xref: /qemu/qapi/migration.json (revision e8c5503a)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages. Always zero, only provided for
27#     compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34#     (since 1.3)
35#
36# @mbps: throughput in megabits/sec.  (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39#     (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42#     destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45#     statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50#     (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53#     (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56#     (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59#     (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62#     synchronization could not avoid copying dirty pages.  This is
63#     between 0 and @dirty-sync-count * @multifd-channels.  (since
64#     7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71#
72##
73{ 'struct': 'MigrationStats',
74  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75           'duplicate': 'int',
76           'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
77           'normal': 'int',
78           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79           'mbps': 'number', 'dirty-sync-count': 'int',
80           'postcopy-requests': 'int', 'page-size': 'int',
81           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83           'postcopy-bytes': 'uint64',
84           'dirty-sync-missed-zero-copy': 'uint64' } }
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
108  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109           'cache-miss': 'int', 'cache-miss-rate': 'number',
110           'encoding-rate': 'number', 'overflow': 'int' } }
111
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
119# @busy: count of times that no free thread was available to compress
120#     data
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132           'compressed-size': 'int', 'compression-rate': 'number' } }
133
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
149# @postcopy-active: like active, but now in postcopy mode.  (since
150#     2.5)
151#
152# @postcopy-paused: during postcopy but paused.  (since 3.0)
153#
154# @postcopy-recover: trying to recover from a paused postcopy.  (since
155#     3.0)
156#
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
161# @colo: VM is in the process of fault tolerance, VM can not get into
162#     this state unless colo capability is enabled for migration.
163#     (since 2.8)
164#
165# @pre-switchover: Paused before device serialisation.  (since 2.11)
166#
167# @device: During device serialisation when pause-before-switchover is
168#     enabled (since 2.11)
169#
170# @wait-unplug: wait for device unplug request by guest OS to be
171#     completed.  (since 4.2)
172#
173# Since: 2.3
174##
175{ 'enum': 'MigrationStatus',
176  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177            'active', 'postcopy-active', 'postcopy-paused',
178            'postcopy-recover', 'completed', 'failed', 'colo',
179            'pre-switchover', 'device', 'wait-unplug' ] }
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
185# @transferred: amount of bytes transferred to the target VM by VFIO
186#     devices
187#
188# Since: 5.2
189##
190{ 'struct': 'VfioStats',
191  'data': {'transferred': 'int' } }
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
199#     If this field is not returned, no migration process has been
200#     initiated
201#
202# @ram: @MigrationStats containing detailed migration status, only
203#     returned if status is 'active' or 'completed'(since 1.2)
204#
205# @disk: @MigrationStats containing detailed disk migration status,
206#     only returned if status is 'active' and it is a block migration
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209#     migration statistics, only returned if XBZRLE feature is on and
210#     status is 'active' or 'completed' (since 1.2)
211#
212# @total-time: total amount of milliseconds since migration started.
213#     If migration has ended, it returns the total migration time.
214#     (since 1.2)
215#
216# @downtime: only present when migration finishes correctly total
217#     downtime in milliseconds for the guest.  (since 1.3)
218#
219# @expected-downtime: only present while migration is active expected
220#     downtime in milliseconds for the guest in last walk of the dirty
221#     bitmap.  (since 1.3)
222#
223# @setup-time: amount of setup time in milliseconds *before* the
224#     iterations begin but *after* the QMP command is issued.  This is
225#     designed to provide an accounting of any activities (such as
226#     RDMA pinning) which may be expensive, but do not actually occur
227#     during the iterative migration rounds themselves.  (since 1.6)
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
230#     throttled during auto-converge.  This is only present when
231#     auto-converge has started throttling guest cpus.  (Since 2.7)
232#
233# @error-desc: the human readable error description string. Clients
234#     should not attempt to parse the error strings.  (Since 2.7)
235#
236# @postcopy-blocktime: total time when all vCPU were blocked during
237#     postcopy live migration.  This is only present when the
238#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
239#
240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241#     This is only present when the postcopy-blocktime migration
242#     capability is enabled.  (Since 3.0)
243#
244# @compression: migration compression statistics, only returned if
245#     compression feature is on and status is 'active' or 'completed'
246#     (Since 3.1)
247#
248# @socket-address: Only used for tcp, to know what the real port is
249#     (Since 4.0)
250#
251# @vfio: @VfioStats containing detailed VFIO devices migration
252#     statistics, only returned if VFIO device is present, migration
253#     is supported by all VFIO devices and status is 'active' or
254#     'completed' (since 5.2)
255#
256# @blocked-reasons: A list of reasons an outgoing migration is
257#     blocked.  Present and non-empty when migration is blocked.
258#     (since 6.0)
259#
260# @dirty-limit-throttle-time-per-round: Maximum throttle time
261#     (in microseconds) of virtual CPUs each dirty ring full round,
262#     which shows how MigrationCapability dirty-limit affects the
263#     guest during live migration.  (Since 8.1)
264#
265# @dirty-limit-ring-full-time: Estimated average dirty ring full time
266#     (in microseconds) for each dirty ring full round.  The value
267#     equals the dirty ring memory size divided by the average dirty
268#     page rate of the virtual CPU, which can be used to observe the
269#     average memory load of the virtual CPU indirectly.  Note that
270#     zero means guest doesn't dirty memory.  (Since 8.1)
271#
272# Features:
273#
274# @deprecated: Member @disk is deprecated because block migration is.
275#     Member @compression is deprecated because it is unreliable and
276#     untested.  It is recommended to use multifd migration, which
277#     offers an alternative compression implementation that is
278#     reliable and tested.
279#
280# Since: 0.14
281##
282{ 'struct': 'MigrationInfo',
283  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
284           '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] },
285           '*vfio': 'VfioStats',
286           '*xbzrle-cache': 'XBZRLECacheStats',
287           '*total-time': 'int',
288           '*expected-downtime': 'int',
289           '*downtime': 'int',
290           '*setup-time': 'int',
291           '*cpu-throttle-percentage': 'int',
292           '*error-desc': 'str',
293           '*blocked-reasons': ['str'],
294           '*postcopy-blocktime': 'uint32',
295           '*postcopy-vcpu-blocktime': ['uint32'],
296           '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] },
297           '*socket-address': ['SocketAddress'],
298           '*dirty-limit-throttle-time-per-round': 'uint64',
299           '*dirty-limit-ring-full-time': 'uint64'} }
300
301##
302# @query-migrate:
303#
304# Returns information about current migration process.  If migration
305# is active there will be another json-object with RAM migration
306# status and if block migration is active another one with block
307# migration status.
308#
309# Returns: @MigrationInfo
310#
311# Since: 0.14
312#
313# Examples:
314#
315#     1. Before the first migration
316#
317#     -> { "execute": "query-migrate" }
318#     <- { "return": {} }
319#
320#     2. Migration is done and has succeeded
321#
322#     -> { "execute": "query-migrate" }
323#     <- { "return": {
324#             "status": "completed",
325#             "total-time":12345,
326#             "setup-time":12345,
327#             "downtime":12345,
328#             "ram":{
329#               "transferred":123,
330#               "remaining":123,
331#               "total":246,
332#               "duplicate":123,
333#               "normal":123,
334#               "normal-bytes":123456,
335#               "dirty-sync-count":15
336#             }
337#          }
338#        }
339#
340#     3. Migration is done and has failed
341#
342#     -> { "execute": "query-migrate" }
343#     <- { "return": { "status": "failed" } }
344#
345#     4. Migration is being performed and is not a block migration:
346#
347#     -> { "execute": "query-migrate" }
348#     <- {
349#           "return":{
350#              "status":"active",
351#              "total-time":12345,
352#              "setup-time":12345,
353#              "expected-downtime":12345,
354#              "ram":{
355#                 "transferred":123,
356#                 "remaining":123,
357#                 "total":246,
358#                 "duplicate":123,
359#                 "normal":123,
360#                 "normal-bytes":123456,
361#                 "dirty-sync-count":15
362#              }
363#           }
364#        }
365#
366#     5. Migration is being performed and is a block migration:
367#
368#     -> { "execute": "query-migrate" }
369#     <- {
370#           "return":{
371#              "status":"active",
372#              "total-time":12345,
373#              "setup-time":12345,
374#              "expected-downtime":12345,
375#              "ram":{
376#                 "total":1057024,
377#                 "remaining":1053304,
378#                 "transferred":3720,
379#                 "duplicate":123,
380#                 "normal":123,
381#                 "normal-bytes":123456,
382#                 "dirty-sync-count":15
383#              },
384#              "disk":{
385#                 "total":20971520,
386#                 "remaining":20880384,
387#                 "transferred":91136
388#              }
389#           }
390#        }
391#
392#     6. Migration is being performed and XBZRLE is active:
393#
394#     -> { "execute": "query-migrate" }
395#     <- {
396#           "return":{
397#              "status":"active",
398#              "total-time":12345,
399#              "setup-time":12345,
400#              "expected-downtime":12345,
401#              "ram":{
402#                 "total":1057024,
403#                 "remaining":1053304,
404#                 "transferred":3720,
405#                 "duplicate":10,
406#                 "normal":3333,
407#                 "normal-bytes":3412992,
408#                 "dirty-sync-count":15
409#              },
410#              "xbzrle-cache":{
411#                 "cache-size":67108864,
412#                 "bytes":20971520,
413#                 "pages":2444343,
414#                 "cache-miss":2244,
415#                 "cache-miss-rate":0.123,
416#                 "encoding-rate":80.1,
417#                 "overflow":34434
418#              }
419#           }
420#        }
421##
422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
423
424##
425# @MigrationCapability:
426#
427# Migration capabilities enumeration
428#
429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
430#     Encoding). This feature allows us to minimize migration traffic
431#     for certain work loads, by sending compressed difference of the
432#     pages
433#
434# @rdma-pin-all: Controls whether or not the entire VM memory
435#     footprint is mlock()'d on demand or all at once.  Refer to
436#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
437#
438# @zero-blocks: During storage migration encode blocks of zeroes
439#     efficiently.  This essentially saves 1MB of zeroes per block on
440#     the wire.  Enabling requires source and target VM to support
441#     this feature.  To enable it is sufficient to enable the
442#     capability on the source VM. The feature is disabled by default.
