xref: /qemu/qapi/misc.json (revision 9277d81f)
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
8{ 'include': 'common.json' }
9
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
15# Arguments:
16#
17# @enable:   An optional list of QMPCapability values to enable.  The
18#            client must not enable any capability that is not
19#            mentioned in the QMP greeting message.  If the field is not
20#            provided, it means no QMP capabilities will be enabled.
21#            (since 2.12)
22#
23# Example:
24#
25# -> { "execute": "qmp_capabilities",
26#      "arguments": { "enable": [ "oob" ] } }
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
36# Since: 0.13
37#
38##
39{ 'command': 'qmp_capabilities',
40  'data': { '*enable': [ 'QMPCapability' ] },
41  'allow-preconfig': true }
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
49# @oob:   QMP ability to support out-of-band requests.
50#         (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56  'data': [ 'oob' ] }
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major:  The major version number.
64#
65# @minor:  The minor version number.
66#
67# @micro:  The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72  'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu:        The version of QEMU.  By current convention, a micro
81#               version of 50 signifies a development branch.  A micro version
82#               greater than or equal to 90 signifies a release candidate for
83#               the next minor version.  A micro version of less than 50
84#               signifies a stable release.
85#
86# @package:     QEMU will always set this field to an empty string.  Downstream
87#               versions of QEMU should set this to a non-empty string.  The
88#               exact format depends on the downstream however it highly
89#               recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94  'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns:  A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109#       "return":{
110#          "qemu":{
111#             "major":0,
112#             "minor":11,
113#             "micro":5
114#          },
115#          "package":""
116#       }
117#    }
118#
119##
120{ 'command': 'query-version', 'returns': 'VersionInfo',
121  'allow-preconfig': true }
122
123##
124# @CommandInfo:
125#
126# Information about a QMP command
127#
128# @name: The command name
129#
130# Since: 0.14.0
131##
132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134##
135# @query-commands:
136#
137# Return a list of supported QMP commands by this server
138#
139# Returns: A list of @CommandInfo for all supported commands
140#
141# Since: 0.14.0
142#
143# Example:
144#
145# -> { "execute": "query-commands" }
146# <- {
147#      "return":[
148#         {
149#            "name":"query-balloon"
150#         },
151#         {
152#            "name":"system_powerdown"
153#         }
154#      ]
155#    }
156#
157# Note: This example has been shortened as the real response is too long.
158#
159##
160{ 'command': 'query-commands', 'returns': ['CommandInfo'],
161  'allow-preconfig': true }
162
163##
164# @LostTickPolicy:
165#
166# Policy for handling lost ticks in timer devices.
167#
168# @discard: throw away the missed tick(s) and continue with future injection
169#           normally.  Guest time may be delayed, unless the OS has explicit
170#           handling of lost ticks
171#
172# @delay: continue to deliver ticks at the normal rate.  Guest time will be
173#         delayed due to the late tick
174#
175# @merge: merge the missed tick(s) into one tick and inject.  Guest time
176#         may be delayed, depending on how the OS reacts to the merging
177#         of ticks
178#
179# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180#        guest time should not be delayed once catchup is complete.
181#
182# Since: 2.0
183##
184{ 'enum': 'LostTickPolicy',
185  'data': ['discard', 'delay', 'merge', 'slew' ] }
186
187##
188# @add_client:
189#
190# Allow client connections for VNC, Spice and socket based
191# character devices to be passed in to QEMU via SCM_RIGHTS.
192#
193# @protocol: protocol name. Valid names are "vnc", "spice" or the
194#            name of a character device (eg. from -chardev id=XXXX)
195#
196# @fdname: file descriptor name previously passed via 'getfd' command
197#
198# @skipauth: whether to skip authentication. Only applies
199#            to "vnc" and "spice" protocols
200#
201# @tls: whether to perform TLS. Only applies to the "spice"
202#       protocol
203#
204# Returns: nothing on success.
205#
206# Since: 0.14.0
207#
208# Example:
209#
210# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211#                                              "fdname": "myclient" } }
212# <- { "return": {} }
213#
214##
215{ 'command': 'add_client',
216  'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217            '*tls': 'bool' } }
218
219##
220# @NameInfo:
221#
222# Guest name information.
223#
224# @name: The name of the guest
225#
226# Since: 0.14.0
227##
228{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
229
230##
231# @query-name:
232#
233# Return the name information of a guest.
234#
235# Returns: @NameInfo of the guest
236#
237# Since: 0.14.0
238#
239# Example:
240#
241# -> { "execute": "query-name" }
242# <- { "return": { "name": "qemu-name" } }
243#
244##
245{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
246
247##
248# @KvmInfo:
249#
250# Information about support for KVM acceleration
251#
252# @enabled: true if KVM acceleration is active
253#
254# @present: true if KVM acceleration is built into this executable
255#
256# Since: 0.14.0
257##
258{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
259
260##
261# @query-kvm:
262#
263# Returns information about KVM acceleration
264#
265# Returns: @KvmInfo
266#
267# Since: 0.14.0
268#
269# Example:
270#
271# -> { "execute": "query-kvm" }
272# <- { "return": { "enabled": true, "present": true } }
273#
274##
275{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
276
277##
278# @UuidInfo:
279#
280# Guest UUID information (Universally Unique Identifier).
281#
282# @UUID: the UUID of the guest
283#
284# Since: 0.14.0
285#
286# Notes: If no UUID was specified for the guest, a null UUID is returned.
287##
288{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
289
290##
291# @query-uuid:
292#
293# Query the guest UUID information.
294#
295# Returns: The @UuidInfo for the guest
296#
297# Since: 0.14.0
298#
299# Example:
300#
301# -> { "execute": "query-uuid" }
302# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
303#
304##
305{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
306
307##
308# @EventInfo:
309#
310# Information about a QMP event
311#
312# @name: The event name
313#
314# Since: 1.2.0
315##
316{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
317
318##
319# @query-events:
320#
321# Return a list of supported QMP events by this server
322#
323# Returns: A list of @EventInfo for all supported events
324#
325# Since: 1.2.0
326#
327# Example:
328#
329# -> { "execute": "query-events" }
330# <- {
331#      "return": [
332#          {
333#             "name":"SHUTDOWN"
334#          },
335#          {
336#             "name":"RESET"
337#          }
338#       ]
339#    }
340#
341# Note: This example has been shortened as the real response is too long.
342#
343##
344{ 'command': 'query-events', 'returns': ['EventInfo'] }
345
346##
347# @CpuInfoArch:
348#
349# An enumeration of cpu types that enable additional information during
350# @query-cpus and @query-cpus-fast.
351#
352# @s390: since 2.12
353#
354# @riscv: since 2.12
355#
356# Since: 2.6
357##
358{ 'enum': 'CpuInfoArch',
359  'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
360
361##
362# @CpuInfo:
363#
364# Information about a virtual CPU
365#
366# @CPU: the index of the virtual CPU
367#
368# @current: this only exists for backwards compatibility and should be ignored
369#
370# @halted: true if the virtual CPU is in the halt state.  Halt usually refers
371#          to a processor specific low power mode.
372#
373# @qom_path: path to the CPU object in the QOM tree (since 2.4)
374#
375# @thread_id: ID of the underlying host thread
376#
377# @props: properties describing to which node/socket/core/thread
378#         virtual CPU belongs to, provided if supported by board (since 2.10)
379#
380# @arch: architecture of the cpu, which determines which additional fields
381#        will be listed (since 2.6)
382#
383# Since: 0.14.0
384#
385# Notes: @halted is a transient state that changes frequently.  By the time the
386#        data is sent to the client, the guest may no longer be halted.
387##
388{ 'union': 'CpuInfo',
389  'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390           'qom_path': 'str', 'thread_id': 'int',
391           '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392  'discriminator': 'arch',
393  'data': { 'x86': 'CpuInfoX86',
394            'sparc': 'CpuInfoSPARC',
395            'ppc': 'CpuInfoPPC',
396            'mips': 'CpuInfoMIPS',
397            'tricore': 'CpuInfoTricore',
398            's390': 'CpuInfoS390',
399            'riscv': 'CpuInfoRISCV' } }
400
401##
402# @CpuInfoX86:
403#
404# Additional information about a virtual i386 or x86_64 CPU
405#
406# @pc: the 64-bit instruction pointer
407#
408# Since: 2.6
409##
410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412##
413# @CpuInfoSPARC:
414#
415# Additional information about a virtual SPARC CPU
416#
417# @pc: the PC component of the instruction pointer
418#
419# @npc: the NPC component of the instruction pointer
420#
421# Since: 2.6
422##
423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425##
426# @CpuInfoPPC:
427#
428# Additional information about a virtual PPC CPU
429#
430# @nip: the instruction pointer
431#
432# Since: 2.6
433##
434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436##
437# @CpuInfoMIPS:
438#
439# Additional information about a virtual MIPS CPU
440#
441# @PC: the instruction pointer
442#
443# Since: 2.6
444##
445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447##
448# @CpuInfoTricore:
449#
450# Additional information about a virtual Tricore CPU
451#
452# @PC: the instruction pointer
453#
454# Since: 2.6
455##
456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
458##
459# @CpuInfoRISCV:
460#
461# Additional information about a virtual RISCV CPU
462#
463# @pc: the instruction pointer
464#
465# Since 2.12
466##
467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
469##
470# @CpuS390State:
471#
472# An enumeration of cpu states that can be assumed by a virtual
473# S390 CPU
474#
475# Since: 2.12
476##
477{ 'enum': 'CpuS390State',
478  'prefix': 'S390_CPU_STATE',
479  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
480
481##
482# @CpuInfoS390:
483#
484# Additional information about a virtual S390 CPU
485#
486# @cpu-state: the virtual CPU's state
487#
488# Since: 2.12
489##
490{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
491
492##
493# @query-cpus:
494#
495# Returns a list of information about each virtual CPU.
496#
497# This command causes vCPU threads to exit to userspace, which causes
498# a small interruption to guest CPU execution. This will have a negative
499# impact on realtime guests and other latency sensitive guest workloads.
500# It is recommended to use @query-cpus-fast instead of this command to
501# avoid the vCPU interruption.
502#
503# Returns: a list of @CpuInfo for each virtual CPU
504#
505# Since: 0.14.0
506#
507# Example:
508#
509# -> { "execute": "query-cpus" }
510# <- { "return": [
511#          {
512#             "CPU":0,
513#             "current":true,
514#             "halted":false,
515#             "qom_path":"/machine/unattached/device[0]",
516#             "arch":"x86",
517#             "pc":3227107138,
518#             "thread_id":3134
519#          },
520#          {
521#             "CPU":1,
522#             "current":false,
523#             "halted":true,
524#             "qom_path":"/machine/unattached/device[2]",
525#             "arch":"x86",
526#             "pc":7108165,
527#             "thread_id":3135
528#          }
529#       ]
530#    }
531#
532# Notes: This interface is deprecated (since 2.12.0), and it is strongly
533#        recommended that you avoid using it. Use @query-cpus-fast to
534#        obtain information about virtual CPUs.
535#
536##
537{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
538
539##
540# @CpuInfoFast:
541#
542# Information about a virtual CPU
543#
544# @cpu-index: index of the virtual CPU
545#
546# @qom-path: path to the CPU object in the QOM tree
547#
548# @thread-id: ID of the underlying host thread
549#
550# @props: properties describing to which node/socket/core/thread
551#         virtual CPU belongs to, provided if supported by board
552#
553# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
554#        of @target
555#
556# @target: the QEMU system emulation target, which determines which
557#          additional fields will be listed (since 3.0)
558#
559# Since: 2.12
560#
561##
562{ 'union'         : 'CpuInfoFast',
563  'base'          : { 'cpu-index'    : 'int',
564                      'qom-path'     : 'str',
565                      'thread-id'    : 'int',
566                      '*props'       : 'CpuInstanceProperties',
567                      'arch'         : 'CpuInfoArch',
568                      'target'       : 'SysEmuTarget' },
569  'discriminator' : 'target',
570  'data'          : { 's390x'        : 'CpuInfoS390' } }
571
572##
573# @query-cpus-fast:
574#
575# Returns information about all virtual CPUs. This command does not
576# incur a performance penalty and should be used in production
577# instead of query-cpus.
