xref: /qemu/system/memory.c (revision ec6f3fc3)
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15 
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace.h"
27 
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/tcg.h"
33 #include "qemu/accel.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36 #include "exec/address-spaces.h"
37 
38 //#define DEBUG_UNASSIGNED
39 
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 unsigned int global_dirty_tracking;
44 
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47 
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49     = QTAILQ_HEAD_INITIALIZER(address_spaces);
50 
51 static GHashTable *flat_views;
52 
53 typedef struct AddrRange AddrRange;
54 
55 /*
56  * Note that signed integers are needed for negative offsetting in aliases
57  * (large MemoryRegion::alias_offset).
58  */
59 struct AddrRange {
60     Int128 start;
61     Int128 size;
62 };
63 
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66     return (AddrRange) { start, size };
67 }
68 
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73 
74 static Int128 addrrange_end(AddrRange r)
75 {
76     return int128_add(r.start, r.size);
77 }
78 
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81     int128_addto(&range.start, delta);
82     return range;
83 }
84 
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87     return int128_ge(addr, range.start)
88         && int128_lt(addr, addrrange_end(range));
89 }
90 
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93     return addrrange_contains(r1, r2.start)
94         || addrrange_contains(r2, r1.start);
95 }
96 
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99     Int128 start = int128_max(r1.start, r2.start);
100     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101     return addrrange_make(start, int128_sub(end, start));
102 }
103 
104 enum ListenerDirection { Forward, Reverse };
105 
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
107     do {                                                                \
108         MemoryListener *_listener;                                      \
109                                                                         \
110         switch (_direction) {                                           \
111         case Forward:                                                   \
112             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
113                 if (_listener->_callback) {                             \
114                     _listener->_callback(_listener, ##_args);           \
115                 }                                                       \
116             }                                                           \
117             break;                                                      \
118         case Reverse:                                                   \
119             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120                 if (_listener->_callback) {                             \
121                     _listener->_callback(_listener, ##_args);           \
122                 }                                                       \
123             }                                                           \
124             break;                                                      \
125         default:                                                        \
126             abort();                                                    \
127         }                                                               \
128     } while (0)
129 
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131     do {                                                                \
132         MemoryListener *_listener;                                      \
133                                                                         \
134         switch (_direction) {                                           \
135         case Forward:                                                   \
136             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
137                 if (_listener->_callback) {                             \
138                     _listener->_callback(_listener, _section, ##_args); \
139                 }                                                       \
140             }                                                           \
141             break;                                                      \
142         case Reverse:                                                   \
143             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144                 if (_listener->_callback) {                             \
145                     _listener->_callback(_listener, _section, ##_args); \
146                 }                                                       \
147             }                                                           \
148             break;                                                      \
149         default:                                                        \
150             abort();                                                    \
151         }                                                               \
152     } while (0)
153 
154 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
156     do {                                                                \
157         MemoryRegionSection mrs = section_from_flat_range(fr,           \
158                 address_space_to_flatview(as));                         \
159         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
160     } while(0)
161 
162 struct CoalescedMemoryRange {
163     AddrRange addr;
164     QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166 
167 struct MemoryRegionIoeventfd {
168     AddrRange addr;
169     bool match_data;
170     uint64_t data;
171     EventNotifier *e;
172 };
173 
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175                                            MemoryRegionIoeventfd *b)
176 {
177     if (int128_lt(a->addr.start, b->addr.start)) {
178         return true;
179     } else if (int128_gt(a->addr.start, b->addr.start)) {
180         return false;
181     } else if (int128_lt(a->addr.size, b->addr.size)) {
182         return true;
183     } else if (int128_gt(a->addr.size, b->addr.size)) {
184         return false;
185     } else if (a->match_data < b->match_data) {
186         return true;
187     } else  if (a->match_data > b->match_data) {
188         return false;
189     } else if (a->match_data) {
190         if (a->data < b->data) {
191             return true;
192         } else if (a->data > b->data) {
193             return false;
194         }
195     }
196     if (a->e < b->e) {
197         return true;
198     } else if (a->e > b->e) {
199         return false;
200     }
201     return false;
202 }
203 
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205                                           MemoryRegionIoeventfd *b)
206 {
207     if (int128_eq(a->addr.start, b->addr.start) &&
208         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
209          (int128_eq(a->addr.size, b->addr.size) &&
210           (a->match_data == b->match_data) &&
211           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
212           (a->e == b->e))))
213         return true;
214 
215     return false;
216 }
217 
218 /* Range of memory in the global map.  Addresses are absolute. */
219 struct FlatRange {
220     MemoryRegion *mr;
221     hwaddr offset_in_region;
222     AddrRange addr;
223     uint8_t dirty_log_mask;
224     bool romd_mode;
225     bool readonly;
226     bool nonvolatile;
227     bool unmergeable;
228 };
229 
230 #define FOR_EACH_FLAT_RANGE(var, view)          \
231     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232 
233 static inline MemoryRegionSection
234 section_from_flat_range(FlatRange *fr, FlatView *fv)
235 {
236     return (MemoryRegionSection) {
237         .mr = fr->mr,
238         .fv = fv,
239         .offset_within_region = fr->offset_in_region,
240         .size = fr->addr.size,
241         .offset_within_address_space = int128_get64(fr->addr.start),
242         .readonly = fr->readonly,
243         .nonvolatile = fr->nonvolatile,
244         .unmergeable = fr->unmergeable,
245     };
246 }
247 
248 static bool flatrange_equal(FlatRange *a, FlatRange *b)
249 {
250     return a->mr == b->mr
251         && addrrange_equal(a->addr, b->addr)
252         && a->offset_in_region == b->offset_in_region
253         && a->romd_mode == b->romd_mode
254         && a->readonly == b->readonly
255         && a->nonvolatile == b->nonvolatile
256         && a->unmergeable == b->unmergeable;
257 }
258 
259 static FlatView *flatview_new(MemoryRegion *mr_root)
260 {
261     FlatView *view;
262 
263     view = g_new0(FlatView, 1);
264     view->ref = 1;
265     view->root = mr_root;
266     memory_region_ref(mr_root);
267     trace_flatview_new(view, mr_root);
268 
269     return view;
270 }
271 
272 /* Insert a range into a given position.  Caller is responsible for maintaining
273  * sorting order.
274  */
275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
276 {
277     if (view->nr == view->nr_allocated) {
278         view->nr_allocated = MAX(2 * view->nr, 10);
279         view->ranges = g_realloc(view->ranges,
280                                     view->nr_allocated * sizeof(*view->ranges));
281     }
282     memmove(view->ranges + pos + 1, view->ranges + pos,
283             (view->nr - pos) * sizeof(FlatRange));
284     view->ranges[pos] = *range;
285     memory_region_ref(range->mr);
286     ++view->nr;
287 }
288 
289 static void flatview_destroy(FlatView *view)
290 {
291     int i;
292 
293     trace_flatview_destroy(view, view->root);
294     if (view->dispatch) {
295         address_space_dispatch_free(view->dispatch);
296     }
297     for (i = 0; i < view->nr; i++) {
298         memory_region_unref(view->ranges[i].mr);
299     }
300     g_free(view->ranges);
301     memory_region_unref(view->root);
302     g_free(view);
303 }
304 
305 static bool flatview_ref(FlatView *view)
306 {
307     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
308 }
309 
310 void flatview_unref(FlatView *view)
311 {
312     if (qatomic_fetch_dec(&view->ref) == 1) {
313         trace_flatview_destroy_rcu(view, view->root);
314         assert(view->root);
315         call_rcu(view, flatview_destroy, rcu);
316     }
317 }
318 
319 static bool can_merge(FlatRange *r1, FlatRange *r2)
320 {
321     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
322         && r1->mr == r2->mr
323         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
324                                 r1->addr.size),
325                      int128_make64(r2->offset_in_region))
326         && r1->dirty_log_mask == r2->dirty_log_mask
327         && r1->romd_mode == r2->romd_mode
328         && r1->readonly == r2->readonly
329         && r1->nonvolatile == r2->nonvolatile
330         && !r1->unmergeable && !r2->unmergeable;
331 }
332 
333 /* Attempt to simplify a view by merging adjacent ranges */
334 static void flatview_simplify(FlatView *view)
335 {
336     unsigned i, j, k;
337 
338     i = 0;
339     while (i < view->nr) {
340         j = i + 1;
341         while (j < view->nr
342                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
343             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
344             ++j;
345         }
346         ++i;
347         for (k = i; k < j; k++) {
348             memory_region_unref(view->ranges[k].mr);
349         }
350         memmove(&view->ranges[i], &view->ranges[j],
351                 (view->nr - j) * sizeof(view->ranges[j]));
352         view->nr -= j - i;
353     }
354 }
355 
356 static bool memory_region_big_endian(MemoryRegion *mr)
357 {
358 #if TARGET_BIG_ENDIAN
359     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
360 #else
361     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
362 #endif
363 }
364 
365 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
366 {
367     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
368         switch (op & MO_SIZE) {
369         case MO_8:
370             break;
371         case MO_16:
372             *data = bswap16(*data);
373             break;
374         case MO_32:
375             *data = bswap32(*data);
376             break;
377         case MO_64:
378             *data = bswap64(*data);
379             break;
380         default:
381             g_assert_not_reached();
382         }
383     }
384 }
385 
386 static inline void memory_region_shift_read_access(uint64_t *value,
387                                                    signed shift,
388                                                    uint64_t mask,
389                                                    uint64_t tmp)
390 {
391     if (shift >= 0) {
392         *value |= (tmp & mask) << shift;
393     } else {
394         *value |= (tmp & mask) >> -shift;
395     }
396 }
397 
398 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
399                                                         signed shift,
400                                                         uint64_t mask)
401 {
402     uint64_t tmp;
403 
404     if (shift >= 0) {
405         tmp = (*value >> shift) & mask;
406     } else {
407         tmp = (*value << -shift) & mask;
408     }
409 
410     return tmp;
411 }
412 
413 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
414 {
415     MemoryRegion *root;
416     hwaddr abs_addr = offset;
417 
418     abs_addr += mr->addr;
419     for (root = mr; root->container; ) {
420         root = root->container;
421         abs_addr += root->addr;
422     }
423 
424     return abs_addr;
425 }
426 
427 static int get_cpu_index(void)
428 {
429     if (current_cpu) {
430         return current_cpu->cpu_index;
431     }
432     return -1;
433 }
434 
435 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
436                                                 hwaddr addr,
437                                                 uint64_t *value,
438                                                 unsigned size,
439                                                 signed shift,
440                                                 uint64_t mask,
441                                                 MemTxAttrs attrs)
442 {
443     uint64_t tmp;
444 
445     tmp = mr->ops->read(mr->opaque, addr, size);
446     if (mr->subpage) {
447         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
448     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
449         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
450         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
451                                      memory_region_name(mr));
452     }
453     memory_region_shift_read_access(value, shift, mask, tmp);
454     return MEMTX_OK;
455 }
456 
457 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
458                                                           hwaddr addr,
459                                                           uint64_t *value,
460                                                           unsigned size,
461                                                           signed shift,
462                                                           uint64_t mask,
463                                                           MemTxAttrs attrs)
464 {
465     uint64_t tmp = 0;
466     MemTxResult r;
467 
468     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
469     if (mr->subpage) {
470         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
471     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
472         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
474                                      memory_region_name(mr));
475     }
476     memory_region_shift_read_access(value, shift, mask, tmp);
477     return r;
478 }
479 
480 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
481                                                 hwaddr addr,
482                                                 uint64_t *value,
483                                                 unsigned size,
484                                                 signed shift,
485                                                 uint64_t mask,
486                                                 MemTxAttrs attrs)
487 {
488     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
489 
490     if (mr->subpage) {
491         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
493         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
494         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
495                                       memory_region_name(mr));
496     }
497     mr->ops->write(mr->opaque, addr, tmp, size);
498     return MEMTX_OK;
499 }
500 
501 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
502                                                            hwaddr addr,
503                                                            uint64_t *value,
504                                                            unsigned size,
505                                                            signed shift,
506                                                            uint64_t mask,
507                                                            MemTxAttrs attrs)
508 {
509     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
510 
511     if (mr->subpage) {
512         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
513     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
514         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
515         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
516                                       memory_region_name(mr));
517     }
518     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
519 }
520 
521 static MemTxResult access_with_adjusted_size(hwaddr addr,
522                                       uint64_t *value,
523                                       unsigned size,
524                                       unsigned access_size_min,
525                                       unsigned access_size_max,
526                                       MemTxResult (*access_fn)
527                                                   (MemoryRegion *mr,
528                                                    hwaddr addr,
529                                                    uint64_t *value,
530                                                    unsigned size,
531                                                    signed shift,
532                                                    uint64_t mask,
533                                                    MemTxAttrs attrs),
534                                       MemoryRegion *mr,
535                                       MemTxAttrs attrs)
536 {
537     uint64_t access_mask;
538     unsigned access_size;
539     unsigned i;
540     MemTxResult r = MEMTX_OK;
541     bool reentrancy_guard_applied = false;
542 
543     if (!access_size_min) {
544         access_size_min = 1;
545     }
546     if (!access_size_max) {
547         access_size_max = 4;
548     }
549 
550     /* Do not allow more than one simultaneous access to a device's IO Regions */
551     if (mr->dev && !mr->disable_reentrancy_guard &&
552         !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
553         if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
554             warn_report_once("Blocked re-entrant IO on MemoryRegion: "
555                              "%s at addr: 0x%" HWADDR_PRIX,
556                              memory_region_name(mr), addr);
557             return MEMTX_ACCESS_ERROR;
558         }
559         mr->dev->mem_reentrancy_guard.engaged_in_io = true;
560         reentrancy_guard_applied = true;
561     }
562 
563     /* FIXME: support unaligned access? */
564     access_size = MAX(MIN(size, access_size_max), access_size_min);
565     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
566     if (memory_region_big_endian(mr)) {
567         for (i = 0; i < size; i += access_size) {
568             r |= access_fn(mr, addr + i, value, access_size,
569                         (size - access_size - i) * 8, access_mask, attrs);
570         }
571     } else {
572         for (i = 0; i < size; i += access_size) {
573             r |= access_fn(mr, addr + i, value, access_size, i * 8,
574                         access_mask, attrs);
575         }
576     }
577     if (mr->dev && reentrancy_guard_applied) {
578         mr->dev->mem_reentrancy_guard.engaged_in_io = false;
579     }
580     return r;
581 }
582 
583 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
584 {
585     AddressSpace *as;
586 
587     while (mr->container) {
588         mr = mr->container;
589     }
590     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
591         if (mr == as->root) {
592             return as;
593         }
594     }
595     return NULL;
596 }
597 
598 /* Render a memory region into the global view.  Ranges in @view obscure
599  * ranges in @mr.