443#     (since 1.6)
444#
445# @compress: Use multiple compression threads to accelerate live
446#     migration.  This feature can help to reduce the migration
447#     traffic, by sending compressed pages.  Please note that if
448#     compress and xbzrle are both on, compress only takes effect in
449#     the ram bulk stage, after that, it will be disabled and only
450#     xbzrle takes effect, this can help to minimize migration
451#     traffic.  The feature is disabled by default.  (since 2.4)
452#
453# @events: generate events for each migration state change (since 2.4)
454#
455# @auto-converge: If enabled, QEMU will automatically throttle down
456#     the guest to speed up convergence of RAM migration.  (since 1.6)
457#
458# @postcopy-ram: Start executing on the migration target before all of
459#     RAM has been migrated, pulling the remaining pages along as
460#     needed.  The capacity must have the same setting on both source
461#     and target or migration will not even start.  NOTE: If the
462#     migration fails during postcopy the VM will fail.  (since 2.6)
463#
464# @x-colo: If enabled, migration will never end, and the state of the
465#     VM on the primary side will be migrated continuously to the VM
466#     on secondary side, this process is called COarse-Grain LOck
467#     Stepping (COLO) for Non-stop Service.  (since 2.8)
468#
469# @release-ram: if enabled, qemu will free the migrated ram pages on
470#     the source during postcopy-ram migration.  (since 2.9)
471#
472# @block: If enabled, QEMU will also migrate the contents of all block
473#     devices.  Default is disabled.  A possible alternative uses
474#     mirror jobs to a builtin NBD server on the destination, which
475#     offers more flexibility.  (Since 2.10)
476#
477# @return-path: If enabled, migration will use the return path even
478#     for precopy.  (since 2.10)
479#
480# @pause-before-switchover: Pause outgoing migration before
481#     serialising device state and before disabling block IO (since
482#     2.11)
483#
484# @multifd: Use more than one fd for migration (since 4.0)
485#
486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
487#     (since 2.12)
488#
489# @postcopy-blocktime: Calculate downtime for postcopy live migration
490#     (since 3.0)
491#
492# @late-block-activate: If enabled, the destination will not activate
493#     block devices (and thus take locks) immediately at the end of
494#     migration.  (since 3.0)
495#
496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
497#     that is accessible on the destination machine.  (since 4.0)
498#
499# @validate-uuid: Send the UUID of the source to allow the destination
500#     to ensure it is the same.  (since 4.2)
501#
502# @background-snapshot: If enabled, the migration stream will be a
503#     snapshot of the VM exactly at the point when the migration
504#     procedure starts.  The VM RAM is saved with running VM. (since
505#     6.0)
506#
507# @zero-copy-send: Controls behavior on sending memory pages on
508#     migration.  When true, enables a zero-copy mechanism for sending
509#     memory pages, if host supports it.  Requires that QEMU be
510#     permitted to use locked memory for guest RAM pages.  (since 7.1)
511#
512# @postcopy-preempt: If enabled, the migration process will allow
513#     postcopy requests to preempt precopy stream, so postcopy
514#     requests will be handled faster.  This is a performance feature
515#     and should not affect the correctness of postcopy migration.
516#     (since 7.1)
517#
518# @switchover-ack: If enabled, migration will not stop the source VM
519#     and complete the migration until an ACK is received from the
520#     destination that it's OK to do so.  Exactly when this ACK is
521#     sent depends on the migrated devices that use this feature.  For
522#     example, a device can use it to make sure some of its data is
523#     sent and loaded in the destination before doing switchover.
524#     This can reduce downtime if devices that support this capability
525#     are present.  'return-path' capability must be enabled to use
526#     it.  (since 8.1)
527#
528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
529#     keep their dirty page rate within @vcpu-dirty-limit.  This can
530#     improve responsiveness of large guests during live migration,
531#     and can result in more stable read performance.  Requires KVM
532#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
533#
534# @mapped-ram: Migrate using fixed offsets in the migration file for
535#     each RAM page.  Requires a migration URI that supports seeking,
536#     such as a file.  (since 9.0)
537#
538# Features:
539#
540# @deprecated: Member @block is deprecated.  Use blockdev-mirror with
541#     NBD instead.  Member @compress is deprecated because it is
542#     unreliable and untested.  It is recommended to use multifd
543#     migration, which offers an alternative compression
544#     implementation that is reliable and tested.
545#
546# @unstable: Members @x-colo and @x-ignore-shared are experimental.
547#
548# Since: 1.2
549##
550{ 'enum': 'MigrationCapability',
551  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
552           { 'name': 'compress', 'features': [ 'deprecated' ] },
553           'events', 'postcopy-ram',
554           { 'name': 'x-colo', 'features': [ 'unstable' ] },
555           'release-ram',
556           { 'name': 'block', 'features': [ 'deprecated' ] },
557           'return-path', 'pause-before-switchover', 'multifd',
558           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
559           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
560           'validate-uuid', 'background-snapshot',
561           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
562           'dirty-limit', 'mapped-ram'] }
563
564##
565# @MigrationCapabilityStatus:
566#
567# Migration capability information
568#
569# @capability: capability enum
570#
571# @state: capability state bool
572#
573# Since: 1.2
574##
575{ 'struct': 'MigrationCapabilityStatus',
576  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
577
578##
579# @migrate-set-capabilities:
580#
581# Enable/Disable the following migration capabilities (like xbzrle)
582#
583# @capabilities: json array of capability modifications to make
584#
585# Since: 1.2
586#
587# Example:
588#
589#     -> { "execute": "migrate-set-capabilities" , "arguments":
590#          { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
591#     <- { "return": {} }
592##
593{ 'command': 'migrate-set-capabilities',
594  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
595
596##
597# @query-migrate-capabilities:
598#
599# Returns information about the current migration capabilities status
600#
601# Returns: @MigrationCapabilityStatus
602#
603# Since: 1.2
604#
605# Example:
606#
607#     -> { "execute": "query-migrate-capabilities" }
608#     <- { "return": [
609#           {"state": false, "capability": "xbzrle"},
610#           {"state": false, "capability": "rdma-pin-all"},
611#           {"state": false, "capability": "auto-converge"},
612#           {"state": false, "capability": "zero-blocks"},
613#           {"state": false, "capability": "compress"},
614#           {"state": true, "capability": "events"},
615#           {"state": false, "capability": "postcopy-ram"},
616#           {"state": false, "capability": "x-colo"}
617#        ]}
618##
619{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
620
621##
622# @MultiFDCompression:
623#
624# An enumeration of multifd compression methods.
625#
626# @none: no compression.
627#
628# @zlib: use zlib compression method.
629#
630# @zstd: use zstd compression method.
631#
632# Since: 5.0
633##
634{ 'enum': 'MultiFDCompression',
635  'data': [ 'none', 'zlib',
636            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
637
638##
639# @MigMode:
640#
641# @normal: the original form of migration. (since 8.2)
642#
643# @cpr-reboot: The migrate command stops the VM and saves state to
644#     the URI.  After quitting QEMU, the user resumes by running
645#     QEMU -incoming.
646#
647#     This mode allows the user to quit QEMU, optionally update and
648#     reboot the OS, and restart QEMU.  If the user reboots, the URI
649#     must persist across the reboot, such as by using a file.
650#
651#     Unlike normal mode, the use of certain local storage options
652#     does not block the migration, but the user must not modify the
653#     contents of guest block devices between the quit and restart.
654#
655#     This mode supports VFIO devices provided the user first puts
656#     the guest in the suspended runstate, such as by issuing
657#     guest-suspend-ram to the QEMU guest agent.
658#
659#     Best performance is achieved when the memory backend is shared
660#     and the @x-ignore-shared migration capability is set, but this
661#     is not required.  Further, if the user reboots before restarting
662#     such a configuration, the shared memory must persist across the
663#     reboot, such as by backing it with a dax device.
664#
665#     @cpr-reboot may not be used with postcopy, background-snapshot,
666#     or COLO.
667#
668#     (since 8.2)
669##
670{ 'enum': 'MigMode',
671  'data': [ 'normal', 'cpr-reboot' ] }
672
673##
674# @ZeroPageDetection:
675#
676# @none: Do not perform zero page checking.
677#
678# @legacy: Perform zero page checking in main migration thread.
679#
680# @multifd: Perform zero page checking in multifd sender thread if
681#     multifd migration is enabled, else in the main migration
682#     thread as for @legacy.
683#
684# Since: 9.0
685#
686##
687{ 'enum': 'ZeroPageDetection',
688  'data': [ 'none', 'legacy', 'multifd' ] }
689
690##
691# @BitmapMigrationBitmapAliasTransform:
692#
693# @persistent: If present, the bitmap will be made persistent or
694#     transient depending on this parameter.
695#
696# Since: 6.0
697##
698{ 'struct': 'BitmapMigrationBitmapAliasTransform',
699  'data': {
700      '*persistent': 'bool'
701  } }
702
703##
704# @BitmapMigrationBitmapAlias:
705#
706# @name: The name of the bitmap.
707#
708# @alias: An alias name for migration (for example the bitmap name on
709#     the opposite site).
710#
711# @transform: Allows the modification of the migrated bitmap.  (since
712#     6.0)
713#
714# Since: 5.2
715##
716{ 'struct': 'BitmapMigrationBitmapAlias',
717  'data': {
718      'name': 'str',
719      'alias': 'str',
720      '*transform': 'BitmapMigrationBitmapAliasTransform'
721  } }
722
723##
724# @BitmapMigrationNodeAlias:
725#
726# Maps a block node name and the bitmaps it has to aliases for dirty
727# bitmap migration.
728#
729# @node-name: A block node name.
730#
731# @alias: An alias block node name for migration (for example the node
732#     name on the opposite site).
733#
734# @bitmaps: Mappings for the bitmaps on this node.
735#
736# Since: 5.2
737##
738{ 'struct': 'BitmapMigrationNodeAlias',
739  'data': {
740      'node-name': 'str',
741      'alias': 'str',
742      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
743  } }
744
745##
746# @MigrationParameter:
747#
748# Migration parameters enumeration
749#
750# @announce-initial: Initial delay (in milliseconds) before sending
751#     the first announce (Since 4.0)
752#
753# @announce-max: Maximum delay (in milliseconds) between packets in
754#     the announcement (Since 4.0)
755#
756# @announce-rounds: Number of self-announce packets sent after
757#     migration (Since 4.0)
758#
759# @announce-step: Increase in delay (in milliseconds) between
760#     subsequent packets in the announcement (Since 4.0)
761#
762# @compress-level: Set the compression level to be used in live
763#     migration, the compression level is an integer between 0 and 9,
764#     where 0 means no compression, 1 means the best compression
765#     speed, and 9 means best compression ratio which will consume
766#     more CPU.
767#
768# @compress-threads: Set compression thread count to be used in live
769#     migration, the compression thread count is an integer between 1
770#     and 255.
771#
772# @compress-wait-thread: Controls behavior when all compression
773#     threads are currently busy.  If true (default), wait for a free
774#     compression thread to become available; otherwise, send the page
775#     uncompressed.  (Since 3.1)
776#
777# @decompress-threads: Set decompression thread count to be used in
778#     live migration, the decompression thread count is an integer
779#     between 1 and 255. Usually, decompression is at least 4 times as
780#     fast as compression, so set the decompress-threads to the number
781#     about 1/4 of compress-threads is adequate.