578#
579# Returns: list of @CpuInfoFast
580#
581# Since: 2.12
582#
583# Example:
584#
585# -> { "execute": "query-cpus-fast" }
586# <- { "return": [
587#         {
588#             "thread-id": 25627,
589#             "props": {
590#                 "core-id": 0,
591#                 "thread-id": 0,
592#                 "socket-id": 0
593#             },
594#             "qom-path": "/machine/unattached/device[0]",
595#             "arch":"x86",
596#             "target":"x86_64",
597#             "cpu-index": 0
598#         },
599#         {
600#             "thread-id": 25628,
601#             "props": {
602#                 "core-id": 0,
603#                 "thread-id": 0,
604#                 "socket-id": 1
605#             },
606#             "qom-path": "/machine/unattached/device[2]",
607#             "arch":"x86",
608#             "target":"x86_64",
609#             "cpu-index": 1
610#         }
611#     ]
612# }
613##
614{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
615
616##
617# @IOThreadInfo:
618#
619# Information about an iothread
620#
621# @id: the identifier of the iothread
622#
623# @thread-id: ID of the underlying host thread
624#
625# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
626#               (since 2.9)
627#
628# @poll-grow: how many ns will be added to polling time, 0 means that it's not
629#             configured (since 2.9)
630#
631# @poll-shrink: how many ns will be removed from polling time, 0 means that
632#               it's not configured (since 2.9)
633#
634# Since: 2.0
635##
636{ 'struct': 'IOThreadInfo',
637  'data': {'id': 'str',
638           'thread-id': 'int',
639           'poll-max-ns': 'int',
640           'poll-grow': 'int',
641           'poll-shrink': 'int' } }
642
643##
644# @query-iothreads:
645#
646# Returns a list of information about each iothread.
647#
648# Note: this list excludes the QEMU main loop thread, which is not declared
649# using the -object iothread command-line option.  It is always the main thread
650# of the process.
651#
652# Returns: a list of @IOThreadInfo for each iothread
653#
654# Since: 2.0
655#
656# Example:
657#
658# -> { "execute": "query-iothreads" }
659# <- { "return": [
660#          {
661#             "id":"iothread0",
662#             "thread-id":3134
663#          },
664#          {
665#             "id":"iothread1",
666#             "thread-id":3135
667#          }
668#       ]
669#    }
670#
671##
672{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673  'allow-preconfig': true }
674
675##
676# @BalloonInfo:
677#
678# Information about the guest balloon device.
679#
680# @actual: the number of bytes the balloon currently contains
681#
682# Since: 0.14.0
683#
684##
685{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
686
687##
688# @query-balloon:
689#
690# Return information about the balloon device.
691#
692# Returns: @BalloonInfo on success
693#
694#          If the balloon driver is enabled but not functional because the KVM
695#          kernel module cannot support it, KvmMissingCap
696#
697#          If no balloon device is present, DeviceNotActive
698#
699# Since: 0.14.0
700#
701# Example:
702#
703# -> { "execute": "query-balloon" }
704# <- { "return": {
705#          "actual": 1073741824,
706#       }
707#    }
708#
709##
710{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
711
712##
713# @BALLOON_CHANGE:
714#
715# Emitted when the guest changes the actual BALLOON level. This value is
716# equivalent to the @actual field return by the 'query-balloon' command
717#
718# @actual: actual level of the guest memory balloon in bytes
719#
720# Note: this event is rate-limited.
721#
722# Since: 1.2
723#
724# Example:
725#
726# <- { "event": "BALLOON_CHANGE",
727#      "data": { "actual": 944766976 },
728#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
729#
730##
731{ 'event': 'BALLOON_CHANGE',
732  'data': { 'actual': 'int' } }
733
734##
735# @PciMemoryRange:
736#
737# A PCI device memory region
738#
739# @base: the starting address (guest physical)
740#
741# @limit: the ending address (guest physical)
742#
743# Since: 0.14.0
744##
745{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
746
747##
748# @PciMemoryRegion:
749#
750# Information about a PCI device I/O region.
751#
752# @bar: the index of the Base Address Register for this region
753#
754# @type: 'io' if the region is a PIO region
755#        'memory' if the region is a MMIO region
756#
757# @size: memory size
758#
759# @prefetch: if @type is 'memory', true if the memory is prefetchable
760#
761# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
762#
763# Since: 0.14.0
764##
765{ 'struct': 'PciMemoryRegion',
766  'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767           '*prefetch': 'bool', '*mem_type_64': 'bool' } }
768
769##
770# @PciBusInfo:
771#
772# Information about a bus of a PCI Bridge device
773#
774# @number: primary bus interface number.  This should be the number of the
775#          bus the device resides on.
776#
777# @secondary: secondary bus interface number.  This is the number of the
778#             main bus for the bridge
779#
780# @subordinate: This is the highest number bus that resides below the
781#               bridge.
782#
783# @io_range: The PIO range for all devices on this bridge
784#
785# @memory_range: The MMIO range for all devices on this bridge
786#
787# @prefetchable_range: The range of prefetchable MMIO for all devices on
788#                      this bridge
789#
790# Since: 2.4
791##
792{ 'struct': 'PciBusInfo',
793  'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794           'io_range': 'PciMemoryRange',
795           'memory_range': 'PciMemoryRange',
796           'prefetchable_range': 'PciMemoryRange' } }
797
798##
799# @PciBridgeInfo:
800#
801# Information about a PCI Bridge device
802#
803# @bus: information about the bus the device resides on
804#
805# @devices: a list of @PciDeviceInfo for each device on this bridge
806#
807# Since: 0.14.0
808##
809{ 'struct': 'PciBridgeInfo',
810  'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
811
812##
813# @PciDeviceClass:
814#
815# Information about the Class of a PCI device
816#
817# @desc: a string description of the device's class
818#
819# @class: the class code of the device
820#
821# Since: 2.4
822##
823{ 'struct': 'PciDeviceClass',
824  'data': {'*desc': 'str', 'class': 'int'} }
825
826##
827# @PciDeviceId:
828#
829# Information about the Id of a PCI device
830#
831# @device: the PCI device id
832#
833# @vendor: the PCI vendor id
834#
835# Since: 2.4
836##
837{ 'struct': 'PciDeviceId',
838  'data': {'device': 'int', 'vendor': 'int'} }
839
840##
841# @PciDeviceInfo:
842#
843# Information about a PCI device
844#
845# @bus: the bus number of the device
846#
847# @slot: the slot the device is located in
848#
849# @function: the function of the slot used by the device
850#
851# @class_info: the class of the device
852#
853# @id: the PCI device id
854#
855# @irq: if an IRQ is assigned to the device, the IRQ number
856#
857# @qdev_id: the device name of the PCI device
858#
859# @pci_bridge: if the device is a PCI bridge, the bridge information
860#
861# @regions: a list of the PCI I/O regions associated with the device
862#
863# Notes: the contents of @class_info.desc are not stable and should only be
864#        treated as informational.
865#
866# Since: 0.14.0
867##
868{ 'struct': 'PciDeviceInfo',
869  'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
870           'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
871           '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
872           'regions': ['PciMemoryRegion']} }
873
874##
875# @PciInfo:
876#
877# Information about a PCI bus
878#
879# @bus: the bus index
880#
881# @devices: a list of devices on this bus
882#
883# Since: 0.14.0
884##
885{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
886
887##
888# @query-pci:
889#
890# Return information about the PCI bus topology of the guest.
891#
892# Returns: a list of @PciInfo for each PCI bus. Each bus is
893# represented by a json-object, which has a key with a json-array of
894# all PCI devices attached to it. Each device is represented by a
895# json-object.
896#
897# Since: 0.14.0
898#
899# Example:
900#
901# -> { "execute": "query-pci" }
902# <- { "return": [
903#          {
904#             "bus": 0,
905#             "devices": [
906#                {
907#                   "bus": 0,
908#                   "qdev_id": "",
909#                   "slot": 0,
910#                   "class_info": {
911#                      "class": 1536,
912#                      "desc": "Host bridge"
913#                   },
914#                   "id": {
915#                      "device": 32902,
916#                      "vendor": 4663
917#                   },
918#                   "function": 0,
919#                   "regions": [
920#                   ]
921#                },
922#                {
923#                   "bus": 0,
924#                   "qdev_id": "",
925#                   "slot": 1,
926#                   "class_info": {
927#                      "class": 1537,
928#                      "desc": "ISA bridge"
929#                   },
930#                   "id": {
931#                      "device": 32902,
932#                      "vendor": 28672
933#                   },
934#                   "function": 0,
935#                   "regions": [
936#                   ]
937#                },
938#                {
939#                   "bus": 0,
940#                   "qdev_id": "",
941#                   "slot": 1,
942#                   "class_info": {
943#                      "class": 257,
944#                      "desc": "IDE controller"
945#                   },
946#                   "id": {
947#                      "device": 32902,
948#                      "vendor": 28688
949#                   },
950#                   "function": 1,
951#                   "regions": [
952#                      {
953#                         "bar": 4,
954#                         "size": 16,
955#                         "address": 49152,
956#                         "type": "io"
957#                      }
958#                   ]
959#                },
960#                {
961#                   "bus": 0,
962#                   "qdev_id": "",
963#                   "slot": 2,
964#                   "class_info": {
965#                      "class": 768,
966#                      "desc": "VGA controller"
967#                   },
968#                   "id": {
969#                      "device": 4115,
970#                      "vendor": 184
971#                   },
972#                   "function": 0,
973#                   "regions": [
974#                      {
975#                         "prefetch": true,
976#                         "mem_type_64": false,
977#                         "bar": 0,
978#                         "size": 33554432,
979#                         "address": 4026531840,
980#                         "type": "memory"
981#                      },
982#                      {
983#                         "prefetch": false,
984#                         "mem_type_64": false,
985#                         "bar": 1,
986#                         "size": 4096,
987#                         "address": 4060086272,
988#                         "type": "memory"
989#                      },
990#                      {
991#                         "prefetch": false,
992#                         "mem_type_64": false,
993#                         "bar": 6,
994#                         "size": 65536,
995#                         "address": -1,
996#                         "type": "memory"
997#                      }
998#                   ]
999#                },
1000#                {
1001#                   "bus": 0,
1002#                   "qdev_id": "",
1003#                   "irq": 11,
1004#                   "slot": 4,
1005#                   "class_info": {
1006#                      "class": 1280,
1007#                      "desc": "RAM controller"
1008#                   },
1009#                   "id": {
1010#                      "device": 6900,
1011#                      "vendor": 4098
1012#                   },
1013#                   "function": 0,
1014#                   "regions": [
1015#                      {
1016#                         "bar": 0,
1017#                         "size": 32,
1018#                         "address": 49280,
1019#                         "type": "io"
1020#                      }
1021#                   ]
1022#                }
1023#             ]
1024#          }
1025#       ]
1026#    }
1027#
1028# Note: This example has been shortened as the real response is too long.
1029#
1030##
1031{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1032
1033##
1034# @quit:
1035#
1036# This command will cause the QEMU process to exit gracefully.  While every
1037# attempt is made to send the QMP response before terminating, this is not
1038# guaranteed.  When using this interface, a premature EOF would not be
1039# unexpected.