600  */
601 static void render_memory_region(FlatView *view,
602                                  MemoryRegion *mr,
603                                  Int128 base,
604                                  AddrRange clip,
605                                  bool readonly,
606                                  bool nonvolatile,
607                                  bool unmergeable)
608 {
609     MemoryRegion *subregion;
610     unsigned i;
611     hwaddr offset_in_region;
612     Int128 remain;
613     Int128 now;
614     FlatRange fr;
615     AddrRange tmp;
616 
617     if (!mr->enabled) {
618         return;
619     }
620 
621     int128_addto(&base, int128_make64(mr->addr));
622     readonly |= mr->readonly;
623     nonvolatile |= mr->nonvolatile;
624     unmergeable |= mr->unmergeable;
625 
626     tmp = addrrange_make(base, mr->size);
627 
628     if (!addrrange_intersects(tmp, clip)) {
629         return;
630     }
631 
632     clip = addrrange_intersection(tmp, clip);
633 
634     if (mr->alias) {
635         int128_subfrom(&base, int128_make64(mr->alias->addr));
636         int128_subfrom(&base, int128_make64(mr->alias_offset));
637         render_memory_region(view, mr->alias, base, clip,
638                              readonly, nonvolatile, unmergeable);
639         return;
640     }
641 
642     /* Render subregions in priority order. */
643     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
644         render_memory_region(view, subregion, base, clip,
645                              readonly, nonvolatile, unmergeable);
646     }
647 
648     if (!mr->terminates) {
649         return;
650     }
651 
652     offset_in_region = int128_get64(int128_sub(clip.start, base));
653     base = clip.start;
654     remain = clip.size;
655 
656     fr.mr = mr;
657     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
658     fr.romd_mode = mr->romd_mode;
659     fr.readonly = readonly;
660     fr.nonvolatile = nonvolatile;
661     fr.unmergeable = unmergeable;
662 
663     /* Render the region itself into any gaps left by the current view. */
664     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
665         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
666             continue;
667         }
668         if (int128_lt(base, view->ranges[i].addr.start)) {
669             now = int128_min(remain,
670                              int128_sub(view->ranges[i].addr.start, base));
671             fr.offset_in_region = offset_in_region;
672             fr.addr = addrrange_make(base, now);
673             flatview_insert(view, i, &fr);
674             ++i;
675             int128_addto(&base, now);
676             offset_in_region += int128_get64(now);
677             int128_subfrom(&remain, now);
678         }
679         now = int128_sub(int128_min(int128_add(base, remain),
680                                     addrrange_end(view->ranges[i].addr)),
681                          base);
682         int128_addto(&base, now);
683         offset_in_region += int128_get64(now);
684         int128_subfrom(&remain, now);
685     }
686     if (int128_nz(remain)) {
687         fr.offset_in_region = offset_in_region;
688         fr.addr = addrrange_make(base, remain);
689         flatview_insert(view, i, &fr);
690     }
691 }
692 
693 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
694 {
695     FlatRange *fr;
696 
697     assert(fv);
698     assert(cb);
699 
700     FOR_EACH_FLAT_RANGE(fr, fv) {
701         if (cb(fr->addr.start, fr->addr.size, fr->mr,
702                fr->offset_in_region, opaque)) {
703             break;
704         }
705     }
706 }
707 
708 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
709 {
710     while (mr->enabled) {
711         if (mr->alias) {
712             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
713                 /* The alias is included in its entirety.  Use it as
714                  * the "real" root, so that we can share more FlatViews.
715                  */
716                 mr = mr->alias;
717                 continue;
718             }
719         } else if (!mr->terminates) {
720             unsigned int found = 0;
721             MemoryRegion *child, *next = NULL;
722             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
723                 if (child->enabled) {
724                     if (++found > 1) {
725                         next = NULL;
726                         break;
727                     }
728                     if (!child->addr && int128_ge(mr->size, child->size)) {
729                         /* A child is included in its entirety.  If it's the only
730                          * enabled one, use it in the hope of finding an alias down the
731                          * way. This will also let us share FlatViews.
732                          */
733                         next = child;
734                     }
735                 }
736             }
737             if (found == 0) {
738                 return NULL;
739             }
740             if (next) {
741                 mr = next;
742                 continue;
743             }
744         }
745 
746         return mr;
747     }
748 
749     return NULL;
750 }
751 
752 /* Render a memory topology into a list of disjoint absolute ranges. */
753 static FlatView *generate_memory_topology(MemoryRegion *mr)
754 {
755     int i;
756     FlatView *view;
757 
758     view = flatview_new(mr);
759 
760     if (mr) {
761         render_memory_region(view, mr, int128_zero(),
762                              addrrange_make(int128_zero(), int128_2_64()),
763                              false, false, false);
764     }
765     flatview_simplify(view);
766 
767     view->dispatch = address_space_dispatch_new(view);
768     for (i = 0; i < view->nr; i++) {
769         MemoryRegionSection mrs =
770             section_from_flat_range(&view->ranges[i], view);
771         flatview_add_to_dispatch(view, &mrs);
772     }
773     address_space_dispatch_compact(view->dispatch);
774     g_hash_table_replace(flat_views, mr, view);
775 
776     return view;
777 }
778 
779 static void address_space_add_del_ioeventfds(AddressSpace *as,
780                                              MemoryRegionIoeventfd *fds_new,
781                                              unsigned fds_new_nb,
782                                              MemoryRegionIoeventfd *fds_old,
783                                              unsigned fds_old_nb)
784 {
785     unsigned iold, inew;
786     MemoryRegionIoeventfd *fd;
787     MemoryRegionSection section;
788 
789     /* Generate a symmetric difference of the old and new fd sets, adding
790      * and deleting as necessary.
791      */
792 
793     iold = inew = 0;
794     while (iold < fds_old_nb || inew < fds_new_nb) {
795         if (iold < fds_old_nb
796             && (inew == fds_new_nb
797                 || memory_region_ioeventfd_before(&fds_old[iold],
798                                                   &fds_new[inew]))) {
799             fd = &fds_old[iold];
800             section = (MemoryRegionSection) {
801                 .fv = address_space_to_flatview(as),
802                 .offset_within_address_space = int128_get64(fd->addr.start),
803                 .size = fd->addr.size,
804             };
805             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
806                                  fd->match_data, fd->data, fd->e);
807             ++iold;
808         } else if (inew < fds_new_nb
809                    && (iold == fds_old_nb
810                        || memory_region_ioeventfd_before(&fds_new[inew],
811                                                          &fds_old[iold]))) {
812             fd = &fds_new[inew];
813             section = (MemoryRegionSection) {
814                 .fv = address_space_to_flatview(as),
815                 .offset_within_address_space = int128_get64(fd->addr.start),
816                 .size = fd->addr.size,
817             };
818             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
819                                  fd->match_data, fd->data, fd->e);
820             ++inew;
821         } else {
822             ++iold;
823             ++inew;
824         }
825     }
826 }
827 
828 FlatView *address_space_get_flatview(AddressSpace *as)
829 {
830     FlatView *view;
831 
832     RCU_READ_LOCK_GUARD();
833     do {
834         view = address_space_to_flatview(as);
835         /* If somebody has replaced as->current_map concurrently,
836          * flatview_ref returns false.
837          */
838     } while (!flatview_ref(view));
839     return view;
840 }
841 
842 static void address_space_update_ioeventfds(AddressSpace *as)
843 {
844     FlatView *view;
845     FlatRange *fr;
846     unsigned ioeventfd_nb = 0;
847     unsigned ioeventfd_max;
848     MemoryRegionIoeventfd *ioeventfds;
849     AddrRange tmp;
850     unsigned i;
851 
852     if (!as->ioeventfd_notifiers) {
853         return;
854     }
855 
856     /*
857      * It is likely that the number of ioeventfds hasn't changed much, so use
858      * the previous size as the starting value, with some headroom to avoid
859      * gratuitous reallocations.
860      */
861     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
862     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
863 
864     view = address_space_get_flatview(as);
865     FOR_EACH_FLAT_RANGE(fr, view) {
866         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
867             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
868                                   int128_sub(fr->addr.start,
869                                              int128_make64(fr->offset_in_region)));
870             if (addrrange_intersects(fr->addr, tmp)) {
871                 ++ioeventfd_nb;
872                 if (ioeventfd_nb > ioeventfd_max) {
873                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
874                     ioeventfds = g_realloc(ioeventfds,
875                             ioeventfd_max * sizeof(*ioeventfds));
876                 }
877                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
878                 ioeventfds[ioeventfd_nb-1].addr = tmp;
879             }
880         }
881     }
882 
883     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
884                                      as->ioeventfds, as->ioeventfd_nb);
885 
886     g_free(as->ioeventfds);
887     as->ioeventfds = ioeventfds;
888     as->ioeventfd_nb = ioeventfd_nb;
889     flatview_unref(view);
890 }
891 
892 /*
893  * Notify the memory listeners about the coalesced IO change events of
894  * range `cmr'.  Only the part that has intersection of the specified
895  * FlatRange will be sent.
896  */
897 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
898                                            CoalescedMemoryRange *cmr, bool add)
899 {
900     AddrRange tmp;
901 
902     tmp = addrrange_shift(cmr->addr,
903                           int128_sub(fr->addr.start,
904                                      int128_make64(fr->offset_in_region)));
905     if (!addrrange_intersects(tmp, fr->addr)) {
906         return;
907     }
908     tmp = addrrange_intersection(tmp, fr->addr);
909 
910     if (add) {
911         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
912                                       int128_get64(tmp.start),
913                                       int128_get64(tmp.size));
914     } else {
915         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
916                                       int128_get64(tmp.start),
917                                       int128_get64(tmp.size));
918     }
919 }
920 
921 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
922 {
923     CoalescedMemoryRange *cmr;
924 
925     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
926         flat_range_coalesced_io_notify(fr, as, cmr, false);
927     }
928 }
929 
930 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
931 {
932     MemoryRegion *mr = fr->mr;
933     CoalescedMemoryRange *cmr;
934 
935     if (QTAILQ_EMPTY(&mr->coalesced)) {
936         return;
937     }
938 
939     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
940         flat_range_coalesced_io_notify(fr, as, cmr, true);
941     }
942 }
943 
944 static void address_space_update_topology_pass(AddressSpace *as,
945                                                const FlatView *old_view,
946                                                const FlatView *new_view,
947                                                bool adding)
948 {
949     unsigned iold, inew;
950     FlatRange *frold, *frnew;
951 
952     /* Generate a symmetric difference of the old and new memory maps.
953      * Kill ranges in the old map, and instantiate ranges in the new map.