782#
783# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
784#     bytes_xfer_period to trigger throttling.  It is expressed as
785#     percentage.  The default value is 50. (Since 5.0)
786#
787# @cpu-throttle-initial: Initial percentage of time guest cpus are
788#     throttled when migration auto-converge is activated.  The
789#     default value is 20. (Since 2.7)
790#
791# @cpu-throttle-increment: throttle percentage increase each time
792#     auto-converge detects that migration is not making progress.
793#     The default value is 10. (Since 2.7)
794#
795# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
796#     the tail stage of throttling, the Guest is very sensitive to CPU
797#     percentage while the @cpu-throttle -increment is excessive
798#     usually at tail stage.  If this parameter is true, we will
799#     compute the ideal CPU percentage used by the Guest, which may
800#     exactly make the dirty rate match the dirty rate threshold.
801#     Then we will choose a smaller throttle increment between the one
802#     specified by @cpu-throttle-increment and the one generated by
803#     ideal CPU percentage.  Therefore, it is compatible to
804#     traditional throttling, meanwhile the throttle increment won't
805#     be excessive at tail stage.  The default value is false.  (Since
806#     5.1)
807#
808# @tls-creds: ID of the 'tls-creds' object that provides credentials
809#     for establishing a TLS connection over the migration data
810#     channel.  On the outgoing side of the migration, the credentials
811#     must be for a 'client' endpoint, while for the incoming side the
812#     credentials must be for a 'server' endpoint.  Setting this to a
813#     non-empty string enables TLS for all migrations.  An empty
814#     string means that QEMU will use plain text mode for migration,
815#     rather than TLS.  (Since 2.7)
816#
817# @tls-hostname: migration target's hostname for validating the
818#     server's x509 certificate identity.  If empty, QEMU will use the
819#     hostname from the migration URI, if any.  A non-empty value is
820#     required when using x509 based TLS credentials and the migration
821#     URI does not include a hostname, such as fd: or exec: based
822#     migration.  (Since 2.7)
823#
824#     Note: empty value works only since 2.9.
825#
826# @tls-authz: ID of the 'authz' object subclass that provides access
827#     control checking of the TLS x509 certificate distinguished name.
828#     This object is only resolved at time of use, so can be deleted
829#     and recreated on the fly while the migration server is active.
830#     If missing, it will default to denying access (Since 4.0)
831#
832# @max-bandwidth: to set maximum speed for migration.  maximum speed
833#     in bytes per second.  (Since 2.8)
834#
835# @avail-switchover-bandwidth: to set the available bandwidth that
836#     migration can use during switchover phase.  NOTE!  This does not
837#     limit the bandwidth during switchover, but only for calculations when
838#     making decisions to switchover.  By default, this value is zero,
839#     which means QEMU will estimate the bandwidth automatically.  This can
840#     be set when the estimated value is not accurate, while the user is
841#     able to guarantee such bandwidth is available when switching over.
842#     When specified correctly, this can make the switchover decision much
843#     more accurate.  (Since 8.2)
844#
845# @downtime-limit: set maximum tolerated downtime for migration.
846#     maximum downtime in milliseconds (Since 2.8)
847#
848# @x-checkpoint-delay: The delay time (in ms) between two COLO
849#     checkpoints in periodic mode.  (Since 2.8)
850#
851# @block-incremental: Affects how much storage is migrated when the
852#     block migration capability is enabled.  When false, the entire
853#     storage backing chain is migrated into a flattened image at the
854#     destination; when true, only the active qcow2 layer is migrated
855#     and the destination must already have access to the same backing
856#     chain as was used on the source.  (since 2.10)
857#
858# @multifd-channels: Number of channels used to migrate data in
859#     parallel.  This is the same number that the number of sockets
860#     used for migration.  The default value is 2 (since 4.0)
861#
862# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
863#     needs to be a multiple of the target page size and a power of 2
864#     (Since 2.11)
865#
866# @max-postcopy-bandwidth: Background transfer bandwidth during
867#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
868#     (Since 3.0)
869#
870# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
871#     (Since 3.1)
872#
873# @multifd-compression: Which compression method to use.  Defaults to
874#     none.  (Since 5.0)
875#
876# @multifd-zlib-level: Set the compression level to be used in live
877#     migration, the compression level is an integer between 0 and 9,
878#     where 0 means no compression, 1 means the best compression
879#     speed, and 9 means best compression ratio which will consume
880#     more CPU. Defaults to 1. (Since 5.0)
881#
882# @multifd-zstd-level: Set the compression level to be used in live
883#     migration, the compression level is an integer between 0 and 20,
884#     where 0 means no compression, 1 means the best compression
885#     speed, and 20 means best compression ratio which will consume
886#     more CPU. Defaults to 1. (Since 5.0)
887#
888# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
889#     aliases for the purpose of dirty bitmap migration.  Such aliases
890#     may for example be the corresponding names on the opposite site.
891#     The mapping must be one-to-one, but not necessarily complete: On
892#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
893#     will be ignored.  On the destination, encountering an unmapped
894#     alias in the incoming migration stream will result in a report,
895#     and all further bitmap migration data will then be discarded.
896#     Note that the destination does not know about bitmaps it does
897#     not receive, so there is no limitation or requirement regarding
898#     the number of bitmaps received, or how they are named, or on
899#     which nodes they are placed.  By default (when this parameter
900#     has never been set), bitmap names are mapped to themselves.
901#     Nodes are mapped to their block device name if there is one, and
902#     to their node name otherwise.  (Since 5.2)
903#
904# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
905#     limit during live migration.  Should be in the range 1 to 1000ms.
906#     Defaults to 1000ms.  (Since 8.1)
907#
908# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
909#     Defaults to 1.  (Since 8.1)
910#
911# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
912#        (Since 8.2)
913#
914# @zero-page-detection: Whether and how to detect zero pages.
915#     See description in @ZeroPageDetection.  Default is 'multifd'.
916#     (since 9.0)
917#
918# Features:
919#
920# @deprecated: Member @block-incremental is deprecated.  Use
921#     blockdev-mirror with NBD instead.  Members @compress-level,
922#     @compress-threads, @decompress-threads and @compress-wait-thread
923#     are deprecated because @compression is deprecated.
924#
925# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
926#     are experimental.
927#
928# Since: 2.4
929##
930{ 'enum': 'MigrationParameter',
931  'data': ['announce-initial', 'announce-max',
932           'announce-rounds', 'announce-step',
933           { 'name': 'compress-level', 'features': [ 'deprecated' ] },
934           { 'name': 'compress-threads', 'features': [ 'deprecated' ] },
935           { 'name': 'decompress-threads', 'features': [ 'deprecated' ] },
936           { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] },
937           'throttle-trigger-threshold',
938           'cpu-throttle-initial', 'cpu-throttle-increment',
939           'cpu-throttle-tailslow',
940           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
941           'avail-switchover-bandwidth', 'downtime-limit',
942           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
943           { 'name': 'block-incremental', 'features': [ 'deprecated' ] },
944           'multifd-channels',
945           'xbzrle-cache-size', 'max-postcopy-bandwidth',
946           'max-cpu-throttle', 'multifd-compression',
947           'multifd-zlib-level', 'multifd-zstd-level',
948           'block-bitmap-mapping',
949           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
950           'vcpu-dirty-limit',
951           'mode',
952           'zero-page-detection'] }
953
954##
955# @MigrateSetParameters:
956#
957# @announce-initial: Initial delay (in milliseconds) before sending
958#     the first announce (Since 4.0)
959#
960# @announce-max: Maximum delay (in milliseconds) between packets in
961#     the announcement (Since 4.0)
962#
963# @announce-rounds: Number of self-announce packets sent after
964#     migration (Since 4.0)
965#
966# @announce-step: Increase in delay (in milliseconds) between
967#     subsequent packets in the announcement (Since 4.0)
968#
969# @compress-level: compression level
970#
971# @compress-threads: compression thread count
972#
973# @compress-wait-thread: Controls behavior when all compression
974#     threads are currently busy.  If true (default), wait for a free
975#     compression thread to become available; otherwise, send the page
976#     uncompressed.  (Since 3.1)
977#
978# @decompress-threads: decompression thread count
979#
980# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
981#     bytes_xfer_period to trigger throttling.  It is expressed as
982#     percentage.  The default value is 50. (Since 5.0)
983#
984# @cpu-throttle-initial: Initial percentage of time guest cpus are
985#     throttled when migration auto-converge is activated.  The
986#     default value is 20. (Since 2.7)
987#
988# @cpu-throttle-increment: throttle percentage increase each time
989#     auto-converge detects that migration is not making progress.
990#     The default value is 10. (Since 2.7)
991#
992# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
993#     the tail stage of throttling, the Guest is very sensitive to CPU
994#     percentage while the @cpu-throttle -increment is excessive
995#     usually at tail stage.  If this parameter is true, we will
996#     compute the ideal CPU percentage used by the Guest, which may
997#     exactly make the dirty rate match the dirty rate threshold.
998#     Then we will choose a smaller throttle increment between the one
999#     specified by @cpu-throttle-increment and the one generated by
1000#     ideal CPU percentage.  Therefore, it is compatible to
1001#     traditional throttling, meanwhile the throttle increment won't
1002#     be excessive at tail stage.  The default value is false.  (Since
1003#     5.1)
1004#
1005# @tls-creds: ID of the 'tls-creds' object that provides credentials
1006#     for establishing a TLS connection over the migration data
1007#     channel.  On the outgoing side of the migration, the credentials
1008#     must be for a 'client' endpoint, while for the incoming side the
1009#     credentials must be for a 'server' endpoint.  Setting this to a
1010#     non-empty string enables TLS for all migrations.  An empty
1011#     string means that QEMU will use plain text mode for migration,
1012#     rather than TLS.  This is the default.  (Since 2.7)
1013#
1014# @tls-hostname: migration target's hostname for validating the
1015#     server's x509 certificate identity.  If empty, QEMU will use the
1016#     hostname from the migration URI, if any.  A non-empty value is
1017#     required when using x509 based TLS credentials and the migration
1018#     URI does not include a hostname, such as fd: or exec: based
1019#     migration.  (Since 2.7)
1020#
1021#     Note: empty value works only since 2.9.
1022#
1023# @tls-authz: ID of the 'authz' object subclass that provides access
1024#     control checking of the TLS x509 certificate distinguished name.
1025#     This object is only resolved at time of use, so can be deleted
1026#     and recreated on the fly while the migration server is active.