1040#
1041# Since: 0.14.0
1042#
1043# Example:
1044#
1045# -> { "execute": "quit" }
1046# <- { "return": {} }
1047##
1048{ 'command': 'quit' }
1049
1050##
1051# @stop:
1052#
1053# Stop all guest VCPU execution.
1054#
1055# Since:  0.14.0
1056#
1057# Notes:  This function will succeed even if the guest is already in the stopped
1058#         state.  In "inmigrate" state, it will ensure that the guest
1059#         remains paused once migration finishes, as if the -S option was
1060#         passed on the command line.
1061#
1062# Example:
1063#
1064# -> { "execute": "stop" }
1065# <- { "return": {} }
1066#
1067##
1068{ 'command': 'stop' }
1069
1070##
1071# @system_reset:
1072#
1073# Performs a hard reset of a guest.
1074#
1075# Since: 0.14.0
1076#
1077# Example:
1078#
1079# -> { "execute": "system_reset" }
1080# <- { "return": {} }
1081#
1082##
1083{ 'command': 'system_reset' }
1084
1085##
1086# @system_powerdown:
1087#
1088# Requests that a guest perform a powerdown operation.
1089#
1090# Since: 0.14.0
1091#
1092# Notes: A guest may or may not respond to this command.  This command
1093#        returning does not indicate that a guest has accepted the request or
1094#        that it has shut down.  Many guests will respond to this command by
1095#        prompting the user in some way.
1096# Example:
1097#
1098# -> { "execute": "system_powerdown" }
1099# <- { "return": {} }
1100#
1101##
1102{ 'command': 'system_powerdown' }
1103
1104##
1105# @cpu-add:
1106#
1107# Adds CPU with specified ID
1108#
1109# @id: ID of CPU to be created, valid values [0..max_cpus)
1110#
1111# Returns: Nothing on success
1112#
1113# Since: 1.5
1114#
1115# Example:
1116#
1117# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1118# <- { "return": {} }
1119#
1120##
1121{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1122
1123##
1124# @memsave:
1125#
1126# Save a portion of guest memory to a file.
1127#
1128# @val: the virtual address of the guest to start from
1129#
1130# @size: the size of memory region to save
1131#
1132# @filename: the file to save the memory to as binary data
1133#
1134# @cpu-index: the index of the virtual CPU to use for translating the
1135#                       virtual address (defaults to CPU 0)
1136#
1137# Returns: Nothing on success
1138#
1139# Since: 0.14.0
1140#
1141# Notes: Errors were not reliably returned until 1.1
1142#
1143# Example:
1144#
1145# -> { "execute": "memsave",
1146#      "arguments": { "val": 10,
1147#                     "size": 100,
1148#                     "filename": "/tmp/virtual-mem-dump" } }
1149# <- { "return": {} }
1150#
1151##
1152{ 'command': 'memsave',
1153  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1154
1155##
1156# @pmemsave:
1157#
1158# Save a portion of guest physical memory to a file.
1159#
1160# @val: the physical address of the guest to start from
1161#
1162# @size: the size of memory region to save
1163#
1164# @filename: the file to save the memory to as binary data
1165#
1166# Returns: Nothing on success
1167#
1168# Since: 0.14.0
1169#
1170# Notes: Errors were not reliably returned until 1.1
1171#
1172# Example:
1173#
1174# -> { "execute": "pmemsave",
1175#      "arguments": { "val": 10,
1176#                     "size": 100,
1177#                     "filename": "/tmp/physical-mem-dump" } }
1178# <- { "return": {} }
1179#
1180##
1181{ 'command': 'pmemsave',
1182  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1183
1184##
1185# @cont:
1186#
1187# Resume guest VCPU execution.
1188#
1189# Since:  0.14.0
1190#
1191# Returns:  If successful, nothing
1192#
1193# Notes:  This command will succeed if the guest is currently running.  It
1194#         will also succeed if the guest is in the "inmigrate" state; in
1195#         this case, the effect of the command is to make sure the guest
1196#         starts once migration finishes, removing the effect of the -S
1197#         command line option if it was passed.
1198#
1199# Example:
1200#
1201# -> { "execute": "cont" }
1202# <- { "return": {} }
1203#
1204##
1205{ 'command': 'cont' }
1206
1207##
1208# @exit-preconfig:
1209#
1210# Exit from "preconfig" state
1211#
1212# This command makes QEMU exit the preconfig state and proceed with
1213# VM initialization using configuration data provided on the command line
1214# and via the QMP monitor during the preconfig state. The command is only
1215# available during the preconfig state (i.e. when the --preconfig command
1216# line option was in use).
1217#
1218# Since 3.0
1219#
1220# Returns: nothing
1221#
1222# Example:
1223#
1224# -> { "execute": "exit-preconfig" }
1225# <- { "return": {} }
1226#
1227##
1228{ 'command': 'exit-preconfig', 'allow-preconfig': true }
1229
1230##
1231# @system_wakeup:
1232#
1233# Wakeup guest from suspend.  Does nothing in case the guest isn't suspended.
1234#
1235# Since:  1.1
1236#
1237# Returns:  nothing.
1238#
1239# Example:
1240#
1241# -> { "execute": "system_wakeup" }
1242# <- { "return": {} }
1243#
1244##
1245{ 'command': 'system_wakeup' }
1246
1247##
1248# @inject-nmi:
1249#
1250# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1251# The command fails when the guest doesn't support injecting.
1252#
1253# Returns:  If successful, nothing
1254#
1255# Since:  0.14.0
1256#
1257# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1258#
1259# Example:
1260#
1261# -> { "execute": "inject-nmi" }
1262# <- { "return": {} }
1263#
1264##
1265{ 'command': 'inject-nmi' }
1266
1267##
1268# @balloon:
1269#
1270# Request the balloon driver to change its balloon size.
1271#
1272# @value: the target size of the balloon in bytes
1273#
1274# Returns: Nothing on success
1275#          If the balloon driver is enabled but not functional because the KVM
1276#            kernel module cannot support it, KvmMissingCap
1277#          If no balloon device is present, DeviceNotActive
1278#
1279# Notes: This command just issues a request to the guest.  When it returns,
1280#        the balloon size may not have changed.  A guest can change the balloon
1281#        size independent of this command.
1282#
1283# Since: 0.14.0
1284#
1285# Example:
1286#
1287# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1288# <- { "return": {} }
1289#
1290##
1291{ 'command': 'balloon', 'data': {'value': 'int'} }
1292
1293##
1294# @human-monitor-command:
1295#
1296# Execute a command on the human monitor and return the output.
1297#
1298# @command-line: the command to execute in the human monitor
1299#
1300# @cpu-index: The CPU to use for commands that require an implicit CPU
1301#
1302# Returns: the output of the command as a string
1303#
1304# Since: 0.14.0
1305#
1306# Notes: This command only exists as a stop-gap.  Its use is highly
1307#        discouraged.  The semantics of this command are not
1308#        guaranteed: this means that command names, arguments and
1309#        responses can change or be removed at ANY time.  Applications
1310#        that rely on long term stability guarantees should NOT
1311#        use this command.
1312#
1313#        Known limitations:
1314#
1315#        * This command is stateless, this means that commands that depend
1316#          on state information (such as getfd) might not work
1317#
1318#        * Commands that prompt the user for data don't currently work
1319#
1320# Example:
1321#
1322# -> { "execute": "human-monitor-command",
1323#      "arguments": { "command-line": "info kvm" } }
1324# <- { "return": "kvm support: enabled\r\n" }
1325#
1326##
1327{ 'command': 'human-monitor-command',
1328  'data': {'command-line': 'str', '*cpu-index': 'int'},
1329  'returns': 'str' }
1330
1331##
1332# @ObjectPropertyInfo:
1333#
1334# @name: the name of the property
1335#
1336# @type: the type of the property.  This will typically come in one of four
1337#        forms:
1338#
1339#        1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1340#           These types are mapped to the appropriate JSON type.
1341#
1342#        2) A child type in the form 'child<subtype>' where subtype is a qdev
1343#           device type name.  Child properties create the composition tree.
1344#
1345#        3) A link type in the form 'link<subtype>' where subtype is a qdev
1346#           device type name.  Link properties form the device model graph.
1347#
1348# @description: if specified, the description of the property.
1349#
1350# Since: 1.2
1351##
1352{ 'struct': 'ObjectPropertyInfo',
1353  'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1354
1355##
1356# @qom-list:
1357#
1358# This command will list any properties of a object given a path in the object
1359# model.
1360#
1361# @path: the path within the object model.  See @qom-get for a description of
1362#        this parameter.
1363#
1364# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1365#          object.
1366#
1367# Since: 1.2
1368##
1369{ 'command': 'qom-list',
1370  'data': { 'path': 'str' },
1371  'returns': [ 'ObjectPropertyInfo' ],
1372  'allow-preconfig': true }
1373
1374##
1375# @qom-get:
1376#
1377# This command will get a property from a object model path and return the
1378# value.
1379#
1380# @path: The path within the object model.  There are two forms of supported
1381#        paths--absolute and partial paths.
1382#
1383#        Absolute paths are derived from the root object and can follow child<>
1384#        or link<> properties.  Since they can follow link<> properties, they
1385#        can be arbitrarily long.  Absolute paths look like absolute filenames
1386#        and are prefixed  with a leading slash.
1387#
1388#        Partial paths look like relative filenames.  They do not begin
1389#        with a prefix.  The matching rules for partial paths are subtle but
1390#        designed to make specifying objects easy.  At each level of the
1391#        composition tree, the partial path is matched as an absolute path.
1392#        The first match is not returned.  At least two matches are searched
1393#        for.  A successful result is only returned if only one match is
1394#        found.  If more than one match is found, a flag is return to
1395#        indicate that the match was ambiguous.
1396#
1397# @property: The property name to read
1398#
1399# Returns: The property value.  The type depends on the property
1400#          type. child<> and link<> properties are returned as #str
1401#          pathnames.  All integer property types (u8, u16, etc) are
1402#          returned as #int.
1403#
1404# Since: 1.2
1405##
1406{ 'command': 'qom-get',
1407  'data': { 'path': 'str', 'property': 'str' },
1408  'returns': 'any',
1409  'allow-preconfig': true }
1410
1411##
1412# @qom-set:
1413#
1414# This command will set a property from a object model path.
1415#
1416# @path: see @qom-get for a description of this parameter
1417#
1418# @property: the property name to set
1419#
1420# @value: a value who's type is appropriate for the property type.  See @qom-get
1421#         for a description of type mapping.
1422#
1423# Since: 1.2
1424##
1425{ 'command': 'qom-set',
1426  'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1427  'allow-preconfig': true }
1428
1429##
1430# @change:
1431#
1432# This command is multiple commands multiplexed together.
1433#
1434# @device: This is normally the name of a block device but it may also be 'vnc'.
1435#          when it's 'vnc', then sub command depends on @target
1436#
1437# @target: If @device is a block device, then this is the new filename.
1438#          If @device is 'vnc', then if the value 'password' selects the vnc
1439#          change password command.   Otherwise, this specifies a new server URI
1440#          address to listen to for VNC connections.
1441#
1442# @arg:    If @device is a block device, then this is an optional format to open
1443#          the device with.
1444#          If @device is 'vnc' and @target is 'password', this is the new VNC
1445#          password to set.  See change-vnc-password for additional notes.
1446#
1447# Returns: Nothing on success.