954      */
955     iold = inew = 0;
956     while (iold < old_view->nr || inew < new_view->nr) {
957         if (iold < old_view->nr) {
958             frold = &old_view->ranges[iold];
959         } else {
960             frold = NULL;
961         }
962         if (inew < new_view->nr) {
963             frnew = &new_view->ranges[inew];
964         } else {
965             frnew = NULL;
966         }
967 
968         if (frold
969             && (!frnew
970                 || int128_lt(frold->addr.start, frnew->addr.start)
971                 || (int128_eq(frold->addr.start, frnew->addr.start)
972                     && !flatrange_equal(frold, frnew)))) {
973             /* In old but not in new, or in both but attributes changed. */
974 
975             if (!adding) {
976                 flat_range_coalesced_io_del(frold, as);
977                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
978             }
979 
980             ++iold;
981         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
982             /* In both and unchanged (except logging may have changed) */
983 
984             if (adding) {
985                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
986                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
987                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
988                                                   frold->dirty_log_mask,
989                                                   frnew->dirty_log_mask);
990                 }
991                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
992                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
993                                                   frold->dirty_log_mask,
994                                                   frnew->dirty_log_mask);
995                 }
996             }
997 
998             ++iold;
999             ++inew;
1000         } else {
1001             /* In new */
1002 
1003             if (adding) {
1004                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1005                 flat_range_coalesced_io_add(frnew, as);
1006             }
1007 
1008             ++inew;
1009         }
1010     }
1011 }
1012 
1013 static void flatviews_init(void)
1014 {
1015     static FlatView *empty_view;
1016 
1017     if (flat_views) {
1018         return;
1019     }
1020 
1021     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1022                                        (GDestroyNotify) flatview_unref);
1023     if (!empty_view) {
1024         empty_view = generate_memory_topology(NULL);
1025         /* We keep it alive forever in the global variable.  */
1026         flatview_ref(empty_view);
1027     } else {
1028         g_hash_table_replace(flat_views, NULL, empty_view);
1029         flatview_ref(empty_view);
1030     }
1031 }
1032 
1033 static void flatviews_reset(void)
1034 {
1035     AddressSpace *as;
1036 
1037     if (flat_views) {
1038         g_hash_table_unref(flat_views);
1039         flat_views = NULL;
1040     }
1041     flatviews_init();
1042 
1043     /* Render unique FVs */
1044     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1045         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1046 
1047         if (g_hash_table_lookup(flat_views, physmr)) {
1048             continue;
1049         }
1050 
1051         generate_memory_topology(physmr);
1052     }
1053 }
1054 
1055 static void address_space_set_flatview(AddressSpace *as)
1056 {
1057     FlatView *old_view = address_space_to_flatview(as);
1058     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1059     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1060 
1061     assert(new_view);
1062 
1063     if (old_view == new_view) {
1064         return;
1065     }
1066 
1067     if (old_view) {
1068         flatview_ref(old_view);
1069     }
1070 
1071     flatview_ref(new_view);
1072 
1073     if (!QTAILQ_EMPTY(&as->listeners)) {
1074         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1075 
1076         if (!old_view2) {
1077             old_view2 = &tmpview;
1078         }
1079         address_space_update_topology_pass(as, old_view2, new_view, false);
1080         address_space_update_topology_pass(as, old_view2, new_view, true);
1081     }
1082 
1083     /* Writes are protected by the BQL.  */
1084     qatomic_rcu_set(&as->current_map, new_view);
1085     if (old_view) {
1086         flatview_unref(old_view);
1087     }
1088 
1089     /* Note that all the old MemoryRegions are still alive up to this
1090      * point.  This relieves most MemoryListeners from the need to
1091      * ref/unref the MemoryRegions they get---unless they use them
1092      * outside the iothread mutex, in which case precise reference
1093      * counting is necessary.
1094      */
1095     if (old_view) {
1096         flatview_unref(old_view);
1097     }
1098 }
1099 
1100 static void address_space_update_topology(AddressSpace *as)
1101 {
1102     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1103 
1104     flatviews_init();
1105     if (!g_hash_table_lookup(flat_views, physmr)) {
1106         generate_memory_topology(physmr);
1107     }
1108     address_space_set_flatview(as);
1109 }
1110 
1111 void memory_region_transaction_begin(void)
1112 {
1113     qemu_flush_coalesced_mmio_buffer();
1114     ++memory_region_transaction_depth;
1115 }
1116 
1117 void memory_region_transaction_commit(void)
1118 {
1119     AddressSpace *as;
1120 
1121     assert(memory_region_transaction_depth);
1122     assert(qemu_mutex_iothread_locked());
1123 
1124     --memory_region_transaction_depth;
1125     if (!memory_region_transaction_depth) {
1126         if (memory_region_update_pending) {
1127             flatviews_reset();
1128 
1129             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1130 
1131             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1132                 address_space_set_flatview(as);
1133                 address_space_update_ioeventfds(as);
1134             }
1135             memory_region_update_pending = false;
1136             ioeventfd_update_pending = false;
1137             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1138         } else if (ioeventfd_update_pending) {
1139             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1140                 address_space_update_ioeventfds(as);
1141             }
1142             ioeventfd_update_pending = false;
1143         }
1144    }
1145 }
1146 
1147 static void memory_region_destructor_none(MemoryRegion *mr)
1148 {
1149 }
1150 
1151 static void memory_region_destructor_ram(MemoryRegion *mr)
1152 {
1153     qemu_ram_free(mr->ram_block);
1154 }
1155 
1156 static bool memory_region_need_escape(char c)
1157 {
1158     return c == '/' || c == '[' || c == '\\' || c == ']';
1159 }
1160 
1161 static char *memory_region_escape_name(const char *name)
1162 {
1163     const char *p;
1164     char *escaped, *q;
1165     uint8_t c;
1166     size_t bytes = 0;
1167 
1168     for (p = name; *p; p++) {
1169         bytes += memory_region_need_escape(*p) ? 4 : 1;
1170     }
1171     if (bytes == p - name) {
1172        return g_memdup(name, bytes + 1);
1173     }
1174 
1175     escaped = g_malloc(bytes + 1);
1176     for (p = name, q = escaped; *p; p++) {
1177         c = *p;
1178         if (unlikely(memory_region_need_escape(c))) {
1179             *q++ = '\\';
1180             *q++ = 'x';
1181             *q++ = "0123456789abcdef"[c >> 4];
1182             c = "0123456789abcdef"[c & 15];
1183         }
1184         *q++ = c;
1185     }
1186     *q = 0;
1187     return escaped;
1188 }
1189 
1190 static void memory_region_do_init(MemoryRegion *mr,
1191                                   Object *owner,
1192                                   const char *name,
1193                                   uint64_t size)
1194 {
1195     mr->size = int128_make64(size);
1196     if (size == UINT64_MAX) {
1197         mr->size = int128_2_64();
1198     }
1199     mr->name = g_strdup(name);
1200     mr->owner = owner;
1201     mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1202     mr->ram_block = NULL;
1203 
1204     if (name) {
1205         char *escaped_name = memory_region_escape_name(name);
1206         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1207 
1208         if (!owner) {
1209             owner = container_get(qdev_get_machine(), "/unattached");
1210         }
1211 
1212         object_property_add_child(owner, name_array, OBJECT(mr));
1213         object_unref(OBJECT(mr));
1214         g_free(name_array);
1215         g_free(escaped_name);
1216     }
1217 }
1218 
1219 void memory_region_init(MemoryRegion *mr,
1220                         Object *owner,
1221                         const char *name,
1222                         uint64_t size)
1223 {
1224     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1225     memory_region_do_init(mr, owner, name, size);
1226 }
1227 
1228 static void memory_region_get_container(Object *obj, Visitor *v,
1229                                         const char *name, void *opaque,
1230                                         Error **errp)
1231 {
1232     MemoryRegion *mr = MEMORY_REGION(obj);
1233     char *path = (char *)"";
1234 
1235     if (mr->container) {
1236         path = object_get_canonical_path(OBJECT(mr->container));
1237     }
1238     visit_type_str(v, name, &path, errp);
1239     if (mr->container) {
1240         g_free(path);
1241     }
1242 }
1243 
1244 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1245                                                const char *part)
1246 {
1247     MemoryRegion *mr = MEMORY_REGION(obj);
1248 
1249     return OBJECT(mr->container);
1250 }
1251 
1252 static void memory_region_get_priority(Object *obj, Visitor *v,
1253                                        const char *name, void *opaque,
1254                                        Error **errp)
1255 {
1256     MemoryRegion *mr = MEMORY_REGION(obj);
1257     int32_t value = mr->priority;
1258 
1259     visit_type_int32(v, name, &value, errp);
1260 }
1261 
1262 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1263                                    void *opaque, Error **errp)
1264 {
1265     MemoryRegion *mr = MEMORY_REGION(obj);
1266     uint64_t value = memory_region_size(mr);
1267 
1268     visit_type_uint64(v, name, &value, errp);
1269 }
1270 
1271 static void memory_region_initfn(Object *obj)
1272 {
1273     MemoryRegion *mr = MEMORY_REGION(obj);
1274     ObjectProperty *op;
1275 
1276     mr->ops = &unassigned_mem_ops;
1277     mr->enabled = true;
1278     mr->romd_mode = true;
1279     mr->destructor = memory_region_destructor_none;
1280     QTAILQ_INIT(&mr->subregions);
1281     QTAILQ_INIT(&mr->coalesced);
1282 
1283     op = object_property_add(OBJECT(mr), "container",
1284                              "link<" TYPE_MEMORY_REGION ">",
1285                              memory_region_get_container,
1286                              NULL, /* memory_region_set_container */
1287                              NULL, NULL);
1288     op->resolve = memory_region_resolve_container;
1289 
1290     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1291                                    &mr->addr, OBJ_PROP_FLAG_READ);
1292     object_property_add(OBJECT(mr), "priority", "uint32",
1293                         memory_region_get_priority,
1294                         NULL, /* memory_region_set_priority */
1295                         NULL, NULL);
1296     object_property_add(OBJECT(mr), "size", "uint64",
1297                         memory_region_get_size,
1298                         NULL, /* memory_region_set_size, */
1299                         NULL, NULL);
1300 }
1301 
1302 static void iommu_memory_region_initfn(Object *obj)
1303 {
1304     MemoryRegion *mr = MEMORY_REGION(obj);
1305 
1306     mr->is_iommu = true;
1307 }
1308 
1309 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1310                                     unsigned size)
1311 {
1312 #ifdef DEBUG_UNASSIGNED
1313     printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1314 #endif
1315     return 0;
1316 }
1317 
1318 static void unassigned_mem_write(void *opaque, hwaddr addr,
1319                                  uint64_t val, unsigned size)
1320 {
1321 #ifdef DEBUG_UNASSIGNED
1322     printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1323 #endif
1324 }
1325 
1326 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1327                                    unsigned size, bool is_write,
1328                                    MemTxAttrs attrs)
1329 {
1330     return false;
1331 }
1332 
1333 const MemoryRegionOps unassigned_mem_ops = {
1334     .valid.accepts = unassigned_mem_accepts,
1335     .endianness = DEVICE_NATIVE_ENDIAN,
1336 };
1337 
1338 static uint64_t memory_region_ram_device_read(void *opaque,
1339                                               hwaddr addr, unsigned size)
1340 {
1341     MemoryRegion *mr = opaque;
1342     uint64_t data = (uint64_t)~0;
1343 
1344     switch (size) {
1345     case 1:
1346         data = *(uint8_t *)(mr->ram_block->host + addr);
1347         break;
1348     case 2:
1349         data = *(uint16_t *)(mr->ram_block->host + addr);
1350         break;
1351     case 4:
1352         data = *(uint32_t *)(mr->ram_block->host + addr);
1353         break;
1354     case 8:
1355         data = *(uint64_t *)(mr->ram_block->host + addr);
1356         break;
1357     }
1358 
1359     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1360 
1361     return data;
1362 }
1363 
1364 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1365                                            uint64_t data, unsigned size)
1366 {
1367     MemoryRegion *mr = opaque;
1368 
1369     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1370 
1371     switch (size) {
1372     case 1:
1373         *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1374         break;
1375     case 2:
1376         *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1377         break;
1378     case 4:
1379         *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1380         break;
1381     case 8:
1382         *(uint64_t *)(mr->ram_block->host + addr) = data;
1383         break;
1384     }
1385 }
1386 
1387 static const MemoryRegionOps ram_device_mem_ops = {
1388     .read = memory_region_ram_device_read,
1389     .write = memory_region_ram_device_write,
1390     .endianness = DEVICE_HOST_ENDIAN,
1391     .valid = {
1392         .min_access_size = 1,
1393         .max_access_size = 8,
1394         .unaligned = true,
1395     },
1396     .impl = {
1397         .min_access_size = 1,
1398         .max_access_size = 8,
1399         .unaligned = true,
1400     },
1401 };
1402 
1403 bool memory_region_access_valid(MemoryRegion *mr,
1404                                 hwaddr addr,
1405                                 unsigned size,
1406                                 bool is_write,
1407                                 MemTxAttrs attrs)
1408 {
1409     if (mr->ops->valid.accepts
1410         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1411         qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1412                       ", size %u, region '%s', reason: rejected\n",
1413                       is_write ? "write" : "read",
1414                       addr, size, memory_region_name(mr));
1415         return false;
1416     }
1417 
1418     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1419         qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1420                       ", size %u, region '%s', reason: unaligned\n",
1421                       is_write ? "write" : "read",
1422                       addr, size, memory_region_name(mr));
1423         return false;
1424     }
1425 
1426     /* Treat zero as compatibility all valid */
1427     if (!mr->ops->valid.max_access_size) {
1428         return true;
1429     }
1430 
1431     if (size > mr->ops->valid.max_access_size
1432         || size < mr->ops->valid.min_access_size) {
1433         qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1434                       ", size %u, region '%s', reason: invalid size "
1435                       "(min:%u max:%u)\n",
1436                       is_write ? "write" : "read",
1437                       addr, size, memory_region_name(mr),
1438                       mr->ops->valid.min_access_size,
1439                       mr->ops->valid.max_access_size);
1440         return false;
1441     }
1442     return true;
1443 }
1444 
1445 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1446                                                 hwaddr addr,
1447                                                 uint64_t *pval,
1448                                                 unsigned size,
1449                                                 MemTxAttrs attrs)
1450 {
1451     *pval = 0;
1452 
1453     if (mr->ops->read) {
1454         return access_with_adjusted_size(addr, pval, size,
1455                                          mr->ops->impl.min_access_size,
1456                                          mr->ops->impl.max_access_size,
1457                                          memory_region_read_accessor,
1458                                          mr, attrs);
1459     } else {
1460         return access_with_adjusted_size(addr, pval, size,
1461                                          mr->ops->impl.min_access_size,
1462                                          mr->ops->impl.max_access_size,
1463                                          memory_region_read_with_attrs_accessor,
1464                                          mr, attrs);
1465     }
1466 }
1467 
1468 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1469                                         hwaddr addr,
1470                                         uint64_t *pval,
1471                                         MemOp op,
1472                                         MemTxAttrs attrs)
1473 {
1474     unsigned size = memop_size(op);
1475     MemTxResult r;
1476 
1477     if (mr->alias) {
1478         return memory_region_dispatch_read(mr->alias,
1479                                            mr->alias_offset + addr,
1480                                            pval, op, attrs);
1481     }
1482     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1483         *pval = unassigned_mem_read(mr, addr, size);
1484         return MEMTX_DECODE_ERROR;
1485     }
1486 
1487     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1488     adjust_endianness(mr, pval, op);
1489     return r;
1490 }
1491 
1492 /* Return true if an eventfd was signalled */
1493 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1494                                                     hwaddr addr,
1495                                                     uint64_t data,
1496                                                     unsigned size,
1497                                                     MemTxAttrs attrs)
1498 {
1499     MemoryRegionIoeventfd ioeventfd = {
1500         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1501         .data = data,
1502     };
1503     unsigned i;
1504 
1505     for (i = 0; i < mr->ioeventfd_nb; i++) {
1506         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1507         ioeventfd.e = mr->ioeventfds[i].e;
1508 
1509         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1510             event_notifier_set(ioeventfd.e);
1511             return true;
1512         }
1513     }
1514 
1515     return false;
1516 }
1517 
1518 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1519                                          hwaddr addr,
1520                                          uint64_t data,
1521                                          MemOp op,
1522                                          MemTxAttrs attrs)
1523 {
1524     unsigned size = memop_size(op);
1525 
1526     if (mr->alias) {
1527         return memory_region_dispatch_write(mr->alias,
1528                                             mr->alias_offset + addr,
1529                                             data, op, attrs);
1530     }
1531     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1532         unassigned_mem_write(mr, addr, data, size);
1533         return MEMTX_DECODE_ERROR;
1534     }
1535 
1536     adjust_endianness(mr, &data, op);
1537 
1538     /*
1539      * FIXME: it's not clear why under KVM the write would be processed
1540      * directly, instead of going through eventfd.  This probably should
1541      * test "tcg_enabled() || qtest_enabled()", or should just go away.
