2%.  This argument is used only in page
2264#     sampling mode.  (Since 6.1)
2265#
2266# @mode: mechanism for tracking dirty pages.  Default value is
2267#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
2268#     (Since 6.1)
2269#
2270# Since: 5.2
2271#
2272# Example:
2273#
2274#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2275#                                                     'sample-pages': 512} }
2276#     <- { "return": {} }
2277#
2278#     Measure dirty rate using dirty bitmap for 500 milliseconds:
2279#
2280#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2281#         "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2282#
2283#     <- { "return": {} }
2284##
2285{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2286                                         '*calc-time-unit': 'TimeUnit',
2287                                         '*sample-pages': 'int',
2288                                         '*mode': 'DirtyRateMeasureMode'} }
2289
2290##
2291# @query-dirty-rate:
2292#
2293# Query results of the most recent invocation of @calc-dirty-rate.
2294#
2295# @calc-time-unit: time unit in which to report calculation time.
2296#     By default it is reported in seconds. (Since 8.2)
2297#
2298# Since: 5.2
2299#
2300# Examples:
2301#
2302#     1. Measurement is in progress:
2303#
2304#     <- {"status": "measuring", "sample-pages": 512,
2305#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2306#         "calc-time-unit": "second"}
2307#
2308#     2. Measurement has been completed:
2309#
2310#     <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2311#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2312#         "calc-time-unit": "second"}
2313##
2314{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2315                                 'returns': 'DirtyRateInfo' }
2316
2317##
2318# @DirtyLimitInfo:
2319#
2320# Dirty page rate limit information of a virtual CPU.
2321#
2322# @cpu-index: index of a virtual CPU.
2323#
2324# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2325#     CPU, 0 means unlimited.
2326#
2327# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2328#
2329# Since: 7.1
2330##
2331{ 'struct': 'DirtyLimitInfo',
2332  'data': { 'cpu-index': 'int',
2333            'limit-rate': 'uint64',
2334            'current-rate': 'uint64' } }
2335
2336##
2337# @set-vcpu-dirty-limit:
2338#
2339# Set the upper limit of dirty page rate for virtual CPUs.
2340#
2341# Requires KVM with accelerator property "dirty-ring-size" set.  A
2342# virtual CPU's dirty page rate is a measure of its memory load.  To
2343# observe dirty page rates, use @calc-dirty-rate.
2344#
2345# @cpu-index: index of a virtual CPU, default is all.
2346#
2347# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2348#
2349# Since: 7.1
2350#
2351# Example:
2352#
2353#     -> {"execute": "set-vcpu-dirty-limit"}
2354#         "arguments": { "dirty-rate": 200,
2355#                        "cpu-index": 1 } }
2356#     <- { "return": {} }
2357##
2358{ 'command': 'set-vcpu-dirty-limit',
2359  'data': { '*cpu-index': 'int',
2360            'dirty-rate': 'uint64' } }
2361
2362##
2363# @cancel-vcpu-dirty-limit:
2364#
2365# Cancel the upper limit of dirty page rate for virtual CPUs.
2366#
2367# Cancel the dirty page limit for the vCPU which has been set with
2368# set-vcpu-dirty-limit command.  Note that this command requires
2369# support from dirty ring, same as the "set-vcpu-dirty-limit".
2370#
2371# @cpu-index: index of a virtual CPU, default is all.
2372#
2373# Since: 7.1
2374#
2375# Example:
2376#
2377#     -> {"execute": "cancel-vcpu-dirty-limit"},
2378#         "arguments": { "cpu-index": 1 } }
2379#     <- { "return": {} }
2380##
2381{ 'command': 'cancel-vcpu-dirty-limit',
2382  'data': { '*cpu-index': 'int'} }
2383
2384##
2385# @query-vcpu-dirty-limit:
2386#
2387# Returns information about virtual CPU dirty page rate limits, if
2388# any.