1448#          If @device is not a valid block device, DeviceNotFound
1449#
1450# Notes:  This interface is deprecated, and it is strongly recommended that you
1451#         avoid using it.  For changing block devices, use
1452#         blockdev-change-medium; for changing VNC parameters, use
1453#         change-vnc-password.
1454#
1455# Since: 0.14.0
1456#
1457# Example:
1458#
1459# 1. Change a removable medium
1460#
1461# -> { "execute": "change",
1462#      "arguments": { "device": "ide1-cd0",
1463#                     "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1464# <- { "return": {} }
1465#
1466# 2. Change VNC password
1467#
1468# -> { "execute": "change",
1469#      "arguments": { "device": "vnc", "target": "password",
1470#                     "arg": "foobar1" } }
1471# <- { "return": {} }
1472#
1473##
1474{ 'command': 'change',
1475  'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1476
1477##
1478# @ObjectTypeInfo:
1479#
1480# This structure describes a search result from @qom-list-types
1481#
1482# @name: the type name found in the search
1483#
1484# @abstract: the type is abstract and can't be directly instantiated.
1485#            Omitted if false. (since 2.10)
1486#
1487# @parent: Name of parent type, if any (since 2.10)
1488#
1489# Since: 1.1
1490##
1491{ 'struct': 'ObjectTypeInfo',
1492  'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1493
1494##
1495# @qom-list-types:
1496#
1497# This command will return a list of types given search parameters
1498#
1499# @implements: if specified, only return types that implement this type name
1500#
1501# @abstract: if true, include abstract types in the results
1502#
1503# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1504#
1505# Since: 1.1
1506##
1507{ 'command': 'qom-list-types',
1508  'data': { '*implements': 'str', '*abstract': 'bool' },
1509  'returns': [ 'ObjectTypeInfo' ],
1510  'allow-preconfig': true }
1511
1512##
1513# @device-list-properties:
1514#
1515# List properties associated with a device.
1516#
1517# @typename: the type name of a device
1518#
1519# Returns: a list of ObjectPropertyInfo describing a devices properties
1520#
1521# Note: objects can create properties at runtime, for example to describe
1522# links between different devices and/or objects. These properties
1523# are not included in the output of this command.
1524#
1525# Since: 1.2
1526##
1527{ 'command': 'device-list-properties',
1528  'data': { 'typename': 'str'},
1529  'returns': [ 'ObjectPropertyInfo' ] }
1530
1531##
1532# @qom-list-properties:
1533#
1534# List properties associated with a QOM object.
1535#
1536# @typename: the type name of an object
1537#
1538# Note: objects can create properties at runtime, for example to describe
1539# links between different devices and/or objects. These properties
1540# are not included in the output of this command.
1541#
1542# Returns: a list of ObjectPropertyInfo describing object properties
1543#
1544# Since: 2.12
1545##
1546{ 'command': 'qom-list-properties',
1547  'data': { 'typename': 'str'},
1548  'returns': [ 'ObjectPropertyInfo' ],
1549  'allow-preconfig': true }
1550
1551##
1552# @xen-set-global-dirty-log:
1553#
1554# Enable or disable the global dirty log mode.
1555#
1556# @enable: true to enable, false to disable.
1557#
1558# Returns: nothing
1559#
1560# Since: 1.3
1561#
1562# Example:
1563#
1564# -> { "execute": "xen-set-global-dirty-log",
1565#      "arguments": { "enable": true } }
1566# <- { "return": {} }
1567#
1568##
1569{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1570
1571##
1572# @device_add:
1573#
1574# @driver: the name of the new device's driver
1575#
1576# @bus: the device's parent bus (device tree path)
1577#
1578# @id: the device's ID, must be unique
1579#
1580# Additional arguments depend on the type.
1581#
1582# Add a device.
1583#
1584# Notes:
1585# 1. For detailed information about this command, please refer to the
1586#    'docs/qdev-device-use.txt' file.
1587#
1588# 2. It's possible to list device properties by running QEMU with the
1589#    "-device DEVICE,help" command-line argument, where DEVICE is the
1590#    device's name
1591#
1592# Example:
1593#
1594# -> { "execute": "device_add",
1595#      "arguments": { "driver": "e1000", "id": "net1",
1596#                     "bus": "pci.0",
1597#                     "mac": "52:54:00:12:34:56" } }
1598# <- { "return": {} }
1599#
1600# TODO: This command effectively bypasses QAPI completely due to its
1601# "additional arguments" business.  It shouldn't have been added to
1602# the schema in this form.  It should be qapified properly, or
1603# replaced by a properly qapified command.
1604#
1605# Since: 0.13
1606##
1607{ 'command': 'device_add',
1608  'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1609  'gen': false } # so we can get the additional arguments
1610
1611##
1612# @device_del:
1613#
1614# Remove a device from a guest
1615#
1616# @id: the device's ID or QOM path
1617#
1618# Returns: Nothing on success
1619#          If @id is not a valid device, DeviceNotFound
1620#
1621# Notes: When this command completes, the device may not be removed from the
1622#        guest.  Hot removal is an operation that requires guest cooperation.
1623#        This command merely requests that the guest begin the hot removal
1624#        process.  Completion of the device removal process is signaled with a
1625#        DEVICE_DELETED event. Guest reset will automatically complete removal
1626#        for all devices.
1627#
1628# Since: 0.14.0
1629#
1630# Example:
1631#
1632# -> { "execute": "device_del",
1633#      "arguments": { "id": "net1" } }
1634# <- { "return": {} }
1635#
1636# -> { "execute": "device_del",
1637#      "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1638# <- { "return": {} }
1639#
1640##
1641{ 'command': 'device_del', 'data': {'id': 'str'} }
1642
1643##
1644# @DEVICE_DELETED:
1645#
1646# Emitted whenever the device removal completion is acknowledged by the guest.
1647# At this point, it's safe to reuse the specified device ID. Device removal can
1648# be initiated by the guest or by HMP/QMP commands.
1649#
1650# @device: device name
1651#
1652# @path: device path
1653#
1654# Since: 1.5
1655#
1656# Example:
1657#
1658# <- { "event": "DEVICE_DELETED",
1659#      "data": { "device": "virtio-net-pci-0",
1660#                "path": "/machine/peripheral/virtio-net-pci-0" },
1661#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1662#
1663##
1664{ 'event': 'DEVICE_DELETED',
1665  'data': { '*device': 'str', 'path': 'str' } }
1666
1667##
1668# @DumpGuestMemoryFormat:
1669#
1670# An enumeration of guest-memory-dump's format.
1671#
1672# @elf: elf format
1673#
1674# @kdump-zlib: kdump-compressed format with zlib-compressed
1675#
1676# @kdump-lzo: kdump-compressed format with lzo-compressed
1677#
1678# @kdump-snappy: kdump-compressed format with snappy-compressed
1679#
1680# @win-dmp: Windows full crashdump format,
1681#           can be used instead of ELF converting (since 2.13)
1682#
1683# Since: 2.0
1684##
1685{ 'enum': 'DumpGuestMemoryFormat',
1686  'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
1687
1688##
1689# @dump-guest-memory:
1690#
1691# Dump guest's memory to vmcore. It is a synchronous operation that can take
1692# very long depending on the amount of guest memory.
1693#
1694# @paging: if true, do paging to get guest's memory mapping. This allows
1695#          using gdb to process the core file.
1696#
1697#          IMPORTANT: this option can make QEMU allocate several gigabytes
1698#                     of RAM. This can happen for a large guest, or a
1699#                     malicious guest pretending to be large.
1700#
1701#          Also, paging=true has the following limitations:
1702#
1703#             1. The guest may be in a catastrophic state or can have corrupted
1704#                memory, which cannot be trusted
1705#             2. The guest can be in real-mode even if paging is enabled. For
1706#                example, the guest uses ACPI to sleep, and ACPI sleep state
1707#                goes in real-mode
1708#             3. Currently only supported on i386 and x86_64.
1709#
1710# @protocol: the filename or file descriptor of the vmcore. The supported
1711#            protocols are:
1712#
1713#            1. file: the protocol starts with "file:", and the following
1714#               string is the file's path.
1715#            2. fd: the protocol starts with "fd:", and the following string
1716#               is the fd's name.
1717#
1718# @detach: if true, QMP will return immediately rather than
1719#          waiting for the dump to finish. The user can track progress
1720#          using "query-dump". (since 2.6).
1721#
1722# @begin: if specified, the starting physical address.
1723#
1724# @length: if specified, the memory size, in bytes. If you don't
1725#          want to dump all guest's memory, please specify the start @begin
1726#          and @length
1727#
1728# @format: if specified, the format of guest memory dump. But non-elf
1729#          format is conflict with paging and filter, ie. @paging, @begin and
1730#          @length is not allowed to be specified with non-elf @format at the
1731#          same time (since 2.0)
1732#
1733# Note: All boolean arguments default to false
1734#
1735# Returns: nothing on success
1736#
1737# Since: 1.2
1738#
1739# Example:
1740#
1741# -> { "execute": "dump-guest-memory",
1742#      "arguments": { "protocol": "fd:dump" } }
1743# <- { "return": {} }
1744#
1745##
1746{ 'command': 'dump-guest-memory',
1747  'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1748            '*begin': 'int', '*length': 'int',
1749            '*format': 'DumpGuestMemoryFormat'} }
1750
1751##
1752# @DumpStatus:
1753#
1754# Describe the status of a long-running background guest memory dump.
1755#
1756# @none: no dump-guest-memory has started yet.
1757#
1758# @active: there is one dump running in background.
1759#
1760# @completed: the last dump has finished successfully.
1761#
1762# @failed: the last dump has failed.
1763#
1764# Since: 2.6
1765##
1766{ 'enum': 'DumpStatus',
1767  'data': [ 'none', 'active', 'completed', 'failed' ] }
1768
1769##
1770# @DumpQueryResult:
1771#
1772# The result format for 'query-dump'.
1773#
1774# @status: enum of @DumpStatus, which shows current dump status
1775#
1776# @completed: bytes written in latest dump (uncompressed)
1777#
1778# @total: total bytes to be written in latest dump (uncompressed)
1779#
1780# Since: 2.6
1781##
1782{ 'struct': 'DumpQueryResult',
1783  'data': { 'status': 'DumpStatus',
1784            'completed': 'int',
1785            'total': 'int' } }
1786
1787##
1788# @query-dump:
1789#
1790# Query latest dump status.
1791#
1792# Returns: A @DumpStatus object showing the dump status.
1793#
1794# Since: 2.6
1795#
1796# Example:
1797#
1798# -> { "execute": "query-dump" }
1799# <- { "return": { "status": "active", "completed": 1024000,
1800#                  "total": 2048000 } }
1801#
1802##
1803{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1804
1805##
1806# @DUMP_COMPLETED:
1807#
1808# Emitted when background dump has completed
1809#
1810# @result: final dump status
1811#
1812# @error: human-readable error string that provides
1813#         hint on why dump failed. Only presents on failure. The
1814#         user should not try to interpret the error string.
1815#
1816# Since: 2.6
1817#
1818# Example:
1819#
1820# { "event": "DUMP_COMPLETED",
1821#   "data": {"result": {"total": 1090650112, "status": "completed",
1822#                       "completed": 1090650112} } }
1823#
1824##
1825{ 'event': 'DUMP_COMPLETED' ,
1826  'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1827
1828##
1829# @DumpGuestMemoryCapability:
1830#
1831# A list of the available formats for dump-guest-memory
1832#
1833# Since: 2.0
1834##
1835{ 'struct': 'DumpGuestMemoryCapability',
1836  'data': {
1837      'formats': ['DumpGuestMemoryFormat'] } }
1838
1839##
1840# @query-dump-guest-memory-capability:
1841#
1842# Returns the available formats for dump-guest-memory
1843#
1844# Returns:  A @DumpGuestMemoryCapability object listing available formats for
1845#           dump-guest-memory
1846#
1847# Since: 2.0
1848#
1849# Example:
1850#
1851# -> { "execute": "query-dump-guest-memory-capability" }
1852# <- { "return": { "formats":
1853#                  ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1854#
1855##
1856{ 'command': 'query-dump-guest-memory-capability',
1857  'returns': 'DumpGuestMemoryCapability' }
1858
1859##
1860# @dump-skeys:
1861#
1862# Dump guest's storage keys
1863#
1864# @filename: the path to the file to dump to
1865#
1866# This command is only supported on s390 architecture.