1542      */
1543     if (!kvm_enabled() &&
1544         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1545         return MEMTX_OK;
1546     }
1547 
1548     if (mr->ops->write) {
1549         return access_with_adjusted_size(addr, &data, size,
1550                                          mr->ops->impl.min_access_size,
1551                                          mr->ops->impl.max_access_size,
1552                                          memory_region_write_accessor, mr,
1553                                          attrs);
1554     } else {
1555         return
1556             access_with_adjusted_size(addr, &data, size,
1557                                       mr->ops->impl.min_access_size,
1558                                       mr->ops->impl.max_access_size,
1559                                       memory_region_write_with_attrs_accessor,
1560                                       mr, attrs);
1561     }
1562 }
1563 
1564 void memory_region_init_io(MemoryRegion *mr,
1565                            Object *owner,
1566                            const MemoryRegionOps *ops,
1567                            void *opaque,
1568                            const char *name,
1569                            uint64_t size)
1570 {
1571     memory_region_init(mr, owner, name, size);
1572     mr->ops = ops ? ops : &unassigned_mem_ops;
1573     mr->opaque = opaque;
1574     mr->terminates = true;
1575 }
1576 
1577 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1578                                       Object *owner,
1579                                       const char *name,
1580                                       uint64_t size,
1581                                       Error **errp)
1582 {
1583     memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1584 }
1585 
1586 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1587                                             Object *owner,
1588                                             const char *name,
1589                                             uint64_t size,
1590                                             uint32_t ram_flags,
1591                                             Error **errp)
1592 {
1593     Error *err = NULL;
1594     memory_region_init(mr, owner, name, size);
1595     mr->ram = true;
1596     mr->terminates = true;
1597     mr->destructor = memory_region_destructor_ram;
1598     mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1599     if (err) {
1600         mr->size = int128_zero();
1601         object_unparent(OBJECT(mr));
1602         error_propagate(errp, err);
1603     }
1604 }
1605 
1606 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1607                                        Object *owner,
1608                                        const char *name,
1609                                        uint64_t size,
1610                                        uint64_t max_size,
1611                                        void (*resized)(const char*,
1612                                                        uint64_t length,
1613                                                        void *host),
1614                                        Error **errp)
1615 {
1616     Error *err = NULL;
1617     memory_region_init(mr, owner, name, size);
1618     mr->ram = true;
1619     mr->terminates = true;
1620     mr->destructor = memory_region_destructor_ram;
1621     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1622                                               mr, &err);
1623     if (err) {
1624         mr->size = int128_zero();
1625         object_unparent(OBJECT(mr));
1626         error_propagate(errp, err);
1627     }
1628 }
1629 
1630 #ifdef CONFIG_POSIX
1631 void memory_region_init_ram_from_file(MemoryRegion *mr,
1632                                       Object *owner,
1633                                       const char *name,
1634                                       uint64_t size,
1635                                       uint64_t align,
1636                                       uint32_t ram_flags,
1637                                       const char *path,
1638                                       ram_addr_t offset,
1639                                       Error **errp)
1640 {
1641     Error *err = NULL;
1642     memory_region_init(mr, owner, name, size);
1643     mr->ram = true;
1644     mr->readonly = !!(ram_flags & RAM_READONLY);
1645     mr->terminates = true;
1646     mr->destructor = memory_region_destructor_ram;
1647     mr->align = align;
1648     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1649                                              offset, &err);
1650     if (err) {
1651         mr->size = int128_zero();
1652         object_unparent(OBJECT(mr));
1653         error_propagate(errp, err);
1654     }
1655 }
1656 
1657 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1658                                     Object *owner,
1659                                     const char *name,
1660                                     uint64_t size,
1661                                     uint32_t ram_flags,
1662                                     int fd,
1663                                     ram_addr_t offset,
1664                                     Error **errp)
1665 {
1666     Error *err = NULL;
1667     memory_region_init(mr, owner, name, size);
1668     mr->ram = true;
1669     mr->readonly = !!(ram_flags & RAM_READONLY);
1670     mr->terminates = true;
1671     mr->destructor = memory_region_destructor_ram;
1672     mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1673                                            &err);
1674     if (err) {
1675         mr->size = int128_zero();
1676         object_unparent(OBJECT(mr));
1677         error_propagate(errp, err);
1678     }
1679 }
1680 #endif
1681 
1682 void memory_region_init_ram_ptr(MemoryRegion *mr,
1683                                 Object *owner,
1684                                 const char *name,
1685                                 uint64_t size,
1686                                 void *ptr)
1687 {
1688     memory_region_init(mr, owner, name, size);
1689     mr->ram = true;
1690     mr->terminates = true;
1691     mr->destructor = memory_region_destructor_ram;
1692 
1693     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1694     assert(ptr != NULL);
1695     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1696 }
1697 
1698 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1699                                        Object *owner,
1700                                        const char *name,
1701                                        uint64_t size,
1702                                        void *ptr)
1703 {
1704     memory_region_init(mr, owner, name, size);
1705     mr->ram = true;
1706     mr->terminates = true;
1707     mr->ram_device = true;
1708     mr->ops = &ram_device_mem_ops;
1709     mr->opaque = mr;
1710     mr->destructor = memory_region_destructor_ram;
1711 
1712     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1713     assert(ptr != NULL);
1714     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1715 }
1716 
1717 void memory_region_init_alias(MemoryRegion *mr,
1718                               Object *owner,
1719                               const char *name,
1720                               MemoryRegion *orig,
1721                               hwaddr offset,
1722                               uint64_t size)
1723 {
1724     memory_region_init(mr, owner, name, size);
1725     mr->alias = orig;
1726     mr->alias_offset = offset;
1727 }
1728 
1729 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1730                                       Object *owner,
1731                                       const char *name,
1732                                       uint64_t size,
1733                                       Error **errp)
1734 {
1735     memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1736     mr->readonly = true;
1737 }
1738 
1739 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1740                                              Object *owner,
1741                                              const MemoryRegionOps *ops,
1742                                              void *opaque,
1743                                              const char *name,
1744                                              uint64_t size,
1745                                              Error **errp)
1746 {
1747     Error *err = NULL;
1748     assert(ops);
1749     memory_region_init(mr, owner, name, size);
1750     mr->ops = ops;
1751     mr->opaque = opaque;
1752     mr->terminates = true;
1753     mr->rom_device = true;
1754     mr->destructor = memory_region_destructor_ram;
1755     mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1756     if (err) {
1757         mr->size = int128_zero();
1758         object_unparent(OBJECT(mr));
1759         error_propagate(errp, err);
1760     }
1761 }
1762 
1763 void memory_region_init_iommu(void *_iommu_mr,
1764                               size_t instance_size,
1765                               const char *mrtypename,
1766                               Object *owner,
1767                               const char *name,
1768                               uint64_t size)
1769 {
1770     struct IOMMUMemoryRegion *iommu_mr;
1771     struct MemoryRegion *mr;
1772 
1773     object_initialize(_iommu_mr, instance_size, mrtypename);
1774     mr = MEMORY_REGION(_iommu_mr);
1775     memory_region_do_init(mr, owner, name, size);
1776     iommu_mr = IOMMU_MEMORY_REGION(mr);
1777     mr->terminates = true;  /* then re-forwards */
1778     QLIST_INIT(&iommu_mr->iommu_notify);
1779     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1780 }
1781 
1782 static void memory_region_finalize(Object *obj)
1783 {
1784     MemoryRegion *mr = MEMORY_REGION(obj);
1785 
1786     assert(!mr->container);
1787 
1788     /* We know the region is not visible in any address space (it
1789      * does not have a container and cannot be a root either because
1790      * it has no references, so we can blindly clear mr->enabled.
1791      * memory_region_set_enabled instead could trigger a transaction
1792      * and cause an infinite loop.
1793      */
1794     mr->enabled = false;
1795     memory_region_transaction_begin();
1796     while (!QTAILQ_EMPTY(&mr->subregions)) {
1797         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1798         memory_region_del_subregion(mr, subregion);
1799     }
1800     memory_region_transaction_commit();
1801 
1802     mr->destructor(mr);
1803     memory_region_clear_coalescing(mr);
1804     g_free((char *)mr->name);
1805     g_free(mr->ioeventfds);
1806 }
1807 
1808 Object *memory_region_owner(MemoryRegion *mr)
1809 {
1810     Object *obj = OBJECT(mr);
1811     return obj->parent;
1812 }
1813 
1814 void memory_region_ref(MemoryRegion *mr)
1815 {
1816     /* MMIO callbacks most likely will access data that belongs
1817      * to the owner, hence the need to ref/unref the owner whenever
1818      * the memory region is in use.
1819      *
1820      * The memory region is a child of its owner.  As long as the
1821      * owner doesn't call unparent itself on the memory region,
1822      * ref-ing the owner will also keep the memory region alive.
1823      * Memory regions without an owner are supposed to never go away;
1824      * we do not ref/unref them because it slows down DMA sensibly.