2389#
2390# Since: 7.1
2391#
2392# Example:
2393#
2394#     -> {"execute": "query-vcpu-dirty-limit"}
2395#     <- {"return": [
2396#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2397#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2398##
2399{ 'command': 'query-vcpu-dirty-limit',
2400  'returns': [ 'DirtyLimitInfo' ] }
2401
2402##
2403# @MigrationThreadInfo:
2404#
2405# Information about migrationthreads
2406#
2407# @name: the name of migration thread
2408#
2409# @thread-id: ID of the underlying host thread
2410#
2411# Since: 7.2
2412##
2413{ 'struct': 'MigrationThreadInfo',
2414  'data': {'name': 'str',
2415           'thread-id': 'int'} }
2416
2417##
2418# @query-migrationthreads:
2419#
2420# Returns information of migration threads
2421#
2422# data: migration thread name
2423#
2424# Returns: information about migration threads
2425#
2426# Since: 7.2
2427##
2428{ 'command': 'query-migrationthreads',
2429  'returns': ['MigrationThreadInfo'] }
2430
2431##
2432# @snapshot-save:
2433#
2434# Save a VM snapshot
2435#
2436# @job-id: identifier for the newly created job
2437#
2438# @tag: name of the snapshot to create
2439#
2440# @vmstate: block device node name to save vmstate to
2441#
2442# @devices: list of block device node names to save a snapshot to
2443#
2444# Applications should not assume that the snapshot save is complete
2445# when this command returns.  The job commands / events must be used
2446# to determine completion and to fetch details of any errors that
2447# arise.
2448#
2449# Note that execution of the guest CPUs may be stopped during the time
2450# it takes to save the snapshot.  A future version of QEMU may ensure
2451# CPUs are executing continuously.
2452#
2453# It is strongly recommended that @devices contain all writable block
2454# device nodes if a consistent snapshot is required.
2455#
2456# If @tag already exists, an error will be reported
2457#
2458# Example:
2459#
2460#     -> { "execute": "snapshot-save",
2461#          "arguments": {
2462#             "job-id": "snapsave0",
2463#             "tag": "my-snap",
2464#             "vmstate": "disk0",
2465#             "devices": ["disk0", "disk1"]
2466#          }
2467#        }
2468#     <- { "return": { } }
2469#     <- {"event": "JOB_STATUS_CHANGE",
2470#         "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2471#         "data": {"status": "created", "id": "snapsave0"}}
2472#     <- {"event": "JOB_STATUS_CHANGE",
2473#         "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2474#         "data": {"status": "running", "id": "snapsave0"}}
2475#     <- {"event": "STOP",
2476#         "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2477#     <- {"event": "RESUME",
2478#         "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2479#     <- {"event": "JOB_STATUS_CHANGE",
2480#         "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2481#         "data": {"status": "waiting", "id": "snapsave0"}}
2482#     <- {"event": "JOB_STATUS_CHANGE",
2483#         "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2484#         "data": {"status": "pending", "id": "snapsave0"}}
2485#     <- {"event": "JOB_STATUS_CHANGE",
2486#         "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2487#         "data": {"status": "concluded", "id": "snapsave0"}}
2488#     -> {"execute": "query-jobs"}
2489#     <- {"return": [{"current-progress": 1,
2490#                     "status": "concluded",
2491#                     "total-progress": 1,
2492#                     "type": "snapshot-save",
2493#                     "id": "snapsave0"}]}
2494#
2495# Since: 6.0
2496##
2497{ 'command': 'snapshot-save',
2498  'data': { 'job-id': 'str',
2499            'tag': 'str',
2500            'vmstate': 'str',
2501            'devices': ['str'] } }
2502
2503##
2504# @snapshot-load:
2505#
2506# Load a VM snapshot
2507#
2508# @job-id: identifier for the newly created job
2509#
2510# @tag: name of the snapshot to load.
2511#
2512# @vmstate: block device node name to load vmstate from
2513#
2514# @devices: list of block device node names to load a snapshot from
2515#
2516# Applications should not assume that the snapshot load is complete
2517# when this command returns.  The job commands / events must be used
2518# to determine completion and to fetch details of any errors that
2519# arise.