1027#     If missing, it will default to denying access (Since 4.0)
1028#
1029# @max-bandwidth: to set maximum speed for migration.  maximum speed
1030#     in bytes per second.  (Since 2.8)
1031#
1032# @avail-switchover-bandwidth: to set the available bandwidth that
1033#     migration can use during switchover phase.  NOTE!  This does not
1034#     limit the bandwidth during switchover, but only for calculations when
1035#     making decisions to switchover.  By default, this value is zero,
1036#     which means QEMU will estimate the bandwidth automatically.  This can
1037#     be set when the estimated value is not accurate, while the user is
1038#     able to guarantee such bandwidth is available when switching over.
1039#     When specified correctly, this can make the switchover decision much
1040#     more accurate.  (Since 8.2)
1041#
1042# @downtime-limit: set maximum tolerated downtime for migration.
1043#     maximum downtime in milliseconds (Since 2.8)
1044#
1045# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1046#     (Since 2.8)
1047#
1048# @block-incremental: Affects how much storage is migrated when the
1049#     block migration capability is enabled.  When false, the entire
1050#     storage backing chain is migrated into a flattened image at the
1051#     destination; when true, only the active qcow2 layer is migrated
1052#     and the destination must already have access to the same backing
1053#     chain as was used on the source.  (since 2.10)
1054#
1055# @multifd-channels: Number of channels used to migrate data in
1056#     parallel.  This is the same number that the number of sockets
1057#     used for migration.  The default value is 2 (since 4.0)
1058#
1059# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1060#     needs to be a multiple of the target page size and a power of 2
1061#     (Since 2.11)
1062#
1063# @max-postcopy-bandwidth: Background transfer bandwidth during
1064#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1065#     (Since 3.0)
1066#
1067# @max-cpu-throttle: maximum cpu throttle percentage.  The default
1068#     value is 99. (Since 3.1)
1069#
1070# @multifd-compression: Which compression method to use.  Defaults to
1071#     none.  (Since 5.0)
1072#
1073# @multifd-zlib-level: Set the compression level to be used in live
1074#     migration, the compression level is an integer between 0 and 9,
1075#     where 0 means no compression, 1 means the best compression
1076#     speed, and 9 means best compression ratio which will consume
1077#     more CPU. Defaults to 1. (Since 5.0)
1078#
1079# @multifd-zstd-level: Set the compression level to be used in live
1080#     migration, the compression level is an integer between 0 and 20,
1081#     where 0 means no compression, 1 means the best compression
1082#     speed, and 20 means best compression ratio which will consume
1083#     more CPU. Defaults to 1. (Since 5.0)
1084#
1085# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1086#     aliases for the purpose of dirty bitmap migration.  Such aliases
1087#     may for example be the corresponding names on the opposite site.
1088#     The mapping must be one-to-one, but not necessarily complete: On
1089#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1090#     will be ignored.  On the destination, encountering an unmapped
1091#     alias in the incoming migration stream will result in a report,
1092#     and all further bitmap migration data will then be discarded.
1093#     Note that the destination does not know about bitmaps it does
1094#     not receive, so there is no limitation or requirement regarding
1095#     the number of bitmaps received, or how they are named, or on
1096#     which nodes they are placed.  By default (when this parameter
1097#     has never been set), bitmap names are mapped to themselves.
1098#     Nodes are mapped to their block device name if there is one, and
1099#     to their node name otherwise.  (Since 5.2)
1100#
1101# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1102#     limit during live migration.  Should be in the range 1 to 1000ms.
1103#     Defaults to 1000ms.  (Since 8.1)
1104#
1105# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1106#     Defaults to 1.  (Since 8.1)
1107#
1108# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1109#        (Since 8.2)
1110#
1111# @zero-page-detection: Whether and how to detect zero pages.
1112#     See description in @ZeroPageDetection.  Default is 'multifd'.
1113#     (since 9.0)
1114#
1115# Features:
1116#
1117# @deprecated: Member @block-incremental is deprecated.  Use
1118#     blockdev-mirror with NBD instead.  Members @compress-level,
1119#     @compress-threads, @decompress-threads and @compress-wait-thread
1120#     are deprecated because @compression is deprecated.
1121#
1122# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1123#     are experimental.
1124#
1125# TODO: either fuse back into MigrationParameters, or make
1126#     MigrationParameters members mandatory
1127#
1128# Since: 2.4
1129##
1130{ 'struct': 'MigrateSetParameters',
1131  'data': { '*announce-initial': 'size',
1132            '*announce-max': 'size',
1133            '*announce-rounds': 'size',
1134            '*announce-step': 'size',
1135            '*compress-level': { 'type': 'uint8',
1136                                 'features': [ 'deprecated' ] },
1137            '*compress-threads':  { 'type': 'uint8',
1138                                    'features': [ 'deprecated' ] },
1139            '*compress-wait-thread':  { 'type': 'bool',
1140                                        'features': [ 'deprecated' ] },
1141            '*decompress-threads':  { 'type': 'uint8',
1142                                      'features': [ 'deprecated' ] },
1143            '*throttle-trigger-threshold': 'uint8',
1144            '*cpu-throttle-initial': 'uint8',
1145            '*cpu-throttle-increment': 'uint8',
1146            '*cpu-throttle-tailslow': 'bool',
1147            '*tls-creds': 'StrOrNull',
1148            '*tls-hostname': 'StrOrNull',
1149            '*tls-authz': 'StrOrNull',
1150            '*max-bandwidth': 'size',
1151            '*avail-switchover-bandwidth': 'size',
1152            '*downtime-limit': 'uint64',
1153            '*x-checkpoint-delay': { 'type': 'uint32',
1154                                     'features': [ 'unstable' ] },
1155            '*block-incremental': { 'type': 'bool',
1156                                    'features': [ 'deprecated' ] },
1157            '*multifd-channels': 'uint8',
1158            '*xbzrle-cache-size': 'size',
1159            '*max-postcopy-bandwidth': 'size',
1160            '*max-cpu-throttle': 'uint8',
1161            '*multifd-compression': 'MultiFDCompression',
1162            '*multifd-zlib-level': 'uint8',
1163            '*multifd-zstd-level': 'uint8',
1164            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1165            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1166                                            'features': [ 'unstable' ] },
1167            '*vcpu-dirty-limit': 'uint64',
1168            '*mode': 'MigMode',
1169            '*zero-page-detection': 'ZeroPageDetection'} }
1170
1171##
1172# @migrate-set-parameters:
1173#
1174# Set various migration parameters.
1175#
1176# Since: 2.4
1177#
1178# Example:
1179#
1180#     -> { "execute": "migrate-set-parameters" ,
1181#          "arguments": { "multifd-channels": 5 } }
1182#     <- { "return": {} }
1183##
1184{ 'command': 'migrate-set-parameters', 'boxed': true,
1185  'data': 'MigrateSetParameters' }
1186
1187##
1188# @MigrationParameters:
1189#
1190# The optional members aren't actually optional.
1191#
1192# @announce-initial: Initial delay (in milliseconds) before sending
1193#     the first announce (Since 4.0)
1194#
1195# @announce-max: Maximum delay (in milliseconds) between packets in
1196#     the announcement (Since 4.0)
1197#
1198# @announce-rounds: Number of self-announce packets sent after
1199#     migration (Since 4.0)
1200#
1201# @announce-step: Increase in delay (in milliseconds) between
1202#     subsequent packets in the announcement (Since 4.0)
1203#
1204# @compress-level: compression level
1205#
1206# @compress-threads: compression thread count
1207#
1208# @compress-wait-thread: Controls behavior when all compression
1209#     threads are currently busy.  If true (default), wait for a free
1210#     compression thread to become available; otherwise, send the page
1211#     uncompressed.  (Since 3.1)
1212#
1213# @decompress-threads: decompression thread count
1214#
1215# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1216#     bytes_xfer_period to trigger throttling.  It is expressed as
1217#     percentage.  The default value is 50. (Since 5.0)
1218#
1219# @cpu-throttle-initial: Initial percentage of time guest cpus are
1220#     throttled when migration auto-converge is activated.  (Since
1221#     2.7)
1222#
1223# @cpu-throttle-increment: throttle percentage increase each time
1224#     auto-converge detects that migration is not making progress.
1225#     (Since 2.7)
1226#
1227# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1228#     the tail stage of throttling, the Guest is very sensitive to CPU
1229#     percentage while the @cpu-throttle -increment is excessive
1230#     usually at tail stage.  If this parameter is true, we will
1231#     compute the ideal CPU percentage used by the Guest, which may
1232#     exactly make the dirty rate match the dirty rate threshold.
1233#     Then we will choose a smaller throttle increment between the one
1234#     specified by @cpu-throttle-increment and the one generated by
1235#     ideal CPU percentage.  Therefore, it is compatible to
1236#     traditional throttling, meanwhile the throttle increment won't
1237#     be excessive at tail stage.  The default value is false.  (Since
1238#     5.1)
1239#
1240# @tls-creds: ID of the 'tls-creds' object that provides credentials
1241#     for establishing a TLS connection over the migration data
1242#     channel.  On the outgoing side of the migration, the credentials
1243#     must be for a 'client' endpoint, while for the incoming side the
1244#     credentials must be for a 'server' endpoint.  An empty string
1245#     means that QEMU will use plain text mode for migration, rather
1246#     than TLS.  (Since 2.7)
1247#
1248#     Note: 2.8 omits empty @tls-creds instead.
1249#
1250# @tls-hostname: migration target's hostname for validating the
1251#     server's x509 certificate identity.  If empty, QEMU will use the
1252#     hostname from the migration URI, if any.  (Since 2.7)
1253#
1254#     Note: 2.8 omits empty @tls-hostname instead.
1255#
1256# @tls-authz: ID of the 'authz' object subclass that provides access
1257#     control checking of the TLS x509 certificate distinguished name.
1258#     (Since 4.0)
1259#
1260# @max-bandwidth: to set maximum speed for migration.  maximum speed
1261#     in bytes per second.  (Since 2.8)
1262#
1263# @avail-switchover-bandwidth: to set the available bandwidth that
1264#     migration can use during switchover phase.  NOTE!  This does not
1265#     limit the bandwidth during switchover, but only for calculations when
1266#     making decisions to switchover.  By default, this value is zero,
1267#     which means QEMU will estimate the bandwidth automatically.  This can
1268#     be set when the estimated value is not accurate, while the user is
1269#     able to guarantee such bandwidth is available when switching over.
1270#     When specified correctly, this can make the switchover decision much
1271#     more accurate.  (Since 8.2)
1272#
1273# @downtime-limit: set maximum tolerated downtime for migration.