1825      */
1826     if (mr && mr->owner) {
1827         object_ref(mr->owner);
1828     }
1829 }
1830 
1831 void memory_region_unref(MemoryRegion *mr)
1832 {
1833     if (mr && mr->owner) {
1834         object_unref(mr->owner);
1835     }
1836 }
1837 
1838 uint64_t memory_region_size(MemoryRegion *mr)
1839 {
1840     if (int128_eq(mr->size, int128_2_64())) {
1841         return UINT64_MAX;
1842     }
1843     return int128_get64(mr->size);
1844 }
1845 
1846 const char *memory_region_name(const MemoryRegion *mr)
1847 {
1848     if (!mr->name) {
1849         ((MemoryRegion *)mr)->name =
1850             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1851     }
1852     return mr->name;
1853 }
1854 
1855 bool memory_region_is_ram_device(MemoryRegion *mr)
1856 {
1857     return mr->ram_device;
1858 }
1859 
1860 bool memory_region_is_protected(MemoryRegion *mr)
1861 {
1862     return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1863 }
1864 
1865 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1866 {
1867     uint8_t mask = mr->dirty_log_mask;
1868     RAMBlock *rb = mr->ram_block;
1869 
1870     if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1871                              memory_region_is_iommu(mr))) {
1872         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1873     }
1874 
1875     if (tcg_enabled() && rb) {
1876         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1877         mask |= (1 << DIRTY_MEMORY_CODE);
1878     }
1879     return mask;
1880 }
1881 
1882 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1883 {
1884     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1885 }
1886 
1887 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1888                                                    Error **errp)
1889 {
1890     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1891     IOMMUNotifier *iommu_notifier;
1892     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1893     int ret = 0;
1894 
1895     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1896         flags |= iommu_notifier->notifier_flags;
1897     }
1898 
1899     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1900         ret = imrc->notify_flag_changed(iommu_mr,
1901                                         iommu_mr->iommu_notify_flags,
1902                                         flags, errp);
1903     }
1904 
1905     if (!ret) {
1906         iommu_mr->iommu_notify_flags = flags;
1907     }
1908     return ret;
1909 }
1910 
1911 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1912                                            uint64_t page_size_mask,
1913                                            Error **errp)
1914 {
1915     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1916     int ret = 0;
1917 
1918     if (imrc->iommu_set_page_size_mask) {
1919         ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1920     }
1921     return ret;
1922 }
1923 
1924 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu_mr,
1925                                         GList *iova_ranges,
1926                                         Error **errp)
1927 {
1928     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1929     int ret = 0;
1930 
1931     if (imrc->iommu_set_iova_ranges) {
1932         ret = imrc->iommu_set_iova_ranges(iommu_mr, iova_ranges, errp);
1933     }
1934     return ret;
1935 }
1936 
1937 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1938                                           IOMMUNotifier *n, Error **errp)
1939 {
1940     IOMMUMemoryRegion *iommu_mr;
1941     int ret;
1942 
1943     if (mr->alias) {
1944         return memory_region_register_iommu_notifier(mr->alias, n, errp);
1945     }
1946 
1947     /* We need to register for at least one bitfield */
1948     iommu_mr = IOMMU_MEMORY_REGION(mr);
1949     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1950     assert(n->start <= n->end);
1951     assert(n->iommu_idx >= 0 &&
1952            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1953 
1954     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1955     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1956     if (ret) {
1957         QLIST_REMOVE(n, node);
1958     }
1959     return ret;
1960 }
1961 
1962 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1963 {
1964     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1965 
1966     if (imrc->get_min_page_size) {
1967         return imrc->get_min_page_size(iommu_mr);
1968     }
1969     return TARGET_PAGE_SIZE;
1970 }
1971 
1972 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1973 {
1974     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1975     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1976     hwaddr addr, granularity;
1977     IOMMUTLBEntry iotlb;
1978 
1979     /* If the IOMMU has its own replay callback, override */
1980     if (imrc->replay) {
1981         imrc->replay(iommu_mr, n);
1982         return;
1983     }
1984 
1985     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1986 
1987     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1988         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1989         if (iotlb.perm != IOMMU_NONE) {
1990             n->notify(n, &iotlb);
1991         }
1992 
1993         /* if (2^64 - MR size) < granularity, it's possible to get an
1994          * infinite loop here.  This should catch such a wraparound */
1995         if ((addr + granularity) < addr) {
1996             break;
1997         }
1998     }
1999 }
2000 
2001 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
2002                                              IOMMUNotifier *n)
2003 {
2004     IOMMUMemoryRegion *iommu_mr;
2005 
2006     if (mr->alias) {
2007         memory_region_unregister_iommu_notifier(mr->alias, n);
2008         return;
2009     }
2010     QLIST_REMOVE(n, node);
2011     iommu_mr = IOMMU_MEMORY_REGION(mr);
2012     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
2013 }
2014 
2015 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
2016                                     IOMMUTLBEvent *event)
2017 {
2018     IOMMUTLBEntry *entry = &event->entry;
2019     hwaddr entry_end = entry->iova + entry->addr_mask;
2020     IOMMUTLBEntry tmp = *entry;
2021 
2022     if (event->type == IOMMU_NOTIFIER_UNMAP) {
2023         assert(entry->perm == IOMMU_NONE);
2024     }
2025 
2026     /*
2027      * Skip the notification if the notification does not overlap
2028      * with registered range.
2029      */
2030     if (notifier->start > entry_end || notifier->end < entry->iova) {
2031         return;
2032     }
2033 
2034     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2035         /* Crop (iova, addr_mask) to range */
2036         tmp.iova = MAX(tmp.iova, notifier->start);
2037         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2038     } else {
2039         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2040     }
2041 
2042     if (event->type & notifier->notifier_flags) {
2043         notifier->notify(notifier, &tmp);
2044     }
2045 }
2046 
2047 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2048 {
2049     IOMMUTLBEvent event;
2050 
2051     event.type = IOMMU_NOTIFIER_UNMAP;
2052     event.entry.target_as = &address_space_memory;
2053     event.entry.iova = notifier->start;
2054     event.entry.perm = IOMMU_NONE;
2055     event.entry.addr_mask = notifier->end - notifier->start;
2056 
2057     memory_region_notify_iommu_one(notifier, &event);
2058 }
2059 
2060 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2061                                 int iommu_idx,
2062                                 IOMMUTLBEvent event)
2063 {
2064     IOMMUNotifier *iommu_notifier;
2065 
2066     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2067 
2068     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2069         if (iommu_notifier->iommu_idx == iommu_idx) {
2070             memory_region_notify_iommu_one(iommu_notifier, &event);
2071         }
2072     }
2073 }
2074 
2075 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2076                                  enum IOMMUMemoryRegionAttr attr,
2077                                  void *data)
2078 {
2079     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2080 
2081     if (!imrc->get_attr) {
2082         return -EINVAL;
2083     }
2084 
2085     return imrc->get_attr(iommu_mr, attr, data);
2086 }
2087 
2088 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2089                                        MemTxAttrs attrs)
2090 {
2091     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2092 
2093     if (!imrc->attrs_to_index) {
2094         return 0;
2095     }
2096 
2097     return imrc->attrs_to_index(iommu_mr, attrs);
2098 }
2099 
2100 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2101 {
2102     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2103 
2104     if (!imrc->num_indexes) {
2105         return 1;
2106     }
2107 
2108     return imrc->num_indexes(iommu_mr);
2109 }
2110 
2111 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2112 {
2113     if (!memory_region_is_ram(mr)) {
2114         return NULL;
2115     }
2116     return mr->rdm;
2117 }
2118 
2119 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2120                                            RamDiscardManager *rdm)
2121 {
2122     g_assert(memory_region_is_ram(mr));
2123     g_assert(!rdm || !mr->rdm);
2124     mr->rdm = rdm;
2125 }
2126 
2127 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2128                                                  const MemoryRegion *mr)
2129 {
2130     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2131 
2132     g_assert(rdmc->get_min_granularity);
2133     return rdmc->get_min_granularity(rdm, mr);
2134 }
2135 
2136 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2137                                       const MemoryRegionSection *section)
2138 {
2139     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2140 
2141     g_assert(rdmc->is_populated);
2142     return rdmc->is_populated(rdm, section);
2143 }
2144 
2145 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2146                                          MemoryRegionSection *section,
2147                                          ReplayRamPopulate replay_fn,
2148                                          void *opaque)
2149 {
2150     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2151 
2152     g_assert(rdmc->replay_populated);
2153     return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2154 }
2155 
2156 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2157                                           MemoryRegionSection *section,
2158                                           ReplayRamDiscard replay_fn,
2159                                           void *opaque)
2160 {
2161     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2162 
2163     g_assert(rdmc->replay_discarded);
2164     rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2165 }
2166 
2167 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2168                                            RamDiscardListener *rdl,
2169                                            MemoryRegionSection *section)
2170 {
2171     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2172 
2173     g_assert(rdmc->register_listener);
2174     rdmc->register_listener(rdm, rdl, section);
2175 }
2176 
2177 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2178                                              RamDiscardListener *rdl)
2179 {
2180     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2181 
2182     g_assert(rdmc->unregister_listener);
2183     rdmc->unregister_listener(rdm, rdl);
2184 }
2185 
2186 /* Called with rcu_read_lock held.  */
2187 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
2188                           ram_addr_t *ram_addr, bool *read_only,
2189                           bool *mr_has_discard_manager)
2190 {
2191     MemoryRegion *mr;
2192     hwaddr xlat;
2193     hwaddr len = iotlb->addr_mask + 1;
2194     bool writable = iotlb->perm & IOMMU_WO;
2195 
2196     if (mr_has_discard_manager) {
2197         *mr_has_discard_manager = false;
2198     }
2199     /*
2200      * The IOMMU TLB entry we have just covers translation through
2201      * this IOMMU to its immediate target.  We need to translate
2202      * it the rest of the way through to memory.
2203      */
2204     mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2205                                  &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2206     if (!memory_region_is_ram(mr)) {
2207         error_report("iommu map to non memory area %" HWADDR_PRIx "", xlat);
2208         return false;
2209     } else if (memory_region_has_ram_discard_manager(mr)) {
2210         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2211         MemoryRegionSection tmp = {
2212             .mr = mr,
2213             .offset_within_region = xlat,
2214             .size = int128_make64(len),
2215         };
2216         if (mr_has_discard_manager) {
2217             *mr_has_discard_manager = true;
2218         }
2219         /*
2220          * Malicious VMs can map memory into the IOMMU, which is expected
2221          * to remain discarded. vfio will pin all pages, populating memory.
2222          * Disallow that. vmstate priorities make sure any RamDiscardManager
2223          * were already restored before IOMMUs are restored.
2224          */
2225         if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2226             error_report("iommu map to discarded memory (e.g., unplugged via"
2227                          " virtio-mem): %" HWADDR_PRIx "",
2228                          iotlb->translated_addr);
2229             return false;
2230         }
2231     }
2232 
2233     /*
2234      * Translation truncates length to the IOMMU page size,
2235      * check that it did not truncate too much.
2236      */
2237     if (len & iotlb->addr_mask) {
2238         error_report("iommu has granularity incompatible with target AS");
2239         return false;
2240     }
2241 
2242     if (vaddr) {
2243         *vaddr = memory_region_get_ram_ptr(mr) + xlat;
2244     }
2245 
2246     if (ram_addr) {
2247         *ram_addr = memory_region_get_ram_addr(mr) + xlat;
2248     }
2249 
2250     if (read_only) {
2251         *read_only = !writable || mr->readonly;
2252     }
2253 
2254     return true;
2255 }
2256 
2257 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2258 {
2259     uint8_t mask = 1 << client;
2260     uint8_t old_logging;
2261 
2262     assert(client == DIRTY_MEMORY_VGA);
2263     old_logging = mr->vga_logging_count;
2264     mr->vga_logging_count += log ? 1 : -1;
2265     if (!!old_logging == !!mr->vga_logging_count) {
2266         return;
2267     }
2268 
2269     memory_region_transaction_begin();
2270     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2271     memory_region_update_pending |= mr->enabled;
2272     memory_region_transaction_commit();
2273 }
2274 
2275 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2276                              hwaddr size)
2277 {
2278     assert(mr->ram_block);
2279     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2280                                         size,
2281                                         memory_region_get_dirty_log_mask(mr));
2282 }
2283 
2284 /*
2285  * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2286  * dirty bitmap for the specified memory region.
2287  */
2288 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2289 {
2290     MemoryListener *listener;
2291     AddressSpace *as;
2292     FlatView *view;
2293     FlatRange *fr;
2294 
2295     /* If the same address space has multiple log_sync listeners, we
2296      * visit that address space's FlatView multiple times.  But because
2297      * log_sync listeners are rare, it's still cheaper than walking each
2298      * address space once.
2299      */
2300     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2301         if (listener->log_sync) {
2302             as = listener->address_space;
2303             view = address_space_get_flatview(as);
2304             FOR_EACH_FLAT_RANGE(fr, view) {
2305                 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2306                     MemoryRegionSection mrs = section_from_flat_range(fr, view);
2307                     listener->log_sync(listener, &mrs);
2308                 }
2309             }
2310             flatview_unref(view);
2311             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2312         } else if (listener->log_sync_global) {
2313             /*
2314              * No matter whether MR is specified, what we can do here
2315              * is to do a global sync, because we are not capable to
2316              * sync in a finer granularity.
2317              */
2318             listener->log_sync_global(listener, last_stage);
2319             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2320         }
2321     }
2322 }
2323 
2324 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2325                                       hwaddr len)
2326 {
2327     MemoryRegionSection mrs;
2328     MemoryListener *listener;
2329     AddressSpace *as;
2330     FlatView *view;
2331     FlatRange *fr;
2332     hwaddr sec_start, sec_end, sec_size;
2333 
2334     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2335         if (!listener->log_clear) {
2336             continue;
2337         }
2338         as = listener->address_space;
2339         view = address_space_get_flatview(as);
2340         FOR_EACH_FLAT_RANGE(fr, view) {
2341             if (!fr->dirty_log_mask || fr->mr != mr) {
2342                 /*
2343                  * Clear dirty bitmap operation only applies to those
2344                  * regions whose dirty logging is at least enabled
2345                  */
2346                 continue;
2347             }
2348 
2349             mrs = section_from_flat_range(fr, view);
2350 
2351             sec_start = MAX(mrs.offset_within_region, start);
2352             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2353             sec_end = MIN(sec_end, start + len);
2354 
2355             if (sec_start >= sec_end) {
2356                 /*
2357                  * If this memory region section has no intersection
2358                  * with the requested range, skip.