1867#
1868# Since: 2.5
1869#
1870# Example:
1871#
1872# -> { "execute": "dump-skeys",
1873#      "arguments": { "filename": "/tmp/skeys" } }
1874# <- { "return": {} }
1875#
1876##
1877{ 'command': 'dump-skeys',
1878  'data': { 'filename': 'str' } }
1879
1880##
1881# @object-add:
1882#
1883# Create a QOM object.
1884#
1885# @qom-type: the class name for the object to be created
1886#
1887# @id: the name of the new object
1888#
1889# @props: a dictionary of properties to be passed to the backend
1890#
1891# Returns: Nothing on success
1892#          Error if @qom-type is not a valid class name
1893#
1894# Since: 2.0
1895#
1896# Example:
1897#
1898# -> { "execute": "object-add",
1899#      "arguments": { "qom-type": "rng-random", "id": "rng1",
1900#                     "props": { "filename": "/dev/hwrng" } } }
1901# <- { "return": {} }
1902#
1903##
1904{ 'command': 'object-add',
1905  'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1906
1907##
1908# @object-del:
1909#
1910# Remove a QOM object.
1911#
1912# @id: the name of the QOM object to remove
1913#
1914# Returns: Nothing on success
1915#          Error if @id is not a valid id for a QOM object
1916#
1917# Since: 2.0
1918#
1919# Example:
1920#
1921# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1922# <- { "return": {} }
1923#
1924##
1925{ 'command': 'object-del', 'data': {'id': 'str'} }
1926
1927##
1928# @getfd:
1929#
1930# Receive a file descriptor via SCM rights and assign it a name
1931#
1932# @fdname: file descriptor name
1933#
1934# Returns: Nothing on success
1935#
1936# Since: 0.14.0
1937#
1938# Notes: If @fdname already exists, the file descriptor assigned to
1939#        it will be closed and replaced by the received file
1940#        descriptor.
1941#
1942#        The 'closefd' command can be used to explicitly close the
1943#        file descriptor when it is no longer needed.
1944#
1945# Example:
1946#
1947# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1948# <- { "return": {} }
1949#
1950##
1951{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1952
1953##
1954# @closefd:
1955#
1956# Close a file descriptor previously passed via SCM rights
1957#
1958# @fdname: file descriptor name
1959#
1960# Returns: Nothing on success
1961#
1962# Since: 0.14.0
1963#
1964# Example:
1965#
1966# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1967# <- { "return": {} }
1968#
1969##
1970{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1971
1972##
1973# @MachineInfo:
1974#
1975# Information describing a machine.
1976#
1977# @name: the name of the machine
1978#
1979# @alias: an alias for the machine name
1980#
1981# @is-default: whether the machine is default
1982#
1983# @cpu-max: maximum number of CPUs supported by the machine type
1984#           (since 1.5.0)
1985#
1986# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1987#
1988# Since: 1.2.0
1989##
1990{ 'struct': 'MachineInfo',
1991  'data': { 'name': 'str', '*alias': 'str',
1992            '*is-default': 'bool', 'cpu-max': 'int',
1993            'hotpluggable-cpus': 'bool'} }
1994
1995##
1996# @query-machines:
1997#
1998# Return a list of supported machines
1999#
2000# Returns: a list of MachineInfo
2001#
2002# Since: 1.2.0
2003##
2004{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2005
2006##
2007# @CpuDefinitionInfo:
2008#
2009# Virtual CPU definition.
2010#
2011# @name: the name of the CPU definition
2012#
2013# @migration-safe: whether a CPU definition can be safely used for
2014#                  migration in combination with a QEMU compatibility machine
2015#                  when migrating between different QMU versions and between
2016#                  hosts with different sets of (hardware or software)
2017#                  capabilities. If not provided, information is not available
2018#                  and callers should not assume the CPU definition to be
2019#                  migration-safe. (since 2.8)
2020#
2021# @static: whether a CPU definition is static and will not change depending on
2022#          QEMU version, machine type, machine options and accelerator options.
2023#          A static model is always migration-safe. (since 2.8)
2024#
2025# @unavailable-features: List of properties that prevent
2026#                        the CPU model from running in the current
2027#                        host. (since 2.8)
2028# @typename: Type name that can be used as argument to @device-list-properties,
2029#            to introspect properties configurable using -cpu or -global.
2030#            (since 2.9)
2031#
2032# @unavailable-features is a list of QOM property names that
2033# represent CPU model attributes that prevent the CPU from running.
2034# If the QOM property is read-only, that means there's no known
2035# way to make the CPU model run in the current host. Implementations
2036# that choose not to provide specific information return the
2037# property name "type".
2038# If the property is read-write, it means that it MAY be possible
2039# to run the CPU model in the current host if that property is
2040# changed. Management software can use it as hints to suggest or
2041# choose an alternative for the user, or just to generate meaningful
2042# error messages explaining why the CPU model can't be used.
2043# If @unavailable-features is an empty list, the CPU model is
2044# runnable using the current host and machine-type.
2045# If @unavailable-features is not present, runnability
2046# information for the CPU is not available.
2047#
2048# Since: 1.2.0
2049##
2050{ 'struct': 'CpuDefinitionInfo',
2051  'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2052            '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2053
2054##
2055# @MemoryInfo:
2056#
2057# Actual memory information in bytes.
2058#
2059# @base-memory: size of "base" memory specified with command line
2060#               option -m.
2061#
2062# @plugged-memory: size of memory that can be hot-unplugged. This field
2063#                  is omitted if target doesn't support memory hotplug
2064#                  (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2065#
2066# Since: 2.11.0
2067##
2068{ 'struct': 'MemoryInfo',
2069  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2070
2071##
2072# @query-memory-size-summary:
2073#
2074# Return the amount of initially allocated and present hotpluggable (if
2075# enabled) memory in bytes.
2076#
2077# Example:
2078#
2079# -> { "execute": "query-memory-size-summary" }
2080# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2081#
2082# Since: 2.11.0
2083##
2084{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2085
2086##
2087# @query-cpu-definitions:
2088#
2089# Return a list of supported virtual CPU definitions
2090#
2091# Returns: a list of CpuDefInfo
2092#
2093# Since: 1.2.0
2094##
2095{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2096
2097##
2098# @CpuModelInfo:
2099#
2100# Virtual CPU model.
2101#
2102# A CPU model consists of the name of a CPU definition, to which
2103# delta changes are applied (e.g. features added/removed). Most magic values
2104# that an architecture might require should be hidden behind the name.
2105# However, if required, architectures can expose relevant properties.
2106#
2107# @name: the name of the CPU definition the model is based on
2108# @props: a dictionary of QOM properties to be applied
2109#
2110# Since: 2.8.0
2111##
2112{ 'struct': 'CpuModelInfo',
2113  'data': { 'name': 'str',
2114            '*props': 'any' } }
2115
2116##
2117# @CpuModelExpansionType:
2118#
2119# An enumeration of CPU model expansion types.
2120#
2121# @static: Expand to a static CPU model, a combination of a static base
2122#          model name and property delta changes. As the static base model will
2123#          never change, the expanded CPU model will be the same, independent of
2124#          independent of QEMU version, machine type, machine options, and
2125#          accelerator options. Therefore, the resulting model can be used by
2126#          tooling without having to specify a compatibility machine - e.g. when
2127#          displaying the "host" model. static CPU models are migration-safe.
2128#
2129# @full: Expand all properties. The produced model is not guaranteed to be
2130#        migration-safe, but allows tooling to get an insight and work with
2131#        model details.
2132#
2133# Note: When a non-migration-safe CPU model is expanded in static mode, some
2134# features enabled by the CPU model may be omitted, because they can't be
2135# implemented by a static CPU model definition (e.g. cache info passthrough and
2136# PMU passthrough in x86). If you need an accurate representation of the
2137# features enabled by a non-migration-safe CPU model, use @full. If you need a
2138# static representation that will keep ABI compatibility even when changing QEMU
2139# version or machine-type, use @static (but keep in mind that some features may
2140# be omitted).
2141#
2142# Since: 2.8.0
2143##
2144{ 'enum': 'CpuModelExpansionType',
2145  'data': [ 'static', 'full' ] }
2146
2147
2148##
2149# @CpuModelExpansionInfo:
2150#
2151# The result of a cpu model expansion.
2152#
2153# @model: the expanded CpuModelInfo.
2154#
2155# Since: 2.8.0
2156##
2157{ 'struct': 'CpuModelExpansionInfo',
2158  'data': { 'model': 'CpuModelInfo' } }
2159
2160
2161##
2162# @query-cpu-model-expansion:
2163#
2164# Expands a given CPU model (or a combination of CPU model + additional options)
2165# to different granularities, allowing tooling to get an understanding what a
2166# specific CPU model looks like in QEMU under a certain configuration.
2167#
2168# This interface can be used to query the "host" CPU model.
2169#
2170# The data returned by this command may be affected by:
2171#
2172# * QEMU version: CPU models may look different depending on the QEMU version.
2173#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2174# * machine-type: CPU model  may look different depending on the machine-type.
2175#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2176# * machine options (including accelerator): in some architectures, CPU models
2177#   may look different depending on machine and accelerator options. (Except for
2178#   CPU models reported as "static" in query-cpu-definitions.)
2179# * "-cpu" arguments and global properties: arguments to the -cpu option and
2180#   global properties may affect expansion of CPU models. Using
2181#   query-cpu-model-expansion while using these is not advised.
2182#
2183# Some architectures may not support all expansion types. s390x supports
2184# "full" and "static".
2185#
2186# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2187#          not supported, if the model cannot be expanded, if the model contains
2188#          an unknown CPU definition name, unknown properties or properties
2189#          with a wrong type. Also returns an error if an expansion type is
2190#          not supported.
2191#
2192# Since: 2.8.0
2193##
2194{ 'command': 'query-cpu-model-expansion',
2195  'data': { 'type': 'CpuModelExpansionType',
2196            'model': 'CpuModelInfo' },
2197  'returns': 'CpuModelExpansionInfo' }
2198
2199##
2200# @CpuModelCompareResult:
2201#
2202# An enumeration of CPU model comparison results. The result is usually
2203# calculated using e.g. CPU features or CPU generations.
2204#
2205# @incompatible: If model A is incompatible to model B, model A is not
2206#                guaranteed to run where model B runs and the other way around.
2207#
2208# @identical: If model A is identical to model B, model A is guaranteed to run
2209#             where model B runs and the other way around.
2210#
2211# @superset: If model A is a superset of model B, model B is guaranteed to run
2212#            where model A runs. There are no guarantees about the other way.
2213#
2214# @subset: If model A is a subset of model B, model A is guaranteed to run
2215#          where model B runs. There are no guarantees about the other way.
2216#
2217# Since: 2.8.0
2218##
2219{ 'enum': 'CpuModelCompareResult',
2220  'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2221
2222##
2223# @CpuModelCompareInfo:
2224#
2225# The result of a CPU model comparison.
2226#
2227# @result: The result of the compare operation.