1274#     maximum downtime in milliseconds (Since 2.8)
1275#
1276# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1277#     (Since 2.8)
1278#
1279# @block-incremental: Affects how much storage is migrated when the
1280#     block migration capability is enabled.  When false, the entire
1281#     storage backing chain is migrated into a flattened image at the
1282#     destination; when true, only the active qcow2 layer is migrated
1283#     and the destination must already have access to the same backing
1284#     chain as was used on the source.  (since 2.10)
1285#
1286# @multifd-channels: Number of channels used to migrate data in
1287#     parallel.  This is the same number that the number of sockets
1288#     used for migration.  The default value is 2 (since 4.0)
1289#
1290# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1291#     needs to be a multiple of the target page size and a power of 2
1292#     (Since 2.11)
1293#
1294# @max-postcopy-bandwidth: Background transfer bandwidth during
1295#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1296#     (Since 3.0)
1297#
1298# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1299#     (Since 3.1)
1300#
1301# @multifd-compression: Which compression method to use.  Defaults to
1302#     none.  (Since 5.0)
1303#
1304# @multifd-zlib-level: Set the compression level to be used in live
1305#     migration, the compression level is an integer between 0 and 9,
1306#     where 0 means no compression, 1 means the best compression
1307#     speed, and 9 means best compression ratio which will consume
1308#     more CPU. Defaults to 1. (Since 5.0)
1309#
1310# @multifd-zstd-level: Set the compression level to be used in live
1311#     migration, the compression level is an integer between 0 and 20,
1312#     where 0 means no compression, 1 means the best compression
1313#     speed, and 20 means best compression ratio which will consume
1314#     more CPU. Defaults to 1. (Since 5.0)
1315#
1316# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1317#     aliases for the purpose of dirty bitmap migration.  Such aliases
1318#     may for example be the corresponding names on the opposite site.
1319#     The mapping must be one-to-one, but not necessarily complete: On
1320#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1321#     will be ignored.  On the destination, encountering an unmapped
1322#     alias in the incoming migration stream will result in a report,
1323#     and all further bitmap migration data will then be discarded.
1324#     Note that the destination does not know about bitmaps it does
1325#     not receive, so there is no limitation or requirement regarding
1326#     the number of bitmaps received, or how they are named, or on
1327#     which nodes they are placed.  By default (when this parameter
1328#     has never been set), bitmap names are mapped to themselves.
1329#     Nodes are mapped to their block device name if there is one, and
1330#     to their node name otherwise.  (Since 5.2)
1331#
1332# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1333#     limit during live migration.  Should be in the range 1 to 1000ms.
1334#     Defaults to 1000ms.  (Since 8.1)
1335#
1336# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1337#     Defaults to 1.  (Since 8.1)
1338#
1339# @mode: Migration mode. See description in @MigMode. Default is 'normal'.
1340#        (Since 8.2)
1341#
1342# @zero-page-detection: Whether and how to detect zero pages.
1343#     See description in @ZeroPageDetection.  Default is 'multifd'.
1344#     (since 9.0)
1345#
1346# Features:
1347#
1348# @deprecated: Member @block-incremental is deprecated.  Use
1349#     blockdev-mirror with NBD instead.  Members @compress-level,
1350#     @compress-threads, @decompress-threads and @compress-wait-thread
1351#     are deprecated because @compression is deprecated.
1352#
1353# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1354#     are experimental.
1355#
1356# Since: 2.4
1357##
1358{ 'struct': 'MigrationParameters',
1359  'data': { '*announce-initial': 'size',
1360            '*announce-max': 'size',
1361            '*announce-rounds': 'size',
1362            '*announce-step': 'size',
1363            '*compress-level': { 'type': 'uint8',
1364                                 'features': [ 'deprecated' ] },
1365            '*compress-threads': { 'type': 'uint8',
1366                                   'features': [ 'deprecated' ] },
1367            '*compress-wait-thread': { 'type': 'bool',
1368                                       'features': [ 'deprecated' ] },
1369            '*decompress-threads': { 'type': 'uint8',
1370                                     'features': [ 'deprecated' ] },
1371            '*throttle-trigger-threshold': 'uint8',
1372            '*cpu-throttle-initial': 'uint8',
1373            '*cpu-throttle-increment': 'uint8',
1374            '*cpu-throttle-tailslow': 'bool',
1375            '*tls-creds': 'str',
1376            '*tls-hostname': 'str',
1377            '*tls-authz': 'str',
1378            '*max-bandwidth': 'size',
1379            '*avail-switchover-bandwidth': 'size',
1380            '*downtime-limit': 'uint64',
1381            '*x-checkpoint-delay': { 'type': 'uint32',
1382                                     'features': [ 'unstable' ] },
1383            '*block-incremental': { 'type': 'bool',
1384                                    'features': [ 'deprecated' ] },
1385            '*multifd-channels': 'uint8',
1386            '*xbzrle-cache-size': 'size',
1387            '*max-postcopy-bandwidth': 'size',
1388            '*max-cpu-throttle': 'uint8',
1389            '*multifd-compression': 'MultiFDCompression',
1390            '*multifd-zlib-level': 'uint8',
1391            '*multifd-zstd-level': 'uint8',
1392            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1393            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1394                                            'features': [ 'unstable' ] },
1395            '*vcpu-dirty-limit': 'uint64',
1396            '*mode': 'MigMode',
1397            '*zero-page-detection': 'ZeroPageDetection'} }
1398
1399##
1400# @query-migrate-parameters:
1401#
1402# Returns information about the current migration parameters
1403#
1404# Returns: @MigrationParameters
1405#
1406# Since: 2.4
1407#
1408# Example:
1409#
1410#     -> { "execute": "query-migrate-parameters" }
1411#     <- { "return": {
1412#              "multifd-channels": 2,
1413#              "cpu-throttle-increment": 10,
1414#              "cpu-throttle-initial": 20,
1415#              "max-bandwidth": 33554432,
1416#              "downtime-limit": 300
1417#           }
1418#        }
1419##
1420{ 'command': 'query-migrate-parameters',
1421  'returns': 'MigrationParameters' }
1422
1423##
1424# @migrate-start-postcopy:
1425#
1426# Followup to a migration command to switch the migration to postcopy
1427# mode.  The postcopy-ram capability must be set on both source and
1428# destination before the original migration command.
1429#
1430# Since: 2.5
1431#
1432# Example:
1433#
1434#     -> { "execute": "migrate-start-postcopy" }
1435#     <- { "return": {} }
1436##
1437{ 'command': 'migrate-start-postcopy' }
1438
1439##
1440# @MIGRATION:
1441#
1442# Emitted when a migration event happens
1443#
1444# @status: @MigrationStatus describing the current migration status.
1445#
1446# Since: 2.4
1447#
1448# Example:
1449#
1450#     <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1451#         "event": "MIGRATION",
1452#         "data": {"status": "completed"} }
1453##
1454{ 'event': 'MIGRATION',
1455  'data': {'status': 'MigrationStatus'}}
1456
1457##
1458# @MIGRATION_PASS:
1459#
1460# Emitted from the source side of a migration at the start of each
1461# pass (when it syncs the dirty bitmap)
1462#
1463# @pass: An incrementing count (starting at 1 on the first pass)
1464#
1465# Since: 2.6
1466#
1467# Example:
1468#
1469#     <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1470#           "event": "MIGRATION_PASS", "data": {"pass": 2} }
1471##
1472{ 'event': 'MIGRATION_PASS',
1473  'data': { 'pass': 'int' } }
1474
1475##
1476# @COLOMessage:
1477#
1478# The message transmission between Primary side and Secondary side.
1479#
1480# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1481#
1482# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1483#     checkpointing
1484#
1485# @checkpoint-reply: SVM gets PVM's checkpoint request
1486#
1487# @vmstate-send: VM's state will be sent by PVM.
1488#
1489# @vmstate-size: The total size of VMstate.
1490#
1491# @vmstate-received: VM's state has been received by SVM.
1492#
1493# @vmstate-loaded: VM's state has been loaded by SVM.
1494#
1495# Since: 2.8
1496##
1497{ 'enum': 'COLOMessage',
1498  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1499            'vmstate-send', 'vmstate-size', 'vmstate-received',
1500            'vmstate-loaded' ] }
1501
1502##
1503# @COLOMode:
1504#
1505# The COLO current mode.
1506#
1507# @none: COLO is disabled.
1508#
1509# @primary: COLO node in primary side.
1510#
1511# @secondary: COLO node in slave side.
1512#
1513# Since: 2.8
1514##
1515{ 'enum': 'COLOMode',
1516  'data': [ 'none', 'primary', 'secondary'] }
1517
1518##
1519# @FailoverStatus:
1520#
1521# An enumeration of COLO failover status
1522#
1523# @none: no failover has ever happened
1524#
1525# @require: got failover requirement but not handled
1526#
1527# @active: in the process of doing failover
1528#
1529# @completed: finish the process of failover
1530#
1531# @relaunch: restart the failover process, from 'none' -> 'completed'
1532#     (Since 2.9)
1533#
1534# Since: 2.8
1535##
1536{ 'enum': 'FailoverStatus',
1537  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1538
1539##
1540# @COLO_EXIT:
1541#
1542# Emitted when VM finishes COLO mode due to some errors happening or
1543# at the request of users.
1544#
1545# @mode: report COLO mode when COLO exited.
1546#
1547# @reason: describes the reason for the COLO exit.
1548#
1549# Since: 3.1
1550#
1551# Example:
1552#
1553#     <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1554#          "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1555##
1556{ 'event': 'COLO_EXIT',
1557  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1558
1559##
1560# @COLOExitReason:
1561#
1562# The reason for a COLO exit.
1563#
1564# @none: failover has never happened.  This state does not occur in
1565#     the COLO_EXIT event, and is only visible in the result of
1566#     query-colo-status.
1567#
1568# @request: COLO exit is due to an external request.
1569#
1570# @error: COLO exit is due to an internal error.
1571#
1572# @processing: COLO is currently handling a failover (since 4.0).
1573#
1574# Since: 3.1
1575##
1576{ 'enum': 'COLOExitReason',
1577  'data': [ 'none', 'request', 'error' , 'processing' ] }
1578
1579##
1580# @x-colo-lost-heartbeat:
1581#
1582# Tell qemu that heartbeat is lost, request it to do takeover
1583# procedures.  If this command is sent to the PVM, the Primary side
1584# will exit COLO mode.  If sent to the Secondary, the Secondary side
1585# will run failover work, then takes over server operation to become
1586# the service VM.
1587#
1588# Features:
1589#
1590# @unstable: This command is experimental.
1591#
1592# Since: 2.8
1593#
1594# Example:
1595#
1596#     -> { "execute": "x-colo-lost-heartbeat" }
1597#     <- { "return": {} }
1598##
1599{ 'command': 'x-colo-lost-heartbeat',
1600  'features': [ 'unstable' ],
1601  'if': 'CONFIG_REPLICATION' }
1602
1603##
1604# @migrate_cancel:
1605#
1606# Cancel the current executing migration process.