2359                  */
2360                 continue;
2361             }
2362 
2363             /* Valid case; shrink the section if needed */
2364             mrs.offset_within_address_space +=
2365                 sec_start - mrs.offset_within_region;
2366             mrs.offset_within_region = sec_start;
2367             sec_size = sec_end - sec_start;
2368             mrs.size = int128_make64(sec_size);
2369             listener->log_clear(listener, &mrs);
2370         }
2371         flatview_unref(view);
2372     }
2373 }
2374 
2375 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2376                                                             hwaddr addr,
2377                                                             hwaddr size,
2378                                                             unsigned client)
2379 {
2380     DirtyBitmapSnapshot *snapshot;
2381     assert(mr->ram_block);
2382     memory_region_sync_dirty_bitmap(mr, false);
2383     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2384     memory_global_after_dirty_log_sync();
2385     return snapshot;
2386 }
2387 
2388 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2389                                       hwaddr addr, hwaddr size)
2390 {
2391     assert(mr->ram_block);
2392     return cpu_physical_memory_snapshot_get_dirty(snap,
2393                 memory_region_get_ram_addr(mr) + addr, size);
2394 }
2395 
2396 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2397 {
2398     if (mr->readonly != readonly) {
2399         memory_region_transaction_begin();
2400         mr->readonly = readonly;
2401         memory_region_update_pending |= mr->enabled;
2402         memory_region_transaction_commit();
2403     }
2404 }
2405 
2406 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2407 {
2408     if (mr->nonvolatile != nonvolatile) {
2409         memory_region_transaction_begin();
2410         mr->nonvolatile = nonvolatile;
2411         memory_region_update_pending |= mr->enabled;
2412         memory_region_transaction_commit();
2413     }
2414 }
2415 
2416 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2417 {
2418     if (mr->romd_mode != romd_mode) {
2419         memory_region_transaction_begin();
2420         mr->romd_mode = romd_mode;
2421         memory_region_update_pending |= mr->enabled;
2422         memory_region_transaction_commit();
2423     }
2424 }
2425 
2426 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2427                                hwaddr size, unsigned client)
2428 {
2429     assert(mr->ram_block);
2430     cpu_physical_memory_test_and_clear_dirty(
2431         memory_region_get_ram_addr(mr) + addr, size, client);
2432 }
2433 
2434 int memory_region_get_fd(MemoryRegion *mr)
2435 {
2436     RCU_READ_LOCK_GUARD();
2437     while (mr->alias) {
2438         mr = mr->alias;
2439     }
2440     return mr->ram_block->fd;
2441 }
2442 
2443 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2444 {
2445     uint64_t offset = 0;
2446 
2447     RCU_READ_LOCK_GUARD();
2448     while (mr->alias) {
2449         offset += mr->alias_offset;
2450         mr = mr->alias;
2451     }
2452     assert(mr->ram_block);
2453     return qemu_map_ram_ptr(mr->ram_block, offset);
2454 }
2455 
2456 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2457 {
2458     RAMBlock *block;
2459 
2460     block = qemu_ram_block_from_host(ptr, false, offset);
2461     if (!block) {
2462         return NULL;
2463     }
2464 
2465     return block->mr;
2466 }
2467 
2468 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2469 {
2470     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2471 }
2472 
2473 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2474 {
2475     assert(mr->ram_block);
2476 
2477     qemu_ram_resize(mr->ram_block, newsize, errp);
2478 }
2479 
2480 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2481 {
2482     if (mr->ram_block) {
2483         qemu_ram_msync(mr->ram_block, addr, size);
2484     }
2485 }
2486 
2487 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2488 {
2489     /*
2490      * Might be extended case needed to cover
2491      * different types of memory regions
2492      */
2493     if (mr->dirty_log_mask) {
2494         memory_region_msync(mr, addr, size);
2495     }
2496 }
2497 
2498 /*
2499  * Call proper memory listeners about the change on the newly
2500  * added/removed CoalescedMemoryRange.
2501  */
2502 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2503                                                  CoalescedMemoryRange *cmr,
2504                                                  bool add)
2505 {
2506     AddressSpace *as;
2507     FlatView *view;
2508     FlatRange *fr;
2509 
2510     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2511         view = address_space_get_flatview(as);
2512         FOR_EACH_FLAT_RANGE(fr, view) {
2513             if (fr->mr == mr) {
2514                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2515             }
2516         }
2517         flatview_unref(view);
2518     }
2519 }
2520 
2521 void memory_region_set_coalescing(MemoryRegion *mr)
2522 {
2523     memory_region_clear_coalescing(mr);
2524     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2525 }
2526 
2527 void memory_region_add_coalescing(MemoryRegion *mr,
2528                                   hwaddr offset,
2529                                   uint64_t size)
2530 {
2531     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2532 
2533     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2534     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2535     memory_region_update_coalesced_range(mr, cmr, true);
2536     memory_region_set_flush_coalesced(mr);
2537 }
2538 
2539 void memory_region_clear_coalescing(MemoryRegion *mr)
2540 {
2541     CoalescedMemoryRange *cmr;
2542 
2543     if (QTAILQ_EMPTY(&mr->coalesced)) {
2544         return;
2545     }
2546 
2547     qemu_flush_coalesced_mmio_buffer();
2548     mr->flush_coalesced_mmio = false;
2549 
2550     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2551         cmr = QTAILQ_FIRST(&mr->coalesced);
2552         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2553         memory_region_update_coalesced_range(mr, cmr, false);
2554         g_free(cmr);
2555     }
2556 }
2557 
2558 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2559 {
2560     mr->flush_coalesced_mmio = true;
2561 }
2562 
2563 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2564 {
2565     qemu_flush_coalesced_mmio_buffer();
2566     if (QTAILQ_EMPTY(&mr->coalesced)) {
2567         mr->flush_coalesced_mmio = false;
2568     }
2569 }
2570 
2571 void memory_region_add_eventfd(MemoryRegion *mr,
2572                                hwaddr addr,
2573                                unsigned size,
2574                                bool match_data,
2575                                uint64_t data,
2576                                EventNotifier *e)
2577 {
2578     MemoryRegionIoeventfd mrfd = {
2579         .addr.start = int128_make64(addr),
2580         .addr.size = int128_make64(size),
2581         .match_data = match_data,
2582         .data = data,
2583         .e = e,
2584     };
2585     unsigned i;
2586 
2587     if (size) {
2588         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2589     }
2590     memory_region_transaction_begin();
2591     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2592         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2593             break;
2594         }
2595     }
2596     ++mr->ioeventfd_nb;
2597     mr->ioeventfds = g_realloc(mr->ioeventfds,
2598                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2599     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2600             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2601     mr->ioeventfds[i] = mrfd;
2602     ioeventfd_update_pending |= mr->enabled;
2603     memory_region_transaction_commit();
2604 }
2605 
2606 void memory_region_del_eventfd(MemoryRegion *mr,
2607                                hwaddr addr,
2608                                unsigned size,
2609                                bool match_data,
2610                                uint64_t data,
2611                                EventNotifier *e)
2612 {
2613     MemoryRegionIoeventfd mrfd = {
2614         .addr.start = int128_make64(addr),
2615         .addr.size = int128_make64(size),
2616         .match_data = match_data,
2617         .data = data,
2618         .e = e,
2619     };
2620     unsigned i;
2621 
2622     if (size) {
2623         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2624     }
2625     memory_region_transaction_begin();
2626     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2627         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2628             break;
2629         }
2630     }
2631     assert(i != mr->ioeventfd_nb);
2632     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2633             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2634     --mr->ioeventfd_nb;
2635     mr->ioeventfds = g_realloc(mr->ioeventfds,
2636                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2637     ioeventfd_update_pending |= mr->enabled;
2638     memory_region_transaction_commit();
2639 }
2640 
2641 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2642 {
2643     MemoryRegion *mr = subregion->container;
2644     MemoryRegion *other;
2645 
2646     memory_region_transaction_begin();
2647 
2648     memory_region_ref(subregion);
2649     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2650         if (subregion->priority >= other->priority) {
2651             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2652             goto done;
2653         }
2654     }
2655     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2656 done:
2657     memory_region_update_pending |= mr->enabled && subregion->enabled;
2658     memory_region_transaction_commit();
2659 }
2660 
2661 static void memory_region_add_subregion_common(MemoryRegion *mr,
2662                                                hwaddr offset,
2663                                                MemoryRegion *subregion)
2664 {
2665     MemoryRegion *alias;
2666 
2667     assert(!subregion->container);
2668     subregion->container = mr;
2669     for (alias = subregion->alias; alias; alias = alias->alias) {
2670         alias->mapped_via_alias++;
2671     }
2672     subregion->addr = offset;
2673     memory_region_update_container_subregions(subregion);
2674 }
2675 
2676 void memory_region_add_subregion(MemoryRegion *mr,
2677                                  hwaddr offset,
2678                                  MemoryRegion *subregion)
2679 {
2680     subregion->priority = 0;
2681     memory_region_add_subregion_common(mr, offset, subregion);
2682 }
2683 
2684 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2685                                          hwaddr offset,
2686                                          MemoryRegion *subregion,
2687                                          int priority)
2688 {
2689     subregion->priority = priority;
2690     memory_region_add_subregion_common(mr, offset, subregion);
2691 }
2692 
2693 void memory_region_del_subregion(MemoryRegion *mr,
2694                                  MemoryRegion *subregion)
2695 {
2696     MemoryRegion *alias;
2697 
2698     memory_region_transaction_begin();
2699     assert(subregion->container == mr);
2700     subregion->container = NULL;
2701     for (alias = subregion->alias; alias; alias = alias->alias) {
2702         alias->mapped_via_alias--;
2703         assert(alias->mapped_via_alias >= 0);
2704     }
2705     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2706     memory_region_unref(subregion);
2707     memory_region_update_pending |= mr->enabled && subregion->enabled;
2708     memory_region_transaction_commit();
2709 }
2710 
2711 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2712 {
2713     if (enabled == mr->enabled) {
2714         return;
2715     }
2716     memory_region_transaction_begin();
2717     mr->enabled = enabled;
2718     memory_region_update_pending = true;
2719     memory_region_transaction_commit();
2720 }
2721 
2722 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2723 {
2724     Int128 s = int128_make64(size);
2725 
2726     if (size == UINT64_MAX) {
2727         s = int128_2_64();
2728     }
2729     if (int128_eq(s, mr->size)) {
2730         return;
2731     }
2732     memory_region_transaction_begin();
2733     mr->size = s;
2734     memory_region_update_pending = true;
2735     memory_region_transaction_commit();
2736 }
2737 
2738 static void memory_region_readd_subregion(MemoryRegion *mr)
2739 {
2740     MemoryRegion *container = mr->container;
2741 
2742     if (container) {
2743         memory_region_transaction_begin();
2744         memory_region_ref(mr);
2745         memory_region_del_subregion(container, mr);
2746         memory_region_add_subregion_common(container, mr->addr, mr);
2747         memory_region_unref(mr);
2748         memory_region_transaction_commit();
2749     }
2750 }
2751 
2752 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2753 {
2754     if (addr != mr->addr) {
2755         mr->addr = addr;
2756         memory_region_readd_subregion(mr);
2757     }
2758 }
2759 
2760 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2761 {
2762     assert(mr->alias);
2763 
2764     if (offset == mr->alias_offset) {
2765         return;
2766     }
2767 
2768     memory_region_transaction_begin();
2769     mr->alias_offset = offset;
2770     memory_region_update_pending |= mr->enabled;
2771     memory_region_transaction_commit();
2772 }
2773 
2774 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2775 {
2776     if (unmergeable == mr->unmergeable) {
2777         return;
2778     }
2779 
2780     memory_region_transaction_begin();
2781     mr->unmergeable = unmergeable;
2782     memory_region_update_pending |= mr->enabled;
2783     memory_region_transaction_commit();
2784 }
2785 
2786 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2787 {
2788     return mr->align;
2789 }
2790 
2791 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2792 {
2793     const AddrRange *addr = addr_;
2794     const FlatRange *fr = fr_;
2795 
2796     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2797         return -1;
2798     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2799         return 1;
2800     }
2801     return 0;
2802 }
2803 
2804 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2805 {
2806     return bsearch(&addr, view->ranges, view->nr,
2807                    sizeof(FlatRange), cmp_flatrange_addr);
2808 }
2809 
2810 bool memory_region_is_mapped(MemoryRegion *mr)
2811 {
2812     return !!mr->container || mr->mapped_via_alias;
2813 }
2814 
2815 /* Same as memory_region_find, but it does not add a reference to the
2816  * returned region.  It must be called from an RCU critical section.