2228# @responsible-properties: List of properties that led to the comparison result
2229#                          not being identical.
2230#
2231# @responsible-properties is a list of QOM property names that led to
2232# both CPUs not being detected as identical. For identical models, this
2233# list is empty.
2234# If a QOM property is read-only, that means there's no known way to make the
2235# CPU models identical. If the special property name "type" is included, the
2236# models are by definition not identical and cannot be made identical.
2237#
2238# Since: 2.8.0
2239##
2240{ 'struct': 'CpuModelCompareInfo',
2241  'data': {'result': 'CpuModelCompareResult',
2242           'responsible-properties': ['str']
2243          }
2244}
2245
2246##
2247# @query-cpu-model-comparison:
2248#
2249# Compares two CPU models, returning how they compare in a specific
2250# configuration. The results indicates how both models compare regarding
2251# runnability. This result can be used by tooling to make decisions if a
2252# certain CPU model will run in a certain configuration or if a compatible
2253# CPU model has to be created by baselining.
2254#
2255# Usually, a CPU model is compared against the maximum possible CPU model
2256# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2257# model is identical or a subset, it will run in that configuration.
2258#
2259# The result returned by this command may be affected by:
2260#
2261# * QEMU version: CPU models may look different depending on the QEMU version.
2262#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2263# * machine-type: CPU model may look different depending on the machine-type.
2264#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2265# * machine options (including accelerator): in some architectures, CPU models
2266#   may look different depending on machine and accelerator options. (Except for
2267#   CPU models reported as "static" in query-cpu-definitions.)
2268# * "-cpu" arguments and global properties: arguments to the -cpu option and
2269#   global properties may affect expansion of CPU models. Using
2270#   query-cpu-model-expansion while using these is not advised.
2271#
2272# Some architectures may not support comparing CPU models. s390x supports
2273# comparing CPU models.
2274#
2275# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2276#          not supported, if a model cannot be used, if a model contains
2277#          an unknown cpu definition name, unknown properties or properties
2278#          with wrong types.
2279#
2280# Since: 2.8.0
2281##
2282{ 'command': 'query-cpu-model-comparison',
2283  'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2284  'returns': 'CpuModelCompareInfo' }
2285
2286##
2287# @CpuModelBaselineInfo:
2288#
2289# The result of a CPU model baseline.
2290#
2291# @model: the baselined CpuModelInfo.
2292#
2293# Since: 2.8.0
2294##
2295{ 'struct': 'CpuModelBaselineInfo',
2296  'data': { 'model': 'CpuModelInfo' } }
2297
2298##
2299# @query-cpu-model-baseline:
2300#
2301# Baseline two CPU models, creating a compatible third model. The created
2302# model will always be a static, migration-safe CPU model (see "static"
2303# CPU model expansion for details).
2304#
2305# This interface can be used by tooling to create a compatible CPU model out
2306# two CPU models. The created CPU model will be identical to or a subset of
2307# both CPU models when comparing them. Therefore, the created CPU model is
2308# guaranteed to run where the given CPU models run.
2309#
2310# The result returned by this command may be affected by:
2311#
2312# * QEMU version: CPU models may look different depending on the QEMU version.
2313#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2314# * machine-type: CPU model may look different depending on the machine-type.
2315#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2316# * machine options (including accelerator): in some architectures, CPU models
2317#   may look different depending on machine and accelerator options. (Except for
2318#   CPU models reported as "static" in query-cpu-definitions.)
2319# * "-cpu" arguments and global properties: arguments to the -cpu option and
2320#   global properties may affect expansion of CPU models. Using
2321#   query-cpu-model-expansion while using these is not advised.
2322#
2323# Some architectures may not support baselining CPU models. s390x supports
2324# baselining CPU models.
2325#
2326# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2327#          not supported, if a model cannot be used, if a model contains
2328#          an unknown cpu definition name, unknown properties or properties
2329#          with wrong types.
2330#
2331# Since: 2.8.0
2332##
2333{ 'command': 'query-cpu-model-baseline',
2334  'data': { 'modela': 'CpuModelInfo',
2335            'modelb': 'CpuModelInfo' },
2336  'returns': 'CpuModelBaselineInfo' }
2337
2338##
2339# @AddfdInfo:
2340#
2341# Information about a file descriptor that was added to an fd set.
2342#
2343# @fdset-id: The ID of the fd set that @fd was added to.
2344#
2345# @fd: The file descriptor that was received via SCM rights and
2346#      added to the fd set.
2347#
2348# Since: 1.2.0
2349##
2350{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2351
2352##
2353# @add-fd:
2354#
2355# Add a file descriptor, that was passed via SCM rights, to an fd set.
2356#
2357# @fdset-id: The ID of the fd set to add the file descriptor to.
2358#
2359# @opaque: A free-form string that can be used to describe the fd.
2360#
2361# Returns: @AddfdInfo on success
2362#
2363#          If file descriptor was not received, FdNotSupplied
2364#
2365#          If @fdset-id is a negative value, InvalidParameterValue
2366#
2367# Notes: The list of fd sets is shared by all monitor connections.
2368#
2369#        If @fdset-id is not specified, a new fd set will be created.
2370#
2371# Since: 1.2.0
2372#
2373# Example:
2374#
2375# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2376# <- { "return": { "fdset-id": 1, "fd": 3 } }
2377#
2378##
2379{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2380  'returns': 'AddfdInfo' }
2381
2382##
2383# @remove-fd:
2384#
2385# Remove a file descriptor from an fd set.
2386#
2387# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2388#
2389# @fd: The file descriptor that is to be removed.
2390#
2391# Returns: Nothing on success
2392#          If @fdset-id or @fd is not found, FdNotFound
2393#
2394# Since: 1.2.0
2395#
2396# Notes: The list of fd sets is shared by all monitor connections.
2397#
2398#        If @fd is not specified, all file descriptors in @fdset-id
2399#        will be removed.
2400#
2401# Example:
2402#
2403# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2404# <- { "return": {} }
2405#
2406##
2407{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2408
2409##
2410# @FdsetFdInfo:
2411#
2412# Information about a file descriptor that belongs to an fd set.
2413#
2414# @fd: The file descriptor value.
2415#
2416# @opaque: A free-form string that can be used to describe the fd.
2417#
2418# Since: 1.2.0
2419##
2420{ 'struct': 'FdsetFdInfo',
2421  'data': {'fd': 'int', '*opaque': 'str'} }
2422
2423##
2424# @FdsetInfo:
2425#
2426# Information about an fd set.
2427#
2428# @fdset-id: The ID of the fd set.
2429#
2430# @fds: A list of file descriptors that belong to this fd set.
2431#
2432# Since: 1.2.0
2433##
2434{ 'struct': 'FdsetInfo',
2435  'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2436
2437##
2438# @query-fdsets:
2439#
2440# Return information describing all fd sets.
2441#
2442# Returns: A list of @FdsetInfo
2443#
2444# Since: 1.2.0
2445#
2446# Note: The list of fd sets is shared by all monitor connections.
2447#
2448# Example:
2449#
2450# -> { "execute": "query-fdsets" }
2451# <- { "return": [
2452#        {
2453#          "fds": [
2454#            {
2455#              "fd": 30,
2456#              "opaque": "rdonly:/path/to/file"
2457#            },
2458#            {
2459#              "fd": 24,
2460#              "opaque": "rdwr:/path/to/file"
2461#            }
2462#          ],
2463#          "fdset-id": 1
2464#        },
2465#        {
2466#          "fds": [
2467#            {
2468#              "fd": 28
2469#            },
2470#            {
2471#              "fd": 29
2472#            }
2473#          ],
2474#          "fdset-id": 0
2475#        }
2476#      ]
2477#    }
2478#
2479##
2480{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2481
2482##
2483# @TargetInfo:
2484#
2485# Information describing the QEMU target.
2486#
2487# @arch: the target architecture
2488#
2489# Since: 1.2.0
2490##
2491{ 'struct': 'TargetInfo',
2492  'data': { 'arch': 'SysEmuTarget' } }
2493
2494##
2495# @query-target:
2496#
2497# Return information about the target for this QEMU
2498#
2499# Returns: TargetInfo
2500#
2501# Since: 1.2.0
2502##
2503{ 'command': 'query-target', 'returns': 'TargetInfo' }
2504
2505##
2506# @AcpiTableOptions:
2507#
2508# Specify an ACPI table on the command line to load.
2509#
2510# At most one of @file and @data can be specified. The list of files specified
2511# by any one of them is loaded and concatenated in order. If both are omitted,
2512# @data is implied.
2513#
2514# Other fields / optargs can be used to override fields of the generic ACPI
2515# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2516# Description Table Header. If a header field is not overridden, then the
2517# corresponding value from the concatenated blob is used (in case of @file), or
2518# it is filled in with a hard-coded value (in case of @data).
2519#
2520# String fields are copied into the matching ACPI member from lowest address
2521# upwards, and silently truncated / NUL-padded to length.
2522#
2523# @sig: table signature / identifier (4 bytes)
2524#
2525# @rev: table revision number (dependent on signature, 1 byte)
2526#
2527# @oem_id: OEM identifier (6 bytes)
2528#
2529# @oem_table_id: OEM table identifier (8 bytes)
2530#
2531# @oem_rev: OEM-supplied revision number (4 bytes)
2532#
2533# @asl_compiler_id: identifier of the utility that created the table
2534#                   (4 bytes)
2535#
2536# @asl_compiler_rev: revision number of the utility that created the
2537#                    table (4 bytes)
2538#
2539# @file: colon (:) separated list of pathnames to load and
2540#        concatenate as table data. The resultant binary blob is expected to
2541#        have an ACPI table header. At least one file is required. This field
2542#        excludes @data.
2543#
2544# @data: colon (:) separated list of pathnames to load and
2545#        concatenate as table data. The resultant binary blob must not have an
2546#        ACPI table header. At least one file is required. This field excludes
2547#        @file.
2548#
2549# Since: 1.5
2550##
2551{ 'struct': 'AcpiTableOptions',
2552  'data': {
2553    '*sig':               'str',
2554    '*rev':               'uint8',
2555    '*oem_id':            'str',
2556    '*oem_table_id':      'str',
2557    '*oem_rev':           'uint32',
2558    '*asl_compiler_id':   'str',
2559    '*asl_compiler_rev':  'uint32',
2560    '*file':              'str',
2561    '*data':              'str' }}
2562
2563##
2564# @CommandLineParameterType:
2565#
2566# Possible types for an option parameter.
2567#
2568# @string: accepts a character string
2569#
2570# @boolean: accepts "on" or "off"
2571#
2572# @number: accepts a number
2573#
2574# @size: accepts a number followed by an optional suffix (K)ilo,
2575#        (M)ega, (G)iga, (T)era
2576#
2577# Since: 1.5
2578##
2579{ 'enum': 'CommandLineParameterType',
2580  'data': ['string', 'boolean', 'number', 'size'] }
2581
2582##
2583# @CommandLineParameterInfo:
2584#
2585# Details about a single parameter of a command line option.
2586#
2587# @name: parameter name
2588#
2589# @type: parameter @CommandLineParameterType
2590#
2591# @help: human readable text string, not suitable for parsing.
2592#
2593# @default: default value string (since 2.1)
2594#
2595# Since: 1.5
2596##
2597{ 'struct': 'CommandLineParameterInfo',
2598  'data': { 'name': 'str',
2599            'type': 'CommandLineParameterType',
2600            '*help': 'str',
2601            '*default': 'str' } }
2602
2603##
2604# @CommandLineOptionInfo:
2605#
2606# Details about a command line option, including its list of parameter details
2607#
2608# @option: option name
2609#
2610# @parameters: an array of @CommandLineParameterInfo
2611#
2612# Since: 1.5
2613##
2614{ 'struct': 'CommandLineOptionInfo',
2615  'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2616
2617##
2618# @query-command-line-options:
2619#
2620# Query command line option schema.