1607#
1608# Notes: This command succeeds even if there is no migration process
1609#     running.
1610#
1611# Since: 0.14
1612#
1613# Example:
1614#
1615#     -> { "execute": "migrate_cancel" }
1616#     <- { "return": {} }
1617##
1618{ 'command': 'migrate_cancel' }
1619
1620##
1621# @migrate-continue:
1622#
1623# Continue migration when it's in a paused state.
1624#
1625# @state: The state the migration is currently expected to be in
1626#
1627# Since: 2.11
1628#
1629# Example:
1630#
1631#     -> { "execute": "migrate-continue" , "arguments":
1632#          { "state": "pre-switchover" } }
1633#     <- { "return": {} }
1634##
1635{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1636
1637##
1638# @MigrationAddressType:
1639#
1640# The migration stream transport mechanisms.
1641#
1642# @socket: Migrate via socket.
1643#
1644# @exec: Direct the migration stream to another process.
1645#
1646# @rdma: Migrate via RDMA.
1647#
1648# @file: Direct the migration stream to a file.
1649#
1650# Since: 8.2
1651##
1652{ 'enum': 'MigrationAddressType',
1653  'data': [ 'socket', 'exec', 'rdma', 'file' ] }
1654
1655##
1656# @FileMigrationArgs:
1657#
1658# @filename: The file to receive the migration stream
1659#
1660# @offset: The file offset where the migration stream will start
1661#
1662# Since: 8.2
1663##
1664{ 'struct': 'FileMigrationArgs',
1665  'data': { 'filename': 'str',
1666            'offset': 'uint64' } }
1667
1668##
1669# @MigrationExecCommand:
1670#
1671# @args: command (list head) and arguments to execute.
1672#
1673# Since: 8.2
1674##
1675{ 'struct': 'MigrationExecCommand',
1676  'data': {'args': [ 'str' ] } }
1677
1678##
1679# @MigrationAddress:
1680#
1681# Migration endpoint configuration.
1682#
1683# @transport: The migration stream transport mechanism
1684#
1685# Since: 8.2
1686##
1687{ 'union': 'MigrationAddress',
1688  'base': { 'transport' : 'MigrationAddressType'},
1689  'discriminator': 'transport',
1690  'data': {
1691    'socket': 'SocketAddress',
1692    'exec': 'MigrationExecCommand',
1693    'rdma': 'InetSocketAddress',
1694    'file': 'FileMigrationArgs' } }
1695
1696##
1697# @MigrationChannelType:
1698#
1699# The migration channel-type request options.
1700#
1701# @main: Main outbound migration channel.
1702#
1703# Since: 8.1
1704##
1705{ 'enum': 'MigrationChannelType',
1706  'data': [ 'main' ] }
1707
1708##
1709# @MigrationChannel:
1710#
1711# Migration stream channel parameters.
1712#
1713# @channel-type: Channel type for transferring packet information.
1714#
1715# @addr: Migration endpoint configuration on destination interface.
1716#
1717# Since: 8.1
1718##
1719{ 'struct': 'MigrationChannel',
1720  'data': {
1721      'channel-type': 'MigrationChannelType',
1722      'addr': 'MigrationAddress' } }
1723
1724##
1725# @migrate:
1726#
1727# Migrates the current running guest to another Virtual Machine.
1728#
1729# @uri: the Uniform Resource Identifier of the destination VM
1730#
1731# @channels: list of migration stream channels with each stream in the
1732#     list connected to a destination interface endpoint.
1733#
1734# @blk: do block migration (full disk copy)
1735#
1736# @inc: incremental disk copy migration
1737#
1738# @detach: this argument exists only for compatibility reasons and is
1739#     ignored by QEMU
1740#
1741# @resume: resume one paused migration, default "off". (since 3.0)
1742#
1743# Features:
1744#
1745# @deprecated: Members @inc and @blk are deprecated.  Use
1746#     blockdev-mirror with NBD instead.
1747#
1748# Since: 0.14
1749#
1750# Notes:
1751#
1752#     1. The 'query-migrate' command should be used to check
1753#        migration's progress and final result (this information is
1754#        provided by the 'status' member)
1755#
1756#     2. All boolean arguments default to false
1757#
1758#     3. The user Monitor's "detach" argument is invalid in QMP and
1759#        should not be used
1760#
1761#     4. The uri argument should have the Uniform Resource Identifier
1762#        of default destination VM. This connection will be bound to
1763#        default network.
1764#
1765#     5. For now, number of migration streams is restricted to one,
1766#        i.e number of items in 'channels' list is just 1.
1767#
1768#     6. The 'uri' and 'channels' arguments are mutually exclusive;
1769#        exactly one of the two should be present.
1770#
1771# Example:
1772#
1773#     -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1774#     <- { "return": {} }
1775#
1776#     -> { "execute": "migrate",
1777#          "arguments": {
1778#              "channels": [ { "channel-type": "main",
1779#                              "addr": { "transport": "socket",
1780#                                        "type": "inet",
1781#                                        "host": "10.12.34.9",
1782#                                        "port": "1050" } } ] } }
1783#     <- { "return": {} }
1784#
1785#     -> { "execute": "migrate",
1786#          "arguments": {
1787#              "channels": [ { "channel-type": "main",
1788#                              "addr": { "transport": "exec",
1789#                                        "args": [ "/bin/nc", "-p", "6000",
1790#                                                  "/some/sock" ] } } ] } }
1791#     <- { "return": {} }
1792#
1793#     -> { "execute": "migrate",
1794#          "arguments": {
1795#              "channels": [ { "channel-type": "main",
1796#                              "addr": { "transport": "rdma",
1797#                                        "host": "10.12.34.9",
1798#                                        "port": "1050" } } ] } }
1799#     <- { "return": {} }
1800#
1801#     -> { "execute": "migrate",
1802#          "arguments": {
1803#              "channels": [ { "channel-type": "main",
1804#                              "addr": { "transport": "file",
1805#                                        "filename": "/tmp/migfile",
1806#                                        "offset": "0x1000" } } ] } }
1807#     <- { "return": {} }
1808#
1809##
1810{ 'command': 'migrate',
1811  'data': {'*uri': 'str',
1812           '*channels': [ 'MigrationChannel' ],
1813           '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] },
1814           '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] },
1815           '*detach': 'bool', '*resume': 'bool' } }
1816
1817##
1818# @migrate-incoming:
1819#
1820# Start an incoming migration, the qemu must have been started with
1821# -incoming defer
1822#
1823# @uri: The Uniform Resource Identifier identifying the source or
1824#     address to listen on
1825#
1826# @channels: list of migration stream channels with each stream in the
1827#     list connected to a destination interface endpoint.
1828#
1829# Since: 2.3
1830#
1831# Notes:
1832#
1833#     1. It's a bad idea to use a string for the uri, but it needs to
1834#        stay compatible with -incoming and the format of the uri is
1835#        already exposed above libvirt.
1836#
1837#     2. QEMU must be started with -incoming defer to allow
1838#        migrate-incoming to be used.
1839#
1840#     3. The uri format is the same as for -incoming
1841#
1842#     4. For now, number of migration streams is restricted to one,
1843#        i.e number of items in 'channels' list is just 1.
1844#
1845#     5. The 'uri' and 'channels' arguments are mutually exclusive;
1846#        exactly one of the two should be present.
1847#
1848# Example:
1849#
1850#     -> { "execute": "migrate-incoming",
1851#          "arguments": { "uri": "tcp:0:4446" } }
1852#     <- { "return": {} }
1853#
1854#     -> { "execute": "migrate-incoming",
1855#          "arguments": {
1856#              "channels": [ { "channel-type": "main",
1857#                              "addr": { "transport": "socket",
1858#                                        "type": "inet",
1859#                                        "host": "10.12.34.9",
1860#                                        "port": "1050" } } ] } }
1861#     <- { "return": {} }
1862#
1863#     -> { "execute": "migrate-incoming",
1864#          "arguments": {
1865#              "channels": [ { "channel-type": "main",
1866#                              "addr": { "transport": "exec",
1867#                                        "args": [ "/bin/nc", "-p", "6000",
1868#                                                  "/some/sock" ] } } ] } }
1869#     <- { "return": {} }
1870#
1871#     -> { "execute": "migrate-incoming",
1872#          "arguments": {
1873#              "channels": [ { "channel-type": "main",
1874#                              "addr": { "transport": "rdma",
1875#                                        "host": "10.12.34.9",
1876#                                        "port": "1050" } } ] } }
1877#     <- { "return": {} }
1878##
1879{ 'command': 'migrate-incoming',
1880             'data': {'*uri': 'str',
1881                      '*channels': [ 'MigrationChannel' ] } }
1882
1883##
1884# @xen-save-devices-state:
1885#
1886# Save the state of all devices to file.  The RAM and the block
1887# devices of the VM are not saved by this command.
1888#
1889# @filename: the file to save the state of the devices to as binary
1890#     data.  See xen-save-devices-state.txt for a description of the
1891#     binary format.
1892#
1893# @live: Optional argument to ask QEMU to treat this command as part
1894#     of a live migration.  Default to true.  (since 2.11)
1895#
1896# Since: 1.1
1897#
1898# Example:
1899#
1900#     -> { "execute": "xen-save-devices-state",
1901#          "arguments": { "filename": "/tmp/save" } }
1902#     <- { "return": {} }
1903##
1904{ 'command': 'xen-save-devices-state',
1905  'data': {'filename': 'str', '*live':'bool' } }
1906
1907##
1908# @xen-set-global-dirty-log:
1909#
1910# Enable or disable the global dirty log mode.
1911#
1912# @enable: true to enable, false to disable.
1913#
1914# Since: 1.3
1915#
1916# Example:
1917#
1918#     -> { "execute": "xen-set-global-dirty-log",
1919#          "arguments": { "enable": true } }
1920#     <- { "return": {} }
1921##
1922{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1923
1924##
1925# @xen-load-devices-state:
1926#
1927# Load the state of all devices from file.  The RAM and the block
1928# devices of the VM are not loaded by this command.
1929#
1930# @filename: the file to load the state of the devices from as binary
1931#     data.  See xen-save-devices-state.txt for a description of the
1932#     binary format.
1933#
1934# Since: 2.7
1935#
1936# Example:
1937#
1938#     -> { "execute": "xen-load-devices-state",
1939#          "arguments": { "filename": "/tmp/resume" } }
1940#     <- { "return": {} }
1941##
1942{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1943
1944##
1945# @xen-set-replication:
1946#
1947# Enable or disable replication.
1948#
1949# @enable: true to enable, false to disable.
1950#
1951# @primary: true for primary or false for secondary.