2817  */
2818 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2819                                                   hwaddr addr, uint64_t size)
2820 {
2821     MemoryRegionSection ret = { .mr = NULL };
2822     MemoryRegion *root;
2823     AddressSpace *as;
2824     AddrRange range;
2825     FlatView *view;
2826     FlatRange *fr;
2827 
2828     addr += mr->addr;
2829     for (root = mr; root->container; ) {
2830         root = root->container;
2831         addr += root->addr;
2832     }
2833 
2834     as = memory_region_to_address_space(root);
2835     if (!as) {
2836         return ret;
2837     }
2838     range = addrrange_make(int128_make64(addr), int128_make64(size));
2839 
2840     view = address_space_to_flatview(as);
2841     fr = flatview_lookup(view, range);
2842     if (!fr) {
2843         return ret;
2844     }
2845 
2846     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2847         --fr;
2848     }
2849 
2850     ret.mr = fr->mr;
2851     ret.fv = view;
2852     range = addrrange_intersection(range, fr->addr);
2853     ret.offset_within_region = fr->offset_in_region;
2854     ret.offset_within_region += int128_get64(int128_sub(range.start,
2855                                                         fr->addr.start));
2856     ret.size = range.size;
2857     ret.offset_within_address_space = int128_get64(range.start);
2858     ret.readonly = fr->readonly;
2859     ret.nonvolatile = fr->nonvolatile;
2860     return ret;
2861 }
2862 
2863 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2864                                        hwaddr addr, uint64_t size)
2865 {
2866     MemoryRegionSection ret;
2867     RCU_READ_LOCK_GUARD();
2868     ret = memory_region_find_rcu(mr, addr, size);
2869     if (ret.mr) {
2870         memory_region_ref(ret.mr);
2871     }
2872     return ret;
2873 }
2874 
2875 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2876 {
2877     MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2878 
2879     *tmp = *s;
2880     if (tmp->mr) {
2881         memory_region_ref(tmp->mr);
2882     }
2883     if (tmp->fv) {
2884         bool ret  = flatview_ref(tmp->fv);
2885 
2886         g_assert(ret);
2887     }
2888     return tmp;
2889 }
2890 
2891 void memory_region_section_free_copy(MemoryRegionSection *s)
2892 {
2893     if (s->fv) {
2894         flatview_unref(s->fv);
2895     }
2896     if (s->mr) {
2897         memory_region_unref(s->mr);
2898     }
2899     g_free(s);
2900 }
2901 
2902 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2903 {
2904     MemoryRegion *mr;
2905 
2906     RCU_READ_LOCK_GUARD();
2907     mr = memory_region_find_rcu(container, addr, 1).mr;
2908     return mr && mr != container;
2909 }
2910 
2911 void memory_global_dirty_log_sync(bool last_stage)
2912 {
2913     memory_region_sync_dirty_bitmap(NULL, last_stage);
2914 }
2915 
2916 void memory_global_after_dirty_log_sync(void)
2917 {
2918     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2919 }
2920 
2921 /*
2922  * Dirty track stop flags that are postponed due to VM being stopped.  Should
2923  * only be used within vmstate_change hook.
2924  */
2925 static unsigned int postponed_stop_flags;
2926 static VMChangeStateEntry *vmstate_change;
2927 static void memory_global_dirty_log_stop_postponed_run(void);
2928 
2929 void memory_global_dirty_log_start(unsigned int flags)
2930 {
2931     unsigned int old_flags;
2932 
2933     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2934 
2935     if (vmstate_change) {
2936         /* If there is postponed stop(), operate on it first */
2937         postponed_stop_flags &= ~flags;
2938         memory_global_dirty_log_stop_postponed_run();
2939     }
2940 
2941     flags &= ~global_dirty_tracking;
2942     if (!flags) {
2943         return;
2944     }
2945 
2946     old_flags = global_dirty_tracking;
2947     global_dirty_tracking |= flags;
2948     trace_global_dirty_changed(global_dirty_tracking);
2949 
2950     if (!old_flags) {
2951         MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2952         memory_region_transaction_begin();
2953         memory_region_update_pending = true;
2954         memory_region_transaction_commit();
2955     }
2956 }
2957 
2958 static void memory_global_dirty_log_do_stop(unsigned int flags)
2959 {
2960     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2961     assert((global_dirty_tracking & flags) == flags);
2962     global_dirty_tracking &= ~flags;
2963 
2964     trace_global_dirty_changed(global_dirty_tracking);
2965 
2966     if (!global_dirty_tracking) {
2967         memory_region_transaction_begin();
2968         memory_region_update_pending = true;
2969         memory_region_transaction_commit();
2970         MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2971     }
2972 }
2973 
2974 /*
2975  * Execute the postponed dirty log stop operations if there is, then reset
2976  * everything (including the flags and the vmstate change hook).
2977  */
2978 static void memory_global_dirty_log_stop_postponed_run(void)
2979 {
2980     /* This must be called with the vmstate handler registered */
2981     assert(vmstate_change);
2982 
2983     /* Note: postponed_stop_flags can be cleared in log start routine */
2984     if (postponed_stop_flags) {
2985         memory_global_dirty_log_do_stop(postponed_stop_flags);
2986         postponed_stop_flags = 0;
2987     }
2988 
2989     qemu_del_vm_change_state_handler(vmstate_change);
2990     vmstate_change = NULL;
2991 }
2992 
2993 static void memory_vm_change_state_handler(void *opaque, bool running,
2994                                            RunState state)
2995 {
2996     if (running) {
2997         memory_global_dirty_log_stop_postponed_run();
2998     }
2999 }
3000 
3001 void memory_global_dirty_log_stop(unsigned int flags)
3002 {
3003     if (!runstate_is_running()) {
3004         /* Postpone the dirty log stop, e.g., to when VM starts again */
3005         if (vmstate_change) {
3006             /* Batch with previous postponed flags */
3007             postponed_stop_flags |= flags;
3008         } else {
3009             postponed_stop_flags = flags;
3010             vmstate_change = qemu_add_vm_change_state_handler(
3011                 memory_vm_change_state_handler, NULL);
3012         }
3013         return;
3014     }
3015 
3016     memory_global_dirty_log_do_stop(flags);
3017 }
3018 
3019 static void listener_add_address_space(MemoryListener *listener,
3020                                        AddressSpace *as)
3021 {
3022     FlatView *view;
3023     FlatRange *fr;
3024 
3025     if (listener->begin) {
3026         listener->begin(listener);
3027     }
3028     if (global_dirty_tracking) {
3029         if (listener->log_global_start) {
3030             listener->log_global_start(listener);
3031         }
3032     }
3033 
3034     view = address_space_get_flatview(as);
3035     FOR_EACH_FLAT_RANGE(fr, view) {
3036         MemoryRegionSection section = section_from_flat_range(fr, view);
3037 
3038         if (listener->region_add) {
3039             listener->region_add(listener, &section);
3040         }
3041         if (fr->dirty_log_mask && listener->log_start) {
3042             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3043         }
3044     }
3045     if (listener->commit) {
3046         listener->commit(listener);
3047     }
3048     flatview_unref(view);
3049 }
3050 
3051 static void listener_del_address_space(MemoryListener *listener,
3052                                        AddressSpace *as)
3053 {
3054     FlatView *view;
3055     FlatRange *fr;
3056 
3057     if (listener->begin) {
3058         listener->begin(listener);
3059     }
3060     view = address_space_get_flatview(as);
3061     FOR_EACH_FLAT_RANGE(fr, view) {
3062         MemoryRegionSection section = section_from_flat_range(fr, view);
3063 
3064         if (fr->dirty_log_mask && listener->log_stop) {
3065             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3066         }
3067         if (listener->region_del) {
3068             listener->region_del(listener, &section);
3069         }
3070     }
3071     if (listener->commit) {
3072         listener->commit(listener);
3073     }
3074     flatview_unref(view);
3075 }
3076 
3077 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3078 {
3079     MemoryListener *other = NULL;
3080 
3081     /* Only one of them can be defined for a listener */
3082     assert(!(listener->log_sync && listener->log_sync_global));
3083 
3084     listener->address_space = as;
3085     if (QTAILQ_EMPTY(&memory_listeners)
3086         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3087         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3088     } else {
3089         QTAILQ_FOREACH(other, &memory_listeners, link) {
3090             if (listener->priority < other->priority) {
3091                 break;
3092             }
3093         }
3094         QTAILQ_INSERT_BEFORE(other, listener, link);
3095     }
3096 
3097     if (QTAILQ_EMPTY(&as->listeners)
3098         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3099         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3100     } else {
3101         QTAILQ_FOREACH(other, &as->listeners, link_as) {
3102             if (listener->priority < other->priority) {
3103                 break;
3104             }
3105         }
3106         QTAILQ_INSERT_BEFORE(other, listener, link_as);
3107     }
3108 
3109     listener_add_address_space(listener, as);
3110 
3111     if (listener->eventfd_add || listener->eventfd_del) {
3112         as->ioeventfd_notifiers++;
3113     }
3114 }
3115 
3116 void memory_listener_unregister(MemoryListener *listener)
3117 {
3118     if (!listener->address_space) {
3119         return;
3120     }
3121 
3122     if (listener->eventfd_add || listener->eventfd_del) {
3123         listener->address_space->ioeventfd_notifiers--;
3124     }
3125 
3126     listener_del_address_space(listener, listener->address_space);
3127     QTAILQ_REMOVE(&memory_listeners, listener, link);
3128     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3129     listener->address_space = NULL;
3130 }
3131 
3132 void address_space_remove_listeners(AddressSpace *as)
3133 {
3134     while (!QTAILQ_EMPTY(&as->listeners)) {
3135         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3136     }
3137 }
3138 
3139 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3140 {
3141     memory_region_ref(root);
3142     as->root = root;
3143     as->current_map = NULL;
3144     as->ioeventfd_nb = 0;
3145     as->ioeventfds = NULL;
3146     QTAILQ_INIT(&as->listeners);
3147     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3148     as->name = g_strdup(name ? name : "anonymous");
3149     address_space_update_topology(as);
3150     address_space_update_ioeventfds(as);
3151 }
3152 
3153 static void do_address_space_destroy(AddressSpace *as)
3154 {
3155     assert(QTAILQ_EMPTY(&as->listeners));
3156 
3157     flatview_unref(as->current_map);
3158     g_free(as->name);
3159     g_free(as->ioeventfds);
3160     memory_region_unref(as->root);
3161 }
3162 
3163 void address_space_destroy(AddressSpace *as)
3164 {
3165     MemoryRegion *root = as->root;
3166 
3167     /* Flush out anything from MemoryListeners listening in on this */
3168     memory_region_transaction_begin();
3169     as->root = NULL;
3170     memory_region_transaction_commit();
3171     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3172 
3173     /* At this point, as->dispatch and as->current_map are dummy
3174      * entries that the guest should never use.  Wait for the old
3175      * values to expire before freeing the data.
3176      */
3177     as->root = root;
3178     call_rcu(as, do_address_space_destroy, rcu);
3179 }
3180 
3181 static const char *memory_region_type(MemoryRegion *mr)
3182 {
3183     if (mr->alias) {
3184         return memory_region_type(mr->alias);
3185     }
3186     if (memory_region_is_ram_device(mr)) {
3187         return "ramd";
3188     } else if (memory_region_is_romd(mr)) {
3189         return "romd";
3190     } else if (memory_region_is_rom(mr)) {
3191         return "rom";
3192     } else if (memory_region_is_ram(mr)) {
3193         return "ram";
3194     } else {
3195         return "i/o";
3196     }
3197 }
3198 
3199 typedef struct MemoryRegionList MemoryRegionList;
3200 
3201 struct MemoryRegionList {
3202     const MemoryRegion *mr;
3203     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3204 };
3205 
3206 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3207 
3208 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3209                            int128_sub((size), int128_one())) : 0)
3210 #define MTREE_INDENT "  "
3211 
3212 static void mtree_expand_owner(const char *label, Object *obj)
3213 {
3214     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3215 
3216     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3217     if (dev && dev->id) {
3218         qemu_printf(" id=%s", dev->id);
3219     } else {
3220         char *canonical_path = object_get_canonical_path(obj);
3221         if (canonical_path) {
3222             qemu_printf(" path=%s", canonical_path);
3223             g_free(canonical_path);
3224         } else {
3225             qemu_printf(" type=%s", object_get_typename(obj));
3226         }
3227     }
3228     qemu_printf("}");
3229 }
3230 
3231 static void mtree_print_mr_owner(const MemoryRegion *mr)
3232 {
3233     Object *owner = mr->owner;
3234     Object *parent = memory_region_owner((MemoryRegion *)mr);
3235 
3236     if (!owner && !parent) {
3237         qemu_printf(" orphan");
3238         return;
3239     }
3240     if (owner) {
3241         mtree_expand_owner("owner", owner);
3242     }
3243     if (parent && parent != owner) {
3244         mtree_expand_owner("parent", parent);
3245     }
3246 }
3247 
3248 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3249                            hwaddr base,
3250                            MemoryRegionListHead *alias_print_queue,
3251                            bool owner, bool display_disabled)
3252 {
3253     MemoryRegionList *new_ml, *ml, *next_ml;
3254     MemoryRegionListHead submr_print_queue;
3255     const MemoryRegion *submr;
3256     unsigned int i;
3257     hwaddr cur_start, cur_end;
3258 
3259     if (!mr) {
3260         return;
3261     }
3262 
3263     cur_start = base + mr->addr;
3264     cur_end = cur_start + MR_SIZE(mr->size);
3265 
3266     /*
3267      * Try to detect overflow of memory region. This should never
3268      * happen normally. When it happens, we dump something to warn the
3269      * user who is observing this.