2621#
2622# @option: option name
2623#
2624# Returns: list of @CommandLineOptionInfo for all options (or for the given
2625#          @option).  Returns an error if the given @option doesn't exist.
2626#
2627# Since: 1.5
2628#
2629# Example:
2630#
2631# -> { "execute": "query-command-line-options",
2632#      "arguments": { "option": "option-rom" } }
2633# <- { "return": [
2634#         {
2635#             "parameters": [
2636#                 {
2637#                     "name": "romfile",
2638#                     "type": "string"
2639#                 },
2640#                 {
2641#                     "name": "bootindex",
2642#                     "type": "number"
2643#                 }
2644#             ],
2645#             "option": "option-rom"
2646#         }
2647#      ]
2648#    }
2649#
2650##
2651{'command': 'query-command-line-options', 'data': { '*option': 'str' },
2652 'returns': ['CommandLineOptionInfo'],
2653 'allow-preconfig': true }
2654
2655##
2656# @X86CPURegister32:
2657#
2658# A X86 32-bit register
2659#
2660# Since: 1.5
2661##
2662{ 'enum': 'X86CPURegister32',
2663  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2664
2665##
2666# @X86CPUFeatureWordInfo:
2667#
2668# Information about a X86 CPU feature word
2669#
2670# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2671#
2672# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2673#                   feature word
2674#
2675# @cpuid-register: Output register containing the feature bits
2676#
2677# @features: value of output register, containing the feature bits
2678#
2679# Since: 1.5
2680##
2681{ 'struct': 'X86CPUFeatureWordInfo',
2682  'data': { 'cpuid-input-eax': 'int',
2683            '*cpuid-input-ecx': 'int',
2684            'cpuid-register': 'X86CPURegister32',
2685            'features': 'int' } }
2686
2687##
2688# @DummyForceArrays:
2689#
2690# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2691#
2692# Since: 2.5
2693##
2694{ 'struct': 'DummyForceArrays',
2695  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2696
2697
2698##
2699# @NumaOptionsType:
2700#
2701# @node: NUMA nodes configuration
2702#
2703# @dist: NUMA distance configuration (since 2.10)
2704#
2705# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2706#
2707# Since: 2.1
2708##
2709{ 'enum': 'NumaOptionsType',
2710  'data': [ 'node', 'dist', 'cpu' ] }
2711
2712##
2713# @NumaOptions:
2714#
2715# A discriminated record of NUMA options. (for OptsVisitor)
2716#
2717# Since: 2.1
2718##
2719{ 'union': 'NumaOptions',
2720  'base': { 'type': 'NumaOptionsType' },
2721  'discriminator': 'type',
2722  'data': {
2723    'node': 'NumaNodeOptions',
2724    'dist': 'NumaDistOptions',
2725    'cpu': 'NumaCpuOptions' }}
2726
2727##
2728# @NumaNodeOptions:
2729#
2730# Create a guest NUMA node. (for OptsVisitor)
2731#
2732# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2733#
2734# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2735#         if omitted)
2736#
2737# @mem: memory size of this node; mutually exclusive with @memdev.
2738#       Equally divide total memory among nodes if both @mem and @memdev are
2739#       omitted.
2740#
2741# @memdev: memory backend object.  If specified for one node,
2742#          it must be specified for all nodes.
2743#
2744# Since: 2.1
2745##
2746{ 'struct': 'NumaNodeOptions',
2747  'data': {
2748   '*nodeid': 'uint16',
2749   '*cpus':   ['uint16'],
2750   '*mem':    'size',
2751   '*memdev': 'str' }}
2752
2753##
2754# @NumaDistOptions:
2755#
2756# Set the distance between 2 NUMA nodes.
2757#
2758# @src: source NUMA node.
2759#
2760# @dst: destination NUMA node.
2761#
2762# @val: NUMA distance from source node to destination node.
2763#       When a node is unreachable from another node, set the distance
2764#       between them to 255.
2765#
2766# Since: 2.10
2767##
2768{ 'struct': 'NumaDistOptions',
2769  'data': {
2770   'src': 'uint16',
2771   'dst': 'uint16',
2772   'val': 'uint8' }}
2773
2774##
2775# @NumaCpuOptions:
2776#
2777# Option "-numa cpu" overrides default cpu to node mapping.
2778# It accepts the same set of cpu properties as returned by
2779# query-hotpluggable-cpus[].props, where node-id could be used to
2780# override default node mapping.
2781#
2782# Since: 2.10
2783##
2784{ 'struct': 'NumaCpuOptions',
2785   'base': 'CpuInstanceProperties',
2786   'data' : {} }
2787
2788##
2789# @HostMemPolicy:
2790#
2791# Host memory policy types
2792#
2793# @default: restore default policy, remove any nondefault policy
2794#
2795# @preferred: set the preferred host nodes for allocation
2796#
2797# @bind: a strict policy that restricts memory allocation to the
2798#        host nodes specified
2799#
2800# @interleave: memory allocations are interleaved across the set
2801#              of host nodes specified
2802#
2803# Since: 2.1
2804##
2805{ 'enum': 'HostMemPolicy',
2806  'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2807
2808##
2809# @Memdev:
2810#
2811# Information about memory backend
2812#
2813# @id: backend's ID if backend has 'id' property (since 2.9)
2814#
2815# @size: memory backend size
2816#
2817# @merge: enables or disables memory merge support
2818#
2819# @dump: includes memory backend's memory in a core dump or not
2820#
2821# @prealloc: enables or disables memory preallocation
2822#
2823# @host-nodes: host nodes for its memory policy
2824#
2825# @policy: memory policy of memory backend
2826#
2827# Since: 2.1
2828##
2829{ 'struct': 'Memdev',
2830  'data': {
2831    '*id':        'str',
2832    'size':       'size',
2833    'merge':      'bool',
2834    'dump':       'bool',
2835    'prealloc':   'bool',
2836    'host-nodes': ['uint16'],
2837    'policy':     'HostMemPolicy' }}
2838
2839##
2840# @query-memdev:
2841#
2842# Returns information for all memory backends.
2843#
2844# Returns: a list of @Memdev.
2845#
2846# Since: 2.1
2847#
2848# Example:
2849#
2850# -> { "execute": "query-memdev" }
2851# <- { "return": [
2852#        {
2853#          "id": "mem1",
2854#          "size": 536870912,
2855#          "merge": false,
2856#          "dump": true,
2857#          "prealloc": false,
2858#          "host-nodes": [0, 1],
2859#          "policy": "bind"
2860#        },
2861#        {
2862#          "size": 536870912,
2863#          "merge": false,
2864#          "dump": true,
2865#          "prealloc": true,
2866#          "host-nodes": [2, 3],
2867#          "policy": "preferred"
2868#        }
2869#      ]
2870#    }
2871#
2872##
2873{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
2874
2875##
2876# @PCDIMMDeviceInfo:
2877#
2878# PCDIMMDevice state information
2879#
2880# @id: device's ID
2881#
2882# @addr: physical address, where device is mapped
2883#
2884# @size: size of memory that the device provides
2885#
2886# @slot: slot number at which device is plugged in
2887#
2888# @node: NUMA node number where device is plugged in
2889#
2890# @memdev: memory backend linked with device
2891#
2892# @hotplugged: true if device was hotplugged
2893#
2894# @hotpluggable: true if device if could be added/removed while machine is running
2895#
2896# Since: 2.1
2897##
2898{ 'struct': 'PCDIMMDeviceInfo',
2899  'data': { '*id': 'str',
2900            'addr': 'int',
2901            'size': 'int',
2902            'slot': 'int',
2903            'node': 'int',
2904            'memdev': 'str',
2905            'hotplugged': 'bool',
2906            'hotpluggable': 'bool'
2907          }
2908}
2909
2910##
2911# @MemoryDeviceInfo:
2912#
2913# Union containing information about a memory device
2914#
2915# Since: 2.1
2916##
2917{ 'union': 'MemoryDeviceInfo',
2918  'data': { 'dimm': 'PCDIMMDeviceInfo',
2919            'nvdimm': 'PCDIMMDeviceInfo'
2920          }
2921}
2922
2923##
2924# @query-memory-devices:
2925#
2926# Lists available memory devices and their state
2927#
2928# Since: 2.1
2929#
2930# Example:
2931#
2932# -> { "execute": "query-memory-devices" }
2933# <- { "return": [ { "data":
2934#                       { "addr": 5368709120,
2935#                         "hotpluggable": true,
2936#                         "hotplugged": true,
2937#                         "id": "d1",
2938#                         "memdev": "/objects/memX",
2939#                         "node": 0,
2940#                         "size": 1073741824,
2941#                         "slot": 0},
2942#                    "type": "dimm"
2943#                  } ] }
2944#
2945##
2946{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2947
2948##
2949# @MEM_UNPLUG_ERROR:
2950#
2951# Emitted when memory hot unplug error occurs.
2952#
2953# @device: device name
2954#
2955# @msg: Informative message
2956#
2957# Since: 2.4
2958#
2959# Example:
2960#
2961# <- { "event": "MEM_UNPLUG_ERROR"
2962#      "data": { "device": "dimm1",
2963#                "msg": "acpi: device unplug for unsupported device"
2964#      },
2965#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2966#
2967##
2968{ 'event': 'MEM_UNPLUG_ERROR',
2969  'data': { 'device': 'str', 'msg': 'str' } }
2970
2971##
2972# @ACPISlotType:
2973#
2974# @DIMM: memory slot
2975# @CPU: logical CPU slot (since 2.7)
2976##
2977{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2978
2979##
2980# @ACPIOSTInfo:
2981#
2982# OSPM Status Indication for a device
2983# For description of possible values of @source and @status fields
2984# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2985#
2986# @device: device ID associated with slot
2987#
2988# @slot: slot ID, unique per slot of a given @slot-type
2989#
2990# @slot-type: type of the slot
2991#
2992# @source: an integer containing the source event
2993#
2994# @status: an integer containing the status code
2995#
2996# Since: 2.1
2997##
2998{ 'struct': 'ACPIOSTInfo',
2999  'data'  : { '*device': 'str',
3000              'slot': 'str',
3001              'slot-type': 'ACPISlotType',
3002              'source': 'int',
3003              'status': 'int' } }
3004
3005##
3006# @query-acpi-ospm-status:
3007#
3008# Return a list of ACPIOSTInfo for devices that support status
3009# reporting via ACPI _OST method.
3010#
3011# Since: 2.1
3012#
3013# Example:
3014#
3015# -> { "execute": "query-acpi-ospm-status" }
3016# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3017#                  { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3018#                  { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3019#                  { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3020#    ]}
3021#
3022##
3023{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3024
3025##
3026# @ACPI_DEVICE_OST:
3027#
3028# Emitted when guest executes ACPI _OST method.
3029#
3030# @info: OSPM Status Indication
3031#
3032# Since: 2.1
3033#
3034# Example:
3035#
3036# <- { "event": "ACPI_DEVICE_OST",
3037#      "data": { "device": "d1", "slot": "0",
3038#                "slot-type": "DIMM", "source": 1, "status": 0 } }
3039#
3040##
3041{ 'event': 'ACPI_DEVICE_OST',
3042     'data': { 'info': 'ACPIOSTInfo' } }
3043
3044##
3045# @rtc-reset-reinjection:
3046#
3047# This command will reset the RTC interrupt reinjection backlog.
3048# Can be used if another mechanism to synchronize guest time
3049# is in effect, for example QEMU guest agent's guest-set-time
3050# command.