1952#
1953# @failover: true to do failover, false to stop.  but cannot be
1954#     specified if 'enable' is true.  default value is false.
1955#
1956# Example:
1957#
1958#     -> { "execute": "xen-set-replication",
1959#          "arguments": {"enable": true, "primary": false} }
1960#     <- { "return": {} }
1961#
1962# Since: 2.9
1963##
1964{ 'command': 'xen-set-replication',
1965  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1966  'if': 'CONFIG_REPLICATION' }
1967
1968##
1969# @ReplicationStatus:
1970#
1971# The result format for 'query-xen-replication-status'.
1972#
1973# @error: true if an error happened, false if replication is normal.
1974#
1975# @desc: the human readable error description string, when @error is
1976#     'true'.
1977#
1978# Since: 2.9
1979##
1980{ 'struct': 'ReplicationStatus',
1981  'data': { 'error': 'bool', '*desc': 'str' },
1982  'if': 'CONFIG_REPLICATION' }
1983
1984##
1985# @query-xen-replication-status:
1986#
1987# Query replication status while the vm is running.
1988#
1989# Returns: A @ReplicationStatus object showing the status.
1990#
1991# Example:
1992#
1993#     -> { "execute": "query-xen-replication-status" }
1994#     <- { "return": { "error": false } }
1995#
1996# Since: 2.9
1997##
1998{ 'command': 'query-xen-replication-status',
1999  'returns': 'ReplicationStatus',
2000  'if': 'CONFIG_REPLICATION' }
2001
2002##
2003# @xen-colo-do-checkpoint:
2004#
2005# Xen uses this command to notify replication to trigger a checkpoint.
2006#
2007# Example:
2008#
2009#     -> { "execute": "xen-colo-do-checkpoint" }
2010#     <- { "return": {} }
2011#
2012# Since: 2.9
2013##
2014{ 'command': 'xen-colo-do-checkpoint',
2015  'if': 'CONFIG_REPLICATION' }
2016
2017##
2018# @COLOStatus:
2019#
2020# The result format for 'query-colo-status'.
2021#
2022# @mode: COLO running mode.  If COLO is running, this field will
2023#     return 'primary' or 'secondary'.
2024#
2025# @last-mode: COLO last running mode.  If COLO is running, this field
2026#     will return same like mode field, after failover we can use this
2027#     field to get last colo mode.  (since 4.0)
2028#
2029# @reason: describes the reason for the COLO exit.
2030#
2031# Since: 3.1
2032##
2033{ 'struct': 'COLOStatus',
2034  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
2035            'reason': 'COLOExitReason' },
2036  'if': 'CONFIG_REPLICATION' }
2037
2038##
2039# @query-colo-status:
2040#
2041# Query COLO status while the vm is running.
2042#
2043# Returns: A @COLOStatus object showing the status.
2044#
2045# Example:
2046#
2047#     -> { "execute": "query-colo-status" }
2048#     <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
2049#
2050# Since: 3.1
2051##
2052{ 'command': 'query-colo-status',
2053  'returns': 'COLOStatus',
2054  'if': 'CONFIG_REPLICATION' }
2055
2056##
2057# @migrate-recover:
2058#
2059# Provide a recovery migration stream URI.
2060#
2061# @uri: the URI to be used for the recovery of migration stream.
2062#
2063# Example:
2064#
2065#     -> { "execute": "migrate-recover",
2066#          "arguments": { "uri": "tcp:192.168.1.200:12345" } }
2067#     <- { "return": {} }
2068#
2069# Since: 3.0
2070##
2071{ 'command': 'migrate-recover',
2072  'data': { 'uri': 'str' },
2073  'allow-oob': true }
2074
2075##
2076# @migrate-pause:
2077#
2078# Pause a migration.  Currently it only supports postcopy.
2079#
2080# Example:
2081#
2082#     -> { "execute": "migrate-pause" }
2083#     <- { "return": {} }
2084#
2085# Since: 3.0
2086##
2087{ 'command': 'migrate-pause', 'allow-oob': true }
2088
2089##
2090# @UNPLUG_PRIMARY:
2091#
2092# Emitted from source side of a migration when migration state is
2093# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
2094# resources in QEMU are kept on standby to be able to re-plug it in
2095# case of migration failure.
2096#
2097# @device-id: QEMU device id of the unplugged device
2098#
2099# Since: 4.2
2100#
2101# Example:
2102#
2103#     <- { "event": "UNPLUG_PRIMARY",
2104#          "data": { "device-id": "hostdev0" },
2105#          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2106##
2107{ 'event': 'UNPLUG_PRIMARY',
2108  'data': { 'device-id': 'str' } }
2109
2110##
2111# @DirtyRateVcpu:
2112#
2113# Dirty rate of vcpu.
2114#
2115# @id: vcpu index.
2116#
2117# @dirty-rate: dirty rate.
2118#
2119# Since: 6.2
2120##
2121{ 'struct': 'DirtyRateVcpu',
2122  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
2123
2124##
2125# @DirtyRateStatus:
2126#
2127# Dirty page rate measurement status.
2128#
2129# @unstarted: measuring thread has not been started yet
2130#
2131# @measuring: measuring thread is running
2132#
2133# @measured: dirty page rate is measured and the results are available
2134#
2135# Since: 5.2
2136##
2137{ 'enum': 'DirtyRateStatus',
2138  'data': [ 'unstarted', 'measuring', 'measured'] }
2139
2140##
2141# @DirtyRateMeasureMode:
2142#
2143# Method used to measure dirty page rate.  Differences between
2144# available methods are explained in @calc-dirty-rate.
2145#
2146# @page-sampling: use page sampling
2147#
2148# @dirty-ring: use dirty ring
2149#
2150# @dirty-bitmap: use dirty bitmap
2151#
2152# Since: 6.2
2153##
2154{ 'enum': 'DirtyRateMeasureMode',
2155  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
2156
2157##
2158# @TimeUnit:
2159#
2160# Specifies unit in which time-related value is specified.
2161#
2162# @second: value is in seconds
2163#
2164# @millisecond: value is in milliseconds
2165#
2166# Since: 8.2
2167#
2168##
2169{ 'enum': 'TimeUnit',
2170  'data': ['second', 'millisecond'] }
2171
2172##
2173# @DirtyRateInfo:
2174#
2175# Information about measured dirty page rate.
2176#
2177# @dirty-rate: an estimate of the dirty page rate of the VM in units
2178#     of MiB/s.  Value is present only when @status is 'measured'.
2179#
2180# @status: current status of dirty page rate measurements
2181#
2182# @start-time: start time in units of second for calculation
2183#
2184# @calc-time: time period for which dirty page rate was measured,
2185#     expressed and rounded down to @calc-time-unit.
2186#
2187# @calc-time-unit: time unit of @calc-time  (Since 8.2)
2188#
2189# @sample-pages: number of sampled pages per GiB of guest memory.
2190#     Valid only in page-sampling mode (Since 6.1)
2191#
2192# @mode: mode that was used to measure dirty page rate (Since 6.2)
2193#
2194# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
2195#     specified (Since 6.2)
2196#
2197# Since: 5.2
2198##
2199{ 'struct': 'DirtyRateInfo',
2200  'data': {'*dirty-rate': 'int64',
2201           'status': 'DirtyRateStatus',
2202           'start-time': 'int64',
2203           'calc-time': 'int64',
2204           'calc-time-unit': 'TimeUnit',
2205           'sample-pages': 'uint64',
2206           'mode': 'DirtyRateMeasureMode',
2207           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
2208
2209##
2210# @calc-dirty-rate:
2211#
2212# Start measuring dirty page rate of the VM.  Results can be retrieved
2213# with @query-dirty-rate after measurements are completed.
2214#
2215# Dirty page rate is the number of pages changed in a given time
2216# period expressed in MiB/s.  The following methods of calculation are
2217# available:
2218#
2219# 1. In page sampling mode, a random subset of pages are selected and
2220#    hashed twice: once at the beginning of measurement time period,
2221#    and once again at the end.  If two hashes for some page are
2222#    different, the page is counted as changed.  Since this method
2223#    relies on sampling and hashing, calculated dirty page rate is
2224#    only an estimate of its true value.  Increasing @sample-pages
2225#    improves estimation quality at the cost of higher computational
2226#    overhead.
2227#
2228# 2. Dirty bitmap mode captures writes to memory (for example by
2229#    temporarily revoking write access to all pages) and counting page
2230#    faults.  Information about modified pages is collected into a
2231#    bitmap, where each bit corresponds to one guest page.  This mode
2232#    requires that KVM accelerator property "dirty-ring-size" is *not*
2233#    set.
2234#
2235# 3. Dirty ring mode is similar to dirty bitmap mode, but the
2236#    information about modified pages is collected into ring buffer.
2237#    This mode tracks page modification per each vCPU separately.  It
2238#    requires that KVM accelerator property "dirty-ring-size" is set.
2239#
2240# @calc-time: time period for which dirty page rate is calculated.
2241#     By default it is specified in seconds, but the unit can be set
2242#     explicitly with @calc-time-unit.  Note that larger @calc-time
2243#     values will typically result in smaller dirty page rates because
2244#     page dirtying is a one-time event.  Once some page is counted
2245#     as dirty during @calc-time period, further writes to this page
2246#     will not increase dirty page rate anymore.
2247#
2248# @calc-time-unit: time unit in which @calc-time is specified.
2249#     By default it is seconds. (Since 8.2)
2250#
2251# @sample-pages: number of sampled pages per each GiB of guest memory.
2252#     Default value is 512.  For 4KiB guest pages this corresponds to
2253#     sampling ratio of 0.2%.  This argument is used only in page
2254#     sampling mode.  (Since 6.1)
2255#
2256# @mode: mechanism for tracking dirty pages.  Default value is
2257#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
2258#     (Since 6.1)
2259#
2260# Since: 5.2
2261#
2262# Example:
2263#
2264#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2265#                                                     'sample-pages': 512} }
2266#     <- { "return": {} }
2267#
2268#     Measure dirty rate using dirty bitmap for 500 milliseconds:
2269#
2270#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2271#         "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2272#
2273#     <- { "return": {} }
2274##
2275{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2276                                         '*calc-time-unit': 'TimeUnit',
2277                                         '*sample-pages': 'int',
2278                                         '*mode': 'DirtyRateMeasureMode'} }
2279
2280##
2281# @query-dirty-rate:
2282#
2283# Query results of the most recent invocation of @calc-dirty-rate.
2284#
2285# @calc-time-unit: time unit in which to report calculation time.