2520#
2521# Note that execution of the guest CPUs will be stopped during the
2522# time it takes to load the snapshot.
2523#
2524# It is strongly recommended that @devices contain all writable block
2525# device nodes that can have changed since the original @snapshot-save
2526# command execution.
2527#
2528# Example:
2529#
2530#     -> { "execute": "snapshot-load",
2531#          "arguments": {
2532#             "job-id": "snapload0",
2533#             "tag": "my-snap",
2534#             "vmstate": "disk0",
2535#             "devices": ["disk0", "disk1"]
2536#          }
2537#        }
2538#     <- { "return": { } }
2539#     <- {"event": "JOB_STATUS_CHANGE",
2540#         "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2541#         "data": {"status": "created", "id": "snapload0"}}
2542#     <- {"event": "JOB_STATUS_CHANGE",
2543#         "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2544#         "data": {"status": "running", "id": "snapload0"}}
2545#     <- {"event": "STOP",
2546#         "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2547#     <- {"event": "RESUME",
2548#         "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2549#     <- {"event": "JOB_STATUS_CHANGE",
2550#         "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2551#         "data": {"status": "waiting", "id": "snapload0"}}
2552#     <- {"event": "JOB_STATUS_CHANGE",
2553#         "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2554#         "data": {"status": "pending", "id": "snapload0"}}
2555#     <- {"event": "JOB_STATUS_CHANGE",
2556#         "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2557#         "data": {"status": "concluded", "id": "snapload0"}}
2558#     -> {"execute": "query-jobs"}
2559#     <- {"return": [{"current-progress": 1,
2560#                     "status": "concluded",
2561#                     "total-progress": 1,
2562#                     "type": "snapshot-load",
2563#                     "id": "snapload0"}]}
2564#
2565# Since: 6.0
2566##
2567{ 'command': 'snapshot-load',
2568  'data': { 'job-id': 'str',
2569            'tag': 'str',
2570            'vmstate': 'str',
2571            'devices': ['str'] } }
2572
2573##
2574# @snapshot-delete:
2575#
2576# Delete a VM snapshot
2577#
2578# @job-id: identifier for the newly created job
2579#
2580# @tag: name of the snapshot to delete.
2581#
2582# @devices: list of block device node names to delete a snapshot from
2583#
2584# Applications should not assume that the snapshot delete is complete
2585# when this command returns.  The job commands / events must be used
2586# to determine completion and to fetch details of any errors that
2587# arise.
2588#
2589# Example:
2590#
2591#     -> { "execute": "snapshot-delete",
2592#          "arguments": {
2593#             "job-id": "snapdelete0",
2594#             "tag": "my-snap",
2595#             "devices": ["disk0", "disk1"]
2596#          }
2597#        }
2598#     <- { "return": { } }
2599#     <- {"event": "JOB_STATUS_CHANGE",
2600#         "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2601#         "data": {"status": "created", "id": "snapdelete0"}}
2602#     <- {"event": "JOB_STATUS_CHANGE",
2603#         "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2604#         "data": {"status": "running", "id": "snapdelete0"}}
2605#     <- {"event": "JOB_STATUS_CHANGE",
2606#         "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2607#         "data": {"status": "waiting", "id": "snapdelete0"}}
2608#     <- {"event": "JOB_STATUS_CHANGE",
2609#         "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2610#         "data": {"status": "pending", "id": "snapdelete0"}}
2611#     <- {"event": "JOB_STATUS_CHANGE",
2612#         "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2613#         "data": {"status": "concluded", "id": "snapdelete0"}}
2614#     -> {"execute": "query-jobs"}
2615#     <- {"return": [{"current-progress": 1,
2616#                     "status": "concluded",
2617#                     "total-progress": 1,
2618#                     "type": "snapshot-delete",
2619#                     "id": "snapdelete0"}]}
2620#
2621# Since: 6.0
2622##
2623{ 'command': 'snapshot-delete',
2624  'data': { 'job-id': 'str',
2625            'tag': 'str',
2626            'devices': ['str'] } }
2627