3051#
3052# Since: 2.1
3053#
3054# Example:
3055#
3056# -> { "execute": "rtc-reset-reinjection" }
3057# <- { "return": {} }
3058#
3059##
3060{ 'command': 'rtc-reset-reinjection' }
3061
3062##
3063# @RTC_CHANGE:
3064#
3065# Emitted when the guest changes the RTC time.
3066#
3067# @offset: offset between base RTC clock (as specified by -rtc base), and
3068#          new RTC clock value
3069#
3070# Note: This event is rate-limited.
3071#
3072# Since: 0.13.0
3073#
3074# Example:
3075#
3076# <-   { "event": "RTC_CHANGE",
3077#        "data": { "offset": 78 },
3078#        "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3079#
3080##
3081{ 'event': 'RTC_CHANGE',
3082  'data': { 'offset': 'int' } }
3083
3084##
3085# @ReplayMode:
3086#
3087# Mode of the replay subsystem.
3088#
3089# @none: normal execution mode. Replay or record are not enabled.
3090#
3091# @record: record mode. All non-deterministic data is written into the
3092#          replay log.
3093#
3094# @play: replay mode. Non-deterministic data required for system execution
3095#        is read from the log.
3096#
3097# Since: 2.5
3098##
3099{ 'enum': 'ReplayMode',
3100  'data': [ 'none', 'record', 'play' ] }
3101
3102##
3103# @xen-load-devices-state:
3104#
3105# Load the state of all devices from file. The RAM and the block devices
3106# of the VM are not loaded by this command.
3107#
3108# @filename: the file to load the state of the devices from as binary
3109# data. See xen-save-devices-state.txt for a description of the binary
3110# format.
3111#
3112# Since: 2.7
3113#
3114# Example:
3115#
3116# -> { "execute": "xen-load-devices-state",
3117#      "arguments": { "filename": "/tmp/resume" } }
3118# <- { "return": {} }
3119#
3120##
3121{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3122
3123##
3124# @GICCapability:
3125#
3126# The struct describes capability for a specific GIC (Generic
3127# Interrupt Controller) version. These bits are not only decided by
3128# QEMU/KVM software version, but also decided by the hardware that
3129# the program is running upon.
3130#
3131# @version:  version of GIC to be described. Currently, only 2 and 3
3132#            are supported.
3133#
3134# @emulated: whether current QEMU/hardware supports emulated GIC
3135#            device in user space.
3136#
3137# @kernel:   whether current QEMU/hardware supports hardware
3138#            accelerated GIC device in kernel.
3139#
3140# Since: 2.6
3141##
3142{ 'struct': 'GICCapability',
3143  'data': { 'version': 'int',
3144            'emulated': 'bool',
3145            'kernel': 'bool' } }
3146
3147##
3148# @query-gic-capabilities:
3149#
3150# This command is ARM-only. It will return a list of GICCapability
3151# objects that describe its capability bits.
3152#
3153# Returns: a list of GICCapability objects.
3154#
3155# Since: 2.6
3156#
3157# Example:
3158#
3159# -> { "execute": "query-gic-capabilities" }
3160# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3161#                 { "version": 3, "emulated": false, "kernel": true } ] }
3162#
3163##
3164{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3165
3166##
3167# @CpuInstanceProperties:
3168#
3169# List of properties to be used for hotplugging a CPU instance,
3170# it should be passed by management with device_add command when
3171# a CPU is being hotplugged.
3172#
3173# @node-id: NUMA node ID the CPU belongs to
3174# @socket-id: socket number within node/board the CPU belongs to
3175# @core-id: core number within socket the CPU belongs to
3176# @thread-id: thread number within core the CPU belongs to
3177#
3178# Note: currently there are 4 properties that could be present
3179# but management should be prepared to pass through other
3180# properties with device_add command to allow for future
3181# interface extension. This also requires the filed names to be kept in
3182# sync with the properties passed to -device/device_add.
3183#
3184# Since: 2.7
3185##
3186{ 'struct': 'CpuInstanceProperties',
3187  'data': { '*node-id': 'int',
3188            '*socket-id': 'int',
3189            '*core-id': 'int',
3190            '*thread-id': 'int'
3191  }
3192}
3193
3194##
3195# @HotpluggableCPU:
3196#
3197# @type: CPU object type for usage with device_add command
3198# @props: list of properties to be used for hotplugging CPU
3199# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3200# @qom-path: link to existing CPU object if CPU is present or
3201#            omitted if CPU is not present.
3202#
3203# Since: 2.7
3204##
3205{ 'struct': 'HotpluggableCPU',
3206  'data': { 'type': 'str',
3207            'vcpus-count': 'int',
3208            'props': 'CpuInstanceProperties',
3209            '*qom-path': 'str'
3210          }
3211}
3212
3213##
3214# @query-hotpluggable-cpus:
3215#
3216# Returns: a list of HotpluggableCPU objects.
3217#
3218# Since: 2.7
3219#
3220# Example:
3221#
3222# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3223#
3224# -> { "execute": "query-hotpluggable-cpus" }
3225# <- {"return": [
3226#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3227#        "vcpus-count": 1 },
3228#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3229#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3230#    ]}'
3231#
3232# For pc machine type started with -smp 1,maxcpus=2:
3233#
3234# -> { "execute": "query-hotpluggable-cpus" }
3235# <- {"return": [
3236#      {
3237#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3238#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3239#      },
3240#      {
3241#         "qom-path": "/machine/unattached/device[0]",
3242#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3243#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3244#      }
3245#    ]}
3246#
3247# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3248# (Since: 2.11):
3249#
3250# -> { "execute": "query-hotpluggable-cpus" }
3251# <- {"return": [
3252#      {
3253#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3254#         "props": { "core-id": 1 }
3255#      },
3256#      {
3257#         "qom-path": "/machine/unattached/device[0]",
3258#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3259#         "props": { "core-id": 0 }
3260#      }
3261#    ]}
3262#
3263##
3264{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3265             'allow-preconfig': true }
3266
3267##
3268# @GuidInfo:
3269#
3270# GUID information.
3271#
3272# @guid: the globally unique identifier
3273#
3274# Since: 2.9
3275##
3276{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3277
3278##
3279# @query-vm-generation-id:
3280#
3281# Show Virtual Machine Generation ID
3282#
3283# Since: 2.9
3284##
3285{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3286
3287
3288##
3289# @SevState:
3290#
3291# An enumeration of SEV state information used during @query-sev.
3292#
3293# @uninit: The guest is uninitialized.
3294#
3295# @launch-update: The guest is currently being launched; plaintext data and
3296#                 register state is being imported.
3297#
3298# @launch-secret: The guest is currently being launched; ciphertext data
3299#                 is being imported.
3300#
3301# @running: The guest is fully launched or migrated in.
3302#
3303# @send-update: The guest is currently being migrated out to another machine.
3304#
3305# @receive-update: The guest is currently being migrated from another machine.
3306#
3307# Since: 2.12
3308##
3309{ 'enum': 'SevState',
3310  'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3311           'send-update', 'receive-update' ] }
3312
3313##
3314# @SevInfo:
3315#
3316# Information about Secure Encrypted Virtualization (SEV) support
3317#
3318# @enabled: true if SEV is active
3319#
3320# @api-major: SEV API major version
3321#
3322# @api-minor: SEV API minor version
3323#
3324# @build-id: SEV FW build id
3325#
3326# @policy: SEV policy value
3327#
3328# @state: SEV guest state
3329#
3330# @handle: SEV firmware handle
3331#
3332# Since: 2.12
3333##
3334{ 'struct': 'SevInfo',
3335    'data': { 'enabled': 'bool',
3336              'api-major': 'uint8',
3337              'api-minor' : 'uint8',
3338              'build-id' : 'uint8',
3339              'policy' : 'uint32',
3340              'state' : 'SevState',
3341              'handle' : 'uint32'
3342            }
3343}
3344
3345##
3346# @query-sev:
3347#
3348# Returns information about SEV
3349#
3350# Returns: @SevInfo
3351#
3352# Since: 2.12
3353#
3354# Example:
3355#
3356# -> { "execute": "query-sev" }
3357# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3358#                  "build-id" : 0, "policy" : 0, "state" : "running",
3359#                  "handle" : 1 } }
3360#
3361##
3362{ 'command': 'query-sev', 'returns': 'SevInfo' }
3363
3364##
3365# @SevLaunchMeasureInfo:
3366#
3367# SEV Guest Launch measurement information
3368#
3369# @data: the measurement value encoded in base64
3370#
3371# Since: 2.12
3372#
3373##
3374{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3375
3376##
3377# @query-sev-launch-measure:
3378#
3379# Query the SEV guest launch information.
3380#
3381# Returns: The @SevLaunchMeasureInfo for the guest
3382#
3383# Since: 2.12
3384#
3385# Example:
3386#
3387# -> { "execute": "query-sev-launch-measure" }
3388# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3389#
3390##
3391{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3392
3393##
3394# @SevCapability:
3395#
3396# The struct describes capability for a Secure Encrypted Virtualization
3397# feature.
3398#
3399# @pdh:  Platform Diffie-Hellman key (base64 encoded)
3400#
3401# @cert-chain:  PDH certificate chain (base64 encoded)
3402#
3403# @cbitpos: C-bit location in page table entry
3404#
3405# @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3406#                     enabled
3407#
3408# Since: 2.12
3409##
3410{ 'struct': 'SevCapability',
3411  'data': { 'pdh': 'str',
3412            'cert-chain': 'str',
3413            'cbitpos': 'int',
3414            'reduced-phys-bits': 'int'} }
3415
3416##
3417# @query-sev-capabilities:
3418#
3419# This command is used to get the SEV capabilities, and is supported on AMD
3420# X86 platforms only.
3421#
3422# Returns: SevCapability objects.
3423#
3424# Since: 2.12
3425#
3426# Example:
3427#
3428# -> { "execute": "query-sev-capabilities" }
3429# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3430#                  "cbitpos": 47, "reduced-phys-bits": 5}}
3431#
3432##
3433{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3434
3435##
3436# @CommandDropReason:
3437#
3438# Reasons that caused one command to be dropped.
3439#
3440# @queue-full: the command queue is full. This can only occur when
3441#              the client sends a new non-oob command before the
3442#              response to the previous non-oob command has been
3443#              received.
3444#
3445# Since: 2.12
3446##
3447{ 'enum': 'CommandDropReason',
3448  'data': [ 'queue-full' ] }
3449
3450##
3451# @COMMAND_DROPPED:
3452#
3453# Emitted when a command is dropped due to some reason.  Commands can
3454# only be dropped when the oob capability is enabled.
3455#
3456# @id: The dropped command's "id" field.
3457# FIXME Broken by design.  Events are broadcast to all monitors.  If
3458# another monitor's client has a command with the same ID in flight,
3459# the event will incorrectly claim that command was dropped.
3460#
3461# @reason: The reason why the command is dropped.
3462#
3463# Since: 2.12
3464#
3465# Example:
3466#
3467# { "event": "COMMAND_DROPPED",
3468#   "data": {"result": {"id": "libvirt-102",
3469#                       "reason": "queue-full" } } }
3470#
3471##
3472{ 'event': 'COMMAND_DROPPED' ,
3473  'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
3474
3475##
3476# @set-numa-node:
3477#
3478# Runtime equivalent of '-numa' CLI option, available at
3479# preconfigure stage to configure numa mapping before initializing
3480# machine.
3481#
3482# Since 3.0
3483##
3484{ 'command': 'set-numa-node', 'boxed': true,
3485  'data': 'NumaOptions',
3486  'allow-preconfig': true
3487}
3488