2286#     By default it is reported in seconds. (Since 8.2)
2287#
2288# Since: 5.2
2289#
2290# Examples:
2291#
2292#     1. Measurement is in progress:
2293#
2294#     <- {"status": "measuring", "sample-pages": 512,
2295#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2296#         "calc-time-unit": "second"}
2297#
2298#     2. Measurement has been completed:
2299#
2300#     <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2301#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2302#         "calc-time-unit": "second"}
2303##
2304{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2305                                 'returns': 'DirtyRateInfo' }
2306
2307##
2308# @DirtyLimitInfo:
2309#
2310# Dirty page rate limit information of a virtual CPU.
2311#
2312# @cpu-index: index of a virtual CPU.
2313#
2314# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2315#     CPU, 0 means unlimited.
2316#
2317# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2318#
2319# Since: 7.1
2320##
2321{ 'struct': 'DirtyLimitInfo',
2322  'data': { 'cpu-index': 'int',
2323            'limit-rate': 'uint64',
2324            'current-rate': 'uint64' } }
2325
2326##
2327# @set-vcpu-dirty-limit:
2328#
2329# Set the upper limit of dirty page rate for virtual CPUs.
2330#
2331# Requires KVM with accelerator property "dirty-ring-size" set.  A
2332# virtual CPU's dirty page rate is a measure of its memory load.  To
2333# observe dirty page rates, use @calc-dirty-rate.
2334#
2335# @cpu-index: index of a virtual CPU, default is all.
2336#
2337# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2338#
2339# Since: 7.1
2340#
2341# Example:
2342#
2343#     -> {"execute": "set-vcpu-dirty-limit"}
2344#         "arguments": { "dirty-rate": 200,
2345#                        "cpu-index": 1 } }
2346#     <- { "return": {} }
2347##
2348{ 'command': 'set-vcpu-dirty-limit',
2349  'data': { '*cpu-index': 'int',
2350            'dirty-rate': 'uint64' } }
2351
2352##
2353# @cancel-vcpu-dirty-limit:
2354#
2355# Cancel the upper limit of dirty page rate for virtual CPUs.
2356#
2357# Cancel the dirty page limit for the vCPU which has been set with
2358# set-vcpu-dirty-limit command.  Note that this command requires
2359# support from dirty ring, same as the "set-vcpu-dirty-limit".
2360#
2361# @cpu-index: index of a virtual CPU, default is all.
2362#
2363# Since: 7.1
2364#
2365# Example:
2366#
2367#     -> {"execute": "cancel-vcpu-dirty-limit"},
2368#         "arguments": { "cpu-index": 1 } }
2369#     <- { "return": {} }
2370##
2371{ 'command': 'cancel-vcpu-dirty-limit',
2372  'data': { '*cpu-index': 'int'} }
2373
2374##
2375# @query-vcpu-dirty-limit:
2376#
2377# Returns information about virtual CPU dirty page rate limits, if
2378# any.
2379#
2380# Since: 7.1
2381#
2382# Example:
2383#
2384#     -> {"execute": "query-vcpu-dirty-limit"}
2385#     <- {"return": [
2386#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2387#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2388##
2389{ 'command': 'query-vcpu-dirty-limit',
2390  'returns': [ 'DirtyLimitInfo' ] }
2391
2392##
2393# @MigrationThreadInfo:
2394#
2395# Information about migrationthreads
2396#
2397# @name: the name of migration thread
2398#
2399# @thread-id: ID of the underlying host thread
2400#
2401# Since: 7.2
2402##
2403{ 'struct': 'MigrationThreadInfo',
2404  'data': {'name': 'str',
2405           'thread-id': 'int'} }
2406
2407##
2408# @query-migrationthreads:
2409#
2410# Returns information of migration threads
2411#
2412# data: migration thread name
2413#
2414# Returns: information about migration threads
2415#
2416# Since: 7.2
2417##
2418{ 'command': 'query-migrationthreads',
2419  'returns': ['MigrationThreadInfo'] }
2420
2421##
2422# @snapshot-save:
2423#
2424# Save a VM snapshot
2425#
2426# @job-id: identifier for the newly created job
2427#
2428# @tag: name of the snapshot to create
2429#
2430# @vmstate: block device node name to save vmstate to
2431#
2432# @devices: list of block device node names to save a snapshot to
2433#
2434# Applications should not assume that the snapshot save is complete
2435# when this command returns.  The job commands / events must be used
2436# to determine completion and to fetch details of any errors that
2437# arise.
2438#
2439# Note that execution of the guest CPUs may be stopped during the time
2440# it takes to save the snapshot.  A future version of QEMU may ensure
2441# CPUs are executing continuously.
2442#
2443# It is strongly recommended that @devices contain all writable block
2444# device nodes if a consistent snapshot is required.
2445#
2446# If @tag already exists, an error will be reported
2447#
2448# Example:
2449#
2450#     -> { "execute": "snapshot-save",
2451#          "arguments": {
2452#             "job-id": "snapsave0",
2453#             "tag": "my-snap",
2454#             "vmstate": "disk0",
2455#             "devices": ["disk0", "disk1"]
2456#          }
2457#        }
2458#     <- { "return": { } }
2459#     <- {"event": "JOB_STATUS_CHANGE",
2460#         "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2461#         "data": {"status": "created", "id": "snapsave0"}}
2462#     <- {"event": "JOB_STATUS_CHANGE",
2463#         "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2464#         "data": {"status": "running", "id": "snapsave0"}}
2465#     <- {"event": "STOP",
2466#         "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2467#     <- {"event": "RESUME",
2468#         "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2469#     <- {"event": "JOB_STATUS_CHANGE",
2470#         "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2471#         "data": {"status": "waiting", "id": "snapsave0"}}
2472#     <- {"event": "JOB_STATUS_CHANGE",
2473#         "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2474#         "data": {"status": "pending", "id": "snapsave0"}}
2475#     <- {"event": "JOB_STATUS_CHANGE",
2476#         "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2477#         "data": {"status": "concluded", "id": "snapsave0"}}
2478#     -> {"execute": "query-jobs"}
2479#     <- {"return": [{"current-progress": 1,
2480#                     "status": "concluded",
2481#                     "total-progress": 1,
2482#                     "type": "snapshot-save",
2483#                     "id": "snapsave0"}]}
2484#
2485# Since: 6.0
2486##
2487{ 'command': 'snapshot-save',
2488  'data': { 'job-id': 'str',
2489            'tag': 'str',
2490            'vmstate': 'str',
2491            'devices': ['str'] } }
2492
2493##
2494# @snapshot-load:
2495#
2496# Load a VM snapshot
2497#
2498# @job-id: identifier for the newly created job
2499#
2500# @tag: name of the snapshot to load.
2501#
2502# @vmstate: block device node name to load vmstate from
2503#
2504# @devices: list of block device node names to load a snapshot from
2505#
2506# Applications should not assume that the snapshot load is complete
2507# when this command returns.  The job commands / events must be used
2508# to determine completion and to fetch details of any errors that
2509# arise.
2510#
2511# Note that execution of the guest CPUs will be stopped during the
2512# time it takes to load the snapshot.
2513#
2514# It is strongly recommended that @devices contain all writable block
2515# device nodes that can have changed since the original @snapshot-save
2516# command execution.
2517#
2518# Example:
2519#
2520#     -> { "execute": "snapshot-load",
2521#          "arguments": {
2522#             "job-id": "snapload0",
2523#             "tag": "my-snap",
2524#             "vmstate": "disk0",
2525#             "devices": ["disk0", "disk1"]
2526#          }
2527#        }
2528#     <- { "return": { } }
2529#     <- {"event": "JOB_STATUS_CHANGE",
2530#         "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2531#         "data": {"status": "created", "id": "snapload0"}}
2532#     <- {"event": "JOB_STATUS_CHANGE",
2533#         "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2534#         "data": {"status": "running", "id": "snapload0"}}
2535#     <- {"event": "STOP",
2536#         "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2537#     <- {"event": "RESUME",
2538#         "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2539#     <- {"event": "JOB_STATUS_CHANGE",
2540#         "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2541#         "data": {"status": "waiting", "id": "snapload0"}}
2542#     <- {"event": "JOB_STATUS_CHANGE",
2543#         "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2544#         "data": {"status": "pending", "id": "snapload0"}}
2545#     <- {"event": "JOB_STATUS_CHANGE",
2546#         "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2547#         "data": {"status": "concluded", "id": "snapload0"}}
2548#     -> {"execute": "query-jobs"}
2549#     <- {"return": [{"current-progress": 1,
2550#                     "status": "concluded",
2551#                     "total-progress": 1,
2552#                     "type": "snapshot-load",
2553#                     "id": "snapload0"}]}
2554#
2555# Since: 6.0
2556##
2557{ 'command': 'snapshot-load',
2558  'data': { 'job-id': 'str',
2559            'tag': 'str',
2560            'vmstate': 'str',
2561            'devices': ['str'] } }
2562
2563##
2564# @snapshot-delete:
2565#
2566# Delete a VM snapshot
2567#
2568# @job-id: identifier for the newly created job
2569#
2570# @tag: name of the snapshot to delete.
2571#
2572# @devices: list of block device node names to delete a snapshot from
2573#
2574# Applications should not assume that the snapshot delete is complete
2575# when this command returns.  The job commands / events must be used
2576# to determine completion and to fetch details of any errors that
2577# arise.
2578#
2579# Example:
2580#
2581#     -> { "execute": "snapshot-delete",
2582#          "arguments": {
2583#             "job-id": "snapdelete0",
2584#             "tag": "my-snap",
2585#             "devices": ["disk0", "disk1"]
2586#          }
2587#        }
2588#     <- { "return": { } }
2589#     <- {"event": "JOB_STATUS_CHANGE",
2590#         "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2591#         "data": {"status": "created", "id": "snapdelete0"}}
2592#     <- {"event": "JOB_STATUS_CHANGE",
2593#         "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2594#         "data": {"status": "running", "id": "snapdelete0"}}
2595#     <- {"event": "JOB_STATUS_CHANGE",
2596#         "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2597#         "data": {"status": "waiting", "id": "snapdelete0"}}
2598#     <- {"event": "JOB_STATUS_CHANGE",
2599#         "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2600#         "data": {"status": "pending", "id": "snapdelete0"}}
2601#     <- {"event": "JOB_STATUS_CHANGE",
2602#         "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2603#         "data": {"status": "concluded", "id": "snapdelete0"}}
2604#     -> {"execute": "query-jobs"}
2605#     <- {"return": [{"current-progress": 1,
2606#                     "status": "concluded",
2607#                     "total-progress": 1,
2608#                     "type": "snapshot-delete",
2609#                     "id": "snapdelete0"}]}
2610#
2611# Since: 6.0
2612##
2613{ 'command': 'snapshot-delete',
2614  'data': { 'job-id': 'str',
2615            'tag': 'str',
2616            'devices': ['str'] } }
2617