3270      */
3271     if (cur_start < base || cur_end < cur_start) {
3272         qemu_printf("[DETECTED OVERFLOW!] ");
3273     }
3274 
3275     if (mr->alias) {
3276         bool found = false;
3277 
3278         /* check if the alias is already in the queue */
3279         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3280             if (ml->mr == mr->alias) {
3281                 found = true;
3282             }
3283         }
3284 
3285         if (!found) {
3286             ml = g_new(MemoryRegionList, 1);
3287             ml->mr = mr->alias;
3288             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3289         }
3290         if (mr->enabled || display_disabled) {
3291             for (i = 0; i < level; i++) {
3292                 qemu_printf(MTREE_INDENT);
3293             }
3294             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3295                         " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3296                         "-" HWADDR_FMT_plx "%s",
3297                         cur_start, cur_end,
3298                         mr->priority,
3299                         mr->nonvolatile ? "nv-" : "",
3300                         memory_region_type((MemoryRegion *)mr),
3301                         memory_region_name(mr),
3302                         memory_region_name(mr->alias),
3303                         mr->alias_offset,
3304                         mr->alias_offset + MR_SIZE(mr->size),
3305                         mr->enabled ? "" : " [disabled]");
3306             if (owner) {
3307                 mtree_print_mr_owner(mr);
3308             }
3309             qemu_printf("\n");
3310         }
3311     } else {
3312         if (mr->enabled || display_disabled) {
3313             for (i = 0; i < level; i++) {
3314                 qemu_printf(MTREE_INDENT);
3315             }
3316             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3317                         " (prio %d, %s%s): %s%s",
3318                         cur_start, cur_end,
3319                         mr->priority,
3320                         mr->nonvolatile ? "nv-" : "",
3321                         memory_region_type((MemoryRegion *)mr),
3322                         memory_region_name(mr),
3323                         mr->enabled ? "" : " [disabled]");
3324             if (owner) {
3325                 mtree_print_mr_owner(mr);
3326             }
3327             qemu_printf("\n");
3328         }
3329     }
3330 
3331     QTAILQ_INIT(&submr_print_queue);
3332 
3333     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3334         new_ml = g_new(MemoryRegionList, 1);
3335         new_ml->mr = submr;
3336         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3337             if (new_ml->mr->addr < ml->mr->addr ||
3338                 (new_ml->mr->addr == ml->mr->addr &&
3339                  new_ml->mr->priority > ml->mr->priority)) {
3340                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3341                 new_ml = NULL;
3342                 break;
3343             }
3344         }
3345         if (new_ml) {
3346             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3347         }
3348     }
3349 
3350     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3351         mtree_print_mr(ml->mr, level + 1, cur_start,
3352                        alias_print_queue, owner, display_disabled);
3353     }
3354 
3355     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3356         g_free(ml);
3357     }
3358 }
3359 
3360 struct FlatViewInfo {
3361     int counter;
3362     bool dispatch_tree;
3363     bool owner;
3364     AccelClass *ac;
3365 };
3366 
3367 static void mtree_print_flatview(gpointer key, gpointer value,
3368                                  gpointer user_data)
3369 {
3370     FlatView *view = key;
3371     GArray *fv_address_spaces = value;
3372     struct FlatViewInfo *fvi = user_data;
3373     FlatRange *range = &view->ranges[0];
3374     MemoryRegion *mr;
3375     int n = view->nr;
3376     int i;
3377     AddressSpace *as;
3378 
3379     qemu_printf("FlatView #%d\n", fvi->counter);
3380     ++fvi->counter;
3381 
3382     for (i = 0; i < fv_address_spaces->len; ++i) {
3383         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3384         qemu_printf(" AS \"%s\", root: %s",
3385                     as->name, memory_region_name(as->root));
3386         if (as->root->alias) {
3387             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3388         }
3389         qemu_printf("\n");
3390     }
3391 
3392     qemu_printf(" Root memory region: %s\n",
3393       view->root ? memory_region_name(view->root) : "(none)");
3394 
3395     if (n <= 0) {
3396         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3397         return;
3398     }
3399 
3400     while (n--) {
3401         mr = range->mr;
3402         if (range->offset_in_region) {
3403             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3404                         " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3405                         int128_get64(range->addr.start),
3406                         int128_get64(range->addr.start)
3407                         + MR_SIZE(range->addr.size),
3408                         mr->priority,
3409                         range->nonvolatile ? "nv-" : "",
3410                         range->readonly ? "rom" : memory_region_type(mr),
3411                         memory_region_name(mr),
3412                         range->offset_in_region);
3413         } else {
3414             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3415                         " (prio %d, %s%s): %s",
3416                         int128_get64(range->addr.start),
3417                         int128_get64(range->addr.start)
3418                         + MR_SIZE(range->addr.size),
3419                         mr->priority,
3420                         range->nonvolatile ? "nv-" : "",
3421                         range->readonly ? "rom" : memory_region_type(mr),
3422                         memory_region_name(mr));
3423         }
3424         if (fvi->owner) {
3425             mtree_print_mr_owner(mr);
3426         }
3427 
3428         if (fvi->ac) {
3429             for (i = 0; i < fv_address_spaces->len; ++i) {
3430                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3431                 if (fvi->ac->has_memory(current_machine, as,
3432                                         int128_get64(range->addr.start),
3433                                         MR_SIZE(range->addr.size) + 1)) {
3434                     qemu_printf(" %s", fvi->ac->name);
3435                 }
3436             }
3437         }
3438         qemu_printf("\n");
3439         range++;
3440     }
3441 
3442 #if !defined(CONFIG_USER_ONLY)
3443     if (fvi->dispatch_tree && view->root) {
3444         mtree_print_dispatch(view->dispatch, view->root);
3445     }
3446 #endif
3447 
3448     qemu_printf("\n");
3449 }
3450 
3451 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3452                                       gpointer user_data)
3453 {
3454     FlatView *view = key;
3455     GArray *fv_address_spaces = value;
3456 
3457     g_array_unref(fv_address_spaces);
3458     flatview_unref(view);
3459 
3460     return true;
3461 }
3462 
3463 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3464 {
3465     struct FlatViewInfo fvi = {
3466         .counter = 0,
3467         .dispatch_tree = dispatch_tree,
3468         .owner = owner,
3469     };
3470     AddressSpace *as;
3471     FlatView *view;
3472     GArray *fv_address_spaces;
3473     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3474     AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3475 
3476     if (ac->has_memory) {
3477         fvi.ac = ac;
3478     }
3479 
3480     /* Gather all FVs in one table */
3481     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3482         view = address_space_get_flatview(as);
3483 
3484         fv_address_spaces = g_hash_table_lookup(views, view);
3485         if (!fv_address_spaces) {
3486             fv_address_spaces = g_array_new(false, false, sizeof(as));
3487             g_hash_table_insert(views, view, fv_address_spaces);
3488         }
3489 
3490         g_array_append_val(fv_address_spaces, as);
3491     }
3492 
3493     /* Print */
3494     g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3495 
3496     /* Free */
3497     g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3498     g_hash_table_unref(views);
3499 }
3500 
3501 struct AddressSpaceInfo {
3502     MemoryRegionListHead *ml_head;
3503     bool owner;
3504     bool disabled;
3505 };
3506 
3507 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3508 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3509 {
3510     const AddressSpace *as_a = a;
3511     const AddressSpace *as_b = b;
3512 
3513     return g_strcmp0(as_a->name, as_b->name);
3514 }
3515 
3516 static void mtree_print_as_name(gpointer data, gpointer user_data)
3517 {
3518     AddressSpace *as = data;
3519 
3520     qemu_printf("address-space: %s\n", as->name);
3521 }
3522 
3523 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3524 {
3525     MemoryRegion *mr = key;
3526     GSList *as_same_root_mr_list = value;
3527     struct AddressSpaceInfo *asi = user_data;
3528 
3529     g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3530     mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3531     qemu_printf("\n");
3532 }
3533 
3534 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3535                                    gpointer user_data)
3536 {
3537     GSList *as_same_root_mr_list = value;
3538 
3539     g_slist_free(as_same_root_mr_list);
3540 
3541     return true;
3542 }
3543 
3544 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3545 {
3546     MemoryRegionListHead ml_head;
3547     MemoryRegionList *ml, *ml2;
3548     AddressSpace *as;
3549     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3550     GSList *as_same_root_mr_list;
3551     struct AddressSpaceInfo asi = {
3552         .ml_head = &ml_head,
3553         .owner = owner,
3554         .disabled = disabled,
3555     };
3556 
3557     QTAILQ_INIT(&ml_head);
3558 
3559     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3560         /* Create hashtable, key=AS root MR, value = list of AS */
3561         as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3562         as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3563                                                      address_space_compare_name);
3564         g_hash_table_insert(views, as->root, as_same_root_mr_list);
3565     }
3566 
3567     /* print address spaces */
3568     g_hash_table_foreach(views, mtree_print_as, &asi);
3569     g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3570     g_hash_table_unref(views);
3571 
3572     /* print aliased regions */
3573     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3574         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3575         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3576         qemu_printf("\n");
3577     }
3578 
3579     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3580         g_free(ml);
3581     }
3582 }
3583 
3584 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3585 {
3586     if (flatview) {
3587         mtree_info_flatview(dispatch_tree, owner);
3588     } else {
3589         mtree_info_as(dispatch_tree, owner, disabled);
3590     }
3591 }
3592 
3593 void memory_region_init_ram(MemoryRegion *mr,
3594                             Object *owner,
3595                             const char *name,
3596                             uint64_t size,
3597                             Error **errp)
3598 {
3599     DeviceState *owner_dev;
3600     Error *err = NULL;
3601 
3602     memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3603     if (err) {
3604         error_propagate(errp, err);
3605         return;
3606     }
3607     /* This will assert if owner is neither NULL nor a DeviceState.
3608      * We only want the owner here for the purposes of defining a
3609      * unique name for migration. TODO: Ideally we should implement
3610      * a naming scheme for Objects which are not DeviceStates, in
3611      * which case we can relax this restriction.
3612      */
3613     owner_dev = DEVICE(owner);
3614     vmstate_register_ram(mr, owner_dev);
3615 }
3616 
3617 void memory_region_init_rom(MemoryRegion *mr,
3618                             Object *owner,
3619                             const char *name,
3620                             uint64_t size,
3621                             Error **errp)
3622 {
3623     DeviceState *owner_dev;
3624     Error *err = NULL;
3625 
3626     memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3627     if (err) {
3628         error_propagate(errp, err);
3629         return;
3630     }
3631     /* This will assert if owner is neither NULL nor a DeviceState.
3632      * We only want the owner here for the purposes of defining a
3633      * unique name for migration. TODO: Ideally we should implement
3634      * a naming scheme for Objects which are not DeviceStates, in
3635      * which case we can relax this restriction.
3636      */
3637     owner_dev = DEVICE(owner);
3638     vmstate_register_ram(mr, owner_dev);
3639 }
3640 
3641 void memory_region_init_rom_device(MemoryRegion *mr,
3642                                    Object *owner,
3643                                    const MemoryRegionOps *ops,
3644                                    void *opaque,
3645                                    const char *name,
3646                                    uint64_t size,
3647                                    Error **errp)
3648 {
3649     DeviceState *owner_dev;
3650     Error *err = NULL;
3651 
3652     memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3653                                             name, size, &err);
3654     if (err) {
3655         error_propagate(errp, err);
3656         return;
3657     }
3658     /* This will assert if owner is neither NULL nor a DeviceState.
3659      * We only want the owner here for the purposes of defining a
3660      * unique name for migration. TODO: Ideally we should implement
3661      * a naming scheme for Objects which are not DeviceStates, in
3662      * which case we can relax this restriction.
3663      */
3664     owner_dev = DEVICE(owner);
3665     vmstate_register_ram(mr, owner_dev);
3666 }
3667 
3668 /*
3669  * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3670  * the fuzz_dma_read_cb callback
3671  */
3672 #ifdef CONFIG_FUZZ
3673 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3674                       size_t len,
3675                       MemoryRegion *mr)
3676 {
3677 }
3678 #endif
3679 
3680 static const TypeInfo memory_region_info = {
3681     .parent             = TYPE_OBJECT,
3682     .name               = TYPE_MEMORY_REGION,
3683     .class_size         = sizeof(MemoryRegionClass),
3684     .instance_size      = sizeof(MemoryRegion),
3685     .instance_init      = memory_region_initfn,
3686     .instance_finalize  = memory_region_finalize,
3687 };
3688 
3689 static const TypeInfo iommu_memory_region_info = {
3690     .parent             = TYPE_MEMORY_REGION,
3691     .name               = TYPE_IOMMU_MEMORY_REGION,
3692     .class_size         = sizeof(IOMMUMemoryRegionClass),
3693     .instance_size      = sizeof(IOMMUMemoryRegion),
3694     .instance_init      = iommu_memory_region_initfn,
3695     .abstract           = true,
3696 };
3697 
3698 static const TypeInfo ram_discard_manager_info = {
3699     .parent             = TYPE_INTERFACE,
3700     .name               = TYPE_RAM_DISCARD_MANAGER,
3701     .class_size         = sizeof(RamDiscardManagerClass),
3702 };
3703 
3704 static void memory_register_types(void)
3705 {
3706     type_register_static(&memory_region_info);
3707     type_register_static(&iommu_memory_region_info);
3708     type_register_static(&ram_discard_manager_info);
3709 }
3710 
3711 type_init(memory_register_types)
3712